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Hard wall – soft wall – vorticity
scattering in shear flow

Sjoerd W. Rienstra∗ and Deepesh Kumar Singh†

Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands

An analytically exact solution, for the problem of low Mach number incident vorticity
scattering at a hard-soft wall transition, is obtained in the form of Fourier integrals by
using the Wiener-Hopf method. Harmonic vortical perturbations of inviscid linear shear
flow are scattered at the wall transition. This results in a far field which is qualitatively
different for low shear and high shear cases. In particular,for high shear the pressure
(apparently driven by the mean flow) does not decay and its Fourier representation in-
volves a diverging integral which is to be interpreted in generalised sense.

Then the incompressible hydrodynamic (Wiener-Hopf) “inner” solution is matched
asymptotically to an acoustic outer field in order to determine the sound associated to the
scattering. The qualitative difference between low and high shear is also apparent here.
The low shear case matches successfully. In the high shear case only a partial matching
was possible.

I. Introduction

The effect of boundaries, in particular soft or flexible boundaries, on the aerodynamic noise
generated by turbulent flows in general and vortical perturbations in particular have been studied
for decades. (See for example [1,2,3,4,5,6], which is just aminute fraction of the literature.) If the
Mach number of the flow is small, the spectral component of theboundary layer pressure pertur-
bations,i.e. the Fourier transform of pressure in the plane of boundary layer, have subsonic phase
velocities which constitute a strong local field but decays exponentially with distance from the
flow. If there is a discontinuity in the boundary, the flow may use it as a “wave number converter”
to scatter far field noise [7]. So the main sound production concentrates at discontinuities. This was
confirmed by Crighton [2] who studied in detail the radiationfrom the flow over 2 semi-infinite
planes that differ in their inertia and elastic properties.There is, however, a need for canonical
model problems that allows analytically exact solutions ofvorticity in shear flow scattering at
hard-soft transitions of a liner wall which is demonstratedin the current work.

In the current paper, the scattering of 2D vorticity perturbations in an inviscid low Mach number
shear flow (with vanishing velocity at the wall) passing overa hard to soft transition of this wall
has been examined.

∗Associate Professor, Dept. Math. & Comp. Sc., Eindhoven Univ. of Techn., Netherlands, Senior Member AIAA.
†Doctoral candidate, Dept. Mathematics & Computer Science,Eindhoven University of Technology, Netherlands.
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The incident field is assumed to be produced by a mass source far upstream, although a non-
conservative force field would give similar results. Following [8], a 2D vorticityχ with mass
sourceQ, satisfying

ρ
( ∂

∂t
+ v ·∇

)(χ

ρ

)

= −χ
ρ
Q. (1)

is considered. If the source is small, located in a bounded region G, and induces harmonic isen-
tropic perturbations to a parallel sheared flowU with otherwise constant densityρ0 and sound
speedc0 given by

v = U(y)ex + v̂ eiωt, χ = −U ′(y) + χ̂ eiωt, ρ = ρ0 + c−2
0 p̂ eiωt, Q = q̂ eiωt, (2)

then we have after linearisation and writingU(y0) = U0, U ′(y0) = σ0,

ρ0

(

iω + U(y)
∂

∂x

)(

χ̂+
U ′(y)

ρ0c20
p̂
)

= U ′(y)q̂ =

∫∫

G

[

σ0q̂(x0, y0)δ(x− x0)δ(y − y0)
]

dx0dy0. (3)

This has, under causal free field conditions (allowing only perturbations generated by the source)
andU0 > 0, the solution [8]

χ̂+
U ′(y)

ρ0c
2
0

p̂ =

∫∫

G

[

q̂(x0, y0)σ0
ρ0U0

H(x− x0) e
−ik0(x−x0) δ(y − y0)

]

dx0dy0, k0 =
ω

U0

. (4)

Downstream the source we have justH(x− x0) = 1. Utilising linearity we will consider a single
(x0, y0)-component with unit amplitude and phase factoreik0x0 = 1, in the incompressible limit,
leading to the vortex sheet

χ̂ =
σ0
ρ0U0

e−ik0x δ(y − y0). (5)

With a simple shear flow given byU(y) = σy and uniform boundary conditions along the wall
y = 0, the corresponding velocity and pressure fields can be determined, far enough downstream
the source, relatively easily. This field will act as the incident field for our scattering problem.

y0

x = 0

U(y) = σy

Zhard

incident vorticity perturbations

Figure 1. Sketch of the problem
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II. Model

We summarise the above introduction as follows. Consider the two-dimensional incompress-
ible inviscid problem of perturbations of a linearly sheared mean flow with time dependent (eiωt)
vortex sheet alongy = y0 in y > 0 and a wall aty = 0 which is hard forx < 0 and soft (impedance)
for x > 0 with U(y) = σy ; see figure 1. In this configuration we will have no contribution of a
critical layerhc or an instability like in [9].

As described above, we have a mass source placed atx = x0 → −∞, y = y0 which produce
the downstream travelling vorticity that decays exponentially away from the liney = y0 in the
order∼ e−k0|y−y0|−ik0x. When the convected vorticity field hits the hard-to-soft wall transition
pointx = 0, it is scattered into a local pressure field that will radiateas sound into the far field.

The flow in the domain shown in figure 1 is governed by the linearised Euler equations with
mixed boundary conditions (hard forx < 0 and of impedance type forx > 0), which makes the
Wiener-Hopf technique [10, 4] a natural choice for obtaining the solution. Once we obtained this
(in the context of the acoustic field) inner solution, we can determine the source strength at the
singularityx = 0. In order to assess the produced sound, the incompressible inner solution will be
matched with a compressible (acoustic) outer solution.

III. Mathematical formulation

The governing equation of mass and momentum conservation written in frequency domain are

ρ0

(

∂u

∂x
+
∂v

∂y

)

= 0,

ρ0

(

iω + U
∂

∂x

)

u+ ρ0
dU

dy
v +

∂p

∂x
= 0,

ρ0

(

iω + U
∂

∂x

)

v +
∂p

∂y
= 0.

(6)

Boundary conditions aty = 0 are
v = 0 if x < 0,

an edge condition of vanishing energy flux from(0, 0), and a wall of impedanceZ = ρ0ζ with

p = −Zv or iωp = ζpy if x > 0.

The far field boundary conditions will be of vanishing velocity, but maybe not of vanishing pres-
sure. The incident field (of the undulating vortex sheet aty = y0 = U0/σ) is given by

uin = U0 e
−ik0x

[

− sign(y − y0) e−k0|y−y0| + e−k0(y+y0)
]

,

vin = iU0 e
−ik0x

[

e−k0|y−y0| − e−k0(y+y0)
]

,

pin =
σ

ω
ρ0U

2
0 e

−ik0x
[

(1 + k0|y − y0|) e−k0|y−y0| − (1 + k0(y − y0)) e
−k0(y+y0)

]

,

(7)

with k0 = ω/U0, and sok0y0 = ω/σ. Figure 2 shows pressure and velocities of a typical case.
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Figure 2. The initial field uin , vin and pin respectively.ω = 5, σ = 4, U0 = 5, k0 = 1, y0 = 1.25.

The triple(uin, vin, pin) satisfies the differential equation, continuity ofpin andvin acrossy = y0,
and the hard-wall boundary conditionvin = 0 at y = 0. The scattered perturbations are due to the
non-vanishingpin + Zvin alongy = 0, x > 0.

We split up the field in the incident part and the scattered part as follows

u = uin + u, v = vin + v, p = pin + p. (8)

After Fourier transformation inx (formally assuming the convergence of the integrals)

p(x, y) =
1

2π

∫ ∞

−∞
p̃(y, k) e−ikx dk, (9)

(the same foru andv) we obtain the following set of equations

ρ0(−ikũ + ṽ′) = 0, iρ0Ωũ+ ρ0σṽ − ikp̃ = 0, iρ0Ωṽ + p̃′ = 0, (10)

whereΩ = ω − kU . The system of equations has two independent solutions, namely ∼ e±ky

[11,12]. The one, bounded fory → ∞, is then

ũ(y) = kA(k) e−|k|y,

ṽ(y) = −i|k|A(k) e−|k|y,

p̃(y) = ρ0(Ω− sign(Re k)σ)A(k) e−|k|y,

(11)

with A(k) is to be determined, and

|k| = sign(Re k)k =
√
k2, (12)

where
√

denotes the principal value square root, and|k| has thus branch cuts along the imaginary
axis given by(−i∞, 0) and(0, i∞).
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IV. Wiener-Hopf procedure

To facilitate the following Wiener-Hopf procedure, we introduce a small positive parameterε
and have an upper and a lower half plane, and a strip of overlap

C
+ = {k ∈ C | Im k > −ε}, C

− = {k ∈ C | Im k < ε}, S = {k ∈ C | −ε < Im k < ε},

The physical problem will be the limitε→ 0 of a regularised problem withk0 replaced byk0 − iε
(an incident field∼ e−ik0x slightly decaying withx) and|k| replaced by the smoother function

|k| =
√
k2 + ε2

with branch cuts(−i∞,−iε) ∪ (iε, i∞) avoiding stripS (cf. [13]).
Introduce the auxiliary functions

F−(k) =

∫ 0

−∞

[

p(x, 0) + Zv(x, 0)
]

eikx dx, G+(k) =

∫ ∞

0

v(x, 0) eikx dx (13)

which are analytic inIm(k) < 0 andIm(k) > 0 respectively, and assumed to be analytic inC
+

andC−. Then we have forG+

G+(k) =

∫ ∞

0

v(x, 0) eikx dx =

∫ ∞

−∞
v(x, 0) eikx dx = −i|k|A(k). (14)

Furthermore, we have forF−

F−(k) =

0
∫

−∞

[

p(x, 0)+Zv(x, 0)
]

eikx dx =

∞
∫

−∞

[

p(x, 0)+Zv(x, 0)
]

eikx dx+

∞
∫

0

pin(x, 0) e
ikx dx

= −ρ0A(k) sign(Re k)
(

ikζ + σ − sign(Re k)ω
)

+ 2iρ0U
2
0

e−k0y0

k − k0

= −iρ0ζA(k)|k|K(k) + 2iρ0U
2
0

e−k0y0

k − k0
(15)

with Wiener-Hopf kernel

K(k) = 1 +
a

k
− b

|k| , a =
σ

iζ
, b =

ω

iζ
. (16)

With ε = 0,K(k) has0, 1, or2 zeros in the 1st, 2nd, or 4th quadrant, as shown in table 1, depending
on the signs ofσ − ω andIm ζ , and assuming thatσ, ω,Re ζ > 0.

AsK(k) has a singularity ink = 0, which is inside stripS, we consider the regularised version

K(K) = 1 +
a

k − iε
− b√

k2 + ε2
. (17)

ThisK(k) has 3 zeros, which are for smallε approximated as shown in table 2. So in general the
zeros and singularities ofK are not real and there is a neighbourhood of the real axis whereK is
analytic.
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case σ − ω Im ζ k1 = −a + b k2 = −a− b

1 + + k = k1 ∈ I no solution

2 + − no solution k = k2 ∈ II

3 − + no solution no solution

4 − − k = k1 ∈ IV k = k2 ∈ II

Table 1. Roots of non-regularised WH kernelK(k) in (16)

case σ − ω Im ζ k1 ' −a + b+ iε a
a−b

k2 ' −a− b+ iε a
a+b

k3 ' −iεa
2+b2

a2−b2
+ ε2 8a3b2

(a2−b2)3

1 + + k ' −a+ b ∈ I no solution no solution

2 + − no solution k ' −a− b ∈ II no solution

3 − + no solution no solution k ' −iεa
2+b2

a2−b2

4 − − k ' −a+ b ∈ IV k ' −a− b ∈ II k ' −iεa
2+b2

a2−b2

Table 2. Roots of the regularised WH kernelK(k) in (17)

Hence we arrive at the Wiener-Hopf equation

F−(k) = ρ0ζG+(k)K(k) + 2iρ0U
2
0

e−k0y0

k − k0
(18)

which is to be solved in the standard way [10] by writing

K(k) =
K+(k)

K−(k)
(19)

where splitfunctionK+ is analytic inC+ andK− is analytic inC−. These splitfunctions are
constructed in the usual way [14] as follows.

Considerk ∈ S inside a large rectangular contourC ⊂ S betweenk = −L − iηε andk =
L + iηε, whereη is small enough, as shown in figure 3. In generalK has no zerosk1,2,3 (if
any) within C and we assume a definition oflogK(k) with branch cuts not crossingS. As it
happens, with the present choice of the regularisedK, this is achieved by taking the principal
value logarithm. Then by Cauchy’s integral representationtheorem is

logK(k) = lim
L→∞

1

2πi

∫

C

logK(ξ)

ξ − k
dξ =

1

2πi

∞
∫

−∞

logK(ξ − iηε)

ξ − iηε− k
dξ − 1

2πi

∞
∫

−∞

logK(ξ + iηε)

ξ + iηε− k
dξ

(20)
where it may be noted that the integrals converge at infinity since

logK(ξ)

ξ − k
= O(1/ξ2) (ξ → ∞).

Considered as a function ofk, the first integral can be analytically continued toC
+, and the second
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-L L

2 ηε
Re(k)

Im(k)

Figure 3. Contour C

integral can be analytically continued toC−. So we can identify

logK+(k) =
1

2πi

∫ ∞

−∞

logK(ξ − iηε)

ξ − iηε− k
dξ, k ∈ C

+, (21)

logK−(k) =
1

2πi

∫ ∞

−∞

logK(ξ + iηε)

ξ + iηε− k
dξ, k ∈ C

−. (22)

If ε → 0, the representations ofK+ andK− become the same, in the sense that it becomesK+ if
k ∈ C

+ andK− if k ∈ C
−.

Although the splitfunctions forε > 0 are only available numerically, it appears (see Appendix
B) that for ε = 0 they can be given analytically exactly, by equation (50), albeit by using the
somewhat unusual dilogarithm function. Furthermore, by extensive comparison with the numerical
versions for very small but non-zeroε, we could verify that the analytical splitfunctions as defined
above are indeed the proper limit forε → 0. This remarkable result will be important later for the
far field analysis of the physical solution represented by a Fourier integral.

Altogether, we can conclude that inS

F−(k)K−(k)− ρ0ζG+(k)K+(k) = 2iρ0U
2
0

e−k0y0

k − k0
K−(k)

= 2iρ0U
2
0 e

−k0y0
K−(k)−K−(k0)

k − k0
+ 2iρ0U

2
0

e−k0y0

k − k0
K−(k0), (23)

where we isolated polek0 ∈ C
− fromK−. The parts that are analytic inC+ and inC− respectively,

are via their equivalence inS each other’s analytic continuations, and define an entire functionE

E(k) = F−(k)K−(k)− 2iρ0U
2
0 e

−k0y0
K−(k)−K−(k0)

k − k0

= ρ0ζG+(k)K+(k) + 2iρ0U
2
0

e−k0y0

k − k0
K−(k0).

(24)

E can be determined from the condition fork → ∞, related to the edge condition for(x, y) → 0.
Following Appendix D, we haveE ≡ 0, hence we can write from (15) and (24)

F−(k) = 2iρ0U
2
0 e

−k0y0
K−(k)−K−(k0)

(k − k0)K−(k)
,

G+(k) =
−2iU2

0

ζ

e−k0y0

k − k0

K−(k0)

K+(k)
,

A(k) =
2U2

0

ζ

e−k0y0

k − k0

K−(k0)

|k|K+(k)
.

. (25)
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A(k) obtained from (25) can be substituted back into (11). This gives, with the inverse Fourier
transform from (9) added to the initial field (7), the formal solutionu, v andp of the problem.

u = uin +
1

2π

∫ ∞

−∞
sign(Re k)

2U2
0

ζ

e−k0y0

k − k0

K−(k0)

K+(k)
e−|k|y e−ikx dk

v = vin +
1

2π

∫ ∞

−∞
−i

2U2
0

ζ

e−k0y0

k − k0

K−(k0)

K+(k)
e−|k|y e−ikx dk

p = pin +
1

2π

∫ ∞

−∞
ρ0(Ω− sign(Re k)σ)

2U2
0

ζ

e−k0y0

k − k0

K−(k0)

|k|K+(k)
e−|k|y e−ikx dk.

(26)

We notice that the expressions ofu and v are integrable atk = 0, while the polek = k0 is
included ifx > 0. Indeed it corresponds to trailing vorticity [8] of the hard-soft discontinuity. The
singularity atk = 0 is, unlike the one atk = k0, not a pole and has a different origin. Due to
this singularity, if not integrable, the Fourier transformation of the pressure in (26) becomes too
singular to be interpreted normally and diverges forr → ∞. When we consider the incompressible
problem as an inner problem of a larger compressible problem, as in [15, 4, 16, 17], this divergent
behaviour disappears as it changes into an outward radiating acoustic wave. The inverse Fourier
transform for pressurep is then calculated by splitting off the singular part and interpreting the
singular integral in generalised sense [18,19,8].

V. Hydrodynamic solution

The solution setu, v andp is the solution of incompressible inner problem of a larger com-
pressible acoustic problem. Although a strict Matched Asymptotic Expansion analysis has not
been laid out here in detail, we will refer to it as the inner solution.

In order to evaluate the solutions, in the form of Fourier integrals (26), numerically or asymptot-
ically in the far field, we need to know the behaviour ofK+(k) atk = 0. The following asymptotic
behaviour ofK+(k → 0) can be confirmed from C.A and C.B

K+(k) ' c1k
− 1

2
−iδ for σ < ω and K+(k) ' c1k

−iδ for σ > ω, (27)

wherec1 is a complex constant andδ = 1
2π

log |σ+ω
σ−ω

| is real positive.

V.A. Solution of velocitiesu and v

We see by combining (27) and (26) that in either case, the velocitiesu andv are integrable atk = 0.
Shown in figure 5 (top and middle) are the solutions (total = incident + scattered) of velocities for a
typical representative case. Apparently, the high mean shear intensifies the velocity field especially
downstream the edge.

V.B. Solution of pressurep

As we noticed, the behaviour of the singularity atk = 0 is different for the casesσ < ω andσ > ω.
Hence, the far field solution in pressure is different for these cases. This splits our problem into 2
different cases in terms of radiated pressure. We will discuss this in separate sections.
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V.B.1. Low shear

The low shear case corresponds withσ < ω, i.e. k0y0 > 1. The behaviour ofK+ ∼ k−
1

2
−iδ in

the limit k → 0 weakens the non-integrable singularity|k|−1 to an integrable singularityk−
1

2
+iδ

of the integrand in (26). Hence the pressure solution can be obtained by direct integration like the
velocities. For a typical case, this is shown in figure 5 (bottom left). It can be predicted even at this
stage that a weaker singularity atk = 0 produces a weaker far field sound.

V.B.2. High shear

The high shear case corresponds withσ > ω, i.e. k0y0 < 1. The behaviour ofK+ ∼ k−iδ in
the limit k → 0 does not weaken the singularity in this case and the integralfunction behaves
as∼ |k|−1+iδ ask → 0 and hence diverges. The divergent behaviour atk = 0 in Fourier space
suggests a strong far field atr =

√

x2 + y2 → ∞ in the physical plane. The Fourier representation
of pressure is too singular to interpret and hence should be regularised, using generalised functions,
by splitting off the singular part and the part which is integrable. From (26), we have

p(x, y) =
ρ0U

2
0

ζπ
e−k0y0 K−(k0)

∫ 0

−∞

(

Ω + σ

(k − k0)|k|K+(k)
− ω + σ

−k0|k|c1k−iδ

)

e−ikx−|k|y dk

+
ρ0U

2
0

ζπ
e−k0y0 K−(k0)

∫ ∞

0

(

Ω− σ

(k − k0)|k|K+(k)
− ω − σ

−k0|k|c1k−iδ

)

e−ikx−|k|y dk

+
ρ0U

2
0

ζπ
e−k0y0

K−(k0)

−c1k0

[
∫ 0

−∞

ω + σ

|k|k−iδ
e−ikx−|k|y dk +

∫ ∞

0

ω − σ

|k|k−iδ
e−ikx−|k|y dk

]

(28)

Re k

Im k

b

k0
b

1 2

Figure 4. Integration contour

The split of the singularity renders the integrals ofp(k, y) to beO(1) at k = 0 and hence
integrable. In (28), the first 2 integrals have a finite limit at k = 0 and therefore can be evaluated
along the integration contour1 and2 respectively, as shown in figure 4. The last integrals in (28)
are those which carry the singularity and diverge atk = 0 which makes them difficult to interpret.
They can be evaluated as generalised functions [18,19]. With Appendix E, we have

ρ0U
2
0

ζπc1
e−k0y0

K−(k0)

−k0

[
∫ 0

−∞

ω + σ

|k|k−iδ
e−ikx−|k|y dk +

∫ ∞

0

ω − σ

|k|k−iδ
e−ikx−|k|y dk

]

=
ρ0U

2
0

ζπc1
e−k0y0

K−(k0)

−k0
i−iδΓ(iδ)

[

(ω + σ)z−iδ + (ω − σ)z−iδ
]

, (29)

wherez = x+iy. The results from (29) used with the first two integrals in (28) added to the initial
field pin gives the final solution of the inner pressurep (50). Shown in figure 5 (bottom right) is the
pressure for a typical case. The pressure field is clearly more intense for high than for low shear.
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Figure 5. The solution fieldsu, v and p for low shear σ = 4 < ω = 5, y0 = 1.25 (left) and high shearσ = 5 > ω = 4, y0 = 1 (right),
while ζ = 1

2
(1 + i), U0 = 5.

V.C. Far field of inner solution pinner – inside shear layer

In order to have an estimate of the far field radiated pressure, we need the asymptotic evaluation
of the pressure integral (26) in the limitk → 0 because smallk in Fourier space relates to large
r =

√

x2 + y2 ∼ ∞ in the physical plane.

(a) Low shear,σ < ω :

From (26) and (27), we have in the limitk → 0,

p(x, y)σ<ω ∼ pinner(σ<ω)

' ρ0U
2
0

ζπc1
e−k0y0

K−(k0)

−k0

[

(ω + σ)

∫ 0

−∞

e−ikx−|k|y

|k|k− 1

2
−iδ

dk + (ω − σ)

∫ ∞

0

e−ikx−|k|y

|k|k− 1

2
−iδ

dk

]

=
ρ0U

2
0

ζπc1
e−k0y0

K−(k0)

−k0

[

(−1)(
1

2
+iδ)(ω + σ)

∫ ∞

0

eikz

k
1

2
−iδ

dk + (ω − σ)

∫ ∞

0

e−ikz

k
1

2
−iδ

dk

]

(30)
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wherez = x+ iy . The integrals converge, and can be evaluated like

∫ ∞

0

eikz

k
1

2
−iδ

dk =
Γ(1

2
+ iδ)

(−iz)
1

2
+iδ
. (31)

The net innerfield pressure is then given by

pinner(σ<ω) ' i−( 1
2
+iδ)Γ(1

2
+ iδ)

ρ0U
2
0

ζπc1
e−k0y0

K−(k0)

−k0

(

(ω + σ)z−
1

2
−iδ + (ω − σ)z − 1

2
−iδ

)

(32)

with z = r eiθ. The pressure decays asr−
1
2 , which thus limits its effective acoustic source strength.

(b) High shear,σ > ω :

The singularity in this case is stronger than the one in the previous case, which enables us to
assess that the radiated pressurepinner(σ>ω) field must be stronger. The asymptotic behaviour of the
integral (26) atk → 0 is essentially the singularity taken out from the integral in (28). Hence the
outer limitr → ∞ of the inner pressure fieldp (with z = r eiθ) is given by (29) as:

pinner(σ>ω) ' i−iδΓ(iδ)
ρ0U

2
0

ζπc1
e−k0y0

K−(k0)

−k0
[

(ω + σ)z−iδ + (ω − σ)z−iδ
]

. (33)

An important difference is that the modulus of the pressure field varies withr like |r−iδ| = 1,
i.e. remains constant rather than decays, and is therefore much stronger than in the previous case.
Physically this may be interpreted as mean flow energy being continuously drawn to the hydrody-
namic perturbation field and thus contributing to the acoustic energy of the radiated field.

The above far field limit is taken inside the uniform shear flow, which means that we have a
diverging mean flow velocityU = σy → ∞ asy → ∞ which is not very physical. Although both
(32) and (33)do satisfy the prevailing equations, we just want to make sure that no unphysical
artefacts are created. So we curtail the shear at heighth and define the mean flow being a constant
U∞ beyondy > h. This is explained in the next section.

V.D. Far field of inner solution – outside shear layer

In order to approximate the solution outside the shear layerwe assume a piecewise smooth transi-
tion of the shear layer aty = h where it becomes straight as shown in figure 6,i.e.

U = σy, y < h,

U = U∞, y > h.

Let us assume thath � y0, so that the source does not interfere with the transition layer. The
assumption is based on the physical understanding that the vortical field decays exponentially off
the liney = y0. Under this assumption, the incident fieldpin is negligible near the interface, while
the inner pressure fieldpinner is reflected back aspref without further interaction with the wall, and
transmitted asptra into the far field. Hence, we may match the outer acoustic fieldto ptra in order to
obtain a more realistic value of the far field sound. In order to obtainptra, we apply the continuity

11 of 24

American Institute of Aeronautics and Astronautics



h
p inn

er
p̄
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U∞ = σh

Figure 6. Inner pressure reflected and transmitted at interfacey = h.

of pressure and velocity at the boundaryy = h. In the Fourier domain, we have fory < h
representation (26), which is for the Fourier transforms

p̃(k, y) = ρ0D
(

Ω∞ − sign(Re k)σ
)

e−|k|(y−h), ṽ(k, y) = −iD|k| e−|k|(y−h),

D =
2U2

0

ζ

e−k0y0

k − k0

K−(k0)

|k|K+(k)
e−|k|h, Ω∞ = ω − kU∞.

The reflected and transmitted variables are given as

p̃ref(k, y) = ρ0R(Ω∞ + sign(Re k)σ) e|k|(y−h), p̃tra(k, y) = ρ0TΩ∞ e−|k|(y−h)

ṽref(k, y) = iR|k| e|k|(y−h), ṽtra(k, y) = −iT |k| e−|k|(y−h)

where reflection and transmission coefficientsR andT are obtained from the conditions of conti-
nuity of pressure and velocity aty = h

p̃(k, h) + p̃ref(k, h) = p̃tra(k, h)

ṽ(k, h) + ṽref(k, h) = ṽtra(k, h).

The two linear equations in variablesT andR

ρ0D
(

Ω∞ − sign(Re k)σ
)

+ ρ0R(Ω∞ + sign(Re k)σ) = ρ0TΩ∞,

−iD|k| + iR|k| =−iT |k|,
can be solved to yield

T = D
Ω∞

Ω∞ + 1
2
sign(Re k)σ

, R = D
1
2
sign(Re k)σ

Ω∞ + 1
2
sign(Re k)σ

.

The inner pressure transmitted outside the shear is then

p̄tra(x, y) =
1

2π

∫ ∞

−∞

2ρ0U
2
0

ζ

e−k0y0 K−(k0)

k − k0

[

Ω2
∞

Ω∞ + 1
2
sign(Re k)σ

]

e−ikx−|k|y

|k|K+(k)
dk. (34)

If we writeΩ∞ = ω− kσh, the outer limit of the inner pressure can be obtained by the asymptotic
evaluation of the integral (34) in the limitk → 0,

p̄tra(x, y) =
ρ0U

2
0

πζ

e−k0y0

−k0
K−(k0)

(
∫ 0

−∞

[

ω2

ω − 1
2
σ

]

e−ikx−|k|y

|k|K+(k)
dk +

∫ ∞

0

[

ω2

ω + 1
2
σ

]

e−ikx−|k|y

|k|K+(k)
dk

)

.
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In the case ofσ < ω, using (27) and (31), we obtain

p̄tra(σ<ω) = i−( 1
2
+iδ)Γ(1

2
+ iδ)

ρ0U
2
0

ζπc1
e−k0y0

K−(k0)

−k0

[

ω2

ω − 1
2
σ
z−

1

2
−iδ +

ω2

ω + 1
2
σ
z− 1

2
−iδ

]

. (35)

In the other case,i.e. σ > ω, using (27) and (29), we have

p̄tra(σ>ω) = i−iδΓ(iδ)
ρ0U

2
0

ζπc1
e−k0y0

K−(k0)

−k0

[

ω2

ω − 1
2
σ
z−iδ +

ω2

ω + 1
2
σ
z −iδ

]

. (36)

wherez = r eiθ. We conclude from (32), (33), (35) and (36) that the inclusion of the transition
layer does not change the functional relationship of the sound radiated to farfield and differ by only
a constant. We will match the outerfield acoustic solution toboth inner fields in the next section.

VI. Outer solution and asymptotic matching

Since the mean flow Mach number is small, the inner problem is incompressible. We assume
the outer acoustic field, where the mean flow velocity profile changed from linearU(y) = σy to a
constant, compressible but with negligible mean flow. Then we have the equation

∇2p+ κ2p = 0, κ =
ω

c0
.

With a point source inx = y = 0, assuming a certain symmetry inr andθ (wherex = r cos θ and
y = r sin θ), we search for solutions of the form

p(r, θ) = γ(r)β(θ). (37)

If we substitute this in the equations we find

γ′′ +
1

r
γ′ + κ2γ =

ν2

r2
γ, β ′′ + ν2β = 0,

such that
β(θ) = B1 e

iνθ +B2 e
−iνθ

and

γ(r) = mH(2)
ν (κr) + nH

(2)
−ν (κr) = mH(2)

ν (κr) + n e−νπiH(2)
ν (κr) =MH(2)

ν (κr) (38)

with the relationshipH(2)
−ν (κr) = e−iνπH

(2)
ν (κr) [20]. Clearly,M is superfluous but is kept for

convenience. The constantsB1, B2 andν are to be determined from the matching condition at
r → 0 where the Hankel function has the following asymptotic behaviour [20]

H(2)
ν (κr) ' i

π
Γ(ν)(1

2
κr)−ν = αr−ν (39)

with Re(ν) > 0 and constantα = iπ−1Γ(ν)(1
2
κ)−ν . If ν is purely imaginary, ther−ν-term does

not dominate any more for smallr and we find [20]

H(2)
ν (κr) ' i

π

(

Γ(ν)(1
2
κr)−ν + eiνπ Γ(−ν)(1

2
κr)ν

)

= αr−ν + α̃rν , (40)

with α̃ = iπ−1 eiνπ Γ(−ν)(1
2
κ)ν . From (37), (38) and (39) or (40), we have forr → 0

p(r, θ) ' αr−ν(B1 e
iνθ +B2 e

−iνθ), resp. (αr−ν + α̃rν)(B1 e
iνθ +B2 e

−iνθ), (41)

to be matched with the outer limit of the inner solutions (32), (33).
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VI.A. Farfield sound, low shear case

For low shear,σ < ω, the asymptotic matching of (41) with (32) or (35) leads to the following
expression ofν andM , given by

ν = 1
2
+ iδ, M = i−

3

2
−iδ ρ0U

2
0

ζc1
e−k0y0

K−(k0)

−k0
(

1
2
κ
)

1

2
+iδ

, (42)

while B1 andB2 represent the different matching with the inner pressurepinner(σ<ω) inside, or
p̄tra(σ<ω) outside the shear layer.

B1 = ω − σ and B2 = ω + σ matched with pinner(σ<ω)

B1 =
ω2

ω + 1
2
σ

and B2 =
ω2

ω − 1
2
σ

matched with p̄tra(σ<ω) (43)

This effect of the reflection at the transition layer is for the type of sound field of rather little
concern. Eventually, the farfield sound is given by

p(r, θ) = i−
3

2
−iδ ρ0U

2
0

ζc1
e−k0y0

K−(k0)

−k0
(1
2
κ)(

1

2
+iδ)×

H(2)
ν (κr)

(

(ω + σ) e−i( 1
2
+iδ)θ +(ω − σ) ei(

1

2
+iδ)θ

)

(44)

when matched with the inner pressurepinner(σ<ω) inside the shear layer, or

p(r, θ) = i−
3

2
−iδ ρ0U

2
0

ζc1
e−k0y0

K−(k0)

−k0
(1
2
κ)(

1

2
+iδ)×

H(2)
ν (κr)

(

ω2

ω − 1
2
σ
e−i( 1

2
+iδ)θ +

ω2

ω + 1
2
σ
ei(

1

2
+iδ)θ

)

(45)

when matched with the inner pressurep̄tra(σ<ω) transmitted outside the layer. Shown in figure 7 is
the farfield sound obtained by above two different matchings. The difference is very small.

VI.B. Farfield sound, high shear case

The successful matching of the low shear case case cannot (asyet) be continued for the high shear
caseσ > ω. As announced in (41), the inner field that behaves liker−iδ has to match with an
acoustic field that behaves likeαr−iδ + α̃riδ, which is apparently not possible. At the time of
writing we have no explanation, unfortunately, and we should confine our presentation of the high
shear case to the incompressible field only. However, the acoustic results are relevant and too
interesting to be ignored entirely. So what we will do is to adopt anincomplete matching and give,
for the record, the results with theriδ-term ignored.

Analogous to the previous case we find in that case

ν = iδ, M = i−1−iδ ρ0U
2
0

ζc1
e−k0y0

K−(k0)

−k0
(

1
2
κ
)iδ
, (46)

with B1 andB2 remaining the same as in the previous case (43). Hence, our expression of the
farfield sound is given by

p(r, θ) = i−1−iδ ρ0U
2
0

ζc1
e−k0y0

K−(k0)

−k0
(1
2
κ)(iδ)H(2)

ν (κr)
(

(ω + σ) eδθ +(ω − σ) e−δθ
)

(47)
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Figure 7. Farfield sound obtained from(44) and (45) respectively. σ = 4 < ω = 5, ζ = 1

2
(1 + i), U0 = 5, k0 = 1, y0 = 1.25.
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Figure 8. Farfield sound obtained from (incomplete matching of) (47) and (48) respectively. σ = 5 > ω = 4, ζ = 1

2
(1 + i), U0 = 5, k0 =

0.8, y0 = 1.

when matched with the inner pressurepinner(σ>ω), inside the shear layer. Or we have

p(r, θ) = i−1−iδ ρ0U
2
0

ζc1
e−k0y0

K−(k0)

−k0
(1
2
κ)(iδ)H(2)

ν (κr)

(

ω2

ω − 1
2
σ
eδθ +

ω2

ω + 1
2
σ
e−δθ

)

(48)

when matched with the inner pressurep̄tra(σ>ω), transmitted outside the layer. Shown in figure 8
(with the above caveat) is the farfield sound obtained by above two different matching.

VII. Conclusions

A systematic and analytically exact solution is obtained bymeans of the Wiener-Hopf tech-
nique of the problem of vorticity, convected by a linearly sheared mean flow, is scattered by the
hard-soft transition of the wall. It is illustrated by numerical examples. A particular feature is
the fact that the Wiener-Hopf kernel can be split exactly. This enables us to find in rather detail
the functional relationship of the hydrodynamic far field and hence the associated acoustic source
strength.

The problem appears to be distinguished into two different classes, based upon the relative size
of problem parametersσ (the mean flow shearU ′) andω (the perturbation frequency), and not
(for example) of the impedance of the wall. If the mean shear is relatively weak,i.e. if σ < ω,
the hydrodynamic far field varies as the inverse square root of the distance from the hard-soft
singularity. If the mean shear is relatively strong,i.e. if σ > ω, the hydrodynamic far field tends
(in modulus) to a constant.

A way to interpret this non-decaying far field may be the observation that in vortical flow the
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energy of perturbations is not conserved [21, 22], and the mean flow may provide the required
energy. The present results seems to indicate that for strong enough shear the mean flow is able to
provide energy to the perturbations, enough to maintain thestrength of the field even away from
the hard-soft wall discontinuity.

A problem to be resolved is the incomplete matching of the incompressible inner field with
the acoustic outer field for the high shear case, in spite of the fact that the low shear case gives no
problems and behaves as expected.
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Appendix

A. Regularising Wiener-Hopf kernel K

The singularity atk = 0 of the Wiener-hopf kernel (16)

K(k) = 1 +
a

k
− b√

k2

is regularised by assuming a smallε > 0 with (17)

K(k) = 1 +
a

k − iε
− b√

k2 + ε2

with in either case the principal value square root assumed.There is a certain amount of arbitrari-
ness in the way we push the pole atk = 0 down (tok + iε) or up (tok − iε), since the singularity
encountered inlogK(k) is a logarithmic one and hence integrable in (21). Whatever we choose,
pushing the pole up or downwards, the logarithm has to be defined such thatlog(1) = 0 and that
none of the branch cuts, emanating from the zeros and poles ofK, cross the real axis.

case σ ω ζ σ − ω Re(ζ)

1 15 2 1 + i + +

2 15 2 1− i + −
3 4 10 1 + 10i − +

4 4 10 1− 10i − −
Table 3. 4 cases considered

This is not easy to achieve in general. However, it appears that if we choose for the pole being
pushed upwards,K(k) for k ∈ R always,i.e. for all 4 cases of table 2, avoids the negative real axis
(see figure 9), so the standard principal value logarithm is sufficient to take, in which case we have
an analytically exact expression (50) for theε = 0 limit. This is fully confirmed by numerically
obtainedK+-integrals for smallε approximating correctly the analytical expression.
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Figure 9. Trace ofK(k), k ∈ R, for all cases of table 3 when the pole atk = 0 is regularized with k = k − iε. |k| =
√
k2 + ε2, ε = 10−3

It is worth noting that the same happens in case 3 with the polepusheddown (i.e. with k + iε
taken). Also here the trace ofK avoids the negative real axis, the principal value log can betaken,
and the result approximates the exact expression (50). In conclusion: whenever the principal value
log can be taken, there is no difference between the pole being pushed up or downwards.

Consider representative examples of the 4 cases as given in table 3 and graphically displayed
in figure 9, where the trace ofK(k) is shown fork ∈ R.

B. Analytical evaluation of the split integral

For Im(k) > 0, the principal value logarithm, andε→ 0 we have

2πi logK+(k) = I =

∫ ∞

−∞

f(x)

x− k
dx, f(x) = log

(

1 +
a

x
− b

|x|

)

, a =
σ

iζ
, b =

ω

iζ
.

We distinguish
∫ ∞

−∞

log(1 + a/x− b/|x|)
x− k

dx =

∫ ∞

0

log(1 + (a− b)/x)

x− k
dx−

∫ ∞

0

log(1− (a+ b)/x)

x+ k
dx,

here referred to asI1 andI2 respectively. Consider the first integral

I1 =

∫ ∞

0

log(1 + q/x)

x− k
dx
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wherek, q ∈ C. We transformx→ 1/x and thenqx = y, to have

I1 =

∫ ∞

0

log(1 + qx)

x(1− kx)
dx =

∫ q·∞

0

log(1 + y)

y(1− ky/q)
dy =

∫ q·∞

0

log(1 + y)

(

1

y
− 1

y − q/k

)

dy

Im

Re

q

b

q

k

Figure 10. Closure of the integral contour

We close the contour (figure 10) fromy = q · ∞ to the real axis aty = ∞. Denoteα = q/k
andβ = 1 + q/k. By

C(k, q) = −1 if 0 < arg(q/k) < arg q,

C(k, q) = 1 if arg q < arg(q/k) < 0,

C(k, q) = 0 otherwise

we indicate the captured pole iny = α. In particular fork is real in the limit fromC
+:

k ∈ (0,∞) & Im q > 0 ⇒ C = −1,

k ∈ (−∞, 0) ∨ Im q < 0 ⇒ C = 0.

We thus find

I1 =

∫ ∞

0

log(1 + y)

(

1

y
+

1

α− y

)

dy − 2πiC(k, q) logβ.

With the use of the following definition of the dilogarithm [20] (with a branch cut along the nega-
tive real axis), related to the polylogarithm of order 2,

dilog(z) =

∫ z

1

log t

1− t
dt = Li2(1− z),

we write our integral as a limit

I1 = lim
N→∞

N
∫

0

log(1 + y)

(

1

y
+

1

α− y

)

dy = lim
N→∞

N
∫

0

log(1 + y)

y
dy + lim

N→∞

N
∫

0

log(1 + y)

α− y
dy.

(49)

The first integral in (49) is therefore
∫ N

0

log(1 + y)

y
dy = −

∫ N+1

1

log z

1− z
dz = − dilog(N + 1).
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The second integral is

∫ N

0

log(1 + y)

α− y
dy =

∫ N+1

1

log z

β − z
dz =

∫ (N+1)β−1

β−1

log t + log β

1− t
dt =

dilog((N + 1)β−1)− dilog(β−1)− log β log((N + 1)β−1 − 1) + log β log(β−1 − 1).

Altogether, and using the asymptotic behaviourdilog(z) ∼ −1
2
(log z)2 + . . . for z → ∞, we have

I1 =

∫ ∞

0

log(1 + q/x)

x− k
dx = lim

N→∞

[

− dilog(N + 1) + dilog((N + 1)β−1)− dilog(β−1)

− log β log((N + 1)β−1 − 1) + log β log(β−1 − 1)
]

− 2πiC(k, q) log β =

− dilog(β−1) + 1
2
log2(β) + log β log(β−1 − 1)− 2πiC(k, q) logβ

The second integralI2 can be performed in the same fashion to obtain the overall expression of
logK+ for k ∈ C

+ andε→ 0 as

2πi logK+(k) = I = − dilog
( k

k + a− b

)

+ dilog
( k

k + a+ b

)

+ 1
2
log2

(k + a− b

k

)

− 1
2
log2

(k + a+ b

k

)

+ log
(k + a− b

k

)

log
( b− a

k + a− b

)

− log
(k + a + b

k

)

log
( −b− a

k + a+ b

)

− 2πiC1 log
(k + a− b

k

)

+ 2πiC2 log
(k + a+ b

k

)

, (50)

whereC1 = C(k, a− b) andC2 = C(−k,−a− b). If required,logK−(k) with k ∈ C
− is similar.

C. Asymptotic analysis of the split integralI for k near 0

b b(a) (b)

Re

Im

Figure 11. Path ofk ↑ 0 and k ↓ 0, with Im k = +0.

The behaviour fork → 0 of the integralI(k) and henceK+(k) is distinct for high shear
(σ > ω) or low shear (σ < ω). In particular, we will show thatK+ ∼ k−iδ andK+ ∼ k−

1

2
−iδ,

respectively. Hence we break this analysis into 2 parts. Also, we will assume the natural condition
Re(ζ) > 0. The limit k → 0 is taken from below and from above, along but just above the real
axis, as shown in figure 11. In all cases we use the fact that [20]

dilog(z) = 1
6
π2 +O(z log z) for z → 0,

making in general the dilog-parts unimportant to leading orders.
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C.A. High shear case

This analysis fork → 0 and Im k = +0 relates to the high shear (σ > ω) cases 1 and 2 in
table 2. There is no contribution of the poleq/k, whether we approach from left or right, hence
C1 = C2 = 0.

Case (a):k ↑ 0

With the principal value logarithm andk ↑ 0, we have

log
(k + a+ b

k

)

' log(a+ b)− log(k) + 2πi, log
( −b− a

k + a+ b

)

' −πi.

log
(k + a− b

k

)

' log(a− b)− log(k) + 2πi, log
( b− a

k + a− b

)

' −πi.

From (50) we have then

I ∼ log(k) log
∣

∣

∣

a + b

a− b

∣

∣

∣
+ 1

2
log2(a− b)− 1

2
log2(a+ b) + πi log

(a− b

a+ b

)

.

Case (b):k ↓ 0

Fork ↓ 0, we have

log
(k + a + b

k

)

' log(a + b)− log(k), log
( −b− a

k + a+ b

)

' πi,

log
(k + a− b

k

)

' log(a− b)− log(k), log
( b− a

k + a− b

)

' πi.

From 50, we have

I ∼ log(k) log
∣

∣

∣

a + b

a− b

∣

∣

∣
+ 1

2
log2(a− b)− 1

2
log2(a+ b) + πi log

(a− b

a+ b

)

.

We see that the limits from left and right come down to the sameexpression. As a result, the
asymptotic behaviour ofK+ becomes

K+ ∼ c1k
−iδ, δ =

1

2π
log

∣

∣

∣

σ + ω

σ − ω

∣

∣

∣
, (51)

whereδ is real positive andc1 is a complex constant given by

c1 = e
1

2πi [
1

2
log2(a−b)− 1

2
log2(a+b)+πi log(a−b

a+b
)] (52)

For illustration, figure 12 shows a comparison of a numerically, analytically and asymptotically
obtainedI.

numerical
asymptotic

analytic

k

R
e(
I
)

0.10.050-0.05-0.1

-8

-12

-16

-20

-24

-28

numerical
asymptotic

analytic

k

Im
(I
)

0.10.050-0.05-0.1

6

4

2

0

-2

Figure 12. Comparison of theI calculated from analytical, asymptotic and numerical methods for σ = 5 > ω = 4 and ζ = 1

2
(1 + i).
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C.B. Low shear case

The asymptotic analysis of (50) fork → 0 andIm(k) = +0 considers the low shear (σ < ω) cases
3 and 4 of table 2. Here, we have a contribution of theq/k-pole when we approach from the right.

Case (a):k ↑ 0

With the principal value logarithm andk ↑ 0, the following hold:

log
(k + a+ b

k

)

' log(a+ b)− log(k) + 2πi, log
( −b− a

k + a+ b

)

' −πi,

log
(k + a− b

k

)

' log(a− b)− log(k), log
( b− a

k + a− b

)

' πi.

From (50), we have withC1 = C2 = 0

I ∼ log(k)

[

log
∣

∣

∣

a + b

a− b

∣

∣

∣
− πi

]

+ 1
2
log2(a− b)− 1

2
log2(a + b) + πi log

(a− b

a+ b

)

.

Case (b):k ↓ 0

We have

log
(k + a + b

k

)

' log(a + b)− log(k), log
( −b− a

k + a+ b

)

' πi,

log
(k + a− b

k

)

' log(a− b)− log(k), log
( b− a

k + a− b

)

' −πi.

Because of theq/k-pole contribution we haveC1 = −1 andC2 = 0. From (50), we have

I ∼ log(k)
[

log
∣

∣

∣

a+ b

a− b

∣

∣

∣
− πi

]

+ 1
2

(

log2(a− b)− log2(a+ b)
)

+ πi log
(a− b

a+ b

)

.

We see that the limiting behaviours from the left and from theright are the same. The asymptotic
expression forK+ is then

K+ ∼ c1k
− 1

2
−iδ, δ =

1

2π
log

∣

∣

∣

σ + ω

σ − ω

∣

∣

∣
. (53)

where (the same as before)δ is real positive andc1 is a complex constant given by

c1 = e
1

2πi

[

1
2(log

2(a−b)−log2(a+b))+πi log( a−b

a+b
)
]

(54)

For illustration, figure 13 shows a comparison between numerically, analytically and asymptoti-
cally obtainedI.

numerical
asymptotic

analytic

k

R
e(
I
)

0.10.050-0.05-0.1

-5

-10

-15

-20

-25

-30

-35

numerical
asymptotic

analytic

k

Im
(I
)

0.10.050-0.05-0.1

40
35
30
25
20
15
10
5

Figure 13. Comparison ofI calculated numerically, analytically, and asymptotically for σ = 4 < ω = 5 and ζ = 1

2
(1 + i).
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C.C. Asymptotic analysis fork large

The analysis fork → ∞ is useful to derive the edge condition in the next section. Again, we
considerIm(k) = +0. Noting that forz → 0 we havedilog(1− z) ' z +O(z2) andlog(1 + z) =
z +O(z2), we may obtain fork → ∞

I ' 2b

k
log k +

a− b

k

(

log(b− a)− 2πiC1

)

− a+ b

k

(

log(−b − a)− 2πiC2

)

.

Overall, the dominating term is2b
k
log k.

D. Evaluation of entire function E

E can be determined from the condition at infinity. In order to obtainE(k) for k → ∞, we
need the asymptotic behaviour ofK+, k → ∞. From C.C, we have

lim
k→∞

logK+(k) = lim
k→∞

2b

2πik
log k = 0 (55)

soK+(k) → 1.
The asymptotic behaviour ofG+(k) in the limit k → ∞ is found from the so-called edge

condition forr → 0 wherer is the distance from the edge. Consider a pressure distribution p at
a small distancer from the discontinuity atr = 0, such thatp is dominated by some power ofr,
sayp = O(rα). From the momentum equation it follows that the (radial) velocity, sayw, should
bew = O(rα−1). The outward energy fluxΦ(r) across a small circular arc, centred at the edge at

b

r

Figure 14. Energy flux across a small semi-circle of radiusr around the singularity.

radiusr (see figure 14) is then given by

Φ(r) ∼
∫ π

0

pwr dθ ∼ πrαrα−1r ∼ r2α. (56)

In the absence of a physical source atr = 0, the energy flux should vanish forr ↓ 0. Hence we
must haveα > 0.

The functionG+(k) from (13) is therefore

G+(k → ∞) ∼
∫ ∞

0

xα−1 eikx dx = k−αΓ(α) e
1

2
πiα (57)

From (24), (55) and (57), we have

E(k) = ρ0ζG+(k)K+(k) +O(1/k) ∼ k−α · 1 → 0 (k → ∞). (58)

Thus the functionE(k) vanishes atk → ∞ and since it is an entire function, it should vanish
everywhere,i.e. E(k) = 0.
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E. Regularisation of the diverging integral

We want to assign a meaning to

ψ(x, y) =

∫ ∞

0

1

k1−iδ
eikz dk

wherez = x + iy with y > 0 andδ is real and nonzero. The integral converges fork → ∞
but not fork = 0. Following Lighthill-Jones [18, 19], we define the functionH(k)k−1+iδ as the
generalised derivative

H(k)

k1−iδ

def
=

d

dk

(

H(k)

iδk−iδ

)

and the integral

ψ(x, y) =

∫ ∞

−∞

d

dk

(

H(k)

iδk−iδ

)

eikz dk = −
∫ ∞

−∞

zH(k)

δk−iδ
eikz dk =

− zδ−1

∫ ∞

0

kiδ eikz dk = −iδ−1Γ(1 + iδ)(−iz)−iδ = Γ(iδ)(−iz)−iδ.

This result is unique and independent of scaling.
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