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Hard wall — soft wall — vorticity
scattering in shear flow

Sjoerd W. Rienstra and Deepesh Kumar Singh
Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands

An analytically exact solution, for the problem of low Mach number incident vorticity
scattering at a hard-soft wall transition, is obtained in the form of Fourier integrals by
using the Wiener-Hopf method. Harmonic vortical perturbations of inviscid linear shear
flow are scattered at the wall transition. This results in a fa field which is qualitatively
different for low shear and high shear cases. In particular,for high shear the pressure
(apparently driven by the mean flow) does not decay and its Faier representation in-
volves a diverging integral which is to be interpreted in geeralised sense.

Then the incompressible hydrodynamic (Wiener-Hopf) “inng” solution is matched
asymptotically to an acoustic outer field in order to determne the sound associated to the
scattering. The qualitative difference between low and hiy shear is also apparent here.
The low shear case matches successfully. In the high shearsesonly a partial matching
was possible.

. Introduction

The effect of boundaries, in particular soft or flexible bdanes, on the aerodynamic noise
generated by turbulent flows in general and vortical pedtioins in particular have been studied
for decades. (See for examgle [1L,2,3/4,5, 6], which is jusiraute fraction of the literature.) If the
Mach number of the flow is small, the spectral component obthendary layer pressure pertur-
bations,.e. the Fourier transform of pressure in the plane of boundamr|dnave subsonic phase
velocities which constitute a strong local field but decaygomentially with distance from the
flow. If there is a discontinuity in the boundary, the flow maeut as a “wave number converter”
to scatter far field noise€ [7]. So the main sound productiorteatrates at discontinuities. This was
confirmed by Crighton [2] who studied in detail the radiatfoom the flow over 2 semi-infinite
planes that differ in their inertia and elastic propertid$ere is, however, a need for canonical
model problems that allows analytically exact solutionsvofticity in shear flow scattering at
hard-soft transitions of a liner wall which is demonstratethe current work.

In the current paper, the scattering of 2D vorticity peraiiins in an inviscid low Mach number
shear flow (with vanishing velocity at the wall) passing oadrard to soft transition of this wall
has been examined.

*Associate Professor, Dept. Math. & Comp. Sc., Eindhovew.diiTechn., Netherlands, Senior Member AlIAA.
fDoctoral candidate, Dept. Mathematics & Computer ScieBagjhoven University of Technology, Netherlands.
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The incident field is assumed to be produced by a mass sourapsteam, although a non-
conservative force field would give similar results. Foliogr [8], a 2D vorticity y with mass

source), satisfying
(i +v9)(5) =@ 0

is considered. If the source is small, located in a boundgibmg7, and induces harmonic isen-
tropic perturbations to a parallel sheared flowwith otherwise constant densipy and sound
speed given by

v=U(ye, +ve*, x=-U(y)+xe“, p=po+cy°pe“, Q=4¢e“, (2)

then we have after linearisation and writitidy,) = Uy, U’ (yo) = 0o,

(i + U ) (34 5 89) = Ui = [ lwiten wdte = an)aty = wldsodn.

This has, under causal free field conditions (allowing ordgtgrbations generated by the source)
andU, > 0, the solution|[8]

20, Y0)90 gy omikole—20) 50 — )| died ko= = (4
//[ olo H(x —x)e (¥ — yo) | dxodyo, 0 Uy’ (4)

Po Co

Downstream the source we have jiiBtr — =) = 1. Utilising linearity we will consider a single
(w0, yo)-component with unit amplitude and phase factére = 1, in the incompressible limit,

leading to the vortex sheet
A 00 —ikox
=——e oy — yo)- 5
X= T (¥ — %) 5)

With a simple shear flow given by (y) = oy and uniform boundary conditions along the wall
y = 0, the corresponding velocity and pressure fields can berdated, far enough downstream
the source, relatively easily. This field will act as the dwmit field for our scattering problem.

Uly) = oy

Yo incident vorticity perturbations

hard ///Z //

Figure 1. Sketch of the problem
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[I. Model

We summarise the above introduction as follows. Considetwho-dimensional incompress-
ible inviscid problem of perturbations of a linearly shehneean flow with time dependent{?)
vortex sheet along = y, iny > 0 and awall afy = 0 which is hard for: < 0 and soft (impedance)
for z > 0 with U(y) = oy; see figuré l1. In this configuration we will have no contribatbf a
critical layerh, or an instability like in[9].

As described above, we have a mass source placed-at, — —oo, y = yo Which produce
the downstream travelling vorticity that decays exporaiytiaway from the liney = y, in the
order~ e koly—vol-ikoz \When the convected vorticity field hits the hard-to-softlvi@nsition
pointz = 0, itis scattered into a local pressure field that will radedesound into the far field.

The flow in the domain shown in figufe 1 is governed by the lirsear Euler equations with
mixed boundary conditions (hard fer< 0 and of impedance type far > 0), which makes the
Wiener-Hopf technique [10; 4] a natural choice for obtagnihe solution. Once we obtained this
(in the context of the acoustic field) inner solution, we catedmine the source strength at the
singularityx = 0. In order to assess the produced sound, the incompressitdesolution will be
matched with a compressible (acoustic) outer solution.

[1l. Mathematical formulation

The governing equation of mass and momentum conservatittemin frequency domain are

Lo <8u+@) :07

o dy
. 0 dU dp
p0<1W+U%)U+p0d—yU+a—x—O, (6)
) 0 dp
£o <IW+U8_x)U+8_y_O
Boundary conditions af = 0 are
v=0 if <0,

an edge condition of vanishing energy flux frdth 0), and a wall of impedancg& = p,¢ with
p=—Zv or iwp={_p, Iif z>0.

The far field boundary conditions will be of vanishing velygcbut maybe not of vanishing pres-
sure. The incident field (of the undulating vortex sheet aty, = U, /o) is given by

Uin = UO e—ikox |: _ 81gn(y _ yO) e—koly—yo\ + e—ko(y—i—yg)} :

Vi = iU, e ko [ e~ koly—=vol _ e—ko(y+y0)} ’ 7)

Pin = ngUg e~ ikoz [(1 + koly — yol) e koly—yol _ (1 + ko(y — v0)) e—ko(y+y0)} ’
w

with ko = w /Uy, and sdkyo = w/o. Figure 2 shows pressure and velocities of a typical case.
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5! M > (i)

5 (iii)

Figure 2. The initial field uin, vin and pj, respectively.w = 5,0 = 4,Ug = 5,ko = 1,y0 = 1.25.

The triple(uin, vin, pin) Satisfies the differential equation, continuitygf anduv;, acrossy = v,
and the hard-wall boundary conditiop = 0 aty = 0. The scattered perturbations are due to the
non-vanishingi, + Zuv, alongy = 0,z > 0.

We split up the field in the incident part and the scatteretigmfollows

U=Un+T, V=0n+T, P=Dpin+D (8)

After Fourier transformation in (formally assuming the convergence of the integrals)

Pley) = — / by k) e d, ©)

2 J_
(the same for andv) we obtain the following set of equations

whereQ) = w — kU. The system of equations has two independent solutionselyam e**v
[11,12]. The one, bounded fgr— oo, is then

ay) = kA(k) e,
0(y) = —i[k|A(k) e, (11)
By) = po(€ —sign(Re k)o) A(k) e,
with A(k) is to be determined, and
k| = sign(Re k)k = V&2, (12)
where,/ denotes the principal value square root, dchas thus branch cuts along the imaginary

axis given by(—ioo, 0) and(0,ioc0).
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IV. Wiener-Hopf procedure

To facilitate the following Wiener-Hopf procedure, we imtiluce a small positive parameter
and have an upper and a lower half plane, and a strip of overlap

Ct={keC|Imk>—¢}, C ={keC|Imk<c}, S={keC|—e<Imk< e},

The physical problem will be the limit — 0 of a regularised problem witky replaced byt — ic
(an incident field~ e~*® slightly decaying withr) and|k| replaced by the smoother function

k| = Ve

with branch cutg—ioco, —ie) U (ie, ico) avoiding stripS (cf. [13]).
Introduce the auxiliary functions

F (k)= / [B(2,0) + Zv(x,0)] * dz, Gi(k) = /000 7(z,0) e da (13)

—00

which are analytic ifm(k) < 0 andIm(k) > 0 respectively, and assumed to be analytiin
andC™. Then we have fo&

G (k) = /0 " o, 0) 6t dg = /_ " (e, 0) €5 d = —i|k[A(k). (14)

[e.e]

Furthermore, we have far_

0 0o 0o

F_(k) = / [p(2,0)+Z0(x,0)] € da = / [B(2,0)+Z0(z,0)] ** da+ / pin(z,0) % dz

oo —0 0
e—koyo
= —poA(k) sign(Re k) (ik¢ + o — sign(Re k)w) + QipoUgﬁ
A
) ) ) e—koyo
= —1poCA(K)|k| K (k) + 2100Uok_7kO (15)

with Wiener-Hopf kernel

bl

a
FORCTie T 1o

With e = 0, K (k) haso, 1, or2 zeros in the 1st, 2nd, or 4th quadrant, as shown in table &rutpg
on the signs o — w andIm ¢, and assuming that w, Re { > 0.
As K (k) has a singularity ik = 0, which is inside strigp, we consider the regularised version

a b
k—ic k2t e2

This K (k) has 3 zeros, which are for smalapproximated as shown in table 2. So in general the
zeros and singularities df are not real and there is a neighbourhood of the real axisenkias
analytic.

K(K)=1+ (17)
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case| 0 —w | Im( | ky=—a+b | ky=—a—b
1 + + k=Fk €l no solution
2 + — no solution | k =k, €l
3 — + no solution | no solution
4 — — | k=k€elV | k=kell

Table 1. Roots of non-regularised WH kernelK (k) in (16))

case| 0 —w | Im( | by~ —a+b+icgy | ko~ —a—btieshy | ks~ —iebth + 2300
1 + + |k~—-a+bel no solution no solution
2 + — | no solution k~—-a—0bell no solution
3 — + | no solution no solution S e
4 | — | - |kx—atbelV ke~ —a—bell S e

Table 2. Roots of the regularised WH kernelK (k) in (17)

Hence we arrive at the Wiener-Hopf equation

) e—koyo
F_(k) = poCG+ (k) K (k) + QIPoUgm (18)
which is to be solved in the standard way[10] by writing
KL (k)

where splitfunctionk’, is analytic inC* and K_ is analytic inC~. These splitfunctions are
constructed in the usual way [14] as follows.

Considerk € S inside a large rectangular contatirC S betweenk = —L — ine andk =
L + ine, wheren is small enough, as shown in figure 3. In genekahas no zeros o5 (if
any) withinC and we assume a definition &fg K (k) with branch cuts not crossing. As it
happens, with the present choice of the regularisedhis is achieved by taking the principal
value logarithm. Then by Cauchy’s integral representat@orem is

.1 log K'(§) 17 log K (& — ine) 17 log K (& +ine)
1 = — | N e = — =
og K (k) Llféomfc =k YT ) ek “ T ) ek ©
where it may be noted that the integrals converge at infimityes
log K
%ﬁf) =0(1/€) (£ = o0).

Considered as a function 6f the first integral can be analytically continued16, and the second
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Figure 3. Contour C

integral can be analytically continued@ . So we can identify

1 > log K (& —ine
1ogK+(k):%/ ?_fig_z)dg, keCt (21)
1 [ log K(& +ine) _
log K_ (k) = o— /_w crie g 46 kbeC (22)

If ¢ — 0, the representations &, and K_ become the same, in the sense that it becoed
ke CtandK_if ke C™.

Although the splitfunctions for > 0 are only available numerically, it appears (see Appendix
B) that fore = 0 they can be given analytically exactly, by equation| (50pedlby using the
somewhat unusual dilogarithm function. Furthermore, ligesive comparison with the numerical
versions for very small but non-zetpwe could verify that the analytical splitfunctions as detin
above are indeed the proper limit for— 0. This remarkable result will be important later for the
far field analysis of the physical solution represented bguari€r integral.

Altogether, we can conclude that.th

—koyo
FL(K)K_(k) — poCG+ (k) K1 (k) = 2iP0Uo2mK—(k‘)
_ —koyo
= 2ipoUZ e Fovo K- (k) = K- (ko) + 2ipU2 S K_(ko), (23)
k — ko k — ko

where we isolated pole, € C~ from K_. The parts that are analytic@" and inC~ respectively,
are via their equivalence ifi each other’s analytic continuations, and define an entiretion £

E(k)=F_(k)K_(k) — QipOUg e koo K_(k) = K_(ko)
k — kg
e—koyo (24)
= poC Gy (k) Ky (k) + 2ipoUs K_ (ko).

k — ko

E can be determined from the condition for— oo, related to the edge condition for, y) — 0.
Following Appendix D, we havé& = 0, hence we can write from (15) and (24)

_ o koyo K= (k) — K_(ko)
F_(k’)—2lp0U02€ (/{}—ko)K_Uf) )
2102 ehow K (k)
R () 2)
Ay — 208 K ()

¢ k—kolklK (k)
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A(k) obtained from[(25) can be substituted back intd (11). Thiegiwith the inverse Fourier
transform from[(9) added to the initial fieldl (7), the formalionw, v andp of the problem.

I 202 e kovo [ (k) ,
= Ui [ 1 k 0 —|kly —ikz dk
U = Ujn + o /_0081gn(Re ) C k= KL (h) e "We
1 /°° 2UF et K (k)
o Y0k — ko Ko(R)

e~y o=ikz 4 (26)

v = Un +
1 [> 2U2 e~how K (k) .

. L O — s k 0 —|kly —ikx dk.

p pln + 27T /;OO pO( Slgn<R’e )U) C— ]C _ kO ‘k‘K+<k> e e

We notice that the expressions ofand v are integrable at = 0, while the polek = k is
included ifx > 0. Indeed it corresponds to trailing vorticity [8] of the hasdft discontinuity. The
singularity atk = 0 is, unlike the one ak = kg, not a pole and has a different origin. Due to
this singularity, if not integrable, the Fourier transf@tmon of the pressure in (26) becomes too
singular to be interpreted normally and divergesfer co. When we consider the incompressible
problem as an inner problem of a larger compressible prokdesnm [15, 4, 16, 17], this divergent
behaviour disappears as it changes into an outward ragliatiaustic wave. The inverse Fourier
transform for pressurg is then calculated by splitting off the singular part anceipteting the
singular integral in generalised sense/ [18, 19, 8].

V. Hydrodynamic solution

The solution set;, v andp is the solution of incompressible inner problem of a largame
pressible acoustic problem. Although a strict Matched Agtotic Expansion analysis has not
been laid out here in detail, we will refer to it as the innduson.

In order to evaluate the solutions, in the form of Fourieegrals|(26), numerically or asymptot-
ically in the far field, we need to know the behaviour?6f (k) atk = 0. The following asymptotic
behaviour of K, (k — 0) can be confirmed from CJA and C.B

K (k)~ck 2% for o <w and K,(k)~ck™ for o>w, (27)

wherec; is a complex constant ard= Zi log | 24| is real positive.
X o—w

V.A. Solution of velocitiesu and v

We see by combining (27) and (26) that in either case, thecitedeu andv are integrable a@ = 0.
Shown in figuré b (top and middle) are the solutions (totalcidant + scattered) of velocities for a
typical representative case. Apparently, the high meaarsheensifies the velocity field especially
downstream the edge.

V.B. Solution of pressurep

As we noticed, the behaviour of the singularitysat 0 is different for the cases < w ando > w.
Hence, the far field solution in pressure is different forstheases. This splits our problem into 2
different cases in terms of radiated pressure. We will disc¢his in separate sections.
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V.B.1. Low shear

The low shear case corresponds with< w, i.e. koyo > 1. The behaviour of<, ~ k=271 in
the limit & — 0 weakens the non-integrable singularity~ to an integrable singularity‘%“‘;

of the integrand in (26). Hence the pressure solution carbtegreed by direct integration like the
velocities. For a typical case, this is shown in figure 5 (@wotteft). It can be predicted even at this
stage that a weaker singularityfat= 0 produces a weaker far field sound.

VB.2. High shear

The high shear case corresponds with> w, i.e. koyo < 1. The behaviour oK+ ~ k=1 in

the limit & — 0 does not weaken the singularity in this case and the intégnattion behaves
as~ |k|='*9 ask — 0 and hence diverges. The divergent behaviour at 0 in Fourier space
suggests a strong far fieldat= /22 4+ y?> — oo in the physical plane. The Fourier representation
of pressure is too singular to interpret and hence shoulddpdarised, using generalised functions,
by splitting off the singular part and the part which is intdgle. From[(26), we have

_ PoUs oy /0 Q40 w+o —ikz—|k|
"9 0Yo K_ k‘ _ i Y k
Plo.y) = ==e Fo) |\ = ko) MBS )~ —Rolkferk ™ ) © d
pOUg —koyo /OO Q-0 . w—ag —ikz—|kly
T ) | G R R R kel ) © ak

PoUS oo K- (ko) /0 WH0 ke |kly /OO W—0  ike—|k|
—— e MY . dk : v dk 28
" cm ¢ —c1ko oo ||k ‘ - o |k|k—i0 ‘ (8)

Imk

@ ~ @

k/’(] Rek

Figure 4. Integration contour

The split of the singularity renders the integralspok, y) to be O(1) at k = 0 and hence
integrable. In[(28), the first 2 integrals have a finite limika= 0 and therefore can be evaluated
along the integration contodrand?2 respectively, as shown in figuré 4. The last integrals in (28)
are those which carry the singularity and divergé at 0 which makes them difficult to interpret.
They can be evaluated as generalised functions [18, 19h MipendiX E, we have

0 00
pOUg e—kzoyg K_(k’()) [/ w+o e—ikx—\lﬂy dk _|_/ Ww—0 e—ikzx—|kz\y dk
0

(e ko ) TRIED el
2
_ 20U ko Mi—ifsf(ié) [(w+0)2™ + (w=0)z7"], (29)
(mey — ko

wherez = x +1iy. The results from (29) used with the first two integrals in)(@8ded to the initial
field pi, gives the final solution of the inner pressprgb0). Shown in figure!5 (bottom right) is the
pressure for a typical case. The pressure field is clearlynmbense for high than for low shear.
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Figure 5. The solution fieldsu, v and p for low shearo = 4 < w = 5, yo = 1.25 (left) and high shearc = 5 > w = 4, yo = 1 (right),

while ¢ = (1 +1i),Up = 5.

V.C. Farfield of inner solution p;,.., — inside shear layer

In order to have an estimate of the far field radiated pressugeneed the asymptotic evaluation
of the pressure integrél (26) in the lindit— 0 because smalt in Fourier space relates to large

r = /2% + y? ~ oo in the physical plane.

(a) Low shear,oc < w :

From (26) and((27), we have in the lintit— 0,

(T, Y)ocw ~ Pinner(o<w)

2 0 —ikz—|kly
—Fo oo |K[k3E

2 o)
_ pOUO e~kovo K—(k(J) |:(_1)(%+16)(w + 0—)/ ©
0

(7o

- (T — ko

10 of[24

00 g—ikz—|kly
k+ (w— o) /  dk
0 [k|k—3

ikz

, dk—i—(w—a)/
—id 0

e—ikz

; e dk] (30)
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wherez = = + iy . The integrals converge, and can be evaluated like

/°° ets T3 +i0)
0

=27 (31)

L3—id (_iz)%-i-id'
The net innerfield pressure is then given by

pOUg e—koyo K_(ko)

— ~ = (A4 |
pinner(o<w) =1 2 )F(§ + 15) C7T01 —ko

((w + O’)Z_%_M + (w — 0)2_%_i5> (32)
with z = rei?, The pressure decays@as2, which thus limits its effective acoustic source strength.

(b) High shear,c > w :

The singularity in this case is stronger than the one in tlegipus case, which enables us to
assess that the radiated presgijfg, .-, field must be stronger. The asymptotic behaviour of the
integral (26) atc — 0 is essentially the singularity taken out from the integna(28). Hence the
outer limitr — oo of the inner pressure fielsl (with z = r ¢%) is given by (29) as:

p0U02 e—kgyo K_ (k?o)

Crer Tk (@HoE ooz (39)

Z_Qinner(o>w) = i_lér(ia)
An important difference is that the modulus of the pressiel fvaries withr like |r—°| = 1,
i.e. remains constant rather than decays, and is therefore nmaciger than in the previous case.
Physically this may be interpreted as mean flow energy beingjrtuously drawn to the hydrody-
namic perturbation field and thus contributing to the adowstergy of the radiated field.

The above far field limit is taken inside the uniform shear flesich means that we have a
diverging mean flow velocity/ = oy — oo asy — oo which is not very physical. Although both
(32) and [(33)do satisfy the prevailing equations, we just want to make shia¢ mo unphysical
artefacts are created. So we curtail the shear at heightl define the mean flow being a constant
U, beyondy > h. This is explained in the next section.

V.D. Far field of inner solution — outside shear layer

In order to approximate the solution outside the shear laygeassume a piecewise smooth transi-
tion of the shear layer at= h where it becomes straight as shown in figuree,

U = oy, y < h,
U=Ux, y = h.

Let us assume thdt > 1, so that the source does not interfere with the transitigarlaThe
assumption is based on the physical understanding thabttieal field decays exponentially off
the liney = yo. Under this assumption, the incident figld is negligible near the interface, while
the inner pressure fielg,, is reflected back &g, without further interaction with the wall, and
transmitted ag,,, into the far field. Hence, we may match the outer acoustic feejgl, in order to
obtain a more realistic value of the far field sound. In ordeslttainp,,, we apply the continuity
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h

Figure 6. Inner pressure reflected and transmitted at interbcey = h

In the Fourier domain, we have fgr < h

of pressure and velocity at the boundary= h.
representation (26), which is for the Fourier transforms
e M, (k) = ~iDIk|e

—Ikl(y— h)

Bk, y) = poD(Qu0 — sign(Re k)o)
2[J2 e Foyo K_(/{JO)
D prg 0 e_|k‘h’ Qoo = — ]{}UOO
C = o IRTE- (k)

The reflected and transmitted variables are given as

Bret(k, ) = poR(Qoc + sign(Re k)a) 107 fia(k, ) = poT Qo €™M
ref(k,y) = iR|k| el =R, dualk, y) = —iT|k| e Flw=)
where reflection and transmission coefficieRtand7" are obtained from the conditions of conti-

nuity of pressure and velocity at= h
]5(]{5, h) + ﬁref(ka h) = ]Btra(k’a h)
0(k, h) + Uret(k, h) = Oya(k, h).

The two linear equations in variablésand R
poD Qe — sign(Re k)o) + poR(Qeo + sign(Re k)o) = poT s,

—iD|k| + iR|k| =—iT|k|,
can be solved to yield
Qs R—D e sign(Re k)o
Qoo + 3 sign(Rek)o

T=D
Qo + 3 sign(Rek)o’

The inner pressure transmitted outside the shear is then
8] 2 ~—koyo 2 —ikz—|kly
1 / 2p0U0 (S K_ (]{70) |: Qoo :| (S dk. (34)

ptra(xay) = % C /{3—/{30 ‘]{J‘K_i_(]{?)
= w — koh, the outer limit of the inner pressure can be obtained by sgenatotic

Qo + 3 sign(Rek)o

If we write Q)
evaluation of the integral (34) in the limit— 0,
2

PoUg e—koyo (/0 |: w2 :| e—ikx—|k\y /Oo |i W :| —ikx—|kly )
K_(k dk + dk ).
o) wm Sy o o) R ®

_ x’ _
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In the case o < w, using (27) and (31), we obtain

2 2 2
— _ ‘—(l+15)1—\ 1 ) pOUO —koyo K—(ko) W —1_i5 W ——1_is 35
DPra(o<w) =1 2 (3 +i )Cﬂcl ¢ —ko w—%az i +w+%az ’ - (39
In the other case,e. ¢ > w, using (27) and (29), we have
_ gy PoUg koyo 1= (Ko) w? —is w? ——i6
osw) =1 T(1d)—=—— e 0¥ : 36
Prao>w) =1 ( )(Wcl ¢ —ko w—%az +w+%az (36)

wherez = re. We conclude from(32)[(33), (35) and (36) that the inclnsid the transition
layer does not change the functional relationship of thedweadiated to farfield and differ by only
a constant. We will match the outerfield acoustic solutiobdth inner fields in the next section.

VI. Outer solution and asymptotic matching

Since the mean flow Mach number is small, the inner problemdsmpressible. We assume
the outer acoustic field, where the mean flow velocity profiarged from lineat/(y) = oy to a
constant, compressible but with negligible mean flow. Therhave the equation

Vp + k*p =0, k=2
Co
With a point source ir = y = 0, assuming a certain symmetrysirandé (wherex = r cosf and
y = rsin 6), we search for solutions of the form

p(r, ) = ~(r)3(0). (37)

If we substitute this in the equations we find

" 1 / 2 VQ " 2
VAo ARy =5y, BB =0,
T T
such that . .
6(9) — Bl ell/@ +BZ e—ll/B
and
v(r) = mHlEQ)(m“) + nH(Q)(/-cr) = mHlEQ)(m“) +ne v HIEQ)(I{T’) = MHIEQ)(KJT’) (38)

t 4

with the relationshipllfzy)(m) = e VT Hﬁz)(m) [20]. Clearly, M is superfluous but is kept for
convenience. The constans, B, andv are to be determined from the matching condition at
r — 0 where the Hankel function has the following asymptotic vétar [20]

H® (k) ~ %P(V)(%I{T)_V =ar’’ (39)

with Re(v) > 0 and constant = i7'T'(v)(1x)~". If v is purely imaginary, the ~-term does

not dominate any more for smailland we find[[20]

HP) (k1) = —(D(v) (3rr) ™ + €7 D(=v)(3rr)") = ar™ + ar”, (40)
with @ = ir~!e”" I'(—v)(3£)". From [37),[(38) and (39) or (40), we have for 0
p(r,0) ~ ar (B, e +Bye %), resp. (ar™ +ar’)(Bye"? +Bye ), (41)

to be matched with the outer limit of the inner solutions! (33§).
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VI.A. Farfield sound, low shear case

For low shearg < w, the asymptotic matching of (41) with (32) or (35) leads te tbllowing
expression of and M, given by
. 2 K_ 1.
v =j5+1id, M= i—%—lé_poijo e houo 7_550) (3r)2"°, (42)
1 0
while B, and B, represent the different matching with the inner presgijfg,, ., inside, or
Pa(o<w) OUtside the shear layer.

Bi=w—-0c and By=w-+o matched With Dinner (o<
w? w?
B, = — and B, = - matched With pia(o<w) (43)
W+ 50 W — 50

This effect of the reflection at the transition layer is foe ttype of sound field of rather little
concern. Eventually, the farfield sound is given by

p(r,0) =i o e

(%H)(%—H&) %
1 (sr) (w+ 0) T 1 — 0) 5490 (4)
when matched with the inner press@ig,, ., inside the shear layer, or

2
p(r,0) = i—%—MM e—koyo M(%/{)(%“‘;)x

(&1 —]{30 2 2
H (sr) W i Y (o) (45)
v w— 30 w+ 30

when matched with the inner pressiig ., transmitted outside the layer. Shown in figure 7 is
the farfield sound obtained by above two different matchifid difference is very small.

VI.B. Farfield sound, high shear case

The successful matching of the low shear case case canngtjdse continued for the high shear
cases > w. As announced in (41), the inner field that behaves 4iké has to match with an
acoustic field that behaves like-—% 4+ ar'®, which is apparently not possible. At the time of
writing we have no explanation, unfortunately, and we sti@oinfine our presentation of the high
shear case to the incompressible field only. However, thesticoresults are relevant and too
interesting to be ignored entirely. So what we will do is to@pidanincomplete matching and give,
for the record, the results with thé€-term ignored.

Analogous to the previous case we find in that case

Cer — ko
with B; and B, remaining the same as in the previous case (43). Hence, poession of the
farfield sound is given by

i—1—15P0U02 o—koyo K_(ko)

Cor - GRHP () ((w+ o) e +w —a)e™)  (47)

2

2 .
M= i—1—15P0U0 o—Foyo K—(ko) (1/1)15, (46)

v =10,

p(T, 9) =

14 of[2Z
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Figure 7. Farfield sound obtained from(44) and (45) respectively. c =4 < w =5,{ = %(1 +1),Uo =5,ko = 1,y0 = 1.25.

5;

5
(ifi) (iv)
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3
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2
1
0 - _|
4 5 %5 4 3 =2 -1 0 1 2
X

3 4 5
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3
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2
1
95 -4 -3 -2 -1 0 1 2
X

Figure 8. Farfield sound obtained from {ncomplete matching of) (47) and (48) respectively. c =5 > w =4,{ = %(1 +1),Uop = 5,ko =
0.8,y0 = 1.

3

when matched with the inner pressig,, .-, inside the shear layer. Or we have

s poU2 K_ (ko) : w? w?
0) = .—1-is PoYq o—kovo 1,.)(16) fr(2) % 4 000 48
p(r ) 1 gcl _k(] (2/{:) v (KT) w — %0_ W + %0_ ( )

when matched with the inner pressyikg ., transmitted outside the layer. Shown in figure 8
(with the above caveat) is the farfield sound obtained by alwe different matching.

VIl. Conclusions

A systematic and analytically exact solution is obtainedimans of the Wiener-Hopf tech-
nique of the problem of vorticity, convected by a linearlyeahed mean flow, is scattered by the
hard-soft transition of the wall. It is illustrated by nuntad examples. A particular feature is
the fact that the Wiener-Hopf kernel can be split exactlyisT@nables us to find in rather detail
the functional relationship of the hydrodynamic far fieldldrence the associated acoustic source
strength.

The problem appears to be distinguished into two differ&gses, based upon the relative size
of problem parameters (the mean flow shedr’) andw (the perturbation frequency), and not
(for example) of the impedance of the wall. If the mean sheaelatively weakj.e. if 0 < w,
the hydrodynamic far field varies as the inverse square rbtiieodistance from the hard-soft
singularity. If the mean shear is relatively stromg, if o > w, the hydrodynamic far field tends
(in modulus) to a constant.

A way to interpret this non-decaying far field may be the obsgon that in vortical flow the
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energy of perturbations is not conserved! [21, 22], and thamilew may provide the required
energy. The present results seems to indicate that forgséough shear the mean flow is able to
provide energy to the perturbations, enough to maintairsttength of the field even away from
the hard-soft wall discontinuity.

A problem to be resolved is the incomplete matching of th@mmgressible inner field with
the acoustic outer field for the high shear case, in spiteeofabt that the low shear case gives no
problems and behaves as expected.
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Appendix

A. Regularising Wiener-Hopf kernel K

The singularity at = 0 of the Wiener-hopf kernel (16)

a b
is regularised by assuming a smatl- 0 with (17)
a b
K(k)=1 —
(k) +/{:—i€ VE2 4+ &2

with in either case the principal value square root assumbdre is a certain amount of arbitrari-
ness in the way we push the poleat 0 down (tok + ic) or up (tok — i¢), since the singularity
encountered itog K (k) is a logarithmic one and hence integrablelin (21). Whateechoose,
pushing the pole up or downwards, the logarithm has to beettBach thalog(1) = 0 and that
none of the branch cuts, emanating from the zeros and pol&s ofoss the real axis.

case| 0 | w ¢ oc—w Re(()
1 |15 2| 1+i + +
2 | 15] 2 1—-1 + -
3 | 410|1+10i — +
4 10| 1 —10i — —

Table 3. 4 cases considered

This is not easy to achieve in general. However, it appeatdftive choose for the pole being
pushed upwarddy (k) for £ € R always,i.e. for all 4 cases of table 2, avoids the negative real axis
(see figure9), so the standard principal value logarithrafigcgent to take, in which case we have
an analytically exact expressidn (50) for the= 0 limit. This is fully confirmed by numerically
obtainedK . -integrals for smalk approximating correctly the analytical expression.
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Figure 9. Trace of K (k), k € R, for all cases of tablé 3 when the pole a = 0 is regularized with k = k — ic. |k| = VA2 +£2,¢ = 1073

It is worth noting that the same happens in case 3 with the padbeddown (i.e. with k£ + ie
taken). Also here the trace &f avoids the negative real axis, the principal value log cataken,
and the result approximates the exact expressian (50).ndesion: whenever the principal value
log can be taken, there is no difference between the polglpeished up or downwards.

Consider representative examples of the 4 cases as givahl&3 and graphically displayed
in figure 9, where the trace df (k) is shown fork € R.

B. Analytical evaluation of the split integral

ForIm(k) > 0, the principal value logarithm, and— 0 we have

27rilogK+(k):I:/_oo%dx, f(x):log<1+%—%), a:%,b:%.

We distinguish
/°° log(1+a/x—b/|x|)dx:/"° log(1+ (a —b)/x) dx—/oo log(1 — (a+b)/x) Az
—00 ﬂj_k 0 .CC—]{; 0 «r‘i‘k ’

here referred to a5 and/; respectively. Consider the first integral

> Jog(1
9 :/ og(l+aq/z)
0 x—k
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wherek, ¢ € C. We transforme — 1/x and themz = v, to have

[ log(1+gqz) , [T log(1+y) Y 1 1
= [ e [ = [ et (=) @

Im

EN S

Figure 10. Closure of the integral contour

We close the contour (figufe [10) frogn= ¢ - oo to the real axis ay = co. Denotea = ¢/k
andg =1+ q/k. By

C(k,q)=-1 if 0 <arg(q/k) < argq,
Clk,q)= 1 |if argq <arg(q/k) <0,
C(k,q) = 0 otherwise

we indicate the captured polein= «. In particular fork is real in the limit fromC™*:

ke (0,00) & Img>0 = C=-1,
ke€(—00,0) V Img<0 = C= 0.

We thus find - ) .
L = / log(1+y) (— + —) dy — 2miC(k, q) log 5.
0 y a—y
With the use of the following definition of the dilogarithmdR(with a branch cut along the nega-
tive real axis), related to the polylogarithm of order 2,

“ logt
dilog(z) = / log ; dt = Liy(1 — 2),
L 1-

we write our integral as a limit

N N N
1 1 log(1 log(1
I = lim [ log(1+y) (- + —) dy = lim 70g( ) dy + lim /70g( +y) dy.
N—o00 Y N

o —Y N—oo Yy —00 o —Yy
0
(49)
The first integral in[(49) is therefore

N log(1 A
/ Mdy: _/ ki dz = —dilog(N + 1).
0 y 1 1—=z
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The second integral is

Nl 1 N+1 1 (N+1)p~1 1 1
/ og( +y)dy:/ 0g 2 dZ:/ ogt1+ ;gﬂdt:
0 1 -1 -

dilog((N +1)p7") — dilog(8™") — log Blog((N + 1)~ — 1) + log Blog(8~" — 1).

Altogether, and using the asymptotic behavidilog(z) ~ —3(log z)? + ... for z — oo, we have

I = /00 log(1 +a/) dz = lim [— dilog(N + 1) + dilog((N + 1)) — dilog(87)
0

xr — ]{Z N—o0
—log Blog((N + 1)~ — 1) + log Blog(B~ — 1)] —2miC(k,q)logp =
— dilog(87") + %logz(ﬁ) +log Blog(B~' — 1) — 27iC(k, ) log B

The second integral, can be performed in the same fashion to obtain the overatiesgmpn of
log K, fork € C* ande — 0 as

omilog Ky (k) =1 = — dilog<m) + dﬂog(ﬁ)
(S5 - (S

+ log(w> 10%(%) N IOg(W> log(%>

—27iCY log<w> + 2miCy log(w), (50)

whereC, = C(k,a —b) andCy = C(—k, —a — b). If required,log K _ (k) with & € C™ is similar.

C. Asymptotic analysis of the split integral I for £ near 0

Im

()0

Figure 11. Path ofk + 0 and k | 0, with Im k = +0.

The behaviour fork — 0 of the integral/ (k) and henceX’. (k) is distinct for high shear
(¢ > w) or low shear § < w). In particular, we will show thak, ~ k=% and K, ~ k=2~19,
respectively. Hence we break this analysis into 2 partso, A& will assume the natural condition
Re(¢) > 0. The limitk — 0 is taken from below and from above, along but just above thé re
axis, as shown in figure 11. In all cases we use the fact/thht [20

dilog(z) = 7% + O(zlogz) for =z —0,

making in general the dilog-parts unimportant to leadindpos.
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C.A. High shear case

This analysis fork — 0 andIlm k = 40 relates to the high shear (> w) cases 1 and 2 in
table2. There is no contribution of the pajék, whether we approach from left or right, hence
Cy =0y =0.
Case (a):k 10

With the principal value logarithm and{ 0, we have

k+a+b : —b—a :
log<T> >~ log(a, + b) — log(k‘) + 27T1, 10g<m> ~ —T1.
k+a—>b : b— .
log<+) ~ log(a — b) — log(k) + 2i, IOg(ﬁmib) ~ —7i.

From (50) we have then
I ~ log(k log’ ’ + Llog?*(a — b) — $1og®(a + b) + 7i log(a—;z)
a

Case (b):k ] 0
Fork | 0, we have

log(w> ~ log(a + b) — log(k), log(%> ~ i,
log(%) ~ log(a — b) — log(k), log(%) ~ Ti.
From[50, we have
I ~log(k log‘ ‘+1log (a—1b) — ilog (a+b)+7r110g< 12)

We see that the limits from left and right come down to the saxyession. As a result, the
asymptotic behaviour ok, becomes

- 1
K, ~ck™  §=—1log

‘ o+w 7 (51)
2w o—w
where/ is real positive and, is a complex constant given by

¢ = 627”[ log?(a— b)—%log2(a+b)+7ri log(Z—:LZ)] (52)

For illustration, figure 12 shows a comparison of a numegicahalytically and asymptotically
obtained!.

_8 — 6 |
e analtyttlc
16 ) asympfotic
\\ & 4 nL)J/mgncaI ........... 8
= -16 \ / _
Z 20 S 5
24 anal ttIC 0
asympfotic
28 ngmgncal ........... 1 )
-0.1 -0.05 0 0.05 0.1 -0.1 -0.05 0 0.05 0.1
’ k

Figure 12. Comparison of thel calculated from analytical, asymptotic and numerical mettods foroc =5 > w =4 and({ = %(1 +1i).
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C.B. Low shear case

The asymptotic analysis of (50) féar— 0 andIm(k) = +0 considers the low shear (< w) cases
3 and 4 of table2. Here, we have a contribution of¢jie-pole when we approach from the right.

Case (a):k 10
With the principal value logarithm and1 0, the following hold:

log(%) ~ log(a + b) — log(k) + 27i, log(%) ~ —i,
log(%) ~ log(a — b) — log(k), log(%) ~ i,

From (50), we have witld, = C5 =0

a+b

a —

I ~log(k) {log

Case (b):k 10

—b
- m} + 3 log*(a — b) — 3log*(a+b) + i log<a )

We have
k+a+b —b—ua

log(———2) ~1 _ log(—2 "%\ ~ ri

og( . ) og(a + b) — log(k), Og(k+a+b) i,
k+a—> b—a .
log(T) ~ log(a — b) — log(k), log(m> ~ —i.

Because of the/k-pole contribution we havé; = —1 andC, = 0. From [50), we have
a + b . 1 2 9 . a—>b
I ~log(k) [log PR 7T1] + 1 (log®(a — b) —log®(a + b)) + i log(m).

We see that the limiting behaviours from the left and fromrigkt are the same. The asymptotic
expression fof(, is then

Ko~ 30, 5= —1og}“+”} (53)
2T o—w
where (the same as beforejs real positive and; is a complex constant given by
o = o7 [%(1og2(a_b)—10g2(a+b))+m log(g—j;)] (54)

For illustration, figure 13 shows a comparison between nigaky, analytically and asymptoti-
cally obtained!.

S FE—— 40 analytic
-10 I 35 asymptotic
N 30 namerical .- 1
__-15 ‘ —
~ ~
2 ;g /7 E 20 —
. analytic 15 — N
-30 asympiotic 1 10 B —
235 | numerical -« 5 [ R
-0.1 -0.05 0 0.05 0.1 -0.1 -0.05 0 0.05 0.1
k k

Figure 13. Comparison ofI calculated numerically, analytically, and asymptoticaly for c =4 < w =5and{ = %(1 +1).
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C.C. Asymptotic analysis fork large

The analysis foic — oo is useful to derive the edge condition in the next sectionaiAgwe
considedm(k) = +0. Noting that for> — 0 we havedilog(1 — 2) ~ z + O(z?) andlog(1 + z) =
z + O(z?), we may obtain fok — oo

2b a—>b

I:EloglﬁjL ’

a+b
k

(log(b — a) — 2miCy) — (log(—=b — a) — 2miCs).

Overall, the dominating term I% log k.

D. Evaluation of entire function £

E can be determined from the condition at infinity. In order btain £ (k) for £ — oo, we
need the asymptotic behaviour &t , &k — oco. From C.C, we have

lim log K, (k) = lim b logk =0 (55)

k—o0 k—oo0 271
SOK (k) — 1.
The asymptotic behaviour @F (k) in the limit & — oo is found from the so-called edge
condition forr — 0 wherer is the distance from the edge. Consider a pressure distnbutat
a small distance from the discontinuity at = 0, such thap is dominated by some power of
sayp = O(r®). From the momentum equation it follows that the (radialpedl, sayw, should
bew = O(r*~'). The outward energy flu$e(r) across a small circular arc, centred at the edge at

-

|Z A

Figure 14. Energy flux across a small semi-circle of radiug around the singularity.

radiusr (see figure 14) is then given by
O(r) ~ / pwr df ~ ror® Tl ~ 2 (56)
0
In the absence of a physical source-at 0, the energy flux should vanish fer| 0. Hence we

must havex > 0.
The functionG.. (k) from (13) is therefore

G (k — 00) ~ / 22 e dp = kT () e2™ (57)
0

From (24),(55) and (57), we have
E(k) = polGL(K)K (k) + O(1/k) ~ k-1 =0 (k— o). (58)

Thus the function®' (k) vanishes ak — oo and since it is an entire function, it should vanish
everywherej.e. E(k) = 0.
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E. Regularisation of the diverging integral

We want to assign a meaning to

wherez = z + iy with y > 0 and/ is real and nonzero. The integral convergeskor oo
but not fork = 0. Following Lighthill-Jones([18, 19], we define the functiéh(k)k—'*% as the

generalised derivative
H(k) s d (H(k))

k116 dk \idk—19

and the integral

_ *d H<k) ikz _ > ZH(k) ikz -
w(xvy) - /OO@ (i(;k’_i(s) € dk = _/Oo 5E-i0 (S dk =

_ 26‘1/ K e dk = =107 'T(1 +10)(=i2) ™ = [(i6)(~iz) ™.
0

This result is unique and independent of scaling.
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