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Abstract Using a counter rotating parallel plate shear flow cell, the shape relaxation of

deformed droplets in a quiescent matrix is studied microscopically. Both the effects of geo-

metrical confinement and component viscoelasticity are systematically explored at viscosity

ratios of 0.45 and 1.5. The flow conditions are varied from a rather low to a nearly critical

Ca-number. Under all conditions investigated, viscoelasticity of the droplet phase has no

influence on shape relaxation, whereas matrix viscoelasticity and geometrical confinement

result in a slower droplet retraction. Up to high confinement ratios, the relaxation curves for

ellipsoidal droplets can be superposed onto a master curve. Confined droplets with a sig-

moidal shape relax in two stages; the first consists of a shape change to an ellipsoid with a

limited amount of retraction, the second is the retraction of this ellipsoid. The latter can be
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described by means of one single relaxation time, that can be obtained from the relaxation

of initially ellipsoidal droplets. The experimental results are compared to the predictions

of a recently published phenomenological model for droplet dynamics in confined systems

with viscoelastic components (Minale et al. 2010). However, whereas the model predicts

additive effects of geometrical confinement and component viscoelasticity, the experimental

data reveal more complex interactions.

Keywords Single droplet dynamics · Shape relaxation · Viscoelasticity · Confinement ·

Minale model
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1 Introduction

Since the pioneering work of Taylor (1932, 1934), droplet dynamics in blends and emul-

sions has been studied extensively (as reviewed by Rallison (1984), Stone (1994), Briscoe

(1999), Tucker and Moldenaers (2002), Guido and Greco (2004),Van Puyvelde and Mold-

enaers (2005) and Van Puyvelde et al. (2008)). In single droplet studies the focus is often

on droplet deformation and breakup. However, for blends of molten polymers, the final

morphology after processing will also depend on the details and kinetics of the shape relax-

ation. Several parameters such as cooling speed, fluid rheology and interactions with other

droplets or the walls of the processing equipment can influence this relaxation process and

consequently the droplet shape and size in the final product. It can also be noted that shape

relaxation of deformed droplets has become a popular way to determine the interfacial ten-

sion of a blend (Guido and Greco 2004).

Although they are often used as a model system, emulsions and blends consisting of Newto-

nian components have limited practical applications. Mostly, the blend constituents are vis-

coelastic rather than Newtonian. The blend morphology often needs to be stabilized against

coarsening by means of compatibilizers or colloidal particles (as reviewed by Van Puyvelde

and Moldenaers (2005) and Fenouillot et al. (2009)). In addition, the processing equipment

commonly consists of sophisticated devices in which the material is subjected to complex

flow fields. Finally, microfluidics and microscale polymer processing are gaining impor-

tance, which implies that the influence of the walls can not be neglected. All these compli-

cations should be included in design and optimization calculations of processing operations.

Obviously, from a research point of view, this problem cannot be tackled in its complexity

at once. Therefore, research focusses on model type problems that deal with certain of these
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aspects in order to gather fundamental insight in morphology development.

For blends consisting of Newtonian components, the droplet deformation in shear flow de-

pends on the capillary number Ca (= ηm· γ̇ · R / Γ , where ηm, γ̇ , R and Γ denote respectively

matrix viscosity, shear rate, droplet radius and interfacial tension) and the viscosity ratio λ

(= ηd/ηm, with ηd the droplet viscosity). The droplet deformation increases with increasing

Ca and when Ca exceeds a critical value Cacrit , the droplet will deform irreversibly un-

der flow until eventually breakup occurs. The Cacrit as a function of λ has carefully been

mapped out by Grace (1982). The relaxation of such droplets after cessation of a subcrit-

ical shear flow is well-documented and can be reproduced by model predictions (Guido

and Villone 1999; Mo et al. 2000; Guido and Greco 2001). For ellipsoidal droplets, the

shape relaxation process can be described by means of one single relaxation time (Luciani

et al. 1997; Guido and Villone 1999; Mo et al. 2000). It was observed both experimentally

(Vananroye et al. 2008) and numerically (Janssen and Anderson 2007) that confinement of

the droplets (e.g. between two parallel plates) retards the retraction process. Vananroye et

al. (2008) have shown that in systems with Newtonian components, the shape relaxation of

a confined droplet is well described by the confined Minale model (Minale 2008). The latter

is a phenomenological model that describes the dynamics of ellipsoidal droplets for systems

with Newtonian components in a generic confined flow.

In order to gain insight into the droplet dynamics of systems with industrial relevance, the

effect of viscoelasticity of the components needs to be considered. This topic received quite

some attention during the last decade (Guido and Greco 2004; Van Puyvelde and Molde-

naers 2005). When the matrix is viscoelastic, droplet retraction is considerably retarded as

compared to the Newtonian case (Maffettone and Greco 2004; Yu et al. 2004; Yu et al.
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2005; Yue et al. 2005; Sibillo et al. 2006; Verhulst et al. 2007, 2009b). For blends with

a viscoelastic Boger fluid matrix, the deformation of ellipsoidal droplets does not decrease

exponentially, as in systems with Newtonian components, but the retraction is retarded at

the later stages, leading to a tail in the shape relaxation curves (Sibillo et al. 2006; Verhulst

et al. 2007, 2009b). This tail can only be modeled by using constitutive equations for the

viscoelastic fluid that have at least two relaxation times (Yu et al. 2004; Yu et al. 2005;

Yue et al. 2005; Verhulst et al. 2009a). Droplet viscoelasticity has been shown to have less

influence on the shape relaxation of deformed droplets (Lerdwijitjarud et al. 2003; Verhulst

et al. 2009b).

In this work, we specifically study the combined effect of geometrical confinement and

component viscoelasticity on the shape relaxation of deformed droplets with varying de-

grees of initial deformation. To our knowledge, no such systematic study has been reported

on yet, except for some preliminary results reported by the present authors (Cardinaels et al.

2007, 2008). Results on the combined effect of confinement and viscoelasticity of one of the

components on the steady state droplet behaviour have recently been published elsewhere

(Cardinaels et al. 2009). As transient experiments are critical for model assessment, it will

be verified in the present work to which extent a very recently published phenomenological

model that can describe the combined effects of confinement and component viscoelastic-

ity on the dynamics of ellipsoidal droplets (Minale et al. 2010), can be used to describe

shape relaxation after cessation of shear flow. For these conditions, the model has only been

validated to a very limited extent for the case of a viscoelastic matrix.
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2 Materials and methods

Droplet retraction after cessation of shear flow is visualized in a flow cell that consists of

two transparent parallel plates that can rotate in opposite directions. The device is a modifi-

cation of a Paar Physica MCR300 rheometer. With the setup, a droplet in a stagnation plane

can be studied microscopically from both the vorticity and the velocity gradient direction.

The operating principle and details of the experimental setup have been presented elsewhere

(Verhulst et al. 2007; Cardinaels et al. 2009).

The polymers and blends used in this study are summarized in Table 1, where d denotes

droplet and m matrix. Blends with either a viscoelastic matrix or a viscoelastic droplet were

used in order to study the effects of component viscoelasticity on the shape relaxation. As

viscoelastic material, a polyisobutylene (PIB) Boger fluid (BF2, see Verhulst et al. (2007,

2009a,b)), containing 0.2 w% of a high molecular weight polymer (Mv = 4.106) was used.

This viscoelastic material was combined with mixtures of polydimethylsiloxane (PDMS)

with different viscosities to obtain blends with viscosity ratios of 0.45 and 1.5. The bulk

critical Ca-numbers Cacrit associated with these viscosity ratios are 0.46 and 0.56 respec-

tively for purely Newtonian components (De bruijn 1989). Under the studied conditions,

component viscoelasticity does not substantially influence the Cacrit in bulk shear flow (Car-

dinaels et al. 2008). In the shear rate range of interest, all PDMS samples are Newtonian

whereas the fluid BF2 is viscoelastic and has a viscosity and first normal stress coefficient

that are independent of shear rate. At the experimental temperatures, the polymer relaxation

time τp of the BF2 fluid, as calculated from the Oldroyd-B model (τp = Ψ1/ηp, where Ψ1

and ηp denote respectively the first normal stress coefficient and the polymer contribution

to the viscosity), is approximately 8.5 s (Verhulst et al. 2009a). Although the Oldroyd-B
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model is frequently used to describe the rheology of Boger fluids, these fluids in principle

have a spectrum of relaxation times (Quinzani et al. 1990). Verhulst et al. (2009a) reported

that the steady rheology of BF2 can be well-described by a 5-mode Giesekus model with

a longest relaxation time of 49 s. The interfacial tension of the blends was determined by

fitting the slow flow droplet deformation data to the second order theory of Greco (Greco

2002).

Table 1 Blend and component characteristics

Blend d/m Droplet Matrix T ηm Ψ1,d Ψ1,m Γ λ

◦C Pa.s Pa.s2 Pa.s2 mN/m -

1 N/VE PDMS30-100 BF2 26.4 36.5 0 197 2.0 1.5

2 VE/N BF2 PDMS30 26.0 25.2 212 0 2.2 1.5

3 N/VE PDMS12,5-30 BF2 26.2 37.2 0 204.5 2.0 0.45

4 VE/N BF2 PDMS100 26.2 82.6 204.5 0 1.85 0.45

3 Phenomenological models including confinement and component viscoelasticity

The experimental results are compared with the predictions of phenomenological models

for the dynamics of ellipsoidal droplets. In unbounded flow and for systems with Newtonian

components, the three droplet axes L, B and W and the droplet orientation with respect to the

flow direction are well described by the Maffettone-Minale model (Maffettone and Minale

1998). In this model, the droplet shape is represented by a symmetric, positive-definite,

second rank tensor S, with eigenvalues representing the squared dimensionless semiaxes of
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the ellipsoid. The dynamics of S are dictated by the following equation:

dS
dt

−Ca
(
Ω ·S−S ·Ω

)
= − f1

[
S−g(S)I

]
+

Ca · f2
(
D ·S+S ·D

)
(1)

where t is the time that is made dimensionless with the emulsion time τem = (ηm ·R/Γ ),

D is the dimensionless deformation rate tensor and Ω the dimensionless vorticity tensor.

The function g(S) is introduced to preserve the droplet volume, while f1 and f2 are non-

dimensional, non-negative functions of Ca and λ that are derived to make the model recover

the small-deformation theory of Taylor (1934) at low Ca.

For nearly spherical droplets, the effects of geometrical confinement on the steady droplet

deformation have been calculated theoretically by Shapira and Haber (1990). It was found

that the droplet deformation increases with the ratio of droplet diameter 2R to gap spacing

H to the power 3. In order to extend the results of this small-deformation theory to higher

deformations or to transient flow conditions, the original Maffettone-Minale model has been

adapted for confined flows. Vananroye et al. (2007) proposed an expression for the steady

state droplet deformation parameter that consists of a combination of the bulk deformation

parameter from the Maffettone-Minale model with an additional wall factor obtained from

the Shapira-Haber theory. Recently, a modified version of the Maffettone-Minale model

was developed that enables the prediction of the transient droplet behaviour under confined

conditions (Minale 2008). If the blend components are Newtonian, Eq. 1 remains valid. To

include the effects of confinement, the expressions for f1 and f2 were extended to take into

account the dependence on the ratio of droplet radius R to gap height H.

Effects of component viscoelasticity on the steady droplet deformation only appear at the
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second order in Ca (Greco 2002). Therefore, adapted evolution equations for S have been

proposed to include effects of viscoelasticity of the components (Maffettone and Greco

2004; Minale 2004). For example, in the evolution equation formulated by Minale, the fol-

lowing term is added to the right-hand side of Eq. 1:

Ca · f3

[(
D ·S ·S+S ·S ·D

)
−
(
D ·S+S ·D)

1
3
(
S : I

)]
(2)

In this case, the parameters f1, f2 and f3 also depend on the Deborah number De (= Ψ1 ·

Γ /(2R ·η2)) and the ratio Ψ of the second to the first normal stress difference for each com-

ponent.

In order to include the effects of confinement on the steady state droplet deformation for

blends with viscoelastic components, Cardinaels et al. (2009) combined the expression for

the bulk deformation parameter for systems with viscoelastic components with the New-

tonian Shapira-Haber factor for wall effects. Very recently, the phenomenological Minale

model (Minale 2004) for droplet dynamics in bulk systems with viscoelastic components

has been extended to confined flows (Minale et al. 2010). To that end, the dependence of

the functions f1 and f2 on the ratio R/H was taken similar as in the confined Minale model

for systems with Newtonian components (Minale 2008). In addition, f3 was chosen to de-

pend on the ratio R/H to the power 3. In the present work, the phenomenological models for

confined droplet dynamics in systems with Newtonian (Minale 2008) or viscoelastic compo-

nents (Minale et al. 2010) will be validated for shape relaxation after cessation of shear flow.
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4 Results and discussion

Since droplet deformation and therefore also droplet retraction is the most pronounced for

the droplet longest axis L, measurements of this axis provide accurate information about

the shape relaxation. However, with our experimental setup, determination of the droplet

dimensions in the velocity - vorticity plane is far less complicated than in the velocity -

velocity gradient plane (Verhulst et al. 2007). Therefore, most of the time the projection

Lp of the longest droplet axis L in the velocity direction is used to quantitatively describe

the shape relaxation. It was checked that the orientation angle during relaxation remains

constant, even for confined droplets. In all figures, time is scaled with the emulsion time τem

= ηm ·R/Γ and the droplet axis Lp is scaled between 0 and 1. The subscript 0 denotes the

start of the shape relaxation process. Unless stated otherwise, the droplet size is chosen in

such a way that the Deborah number has a fixed value of 1.

4.1 Shape relaxation after shear flow at a low Ca

In this section, the shape relaxation of droplets after cessation of shear flow with a rather low

Ca (= 0.2), as compared to the critical value, will be discussed. The evolution of the dimen-

sionless droplet axes of a viscoelastic droplet with λ = 1.5 in a Newtonian matrix (Blend 2 in

Table 1) are shown in Fig. 1 for an unbounded droplet and a droplet with 2R/H = 0.74. The

predictions of the confined Minale models for systems with Newtonian (Minale 2008) and

viscoelastic components (Minale et al. 2010) are also added. As initial droplet dimensions

for the model predictions, the experimental dimensionless droplet axes have been used. In

addition, for blends with viscoelastic components, the parameter Ψ has been fixed at 0.1

throughout this work, in agreement with earlier studies (Verhulst et al. 2007; Cardinaels et

al. 2009; Minale et al. 2010). It can be seen that geometrical confinement increases the



11

Fig. 1 Dimensionless droplet axes during shape relaxation after cessation of shear flow with Ca = 0.2; Vis-

coelastic droplet in a Newtonian matrix with λ = 1.5, experimental data (symbols) and predictions of the

confined Minale models (Minale 2008; Minale et al. 2010) (lines)

initial droplet length and retards the retraction of all three droplet axes, as in earlier work

(Vananroye et al. 2007, 2008; Cardinaels et al. 2009). The experimental data coincide

with the predictions of the confined Minale model for systems with Newtonian components.

However, the model predicts a somewhat slower relaxation when the droplet is viscoelastic,

a trend that is not observed in the experimental data.

In Fig. 2 results for the retraction of the longest droplet axis of a viscoelastic droplet in a

Newtonian matrix (same blend as in Fig. 1) are shown for a series of degrees of confine-

ment, defined as 2R/H. From these data it is clear that the relaxation is slowed down if the

confinement ratio 2R/H exceeds 0.5. In addition, by using a graph with a semi-logarithmic

scale, straight lines are obtained for the retraction curves, which implies that the shape relax-

ation process can be described by means of one single relaxation time τ , even for confined
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droplets. Exponential relaxation curves with an increasing relaxation time for increasing

degrees of confinement were also obtained for systems that contain only Newtonian compo-

nents (Vananroye et al. 2008). In addition, Vananroye et al. (2008) showed that the confined

Minale model provides good agreement with the experimental results for droplet relaxation

in these blends. The predictions of the confined Minale model (Minale 2008) for systems

with Newtonian components are added to Fig. 2. The agreement between the experimen-

tal data and the model predictions is excellent, even up to the highest confinement ratio.

Therefore, the conclusion of Verhulst et al. (2009b) that, at a viscosity ratio of 1.5, droplet

viscoelasticity does not influence droplet relaxation in bulk conditions, can be extended to

highly confined conditions. However, the confined Minale model for systems with viscoelas-

tic components (Minale et al. 2010) clearly overpredicts the relaxation time at 2R/H = 0.74.

Relaxation after cessation of shear flow with Ca = 0.2 is also studied here for a system with a

viscoelastic matrix at λ = 1.5 (Blend 1 in Table 1). The evolution of the three dimensionless

droplet axes is presented in Fig. 3 for an unbounded and a confined droplet. Similar to the

results in Fig. 1, confinement increases the initial droplet deformation and slows down the

droplet retraction. However, from a comparison between Figs. 1 and 3 it can be seen that,

when the matrix is viscoelastic, the initial droplet deformation is less than that of a droplet in

a Newtonian matrix, a trend that is well-known (Maffettone and Greco 2004; Minale 2004;

Verhulst et al. 2007, 2009a; Cardinaels et al. 2009). The confined Minale model for sys-

tems with viscoelastic components predicts a slower droplet retraction when the matrix is

viscoelastic as compared to the case with a Newtonian matrix. However, in the experimen-

tal data, the effect of matrix viscoelasticity is moderate in bulk conditions and completely

absent in confined conditions.



13

Fig. 2 Droplet retraction after cessation of shear flow with Ca = 0.2 for a series of confinement ratios;

Viscoelastic droplet in a Newtonian matrix with λ = 1.5, experimental data (symbols) and predictions of

the confined Minale models for systems with Newtonian components (Minale 2008) (lines) or systems with

a viscoelastic droplet (Minale et al. 2010) (line with crosses)

To systematically study the effects of confinement and component viscoelasticity on droplet

relaxation, data have also been gathered with the system of Fig. 3 for a series of confinement

ratios. In addition, experiments have been performed for systems with λ = 0.45, containing

either a viscoelastic matrix or a viscoelastic droplet (Blends 3 and 4 in Table 1). Finally,

whereas all the previously mentioned data were gathered at a De-number of 1, additional

data have been obtained on a system with a viscoelastic droplet and a higher De-number.

To provide a comprehensive overview of the effects of the different parameters on the re-

laxation process, the droplet relaxation times τ for all systems and experimental conditions

were determined from plots similar to those in Fig. 2. It should be noted however that for the

systems with a viscoelastic matrix, the relaxation becomes slower in the later stages of the
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Fig. 3 Dimensionless droplet axes during shape relaxation after cessation of shear flow with Ca = 0.2; Newto-

nian droplet in a viscoelastic matrix with λ = 1.5, experimental data (symbols) and predictions of the confined

Minale models (Minale 2008; Minale et al. 2010) (lines)

relaxation process, resulting in a tail in the relaxation curves, as in Sibillo et al. (2006) and

Verhulst et al. (2007, 2009b). However, the latter occurs at very low values of the droplet

deformation. Therefore, a substantial linear part is present in the relaxation curves, from

which τ can be determined without difficulty. The relaxation times are made dimensionless

with the respective emulsion times to eliminate the effect of different matrix viscosities. The

results are summarized in Fig. 4, where the dimensionless relaxation times are plotted as a

function of the confinement ratio 2R/H.

The bulk results in Fig. 4 show that viscoelasticity of the matrix fluid slightly retards the

droplet relaxation at both viscosity ratios. This effect is already clearly established in liter-

ature, both experimentally and numerically (Yue et al. 2005; Sibillo et al. 2006; Verhulst

et al. 2007, 2009b). Results for droplet relaxation in systems with a viscoelastic droplet
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Fig. 4 Dimensionless relaxation time as a function of confinement ratio for ellipsoidal droplets, as deter-

mined from droplet retraction after cessation of shear flow with Ca = 0.2, experimental data (symbols) and

predictions of the confined Minale models (Minale 2008; Minale et al. 2010) (lines); a λ = 1.5, b λ = 0.45

are however scarce in literature. Verhulst et al. (2009b) showed that at a viscosity ratio of

1.5, droplet viscoelasticity has no influence on the relaxation process in bulk conditions.

At a viscosity ratio of 1, Lerdwijitjarud et al. (2003) did not observe any effect of droplet

viscoelasticity either. However, in the latter work the De-number was restricted to values

well below 0.5. From the results in Fig. 4b it becomes obvious that, also for lower viscosity
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ratios, droplet viscoelasticity has no influence on the relaxation process, and this up to De-

numbers above 1.

For all the systems investigated, the threshold value above which confinement effects come

into play is comparable and equals approximately 0.5, independent of the component elas-

ticity and the viscosity ratio. For confined droplets, the relaxation process is hampered by the

fact that the matrix fluid has to be squeezed out between the plates and the droplet (Janssen

and Anderson 2007). The overall relaxation for the systems with λ = 0.45 is approximately

1.7 times faster than for the systems with viscosity ratio 1.5. Still, confinement effects on

the relaxation time are similar for both viscosity ratios, indicating that, within the range of

studied material parameters and experimental conditions, a faster retraction does not amplify

the hindrance of the relaxation due to the presence of the walls. Upon detailed inspection of

the data in Fig. 4 it can be observed that at λ = 0.45 relaxation in a viscoelastic matrix is

always slower than when the droplet is viscoelastic. However, at a viscosity ratio of 1.5, the

trend reverses and the relaxation of viscoelastic droplets becomes slightly slower than that

of Newtonian droplets in a viscoelastic matrix. Cardinaels et al. (2009) have shown that for

systems with a viscosity ratio of 1.5, droplets in a viscoelastic matrix are less deformed than

those in a Newtonian matrix at all confinement ratios, whereas for systems with a viscosity

ratio of 0.45, droplet deformation becomes nearly independent of the fluid viscoelasticity at

the highest confinement ratios. In addition, at a viscosity ratio of 1.5, matrix viscoelasticity

postpones the transition from ellipsoidal to sigmoidal droplet shapes to higher Ca-numbers

and confinement ratios as compared to a Newtonian matrix (Cardinaels et al. 2009). There-

fore, the slightly faster relaxation for a viscoelastic matrix as compared to a viscoelastic

droplet at a viscosity ratio of 1.5 and high confinement ratios might be caused by differ-

ences in the initial deformation or shape of the droplets.
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The dimensionless relaxation times τcon f obtained from the confined Minale models for

systems with Newtonian (Minale 2008) and viscoelastic components (Minale et al. 2010)

are also included in Fig. 4. These are calculated according to:

τcon f

τem
=

τbulk

τem
·
[
1+Cs(R/H)3 · 44+64λ −13λ 2

2(1+λ )(12+λ )

]
(3)

where Cs is a parameter that equals 5.7 for a droplet that is situated in the middle of the gap

(Shapira and Haber 1990), τbulk is the relaxation time for the shape relaxation of unbounded

ellipsoidal droplets (Mo et al. 2000):

τbulk

τem
=

1
f1

(4)

and f1 is a parameter in the bulk Maffettone-Minale (Maffettone and Minale 1998) and Mi-

nale models (Minale 2004). It can be deduced from Eq. 3 that both confined Minale models

predict a relaxation time that is independent of the initial droplet deformation and gradually

increases with R/H to the power 3. Theoretically, the phenomenological models only pre-

dict an exponential decay for the relaxation of the differences of the squared semiaxes of the

droplet, such as L2-B2, with L and B the longest and shortest droplet axis in the velocity-

velocity gradient plane (Mo et al. 2000). However, it is shown in Fig. 2 that for the scaled

projection Lp of the longest axis L in the velocity direction, the deviations from an exponen-

tial relaxation are insignificant. In addition, it has carefully been checked that the predicted

droplet relaxation times obtained from curves as in Fig. 2 agree with those obtained from

Eqs. 3 and 4. Therefore, the latter equations are plotted in Fig. 4.

Figure 4 shows that the predictions of the confined Minale models qualitatively capture

the trends as a function of confinement ratio, although wall effects start well below 2R/H
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= 0.5, which is not in agreement with the experimental results. A similar conclusion was

reported by Vananroye et al. (2008) for blends that contain only Newtonian components.

For both viscosity ratios, the model predicts a significant retardation of the relaxation when

the matrix is viscoelastic. This is in qualitative agreement with the data, but the predicted ef-

fect is more pronounced than the experimentally observed one. A preliminary validation of

the confined Minale model for systems with viscoelastic components has already been per-

formed for droplet relaxation in a viscoelastic matrix at 2R/H = 0.74 (Minale et al. 2010).

Although they studied an initially highly deformed droplet and the amount of data during

the exponential part of the relaxation curve is limited, the results suggest a good agreement

between the model predictions and the experimental data at De = 1.1. This conclusion is

not supported by the results presented in Fig. 4. The confined Minale model for systems

with viscoelastic components has been derived for blends that consist of second-order fluids

(Minale et al. 2010). Despite the fact that in the range of shear rates that is relevant in the

present study the steady shear rheology of the used Boger fluid can be well described by

means of the second-order fluids model, Boger fluids have a spectrum of relaxation times

that can affect the kinetics of shape relaxation (Verhulst et al. 2009b). The Boger fluid in

the work of Minale et al. (2010) contains a higher percentage of high molecular weight

component and the latter has a lower molecular weight as compared to the polymer used in

the present work. Hence, the spectrum of relaxation times of the fluids in both works and

their elongational viscosity is expected to be different and this might cause differences in

the droplet behaviour. Therefore, it can be concluded that, despite the qualitative agreement,

even at the same De, the kinetics of shape relaxation can vary, depending on the details of the

viscoelastic fluid. These effects are however not included in the second-order fluids model,

which can lead to deviations between the experimental data and the model predictions.
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For systems with a viscoelastic droplet in confinement, no model predictions or experimental

data are available in literature. Fig. 4 shows that the effects of droplet viscoelasticity on the

model predictions are less pronounced as the effects of matrix viscoelasticity, especially at a

viscosity ratio of 0.45. Experimentally, no effect of droplet viscoelasticity was observed. Fi-

nally, the model predictions form parallel lines as a function of confinement ratio, indicating

that confinement and viscoelasticity effects are completely decoupled. However, the experi-

mental data show a more complex picture, in which the effects of component viscoelasticity

on the droplet relaxation time depend on the confinement ratio. Finally, it should be noted

that the presentation method of Figs. 2 and 4 is a more straightforward and sensitive way

to differentiate between the different relaxation curves as compared to a plot of the droplet

axes.

4.2 Shape relaxation after shear flow at a Ca close to the critical conditions

In this section, the retraction of droplets at a Ca-number that is close to the critical value

Cacrit will be discussed. The values of the applied Ca-number are Ca = 0.35 for systems

with a viscosity ratio of 1.5 (Cacrit,bulk = 0.56) and Ca = 0.4 for systems with a viscosity

ratio of 0.45 (Cacrit,bulk = 0.46). The apparent different distance from the critical conditions

is motivated by the different trend of the critical Ca-number as a function of confinement

ratio for systems with viscosity ratios above and below one. For viscosity ratios above 1

and systems that contain only Newtonian components, the critical Ca-number for breakup

decreases with increasing confinement. The opposite trend was observed for systems with

a viscosity ratio below 1 (Vananroye et al. 2006). Therefore, a lower Ca-number is used

here for the system with the highest viscosity ratio as compared to the system with the lower

viscosity ratio.
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Experimental results for shape relaxation in systems with a viscosity ratio of 1.5 are shown

in Fig. 5a and 5b for respectively a viscoelastic droplet and a viscoelastic matrix. At a Ca-

number of 0.35, the initial droplet shape for the highly confined droplets is no longer ellip-

soidal, but sigmoidal, as shown in the insert of Fig. 5a. The sigmoidal droplet shape causes

the relaxation of the longest axis L to be initially slow, resulting in a shoulder in the relax-

ation curves. Subsequently, the droplet attains a dumbbell-like shape before becoming an el-

lipsoid. This type of relaxation, consisting of an initial relaxation by means of a shape change

without significant reduction of the droplet length, followed by a simple droplet retraction,

was reported on by several authors (Stone et al. (1986); Yamane et al. (1998); Hayashi

et al. (2001a); Assighaou and Benyahia (2008); Renardy et al. (2009)). In those studies,

the highly deformed non-ellipsoidal droplet shape was however generated by applying flow

with a supercritical Ca rather than confining the droplet between parallel plates. Neverthe-

less, the qualitative nature of the relaxation process of non-ellipsoidal droplets seems to be

rather universal. Curves with a slope that is calculated from the relaxation times in Fig. 4

are added as full lines in Fig. 5a. It can be concluded that the experimental relaxation times

for the exponential part of the relaxation process agree very well with the relaxation times

obtained from the relaxation of initially ellipsoidal droplets (from Fig. 4).

When comparing the results of Fig. 5a for a viscoelastic droplet with those of Fig. 5b for

a viscoelastic matrix, it is clear that the shoulder is less pronounced for the systems with a

viscoelastic matrix. This is in agreement with the difference in steady state droplet shapes

reported in Cardinaels et al. (2009): at a viscosity ratio of 1.5 and the same Ca, a droplet is

less deformed in a viscoelastic matrix as compared to a Newtonian matrix and also shows

less tendency to be sigmoidal. The phenomenological models, that were developed for ellip-
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Fig. 5 Droplet retraction after cessation of shear flow close to the critical conditions for a series of confine-

ment ratios (Ca = 0.35 and λ = 1.5); a Viscoelastic droplet, lines have a slope calculated from the relaxation

times in Fig. 4, insert: droplet shapes obtained in the velocity - velocity gradient plane during retraction of

a highly confined droplet, b Viscoelastic matrix, the line represents the initial exponential relaxation of an

unconfined droplet

soidal droplets, predict a too fast initial retraction for the sigmoidal droplets, similar to the

case of non-ellipsoidal droplets obtained after a step-strain (Jackson and Tucker 2003; Yu

and Bousmina 2003). Therefore, model predictions are omitted in this section. The line in

Fig. 5b represents an exponential relaxation with a relaxation time for an unbounded droplet

in a viscoelastic matrix at viscosity ratio λ = 1.5, as obtained from Fig. 4. The experimen-
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tal curves in Fig. 5b show that the droplet retraction at the end of the relaxation process is

slowed down as compared to an exponential relaxation, leading to a tail in the relaxation

curves, as in Sibillo et al. (2006) and Verhulst et al. (2007, 2009b) for bulk conditions. Ver-

hulst et al. (2009b) have shown that this deviation from an exponential relaxation is caused

by the multiple relaxation times of the Boger fluid matrix. It should be remarked here that

Minale et al. (2010) reported a relaxation with a single relaxation time for a confined droplet

in a viscoelastic matrix at De = 1.1 and 2R/H = 0.74. However, as discussed before, the

molecular weight of the polymer in the Boger fluid matrix was substantially lower in their

work as compared to the present work, which most probably results in a Boger fluid with

less contributions from very long relaxation times. The absence of long relaxation times in

the Boger fluid rheology can cause the absence of a tail in the shape relaxation curves of

Minale et al. (2010).

Similar to Fig. 5, the droplet dynamics after cessation of shear flow in systems with a lower

viscosity ratio (λ = 0.45) are shown in Fig. 6. In this case, the Ca-number of the preceding

shear flow is 0.4. The results are qualitatively similar to those shown in Fig. 5. The shoul-

der is however less clear, which can be attributed to the fact that confinement effects on the

steady state deformation are less pronounced at this lower viscosity ratio (Vananroye et al.

2007; Cardinaels et al. 2009). Hence, the droplet shape remains ellipsoidal up to high con-

finement ratios. The relaxation times for the viscoelastic droplet, obtained from the linear

part of the relaxation curves, again agree well with the results obtained for an ellipsoidal

droplet that relaxes after a steady shear flow with Ca = 0.2. This is illustrated in Fig. 6a

for the highest confinement ratio (2R/H = 0.83), where a line with a slope that is calculated

from the relaxation time at this confinement ratio, as obtained from Fig. 4, is superimposed

on the experimental data.
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Fig. 6 Droplet retraction after cessation of shear flow close to the critical conditions for a series of confine-

ment ratios (Ca = 0.4 and λ = 0.45); a Viscoelastic droplet, line has a slope calculated from the relaxation

time in Fig. 4, b Viscoelastic matrix, the line represents the initial exponential relaxation of an unconfined

droplet

The line in Fig. 6b for a system with a viscoelastic matrix depicts an exponential relaxation,

for which the relaxation time is obtained from Fig. 4 for bulk conditions. Also at this vis-

cosity ratio, as in Fig. 5b, matrix viscoelasticity clearly causes a tail in the relaxation curves.

From a comparison of simulated relaxation curves obtained with and without incorporating

an initial stress field, Yue et al. (2005) have shown that this tail is the combined result of
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the relaxing viscoelastic stresses that constrain the droplet retraction and the stretching of

the polymer chains at the droplet tips due to the retraction process. The longest relaxation

time of the Boger fluid matrix material that is used here, expressed in the dimensionless time

units of Figs. 5 and 6 is approximately 18 and the relaxing viscoelastic stresses might thus

influence the relaxation process. When comparing the results of Fig. 5b at a viscosity ratio

of 1.5 with those of Fig. 6b at a viscosity ratio of 0.45, it can be seen that the tail is more

pronounced for the system with the lowest viscosity ratio, although both systems have an

almost identical emulsion time and polymer relaxation time (= same De). At λ = 0.45, the

droplet relaxation is about twice as fast as at λ = 1.5, which increases the ratio of polymer

relaxation time to droplet relaxation time. This clearly amplifies the effect of viscoelastic-

ity on the droplet retraction. The transition point between the linear part of the relaxation

curve and the tail can be estimated from the intersection of the initial and final linear parts

of the curves. Fig. 6b shows that the transition occurs for a value of the dimensionless Lp-

axis of around 0.04, while the dimensionless time of the transition varies between 8 and

13. Hence, the transition point seems to be more related to the amount of droplet relaxation

rather than to the time. Therefore, these experiments indicate that there might be an inter-

action between the polymer relaxation and the retracting droplet, which further elongates

the polymer molecules or at least postpones their recoil. The latter is in agreement with the

mechanism proposed by Yue et al. (2005). It should be noted however that the effect of

confinement on the relaxation kinetics of the viscoelastic stresses is unknown at present.
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Fig. 7 Droplet retraction after cessation of shear flow for a Newtonian droplet in a viscoelastic matrix with

λ = 0.45, 2R/H = 0.74 and different Ca-numbers

4.3 Master curves for shape relaxation

Finally, the effect of the initial droplet deformation on the shape relaxation kinetics is illus-

trated in Fig. 7. This figure shows relaxation curves for a confined Newtonian droplet in a

viscoelastic matrix (2R/H = 0.74 and λ = 0.45) after cessation of shear flow with different

Ca. For the conditions shown in Fig. 7, the curves of the scaled projected axis Lp form a

master curve for different initial droplet elongation ratios Lp0/2R. At high confinement ra-

tios and Ca-numbers, the most deformed droplets have a sigmoidal shape and a shoulder

appears in the retraction curves, which limits the existence of master curves to ellipsoidal

droplet shapes. At a viscosity ratio of 1.5 (see Fig. 5), this restricts superposition to lower

confinement ratios.
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5 Conclusions

The effects of geometrical confinement and component viscoelasticity on shape relaxation

after cessation of shear flow are studied microscopically for single droplets. As viscoelastic

component, a model Boger fluid is used, which is rheologically fully characterized, both in

shear and extensional flow (Verhulst et al. 2007, 2009a,b). This makes the presented data

sets suitable as a reference for future modelling.

Deformed droplets are generated by applying a shear flow with a subcritical flow intensity.

Viscoelasticity of the droplet fluid does not have any measurable influence on the relaxation

process, whereas geometrical confinement and matrix viscoelasticity both retard the shape

relaxation of deformed droplets. Although confined droplets relax considerably slower than

unconfined ones, allowing more time for the polymeric viscoelastic stresses to relax, the

well-known tail in the relaxation curves (Sibillo et al. 2006; Verhulst et al. 2007, 2009b)

remains present for droplets in a viscoelastic Boger fluid matrix. As long as the initial droplet

shape is ellipsoidal, the relaxation kinetics is independent of the initial deformation and mas-

ter curves can be constructed. However, confined droplets can become sigmoidal, and this

causes a slowing down of the initial stage of the relaxation process.

The experimental data for ellipsoidal droplets have been compared to the predictions of

two phenomenological models for droplet dynamics in confined systems with either only

Newtonian components or with one viscoelastic component (Minale 2008; Minale et al.

2010). The effect of geometrical confinement is qualitatively captured by the model. How-

ever, whereas the model assumes a complete decoupling of viscoelasticity and confinement

effects, the experimental data clearly show that the behaviour is more complex. Finally, by
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comparing the results obtained in this work with the results of Minale et al. (2010), it can

be concluded that, even at the same Deborah number, small differences in the Boger fluid

rheology can influence the droplet relaxation behaviour.
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