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Abstract

By using fluid-kinetic simulations of confined and concentrated emulsion droplets, we investigate the

nature of space non-homogeneity in soft-glassy dynamics and provide quantitative measurements of the

statistical features of plastic events in the proximity of the yield-stress threshold. Above the yield stress, our

results show the existence of a finite stress correlation scale, which can be mapped directly onto thecoop-

erativity scale, recently introduced in the literature to capture non-local effects in the soft-glassy dynamics.

In this regime, the emergence of a separate boundary (wall) rheology with higher fluidity than the bulk, is

highlighted in terms of near-wall spontaneous segregationof plastic events. Near the yield stress, where

the cooperative scale cannot be estimated with sufficient accuracy, the system shows a clear increase of the

stress correlation scale, whereas plastic events exhibit intermittent clustering in time, with no preferential

spatial location. A quantitative measurement of the space-time correlation associated with the motion of the

interface of the droplets is key to spot the long-rangeamorphousorder at the yield stress threshold.

1

http://arxiv.org/abs/1402.4441v1


I. INTRODUCTION

Soft amorphous materials, such as emulsions, foams, microgels and colloidal suspensions, dis-

play complex flow properties, intermediate between the solid and the liquid state of matter: they

are solid at rest and able to store energy via elastic deformation, whereas they flow whenever the

applied stress exceeds a critical yield threshold. The yielding behavior makes such systems as in-

teresting for applications as challenging from the fundamental point of view of out-of-equilibrium

statistical mechanics [1]. Some of these systems, referredassimple yield stress fluids(including

nonadhesive emulsions and microgels), were shown to flow viaa sequence of reversible elastic

deformations and local irreversible plastic rearrangements, associated with a microscopic yield

stress. These physical ingredients lie at the core of mesoscopic models for soft-glassy dynamics

[2–10]. A challenging question concerns the emergence of features that are non-homogeneous in

space (like, for example, shear bandings), where theglobal rheology is unable to properly capture

the complex space-time behavior of the system. One needs to properly bridge betweenlocal and

global rheology of the soft-glasses, an issue that has been recently addressed in several papers

[11–13]. In [8, 11, 13, 14] it was suggested that such a bridgecan be established by introducing a

cooperativity scale which determines correlations (non-local effects) in the flow rheology. The un-

derlying idea is that correlations among plastic events exhibit a complex spatio-temporal scenario:

they are correlated at the microscopic level with a corresponding cooperativity flow behavior at

the macroscopic level. It is the aim of this paper to study thenature of space non-homogeneity in

soft-glassy dynamics and to understand the link with correlations emerging from the dynamics of

plastic events. More precisely, we investigate the above issues by using a mesoscopic approach

based on the Lattice Boltzmann method [15–17], which allowsthe simulation of emulsion droplets

and their interface motion under different load conditions. The simulations provide access to a

broad spectrum of scales of motion at a very competitive computational cost, a fact that is instru-

mental for large-scale simulations of yielding materials,where the dynamics of a collection of a

substantial number of droplets needs to be accounted for. The peculiar features of plastic events

are investigated below and above the yield stress threshold. Above the yield stress, the “fluidity”

model recently introduced by Goyonet al.[10, 11, 14, 18] captures the essential features of the

flow: fluidity changes near the boundaries on a scaleξ which is close to the stress correlation

scale and to the characteristic scale of plastic events. Near the yield stress, however, the coopera-

tivity scale can not be estimated with enough accuracy, whereas the stress correlation scale shows
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a clear increase. In this regime, plastic events do not show any preferential location and the sys-

tem starts to behave as an elastic medium, characterized by near zero fluidity (i.e. large viscosity)

and with a long-rangeamorphousorder. Our findings echo some recent results on slowly driven

thermal glasses[19] and on driven athermal amorphous materials [20, 21].

II. DYNAMIC RHEOLOGICAL MODEL

We resort to a lattice kinetic model that has already been described in several previous papers

[15, 16]. Here, we just recall its basic features. We start from a mesoscopic lattice Boltzmann

model for non ideal binary fluids, which combines a small positive surface tension, promoting

highly complex interfaces, with a positive disjoining pressure, inhibiting interface coalescence.

The mesoscopic kinetic model considers two fluidsA andB, each described by adiscretekinetic

distribution functionfζ i(r,ci; t), measuring the probability of finding a particle of fluidζ = A,B at

positionr and timet, with discrete velocityci , where the indexi runs over the nearest and next-to-

nearest neighbors ofr in a regular two-dimensional lattice [15, 22]. In other words, the mesoscale

particle represents all molecules contained in a unit cell of the lattice. The distribution functions

evolve in time under the effect of free-streaming and local two-body collisions, described, for both

fluids (ζ =A,B), by a relaxation towards a local equilibrium (f (eq)
ζ i ) with a characteristic time scale

τLB:

(1)fζ i(r + ci ,ci ; t + 1)− fζ i(r,ci; t) = −
1

τLB

(

fζ i − f (eq)
ζ i

)

(r,ci; t) + Fζ i(r,ci; t).

The equilibrium distribution is given by

f (eq)
ζ i = wiρζ

[

1+
u ·ci

c2
s

+
uu : (cici −c2

s1)

2c4
s

]

(2)

with wi a set of weights known a priori through the choice of the quadrature [23, 24]. Coarse

grained hydrodynamical densities are defined for both speciesρζ = ∑i fζ i as well as a global mo-

mentum for the whole binary mixturej = ρu= ∑ζ ,i fζ ici , with ρ = ∑ζ ρζ . The termFζ i(r,ci; t)

is just thei-th projection of the total internal force which includes a variety of interparticle forces.

First, a repulsive (r) force with strength parameterGAB between the two fluids

F
(r)
ζ (r) =−GABρζ (r) ∑

i,ζ ′ 6=ζ
wiρζ ′(r+ci)ci (3)

is responsible for phase separation [15]. Furthermore, both fluids are also subject to competing

interactions whose role is to provide a mechanism forfrustration(F) for phase separation [25]. In
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particular, we model short range (nearest neighbor, NN) self-attraction, controlled by strength pa-

rametersGAA,1 < 0, GBB,1 < 0), and “long-range” (next to nearest neighbor, NNN) self-repulsion,

governed by strength parametersGAA,2 > 0, GBB,2 > 0)

(4)F
(F)
ζ (r) = −Gζζ ,1ψζ (r) ∑

i∈NN
wiψζ (r + ci)ci − Gζζ ,2ψζ (r) ∑

i∈NNN
wiψζ (r + ci)ci

with ψζ (r) = ψζ [ρ(r)] a suitable pseudo-potential function [26, 27]. Despite their inherent mi-

croscopic simplicity, the above dynamic rules are able to promote a host of non-trivial collective

effects [15, 16]. By a proper tuning of the phase separating interactions (3) and the competing

interactions (4), the model simultaneously achieves smallpositive surface tensionΓ and positive

disjoining pressureΠd. This allows th simulations of droplets of one dispersed phase into the other

(see left panel of figure 2) which are stabilized against coalescence. Once the droplets are stabi-

lized, different packing fractions and polydispersity of the dispersed phase can be achieved. In the

numerical simulations presented in this paper, the packingfraction of the dispersed phase in the

continuum phase is kept the same and approximately equal to 90%. The model gives direct access

to the hydrodynamical variables, i.e., density and velocity fields, as well as the local (in time and

space) stress tensor in the system, the latter characterized by both the viscous (fluid) as well as the

elastic (solid) contributions. Thus, it is extremely useful to properly characterize the relationship

between the droplets dynamics, their plastic rearrangements, and the stress fluctuations [13].

III. NUMERICAL EVIDENCE OF PLASTIC EVENTS

To place our results within the proper perspective, we first analyze the global rheological prop-

erties of the system under investigation. The computational domain is a rectangular box of size

Lx×Lz (x is the stream-flow direction) covered byNx×Nz = 1024×1024 lattice sites. The simu-

lations, performed on latest generation Graphics Processing Units (GPU) [28], require a few GPU

hours for one million time steps, the typical time span of a single run. All quantities will be

given in lattice Boltzmann units (lbu) and brackets〈...〉 will be used to indicate averages, either

in time (〈...〉t), in space ((〈...〉x,z)), or both. Two different boundary conditions are considered:

(a) planar Couette Flow with steady velocity at the boundaries±UW; (b) Oscillating Strain con-

ditions with strainγ(t) = γpsin(ωt) and boundary velocityU(t) = Lzγ̇(t). In figure 2 we show

a zoom of the configurations resembling the initial conditions (the same for both boundary con-

ditions). For the Oscillatory Strain boundary conditions,the frequencyω is chosen to guarantee
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that the stress,σ(t), and the strain,γ(t), are homogeneous inz for very smallγp. We then write

σ(t) = σpsin(ωt + φ), whereσp denotes the maximum value ofσ(t). In figure 1 we show the

resulting shear-stress relation following the definition of the global shearSand stressσ discussed

in [17]. Our simulations provide a yield stress value of about σY ∼ 1.2×10−4 lbu independently

of the two load conditions used. The stress is compatible with a Herschel-Bulkley (HB) relation

[1]

σ = σY +ASβ (5)

with β ∼ 0.61. Thus, the material in point shows a non-trivial rheology. The bottom panel of figure

1 reports the normalized velocity profiles,U(z)/UW, as a function of the reduced positionz/Lz in

a confined steady Couette Flow for different values of the nominal shear 2UW/Lz. In absence

of non-local effects, one would expect the reduced velocityprofiles to be a straight line. This is

however not the case: the normalized profiles collapse on thesame master curve independent of

the applied shear, and emphasize that the shear rate is greater at the wall than in the center of the

channel. This non-local effect has been discussed in terms of plastic rearrangements of the flow

[10, 11, 13, 14]. It is therefore of great interest to providedirectdynamic evidence of such plastic

events.

To develop a systematic analysis of plastic events, we perform a Voronoi tessellation[42] con-

structed from the centers of mass of the droplets, a representation which is particularly well suited

to capture and visualize plastic events in the form of droplets rearrangements and topological

changes, occurring within the material. Such events are shown in the right panel of Figure 2. The

involved Voronoi cells are labeled by a central dot. Quite often, multiple plastic events are ob-

served to take place in short sequence, as evidenced in the bottom-right panel of Figure 2. Next,

we used the Voronoi tessellation to analyze the statisticaldistributionP(λp) of the characteristic

scaleλp of plastic events below and above the yield stress. Here,λp is defined as the square root

of the area of the droplets involved in the plastic event. In figure 3, we showP(λp) as a function

of λp/d, whered is the average droplet diameter. In all cases,P(λp) shows a well defined peak

aroundλp ∼ (2.0−2.5)d, which corresponds approximately to T1 events involving four droplets.

We also note that the tail ofP(λp) gets relatively fatter at largeλp as the average stress is increased,

namely for the caseσ/σY = 1.15, suggesting that more and more droplets are involved in plastic

events.

Next, we analyze plastic events and their space distribution, to characterize the transition at

the yield stress. In particular, we consider the Couette Flow and compute the number of plastic
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FIG. 1: Top Panel: the plot shows the shear-stress relation for the two flows discussed in the paper. The

inverted triangles refer to Couette Flow (CF), whereas the filled circles to the Oscillating Strain (OS). The

dotted line represents the Herschel-Bulkley (HB) fit. The analysis in this paper is focused on flows charac-

terized by a stress either slightly smaller or slightly larger than the yield stress. Bottom Panel: normalized

velocity profiles,U(z)/UW, as a function of the reduced positionz/Lz in a confined steady Couette geom-

etry for different values of the nominal shear 2UW/Lz. The packing fraction of the dispersed phase in the

continuum phase is kept the same and approximately equal to 90%.

eventsN(z,σ) which occur, for anyx, at locationz/Lz ∈ [0 : 1]. Results are displayed in figure

4 for different values of the average stressσ/σY = 0.88, 1.1, 1.15. The clear feature emerging

from figure 4, is that below the yield stress (σ/σY = 0.88), plastic events are distributed almost

uniformly in z, whereas forσ > σY there exists a preferential location near the boundary, with a

characteristic thickness of the order of 0.2Lz. It turns out that such thickness is also close to 2λp.

Thus, two main messages are conveyed by figures 3 and 4: most plastic events show the same
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FIG. 2: Identification of plastic events by using the Voronoialgorithm (see text for details). The analysis

reported in this figure is carried out in a time interval[0 : 300] (in units of 1000 lbu). Left panel: two time

snapshots are reported with blue/yellow (dark/light) colors indicatingA-rich/B-rich regions. Right panel:

we report the corresponding Voronoi tessellation of the centers of mass of the droplets. The Voronoi cells

involved in the plastic event are labeled by a central dot. The plastic rearrangement att1 = 263 is generating

a perturbation that affects the successive plastic rearrangements att2 = 268.

characteristic scaleλp, while their number increases by increasingσ ; above the yield stress, a

preferential concentration of plastic events occurs near the boundaries in a layer of thickness 2λp.

Although it is not surprising that most of the plastic eventsconcentrate near the boundaries, the

fact that forσ < σY this does not occur, appears to be non-trivial.

IV. CONNECTION WITH FLUIDITY MODEL

Hereafter, we consider the results of section III and establish a connection between the plastic

events in droplets rearrangements and the corresponding cooperative flow behavior at the hydro-

dynamic scale. A step towards this goal has been taken in recent works[8, 11, 14], where the rate

of plastic events is connected to the “fluidity” field, definedas the ratio between the shear rate and

the stress,f = γ̇
σ . By using a kinetic model for the elasto-plastic dynamics ofthe stress distribution
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FIG. 3: Probability density functionP(λp) computed for the plastic events in pre-yield conditions forthe

Couette Flow (CF) and the Oscillatory Strain (OS) numericalsimulations (see text for details). The quantity

λp refers to the characteristic spatial scale of the plastic events and is computed as the square root of the area

of the droplets involved in the events (see figure 2). In both casesP(λp) is peaked aroundλp ∼ (2.0−2.5)d,

whered is the average droplet diameter.

.

 0

 20

 40

 60

 80

 100

 0  0.2  0.4  0.6  0.8  1

N
(z

,σ
)

z/Lz

σ/σy = 1.15
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FIG. 4: Plastic events and their location in a Couette Flow simulation. We report the number of plastic

eventsN(z,σ) which occur, for anyx, at locationz/Lz∈ [0 : 1] for σ/σY = 0.88, 1.1, 1.15. Below the yield

stress plastic events are distributed almost uniformly inz whereas forσ > σY there exists a preferential

location near the boundary with characteristic thickness of the order of 0.2Lz, which is close toλp, i.e., the

characteristic scale of plastic events (see text for details).

function, the local fluidity is shown to obey (in the steady state) the following equation

ξ 2∆ f +( fb− f ) = 0 (6)
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where the scaleξ is a measure of the non-locality of the cooperativity withinthe flow. The quantity

fb is the bulk fluidity, i.e. the value of the fluidity in the absence of spatial heterogeneities. The

bulk fluidity depends upon the local shear rate only, whereasf depends upon the position in

space. Its value is equal tofb when the stress and the shear rate are constant in an unbounded

geometry, i.e. without the perturbing effects of the boundaries. The fluidity model has been tested

with considerable success both in experiments [11, 14, 18] and in molecular dynamics simulations

[10]. Under the hypothesis of low cooperativity, the model predicts proportionality between the

fluidity and the rate of plastic events [10, 18]. This featureis strikingly robust, as also evidenced

by the work of Nicolas & Barrat, based on a different mesoscopic model of interacting elasto-

plastic blocks [29]. Thus, an increase of the number of plastic events near the boundary should be

correlated to a corresponding increase of the fluidity. Also, we may argue that the cooperativity

scaleξ should be of the order ofλp, a statement that echoes the results presented by Mansard

et al. [10], where molecular dynamics simulations with the “bubble model” of Durian[30] were

compared with the fluidity model. A good agreement was found by using a value ofξ of the

order of 5 bubbles radii. To check the validity of this interpretation, we investigate the behavior

of the Couette Flowabove the yield stressσY. In this case, the mean shear stress is spatially

homogeneous, which considerably simplifies the solution ofequation (6). We first consider the

fluidity averaged in time and in the stream-flow direction. For such a 1d case, the fluidity is

predicted to obey a non-local equation of the form [11, 14]

ξ 2d2 f (z)
dz2 +( fb(σ)− f (z)) = 0 (7)

whereσ (and hencefb(σ)) is a constant in the stationary Couette flow. The solution ofthe fluidity

equation requires boundary conditions, i.e. one has to prescribe the value of the fluidity close to

the boundaries. When the boundary condition is the same,f (0) = f (Lz) = fw, the expression of

the shear ratėγ = σ f reduces to:

γ̇(z) = σ
(

fb(σ)+( fw− fb(σ))
cosh((z−Lz/2)/ξ )

cosh(Lz/2ξ )

)

. (8)

Several remarks are in order. First, the predictions for thevelocity profiles exhibit features in

qualitative agreement with the simulation results reported in the bottom panel of figure 1: even

though the shear stress is homogeneous, velocity profiles are not straight lines from wall to wall.

Deviations from a linear profile close to the wall, extend over a characteristic distance fixed by

ξ . The fluidity profiles for different values of the nominal shear rate 2UW/Lz are reported in the
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FIG. 5: Left Panel: the average fluidity as a function of the distance from the walls in a Couette Flow

simulation. Data are the same reported in the bottom panel offigure 1. The vertical dotted line represents

the distance from the wall at which we calculatefw in equation (8). All the numerical simulations are

performed above the yield stressσY. Middle Panel: wall (w) and bulk (b) fluidity as a function of the

normalized (with respect to the yield stressσY) average stress in a Couette Flow simulation: bulk and wall

rheology are different. Right panel: The fluidity shown in the left panel is reported and normalized with

respect to the wall and bulk contributions, in order to extract the cooperativity scale according to equation

(8).

left panel of figure 5. All the numerical simulations are performed above the yield stressσY.

Starting from the wall region, the fluidity field decays towards the bulk valuefb, which can also

be deduced from the rheological flow curve reported in figure 1. As for the wall fluidity, fw, we

directly measure it at the distance evidenced by the vertical dots in the left panel of figure 5 and

compare it with the bulk fluidity,fb, in the middle panel of figure 5. The existence of a specific

wall rheology is clear: the wall fluidity is significantly larger than the bulk fluidity [14]. To double-

check the quantitative consistency with equation (8), we rescaled all profiles with respect to the

wall fluidity, fw, and studied the quantity( f (z)− fb(σ))/( fw− fb(σ)). The profiles of the rescaled

fluidity collapse on the same curve, consistently with equation (8) and a value ofξ = 2.3d. In line

with the notion of cooperativity [11, 14], describing the characteristic scale for non-local effects

in the soft-glassy dynamics, we find thatξ and the characteristic scale of plastic events,λp, are

close to each other.

V. CONNECTION WITH STRESS CORRELATION

We can gain further insights by studying the correlation of the stress in the material and explor-

ing its connection with the results presented in sections III and IV. In particular, we measure the
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stress correlation scaleλS in the system. LetC(z,z0) be the stress correlation function defined as:

C(z,z0) = 〈(σ̄(z, t)σ̄(z0, t)〉t,c (9)

where σ̄(z, t) is the average of the stress along the mainstream direction,i.e. σ̄(z, t) =

〈σ(x,z; t)〉x =
1
Lx

∑xσ(x,z; t), and where the subscriptc denotes theconnectedcorrelation func-

tion. We estimateλS as the distance away from the locationz0 = Lz/2 where the correlation

function isC(z0+ λS,z0) = exp(−1). In the bottom panel of figure 6, we plotλS. As one can

appreciate, above the yield stress (σ > σY), the stress correlation scale and the cooperativity scale

ξ are basically the same (up to a scale factor, close to 1). However, very close to the yield stress,

λS shows a fast growth at decreasing shear. Such an increase ofλS can actually be explained by

resorting to a very simple scalar rheological model for the stress fieldσ(z, t) [7, 31, 32]:

∂t(ρu) = ∂z(ηS+σ) (10)

∂tσ = ES− σ
τ (11)

whereu(z, t) = 〈ux(x,z; t)〉x is the average mainstream flow speed,S= ∂zu the shear,η the molec-

ular dynamic viscosity andE the elastic modulus. Equation (10) is the momentum conservation

relation, while equation (11) is a phenomenological model for the evolution of the stress. Finally,

τ is a relaxation time, diverging close to the yield stress [17]. Such kind of models have been

known for long in the literature [7, 31, 32]: equation (10) isusually considered in the stationary

state, on account of inertia being totally negligible [7]. In the stationary state, with an average

stressσ above the yield stressσY, equation (11) is consistent with the Herschel-Bulkley global

flow curve, equation (5) with

τ(σ) =
σ
ES

=
σA1/β

E(σ −σY)1/β . (12)

Equations (10) and (11) can also be written as:

∂t(ρu) = ∂zΠ (13)

∂tΠ =
(

E+
η
τ

)

S−
Π
τ
+

η
ρ

∂zzΠ (14)

whereΠ = ηS+σ . Finally, ignoring the inertial term represented by (13), we can refer to (14)

in order to understand the behavior of the stress correlation functions. Let us remark that, in most

cases, such as those presented here, the molecular viscosity η is much smaller than the “solid”
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contribution and we can estimateηe f f ∼ σ/S= Eτ ≫ η. This ensures a negligible difference

betweenΠ andσ . Equation (14) shows that the stress correlation scale should be of the order
√

ητ/ρ , which diverges close toσY in agreement with our findings. In particular, by using equa-

tion (5), we can predictλS ∼
√

ητ/ρ ∼ 1/(σ −σY)
1

2β . In the inset of the bottom panel figure

6, we plotλS/(2.3d) versusσY/(σ − σY) in log-log scale, which shows that our prediction is

consistent with numerical data with12β ∼ 0.82. Close to the yield stress, we cannot measureξ

by using equation (8), since the fluidity near the wall becomes close to the bulk fluidity and both

tend to zero. We were able to obtain accurate measurements only down toσ/σY ≈ 1.1, where the

cooperative lengthξ does not show any substantial variation (see triangles in the bottom panel of

figure 6). The computation ofλS, instead, does not result from any best fit procedure and it isan

independentmeasure of space correlations. We note that the increase ofλS nearσY is also consis-

tent with the results shown in figure 4, suggesting that belowthe yield stress, the system behaves

as an elastic medium with long-range order, where plastic events occur without any preferential

location.

Other key signatures of the physics below the yield stress are provided in figures 7 and 8. In

figure 7, we monitor the space-time distribution of the stress-field,σ(x,z; t), as well as its average

along the mainstream direction,̄σ(z, t), in a Couette Flow forσ/σY = 0.88. The diagonal stripes

in the top panel of figure 7 provide a neat signature of propagating stress-waves, which become

apparent in close connection with the drop of the average stress, as shown in the bottom panel. This

shows that the dynamics of the system supports propagation of stress-waves, in connection with

the occurrence of stress-releasing plastic events. Plastic events also show an intermittent clustering

in time, as evidenced in figure 8, where we report the areaA(t) related to plastic events in a Couette

Flow simulation atσ/σY = 0.88. As we can see, a substantial number of plastic events occur in

quite short time intervals, after which quiescent periods are observed. It is tempting to speculate

that there are “avalanches” of plastic events. It seems thatthe stress-waves generated by the

first plastic event, trigger a number of other events, each generating stress-waves and, eventually,

triggering further plastic events [33]. Such intermittentclustering in time can be indeed quantified

by looking at the probability density distributionP(te), te being the time interval between two

successive plastic events. In figure 9, we showP(te) for σ/σY = 0.88, σ/σY = 1.1 andσ/σY =

1.15. A striking feature emerges from figure 9: the clustering properties of plastic events are

peculiar of the pre-yield condition. Only forσ < σY, we observe a long tail inP(te) which is a

clear signature of time intermittency or clustering in the plastic events. Actually, we observe that
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FIG. 6: Top panel: the stress correlation functionC(z,z0), measured starting fromz0 = Lz/2 (changing

z0 does not affect the conclusion). Open and Filled Symbols refer to different shear rates. Starting from

the reference location (where, by definition, the stress correlation function isC(z0,z0) = 1), we computed

the stress correlation,λS, as the distance away from such location when the correlation function isC(z0+

λS,z0) = exp(−1). Bottom panel: the figure shows the cooperativity scaleξ (triangles) as a function of the

rescaled stressσ/σY in Couette Flow. The cooperativity scaleξ is constant above the yield stress. In the

same figure, we show the stress correlation scale,λS (see top panel). The stress correlation scale shows an

increasing trend at decreasing shears. Both the cooperativity and the stress correlation scales are normalized

with 2.3d, whered is the average droplet diameter. Inset: we plotλS/(2.3d) versusσY/(σ −σY) in log-log

scale; the solid line is the scaling prediction derived fromthe scalar model (10-11) (see text for details).

the tail increases in the course of the numerical simulations; i.e. the system shows aging.
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FIG. 7: The figure highlights the time/space dynamics of the stress in a Couette Flow forσ/σY = 0.88.

Top Panel: we consider the stream-flow averaged stressσ̄(z, t) = 〈σ(x,z; t)〉x =
1
Lx

∑x σ(x,z; t) in a time

interval [0 : 300] (in units of 1000 lbu). The vertical axis is the wall-to-walldistancez and the horizontal

axis is timet. The stress is normalized with the yield stressσY (see figure 1). Bottom panel: we report

the z-averaged ofσ̄(z, t) (again normalized withσY), as a function oft, in the same time interval of the

top panel. The interesting point is the neat evidence of propagation of elastic waves associated to plastic

events. This phenomenon is clearly detectable in correspondence with the sudden drop in the global stress

at t ∼ 200.
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the plastic eventsA(t) rescaled byξ 2 in a time interval[0 : 700] (in units of 1000 lbu). The interesting point

is the neat clustering of the plastic events.

VI. INTERFACE CORRELATIONS AND ELASTIC STRESS

Although the simple model reported in equation (14) seems toexplain the behavior ofλS near

the yield stress, it does not reveal much of the underlying physics. Basically, the statementλS→∞

or τ →∞ is a shorthand to characterize the yield stress transition.A more interesting question con-

cerns the physical mechanism characterizing the transition, i.e. the reason why the stress correla-

tion scale increases and/or the relaxation time increases.In this section, we provide a quantitative

answer to this question by further exploring the space-timecorrelations of the elastic stress of

the system. We concentrate on the space-time correlations of the motion of the interface which,

we argue, are responsible for the increase in the stress correlation scale discussed in the previous

section. As shortly outlined earlier on, the picture we havein mind is the following: very close to

the yield stress, plastic events take place in an otherwise elastic material [33, 34]. During a plastic

event, the whole interface moves and changes the local stress fluctuations, as well as the interface

configuration. Because of the effect of the stress waves, which propagateafter the end of the

plastic event, the interface may become locally unstable and there is a relatively high probability

to trigger further plastic events [35]. Since the motion of the interface induces a large change in

the stress fluctuations, the stress correlation scale is large (order the system size). Our qualitative

description highlights the link between an increase in the relaxation time of the system (τ) and the

increase of space correlation.
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FIG. 9: Probability density distributionP(te) of the timete between two consecutive plastic events in a

Couette Flow simulation forσ/σY = 0.88, 1.1, 1.15 (log-linear scale). The values ofP(te) are multiplied

by the number of eventsNe observed during the period of 106 time steps, whereNe = 89, Ne = 288 and

Ne = 600 respectively. The striking feature is the long tail ofP(te) observed forσ/σY = 0.88 which shows

the time intermittent dynamics of the plastic events.

To define a quantitative measure of the correlations associated with the motion of the interface,

we introduce the phase fieldφ(x,z; t) ≡ ρA(x,z; t)−ρB(x,z; t)−〈(ρA−ρB)〉x,z. Next, we define

theoverlap q(x,z; t, t+T) as:

q(x,z; t, t+T) =
φ(x,z; t)φ(x,z; t+T)

φ̄ (t)φ̄(t+T)
(15)

whereφ̄2(t) ≡ 〈φ2(x,z; t)〉x,z. The physical meaning ofq is the following: for constantT, let us

indicate byqx,z,t(T) = 〈q(x,z; t, t+T)〉x,z,t the space-time average ofq; thenqx,z,t(T) provides a

quantitative measure of how much two field configurations, separated by a timeT, are on average

correlated. Thus, to compute space-time correlations, we need to evaluate the space correlation of

q

Γ(r,T) = 〈q(x,z+ r; t, t+T)q(x,z; t, t+T)+

q(x+ r,z; t, t+T)q(x,z; t, t+T)〉x,z,t

where−Lz/2 ≤ r ≤ Lz/2. Since the change in the configuration of the phase field is due to the

interface motion,Γ(r,T) is a quantitative measure of the space-time correlations ofthe interface

dynamics. By using the Voronoi construction, we have identified plastic events as changes in the
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topological configuration of the interface. Such changes are actuallyinstantaneous. However, a

careful inspection of the dynamics shows that the interfacemotion associated to a local plastic

event, takes a finite timetp. The value oftp is not fixed, although it does not show large variations

among different plastic events. The characteristic timetp can be estimated of the order ofλp/v,

wherev is the stress-wave velocity: for a time scale much longer than λp/v it is unlikely that any

locally confined source of energy does not radiate out the region where the plastic event occurs.

A few numbers may help elucidating the picture. Usingλp = 100 andv= 0.02 in lbu, we obtain

tp ≈ 5000 lbu. Note that the time for a stress-wave to propagate from one boundary to the other

is tE ∼ 10tp, whereas the time scale induced by the external driving is inthe range[30 : 100] tp

across the yield stress transition, where the longer time refers to the value atσ/σY = 0.88. We

then considerΓc(r,T) (the connected correlation function ofΓ(r,T)) for σ/σY = 0.88 (figure 10,

left panel) andσ/σY = 1.1 (figure 10, right panel) and forT/tp = 1,2,4. ForT ∼ tp, based on

the qualitative picture previously described, a clear correlation is expected. Note the long tail in

the correlation function for larger at T/tp = 1: this quantitative measure indicates that the whole

interface is spatially correlated on time scales smaller thanLz/v and comparable to the time scale

of the plastic eventtp. However, forσ/σY = 0.88, the correlation increases with time due to

the propagation of stress waves, whereas forσ/σY = 1.1 the long tail in the correlation length

disappears. Moreover, when the system starts to flow atσ/σY = 1.1, stress waves no longer

propagate and consequently one cannot observe long-range correlations in the interface motions.

Figure 10, therefore, supports our view and indicates the interface motion as the source of the large

scale correlation in the stress fluctuations.

VII. SUMMARY AND OUTLOOK

We have presented quantitative measurements of the statistics and correlations of plastic events,

as they arise in the proximity of the yield-stress threshold, obtained by using simulations of con-

centrated emulsion droplets under soft-glassy conditions. We provide two basic results.First,

above the yield stress, the typical spatial scale of the plastic events,λp, is in a good quantita-

tive match with the cooperativity scale,ξ , introduced by previous authors [11, 14]. Both scales

are close to the correlation scale of the fluctuating stress within the material,λS. Among others,

a notable result emerging from the above findings is the spontaneous segregation of the plastic

events within a near-wall layer of thickness 2λp. Second, below the yield stress,λS shows a clear
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FIG. 10: The figure showsΓc(r,T), i.e. the connected correlation function of the overlap (see text for de-

tails), forσ/σY = 0.88 (left panel) andσ/σY = 1.1 (right panel) withT/tp = 1,2,4, tp being the character-

istic time of the plastic event. Given two field configurations separated by a timeT, Γc(r,T) provides a mea-

sure of the spatial correlation existing between two pointsseparated by the distancer. Whenσ/σY = 0.88,

we observe a large spatial correlation which increases in time due to propagation of stress-waves.

.

increase and plastic events exhibit intermittent clustering in time, while showing no preferential

locations. This is understood in terms of the long-rangeamorphousorder emerging at the yield

stress threshold, where one cannot purport the system as an assembly of mesoscopic elements: the

whole interface configuration comes into play during plastic events and the “energy landscape”

should be classified in terms of interface configurations with large space-time correlations.

Another important aspect emerging from our analysis is the key role of stress-waves. Usually,

having slow flows of soft-glassy materials in mind, one neglects inertial effects in developing

mesoscopic models for elasto-plastic materials [7, 33]. Inthis work, inertia isnot invoked to ex-

plain the non-linear rheology of the system, but to allow thepropagation of sound waves in the

solid, which proves key to sustain long-range dynamic correlations. At low shear rates, experi-

ments are performed to ensure a uniform strain in the system and a nearly constant stress. This is

certainly the case when one considers linear rheology in a Couette Flow configuration at very low

frequency. Also, the computations performed with the Oscillatory Strain display a clear uniform

rate strain and uniform stress for smallσP. However, close to the yield stress, space fluctuations

of the stress and the interfaces are crucial to correctly describe the dynamics of the system. As we

have seen, stress-waves are able to trigger plastic events and produce an avalanche. Stress-waves

can exist only by assuming the active presence of inertial terms. As a matter of fact, mesoscopic

18



models which describe the deformation of elastic solids, domake use of inertia terms [31, 36]. A

recent study by Salerno & Robbins[37] shows indeed that inertia can strongly influence activity

bursts and avalanches in sheared disordered solids.

Overall, all the simulation results presented in this paperrefer to a situation wheretD > tE > tc,

with tD = L2
zρ/η the diffusive time associated with molecular viscosity (see equations (10)-(11)),

tE the elastic time for a stress-wave to propagate from one boundary to the other (see section VI)

andtc ≈ω−1
c , whereωc is the frequency at which the storage modulusG′(ω) and the loss modulus

G′′(ω) cross each other, i.e.G′(ωc)≈ G′′(ωc). In our case,tD/tE ≈ 10 andtc is found to be of the

order of the characteristic time of plastic eventstp (see section VI), withtE/tp ≈ 10. A close look

at some experimental data[11, 14, 38], reveals thattD/tE is in the range[2 : 20] andtE/tc in the

range[1 : 10], thus suggesting that the adopted ordering of time scales isreasonable.

Finally, we wish to highlight the importance of “randomness” and disorder in the initial condition

[39], which provides a nontrivial feedback to the dynamics.All the simulations presented here

have been performed with a small but not negligible polydispersity in the initial configuration. For

an ordered hexagonal packing of monodisperse droplets, theyield stress and strain follow from

Princen theory [40, 41]. Even a small polidispersity changes the yield strain and opens the way to

a much richer and complex dynamics. However, the role of polydispersity or space randomness in

the system is still not clearly understood. In particular, preliminary results suggest that an increase

in the polidispersity is equivalent to increase the level of“noise” in the system and change the

space-time correlations. Although most of the above discussions are rather speculative, we argue

that our work may enhance the interest in discussing space-time correlation near the yield stress

transition and provide some insights to develop a complete theory of soft-glassy rheology.
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