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Unconstrained and constrained stabilisation of bilinear discrete-time systems using

polyhedral Lyapunov functions
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The constrained and unconstrained stabilisation problem of discrete-time bilinear systems is investigated. Using
polyhedral Lyapunov functions, conditions for a polyhedral set to be both positively invariant and domain of
attraction for systems with second-order polynomial nonlinearities are first established. Then, systematic
methods for the determination of stabilising linear feedback for both constrained and unconstrained bilinear
systems are presented. Attention is drawn to the case where no linear control law rendering the pre-specified
desired domain of attraction positively invariant exists. For this case, an approach guaranteeing the existence of a
possibly suboptimal solution is established.

Keywords: positively invariant sets; discrete-time bilinear systems; polyhedral Lyapunov functions; input/state
constraints

1. Introduction

Bilinear systems are a special class of nonlinear systems,
where the nonlinear part involves products of the state
and input variables. Such systems deserve attention for
a few reasons (Bruni, Pillo, and Koch 1974; Mohler and
Kolodziej 1980; Favoreel, DeMoor, and van Overschee
1999): firstly, many engineering applications (e.g.
thermal, chemical, nuclear processes, transmission
and power systems) as well as models in biology,
socioeconomic, ecology etc. are naturally described by
bilinear systems. Secondly, many nonlinear systems can
be adequately approximated by bilinear systems.
Lastly, bilinear models are suitable candidates for
black-box modelling of nonlinear systems because of
the availability of well-established identification algo-
rithms. There is a plethora of articles published in the
last 40 years concerning the analysis and design of
stabilising controllers for bilinear systems.

For continuous-time systems, one of the proposed
approaches to the stabilisation problem is to select
a quadratic Lyapunov function (Gutman 1981,
Amato, Cosention, Fiorillo, and Merola 2009;
Tarbouriech, Queinnec, Calliero, and Peres 2009).
Specifically, in Amato et al. (2009), the solution of an
LMI problem leads to the computation of linear state-
feedback control laws rendering a pre-specified set of
states domain of attraction of the corresponding
closed-loop system. In order to find a Lyapunov

function, the dynamics of the nonlinear part of the

system are modelled by linear differential inclusions.

Similar results are established in Tarbouriech et al.

(2009), where an ellipsoidal domain of attraction is

iteratively enlarged. For open-loop stable systems in

Gutman (1981), a nonlinear ‘quadratic’ control law is

preferred. In a more recent work, Chen (1998),

normalised ‘quadratic’ control was used to achieve

exponential asymptotic stability. In Chen, Chang, and

Lai (2000), the authors present a bang–bang sliding

mode control technique for single-input systems where

the stability region strongly depends on the sliding

function designed via a pole assignment based method.

Piecewise-constant feedback laws are computed in

Khapalov and Mohler (1998) by studying the beha-

viour of an auxiliary bilinear system which has an

additional input in the drift term. An application

of this method is in Mohler and Khapalov (2000).

Using a quadratic cost function which is modified by

non-negative penalising functions, global asymptotic

stability was achieved for open-loop stable systems

in Benallou, Mellichamp, and Seborg (1988), while

in Ekman (2005) a suboptimal control law was

computed for the infinite bilinear quadratic regulator

when approximating the derived Riccati equation by a

power series. In a more recent work (Athanasopoulos,

Bitsoris, and Vassilaki 2010), polyhedral Lyapunov

functions were utilised to compute a stabilising linear

*Corresponding author. Email: bitsoris@ece.upatras.gr

ISSN 0020–7179 print/ISSN 1366–5820 online

� 2010 Taylor & Francis

DOI: 10.1080/00207179.2010.531396

http://www.informaworld.com

D
ow

nl
oa

de
d 

by
 [

E
in

dh
ov

en
 T

ec
hn

ic
al

 U
ni

ve
rs

ity
] 

at
 0

1:
31

 2
6 

Ja
nu

ar
y 

20
15

 



state-feedback control law, whereas in Amato,
Calabrese, Cosentino, and Merola (2008) the same
type of Lyapunov functions was used for the analysis
of quadratic systems.

For the discrete-time case, most approaches are
related to the optimal and model-based predictive
control theory. In Bacic, Cannon, and Kouvaritakis
(2003), the computation of polytopic invariant sets of
low complexity for constrained single-input bilinear
systems was studied. In particular, switching between
feedback linearisation and state feedback takes place
and renders a region of the state space, both invariant
and feasible. Stability is ensured by introducing the
new concept of partially invariant and feasible poly-
topes. The extension of this work in Liao, Cannon, and
Kouvaritakis (2005) also takes into account the
behaviour of the dynamics of the system when input-
output feedback linearisation is applied and it is shown
that in some cases much larger invariant sets can be
produced. The construction of terminal invariant sets
along with the corresponding control law is a common
task when using model predictive control (MPC). In
Cannon, Deshmukh, and Kouvaritakis (2003), this is
done for general input-affine nonlinear systems, a
category in which bilinear systems belong. The
dynamics of the system are modelled by polytopic
linear difference inclusions. The invariant sets are
produced by solving a nonlinear or a sequence of linear
programming problems. Larger and more complex
polytopes are computed in Cannon, Kouvaritakis, and
Deshmukh (2004). In a generalised predictive control
approach, Fontes, Maitelli, and Salazar (2002), the
bilinear model is approximated by a quasi-linear model
with an extra term that compensates the prediction
error. In a similar MPC formulation of the stabilisa-
tion problem for constrained bilinear systems (Fontes,
Dorea, and Garcia 2008), conditions for the conver-
gence of the prediction error for the case of one-step
prediction and for single-input systems are given. The
terminal invariant set is computed by treating the
system as a linear parameter varying one. Using
quadratic Lyapunov functions, conditions for a
globally stabilising nonlinear control law for open-
loop stable linear systems are given in Kim, Kim, Lin,
and Kim (2002).

The problem studied in this article is formulated as
follows: given a set of initial states, determine a linear
state-feedback control law such that a subset or the
whole set of initial states is a domain of attraction for
the resulting closed-loop system and state and/or input
constraints are satisfied. The resulting closed-loop
system is a nonlinear system with second-order
polynomial nonlinearities. In contrast to all well-
known approaches based on choosing quadratic
Lyapunov functions, the stability analysis of this

class of systems is carried out by using polyhedral

Lyapunov functions which are implicitly given by the

problem specifications. Thus, as a first step, algebraic

conditions guaranteeing the positive invariance of

polyhedral sets and the stability for this class of

nonlinear systems are established. Then, these condi-

tions are used to develop systematic design techniques

for the constrained and unconstrained control pro-

blems of bilinear systems. The appropriate control laws

are obtained by solving linear programming problems.

The proposed design techniques can be applied to

stable or unstable multiple-input multiple-output

bilinear systems with linear input and/or state

constraints.
This article is organised as follows: in Section 2,

necessary notations as well as the problem statement

are given. In Section 3, algebraic conditions guarantee-

ing the positive invariance of polyhedral sets and the

asymptotic stability of systems with second-order

polynomial nonlinearities are established. Then, in

Section 4, design techniques for the unconstrained and

constrained stabilisation problems are developed.

Finally, in Section 5, two numerical examples illustrat-

ing the effectiveness of the proposed methods are

given, while in Section 6 conclusions are drawn.

2. Problem statement

Throughout this article, capital letters denote real

matrices and lower case letters denote column vectors

or scalars. R
n denotes the real n-space and R

n�m

denotes the set of real n�m matrices. Given a real

n�m matrix, A¼ (aij), A
þ ¼ ðaþij Þ and A� ¼ ða�ij Þ are

n�m matrices with entries defined by the relations

aþij ¼ maxfaij, 0g and a�ij ¼ �minfaij, 0g. Thus, A¼

Aþ�A�. Given a square matrix D¼ (dij), D� ¼ ðd �ijÞ

denotes the diagonal matrix with d �ii ¼ dii and

D� ¼ ðd�ij Þ denotes the square matrix with d�ii ¼ 0 and

d�ij ¼ dij for i 6¼ j. Thus D¼D�þD�. For two n�m

matricesA¼ (aij) and B¼ (bij),A� B ¼
Pn

i¼1

Pm
j¼1 aijbij

denotes their component-wise inner product called the

Frobenius inner product. The inequality A�B (A5B)

with A,B2R
n�m is equivalent to aij� bij (aij5 bij).

Similar notation holds for vectors. Finally, T denotes

the time set T¼ {0, 1, 2, . . .}.
Bilinear discrete-time systems are described by

difference equations of the form

xðtþ 1Þ ¼ AxðtÞ þ BuðtÞ þ

xTðtÞC1

xTðtÞC2

..

.

xTðtÞCn

2
66664

3
77775uðtÞ, ð1Þ

2484 N. Athanasopoulos and G. Bitsoris
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where x2R
n is the state vector, u2R

m is the input
vector, t2T is the time variable and A2R

n�n,
B2R

n�m, Ci2R
n�m, i¼ 1, 2, . . . , n.

For linear state-feedback control laws u(t)¼Kx(t)
with K2R

m�n, the resulting closed-loop system is
described by the difference equation

xðtþ 1Þ ¼ ðAþ BK ÞxðtÞ þ

xTðtÞC1KxðtÞ

xTðtÞC2KxðtÞ

..

.

xTðtÞCnKxðtÞ

2
66664

3
77775: ð2Þ

This equation describes a nonlinear system with
second-order polynomial nonlinearities.

The unconstrained stabilisation problem to be
investigated is formulated as follows: given system (1)
and a bounded subset of the state space defined by the
inequalities

�w2 � Gx � w1 ð3Þ

with G2R
p�n, w12R

p, w14 0, w22R
p, w24 0,

determine a linear state-feedback control law u(t)¼
Kx(t) making this set a domain of attraction of the
resulting closed-loop system (2). Due to the presence of
nonlinearities in the resulting closed-loop system, this
problem may not possess any solution even if pair
(A,B) is stabilisable. In this case, the problem is the
determination of a linear state-feedback control law
u(t)¼Kx(t) making a subset of the set defined by
inequalities (3) domain of attraction of the resulting
closed-loop system.

In the constrained stabilisation problem, control
constraints of the form

��2 � uðtÞ � �1 ð4Þ

with �12R
m, �14 0, �22R

m, �24 0 are also imposed.
The problem is the determination of a linear state-
feedback control law u(t)¼Kx(t) such that all initial
states belonging to the set defined by inequalities (3)
are transferred asymptotically to the origin while the
control constraints (4) are satisfied. If, due to the
presence of nonlinearities in the resulting closed-loop
system or/and control constraints there does not exist
any control law making the set defined by inequalities
(3) domain of attraction, then the problem is the
determination of a linear state-feedback control law
u(t)¼Kx(t) rendering a subset of the set defined by
inequalities (3) domain of attraction of the resulting
closed-loop system.

3. Stability and polyhedral positively invariant sets

Given a dynamical system, a subset of its state space is
said to be positively invariant if all trajectories starting

from this set remain in it for all future instances. This
property is very important for control problems with
state constraints or/and input constraints when using
state-feedback control laws. Thus, if the state con-
straints define an admissible subset of the state space, a
solution to the control problem under state constraints
is a stabilising linear control law making this admis-
sible set positively invariant with respect to the
resulting closed-loop system. Since in practical control
problems the state constraints are usually expressed by
linear inequalities, the admissible set is a polyhedron.
Therefore, it is very important to establish conditions
guaranteeing positive invariance of polyhedral sets of
the form (3) with respect to nonlinear systems of the
form (2).

The following lemma which provides necessary and
sufficient conditions for a set defined by a nonlinear
vector inequality of the form v(x)�w to be positively
invariant with respect to a nonlinear discrete-time
system is very important for the development of the
results of this article.

Lemma 3.1 (Bitsoris and Gravalou 1995; Bitsoris and
Truffet 2006): The set

Pðv,wÞ ¼
M

fx 2 R
n : vðxÞ � wÞg ð5Þ

with v(x), v :Rn
!R

q and w2R
q is a positively invariant

set of system

xðtþ 1Þ ¼ f ðxðtÞÞ ð6Þ

with f :Rn
!R

n, if and only if there exists a nondecreas-
ing function h( y), h :Rq

!R
q such that

vð f ðxÞÞ � hðvðxÞÞ

and

hðwÞ � w:

We shall use this result to establish conditions
guaranteeing that a polyhedral set defined by linear
inequalities (3) is positively invariant with respect to
the closed-loop system (2).

Let

y1 ¼

y11

y12

..

.

y1p

2
66664

3
77775 ¼ Gx, y2 ¼

y21

y21

..

.

y2p

2
66664

3
77775 ¼ �Gx ð7Þ

and YM ¼ ð yMij Þ, Ym ¼ ð ymij Þ be p� p matrices whose
elements are defined by the relations

yMij ¼
M

maxð y1iy1j, y2iy2jÞ, ð8Þ

ymij ¼
M

maxð y1iy2j, y2iy1jÞ: ð9Þ

International Journal of Control 2485
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Theorem 3.2: The polyhedral set

QðG,w1,w2Þ ¼
M

fx 2 R
n : �w2 � Gx � w1g ð10Þ

with G2R
p�n, w12R

p, w14 0, w22R
p, w24 0 is

positively invariant with respect to the nonlinear
closed-loop system (2) if there exist matrices H2R

p�p

and Dj2R
p�p j¼ 1, 2, . . . , p such that

GðAþ BK Þ ¼ HG, ð11Þ

Xn
i¼1

gjiCiK ¼ GTDjG, j ¼ 1, 2, . . . , p ð12Þ

and

hðwÞ � w, ð13Þ

where

hðyÞ ¼
Hþ H�

H� Hþ

� �
y1

y2

� �
þ

Dþ1 �YMþD��

1 �Ym

..

.

Dþp �YMþD��

p �Ym

D�1 �YMþD�þ

1 �Ym

..

.

D�p �YMþD�þ

p �Ym

2
6666666666664

3
7777777777775
,

ð14Þ

and

w ¼
w1

w2

� �
:

Proof: See Appendix A. œ

Let us now assume that the origin x¼ 0 is an

equilibrium state of a nonlinear system. Then, the
following important lemma holds:

Lemma 3.3 (Bitsoris 1984; Bitsoris and Gravalou 1995;
Bitsoris and Truffet 2006): Let v(x), v :Rn

!R
q be a

vector-valued function such that the scalar function

maxi¼1, 2,..., qfviðxÞg is positive definite. If there exist a
nondecreasing function h( y), h :Rq

!R
q, h(0)¼ 0 and a

vector w2R
q, w4 0 satisfying inequalities

vð f ðxÞÞ � hðvðxÞÞ ð15Þ

and

hðrwÞ5 rw 8r 2 ð0, a� ð16Þ

where a is a positive real number, then the equilibrium
x¼ 0 of system ( 6) is asymptotically stable,

v�ðxÞ ¼ max
i¼1, 2,..., q

viðxÞ

wi

� �
ð17Þ

is a Lyapunov function, and P(v, rw), 8r2 (0, a] are

domains of attraction of the equilibrium x¼ 0.

It is clear that hypotheses of this lemma also

guarantee the positive invariance of all polyhedral sets

P(v, aw) with r2 (0, a].
By combining this lemma with Theorem 3.2 we

shall establish conditions guaranteeing both the

positive invariance of a polyhedral sets QðG, aw1,

aw2Þ ¼
M

fx 2 R
n : �aw2 � Gx � aw1g with a4 0 and the

asymptotic stability of the equilibrium x¼ 0 of the

closed-loop system.
Let H*y and g*( y) be the linear and the nonlinear

parts, respectively, of function h( y), namely

H�y ¼
Hþ H�

H� Hþ

� �
y, ð18Þ

and

g�ð yÞ ¼

Dþ1 � YM þD��

1 � Ym

..

.

Dþp � YM þD��

p � Ym

D�1 � YM þD�þ

1 � Ym

..

.

D�p � YM þD�þ

p � Ym

2
666666666666664

3
777777777777775

: ð19Þ

Theorem 3.4: If there exist matrices G2R
p�n with

rankG¼ n, H2R
p�p and Dj2R

p�p j¼ 1, 2, . . . , p satis-

fying relations (11), (12) and a scalar a4 0 such that

H�wþ ag�ðwÞ5w, ð20Þ

then the equilibrium x¼ 0 of the closed-loop system (2) is

asymptotically stable,

v�ðxÞ ¼ max
ðGxÞ1
w11

, . . . ,
ðGxÞp

w1p
,
ð�GxÞ1
w21

, . . . ,
ð�GxÞp

w2p

� �
ð21Þ

is a Lyapunov function and the sets Q(G, rw1, rw2) are

both positively invariant and domains of attraction for

all r2 [0, a].

Proof: Following the same steps as in the proof of

Theorem 3.2 we establish the relation v( f(x))� h(v(x))

with h( y)¼H*yþ g*( y) where H*y and g*( y)

are given by (18) and (19), respectively. By construc-

tion, function h( y) is nondecreasing and the scalar

function

maxfðGxÞ1, . . . , ðGxÞp,�ðGxÞ1, . . . ,�ðGxÞpg

2486 N. Athanasopoulos and G. Bitsoris
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is positive definite because, by hypotheses, rankG¼ n.
In addition, from (20) it follows that

hðrwÞ ¼ H�rwþ g�ðrwÞ

¼ rH�wþ r2g�ðwÞ

¼ rðH�wþ rg�ðwÞÞ

� rðH�wþ ag�ðwÞÞ 8r 2 ð0, aÞ

5 rw 8r 2 ð0, aÞ:

Thus, all hypotheses of Lemma 3.3 are satisfied
for v(x)¼ [(Gx)1 (Gx)2 � � � (Gx)p �(Gx)1 �(Gx)2 � � �
�(Gx)p]

T. Therefore v*(x) defined by (21) is a
Lyapunov function and, as a result, all sets Q(G, rw1,
rw2) for r2 [0, a) are both positively invariant and
domains of attraction. œ

Now, we are in a position to establish conditions
for a bounded polyhedral set Q(G,w1,w2) to be both
positively invariant and domain of attraction of the
equilibrium x¼ 0 of the closed-loop system (2). These
conditions are obtained by applying the result stated in
Theorem 3.4 for a¼ 1.

Corollary 3.5: If there exist matrices H2R
p�p and

Dj2R
p�p j¼ 1, 2, . . . , p satisfying relations (11), (12)

and

H�wþ g�ðwÞ5w, ð22Þ

where H*y and g*( y) are given by (18) and (19)
respectively, then the set Q(G,w1,w2) is both positively
invariant and domain of attraction of the equilibrium
x¼ 0 and

v�ðxÞ ¼ max
ðGxÞ1
w11

, . . . ,
ðGxÞp

w1p
,
ð�GxÞ1
w21

, . . . ,
ð�GxÞp

w2p

� �

is a Lyapunov function.

4. Design techniques

Many different approaches to the unconstrained and
constrained stabilisation of bilinear systems can be
established using the results stated in Section 3. In this
section, we develop systematic design methods that
reduce the determination of stabilising control laws in
finding a solution to one or a sequence of linear
programming problems.

4.1 The unconstrained control problem

A linear control law u¼Kx is a solution to the
unconstrained control problem if set Q(G,w1,w2) is a
domain of attraction of the resulting nonlinear closed-
loop system. By virtue of Corollary 3.5, such a solution
can be obtained by determining matrices H, Dj,

j¼ 1, 2, . . . , p and a positive real number "5 1 satisfy-
ing the linear relations

GðAþ BK Þ ¼ HG, ð23Þ

Xn
i¼1

gjiCiK ¼ GTDjG, j ¼ 1, 2, . . . , p, ð24Þ

Hþ H�

H� Hþ

� �
w1

w2

� �
þ

Dþ1 �WM þD��

1 �Wm

..

.

Dþp �WM þD��

p �Wm

D�1 �WM þD�þ

1 �Wm

..

.

D�p �WM þD�þ

p �Wm

2
6666666666664

3
7777777777775

� "
w1

w2

� �
, ð25Þ

where WM ¼ ðwM
ij Þ, Wm ¼ ðwm

ij Þ are p� p matrices
whose elements are defined by the relations

wM
ij ¼
M

maxðw1iw1j,w2iw2jÞ,

wm
ij ¼
M

maxðw1iw2j,w2iw1jÞ:

A possible approach to the determination of such
a solution is to consider these relations as constraints
of a linear programming problem with optimisation
criterion

min
K,H,D1,...,Dr, "

f"g: ð26Þ

Remark 1: It can be easily shown that from (23)–(25)
it follows that

v�ðxðtþ 1ÞÞ � "v�ðxðtÞÞ 8x 2 QðG,w1,w2Þ, ð27Þ

where v*(x) is the Lyapunov function defined by (17).
Therefore, minimisation of " results to a faster
transient behaviour for the closed-loop system. Thus,
" can be thought of as a design variable when closed-
loop performance requirements are present.

Remark 2: As mentioned in Section 2, the initial
unconstrained control problem may not possess any
solution. In such a case, the optimisation problem
described above does not provide any solution because
the optimal value "opt of " will be greater than 1. It is
clear that for "opt5 1 it is necessary that there exist
matrices K and H satisfying relations

GðAþ BK Þ ¼ HG, ð28Þ

Hþ H�

H� Hþ

� �
w1

w2

� �
5

w1

w2

� �
: ð29Þ
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We first consider the case when matrices K and H

resulting from the above linear programming problem

satisfy (28) and (29) but "opt4 1. Then, there exists

a5 1 such that H*wþ ag*(w)5w. Thus, by virtue of

Theorem 3.4, the linear control law u¼Kx makes a

subset of Q(G,w1,w2), namely Q(G, aw1, aw2),

domain of attraction of the equilibrium x¼ 0 of the

resulting closed-loop system. The largest domain of

attraction Q(G, amaxw1, amaxw2), where a transient

behaviour

v�ðxðtþ 1ÞÞ � "v�ðxðtÞÞ ð30Þ

is guaranteed, can be obtained by solving the

optimisation problem

max
K,H,D1,...,Dp, a

fag, ð31Þ

with constraints

GðAþ BK Þ ¼ HG, ð32Þ

Xn
i¼1

gjiCiK ¼ GTDjG j ¼ 1, 2, . . . , r, ð33Þ

Hþ H�

H� Hþ

" #
w1

w2

" #
þ a

Dþ1 �WM þD��

1 �Wm

..

.

Dþp �WM þD��

p �Wm

D�1 �WM þD�þ

1 �Wm

..

.

D�p �WM þD�þ

p �Wm

2
666666666666664

3
777777777777775

� "
w1

w2

" #
, ð34Þ

a4 0: ð35Þ

Remark 3: It should be noticed that the above

optimisation problem is convex and can be easily

reduced to a sequence of linear programming problems

for different values of parameter a.

Next, we consider the case when no matrices K and

H satisfying relations (28), (29) exist, that is the case

when no linear control law exists making v*(x) a

Lyapunov function for the closed-loop system. In this

case we can apply the results stated in Section 3 to

make another polyhedral set QðG�,w�1,w
�
2Þ domain of

attraction of the closed-loop system. To this end, we

must first determine matrices K0, G0 and H0 and a

vector wT
0 ¼ wT

01 wT
02

� �
, w0 4 0 (Blanchini 1999,

Blanchini and Miani 2008) satisfying relations

G0ðAþ BK0Þ ¼ H0G0, ð36Þ

Hþ0 H�0
H�0 Hþ0

" #
w01

w02

� �
5

w01

w02

� �
: ð37Þ

This can be done, for example, by choosing a feedback
gainK0 placing the eigenvalues inside the unit rhombus.
Then, matrix G0 which transforms matrix AþBK0 to
its real Jordan form J0, satisfies relation G0(AþBK0)¼
J0G0. Thus, relation (36) is satisfied for H0¼ J0. Since
all eigenvalues �i¼ �iþ j!i of matrixH0 satisfy inequal-
ity j�ij þ j!ij5 1 the non-negative matrix

H�0 ¼
Hþ0 H�0
H�0 Hþ0

" #
ð38Þ

has a positive real eigenvalue �5 1 associated with a
real eigenvector v04 0 (Bitsoris 1988). Therefore,
inequality (37) is satisfied for w0¼ v0. This, in turn,
implies the existence of a positive real number a0 and
matrices D0j, j¼ 1, 2, . . . , p such that relations (32)–(34)
are satisfied for K¼K0, H¼H0, Dj¼D0j, j¼ 1, 2, . . . , p
and a¼ a0. Therefore, by virtue of Theorem 3.4, the
polyhedral set Q(G0, a0w01, a0w02) is a domain of
attraction of the resulting closed-loop system. If the
maximal value a0max of a0 is such that Q(G,w1,w2)	
Q(G0, a0maxw01, a0maxw02) then u¼K0x is a solution to
the unconstrained control problem.

In the case when Q(G,w1,w2Þ"QðG0, a0maxw01,
a0maxw02Þ it is possible to determine another control
law u¼Kx making a larger set domain of attraction of
the corresponding closed-loop system. To this end, we
solve the linear programming problem

max
K,H,D1,...,Dp, a

fag, ð39Þ

under constraints

G0ðAþ BK Þ ¼ HG0, ð40Þ

Xn
i¼1

gjiCiK ¼ GT
0DjG0, j ¼ 1, 2, . . . , p, ð41Þ

Hþ H�

H� Hþ

� �
w01

w02

� �
þ a

Dþ1 �WM
0 þD��

1 �Wm
0

..

.

Dþr �WM
0 þD��

r �Wm
0

D�1 �WM
0 þD�þ

1 �Wm
0

..

.

D�r �WM
0 þD�þ

r �Wm
0

2
666666666664

3
777777777775

5
w01

w02

� �
, ð42Þ
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a4 0: ð43Þ

It is clear that the optimal solution amax of this
problem satisfies inequality amax
 a0max. Thus, the
new domain of attraction Q(G0, amaxw01, amaxw02)
satisfies relation Q(G0, a0maxw01, a0maxw02)	Q(G0,
amaxw01, amaxw02).

Remark 4: We can determine a better polyhedral
estimate of the domain of attraction of the closed-loop
system with the control law resulting from the
optimisation problem (39)–(43): if G* is the matrix
that transforms matrix AþBK to its real Jordan form
J, then

G�ðAþ BK Þ ¼ HG�, ð44Þ

for H¼ J and there exists a vector wT ¼

wT
1 wT

2

� �
,w4 0 satisfying the inequality

Hþ H�

H� Hþ

� �
w1

w2

� �
5

w1

w2

� �
: ð45Þ

Therefore, there exist positive real numbers a and
matrices Dj such that relations (30)–(34) are satisfied.
Thus, with the control law u¼Kx, besides Q(G0,
amaxw01, amaxw02), the polyhedral set Q(G*, amaxw1,
amaxw2) is also positive invariant and domain of
attraction of the closed-loop system. Consequently,
with the control law u¼Kx, set

QðG0, a0maxw01, a0maxw02Þ [QðG
�, amaxw1, amaxw2Þ

is also a domain of attraction of the corresponding
closed-loop system.

4.2 The constrained control problem

Let us now consider the constrained control problem,
that is the case where control constraints of the form
(4) are also imposed. The problem consists in the
determination of a linear state-feedback control law
u(t)¼Kx(t) such that all initial states belonging to the
set defined by inequalities (3) are transferred asympto-
tically to the origin while the control constraints (4) are
satisfied. As has been noticed in Section 2, this problem
may not possess any solution. According to a general
result concerning the control of nonlinear systems
(Bitsoris and Gravalou 1995), a necessary and suffi-
cient condition for a linear control law u(t)¼Kx(t) to
be a solution to the constrained control problem is the
existence of a subset � of the state space which is both
a positively invariant set and domain of attraction of
the resulting closed-loop system and satisfies the set
relation

QðG,w1,w2Þ 	 � 	 QðK, �1, �2Þ: ð46Þ

By combining these conditions with the results of

Section 3 relative to the stability and the positive
invariance of polyhedral sets for systems with second-
order polynomial nonlinearities, many different
approaches for the determination of such a control
law can be developed. An interesting special case is
when Q(G,w1,w2)¼�, that is when the stabilising
linear control law u(t)¼Kx(t) renders the desired
domain of attraction positively invariant w.r.t. the
closed-loop system. Then, set relation (46) becomes

QðG,w1,w2Þ 	 QðK, �1, �2Þ: ð47Þ

By virtue of Farkas Lemma, set relation (47) is
equivalent to the existence of a nonnegative matrix
L2R

2m�2r such that

L
G

�G

� �
¼

K

�K

� �
, ð48Þ

L
w1

w2

� �
�

�1

�2

� �
: ð49Þ

Combining these relations with the conditions
of positive invariance and attractivity of the set
Q(G,w1,w2) stated in Theorem 3.2, we establish the
following result:

Theorem 4.1: The control law u(t)¼Kx(t) is a solution
to the constrained stabilisation problem if there exist
matrices H2R

p�p, Dj2R
r�r, j¼ 1, 2, . . . , r, L2R

2m�2r

and L
 0 such that (23)–(25), (48) and (49) are satisfied.

Thus, for the constrained control problem we can
use similar linear programming design techniques by
considering (48) and (49) as additional linear
constraints.

5. Numerical examples

Example 1: We consider a second-order bilinear
system with system matrices

A ¼
1 0:01

0:01 1

� �
, B ¼

0:09

0:09

� �
,

C1 ¼
0:001

0

� �
, C2 ¼

0

�0:004

� �
:

The state vector is constrained to satisfy linear
inequalities

�4 � xi � 4 i ¼ 1, 2: ð50Þ

Bounds are also imposed on the control input:

�2 � u � 2: ð51Þ
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The problem to be solved is the determination of a

linear state-feedback stabilising control law u¼Kx and

of a domain of attraction D�R
2 of the resulting

closed-loop system so that all initial states x02D are

transferred asymptotically to the origin while both

state and control constraints (50) and (51) are

respected.
The largest admissible domain of attraction is the

state constraints set Q(Gx,wx,wx)¼ {x2R
2 :�wx�

Gxx�wx}, where

Gx ¼
1 0

0 1

" #
, wx ¼

4

4

" #
:

Solving the linear programming problem (23)–(25),

(48) and (49) with G¼Gx, w1¼�w2¼wx and

�1¼ �2¼ 2 we obtain

K� ¼ �0:1111 �0:1270
� �

,

and "min¼ 0.99. Thus, with the linear control law

u¼K*x the whole state constraints set Q(Gx,wx,wx)

becomes positively invariant and a domain of attrac-

tion where both state and control constraints are

respected.
In Figure 1, the trajectories of the closed-loop

system starting from the vertices of the positively

invariant polyhedral set Q(Gx,wx,wx) are shown.

This problem has also been investigated by

Cannon et al. (2003). For comparison purposes the

invariant set obtained by that approach is also shown

in Figure 1.

Example 2: We consider a third-order bilinear

system with two inputs and system matrices

A¼

1:10 �0:20 �0:34

�0:06 0:70 �0:41

0:41 0:41 0:90

2
64

3
75, B¼

3:75 0

1:05 �1:33

�0:85 �0:49

2
64

3
75,

C1 ¼

�0:12 �0:18

�0:22 0:30

0:36 0:07

2
64

3
75, C2 ¼

�0:32 �0:03

0:48 �0:18

0:36 �0:38

2
64

3
75,

C3 ¼

�0:35 0:55

0:36 �0:74

�0:18 �0:77

2
64

3
75:

The control inputs have to respect the linear

constraints

��2 � u � �1,

where �1¼ �2¼ [1 1]T. In this example, no initial

condition set is given. The problem to be investigated

is the determination of a subset Q(G,w1,w2) of the

state space, as well as a corresponding linear feedback

gain K, such that Q(G,w1,w2) is a positively invariant

set of the closed-loop system and a domain of

attraction while the input constraints are satisfied.

The procedure described in Section 4 provides a

solution to this problem. By applying a standard

eigenvalue assignment approach we determine a gain

matrix

K0 ¼
�0:1745 0:0073 0:1040

0:1628 0:3219 �0:1291

� �

placing the eigenvalues of matrix AþBK0, at 0.1, 0.6

and 0.9. Matrix G0 that transforms AþBK0 to its

Jordan form and vectors w01, w02 given by the relations

G0 ¼

0:763 0:643 0:066

0:600 �0:665 �0:445

0:6679 0:106 0:737

2
64

3
75,

w01 ¼

1

1

1

2
64

3
75, w02 ¼

1

1

1

2
64

3
75

satisfy conditions (36) and (37). Solving the optimisa-

tion problem (39)–(43), (48), (49) we obtain the optimal

values aopt¼ 0.5715 and

K ¼
�0:3324 0:0304 0:0728

�0:0576 0:4751 0:1901

� �
:

Thus, with the control input u¼Kx, the polyhedral set

Q(G,w1,w2)¼Q(G0, aoptw01, aoptw02) is both positively

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

x1

x 2

Figure 1. Invariant set with polyhedral Lyapunov function
(grey); invariant set using the method described in Cannon
et al. (2003) (white) and trajectories emanating from vertices
of invariant set Sx.
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invariant and domain of attraction of the resulting
closed-loop system.

This problem has also been studied by Bloemen
et al. (2002) in the context of MPC. The authors
computed an ellipsoidal invariant set that served as the
target set in the MPC algorithm. In Figure 2, the
unbounded input constraint set, translated in the state
space for the computed feedback gain together with the
invariant set Q(G,w1,w2) and the one computed in
Bloemen et al. (2002) are shown. In Figure 3, the
last two sets are shown, together with the trajectory
of the closed-loop with initial state x0¼
[�0.4891 �0.4406 1.2831]T. It is clearly shown that
the polytopic set is much larger than the ellipsoidal one.
In Figure 4, the control inputs for the same initial state
x0¼ [�0.4891 �0.4406 1.2831]T are shown.

6. Conclusions

A new approach to the constrained and unconstrained
stabilisation of discrete-time bilinear systems by linear
state-feedback has been presented. In contrast to all
known Lyapunov oriented methods which are based
on quadratic functions, in this article polyhedral
Lyapunov functions have been used. Since the use of
polyhedral functions allows the construction of poly-
hedral positively invariant sets and domains of
attraction, this type of function seem to be the natural
Lyapunov functions for studying control problems
under linear constraints. This approach leads to an
analytic way of computing linear state-feedback gains
and fixed-complexity polytopic positively invariant
sets. The first step in this direction has been the
development of the necessary theoretical background,
namely the establishment of conditions guaranteeing
the positive invariance of polyhedral sets w.r.t. to
nonlinear systems with second-order polynomial non-
linearities. Using known results on the connection
between comparison systems and positively invariant
sets (Bitsoris and Gravalou 1995; Bitsoris and Truffet
2006), it has been shown that a polyhedral set is
positively invariant w.r.t. this class of nonlinear
systems if an associated linear algebraic problem is
feasible. Then, systematic methods for the determina-
tion of stabilising linear state-feedback control laws for
both constrained and unconstrained bilinear systems
have been developed. The case where no feasible
solution rendering the initial condition set a domain of
attraction exists has also been investigated. For this
case, an approach for the determination of a domain of
attraction, possibly smaller than the pre-specified set,
has been established, thus extending considerably
previous work (Bitsoris and Athanasopoulos 2008).
By all these methods the stabilisation problem of
bilinear systems is reduced to linear programming

Figure 3. Computed polytopic invariant set Q(G,w1,w2)
(white), ellipsoidal invariant set from Bloemen, van den
Boom, and Verbruggen (2002) (black) and trajectory for
initial state x0¼ [�0.4891 �0.4406 1.2831]T.

Figure 2. Input constraint set R(Kx, um, uM) (black), poly-
topic invariant set (yellow) and ellipsoidal invariant set
(black). Available in colour online.
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Figure 4. Control inputs for x0¼ [�0.4891 �0.4406
1.2831]T.
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problems where performance issues reflecting the
transient behaviour rate of the system are introduced
as design parameters. It should be noticed that all these
approaches which can be applied to multiple-input
multiple-output, open-loop stable or unstable systems
with any linear input and/or state constraints are just
some of many different design approaches that can be
developed using the general results stated in Section 3.
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Appendix A: Proof of Theorem 3.2

Setting

vðxÞ ¼
v1ðxÞ

v2ðxÞ

� �
¼

Gx

�Gx

� �

inequalities

�w2 � Gx � w1 ðA1Þ

can be equivalently written in the form

vðxÞ � w:

Consequently, adopting the notations (5) and (10), the
polyhedral set defined by inequalities (A1) can be written as

QðG,w1,w2Þ ¼ Pðv,wÞ:

On the other hand,

viðxðtþ 1ÞÞ ¼ ð�1Þiþ1GðAþ BK ÞxðtÞ þ ð�1Þiþ1G

�

xTðtÞC1KxðtÞ

xTðtÞC2KxðtÞ

..

.

xTðtÞCnKxðtÞ

2
66664

3
77775, i ¼ 1, 2

and taking into account (11) and (12) we establish the
relations

viðxðtþ 1ÞÞ ¼ ð�1Þiþ1HGxðtÞ þ ð�1Þiþ1

�

xTðtÞGTD1GxðtÞ

xTðtÞGTD2GxðtÞ

..

.

xTðtÞGTDrGxðtÞ

2
66664

3
77775, i ¼ 1, 2: ðA2Þ

Since H¼Hþ�H�,

HGx ¼ HþðGxÞ þH�ð�GxÞ, ðA3Þ

Hð�GxÞ ¼ H�ðGxÞ þHþð�GxÞ: ðA4Þ

Using notations (7), relations (A3) and (A4) can be
equivalently written as

HGx ¼ Hþy1 þH�y2, ðA5Þ

�HGx ¼ H�y1 þHþy2: ðA6Þ

Also,

xTGTDjGx ¼ xTGTD�
j Gxþ xTGTD�

j Gx

¼ xTGTD�
j Gxþ xTGTD�þ

j Gx� xTGTD��

j Gx,

ðA7Þ

and

�xTGTDjGx ¼ �x
TGTD�

j Gx� xTGTD�þ

j Gxþ xTGTD��

j Gx

ðA8Þ

because

Dj ¼ D�
j þD�

j , ðA9Þ

D�
j ¼ D�þ

j �D��

j :

Using notations (7)–(9), from (A7) it follows that

xTGTDjGx � D�þ

j � YM þD�þ

j � YM þD��

j � Ym,

or, by virtue of (A9),

xTGTDjGx � Dþj � YM þD��

j � Ym
ðA10Þ

because matrices D�þ

j , D�þ

j , D�þ

j and D��

j have nonnegative
elements and for a nonnegative matrix D

xTGTDGx ¼
Xp
i¼1

Xp
j¼1

dijðGxÞiðGxÞj

¼
Xp
i¼1

Xp
j¼1

dijð�GxÞið�GxÞj

�
Xp
i¼1

Xp
j¼1

dij maxfðGxÞiðGxÞj, ð�GxÞið�GxÞjg

¼ D� YM,

and

�xTGTDGx ¼
Xp
i¼1

Xp
j¼1

dijðGxÞið�GxÞj

¼
Xp
i¼1

Xp
j¼1

dijð�GxÞiðGxÞj

�
Xp
i¼1

Xp
j¼1

dij maxfðGxÞið�GxÞj, ð�GxÞiðGxÞjg

¼ D� Ym:

Using similar arguments, it can be shown that

�xTGTDjGx � D�j � YM þD�þ

j � Ym: ðA11Þ

Thus, taking into account (A5), (A6), (A10) and (A11)–(A8),
from (A2) it follows that

yðtþ 1Þ � hð yðtÞÞ

or, equivalently,

vðxðtþ 1ÞÞ � h½vðxðtÞÞ�

with function h( y) defined by (14). By construction, this
function is nondecreasing. Therefore, by virtue of Lemma 1,
from (13) it follows that set Q(G,w1,w2)¼P(v,w) is
positively invariant with respect to the closed-loop nonlinear
system (2). œ
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