

Software engineering : redundancy is key

Citation for published version (APA):
Brand, van den, M. G. J., & Groote, J. F. (2013). Software engineering : redundancy is key. (Computer science
reports; Vol. 1308). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2013

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://research.tue.nl/en/publications/d246cb3f-c006-4700-a0f7-91bb2f041d95

Technische Universiteit Eindhoven
 Department of Mathematics and Computer Science

Software Engineering: Redundancy is Key

Mark van den Brand and Jan Friso Groote

13/08

ISSN 0926-4515

All rights reserved
editors: prof.dr. P.M.E. De Bra

 prof.dr.ir. J.J. van Wijk

Reports are available at:
http://library.tue.nl/catalog/TUEPublication.csp?Language=dut&Type=ComputerScienceReports&S
ort=Author&level=1 and
http://library.tue.nl/catalog/TUEPublication.csp?Language=dut&Type=ComputerScienceReports&S
ort=Year&Level=1

Computer Science Reports 13-08
Eindhoven, October 2013

Software Engineering: Redundancy is Key

Mark van den Brand and Jan Friso Groote

Departement of Mathematics and Computer Science, Eindhoven University of Technology

Den Dolech 2, 5612 AZ Eindhoven, The Netherlands

Email: M.G.J.v.d.Brand@tue.nl, J.F.Groote@tue.nl

Abstract

Software engineers are humans and so they make lots of mistakes. Typically 1 out of 10 to
100 tasks go wrong. The only way to avoid these mistakes is to introduce redundancy in
the software engineering process. This article is a plea to consciously introduce several levels
of redundancy for each programming task. Depending on the required level of correctness,
expressed in a residual error probability (typically 10−3 to 10−10), each programming task
must be carried out redundantly 4 to 8 times. This number is hardly influenced by the size of
a programming endeavour. Training software engineers does have some effect as non trained
software engineers require a double amount of redundant tasks to deliver software of a desired
quality. More compact programming, for instance by using domain specific languages, only
reduces the number of redundant tasks by a small constant.

Keywords: Software engineering, Software quality, Redundancy.

1 Redundancy

Engineers construct artefacts far beyond their own human reach and comprehension. In particular
these artefacts must have failure rates far lower than their own imagination. Typical failure rates
for safety critical products are in the order of 10−10. This means that a typical engineer will never
see his own products fail. In most engineering disciplines, design and realisation are separate
activities carried out by different people. This forces designers to make detailed, trustworthy and
understandable designs for the constructors. The constructors validate the design before starting
the actual construction.

The situation is entirely different for software engineers. They create products that are far
more error prone than the physical products of their fellow engineers. Often the designer of the
software also realises the software. Furthermore, it is common practice for software engineers to
resolve observed problems in their own products on the fly. One may ask what the reason for this
situation is, and thus find ways to improve the quality of software.

An important observation is that the production of software is a human activity and that
humans make lots of errors. From risk engineering the typical rates of errors that humans make
are known [13]. For a simple well trained task the expected error probability is 10−3. Typical
simple tasks are reading a simple word or setting a switch. Routine tasks where care is needed
typically fail with a rate of at least 10−2. Complex non routine tasks go wrong at least one out
of 10 times. An example of a non routine task is to observe a particular wrong indicator when
observing an entire system. Under the stress of emergency situations 9 out of 10 people tend to
do this wrong. These failure rates contrast sharply with those found in common hardware, where
a failure probability of 10−16 per component per operation is considered high [12].

What does this mean for the construction of systems by software engineers? Programming
consists of a variety of tasks: determining the desired behaviour via requirements elicitation,
establishing a software architecture, determining interfaces of various components, finding the
required software libraries, retrieving the desired algorithms, coding the required behaviour, and
finally testing the developed product. All these tasks are carried out by humans. It is not clear how

1

to divide this variety of activities into tasks that are comparable to those used in risk engineering.
But typically interpreting and denoting a requirement, writing down an aspect of an interface
definition or writing a line of code could be viewed as a task. Each of these tasks has in principle a
different failure rate. The risk of writing an erroneous requirement is higher than writing a wrong
assignment statement, but for the sake of simplicity we ignore this. As we will see the precise
nature of a task is also not really important. We assume that we understand that constructing a
program can be divided into a number of programming tasks or tasks for short. At the end we go
into this a little deeper and contemplate about typical tasks in the different phases of programming.
What is obvious that a computer program is the result of literally hundreds of thousands of such
tasks, and that the majority of these tasks are at least of the complexity of what risk engineers
would identify as ‘a routine task’.

We set the probability of a failing task to p, ignoring that different tasks have different failure
rates. A value of p = 0.01 is quite a decent estimate. It would be good when concrete values for
p for different types of programming tasks would be established, but to our knowledge no such
results exist. We can easily derive that a typical program consisting of n programming tasks fails
with probability 1 − (1 − p)n. A simple program built in 10 steps fails with probability 0.1, one
with 100 steps fails with probability 0.6 and a program comprising 250 tasks already fails with a
probability higher than 90%.

There are three major ways to reduce the number of errors in programs all widely adopted in
programming. The first one is to reduce the number of tasks when programming. Moving from
low level assemblers to higher-level languages is a typical way of reducing the number of tasks to
accomplish a program with the desired functionality. Another example is the current tendency
towards domain specific languages where code is generated based on a minimal description of a
particular application in a certain domain, while all domain specific information is being generated
automatically. There is no doubt that higher-level programming languages and domain specific
languages are of great value. But even with them, programmed systems are so large that the
number of tasks will always remain substantial. Given the high human failure rate, this means
that higher-level languages on their own will never be able to provide the required quality. Build-
ing transformers for domain specific languages are substantial efforts also consisting of a huge
number of programming tasks, and therefore also a fallible activity. Furthermore, when building a
transformer for a domain specific language detailed knowledge of the underlying semantics of the
domain specific language and the target general purpose language is needed as well as thorough
knowledge of the application domain.

A second way of improving the quality of software is to train the software engineers better.
In terms of risk engineering one could phrase this as experiencing programming not as a set of
complex tasks, but as a set of routine task. We will see that this has a notable effect on the quality
of software, but it is not sufficient not to use some form of redundancy. Even extremely experienced
software engineers make so many mistakes that for improving the reliability of software each task
must be carried out in a redundant manner.

The third approach to reduce the number of defects in software is the introduction of redun-
dancy when developing software. In hardware it is common practice to have redundant compo-
nents. Typically, by using n redundant components that have a failure rate of p, a failure rate of
pn can be achieved. In hardware it is common practice to use more computers running the same
program in critical applications to reduce the risk of operational failure due to hardware error. If
failure of redundant components is independent, this is an excellent way to achieve a high level of
reliability.

Analysing of design artefacts counts as adding a form of redundancy. Deriving metrics from
design documents and code has become common practice. These metrics are not only used to pre-
dict or justify the development costs but are also used to detect code smell and drive refactorings.
Analysing high-level designs using model checking techniques is being introduced in safety critical
systems. Also source code is being checked using model checkers [11, 8].

A huge contributor to the success of trendy agile development techniques is that it puts more
emphasis on redundancy, in the form of reviewing of design artefacts, short development cycles,
closer interaction with the client, writing tests before coding and pair programming [9].

2

n

r
5

4

3

2

1

0
0 2 105 4 105 6 105 8 105 106

n

r
5

4

3

2

1

0
10 102 103 104 105 106

Figure 1: The required redundancy of tasks as a function from the number of tasks (P = 10−4

and p = 0.01).

We consider tasks redundant when if they are carried out and at least one of them is wrong,
then this will somehow be detected. There are multiple ways of achieving this redundancy. The
compilers can be very strict and reduce the number of trivial errors by parsing and type checking.
This can explain the failure of COMAL, a programming language with the distinctive feature that
it would repair syntax and semantical errors automatically as well as possible, of course leading
to less reliable programs [4]. This also puts doubts on Python [10] as a programming language
for applications where correctness matters as Python has very relaxed forms of type checking.
Other ways are the use of asserts, array bound checking and other run time checks as forms of
redundancy to expose runtime errors.

Reuse of components is another way of adding redundancy. Multiple usage exposes more
problems, especially if this usage has different natures. The ATerm library [1] is a nice example.
This library was initially developed for the new ASF+SDF Meta-Environment [2], but was also
adopted, amongst others, by the mCRL2 toolset [5]. The different application area, generating
huge state spaces and performing large scale model checking, posed different non-functional re-
quirements and this revealed shortcomings of the ATerm library resulting in a more robust and
stable implementation.

Testing, either systematically or ad hoc, is also a form of redundancy. Evaluating or formulating
tests are tasks with a high failure rate. It is not uncommon that running tests leads to the
detection that a test is flawed. Even the use of correctness proofs where invariants, pre- and post-
conditions, modal formulas or behavioural equivalences can be checked are nothing more than
activities adding redundancy to the process of software creation. The idea that correct software
can be obtained by first specifying the intended behaviour, after which it needs to be implemented
and the implementation needs to be proven correct has its limitations. For more complex systems
the specifications by itself are already so complex, that they contain lots of mistakes loosing their
authoritative value. Furthermore, correctness proofs are generally also not free from mistakes and
oversights.

2 How redundant must a programming task be?

It is essential to use redundancy to obtain reliable large programs. Every programming task must
be executed with sufficient redundancy, such that the likelihood of each task to be correct is so
large that the whole program has a sufficiently low probability to fail. So, assume that there are
n elementary programming tasks to be carried out. The exact definition of what a task is, is not
really relevant, as we will see that the exact number of tasks hardly matters in our calculations.

3

P

r
10

8

6

4

2

0
1 10−3 10−6 10−9 10−12 10−15

Figure 2: The required redundancy as a function from the required overall reliability (n = 106

and p = 0.01).

10−4 10−6 10−8 10−10

10−1 10.0 12.0 14.0 16.0
10−2 5.0 6.0 7.0 8.0
10−3 3.3 4.0 4.6 5.3

Table 1: Required levels of redundancy with different human failure rates

Typically, we assume that a programmed system is constructed out of hundreds of thousands of
such tasks. Each task is carried out with a certain failure probability p. Also here, we do not
know what the exact failure probability is; somewhere in the order of 0.01. We want our program
to have a certain probability P to be flawed. Depending on the application, this value can vary
from 10−1 to 10−10. We will even see that this value does not really matter a lot. Suppose that
each programming task is carried out r times, we can establish the following formula relating the
probabilities:

P = 1− (1− pr)n

from which we derive that r = ln(1 − (1 − P)1/n)/ ln(p). In Figure 1 this is graphically depicted
in both graphs where the graph at the left has a linear domain and the graph at the right uses
an exponential scale. It is important to note that the value of r hardly changes with the size of a
system given a desired reliability of the system. It is however linearly dependent on the required
error probability of the entire system, as the graph in Figure 2 shows. A top-safe system typically
has a probability for residual errors of 10−10, which requires that each programming task must
be carried out with an eight-fold redundancy. The most important conclusion is that in order to
make a program that is free from programming errors only a rather limited amount of redundancy
of four to eight replications of each programming task is required. In order to engineer correct
software this redundancy must be consciously applied in the software construction process. Section
5 presents a list of possibilities to increase the redundancy in software construction.

Training people can also help to reduce the number of faults in software. The human failure
rate might shift from 10−1 to 10−2, say, but given that programming is a difficult task, the effect
of training can easily be overestimated (to our knowledge no research has been carried out in this
regard, and hence no reliable figures exist). In Table 1 it is shown for human error rates of 10−1,
10−2 and 10−3 what the effect on the number of redundant tasks is for varying levels of overall

4

reliability of the software (values have been calculated for 106 programming tasks). It shows that
training people extremely well can reduce the required number of redundant tasks with a factor
2.

The effect of the use of domain specific languages, or any other forms of more abstract pro-
gramming languages can also be clarified. Suppose that encoding in a higher-level programming
language leads to a 10 fold smaller input. Then we can easily see in Figure 1 at the right that
the amount of redundancy is only reduced by a half, a small constant value. Given that the level
of redundancy is not an extremely high number this is not totally neglectable, but its effect can
easily be overestimated.

3 How to check redundancy?

If two redundant views on the same programming task are organised, one must make sure that
the two programming tasks are independent and that if one or both of the programming tasks is
carried out wrongly this is detected.

A typical example of wrong redundancy is running the same program twice on separate com-
puters. Programming errors are not detected, while their risk of occurrence is many orders of
magnitude higher than a hardware error occurring.

There are also some concerns with pair programming, where two programmers sit together
working on one program. There is redundancy in entering program code, so this improves the
quality of the code because the program code is being discussed and reviewed while entering.
However, if the starting point is an erroneous specification, there is no guarantee the errors are
detected in this way. The translation of the specification into unit tests may reveal errors and
ambiguities in the specification. In this respect ‘pair specifying’ would be better assuming that the
source of the specifiers is by definition correct, although interrogating such a source has its own
challenges. The use of rapid prototyping and short development cycles with frequent interaction
with prospective users contribute to the robustness of the software in this respect.

Classical testing where a program is run a number of times by testers trying to observe whether
there is something obviously wrong, generally observed by a crash of the program, is also not ef-
fective in finding (hidden) errors. Many erroneous behaviours of the program are easily overlooked
in this way. A large set of test cases that are simply run, but that do not contain built in checks
that guarantee that their outcomes are correct is of limited value also. This implies that the tests
have to be carefully designed in order to be effective. This is actually another form of introducing
redundancy. The design of a test may reveal errors and/or ambiguities in the specification or
requirements. The use of an extended set of unit and regression tests prevents the introduction of
trivial errors when performing refactoring or doing maintenance. The application of test coverage
tools helps in guaranteeing that all programmed tasks are tested, and this helps enormously. This
is easily explained by the reliability formula on the previous page, as the overall reliability of a
program is determined by the part with the smallest level of redundancy, even if this regards a
small part of the whole program.

A typical example that is far more effective is to specify behaviour both as an executable model
and requirements (e.g., modal formulas) and prove the correctness of the one with respect to the
other. The software can either be generated from the model, or it can be coded by hand. In the
former case, the code generator has to be tested or proven correct to increase the redundancy. In
the last case, redundancy can be achieved using model based testing against the executable model.

4 What is an elementary software engineering task?

It is not straightforward to employ redundancy to programming, because it is not obvious what
a programming task is. To illustrate this we look at three different classes of tasks in program
construction and elaborate on them. It is not at all intended to be an exhaustive classification of
tasks, simply because we are not able to give that at this stage.

5

• Programming can most easily be divided into different tasks. The natural notion is to view
writing a line of code as a task, but this might be an oversimplification. Given that a line of
code can easily be split into more lines indicates that this notion of a task is not stable. More
stable notions are the realisation of a function, an iteration or even a function point. When
programming there is already built in redundancy, and therefore some parts of a program
could be considered not to belong to the primary programming tasks, such as the declaration
of variables or writing of assertions. The advantage of considering writing a line of code a
task is that these tasks are easily identifiable and can easily be coupled to concrete human
activity.

• It is less clear how to divide the design of algorithms and communication schemes into
tasks. Writing down pseudo-code can be divided in a similar way as programming. If the
correctness of the algorithm or protocol must be shown, writing each step of the correctness
proof can be seen as an elementary task. Formulating a test scenario for each conceivable
run through the algorithm could also fall into this category.

• Identification of user needs is much harder to split into elementary tasks, and we might even
call in the help of psychology to address this. Describing each elementary concept of the
user might be an elementary task, as is the identification of each relation between them.
Formulating each operation that can be carried out on these concepts and identifying that
the user understands each concept, relation and operation yields a set of elementary tasks.
Verifying that each relevant notion complies with interface standards and best practices can
be regarded as elementary tasks too.

5 Possible forms of redundancy

Since we are developing software we are using forms of redundancy, but given the fact that we
are becoming more dependent on software, consciously dealing with redundancy is getting more
important. In Section 2 we derived that programs should have between four and eight forms of
redundancies. Here we will give a preliminary list of (possible) ways of increasing redundancy.
This list contains mature and proven technologies as well as unexplored approaches. Some of the
approaches are already discussed in previous sections.

Programming languages that facilitate statical analysis of the developed programs If
a programming language facilitates the introduction of static types, typed variables, etc. the
more checking can be performed by the compiler and the more unintended behaviour can
be detected. If the language allows the explicit formulation of statically checkable invariants
then even more unexpected behaviour can be detected and prevented.

Reviewing Any form of reviewing uncovers errors and increases the reliability of the software.
Reviewing can be done at the level of requirements, design, coding and testing. Even re-
viewing the outcomes of tests or the verifications of requirements is useful, because these
might be incorrect, although our model in Section 2 assumed that such comparisons between
redundant activities are impeccable.

Testing Although testing only reveals errors but does not show the absence of errors, it is a
common practice to increase the quality of software. There are various ways of using and
developing tests. Tests can be written based on the requirements. Tests can be written before
the actual coding starts, again a popular way of working in agile software development.
Tests can be written after an error has been detected but before it is corrected. Tests
can automatically be generated from specifications, so-called model based testing. The
redundancy increases if testing is supported by tooling to measure the test coverage.

Formalisation of requirements Requirements elicitation is a challenge in many software projects.
Often natural language is used to describe the requirements. Proper reviewing of require-
ments already reveals many shortcomings, however formalisation, either mathematically or

6

as an executable specification, improves the overall quality of the requirements, because in
case of the former of rigorousness and in case of the latter of the immediate feedback to the
users.

Re-use The fact that software components/libraries are used in different applications makes the
components/libraries more robust. Each application may ask for different (non-)functional
requirements.

Specification of interfaces The precise specification of the application programming interface
(API) of a software component is an important requirement in order to make this component
re-usable. The robustness of the component improves if the component checks whether the
calling software and the component itself adhere to the desired contract. This can be done
via runtime checks (expensive) or via static checks based on theorem proving, equivalence
checking or the verification of modal formulas.

Adherence to architectural rules Software architecting is rapidly maturing. Where in the
past software architecting was about components and their relationships, it has moved to-
wards the relationships to its environment and the rules to enable the evolution of the soft-
ware. The formulation of architectural rules and adherence to these rules when developing
the software, improves the overall quality of the software.

Redundant software components This form of redundancy is closest to hardware redundancy.
Redundancy is obtained trough the independent development of components with the same
functional behaviour. In its most extreme form two independent groups develop components
that can be executed in parallel. These components need not be programmed in the same
language. A variant is the development of a (executable) model, that can be used for
prototyping, testing or code generation. If the model is machine processable it can be used
for simulation and/or model checking.

6 Final words

We are still struggling to find a workable software engineering approach to construct programs on
which we can rely. We want to achieve the situation where if we state that software is ready, then
we can be reasonably sure that no residual errors remain.

In the past many techniques have been proposed that do have their merits to increase the
quality of software, but completely in accordance with expectation none counts as the silver
bullet [3]. We argue that combining the different techniques is a viable way of obtaining the
desired quality. Each programming task only needs to be carried out a limited number of times,
independently of the size of a programming endeavour and hardly influenced by the quality of the
program developers.

It is required to identify different programming tasks more explicitly than is done up till now,
and to identify four to eight redundant activities for each programming task. In the exposition
above examples have been given, but it is still open to come up with a workable scheme, and it
might be that new ways of adding redundancy to programming must be invented.

It would be very useful to refine the rather simplistic reliability model that we provide and to
quantitatively identify the effect of each redundant task. It can for instance be that a mismatch
between redundant tasks can only be detected with a certain probability. Refining the probability
model might be quite difficult, and its calibration such that it matches with actual software
engineering is also a tremendous task, not in the least as it requires field trials on a substantial
scale (cf., e.g., [6]). The benefit of such activity is of course huge. We will have the tools to
isolate and identify the most effective software engineering practices, allowing us to abandon the
less effective techniques.

7

References

[1] M.G.J. van den Brand, H.A. de Jong, P. Klint, and P.A. Olivier. Efficient annotated terms.
Software: Practice and Experience, 30(3): 259-291, 2000.

[2] M.G.J. van den Brand, A. van Deursen, J. Heering, H.A. de Jong, M. de Jonge, T. Kuipers,
P. Klint, L.M.F. Moonen, P.A. Olivier, J. Scheerder, J.J. Vinju, E. Visser, and J.Visser.
The ASF+SDF meta-environment : a component-based language development environment.
Proceedings CC 2001, editor R. Wilhelm, Lecture Notes in Computer Science 2027, pp. 365-
370, Springer, 2001.

[3] F.P. Brooks. The mythical man month. Essays on software engineering. Addison-Wesley. 1995.

[4] B.R. Christensen. The Programming Language COMAL - Denmark. International World of
Computer Education, 1(8):26-29, 1975.

[5] S. Cranen, J.F. Groote, J.J.A. Keiren, F.P.M. Stappers, E.P. de Vink, J.W. Wesselink, and
T.A.C. Willemse. Ins and outs of the mCRL2 toolset. Proceedings TACAS 2013, editors N.
Piterman, S.A. Smolka, Lecture Notes in Computer Science 7795, pp. 199-213, Springer, 2013.

[6] C. Jones. Software assessments, benchmarks, and best practices. Addison-Wesley, 2000.

[7] P. Klint. A meta-environment for generating programming environments. ACM Transactions
on Software Engineering and Methodology 2:176-201, 1993.

[8] D. Kroening, E. Clarke and K. Yorav. Behavioral consistency of C and Verilog programs using
bounded model checking. Proceedings of DAC 2003, pp. 368–371, ACM Press, 2003.

[9] S. McConnell. Code Complete. Microsoft Press, 1993.

[10] G. van Rossum and F.L. Drake Jr. An introduction to Python. Network Theory Limited.
2011.

[11] B. Schlich, S. Kowalenski. Model checking C source code for embedded systems. Inernational
journal on software tools and technology transfer, 11:187-202, 2009.

[12] B. Schroeder, E. Pinheiro, W.-D. Weber. DRAM Errors in the wild: a large-scale field study.
In proceedings of the eleventh international joint conference on measurement and modeling
of computer systems (SIGMETRICS’09), pp. 193-204, ACM, 2009.

[13] D.J. Smith. Reliability, maintainability and risk. Practical Methods for Engineers. Elsevier.
2011.

8

Science Reports Department of Mathematics and Computer Science
 Technische Universiteit Eindhoven

If you want to receive reports, send an email to: wsinsan@tue.nl (we cannot guarantee the availability of the
requested reports).

In this series appeared (from 2009):

09/01 Wil M.P. van der Aalst, Kees M. van Hee, Compositional Service Trees
 Peter Massuthe, Natalia Sidorova and
 Jan Martijn van der Werf

09/02 P.J.l. Cuijpers, F.A.J. Koenders, Queue merge: a Binary Operator for Modeling Queueing Behavior
 M.G.P. Pustjens, B.A.G. Senders,
 P.J.A. van Tilburg, P. Verduin

09/03 Maarten G. Meulen, Frank P.M. Stappers Breadth-Bounded Model Checking
 and Tim A.C. Willemse

09/04 Muhammad Atif and MohammadReza Formal Specification and Analysis of Accelerated Heartbeat Protocols
 Mousavi

09/05 Michael Franssen Placeholder Calculus for First-Order logic

09/06 Daniel Trivellato, Fred Spiessens, POLIPO: Policies & OntoLogies for the Interoperability, Portability,
 Nicola Zannone and Sandro Etalle and autOnomy

09/07 Marco Zapletal, Wil M.P. van der Aalst, Pattern-based Analysis of Windows Workflow
 Nick Russell, Philipp Liegl and
 Hannes Werthner

09/08 Mike Holenderski, Reinder J. Bril Swift mode changes in memory constrained real-time systems
 and Johan J. Lukkien

09/09 Dragan Bošnački, Aad Mathijssen and Behavioural analysis of an I²C Linux Driver
 Yaroslav S. Usenko

09/10 Ugur Keskin In-Vehicle Communication Networks: A Literature Survey

09/11 Bas Ploeger Analysis of ACS using mCRL2

09/12 Wolfgang Boehmer, Christoph Brandt Evaluation of a Business Continuity Plan using Process Algebra
 and Jan Friso Groote and Modal Logic

09/13 Luca Aceto, Anna Ingolfsdottir, A Rule Format for Unit Elements
 MohammadReza Mousavi and
 Michel A. Reniers

09/14 Maja Pešić, Dragan Bošnački and Enacting Declarative Languages using LTL: Avoiding Errors and
 Wil M.P. van der Aalst Improving Performance

09/15 MohammadReza Mousavi and Proceedings of Formal Methods 2009 Doctoral Symposium
 Emil Sekerinski, Editors

09/16 Muhammad Atif Formal Analysis of Consensus Protocols in Asynchronous Distributed
 Systems

09/17 Jeroen Keiren and Tim A.C. Willemse Bisimulation Minimisations for Boolean Equation Systems

09/18 Kees van Hee, Jan Hidders, On-the-fly Auditing of Business Processes
 Geert-Jan Houben, Jan Paredaens,
 Philippe Thiran

10/01 Ammar Osaiweran, Marcel Boosten, Analytical Software Design: Introduction and Industrial Experience Report
 MohammadReza Mousavi

10/02 F.E.J. Kruseman Aretz Design and correctness proof of an emulation of the floating-point operations
 of the Electrologica X8. A case study

mailto:wsinsan@tue.nl

10/03 Luca Aceto, Matteo Cimini, Anna On Rule Formats for Zero and Unit Elements
 Ingolfsdottir, MohammadReza
 Mousavi and Michel A. Reniers

10/04 Hamid Reza Asaadi, Ramtin Khosravi, Towards Model-Based Testing of Electronic Funds Transfer Systems
 MohammadReza Mousavi, Neda Noroozi

10/05 Reinder J. Bril, Uğur Keskin, Schedulability analysis of synchronization protocols based on overrun without
 Moris Behnam, Thomas Nolte payback for hierarchical scheduling frameworks revisited

10/06 Zvezdan Protić Locally unique labeling of model elements for state-based model differences

10/07 C.G.U. Okwudire and R.J. Bril Converting existing analysis to the EDP resource model

10/08 Muhammed Atif, Sjoerd Cranen, Reconstruction and verification of group membership protocols
 MohammadReza Mousavi

10/09 Sjoerd Cranen, Jan Friso Groote, A linear translation from LTL to the first-order modal µ-calculus
 Michel Reniers

10/10 Mike Holenderski, Wim Cools Extending an Open-source Real-time Operating System with Hierarchical
 Reinder J. Bril, Johan J. Lukkien Scheduling

10/11 Eric van Wyk and Steffen Zschaler 1st Doctoral Symposium of the International Conference on Software Language
 Engineering (SLE)

10/12 Pre-Proceedings 3rd International Software Language Engineering Conference

10/13 Faisal Kamiran, Toon Calders and Discrimination Aware Decision Tree Learning
 Mykola Pechenizkiy

10/14 J.F. Groote, T.W.D.M. Kouters and Specification Guidelines to avoid the State Space Explosion Problem
 A.A.H. Osaiweran

10/15 Daniel Trivellato, Nicola Zannone and GEM: a Distributed Goal Evaluation Algorithm for Trust Management
 Sandro Etalle

10/16 L. Aceto, M. Cimini, A.Ingolfsdottir, Rule Formats for Distributivity
 M.R. Mousavi and M. A. Reniers

10/17 L. Aceto, A. Birgisson, A. Ingolfsdottir, Decompositional Reasoning about the History of Parallel Processes
 and M.R. Mousavi

10/18 P.D. Mosses, M.R. Mousavi and Robustness os Behavioral Equivalence on Open Terms
 M.A. Reniers

10/19 Harsh Beohar and Pieter Cuijpers Desynchronisability of (partial) closed loop systems

11/01 Kees M. van Hee, Natalia Sidorova Refinement of Synchronizable Places with Multi-workflow Nets -
 and Jan Martijn van der Werf Weak termination preserved!

11/02 M.F. van Amstel, M.G.J. van den Brand Using a DSL and Fine-grained Model Transformations to Explore the boundaries of
 and L.J.P. Engelen Model Verification

11/03 H.R. Mahrooghi and M.R. Mousavi Reconciling Operational and Epistemic Approaches to the Formal Analysis of
 Crypto-Based Security Protocols

11/04 J.F. Groote, A.A.H. Osaiweran and Benefits of Applying Formal Methods to Industrial Control Software
 J.H. Wesselius

11/05 Jan Friso Groote and Jan Lanik Semantics, bisimulation and congruence results for a general stochastic
 process operator

11/06 P.J.L. Cuijpers Moore-Smith theory for Uniform Spaces through Asymptotic Equivalence

11/07 F.P.M. Stappers, M.A. Reniers and Transforming SOS Specifications to Linear Processes
 S. Weber

11/08 Debjyoti Bera, Kees M. van Hee, Michiel A Component Framework where Port Compatibility Implies Weak Termination
 van Osch and Jan Martijn van der Werf

11/09 Tseesuren Batsuuri, Reinder J. Bril and Model, analysis, and improvements for inter-vehicle communication
 Johan Lukkien using one-hop periodic broadcasting based on the 802.11p protocol

11/10 Neda Noroozi, Ramtin Khosravi, Synchronizing Asynchronous Conformance Testing
 MohammadReza Mousavi
 and Tim A.C. Willemse

11/11 Jeroen J.A. Keiren and Michel A. Reniers Type checking mCRL2

11/12 Muhammad Atif, MohammadReza Formal Verification of Unreliable Failure Detectors in Partially
 Mousavi and Ammar Osaiweran Synchronous Systems

11/13 J.F. Groote, A.A.H. Osaiweran and Experience report on developing the Front-end Client unit
 J.H. Wesselius under the control of formal methods

11/14 J.F. Groote, A.A.H. Osaiweran and Ananlyzing a Controller of a Power Distribution Unit
 J.H. Wesselius Using Formal Methods

11/15 John Businge, Alexander Serebrenik Eclipse API Usage: The Good and The Bad
 and Mark van den Brand

11/16 J.F. Groote, A.A.H. Osaiweran, Investigating the Effects of Designing Control Software
 M.T.W. Schuts and J.H. Wesselius using Push and Poll Strategies

11/17 M.F. van Amstel, A. Serebrenik Visualizing Traceability in Model Transformation Compositions
 And M.G.J. van den Brand

11/18 F.P.M. Stappers, M.A. Reniers, Dogfooding the Structural Operational Semantics of mCRL2
 J.F. Groote and S. Weber

12/01 S. Cranen Model checking the FlexRay startup phase

12/02 U. Khadim and P.J.L. Cuijpers Appendix C / G of the paper: Repairing Time-Determinism in
 the Process Algebra for Hybrid Systems ACP

12/03 M.M.H.P. van den Heuvel, P.J.L. Cuijpers, Revised budget allocations for fixed-priority-scheduled periodic resources
 J.J. Lukkien and N.W. Fisher

12/04 Ammar Osaiweran, Tom Fransen, Experience Report on Designing and Developing Control Components
 Jan Friso Groote and Bart van Rijnsoever using Formal Methods

12/05 Sjoerd Cranen, Jeroen J.A. Keiren and A cure for stuttering parity games
 Tim A.C. Willemse

12/06 A.P. van der Meer CIF MSOS type system

12/07 Dirk Fahland and Robert Prüfer Data and Abstraction for Scenario-Based Modeling with Petri Nets

12/08 Luc Engelen and Anton Wijs Checking Property Preservation of Refining Transformations for
 Model-Driven Development

12/09 M.M.H.P. van den Heuvel, M. Behnam, Opaque analysis for resource-sharing components in hierarchical real-time systems
 R.J. Bril, J.J. Lukkien and T. Nolte - extended version –

12/10 Milosh Stolikj, Pieter J. L. Cuijpers and Efficient reprogramming of sensor networks using incremental updates
 Johan J. Lukkien and data compression

12/11 John Businge, Alexander Serebrenik and Survival of Eclipse Third-party Plug-ins
 Mark van den Brand

12/12 Jeroen J.A. Keiren and Modelling and verifying IEEE Std 11073-20601 session setup using mCRL2
 Martijn D. Klabbers

12/13 Ammar Osaiweran, Jan Friso Groote, Evaluating the Effect of Formal Techniques in Industry
 Mathijs Schuts, Jozef Hooman
 and Bart van Rijnsoever

12/14 Ammar Osaiweran, Mathijs Schuts, Incorporating Formal Techniques into Industrial Practice
 and Jozef Hooman

13/01 S. Cranen, M.W. Gazda, J.W. Wesselink Abstraction in Parameterised Boolean Equation Systems
 and T.A.C. Willemse

13/02 Neda Noroozi, Mohammad Reza Mousavi Decomposability in Formal Conformance Testing
 and Tim A.C. Willemse

13/03 D. Bera, K.M. van Hee and N. Sidorova Discrete Timed Petri nets

13/04 A. Kota Gopalakrishna, T. Ozcelebi, Relevance as a Metric for Evaluating Machine Learning Algorithms
 A. Liotta and J.J. Lukkien

13/05 T. Ozcelebi, A. Weffers-Albu and Proceedings of the 2012 Workshop on Ambient Intelligence Infrastructures
 J.J. Lukkien (WAmIi)

13/06 Lotfi ben Othmane, Pelin Angin, Extending the Agile Development Process to Develop Acceptably
 Harold Weffers and Bharat Bhargava Secure Software

13/07 R.H. Mak Resource-aware Life Cycle Models for Service-oriented Applications
 managed by a Component Framework

13/08 Mark van den Brand and Jan Friso Groote Software Engineering: Redundancy is Key

	TITEL.PG13-08
	ISSN 0926-4515
	All rights reserved
	Computer Science Reports 13-08

	Blanco
	CSR_13_08
	Blanco
	PUBL.LS4csr 2009 tm

