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Abstract—Embedded systems often involve transmitting feedback signals between multiple control tasks that are implemented on
different ECUs communicating via a shared bus. For ensuring stability and control performance, such designs require all control signals
to be delivered within a specified deadline, which is ensured through appropriate timing or schedulability analysis. In this paper we study
controller design that allows control feedback signals to occasionally miss their deadlines. In particular, we provide analytical bounds
on deadline misses such that the control loop retains its stability and meets its control performance requirements. We argue that such
relaxation allows us to (i) use lower quality communication resources (e.g., event-triggered instead of time-triggered communication)
and (ii) provide more flexibility – e.g., use simulation – in communication timing analysis since analytical worst-case delay bounds
for real-life communication protocols are often pessimistic. We illustrate this approach using the FlexRay communication protocol for
distributed automotive control systems.

Index Terms—Distributed embedded controllers, flexible delay constraints, FlexRay, timing analysis
F

1 INTRODUCTION
The design of distributed control systems – where control
tasks are implemented on different ECUs communicating via
a shared bus – typically require end-to-end timing guarantees
from the embedded implementation platform. For example, in
Fig. 1 the controller may be designed with the assumption of
a specified maximum sensor-to-actuator delay, which includes
the computation times of the software tasks and the signal
transmission delays on the communication bus. Such delay
assumptions are guaranteed by using appropriate scheduling
policies along with necessary timing or schedulability analysis.
For many real-life communication protocols like CAN or
FlexRay, providing tight analytical timing bounds is often
difficult and leads to either pessimistic results or resource
overprovisioning (e.g., see [2]). In many cases, this problem
is circumvented by using resource reservation techniques like
time-triggered protocols that provide better timing guarantees
and are easier to analyze. But, they are also usually more
conservative and lead to poor resource utilization.

In contrast to this constraint on all control signals having
to meet their deadlines, in this paper we propose controller
design techniques that allow control signals to occassion-
ally miss their deadlines (or be dropped). Our main techni-
cal contribution is to provide an analytical bound on such
deadline misses such that stability and control performance
are nevertheless guaranteed. We believe that such relaxation
may be exploited in the implementation platform design and
analysis stages. For example, instead of using time-triggered
communication that ensures all control signals are delivered
in time, priority-based communication protocols may be used
with certain signals missing their deadlines. Further, bounds
on deadline misses from our controller design stage may be
used as an additional “safety margin”, thereby allowing less
precise and hence less pessimistic – e.g., simulation-based –
timing analysis techniques for the implementation platform. It
is worth mentioning that recently there has also been work
on verification of communication schedules, which ensure
that bounds on allowable control signal deadline misses are
satisfied by the implementation platform [1], [8], [9], [16].
These results may be coupled with our proposed design to
provide certifiable implementations where needed.

The issue of incorporating feedback signal delay into con-
troller design has been widely studied by the Networked
Control Systems (NCS) community (e.g., see [10], [11], [12]).
One of the seminal results on bounding signal deadline misses
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Fig. 1. A distributed embedded controller.

while guaranteeing stability, along the lines of our work, may
be found in [17]. Since then a number of other papers have
reported various special cases of this result (e.g., see [7], [13],
[15]). These results mostly provide bounds over an infinite
horizon of samples (i.e., address asymptotic behavior), which
are usually difficult to check or formally verify for an imple-
mentation platform. Moreover, all such results are concerned
with stability and not performance, which is important in real-
life settings. We attempt to overcome these shortcomings;
our proposed design method has better applicability, which
we illustrate using a FlexRay-based [5] distributed controller
design example from the automotive domain.

2 PROBLEM FORMULATION
We study the design of feedback controllers for linear time-
invariant (LTI) dynamical systems (or plants),

ẋ(t) = Atx(t) +Btu(t)

y(t) = Ctx(t) (1)

where x(t) is the n×1 vector of state variables and u(t) is the
control input to the system. At is a n× n system matrix and
Bt is a n×1 vector. A typical feedback control loop performs
the following three sequential operations:
• measure the states x(t) (measure),
• compute input signal u(t) (compute) and,
• apply the computed u(t) to the plant (1) (actuate).

In a digital implementation platform of such feedback loops,
these operations are performed only at discrete-time intervals
(sampling instants). When the time interval between two
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consecutive sampling instants is constant, the continuous-time
system (1) can be transformed into the discrete-time system,

x[k + 1] = Ax[k] +Bu[k]

y[k] = Cx[k] (2)

where the sampling instants are t = hk (k = {1, 2, 3 · · · })
and hk+1 − hk = h (sampling period). x[k] and u[k] are the
values of x(t) and u(t) at t = hk and

A = eAth, B =

∫ h

0

(eAttdt) ·Bt, C = Ct. (3)

In the rest of this work, we consider the discrete-time state-
space model shown in (2) as our model of dynamical systems.

Control objectives: We consider the set-point tracking prob-
lem where the control objectives are the following:

1) Achieve exponential stability, i.e.,

‖x[k]‖ ≤ cλk ‖x[0]‖ , (4)

where 0 < λ < 1 and c is a constant.
2) Achieve y[k]→ r as k →∞, r is the reference.

The input u[k] is designed to meet these objectives.

2.1 Distributed Implementation
The distributed implementation platforms we consider are of
the form shown in Fig. 1. In this setup, there are multiple
Electronic Control Units (ECUs); multiple tasks are mapped
onto each ECU and are executed according to the scheduling
policy implemented on the ECU. Here, a control application
is partitioned in two tasks – a plant task Tp and a controller
task Tc. These tasks run on two different ECUs that com-
municate over a shared bus. A bus protocol allows messages
(generated by tasks on the ECUs) to be scheduled on the
bus. Each such message is associated with an input and an
output buffer. When a message is generated, it is placed on
the output buffer of the ECU, it waits for bus access and gets
transmitted according to the bus schedule. Similarly, when a
message arrives at the receiving ECU, it is placed on its input
buffer and the corresponding task reads the message when
necessary. Tp runs periodically with period h and performs two
operations (i) reading the feedback signal x[k] from sensors
(i.e., measure) and placing it as message mx in the output
buffer (ii) reading message mc (i.e., the feedback component
of u[k]) from the input buffer, adding feedforward part to it,
and applying (i.e., actuate) it to the physical system using
an actuator. Tc runs periodically with period h and receives
mx (i.e., x[k]) from the input buffer, computes the feedback
component of u[k] (i.e., compute) and places it in the output
buffer as message mc. Fig. 2 shows the timing diagram of the
control application.

The time interval between the measurement of x[k] and
application of the corresponding actuation signal f(x[k])
(see Fig. 3) is the sensor-to-actuator delay τ . As shown in
Fig. 2, the time duration between reading the sensor data and
receiving the next control input from the input buffer is the
delay τ . It should be noted that Tp sends mx, which is the
current state x[k]. At the same time, Tp reads mc which is the
feedback component of the control input computed using the
older state x[k −

⌈
τ
h

⌉
] and applies it to the physical system.

Clearly, τ > 0 and
⌈
τ
h

⌉
≥ 1. Such a setting is common in

real life applications where the computational processes and
control algorithms run at distributed locations and signals are
exchanged over the network or a communication bus [6], [14].
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Fig. 2. Timing diagram.
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2.2 Communication Bus
We will illustrate our proposed design approach using
the priority-based (or event-triggered) dynamic segment of
FlexRay as the communication bus. FlexRay [5] is com-
monly used in the automotive domain and supports both
time-triggered and event-triggered communication. The time-
triggered communication guarantees that all control signals are
delivered in time, but the time-triggered (or static) segment is
considered as a “premium” resource. The dynamic segment
on the other hand might cause high variations in feedback
delays and occasional deadline misses (depending on the other
messages being scheduled). Our proposed controller design
opens up the possibility of using the less expensive dynamic
segment of FlexRay, while ensuring that both stability and per-
formance constraints are nevertheless satisfied. Fig. 4 shows
a typical delay variation experienced by control messages in
the dynamic segment. We briefly describe the working of the
FlexRay protocol in Appendix A5 (see [5] for more details).

2.3 Ideal and Non-ideal Samples
As discussed above, the control signal u[.] waits as message
mc in the input buffer. If

⌈
τ
h

⌉
= 1, mc gets updated by

u[k − 1] and we henceforth refer to such samples as ideal
samples. Otherwise, if

⌈
τ
h

⌉
> 1 and the control input gets

further delayed, resulting in u[k−
⌈
τ
h

⌉
] and the corresponding

control signals are referred to as non-ideal samples.
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Fig. 5. Sequence of ideal and non-ideal samples.

2.4 Control Scheme
Based on the above classification of samples, we apply two
different control algorithms for ideal and non-ideal sampling.
The overall control scheme is the following:

u[k] = Kx[k − 1] + F1r, ∀ ideal samples
= F2r, ∀non-ideal samples (5)

where K is the feedback gain and F1 and F2 are the feed-
forward gains1. Clearly, we apply feedback control only for
the ideal samples and apply feedforward control (which does
not need any communication over the bus) in the case of non-
ideal samples. The closed-loop system follows (6) for the ideal
samples and (7) for the non-ideal samples.

x[k + 1] = Ax[k] +BKx[k − 1] +BF1r (6)
x[k + 1] = Ax[k] +BF2r (7)

With the ideal samples, the system is stabilizable if there exist
a feedback gain K such that the closed-loop system (6) is
stable. The stabilizability condition for the above system is
derived in Appendix A1. We present a design methodology
for computing the feedback and the feedforward gains K, F1

and F2 in Appendix A2, A3 and A4.

2.5 Closed-loop System
Depending on the occurrence of ideal and non-ideal samples
(see Fig. 5), the closed-loop dynamics of the system switches
between (42) and (45). The occurrence of ideal and non-ideal
samples causes switching between the system matrices Acl and
Ao (see Appendix A3 and A4). An arbitrary ordering of ideal
and non-ideal samples can be modeled as follows:

x[k] = An1

cl A
n2
o A

n3

cl A
n4
o A

n5

cl A
n6
o ...x[0] + w[k]Bclr (8)

where ni are integers such that
∑
i ni = k (integer) and w[k]

is given by

w[k + 1] = Aclw[k] + F1 (9)

for the ideal samples and

w[k + 1] = Aow[k] + F2 (10)

for the non-ideal samples. Since the number of non-ideal
samples is (typically) significantly lower than the number of
ideal samples (for a sufficiently large value of k), the steady
state value of w[k] is mainly dominated by (9). Thus, by
putting w[k + 1] = w[k], we obtain from (9),

wss = (I −Acl)−1F1.

Let us define the steady state values of the states as,

xss = wssBclr = (I −Acl)−1BclF1r. (11)

1. In the architecture shown in Fig. 1, the message mc is packed with the
feedback component of the control input (Kx[k−1]). Depending on the delay
experienced by mc, the plant task Tp applies one of the two inputs in (5).

When k is sufficiently large (i.e., k →∞),

x[k] = An1

cl A
n2
o A

n3

cl A
n4
o A

n5

cl A
n6
o ...x[0] + xss,

⇒ x[k]− xss = An1

cl A
n2
o A

n3

cl A
n4
o A

n5

cl A
n6
o ...x[0]. (12)

Clearly, with k → ∞ and stable (12), x[k] → xss which
implies y[k] → r. In the following, we analyze the stability
and the performance of the system given by (12).

3 STABILITY AND PERFORMANCE ANALYSIS
For any matrix Ai, there exist constant scalars ηi and λi such
that the following inequality holds:∥∥Aki ∥∥ ≤ ηiλki , (13)

where k ≥ 1. Therefore, we have∥∥Akcl∥∥ ≤ η1λk1 ,∥∥Ako∥∥ ≤ η2λk2 , (14)

Here, we assume that the system (6) is stabilizable satisfying
the condition (34) and thus,∣∣∣∣ an

n+ 1

∣∣∣∣ ≤ λ1 < 1.

λ2 depends on the open-loop system Ao. λ2 ≥ 1 and λ2 < 1
for open-loop unstable and stable system respectively. Let us
define the following quantities:

µ(k) =
n1 + n3 + n5...

n2 + n4 + n6...
k = (µ(k) + 1)× κ. (15)

The value of µ(k) denotes the ratio between number of ideal
and non-ideal samples (see Fig. 5) and κ is the number of
non-ideal samples among k consecutive samples.

3.1 Stability Analysis
Here, we study exponential stability as defined in (4) of the
system (12).

Theorem 1: (Exponential stability) Consider the switched
system (12) where Acl and Ao satisfy (14). Let µ(k) and κ be
defined as per equation (15). The switched system (12) will be
exponentially stable if the following conditions are satisfied.

C1: µ(k) > µ∗ > 1 for k > (µ∗ + 1) where

µ∗ =
ln 1

λ2η21η2

lnλ1
(16)

C2: η1η2λ
µ(k)
1 λ2 < 1

Proof: We assume that the number of ideal samples is
greater than the number of non-ideal samples over k initial
sampling intervals, i.e., µ(k) > 1.

Let us start with the case where κ = 1, i.e., there is only
one non-ideal sample among the initial µ(k) + 1 samples. In
this case a maximum of two switchings are possible, i.e., the
non-ideal sample occurs somewhere in between µ(k) ideal
samples. Without loss of generality, we assume r = 0. Hence,
x[k] = An1

cl AoA
µ(k)−n1

cl x[0], and by utilizing the properties
given by (14), we get,

‖x[k]‖ ≤ η21η2λ
µ(k)
1 λ2 ‖x[0]‖ . (17)

Similarly, for κ = 2, a maximum of four switchings are
possible, e.g., x[k] = An1

cl AoA
n2

cl AoA
µ(k)−n1−n2

cl x[0] and

‖x[k]‖ ≤ η31η22λ
2µ(k)
1 λ22 ‖x[0]‖ . (18)
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Hence, for any κ,
‖x[k]‖ ≤ η1(η1η2λ

µ(k)
1 λ2)κ ‖x[0]‖ . (19)

Case I with κ = 1: In equation (17), if η21η2λ
µ(k)
1 λ2 = 1,

then,

µ(k) = µ∗ =
ln 1

λ2η21η2

lnλ1
.

As λ1 < 1, if condition C1 is satisfied, i.e., µ(k) > µ∗, then
η21η2λ

µ(k)
1 λ2 < 1.

Case II with κ > 1: If κ > 1 and condition C2 is satisfied,
(η1η2λ

µ(k)
1 λ2)κ < η1η2λ

µ(k)
1 λ2. Hence,

η1(η1η2λ
µ(k)
1 λ2)κ < 1.

From Cases I and II, it may be noticed that if the conditions
C1 and C2 are satisfied, we get η1(η1η2λ

µ(k)
1 λ2)κ < 1, which

results in ‖x[k]‖ < ‖x[0]‖. This shows that ‖x[k]‖ decreases
with k when conditions C1 and C2 are satisfied.

Furthermore, (λ
µ(k)
1 λ2)κ = (λ∗)k, i.e., λµ(k)1 λ2 = (λ∗)µ(k)+1

where
ln(λ∗) =

µ(k) lnλ1 + lnλ2
µ(k) + 1

. (20)

Clearly, for a given combination of λ1, λ2 and µ(k) satisfying
the conditions C1 and C2 stated in Theorem 2, λ∗ < 1.
Therefore, the system (12) is globally exponentially stable with
stability degree λ∗ if C1 and C2 are satisfied. The stability
degree is higher with higher µ(k) and lower λ∗.

3.2 Performance Analysis
In this work, we consider the ability to respond to an external
disturbance as a measure of performance. This is defined by
the tuple {S, χ} whose components are related as:

S ≥ ‖x[k + χ]− xss‖
‖x[k]‖

, (21)

where 0 ≤ S ≤ 1, χ is a positive integer and xss is as per (11).
We assume that ‖x[k]‖ = (xss + d) due to certain external
disturbance at the kth sampling instant. S indicates how
much disturbance is rejected over any χ consecutive sampling
intervals. For example, {S, χ} = {0.02, 100} indicates that
98% of the disturbance is rejected within 100 consecutive
sampling intervals. It should be noted that the performance
metric {S, χ} requires the minimum inter-arrival time between
two consecutive disturbance arrivals to be χ samples. In this
work, we consider a performance requirement of {S, χ} and a
sporadic disturbance arrival model with the minimum inter-
arrival time between disturbances to χ samples. A change
in reference r implies a change in xss, requiring a different
performance as per (21). Therefore, our analysis works for
both regulation and servo problems.

Theorem 2: (Performance guarantee) Consider the
switched system (12) with a performance requirement
{S, χ} and let Acl, Ao satisfy (14). The switched system is
guaranteed to meet the performance requirement if no more
than κs non-ideal samples occur within any interval of χ
consecutive samples, where κs is given by

κs =
lnS − ln η1 − χ lnλ1

ln η1η2λ2

λ1

(22)

Proof: We assume that the minimum ratio between the
number of ideal and non-ideal samples in any χ consecutive
samples is µs, µs > 1 and,

χ = (µs + 1)κs, (23)

where κs is the maximum number of non-ideal samples that
can occur in any χ consecutive samples. From (19), we get

‖x[k + χ]− xss‖ ≤ η1(η1η2λ
µs

1 λ2)κs ‖x[k]‖ (24)

Next, from (21), we have
S = η1(η1η2λ

µs

1 λ2)κs (25)

Combining (23) and (25), we obtain

lnS = ln η1 + κs ln η1η2 + κsµs lnλ1 + κs lnλ2,

⇒ lnS = ln η1 + χ lnλ1 + κs ln
η1η2λ2
λ1

,

⇒ κs =
lnS − ln η1 − χ lnλ1

ln η1η2λ2

λ1

. (26)

3.3 Illustrative Example
We now illustrate the above results using an example. Let
us assume that µ∗ = 1.9 for a given system and consider
a sequence of ideal and non-ideal samples as shown in
Fig. 5. Clearly, µ(k) > µ∗ for all k > 3 and the system
under consideration is exponentially stable as per Theorem 1.
Further, we assume that a given performance requirement
{S, χ} = {∗, 5} results in κs = 2. The sequence shown in
Fig. 5 does not guarantee this performance requirement.

4 EXPERIMENTAL VALIDATION
To illustrate the applicability of our proposed design method
we used an automotive cruise control system as an example.
It receives the reference or the commanded vehicle’s speed
from the driver and regulates the speed following the driver’s
command. Based on the reference speed and the feedback
signals, the cruise control system regulates the vehicle’s speed
by adjusting the engine throttle angle to increase or decrease
the engine drive force. In this case study, we have used a
model of a cruise controller that was developed in consultation
with a major German automotive company. The linearized
continuous-time model of this cruise control system is shown
in (27). The state v1(t) captures the speed of the vehicle and
u(t) is the engine throttle angle. The objective is to choose
u(t) such that v1(t) = r, i.e., a constant desired speed. We
have chosen r = 100. Moreover, we need to satisfy design
requirements, such as the settling time of the velocity v1(t)
should be less than 5sec.

v̇(t) = Atv(t) +Btu(t), y(t) = Ctv(t),

v(t) =

[
v1(t)
v2(t)
v3(t)

]
, At =

[
0 1.0 0
0 0 1.0

−6.05 −5.29 −0.24

]
,

Bt =

[
0
0

2.48

]
, Ct = [ 1 0 0 ] . (27)

4.1 Implementation Details
This cruise control application was implemented in a dis-
tributed fashion, as shown in Fig. 1. Following the notation
introduced earlier, the states vi(t) are measured by the task
Tp at the sampling times t = hk with k = {0, 1, 2...}, and
hk+1 − hk = h. vi(t) at t = hk is denoted by v[k]. The
control input u(t) is computed in Tc and u(t) (which utilizes
v[k]) is denoted by u[k]. The output u[k] is sent to the task
Tp via the dynamic segment of the FlexRay communication
bus. Tp applies the control input to the engine throttle angle.
The resulting discrete-time system is modeled as (2).
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TABLE 1
Existing FlexRay schedules.

mi (Si, Bi, Ri) oi(ms) pi(ms) [rmin,i, rmax,i] ci
1 (12, 0, 2) 1 20 [0.7,2.7] 4
2 (13, 0, 2) 2 20 [0.7,2.7] 4
3 (14, 2, 4) 2 40 [1.7,6.7] 3
4 (16, 0, 4) 3 50 [1.7,6.7] 3
5 (17, 7, 8) 12 100 [1.7,6.7] 3
6 (17, 4, 8) 14 100 [1.7,6.66] 3
7 (20, 2, 4) 18 80 [2.7,10.7] 5
8 (25, 0, 2) 0.1 20 [0.7,2.7] 4
9 (25, 1, 4) 17 100 [6.7,26.7] 6
10 (28, 0, 4) 21 60 [2,8] 4
11 (30, 1, 2) 11 50 [1.7,6.7] 5
12 (33, 0, 2) 28 20 [1,4] 4
13 (34, 0, 1) 2 20 [0.7,2.7] 4
14 (38, 0, 2) 30 40 [1.3,5.3] 5

FlexRay parameters: Configuring the FlexRay dynamic seg-
ment involves assigning values to a number of parameters,
which in turn determines the priorities of messages and
hence the delays experienced by them. These configuration
parameters were specified using the EB Designer Pro tool
(from Elektrobit). The cycle length was set to gdCycle = 5ms
with the static segment of length 2ms and 10 static slots. The
rest of the cycle was distributed to the dynamic segment and
the NIT (see Appendix A5). Further, the dynamic segment
consisted of 60 minislots where the duration of one minislot
was 0.05ms. The value pLatestTx was set to 50 for all
messages in the network (the last minislot where a message
transmission may begin is when the minislot counter is equal
to pLatestTx). In order to simulate higher priority network
traffic coming from the rest of the network (i.e., from other
ECUs), we considered a pre-existing FlexRay network with
several messages already mapped on to the DYN segment.
The configuration parameters for these message are listed in
Table 1; they include the schedule parameters Si, Bi, Ri, task
offsets oi, periods pi, uniformly distributed response times
between [rmin,i, rmax,i], and message sizes ci in minislots.

4.2 Design and Analysis

We chose a sampling period of 40ms and discretized the
continuous system in (27) with h = 40ms according to
equation (3). The resulting discrete-time system is given by
(28). The absolute values of the eigenvalues of A in (28)
are given by {0.6703, 1.1646, 1.1646}. Therefore, the resulting
discrete-time open-loop system is unstable.

v[k + 1] = Av[k] +Bu[k], y[k] = Cv[k]

A =

[
0.9398 0.3412 0.0718
−0.4340 0.5605 0.3241
−1.9603 −2.1473 0.4833

]
,

B =

[
0.0247
0.1777
0.8028

]
, C = [ 1 0 0 ] . (28)

Stabilizability: For the system in (28), an = 1.9836. Since
n = 3 and |an| < (n + 1), the system is stabilizable with
control input u[k] = Kx[k − 1].

Controller synthesis: The feedback gain was designed (see
appendix for details) with pi = 0.4959 (i = 1, 2, 3, 4) and
K = [ 1.9833 2.3580 0.3652 ]. The corresponding Acl
and Ao are given by the following
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Fig. 6. FlexRay/controller co-simulation framework.

Acl =

 0 1 0 0
0 0 1 0
0 0 0 1

−0.0605 0.4878 −1.4755 1.9836

 ,
Ao =

 0 1 0 0
0 0 1 0
0 0 0 1
0 0.9092 −2.2367 1.9836

 . (29)

Based on the above Acl and Ao, we computed F1 = 2.1809
and F2 = 0.4095 using (44) and (46).

Stability analysis: For the above Acl and Ao, η1 = 6314.5,
η2 = 7.2002, λ1 = 0.4959, λ2 = 1.1646 and µ∗ = 27.9895
from (16).

Performance analysis: To meet the settling time requirement
of 5sec, we chose χ = 5

h = 125 samples (h = 40ms) and
S = 0.05 (i.e., 95% disturbance is to be rejected within
any 125 samples). Therefore, the performance requirement
becomes {S, χ} = {0.05, 125}. For this performance require-
ment, µs = 16.8571 and κs = 7, i.e., a maximum of 7 non-
ideal samples may be tolerated within any 125 consecutive
samples, in order to meet the settling time requirement.

4.3 Co-simulation
We developed a SystemC (www.systemc.org) based co-
simulation framework to simulate the behavior of the resulting
implementation. This simulation framework, as depicted in
Fig. 6, is made up of two main modules: the FlexRay event
simulator to simulate communication delays, and the discrete-
time system model to simulate the discrete-time system un-
der consideration. The FlexRay simulator consists of sev-
eral submodules: (i) the FlexRay clock provides the FlexRay
communication model with the actual slot counter, minislot
counter and cycle counter values, (ii) an event generator
generates input event streams based on the system description
and (iii) the FlexRay communication model implements the
FlexRay specification and computes the message delays for the
transmitted event streams. Further, the message delays serve as
an input to the discrete-time control system model in order to
compute sensor-to-actuator delays and to simulate the stability
and performance of the system.

We used the Elektrobit (EB) Tresos Designer Pro tool [4]
to specify the FlexRay bus configuration parameters such as
gdCycle, pLatestTx, the lengths of the static and dynamic
segments and other protocol parameters. Additionally,
message properties and schedule parameters of existing
messages were imported into the simulation framework.

Discrete-time Control System Model: The discrete-time
system model was implemented in Matlab as a discrete-time
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Fig. 7. Computation of sensor-to-actuator delay τ .

control system of the form (2). As described earlier, the
control application was partitioned into two tasks: Tp and
Tc. The plant task Tp was triggered with an offset op, the
controller task Tc was run on a different ECU with an offset
oc > op + rmax,p where rmax,p is the worst-case response
time of the task Tp on its ECU. Both Tp and Tc were triggered
periodically with period h (which is the sampling period of
the control application).
Tp packetizes the sensor signals x[k] in the message mx that is
transmitted via the dynamic segment of FlexRay and receives
mc that is coming from Tc. Tc receives mx sent by Tp,
computes u[k], sends mc via the dynamic segment of the bus
to Tp. While being transmitted via the FlexRay bus, mx gets
delayed by dx and mc gets delayed by dc. The resulting delay
(in terms of samples) is given by⌈ τ
h

⌉
= max{0,

⌈
dx − oc + op

h

⌉
}+

⌈
dc + oc − op

h

⌉
. (30)

The sensor-to-actuator delay has two components (see Fig. 7):
(i) resulting from the offset between op and oc and the
delay dx experienced by mx, (ii) resulting from the delay
dc experienced by mc. If dx > (oc − op), the corresponding
sensor signal mx can only be used in the next triggering
instant of Tc, resulting in a delay of

⌈
dx−oc+op

h

⌉
samples in

the feedback loop. The input signal mc experiences a delay
of
⌈
oc−op+dc

h

⌉
samples. If the resulting delay

⌈
τ
h

⌉
> 1,

the corresponding sample is considered to be a non-ideal
sample. The stability analysis and controller synthesis was
done based on the occurrence of such non-ideal samples.
Further, we assumed the response times r∗p and r∗c of the tasks
Tp and Tc to be uniformly distributed between [0.3ms, 1.2ms],
op = 0.7ms, oc = 2.3ms > op + rmax,p and the periods of
the tasks to be 40ms. The FlexRay parameters for mx were
(Sx, Bx, Rx) = (11, 0, 2) (i.e., it is the highest priority mes-
sage). As mx is the highest priority message, dx < (oc− op).
Therefore, max{0,

⌈
dx−oc+op

h

⌉
} = 0. The delay variation in

the feedback loop stems from the transmission delay of mc,
i.e., from dc. The sizes of mx and mc were set to 4 minislots.
All of these parameters are typical of the automotive case
study under consideration.

4.4 Results
We carried out 120 simulations with different schedules (i.e.,
values of (Sc, Bc, Rc) for mc) at each simulation run. The
simulation time was set to 100sec which corresponds to
2500 generated samples with a sampling period h = 40ms.
During each simulation we plotted the distribution of
sensor-to-actuator delay τ and analyzed the stability and
performance of the discrete-time system. We will now discuss
our observations for three example schedules that were
synthesized for mc.

Example Schedule 1: The message mc was assigned the
schedule (45, 0, 4). Fig. 8 (a) shows the delay distribution
obtained from the co-simulation framework. τ varies between
τmin = 3.95ms and τmax = 44.5ms. The number of non-
ideal samples is 36 (i.e., those for which

⌈
τ
h

⌉
> 1). Fig. 8 (b)

shows how µ(k) varies with the sample number k. Here,
µ∗ = 27.9895, and µ(k) > µ∗ for all k ≥ 29 (since
µ∗ + 1 = 29). Hence, we conclude that condition C1 for
stability is satisfied and clearly, condition C2 is also satisfied.
The resulting system is stable. The sequence of the ideal and
the non-deal samples meets the criterion (26) which is reflected
in the resulting output plot Fig. 8 (c) (i.e., settling time is 5sec
or {S, χ} = {0.05, 125}).

In the simulation, r = 100 and the initial speed v1[0] = 0.
v1[k] reaches r = 100 in 1.76sec (i.e., the settling time =
1.76sec). We simulated external disturbances by periodically
making v1[k] = 80 (from v1[k] = 100). We could see that
the maximum time taken to reject a disturbance is less than
2sec. Therefore, both stability and performance requirements
are met for this choice of the schedule.

Example Schedule 2: In this example, we assigned the
schedule (47, 0, 4) to mc. Note that the slot number is 47
(instead of 45 as in the previous example) indicating a lower
priority of the message mc. Naturally, transmission with
a lower priority results in a higher possibility of getting
delayed, which is reflected in the following results. The
delay distribution for mc is shown in Fig. 8 (d). There are
241 non-ideal samples, i.e., where

⌈
τ
h

⌉
> 1. The µ(k) ≈ 14

violates C1. The conditions C2 and (26) are satisfied. We
simulated the discrete-time model with same disturbance
that was applied to Example 1 and Fig. 8 shows the plot
of v1[k] for our new schedule. The overall system is stable
even though C1 is violated. However, the system response
deteriorated (which can be seen from the overshoot in v1[k]
in Fig. 8 (e)) due to higher number of non-ideal samples.

Example Schedule 3: We now show that the system can
become unstable when the conditions C1, C2 and (26) are
not satisfied. We assigned the schedule (48, 0, 4) to mc; mc

now has an even lower priority than in the previous examples.
Here, there are 316 non-ideal samples and µ(k) ≈ 9. Clearly,
the condition C1 is violated. The plot of v1[k] (see Fig. 8 (f))
shows the resulting instability in the output.

5 CONCLUDING REMARKS
The relaxed requirement on feedback signals to meet dead-
lines offers an additional safety margin while designing the
implementation platform. In particular, we showed that the
analytical bounds on allowed deadline misses from the con-
troller design phase, may be checked against deadline misses
suffered by messages in an implementation platform. The latter
were obtained via simulation in this paper (as illustrated in
the examples in Section 4.4). By having the latter bounds
to be smaller than the former bounds, a safety margin may
be ensured (as in Example Schedule 1). We believe that this
would be the more pragmatic use of our results in real-life
scenarios, where simulation-based timing analysis is prevalant.
However, checks that “guarantee” that deadline miss bounds
from the platform are smaller than what can be tolerated
by the controller, may be designed using formal verification
techniques; some results in this direction have already been
reported recently (see [1], [8], [9], [16]). As a part of future
work, they could be further refined to better match our
proposed controller design.
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Fig. 8. Results: (a) Delay distribution for mc : (45, 0, 4) (b) µ(k) vs k for mc : (45, 0, 4) (c) v1[k] with mc : (45, 0, 4) (d) Delay
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APPENDIX
(A1) Stabilizability with ideal sampling: Without loss of
generality, we assume r = 0 in the closed-loop system (6).
The resulting system becomes,

x[k + 1] = Ax[k] +BKx[k − 1]. (31)

The stabilizability analysis essentially reduces to finding the
conditions for which there exists a feedback gain K that
can make the system (31) stable. First, we transform the
state-space model into a controllable canonical form by a
transformation [3],

z[k] = Tx[k]⇒ x[k] = T−1z[k], (32)

where z[k] are the new states and T is the non-singular
transformation matrix. We obtain the controllable canonical
form as shown in (33).

z[k + 1] = Acz[k] +Bcu[k],

Ac =


0 1 · · · 0
0 0 · · · 0
0 0 · · · 0
· · · · · · · · · · · ·
a1 · · · an−1 an

 , Bc =


0
0
...
1

 .(33)

where ai is obtained by the transformation and n is the
dimension of system (2).

Theorem 3: (Stabilizability Condition) There exists a feed-
back gain K that places all the poles of the system (6) within
the unit circle iff the following condition holds:

|an| < (n+ 1). (34)

Proof: The control input for the ideal samples is shown
in (35) (with F1 = 0).

u[k] = Kx[k − 1] = K̂z[k − 1]

= K̂1z1[k − 1] + K̂2z2[k − 1] + · · · K̂nzn[k − 1]

= K̂1z1[k − 1] + K̂2z1[k] + · · · K̂nzn−1[k]. (35)

where K = K̂T . Let us introduce an additional state z0[k] =
z1[k − 1]. Based on this additional state, we introduce new
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system states Z[k] =

[
z0[k]
z[k]

]
. Therefore, the closed-loop

system leads to (36) which is of dimension (n+1).

z0[k + 1] = z1[k], z1[k + 1] = z2[k], z2[k + 1] = z3[k] · · ·
zn[k + 1] = K̂1z0[k] + (a1 + K̂2)z1[k] · · ·

+ (an−1 + K̂n)zn−1[k] + anzn[k]. (36)
The above closed-loop system can be rewritten as follows:

Z[k + 1] = AclZ[k]

Acl =

n+1︷ ︸︸ ︷
0 · · · 0 0
0 · · · 0 0
0 · · · 1 0
· · · · · · · · · · · ·
K̂1 · · · (an−1 + K̂n) an

 (37)

The resulting characteristic equation for the above closed-loop
system is obtained by making |λI −Acl| = 0 and is given by,

λn+1 − anλ
n − · · · − (a1 + K̂2)λ− K̂1 = 0. (38)

The system (31) is stablizable if it is possible to place (n+1)
stable poles of the closed-loop system. It may be noted that all
the coefficients of the above polynomial can be designed ex-
cept the coefficient of λn. Suppose p = −[ p1 p2 · · · pn+1 ]

′

is the vector consisting poles of the closed-loop system. Then,
the characteristic equation of the closed-loop system becomes,

(λ+ p1)(λ+ p2)(λ+ p3) · · · (λ+ pn+1) = 0

⇒ λn+1 + f1(p)λn + f2(p)λn−1 · · ·+ fn(p) = 0. (39)

For stabilizability, |pi| < 1 and K̂ should be such that
equations (38) and (39) are identical, i.e.,

f1(p) = −an, f2(p) = −(an−1 + K̂n), · · ·
fn−1(p) = −(a1 + K̂2), fn(p) = −K̂1. (40)

We can see from equation (40) that it is possible to design
functions f2(p) · · · fn(p) with appropriate choice of K̂ only
if f1(p) = −an. It is easy to see that f1(p) =

∑n+1
i=1 (pi).

Hence, the stabilizability condition is,
n+1∑
i=1

pi = −an. (41)

For stability of the system (31), |pi| < 1,
∑n+1
i=1 |pi| < (n+1)

and
∑n+1
i=1 |pi| ≥ |an| (using (41)). Therefore, the condition

(34) is the necessary condition for stabilizability.

(A2) Design of feedback gain K: For a given open-loop
system matrices (A,B) of n-order system:

1) Compute an and if |an| < (n + 1), the system is
stabilizable and controller synthesis is possible.

2) Choose p = −[ p1 p2 · · · pn+1 ]
′

such that each ele-
ment lies within the unit circle and

∑n+1
i=1 |pi| = −an.

3) Utilizing the closed-loop poles p, compute K̂ from the
equations (40).

4) Compute K by K = K̂T .

(A3) Design of feedforward gain F1 for ideal samples: In
the cases of ideal samples, the closed-loop dynamics is as
follows,

Z[k + 1] = AclZ[k] +BclF1r

y[k] = CclZ[k] (42)

where Bcl = [ 0 0 · · · 1 ]
′ and Ccl = [ 1 0 · · · 0 ]

are of dimensions (n+ 1)× 1 and 1× (n+ 1) respectively.

The feedforward gain F1 has to be chosen such that y[k]→ r
as k → ∞, i.e., the steady state error is zero. In the steady
state of the closed-loop system (42), Z[k+ 1] = Z[k]. Hence,

Z[k] = AclZ[k] +BclF1r ⇒ Z[k] = (I −Acl)−1BclF1r

⇒ y[k] = CclZ[k] = Ccl(I −Acl)−1BclF1r. (43)

For y[k] = r in steady state, we obtain,

F1 =
1

Ccl(I −Acl)−1Bcl
. (44)

(A4) Design of F2 for non-ideal samples: In the case of
non-ideal samples, the closed-loop dynamics is as follows,

Z[k + 1] = AoZ[k] +BclF2r,

y[k] = Cclx[k], (45)

where Ao = {Acl|K = 0}. For y[k] → r as k → ∞ (similar
to the computation of F1),

F2 =
1

Ccl(I −Ao)−1Bcl
. (46)

(A5) FlexRay Protocol: The FlexRay communication
protocol [5] is organized as a periodic sequence of
communication cycles. Each cycle is of fixed length gdCycle
and is indexed by a cycle counter that is incremented from 0
to 63 after which the counter is reset to 0. This communication
pattern that is repeated periodically is known as the 64-cycle
matrix. Further, every cycle consist of (i) a mandatory static
segment (ST), (ii) an optional dynamic segment (DYN), and
(iii) a segment for clock synchronization which is referred
to as Network Idle Time (NIT). In the following we will
discuss the communication specification of the DYN segment
of FlexRay.

FlexRay dynamic segment: The DYN segment is partitioned
into equal-length minislots that are indexed by a minislot
counter which starts counting from 1 up to N minislots in
every cycle. Additionally, a slot counter counts the commu-
nication slots that indicate time windows for admissible mes-
sage transmissions. Each FlexRay message mi is assigned a
static schedule (Si, Bi, Ri) for uniquely specified transmission
points. A message mi can successfully be transmitted via the
DYN segment if the following requirements are satisfied:
• the assigned slot number Si ∈ SDYN is equal to the

current slot counter value, where SDYN is the set of
available slot numbers in the DYN segment,

• the actual communication cycle is element of the set of
feasible cycles γn ∈ Γi where γn = (Bi +N ×Ri) mod
64 with N ∈ [0, 1, 2, ...], Ri = 2r for r ∈ [0...6] and
Bi < Ri,

• the minislot counter must not exceed the specified value
of pLatestTx of the corresponding ECU.

A more detailed description of FlexRay protocol can be found
in [5]. In a FlexRay schedule (Si, Bi, Ri), the slot number Si
denotes the priority of the message and a higher Si indicates
a lower message priority. Therefore, a higher Si essentially
indicates a lower quality (and less expensive) communication.


