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July 24, 2015

Abstract

Classical gradient systems have a linear relation between rates and driving forces.
In generalized gradient systems we allow for arbitrary relations derived from general
non-quadratic dissipation potentials. This paper describes two natural origins for
these structures.

A first microscopic origin of generalized gradient structures is given by the theory
of large-deviation principles. While Markovian diffusion processes lead to classical
gradient structures, Poissonian jump processes give rise to cosh-type dissipation
potentials.

A second origin arises via a new form of convergence, that we call EDP-conver-
gence. Even when starting with classical gradient systems, where the dissipation
potential is a quadratic functional of the rate, we may obtain a generalized gradient
system in the evolutionary Γ-limit. As examples we treat (i) the limit of a diffusion
equation having a thin layer of low diffusivity, which leads to a membrane model,
and (ii) the limit of diffusion over a high barrier, which gives a reaction-diffusion
system.

1 Introduction

We consider evolution equations u̇ = V (t, u) that are generated by gradient systems (GS).
By a GS we understand a triple (X,E,R), where the state space X is a weakly closed
convex subset of a Banach space containing the states u(t). The functional E : X →
R∪{∞} is called energy, but in applications it may be a free energy, a relative entropy, or
the negative of the entropy. Finally R is the dissipation potential depending on the state
u and the rate u̇ such that Du̇R(u, u̇) ∈ X∗ denotes the dissipation force. The induced
evolution equation is the force balance

0 = Du̇R(u(t), u̇(t)) + DuE(t, u(t)), (1.1)

∗Partially supported by Einstein Stiftung Berlin, ERC AdG267802, and DFG via SFB1114
†Weierstraß-Institut für Angewandte Analysis und Stochastik, Berlin
‡Centre for Analysis, Scientific Computing and Applications, Technische Universiteit Eindhoven
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where the symbol D denotes the (partial) Gateaux derivative or the convex subdifferential.
Quite often, we will use the dual dissipation potential R∗ that is defined by the Legendre-
Fenchel transform of R(u, ·). Then, the evolution equation can be rewritten as

u̇(t) = DξR
∗
(
u(t),−DE(u(t))

)
, (1.2)

see Section 2.1 for the details. Since R and R∗ are in one-to-one correspondence, we will
sometimes denote (X,E,R) also by (X,E,R∗), in particular if R∗ is given explicitly.

A third equivalent formulation of the gradient flow is given via the energy-dissipation
principle (EDP), also called De Giorgi’s (R,R∗) principle, cf. [DMT80, AGS05]. This
states that, under suitable technical assumptions, a curve u : [0, T ] → X is a solution of
(1.1) or (1.2) if and only if it satisfies the energy-dissipation estimate

E(u(T ))+D(u) ≤ E(u(0)) with D(u) :=

∫ T

0

R(u(t), u̇(t))+R∗
(
u(t),−DE(u(t))

)
dt. (1.3)

We call D the De Giorgi dissipation functional.
A GS is called classical if the dissipation potential R(u, ·) is quadratic, i.e. R(u, u̇) =

1
2
〈G(u)u̇, u̇〉 for a linear, symmetric, and positive definite operator G(u) : X → X∗. If

we want to emphasize that a GS is not classical, we call it a generalized GS. The aim of
this work is to show that generalized GS arise in two natural ways. First, it is shown
in [MPR14, MP∗15] that they appear via large-deviation principles from a microscopic
N -particle system for N → ∞, see Section 2.4 for a brief summary of the main result.
Second, generalized GS occur as suitable multiscale limits of classical GS.

Obviously, every GS generates exactly one gradient-flow evolution equation by (1.1) or
(1.2), but a given evolution equation u̇ = V (t, u) may be generated by many GS. If there
exists at least one such GS, we say that the evolution equation has a gradient structure,
if we do not want to specify the particular GS. As an elementary example we treat the
scalar ODE

ṗ = 1− 2p with p(t) ∈ [0, 1] = Prob({1, 2}),
which we interpret as the Kolmogorov forward equation for a Markov process (Xt)t≥0 with
Xt ∈ {1, 2}. Obviously, this ODE is generated by the GS ([0, 1],E2,R2) with

E2(p) = a
(
p− 1/2

)2
and R2(p, ṗ) =

a

2
ṗ2

for any a > 0. Of course, GS that simply differ by a scaling constant such as a > 0 are
not considered as different. Motivated by a Markovian large-deviation principle, a truly
different GS is obtained for a > 0 by

EMv(p) = a
(
p log p + (1−p) log(1−p)

)
and R∗

Mv(p, ξ) = a
√
p(1−p)C

∗(ξ/a),

where the function C and its Legendre dual C ∗ are given by

C (v) = 2v arsinh(v/2)− 2
√
4+v2 + 4 and C

∗(ξ) = 4
(
cosh(ξ/2)− 1

)
. (1.4)

The functions C and C ∗ will play a fundamental role, so we give some elementary relations:

C (v) = 1
2
v2 +O(v4), C

∗(ξ) = 1
2
ξ2 +O(ξ4), C

′(v) = 2 arsinh(v/2),

√
pqC

∗(log p− log q) = 2
(√

p−√
q
)2
,

√
pq (C ∗)′(log p− log q

)
= p− q.
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Indeed, using the last relation and DEMv(p) = a
(
log p− log(1−p)

)
we easily find

ṗ = DξRMv

(
p,−DEMv(p)

)
= 1− 2p.

Moreover, using (C ∗)′(ξ) = 2 sinh(ξ/2) we see that the evolution takes the exponential
form

ṗ = −2
√
p(1−p) sinh

(1
2
DEMv(p)

)
.

This form is derived and extensively studied in [BoP14], it occurs in mechanics [RRG00,
Eqn. (5)] and in chemistry, see the discussion at the end of Section 2.3.2.

The usage of generalized GS is common in the modeling of materials, e.g. for plasticity,
ferromagnetism, etc., where the nonsmoothness and nonlinearity of the constitutive law
u̇ 7→ Du̇R(u, u̇) for the dissipative forces is essential, see Section 2.3.1 and the survey
[Mie15b]. The mathematical usage of generalized GS in smooth models such as reaction-
diffusion equations and systems is rather new. One of the remarkable origins of gradient
structures arises from the interpretation of a macroscopic system as a Kolmogorov forward
equation

ρ̇ = Q∗ρ, where ρ(t) ∈ Prob(S), (1.5)

for a Markov process (X(t))t≥0 on the set S with generator Q. Considering N independent
particles Xj(t), j = 1, . . . , N one can define the empirical process ρN(t) = 1

N

∑N
j=1 δXj(t) ∈

Prob(S). For N → ∞ the process ρN converges to a solution ρ of (1.5). Moreover,
according to the program in [AD∗11, AD∗13] ρN satisfies a large-deviation principle that

gives rise to a rate functional I (ρ(·)) =
∫ T
0
L(ρ(t), ρ̇(t))dt, where L can be characterized

explicitly by Q. The main observation in [MPR14] is that L defines a GS (Prob(S),E,R)
via the explicit representation

L(ρ, ρ̇) = R(ρ, ρ̇) + R
∗(ρ,−DE(ρ)) + DE(ρ)[ρ̇], (1.6)

whenever Q has a unique steady state π ∈ Prob(S) and Q satisfies the detailed-balance
condition with respect to π (i.e. the Markov process is reversible). We refer to Section
2.4 for details, where we also highlight that the arising gradient systems are classical only
in the case of diffusion processes. In case of jumps, one obtains generalized GS involving
the function C . In particular, for ṗ = 1−2p one finds ([0, 1],EMv,RMv) with a = 1

2
.

We consider the above stochastic approach as a first microscopic origin of GS. The
second origin involves the concept of evolutionary Γ-convergence for GS, see the surveys
[Ser11, Mie15a] for the general ideas. Here we concentrate on convergence results based on
the EDP, cf. (1.3), which is an ideal tool for doing a limit passage for solutions uε : [0, T ] →
X for a family (X,Eε,Rε) of GS depending on a small parameter ε. The aim is then to
derive a limiting GS (X,E0,R0) such that a limit u of the solutions uε is indeed a solution
for the limiting GS. Our Definition 3.2 introduces the concept of EDP-convergence: A
family of GS (X,Eε,Rε) converges to the GS (X,E0,R0) in the EDP sense, if the following

3



holds:

uε : [0, T ] → X is a
solution of (X,Eε,Rε),
uε(0)⇀ u0, and

Eε(0, uε(0)) → E0(0, u
0)<∞





=⇒





∃ u sol. of (X,E0,R0) with u(0)=u
0

and a subsequence εk → 0 :
∀ t ∈ ]0, T ]: uεk(t)⇀ u(t) and

Eεk(uεk(t)) → E0(u(t));

(1.7a)

Eε
Γ
⇀ E0 in X; (1.7b)

ũε(·) ∗
⇀ ũ(·) in L∞([0, T ];X) and

supε∈]0,1], t∈[0,T ] Eε(ũε(t)) ≤ C <∞
}

=⇒ lim inf
ε→0

Dε(ũε) ≥ D0(ũ). (1.7c)

When asking only for condition (1.7a) we speak of pE-convergence, see Definition 3.1.
Note that (1.7c) enforces a liminf estimate of De Giorgi’s dissipation functionals Dε along
general functions ũε, not only along the solutions of the GS (X,Eε,Rε). Having this liminf
estimate, it is easy to pass to the limit in the ε-dependent energy-dissipation estimate
(1.3), since the initial energy on the right-hand side is assumed to converge according to
(1.7a). Then, applying the EDP for the limiting GS (X,E0,R0) we see that u is a solution.

In fact, many approaches to evolutionary Γ-convergence establish EDP-convergence,
but do not explicitly state condition (1.7c) as a main result. E.g. the Sandier-Serfaty

approach [SaS04, Ser11], where the terms
∫ T
0
Rε dt and

∫ T
0
R∗
ε dt are treated separately,

provides EDP-convergence. Our approach is more general than the latter, since we only
ask that the sum

∫ T
0
Rε dt +

∫ T
0
R∗
ε dt behaves well, but not necessarily the individual

terms. This has two effects: (i) we can allow for general functions ũε, and (ii) it can
lead to exchanges between the two terms in the limit ε → 0. Point (i) is important
to explore D0 outside of the set of solutions and thus providing the full information
about the GS (X,E0,R0), while the set of solutions of the limit equation u̇ = V0(t, u) :=
Du̇R0(u,−DuE0(t, u)) only contains information on V0. Point (ii) is relevant for another
important message of this paper. The EDP-limit of classical GS can be a generalized GS.
This phenomenon is considered as another microscopic origin of generalized GS.

Here we provide three different examples for point (ii), the first of which is an ODE
example in Section 3.3.3, while Sections 4 and 5 contain more elaborate examples treating
the membrane limit of a thin-layer and the limit of diffusion to reaction, respectively.

For the membrane limit we consider a diffusion equation with a thin layer with very
small diffusivity. In [Lie12, Lie13] pE-convergence to the membrane limit was established;
however EDP-convergence was not studied. We start with the diffusion equation which
is the gradient flow for the classical GS (Prob(Ω),E,R∗

ε) with E(u) =
∫
Ω
u log(2u)dx and

R∗
ε(u, ξ) =

1
2

∫
Ω
aε(x)(∂xξ)

2udx. Using suitable scalings for the diffusion coefficient aε(x)
Theorem 4.1 provides EDP-convergence to the generalized GS (Prob(Ω),E,R∗

0) with

R
∗
0(u, ξ) =

∫ 0

−1

a

2
(∂xξ)

2udx+ a∗
√
u(0−)u(0+) C

∗(ξ(0+)−ξ(0−)) +
∫ 1

0

a

2
(∂xξ)

2udx,

where u(0−) and u(0+) denote the limit of u(x) at x = 0 from the left and from the right,
respectively. Thus, R∗

0 involves C ∗ and is therefore non-quadratic.
Section 5 follows [PSV10, PSV12, AM∗12] by considering the limit from pure diffusion

in physical space and along a reaction-path variable y ∈ Υ ⊂ R to a limit of a reaction-
diffusion system on Ω. The Fokker-Planck equation reads

u̇ = mΩ∆xu+ τε∂y

(
∂yu+

1

ε
u ∂yV (y)

)
,

4



ρ̇ε(t) = Q∗
ερε(t) (Prob(S),Eε,Rε)

ρ̇0(t) = Q∗
0ρ0(t) (Prob(S),E0,R0)

LDP

LDP

ε→0 EDP

Figure 1.1: For reversible, time-continuous Markov processes the large-deviation principle
(LPD) of Section 2.4 provides a (generalized) gradient structure. This mapping commutes
with taking the limit ε→ 0 and EDP-convergence, respectively.

where V is a potential with two global minima y0 and y1 and one global maximum in-
between. This equation is generated by the classical GS (Prob(Ω×Υ),Eε,R

∗
ε) where Eε is

the relative entropy and R∗
ε is the quadratic Wasserstein dissipation potential, see (5.2).

Theorem 5.2 establishes EDP-convergence to a generalized GS (Prob(Ω×{y0, y1}),E,R∗),
where R∗ again involves the non-quadratic function C ∗.

We conclude our introduction by a general and surprising observation. The three main
models in this work (i.e. the ODE, the membrane, and the reaction-to-diffusion model in
Sections 3.3.2, 4, and 5, respectively) can be seen as Kolmogorov forward equations for
naturally associated Markov processes. Thus, the large-deviation theory of Section 2.4
is applicable and provides entropic GS (Prob(S),Eε,Rε) for the associated Kolmogorov
forward equations ρ̇ε = Q∗

ερε for each ε ∈ ]0, 1[ as well as for ε = 0. The limit for ε = 0
can be also defined in terms of the classical convergence for Markov processes asking
ρε(t) = etQ

∗

ερ(0)
∗
⇀ ρ(t) = etQ

∗

0ρ(t). Ignoring the (linear) Markovian structure, we can
also consider EDP-convergence of the induced entropic GS. In all our three examples we
find the surprising result that the EDP-limit is exactly the entropic GS of the limiting
Markov process. This means that applying the described large-deviation principle and
taking the limit ε → 0 (either on the level of Markov semigroups or as EDP-convergence
for GS) commute, see Figure 1.1. This result appears naturally, if we use representation
(1.6) of the rate function I giving

I (ρ) =

∫ T

0

R(ρ, ρ̇) + R∗(ρ,−DE(ρ)) + DE(ρ)[ρ̇]dt = D(ρ) + E(ρ(T ))− E(ρ(0)).

Hence, the above large-deviation principle exactly encodes the energy-dissipation princi-
ple, and EDP-convergence for the induced entropic GS can be interpreted as Γ-convergence
of the rate functionals.

The question how general this observation about the interchangeability of the suitable
large-deviation principles and the EDP-convergence is, seems to be challenging, but goes
beyond the scope of this work. We mention that in [BoP14] similar relations between
large-deviation principles and evolutionary Γ-convergence are studied.

As a final general remark, we emphasize that this paper focuses on the modeling
aspects of the emergence of generalized GS. Thus, we do not give the full analytical
details in terms of estimates and convergences in the proper functional spaces, but rather
highlight the structures and manipulations needed to understand the corresponding limit
procedures.
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2 Classical and generalized gradient systems

We now convert the formal ideas from the introduction into rigorous mathematical state-
ments. We call a triple (X,E,R) a gradient system (GS), if X is a Banach space,
E : [0, T ] × X → R∞ := R∪{∞} is a functional (such as the free energy, the negen-
tropy, etc.), and R : X ×X → [0,∞] is a dissipation potential, which means that for all
q ∈ X the functional R(u, ·) : X → R∞ is lower semicontinuous, nonnegative, convex,
and satisfies R(u, 0) = 0. In this section, we allow for the case that the energy functional
depends on the time variable t ∈ [0, T ] to show that the abstract principle is valid in this
general case. However, for notational convenience we will restrict to the autonomous case
(i.e. ∂tE(t, u) ≡ 0) in all other parts.

We speak of a classical GS, if R(u, ·) is quadratic, i.e. there exists a symmetric and
positive definite operator G such that R(u, v) = 1

2
〈G(u)v, v〉. However, plasticity requires

non-quadratic dissipation potentials, e.g. of the form R(π̇) = σyield‖π̇‖L1+ 1
2
µvisc‖π̇‖2L2 , see

[Mie03, MiR15]. In particular, the rate-independent case is based on R(u, λv) = λR(u, v)
for all λ > 0, which is incompatible with a quadratic form. If R(u, ·) is non-quadratic, we
call (X,E,R) a generalized GS.

2.1 Variational principles for gradient systems

The following proposition from convex analysis shows that there are several completely
equivalent formulations of the generalized force balance (1.1). The equivalences of the
points (ii) to (iv) below are also called Fenchel equivalences, cf. [Fen49]. The essential
tool is the Legendre-Fenchel transform Ψ∗ : X∗ → R∞ of a convex function Ψ : X → R∞

defined via
Ψ∗(ξ) := sup{ 〈ξ, v〉 −Ψ(v) | v ∈ X }.

In a reflexive Banach space we have (Ψ∗)∗ = Ψ.

Proposition 2.1 (Equivalent formulations) Let X be a reflexive Banach space and
Ψ : X → R∞ be proper, convex, and lower semicontinuous. Then, for every ξ ∈ X∗ and
every v ∈ X the following five statements are equivalent:

(i) v ∈ Argmin
w∈X

(
Ψ(w)− 〈ξ, w〉

)
; (ii) ξ ∈ ∂Ψ(v);

(iii) Ψ(v) + Ψ∗(ξ) = 〈ξ, v〉;

(iv) v ∈ ∂Ψ∗(ξ); (v) ξ ∈ Argmin
η∈X∗

(
Ψ∗(η)− 〈η, v〉

)
.

Note that the definition of Ψ∗ immediately implies the Young-Fenchel inequality Ψ(w) +
Ψ∗(η) ≥ 〈η, w〉 for all w and η. Thus, (iii) expresses an optimality as well.

Defining the dual dissipation potential R∗ via R∗(u, ·) := (R(u, ·))∗ we can apply these
equivalences to reformulate (1.1) in the following ways:

(I) Rayleigh principle [Ray71]

(RP) u̇ ∈ Argmin
v∈X

(
R(u, v)− 〈DE(t, u), v〉

)
;

(II) Force balance in X∗ Rayleigh-Biot equation [Ray71, Bio55]

(FB) 0 ∈ ∂u̇R(u, u̇) + DE(t, u) ∈ X∗;

6



(III) Power balance in R De Giorgi’s (R,R∗) formulation [DMT80]

(PB) R(u, u̇) + R∗(u,−DE(t, u)) = −〈DE(t, u), u̇〉;

(IV) Rate equation in X Onsager equation [Ons31]

(RE) u̇ ∈ ∂ξR
∗(u,−DE(t, u)) ∈ X;

(V) Maximum dissipation principle cf. e.g. [HaF08]

(MDP) DE(t, u) ∈ Argmax
ξ∈X∗

(
〈ξ, u̇〉 − R∗(u, ξ)

)
.

In fact, [Ray71, Eqn. (26)] also includes the kinetic energy T, which we omit in our ap-
proximation, namely d

dt

(
Du̇T(u, u̇)

)
+Du̇R(u, u̇) + DqE(t, u) = 0.

Before returning to the general situation, we highlight the three different cases (II)–
(IV) for the classical viscous dissipation, i.e. R(u, v) = 1

2
〈G(u)v, v〉 and R∗(u, ξ) =

1
2
〈ξ,K(u)ξ〉 with K(u) = G(u)−1. Then, we have

(FB) G(u)u̇ = −DE(u) (RE) u̇ = −K(u)DE(u) =: −∇GE(u)

(PB)
1

2
〈G(u)u̇, u̇〉+ 1

2

〈
DE(u),K(u)DE(u)

〉
= −〈DE(u), u̇〉,

where (RE) can be seen as a “gradient-flow equation”, as ∇G is the gradient operator.

2.2 The energy-dissipation principle

The above formulations can already be understood in a variational sense, since the evo-
lution is expressed by extremizing a functional or by variations or derivatives of the two
functionals E and R. However, for mathematical purposes it is desirable to have formula-
tions in terms of a minimization problem for the whole solution trajectories u : [0, T ] → X.
One such principle can be derived on the basis of the power balance (PB) by integration
in time and using the chain rule and finally employing the Young-Fenchel inequality
Ψ(w) + Ψ∗(η) ≥ 〈η, w〉, cf. [DMT80] or the survey [Mie15a]. This leads to the celebrated
energy-dissipation principle, also called De Giorgi’s (R,R∗) principle, see [AGS05] for
some historical remarks.

Theorem 2.2 (De Giorgi’s energy-dissipation principle) Under suitable technical
conditions on (X,E,R) a function u : [0, T ] → X satisfies (I)–(V) from above for almost
all t ∈ [0, T ] if and only if the energy-dissipation balance (EDB) holds:

(EDB)





E(T, u(T )) +

∫ T

0

R(u, u̇) + R∗(u,−DE(t, u))dt

= E(0, u(0)) +

∫ T

0

∂tE(t, u(t))dt.

Under additional technical conditions it is sufficient to have only the upper estimate where
“=” is replaced by “≤”. In this case, we speak of the energy-dissipation estimate (EDE).

7



2.3 Examples of generalized gradient structures

Here we give some examples of generalized gradient structures. First, we discuss dissipa-
tive material models like plasticity or shape-memory materials that form a huge class of
generalized GS. Second, we treat nonlinear reaction-diffusion systems (RDS), which will
be closer to the main theme of this paper. The third class of examples concerns reversible
Markov processes, where the Kolmogorov forward equation has a gradient structure with
the relative entropy as energy functional. This latter class is so important that it is treated
in the subsequent Subsection 2.4.

2.3.1 Dissipative material models

The state of a body Ω ⊂ Rd, composed of so-called dissipative materials (also called
standard generalized materials), is given in terms of the elastic displacement u : Ω →
Rd and an additional internal variable z : Ω → Rk. The latter may describe plastic
deformations, damage, phase-field variables, magnetization, or other internal states of the
material. The total stored energy E depends on u, z, and usually also on a process time
t ∈ [0, T ], i.e. E(t,u, z). As introduced in the theory of standard generalized materials
in [HaN75] the dissipative forces are given in terms of a (primal) dissipation potential R
that also may include viscoelastic terms:

R(u̇, ż) = Rdiss(ż) + Rvisc(e(u̇)),

where e(u̇) = 1
2
(∇u̇+(∇u̇)⊤). As before, the corresponding force balance equations (FB)

are
0 = Du̇R(u̇, ż) + DuE(t,u, z), 0 ∈ ∂żR(u̇, ż) + DzE(t,u, z)

with ∂żR(u̇, ż) denoting the set-valued convex subdifferential.
While the viscoelastic potential Rvisc is assumed to be quadratic in many applications,

the potential Rdiss for the internal variables z is often supposed to be non-quadratic. E.g.
in viscoplasticity with yields stress σyield one takes the form

Rdiss(ż) =

∫

Ω

(
σyield|ż|1 + ν|ż|1+δ

)
dx,

where δ > 0 is usually taken small, e.g. in δ = 0.012 in [ZR∗06]. The weak growth of
order 1+δ is sometimes even replaced by a growth O(|ż| log |ż|) as given by our function
C (see e.g. [RRG00, Eqn. (5)] and [BoP14]).

For later reference, we mention the very simple scalar hysteresis model of a so-called
play operator. It is given by the generalized GS (R,Eplay,Rplay) with

Eplay(t, z) =
1

2
z2 − ℓ(t)z and Rplay(ż) = r|ż| with r > 0. (2.1)

It serves as a limit for evolutionary Γ-convergence in Example 3.3 as well as a large-
deviation limit in [BoP14].

2.3.2 Nonlinear reaction-diffusion systems

We consider concentrations c(t) : Ω → [0,∞[I of chemical species C1, . . . CI that can react
according to R reactions of mass action type given by a stoichiometric relation

αriC1 + . . .+ αrICI
kfr
⇋

kbr

βr1C1 + . . .+ βrICI ,

8



where r = 1, . . . , R is the index of the reaction, kfr and k
b
r are the forward and backward

reaction coefficients, and the stoichiometric coefficients αri and β
r
i are nonnegative integers.

The reaction-diffusion system (RDS) for the concentrations c = (c1, . . . , cI) takes the form

ċ = D∆c−R(c) with R(c) :=

R∑

r=1

(
kfrc

αr−kbrcβ
r)(

αr−βr
)

(2.2)

and D = diag(δi)i=1,...,I , where δi > 0. With the stoichiometric vectors αr = (αri )i and

βr = (βri )i ∈ NI
0 we define the monomials in the form cα :=

∏I
i=1 c

αi

i .
It was shown in [Mie11, Mie13b] that (2.2) has a (classical) gradient structure under

the additional assumption of the detailed-balance condition, which means that

∃w = (wi)i : wi > 0 and kfrw
αr

= kbrw
βr

for r = 1, . . . , R. (2.3)

Using the Boltzmann function λB(z) = z log z − z + 1 we define the relative entropy

E(c) =

∫

Ω

I∑

i=1

λB(ci(x)/wi)widx,

which gives rise to the vector of thermodynamic driving forces (also called chemical po-
tentials) µ = DE(c) with µi = log(ci/wi). Because of the logarithm laws they satisfy
the relation αr · DE(c) =

∑I
i=1 α

r
i log(ci/wi) = log(cα

r

) − log(wαr

). Thus, using the
detailed-balance conditions we obtain the relation

(
αr−βr

)
· (−DE(c)) = log(kbrc

βr

)− log(kfrc
αr

). (2.4)

To construct the dual dissipation potentials we may choose any scalar, strictly convex
dual dissipation functional ψ : R → R with ψ(0) = ψ′(0) = 0 and ψ′′(0) > 0 and let

R
∗(c,µ) :=

∫

Ω

[1
2

I∑

i=1

δici|∇µi|2 +

R∑

r=1

Hr
ψ(c)ψ

(
(αr−βr)·µ

)]
dx

with Hr
ψ(c) :=

kbrc
βr − kfrc

αr

ψ′
(
log(kbrc

βr)− log(kfrc
αr)

) .

Using DµR(c,µ) = −
(
div(δici∇µi)

)
i
+
∑R

r=1H
r
ψ(c)ψ

′
(
(αr−βr)·µ

)(
αr−βr

)
and (2.4),

we easily see that the nonlinear RDS (2.2) satisfying the detailed-balance condition is
generated by the pair E and R, i.e. ċ = D∆c−R(c) = DµR

(
c,−DE(c)

)
. Thus, we have

found a family of generalized gradient structures of the nonlinear RDS (2.2).
The case of quadratic R(c; ·), i.e., ψ(η) = η2/2 was introduced in [Mie11], leading to

the logarithmic means Hr
quadr(c) = Λ(kfrc

αr

, kbrc
βr

) with Λ(a, b) = (a−b)/(log a− log b),
see also [Maa11, ErM12, MaM15a]. However, it was already criticized in the 1930s that
the linear relation ċ = −K(c)µ (i.e. R∗(c,µ) = 1

2
〈µ,K(c)µ〉 is quadratic) arising from

Onsager’s principle is not suitable for chemical reactions if one wants to model systems
that are not very close to thermal equilibrium. As a solution Marcelin and de Donder
introduced exponential dependencies between µ and ċ, see [Fei72, Def. 3.3] or [GK∗00,
Eqn. (11)]. In [Grm10] Remark iii on p. 77 gives some historical comments and Eqn. (69)
explicitly features an exponential dissipation potential Ξ involving the function

(
eξ/2 +

9



e−ξ/2 − 2). Since the choice ψ(ξ) = C ∗(ξ) is central for our paper, we give R∗ explicitly
for this case, viz.

R
∗(c,µ) =

∫

Ω

[ I∑

i=1

δici
2

|∇ci|2 +

R∑

r=1

√
kfrc

αrkbr c
βr

C
∗
(
(αr−βr) · µ

)]
dx. (2.5)

We will see that exactly the same structure, up to a trivial scaling factor 1/2, arises via
the large-deviation principle described next, see also [MP∗15].

2.4 Markov processes, large deviations, and GS

Here we give a rough sketch of the theory in [MPR14] about gradient structures for
the Kolmogorov forward equation ρ̇ = Q∗ρ of Markov processes satisfying a detailed-
balance condition, which are also called reversible Markov processes, for short. The idea
that large-deviation principles generate gradient structures goes back to [OnM53] (see
Eqn. (4-21) therein for a quadratic version of the energy-dissipation principle derived by
large-deviations, called Boltzmann’s principle). The mathematical theory was developed
only recently, see [AD∗11, AD∗13, MPR14].

In Section 2.4.1 we first describe a time-dependent large-deviation principle for general
Markov processes providing a formula for the rate function I (ρ(·)) =

∫ T
0
L(ρ(t), ρ̇(t))dt

and then present the result of [MPR14], which shows that for reversible Markov processes
the functional L is induced by an EDP for a GS (Prob(S),E,R). In Sections 2.4.2 to 2.4.4
we then discuss a few applications of the abstract result in Theorem 2.3.

2.4.1 Gradient structures obtained via large deviations

We consider a compact metric space S and denote by Prob(S) the subset of probability

Radon measures on S equipped with the narrow convergence
∗
⇀ defined by duality with

continuous, bounded functions. The Kolmogorov forward equation ρ̇ = Q∗ρ describes the
evolution of the probability laws ρ(t) of a Markov process (Xt)t≥0, if the law of X0 is given
by ρ(0) ∈ Prob(S). The Markov generator is given as Q acting on functions on S, while
its dual Q∗ acts on measures such that

∫
S
(Qf)dρ =

∫
S
f d(Q∗ρ).

Considering N independent realizations (X
(i)
t )t≥0, i = 1, . . . , N of the underlying

Markov process, the measure-valued empirical process ρN (t) := 1
N

∑N
i=1 δX(i)

t

∈ Prob(S)

can be defined. Using the law of large numbers the limit N → ∞ gives ρN (t)
∗
⇀ ρ(t),

which solves the Kolmogorov forward equation ρ̇ = Q∗ρ, see e.g. [Ren13, Thm. 2.3.1]. Un-
der suitable assumptions, see [MPR14], it is shown in [FeK06] that the empirical process
ρN satisfies a large-deviation principle with a rate function I (ρ(·)), i.e.

P
(
ρN(·) ≈ ρ̂(·)

)
≃ e−NI (ρ̂(·)),

see the above references for the proper definition of “≃”. The main result is that I

has the form I (ρ(·)) =
∫ T
0
L(ρ(t), ρ̇(t)) dt, where L is the Legendre transform of the

functional H(ρ, ·) ( i.e. L(ρ, v) = sup
∫
Ω
ξdv −H(ρ, ξ) ) given via the explicit formula

H(ρ, ξ) :=

∫

S

e−ξ(s)(Q eξ)(s)dρ(s).

We emphasize the simplicity of this formula and the (separate) linearity in ρ and in Q.
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A main observation in [MPR14] is that the deterministic case, which is given by the
relation

I (ρ(·)) =
∫ T

0

L(ρ(t), ρ̇(t))dt = 0,

can be interpreted as an energy-dissipation principle if and only if the Markov process is
reversible, which is the same as asking for the detailed balance condition (cf. (2.3)) for the
linear Kolmogorov forward equation ρ̇ = Q∗ρ. Hence, we now further assume that there
exists a stationary measure π ∈ Prob(S) which has, without loss of generality, the full set
S as its support. We say that Q satisfies the detailed balance condition with respect to π,
if ∫

S

f
(
Q g

)
dπ =

∫

S

g
(
Q f)dπ (2.6)

for all f and g in the domain if Q. Choosing g ≡ 1, we find that Q∗π = 0, i.e. the detailed
balance condition implies the stationarity.

This version of the detailed-balance condition for Markov processes coincides with
the detailed-balance condition for chemical reactions in (2.3). Indeed, if the ODE case
ċ = −R(c) is linear, i.e. ċ = Ac with Aw = 0, then (2.3) means Aijwj = Ajiwi. Setting
S = {1, . . . , I} and Q = A∗ gives (2.6).

In the sequel we will use the Radon-Nikodym derivative of ρ with respect to π denoted
by f = dρ

dπ
∈ L1

≥0(S, π) and defined via
∫
B
1dρ =

∫
B
f dπ for all Borel sets B ⊂ S.

Theorem 2.3 ([MPR14, Sec. 3]) If the Markov process (Xt)t≥0 on S is reversible, i.e.
a stationary measure π ∈ Prob(S) satisfying the detailed-balance condition (2.6) exists
for the Kolmogorov forward equation ρ̇ = Q∗ρ, then the large-deviation rate functional∫ T
0
L(ρ, ρ̇)dt has the form of an energy-dissipation principle, namely

L(ρ, v) = R(ρ, v) + R
∗(ρ,−DE(ρ)) +

∫

S

DE(ρ)dv,

where the gradient structure (Prob(S),E,R∗) is given by E(ρ) = 1
2

∫
S
λB

(
dρ
dπ

)
dπ and the

dual dissipation potential

R∗(ρ, ξ) =

∫

S

(
(
√
f e−ξ)

(
Q(

√
f eξ)

)
−
√
f
(
Q
√
f
))

dπ, where f =
dρ

dπ
. (2.7)

The cited reference contains not only a full proof, but also specifies under what assump-
tions this implication is in fact an equivalence, i.e. the existence of a gradient structure
implies the existence of a steady state satisfying the detailed-balance condition.

Since the arguments and proofs in [MPR14] are quite involved, we highlight here the
main structures and formal calculations to see that (Prob(S),E,R∗) is a GS and that it
generates the Kolmogorov equation ρ̇ = Q∗ρ.

We first observe that R∗ is defined in terms of H via

R∗(ρ, ξ) = H

(
ρ, ξ+

1

2
log f

)
−H

(
ρ,

1

2
log f

)
, where

1

2
log f = DE(ρ) =

1

2
log

dρ

dπ
.

Obviously, R∗(ρ, ·) is convex if and only if H(ρ, ·) is convex. The latter is independent
of the detailed-balance condition and can be established as follows. Consider the Markov
semigroup Pt = etQ for t ≥ 0. For fixed ρ ∈ Prob(S) and t ≥ 0 define

At(ξ) :=

∫

S

e−ξ Pt(e
ξ)dρ =

∫

S×S

e−ξ(x)+ξ(y)pt(x, dy)ρ(dx),
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where pt with pt(x, ·) ∈ Prob(S) denotes the time-dependent Markov kernel. From the
convexity of ξ 7→ e−ξ(x)+ξ(y) and the nonnegativity of pt and ρ, we conclude that ξ 7→ At(ξ)
is convex. Using 1

t
(Ptη − η) → Qη and A0(ξ) ≡ 1, we see that

H(ρ, ξ) = lim
t→0

1

t
(At(ξ)−A0(ξ)) = lim

t→0

1

t
(At(ξ)− 1)

is also convex in ξ.
By definition we have R∗(ρ, 0) = 0, and the detailed-balance condition implies the

time reversibility R∗(ρ,−ξ) = R∗(ρ, ξ). Since this implies DR∗(ρ, 0) = 0, convexity gives
the positivity R∗(ρ, ξ) ≥ 0. Thus, R∗ is indeed a dual dissipation potential.

To derive the induced gradient-flow evolution for the GS (Prob(S),E,R∗) we observe

DξR
∗(ρ,−DE(ρ))[η] = DξH(ρ, 0)[η] =

∫

S

(
e0(−η)Q(e0) + e0Q(e0η)

)
dρ =

∫

S

ηd(Q∗ρ),

where we used Q1 ≡ 0. This provides ρ̇ = DξR
∗(ρ,−DE(ρ)) = Q∗ρ, which is the expected

Kolmogorov forward equation.

2.4.2 A finite-state Markov process

We consider the finite state space S = {1, . . . , I} such that

Prob(S) =
{
ρ = c = (c1, . . . , cI) ∈ [0, 1]I

∣∣ ∑I
i=1 ci = 1

}
.

The Kolmogorov forward equation is the ODE

ċ = Ac with A ∈ RI×I .

Note that the Markov generator is given by Qfinite = A⊤, and the conditions for a Markov
generator are

Aij ≥ 0 for all i 6= j and ∀ i = 1, . . . , I : 0 =

I∑

j=1

Aji.

We further assume that there is a unique positive steady state π = w ∈ Prob(S) such
that the detailed-balance condition holds, namely Aijwj = Ajiwi.

Thus, the induced energy functional is Efinite(c) = 1
2

∑I
i=1 ciλB(ci/wi). To calculate

the dissipation potential we use that Q can be split

Qfinite =
I−1∑

i=1

I∑

j=i+1

Qi↔j with Qi↔j := mij

( 1

wj
ej⊗ei +

1

wi
ei⊗ej

)
,

where mij := Aijwj = Ajiwi and ek denotes the kth unit vector in RI . Using the linearity
in Qfinite of the formula (2.7) for Rfinite we can first calculate

R∗
i↔j(c, ξ) =

I∑

k,l=1

[( ck
wk

)1/2
e−ξkQi↔j

kl

( cl
wl

)1/2
eξl −

( ck
wk

)1/2
Qi↔j
kl

( cl
wl

)1/2
]
wk

= mij

( cicj
wiwj

)1/2(
eξi−ξj + eξj−ξi − 2

)
.
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Summing these terms and using the function C ∗ we find

R∗
finite(c, ξ) =

1

2

I−1∑

i=1

I∑

j=i+1

mij

( cicj
wiwj

)1/2

C
∗
(
2(ξi−ξj)

)

and conclude by Theorem 2.3 that the equation ċ = Q⊤
finitec is induced by the GS

(Prob(S),Efinite,Rfinite).

2.4.3 Linear reaction-diffusion systems

We now return to RDS as discussed in Section 2.3.2, but now consider only linear reactions
where all stoichiometric vectors αr and βr are given by unit vectors ei and ej, respectively.
This means that the reaction is a simple exchange reaction Ci ⇋ Cj. The linear RDS on
a bounded smooth domain Ω ⊂ Rd takes the form

ċ = D∆c+ Ac, where D = diag(δj)j=1,...,I with δj ≥ 0 (2.8)

complemented by no-flux boundary conditions. The matrix A is as before. Now, cj(t, ·) ∈
L1(Ω) is the nonnegative concentration of the chemical species Ci.

This system can be understood as the Kolmogorov forward equation on the state space
S = Ω × {1, . . . , I}, where the random variable Yt = (Xt, i(t)) undergoes a Brownian
motion in Ω with diffusion constant δj as long as i(t) = j. At discrete times the particle
can change its type within {1, . . . , I}, according to the jump process induced by the
generator Qfinite = A⊤, and then continue a Brownian motion with the new diffusion
constant. The full generator is

(Qf)(x, i) = δi∆f(x, i) +
I∑

k=1

Akif(x, k), ∇f(x, i) · ν = 0 on ∂Ω.

We now assume that the linear reaction system satisfies the detailed-balance condition,
i.e. we assume that there is an equilibrium state w with wi > 0 and Aijwj = Ajiwi for all
i and j. Then, the steady state π ∈ Prob(S) is given by the product of the d-dimensional
Lebesgue measure on Ω and w, up to a suitable normalization factor:

π =
1

Z
dx⊗ w where Z =

I∑

i=1

wi vol(Ω).

By normalizing w suitably, we may assume Z = 1 subsequently.
Using the Neumann boundary conditions, it is easy to check that the generator Q

satisfies the detailed-balance condition (2.6) with respect to π.
Hence, we can apply Theorem 2.3 which provides the large-deviation GS for (2.8). Note

that ρ ∈ Prob(S) is absolutely continuous with respect to π if and only if ρ = (cidx)i=1,...,I

with c = (ci)i=1,...,I ∈ L1
≥0(Ω)

I . Moreover, dρ
dπ

=
(
ci/wi

)
i=1,...,I

shows that the probability

density dρ
dπ

equals the vector of relative concentrations ci/wi.
The driving functional E is the relative entropy up to a factor 1/2, viz.

E(ρ) =
1

2

∫

S

λB
(dρ
dπ

)
dπ =

1

2

∫

Ω

( I∑

i=1

λB(ci(x)/wi)wi

)
dx. (2.9)
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For calculating the dissipation potential R we can take advantage of the linearity in
Q. In fact, Q can be split into I diffusion processes and the reaction part, namely
Q =

∑I
i=1Q

(i)
diff + Qfinite with Qfinite as above. The corresponding functionals Hj for

diffusion processes Q(j)
diff take the form

Hj(ρ, ξ) = δj

∫

Ω

(
|∇ξ(x, j)|2 +∆ξ(x, j)

)
dρ(x, j).

The dual dissipation potential R∗ is obtained by replacing ξ(x, j) by ξ(x, j)+1
2
log

( cj(x)
wj

)

and dρ(x, j) = cj(x)dx, where we also use

∫

Ω

∇cj(x) · ∇ξ(x, j) + cj(x)∆ξ(x, j)dx =

∫

∂Ω

cj(x)∇ξ(x, j) · ν da = 0.

Subtracting the term at ξ = 0, writing ξ = (ξj)j with ξj(x) = ξ(x, j), and using the result
for Qfinite from above, we arrive at the formula

R∗(c, ξ) =

∫

Ω

I∑

j=1

δj |∇ξj(x)|2cj(x)dx

+

∫

Ω

I−1∑

i=1

I∑

k=2

1

2

√
Akici(x)Aikck(x) C

∗
(
2(ξk(x)−ξi(x))

)
dx.

This is the same dual dissipation potential as given in (2.5), except for the factors 1
2
and 2

outside and inside of C ∗. However, these scaling factors arise since in the large-deviation
result in Theorem 2.3 a factor 1

2
appears in the definition of E(ρ) (see (2.9)), which is

one-half of the usual relative entropy.

2.4.4 Large deviations for a membrane model

We consider a diffusion equation in the interval Ω = ]−1, 1[, where at x = 0 there is
a membrane giving rise to a transmission condition. The Kolmogorov forward equation
takes the form (where ˙ = ∂t and

′ = ∂x)

ρ̇ = a±ρ
′′ for ±x ∈ ]0, 1[, 0 = a±ρ

′(±1),

a+ρ
′(0+) = b

(
ρ(0+)− ρ(0−)

)
= a−ρ

′(0−).

The last relation means first that the mass flowing out of ]−1, 0[ has to equal the flow
into ]0, 1[, and second that this flow is proportional to the difference of the densities.

The invariant measure is π = 1
2
dx, and the Markov generator Qmemb takes the form

(Qmembf)(x) = a±f
′′(x) for ± x ∈ ]0, 1[, 0 = a±f

′(±1),

a+f
′(0+) = b

(
f(0+)−f(0−)

)
= a−f

′(0−).

The functional Hmemb takes the form

Hmemb(ρ, ζ) =

∫

]−1,0[

a−
(
ζ ′′ + (ζ ′)2

)
ρdx +

∫

]0,1[

a+
(
ζ ′′ + (ζ ′)2

)
ρdx

with ζ ′(±1) = 0 and a+ζ
′(0+)eζ(0

+) = b
(
eζ(0

+) − eζ(0
−)
)
= a−ζ

′(0−)eζ(0
−).
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Inserting ζ = ξ+ 1
2
log(2ρ) and doing an integration by parts using the nonlinear boundary

conditions one obtains the dual dissipation potential

Rmemb(ρ, ξ) =

∫

]−1,0[

a−(ξ
′)2ρdx+

√
ρ(0−)ρ(0+)C

∗
(
2(ξ(0+)−ξ(0−))

)
+

∫

]0,1[

a+(ξ
′)2ρdx,

which again features the non-quadratic dissipation function C ∗.

3 Evolutionary Γ-convergence

Following the notions in the survey [Mie15a] we consider families of GS (X,Eε,Rε)ε∈]0,1[
and ask the question whether the solutions uε for these systems have a limit u for ε → 0
and whether u is again a solution to a GS (X,E0,R0). Ideally, one might hope that it
is sufficient for Eε and Rε to converge in a suitable topology to E0 and R0, respectively.
Such results indeed exist and can be found in the surveys [Ser11, Mie15a]. However,
the aim of this work is to highlight the fact that starting with classical (i.e. quadratic)
dissipation potentials Rε we may end up with a limiting dissipation R0 that is non-
quadratic. Thus, limits of classical GS may be generalized GS. First such examples were
given in [Mie12, MiT12] in the context of plasticity.

3.1 pE-convergence of gradient systems

We first recall the general definition of pE-convergence, which is a short name for evolu-
tionary Γ-convergence with well-prepared initial conditions. Hence, the letter“E” stands
for both, ‘E’volutionary convergence and ‘E’nergy convergence, while the letter “p” stands
for well‘P’reparedness of the initial conditions, i.e., Eε(0, uε(0)) → E0(0, u

0)<∞.

Definition 3.1 (pE-convergence of (X,Eε,Rε)) We say that the generalized gradient

systems (X,Eε,Rε) pE-converge to (X,E0,R0), and write (X,Eε,Rε)
pE
⇀ (X,E0,R0), if

uε : [0, T ] → X
is sol. of (X,Eε,Rε),
uε(0)⇀ u0, and

Eε(0, uε(0)) → E0(0, u
0)<∞





=⇒





∃ u sol. of (X,E0,R0) with u(0)=u
0

and a subsequence εk → 0 :
∀ t ∈ ]0, T ]: uεk(t)⇀ u(t) and

Eεk(uεk(t)) → E0(u(t)).

(3.1)

Here uε ⇀ u means the weak convergence in the Banach space X. We emphasize that
the notion of pE-convergence asks for convergence of both, the solutions and the energies,
but not of the dissipation potentials. However, using the EDP and the convergence of the
energies, we easily obtain convergence of the integrated dissipations, namely

∫ T

0

Rεk(uεk , u̇εk)+R∗
εk

(
uεk ,−DEεk(uεk)

)
dt = Eεk(uεk(0))− Eεk(uεk(T ))

→ E0(u(0))− E0(u(T )) =

∫ T

0

R0(u, u̇)+R∗
0

(
u,−DE0(u)

)
dt.

A first systematic study of evolutionary Γ-convergence relying on gradient structures
was initiated in Sandier-Serfaty [SaS04], see also [Ser11, Mie15a]. In this approach one
derives sufficient conditions for pE-convergence based on a limiting passage in the EDB

Eε(uε(T )) +

∫ T

0

Rε(uε, u̇ε) + R
∗(uε,−DEε(uε))dt = Eε(uε(0)). (3.2)
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We observe that on the right-hand side we have the initial energy, which converges
to the desired limit because of the well-prepared initial conditions. Thus, to obtain an
(EDE) for the limiting process it suffices to show three liminf estimates for the terms on
the left-hand side, namely

lim inf
ε→0

Eε(uε(T )) ≥ E0(u(T )); (3.3a)

lim inf
ε→0

∫ T

0

Rε(uε, u̇ε)dt ≥
∫ T

0

R0(u, u̇)dt; (3.3b)

lim inf
ε→0

∫ T

0

R∗
ε

(
uε,−DEε(uε)

)
dt ≥

∫ T

0

R∗
0

(
u,−DE0(u)

)
dt. (3.3c)

Of course, it is sufficient that these convergences hold only along (a subsequence of) the
solutions uε of (EDP). In the following subsection, we will generalize this approach by
keeping the terms Rε and R∗

ε together.

3.2 EDP-convergence for gradient systems

Here we define a new notion of evolutionary Γ-convergence for GS that, on the one hand, is
more restrictive but, one the other hand, gives a more precise information on the limiting
dissipation potential R0. We use the fact that we do not need to have the two convergences
(3.3b) and (3.3c) separately. Indeed, it is sufficient that only the integral over the sum
of the two terms in (3.2) converges. This approach relaxes the sufficient conditions for
pE-convergence substantially, since in the limit ε → 0 the different parts of the dissipation
may be distributed differently.

In the quadratic case we always have equidistribution Rε(uε, u̇ε) = R∗
ε(uε,−DEε(uε))

for solutions uε. So, if (3.3b) and (3.3c) hold, we will still have equidistribution in the
limit, but only along the limit solutions, while the limit functionals need not be quadratic.
In [Mie12] it is shown that the limit of a classical GS can be a rate-independent system,
where we always have R∗

0(u,−DE0(u)) = 0, so there is not even equidistribution along
solutions.

We also add a strengthening condition to obtain our notion of “EDP convergence” by
asking for the convergence not only along solutions, but rather along a suitable general
class of functions u : [0, T ] → X. For this, we associate with the GS (X,Eε,Rε)ε∈[0,1]
De Giorgi’s dissipation functionals Dε, which are defined as

Dε(u) :=

∫ T

0

Rε(u, u̇) + R∗
ε

(
u,−DEε(u)

)
dt.

Definition 3.2 (EDP convergence) We say that the family (X,Eε,Rε)ε>0 converges

in the EDP sense to (X,E0,R0), and shortly write (X,Eε,Rε)
EDP
⇀ (X,E0,R0) if

(X,Eε,Rε)
pE
⇀ (X,E0,R0), (3.4a)

Eε
Γ
⇀ E0 in X, and (3.4b)

ũε(·) ∗
⇀ ũ(·) in L∞([0, T ];X) and

supε∈]0,1], t∈[0,T ] Eε(ũε(t)) ≤ C <∞
}

=⇒ lim inf
ε→0

Dε(ũε) ≥ D0(ũ). (3.4c)
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We emphasize that in condition (3.4c), the functions ũε are arbitrary and need not be
solutions of the GS (X,Eε,Rε). From this definition we see that the convergence conditions
(3.3) obviously imply EDP convergence. However, we will study cases, where (3.3) does
not hold, but we still have EDP convergence.

We emphasize that EDP-convergence is to be expected whenever one uses the EDP
principle for establishing pE-convergence. Indeed, from general arguments one presumes
that De Giorgi’s dissipation functional Dε has (after extraction of a subsequence) a Γ-limit
D0 in the form

D0(u) =

∫ T

0

M0(u(t), u̇(t))dt.

From the lower semicontinuity of Γ-limits, one expects that M(u, ·) is convex. Hence, one
can define RM via

RM(u, v) := M0(u, v)−M0(u, 0)

and hope that it is a dissipation potential. For this, one needs to show (i) the positivity
RM(u, v) ≥ 0 and (ii) M0(u, 0) ≥ R∗

M(u,−DE0(u)). Often, the positivity (i) follows simply
from the evenness M0(u,−v) = M0(u, v) and convexity. Moreover, if it is possible to show
M0(u, v) ≥ −〈DE0(u), v〉 (this holds for ε > 0 in the form Rε(u, v)+R

∗
ε(u,−DEε(u)) ≥

−〈DEε(u), v〉), then we find (ii) via the estimate

R
∗
M(u,−DE0(u)) = sup

v∈X

(
〈−DE0(u), v〉 −M0(u, v) +M0(u, 0)

)
≤ M0(u, 0).

Thus, we arrive at the desired EDE E0(u(T )) +
∫ T
0
RM + R∗

M dt ≤ E0(u(0)) and EDP-
convergence to (X,E0,RM) is established.

It would be interesting to study more generally the relations between pE and EDP-
convergence. Obviously, showing the liminf estimate for Dε is the major step in establish-
ing pE-convergence. Hence, it seems redundant to ask for the pE-convergence explicitly,
yet it is not obvious under what additional condition (e.g. the validity of a suitable chain
rule) we really can deduce the pE-convergence from the liminf estimate for Dε.

We end this section with two examples concerning EDP-convergence. Example 3.3
shows that the model discussed in [Mie12] satisfies pE-convergence but not EDP-conver-
gence. Example 3.4 emphasizes the fact that pE and EDP-convergence are not properties
of an evolution equation u̇ = Vε(u) but of a GS (X,Eε,Rε). Indeed, for a given equation
one may have different gradient structures leading to different limits in the EDP sense,
which in turn generate different limit evolutions.

Example 3.3 (pE-convergence without EDP-convergence) We consider the wig-
gly-energy model introduced in [ACJ96]. It is given via the time-dependent GS (R,Eε,Rε)
with

Eε(t, u) =
1

2
u2 − ℓ(t)u+ rε sin(u/ε) and Rε(u̇) =

ε

2
u̇2.

For sufficiently smooth loading curves ℓ : [0, T ] → R it was shown in [Mie12, Thm. 3.2]
that the GS (R,Eε,Rε) pE-converge to the generalized GS (R,Eplay,Rplay) defined in (2.1).
Obviously, we have the uniform convergence Eε → Eplay, while Dε converges to a limit D0

that cannot be written in terms of Rplay + R∗
play, see [Mie12, Prop. 3.1]

Example 3.4 (Different limit equations) Here, we provide an example of an evolu-
tion equation u̇ = Vε(u) with two different gradient structures. Both gradient structures
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have an evolutionary Γ-limit in the EDP sense, and the surprising fact is that the gener-
ated limit evolutions are different. Thus, EDP-convergence and pE-convergence are not
properties of the family of evolution equations u̇ = Vε(u), but of the chosen gradient
structures.

Consider Ω = [0, 1] and letX = M≥0(Ω), the set of nonnegative finite Radon measures.
Moreover, consider a continuous periodic function A : R → ]0,∞[ such that

0 < amin := miny∈R A(y) < maxy∈R A(y) =: amax <∞.

With aε(x) = A(x/ε) we define the simple PDE

u̇(t, x) = −aε(x)u(t, x), u(0, x) = u0(x) > 0 for x ∈ Ω.

We introduce two different gradient structures (X,Eε,Rε) and (X, Ẽε, R̃ε) via

Eε(u) =

∫

Ω

aεdu, R
∗
ε(u, ξ) =

∫

Ω

1

2
ξ2du, Êε(u) =

∫

Ω

1

aε
du, R∗

ε(u, ξ) =

∫

Ω

a2ε
2
ξ2du.

It is shown in [Mie15a, Cor. 3.8] that these GS converge in the EDP sense to the limit

systems (X,E0,R0) and (X, Ẽ0, R̃0), respectively, where

E0(u) =

∫

Ω

amindu, R
∗
0(u, ξ) =

∫

Ω

1

2
ξ2du, Ê0(u) =

∫

Ω

1

amax

du, R∗
0(u, ξ) =

∫

Ω

a2max

2
ξ2du.

In particular, the limit evolution for the first is u̇ = −aminu, while it is u̇ = −amaxu for the
second. This is not a contradiction, but has its origin in the well-preparedness condition
for the initial data. No sequence can be well-prepared for both systems, i.e. if uε

∗
⇀ u and

Eε(uε) → E0(u), then we have Ê0(u) � lim infε→0 Êε(uε), and vice versa.

3.3 EDP-convergence for an ODE example

We discuss a very simple example of a discrete Markov process with state space S =
{1, 2, 3}. The jump rates are such that in the limit ε → 0 the particles never stay in the
state 2. Thus, the limiting Markov process has the state space {1, 3} only, see Figure 3.1.
We will start with three different GS, namely (i) the quadratic one, where both Eε and
Rε are quadratic, (ii) the entropic one with classical R∗

ε, and (iii) the entropic one with
the dual dissipation potential defined in terms of C ∗. The interesting point is that in the
cases (i) and (iii) the limiting GS obtained via EDP-convergence will still be in the same
modeling class. However, in case (ii) we will lose the classical GS and obtain a generalized
GS that cannot be described via C ∗.

We consider the Kolmogorov forward equation (here an ODE) of a Markov process on
the state space S = {1, 2, 3} given by

u̇ = (2+ε)




−1 1/ε 0
1 −2/ε 1
0 1/ε −1


 u, X := Prob({1, 2, 3}). (3.5)

The unique equilibrium wε = 1
2+ε

(1, ε, 1)⊤ satisfies the detailed-balance condition (2.6).
The limit dynamics is easily obtained by setting u2 = εr giving

u̇1 = (2+ε)(r−u1), εṙ = (2+ε)(u1−2r+u3), u̇3 = (2+ε)(r−u3).
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1/ε 2
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1

Figure 3.1: Left: Three-state Markov process with high rate of leaving state 2. Right:
The limit for ε→ 0 gives a two-state Markov process.

Thus, in the limit ε→ 0 we find r = (u1+u3)/2 and

u̇1 = u3 − u1, 0 = u1 − 2r + u3, u̇3 = u1 − u3.

More precisely, if the initial condition satisfies uε(0) → (p0, 0, 1−p0), then for all t > 0 we
have

uε(t) →
(
p(t), 0, 1−p(t)

)⊤
where ṗ(t) = 1− 2p(t), p(0) = p0.

We will study the limit ε → 0 in several gradient structures. For general strictly con-
vex and superlinear functions φ and ψ we consider the GS (X,Eε,Rε) with Eε(u) =∑3

i=1w
ε
iφ(ui/w

ε
i ) (recall w

ε = 1
2+ε

(1, ε, 1)⊤) and

R∗
ε(u, ξ) =

2∑

j=1

aεj(u)ψ
∗
(
ξj+1−ξj

)
, where aεj(u) :=

uj+1/w
ε
j+1 − uj/w

ε
j

(ψ∗)′
(
φ′(

uj+1

wε
j+1

)−φ′(
uj
wε

j

)
) .

Using the fact that v = u̇ satisfies v2 = −v1−v3 we obtain the primal dissipation potential
Rε in the form

Rε(u, v) = aε1(u)ψ
( v1
aε1(u)

)
+ aε2(u)ψ

( v3
aε2(u)

)
. (3.6)

Indeed, in general Rε is an inf-convolution, since R∗
ε is a sum over two terms. However,

here we can eliminate v2 and argue as follows:

Rε(u, v) = sup{ ξ · v − R∗
ε(u, ξ) | ξ1 + ξ2 + ξ3 = 0 }

= sup{ (ξ1−ξ2)v1 + (ξ3−ξ2)v3 − R∗
ε(u, ξ) | ξ1 + ξ2 + ξ3 = 0 },

which gives the desired result, since R∗
ε only depends on ξ1−ξ2 and ξ2−ξ3.

We now state the result on EDP-convergence of (X,Eε,Rε) to (X,E0,R0). Since the
limiting GS can be described on the much smaller set Prob({1, 3}), which we identify
with Y := [0, 1], we can formulate the limit GS in terms of the reduced GS ([0, 1],E,R).

Theorem 3.5 We have (X,Eε,Rε)
EDP
⇀ (X,E0,R0) with

E0(u) =

{
E(p) for u = (p, 0, 1−p)⊤,
∞ otherwise;

with E(p) =
1

2
φ(2p) +

1

2
φ(2−2p)

R0(u, u̇) =

{
R(p, ṗ) for (u, u̇) = (p, 0, 1−p, ṗ, 0,−ṗ)⊤,

∞ otherwise,
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where R is given via its Legendre dual

R∗(p, η) := σ(p) + sup
z>0

{
inf
τ∈R

(
â(p, z)ψ∗(η−τ)+â(1−p, z)ψ∗(τ)

)
− Σ(p, z)

}
,

where Σ(p, z) := â(p, z)ψ∗
(
φ′(2p)−φ′(z)

)
+ â(1−p, z)ψ∗

(
φ′(2−2p)−φ′(z)

)
,

â(p, r) := (2p−r)/
{
(ψ∗)′

(
φ′(2p)−φ′(r)

)}
, and

σ(p) := inf{Σ(p, z) | z > 0 }.

In particular, this implies that the limiting ODE ṗ = 1−2p is induced by the reduced
generalized GS ([0, 1],E,R), i.e. ṗ = 1 − 2p = DηR(p,−DE(p)). The above theorem
follows directly from the next proposition and the general theory described in Section 3.2.
For the energy-dissipation principle we consider De Giorgi’s dissipation functional

Dε(u) =

∫ T

0

Mε(u(t), u̇(t))dt with Mε(u, v) = Rε(u, v) + R∗
ε(u,−DEε(u)).

Proposition 3.6 We have the Γ-limits Eε
Γ→ E0, Mε

Γ→ M0, and Dε
Γ
⇀ D0 with

M0(u, v) =

{
R(p, ν)+R∗

(
p, φ′(2p)−φ′(2−2p)

)
for (u, v) = (p, 0, 1−p, ν, 0,−ν)⊤,

∞ otherwise;

and D0(u) =
∫ T
0
M0(u(t), u̇(t))dt, where R is given as in Theorem 3.5.

Proof: The convergence Eε
Γ→ E0 follows easily from the explicit form Eε(u) =∑2

1w
ε
iφ(ui/w

ε
i ), the convergence wε2 → 0, and the superlinearity of φ.

To simplify the Γ-limit of Dε we introduce the scaling u2 = εr and use that u̇2 = εṙ
does not explicitly appear in Mε, see Rε in (3.6). However, the relation u1 + u2 + u3 ≡ 1

now takes the ε-dependent form u1+εr+u3 ≡ 1. Moreover, defining M̃ε(u1, r, u3, u̇1, u̇3) =

Mε(u1, εr, u3, u̇) shows that M̃ε is continuous in ε ∈ [0, 1] and all the arguments.

Hence, when considering a sequence of functions uε : [0, T ] → X with uε
∗
⇀ u0 and

Eε(u
ε(t)) ≤ C <∞ we find u0(t) = (p(t), 0, 1−p(t))⊤ and

lim inf
ε→0

Dε(u
ε) ≥

∫ T

0

m(p(t), ṗ(t))dt with

m(p, v) := inf
z>0

{
â(p, z)ψ

( v

â(p, z)

)
+ â(1−p, z)ψ

( v

â(1−p, z)
)
+ Σ(p, z)

}
.

Note that we have no control over the variable r(t) = uε2(t)/ε in the limit ε → 0. So, we
simply minimize over all possible values z ∈ [0,∞[, which certainly provides a good lower

bound. Moreover, recovery sequences for the convergence Dε
Γ
⇀ D0 can be obtained in

the form uε(t) = (p(t), 0, 1−p(t)) + εζ(t)(−p(t), 1, p(t)−1), where ζ(t) is the minimizer in
the definition of m(p(t), ṗ(t)).

Obviously, the definition of σ gives the relation σ(p) = m(p, 0). Thus, we have derived
the reduced dissipation potentialR in the formR(p, v) = m(p, v)−σ(p). Doing a Legendre
transform with respect to v we obtain the form of R∗ given in Theorem 3.5, since the sum
turns into an inf-convolution.

Next we consider three different choices for φ and ψ.
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3.3.1 Quadratic energy and dissipation

First, we consider the case

φ(r) =
1

2
r2 and ψ(v) =

1

2
v2,

which gives E(p) = p2+(1−p)2 and â(p, r) ≡ 1 and simplifies all expressions considerably:

Σ(p, z) =
1

2
(2p−z)2 + 1

2
(2−2p−z)2, σ(p) = (1−2p)2, R(p, η) =

1

4
η2.

Here, the crucial point in the definition of R∗ is that the inf-convolution involving
ψ∗ and τ does not involve any dependence on z, so that the term σ(p) exactly cancels
supz>0−Σ(p, z), which is generally not the case. Thus, the limiting GS is ([0, 1],E,R)
where R(p, ν) = ν2 is quadratic, and ([0, 1],E,R) is again a classical GS.

3.3.2 Entropic energy and C -type dissipation

Next, we consider the case of the Boltzmann entropy and the dissipation defined in terms
of ψ = C , which coincides with Section 2.4 except for the trivial scaling factor 2:

φ(r) = λB(r) = r log r − r + 1 and ψ∗(ξ) = C
∗(ξ) = 4

(
cosh(ξ/2)− 1

)
.

This gives the reduced energy functional E(p) = 1
2
λB(2p) +

1
2
λB(2−2p) and â(p, z) =√

2pz. In the latter expression and in the definition of Σ we profit from the interaction
of λ′B(r) = log r and the exponential form of C ∗, viz.

Σ(p, z) = 2(
√
2p−

√
z)2 + 2(

√
2−2p−

√
z)2 = 4− 4bp

√
z +4z with bp =

√
2p+

√
2−2p.

Minimizing in z > 0 we arrive at

σ(p) = 4− b2p = 2− 4
√
p(1−p) = 2(

√
p−

√
1−p)2.

For calculating R∗ we first observe, for a, b > 0, the formula

inf
τ∈R

(
aC ∗(τ) + bC ∗(ξ−τ)

)
= 4

√
(a+b)2 +

ab

2
C ∗(ξ)− 4(a+b),

which follows by writing the left-hand side via C ∗(ξ−τ) = 2eξ/x+2e−ξx−4, where x = eτ ,
and minimizing in x > 0. With a = â(p, z) and b = â(1−p, z) we find

R∗(p, η) = σ(p) + sup
z>0

(
4
√
z

√
b2p +

√
p(1−p)C ∗(η)− 4bp

√
z − Σ(p, z)

)

= σ(p) + sup
z>0

(
4
√
z

√
b2p +

√
p(1−p)C ∗(η)− 4− 4z

)

= σ(p)− 4 + b2p +
√
p(1−p)C

∗(η) =
√
p(1−p)C

∗(η).

We emphasize that in this minimization with respect to z it is crucial to keep the terms
involving the dual dissipation potential C ∗(η) and the term Σ together.

We observe that the resulting gradient structure is again the structure, which is ob-
tained from the large-deviation principle of Section 2.4. This confirms the statement that
gradient structures obtained from the large-deviation theory are very stable against taking
further limits in the sense of EDP-convergence, see Figure 1.1
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3.3.3 Entropic energy and quadratic dissipation

In [Maa11, ErM12, Mie13a, MaM15a, MaM15b] the relative entropy was used for the
energy functional E and a quadratic dissipation leading to a classical gradient system:

φ(r) = λB(r) = r log r − r + 1 and ψ∗(ξ) =
1

2
ξ2.

We obtain the same limit energy E(p) = 1
2
λB(2p) +

1
2
λB(2−2p) as in the previous case,

but the functions aεj(u) are quite different as they involve the logarithmic mean Λ(r, s) =
r − s

log r− log s
. Indeed we have â(p, z) = Λ(2p, z) = 2p − z

log(2p)− log z
. We further obtain the functions

Σ(p, z) =
1

2

(
(2p−z)

(
log(2p)− log z

)
+ (2−2p−z)

(
log(2−2p)− log z

))

and have no explicit formula for σ(p) = infz>0Σ(p, z). In the definition of R∗ we can do
the inf-convolution explicitly, since ψ∗ is quadratic, so we find the formula

R∗(p, η) = σ(p) + sup
z>0

( â(p, z)â(1−p, z)
2(â(p, z)+â(1−p, z)) η

2 − Σ(p, z)
)
.

We claim that the growth of R∗(p, η) is no longer quadratic, but exponential. For this
we insert z = ebη for η ≫ 1 for some b ∈ ]0, 1/2[ into the supremum to obtain a lower
bound. From Σ(p, z) ≈ z log z and â(p, z) ≈ z/ log z for z → ∞ we find the asymptotic
lower bound

R∗(p, η) >≈
( 1

4b
− b

)
ηebη.

Hence, we see that the growth is at least as eb|η| for all b ∈ ]0, 1/2[. Moreover, we expect
that the function R∗(p, η) does not have a product structure b(p)Ψ(η) any more.

Thus, we see that the classical gradient structure for the relative entropy is not stable
under EDP, in general. Nevertheless, in [GiM13, DiL14, MaM15a] evolutionary Γ-limits
between discrete Markov processes and continuous Fokker-Planck equation are studied,
where the classical gradient structure survives.

4 The membrane as a thin-layer limit

In our first major application of the EDP-convergence as a microscopic origin of general-
ized GS, we follow [Lie12, Lie13] and consider a one-dimensional diffusion equation with a
thin layer of very small diffusivity. Assuming that the diffusion coefficient and the width of
the layer scale in the proper way, we will arrive at a membrane model in the limit. While
the limit passage of the linear diffusion problem to the linear transmission problem at the
membrane can be done directly (or with the quadratic gradient structure, see [Lie13]),
we prefer to do the somewhat more elaborate EDP-limit using the GS with the relative
entropy as energy functional and the classical dissipation potential of Wasserstein type.
This case was already studied in [Lie12, Sec. 3.2] in a more special setting and without
explicitly calculating R∗

0.
We start from the equation

u̇ =
(
aε(x)

(
u′ + uV ′

ε (x)
)′)

in Ω := ]−1, 1[, ∂xu(t,±1) + u(t,±1)V ′
ε (±1) = 0, (4.1)
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where ˙ = ∂t and ′ = ∂x. By our choice of the boundary conditions, the total mass∫
Ω
u(t, x) dx = 1 is conserved, thus we can interpret the equation as the Fokker-Planck

equation of a Markov process. Defining the equilibrium density

wε(x) =
1

Zε
e−Vε(x) with Zε =

∫ 1

−1

e−Vε(x)dx,

we have the GS (Prob(Ω),E,R∗
ε) with

Eε(u) =

∫

Ω

λB
(
u(x)/wε(x)

)
wε(x)dx and R∗

ε(u, ξ) =
1

2

∫

Ω

aε(x)u(x)ξ
′(x)2dx.

The nontrivial behavior happens in the thin layer given by the small interval [0, ε]. In
particular, we allow aε and Vε to depend non-trivially on x: We assume that there are func-
tions a∗, a+, V∗, V+ ∈ C1([0, 1]) and a−, V− ∈ C1([−1, 0]) such that a∗(x), a+(x), a−(−x) ≥
a > 0 for all x ∈ [0, 1], V−(0) = V∗(0), V∗(1) = V+(0), and

aε(x) =





a+(x) for x > ε,
εa∗(x/ε) for x ∈ [0, ε],
a−(x) for x < 0,

and Vε(x) =





V+(x+ε) for x > ε,
V∗(x/ε) for x ∈ [0, ε],
V−(x) for x < 0.

(4.2)

Here Vε is constructed to be continuous on Ω = [−1, 1], while aε has jumps for x ∈ {0, ε}.
The pE-convergence result established in [Lie12, Sec. 3] states that the limiting system

is given as a membrane problem, where the thin layer is replaced by a transmission
condition. The interesting point is that the EDP-convergence reveals that the limiting
GS is no longer classical but involves C for the jump of the driving forces at the membrane.

For passing to the limit we note that the function wε converges pointwise to the limit

w0(x) =

{ 1
Z0
e−V+(x) for x > 0,

1
Z0
e−V−(x) for x < 0,

with Z0 =

∫ 0

−1

e−V−(x)dx+

∫ 1

0

e−V+(x)dx, (4.3)

which may be discontinuous at x = 0, but has well-defined limits w0(0
−) and w0(0

+) from
the left and from the right, respectively. This limit is totally independent of the potential
V∗ inside the layer. The influence on the layer potential V∗ and the layer diffusion profile
a∗ will only survive in one coefficient A∗.

Theorem 4.1 (Membrane limit) (Prob(Ω),Eε,R
∗
ε)

EDP
⇀ (Prob(Ω),E0,R

∗
0), where

E0(u) =

∫

Ω

λB(u/w0)w0dx and

R∗
0(u, ξ) =

∫

]−1,0[

a−
2
(ξ′)2udx+

∫

]0,1[

a+
2
(ξ′)2udx

+ A∗

√
u(0−)u(0+)
w0(0−)w0(0+)

C
∗
(
ξ(0+)−ξ(0−)

)
where A∗ =

(∫ 1

0

Z0eV∗(y)

a∗(y)
dy

)−1

.

Before we go into the details of the proof, some comments are in order. First, we
emphasize that the constant Z0 in the definition of the coupling coefficient A∗ is not
related to V∗, but only depends on V±, see (4.3). Hence, for a large barrier V∗ the
transmission coefficient A∗ becomes indeed small.
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Second, the limiting equation is a PDE in the subdomains Ω− = ]−1, 0[ and Ω+ =
]0, 1[ coupled by a transmission condition. It can be obtained easily by considering test

functions ξ̂ ∈ H1(Ω−)×H1(Ω+) in the weak form
∫
Ω
u̇ξ̂dx = DξR

∗
0

(
u,−DE0(u)

)
[ξ̂]. Using

the fact that ξ̂ may have a jump at x = 0, the transmission conditions arise via the
boundary terms when integrating by parts. We arrive at

u̇ =
(
aw0

(
u/w0)

)′)′

for x ∈ Ω− ∪ Ω+.

0 = a+(0)w0(0
+)
(
u/w0)

)′
(0+)−A∗

(
u(0+)
w0(0+)

− u(0−)
w0(0−)

)
,

0 = a−(0)w0(0
−)
(
u/w0)

)′
(0−)−A∗

(
u(0+)
w0(0+)

− u(0−)
w0(0−)

)
,

0 = a±(x)w0(x)
(
u/w0)

)′
(x) at x ∈ {−1, 1}.

We refer to [GlM13] for a similar derivation of more general nonlinear transmission con-
ditions and active interface conditions using gradient structures.

Finally, we remark that the primal dissipation potential can be written using the
integration operator I[u̇](x) :=

∫ x
−1
u̇(y)dy = −

∫ 1

x
u̇(y)dy, where the last relation follows

from
∫ 1

−1
u̇ dy = 0, which in turn is due to u(t) ∈ Prob(Ω). Noting that the functions ξ

may have a jump at x = 0, one has the identity
∫ 1

−1

ξu̇dx = −
∫ 0

−1

I[u̇]ξ′dx− I[u̇](0)
(
ξ(0+)−ξ(0−)

)
−

∫ 1

0

I[u̇]ξ′dx.

Here I[u̇](0) is the flux through the membrane, which is thermodynamically conjugate to
the jump ξ(0+)−ξ(0−) in the driving forces. With this and I[u̇](−1) = 0 = I[u̇](1) the
evaluation of the Legendre transform for R∗

0 yields the primal dissipation potential

R0(u, u̇) =

∫ 0

−1

I[u̇]2

2a−u
dx+

∫ 1

0

I[u̇]2

2a+u
dx+ A∗

√
u(0−)u(0+)
w0(0−)w0(0+)

C

( I[u̇](0)

A∗

√
u(0−)u(0+)
w0(0−)w0(0+)

)
. (4.4)

Proof of Theorem 4.1: We first observe that Eε
Γ
⇀∗ E using [AGS05, Lem. 9.4.2]. Moreover,

pE-convergence was established in [Lie12, Sec. 3.2]. It remains to establish the liminf
estimate (3.4c), where De Giorgi’s dissipation functional Dε takes the explicit form

Dε(u) :=

∫ T

0

∫

Ω

1

2aεu
I[u̇]2 +

aεu

2

((
log( u

wε
)
)′)2

dxdt.

Step 1. Blow up = transformation from Dε to D̂ε: To study the Γ-limit D0 of Dε we
blow up the thin layer such that its transformed thickness becomes of order one. For this
we use Yε : [−1, 1] → [−1, 2] and its inverse Xε = Y −1

ε :

Yε(x) =





x for x ≤ 0,
1+ε
ε
x for x ∈ [0, ε],

x+1 for x ≥ ε;
and Xε(y) =





y for y ≤ 0,
ε

1+ε
y for y ∈ [0, 1+ε],

y−1 for y ≥ 1+ε.

For u : [0, T ]× Ω → R and y ∈ Ω̂ := ]−1, 2[ we define the functions

Uε(t, y) = u(t, Xε(y)), Wε(y) = wε(Xε(y)), Aε(y) =
aε(Xε(y))

X ′
ε(y)

,
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and the functionals D̂ε via Dε(u) = D̂ε(Uε) and find

D̂ε(U) :=

∫ T

0

∫

Ω̂

1

2AεU
Îε[U̇ ]

2 +
AεU

2

((
log(U/Wε)

)′)2

dydt,

where Îε[U̇ ](Y ) =
∫ y
−1
U̇(η)X ′

ε(η)dη = −
∫ 2

y
U̇(η)X ′

ε(η)dη.

Following the arguments in [Lie12, Sec. 3.2] it is not difficult to establish the Γ-

convergence of D̂ε to D̂0, where the latter is given in the form

D̂0(U) :=

∫ T

0

∫

Ω̂

1

2ÂU
Î0[U̇ ]

2 +
ÂU

2

((
log(U/Ŵ )

)′)2

dydt

with Î0[U̇ ](y) :=

∫ y

−1

U̇(η)M̂(η)dη = −
∫ 2

y

U̇(η)M̂(η)dη,

where (Â(y), Ŵ (y), M̂(y)) :=





(a−(y), e
−V−(y)/Z0, 1) for y < 0,

(a∗(y), e
−V∗(y)/Z0, 0) for y ∈ [0, 1],

(a+(y), e
−V+(y)/Z0, 1) for y > 1.

Step 2. Minimization over the rescaled layer: The main structure in this limit model
is that D̂0 does not depend on U̇(t, ·)|]0,1[, since M̂(y) = 0 for y ∈ [0, 1]. Moreover,

on this interval Î0[U̇(t, ·)] is constant, namely µu(t) :=
∫ 0

−1
U̇(η) dη = Î0[U̇(t)](y) for

y ∈ [0, 1]. Thus, given the value µu(t) we can obtain the optimal profile of U(t)|[0,1] from
the boundary values U(t, 0) and U(t, 1) and minimizing the functional Ĝ(µu(t); ·) given
via

Ĝ(α, U) :=

∫ 1

0

α2

2ÂU
+
ÂU

2

((
log(U/Ŵ )

)′)2

dy. (4.5)

Now, Proposition A.2 in Appendix A.1 provides the explicit formula

Ĝ(α, u0, u1) := min{ Ĝ(α, U) | U > 0, U(0) = u0, U(1) = u1 }

= A∗

√
u0u1
w−w+

C

(
1
A∗

√
w−w+

u0u1
α
)
+ A∗

√
u0u1
w−w+

C
∗
(
log

(
u0w+

u1w−

))

with w− = Ŵ (0) = w0(0
−), w+ = Ŵ (1) = w0(0

+), and A∗ =
( ∫ 1

0
1/(Â(y)Ŵ (y)) dy

)−1
.

Inserting the definitions of Â and Ŵ gives exactly the formula for A∗ in the theorem.
Thus, we have constructed a simpler functional D0, which is given by

D0(U) :=

∫ T

0

[ ∫

]−1,0[∪]1,2[

( 1

2ÂU
Î0[U̇ ]

2 +
ÂU

2

((
log(U/Ŵ )

)′)2)
dy

+Ĝ
(
Î0[U̇ ](0), U(t, 0), U(t, 1)

)]
dt,

satisfies the lower bound D̂0(U) ≥ D0(U) for all U , and has the important property that
it does not depend on U |[0,T ]×]0,1[.

Step 3. Relation between D0 and D0: Using the special form of R0 and R∗
0 stated in

(4.4) and the theorem, we define the limiting dissipation functional D0(u) =
∫ T
0
R0(u, u̇)+

R∗
0(u,−DE0(u)

)
dt. By construction and the special form of Ĝ the functional D0 is closely

related to D0 in the following way. For any function U : [0, T ]×[−1, 2] → R, we may define
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u : [0, T ]× [−1, 1] by u(t, x) = U(t, Y0(x)), where Y0(x) = x for x ≤ 0 and Y0(x) = x+1
otherwise. Then, we have D0(u) = D0(U) ≤ D0(U).

Moreover, for any function u one can construct an optimal U as follows. We split u at
x = 0, the right part is shifted by 1 to the right, and the minimizer of U(t, ·) ∈ H1([0, 1])

of Ĝ(I[u̇(t)](0), u(t, 0−), u(t, 0+)) is inserted into the gap. Then, D0(u) = D̂0(U).
Step 4. The liminf estimate (3.4c): To establish the fundamental liminf estimate

we consider, w.l.o.g., sequences uε satisfying 1/R ≤ uε ≤ R for some large R > 1.
In particular, by minimum and maximum principles these bounds can be expected for
solutions of (4.1). Defining Uε(t, y) = uε(t, Xε(y)) we again have Uε(t, y) ∈ [1/R,R].
Thus, we find a subsequence εk → 0 such that

uε ⇀ u0 in L2([0, T ]× Ω) and Uε ⇀ U0 in L2(0, T ; L2(Ω̂)).

Moreover, we have u0(t, x) = U0(t, Y0(x)). Now, using Dε(uε) = D̂ε(Uε) we arrive at the
desired liminf estimate

lim inf
ε→0

Dε(uε) = lim inf
ε→0

Dε(Uε) ≥ D̂0(U0) ≥ D0(U0) = D0(u0). (4.6)

This concludes the proof of Theorem 4.1.

We conclude this section by observing that the EDP-limit of the thin-layer diffusion
system given by the classical GS (Prob(Ω),Eε,R

∗
ε) is a the generalized GS for the mem-

brane problem. For ε > 0 and for ε = 0 the gradient structures are exactly the ones
obtained from the large-deviation principle, see Section 2.4.4. Hence, we again found
an instance where the diagram in Figure 1.1 commutes, that means that applying the
large-deviation principle can be interchanged with taking the EDP-limit ε → 0.

5 From diffusion to reaction

In our second major application of EDP-convergence as a microscopic origin of generalized
GS, we continue the work in [PSV10, PSV12, AM∗12] which show that linear reactions can
be obtained as limits of diffusion for a suitably scaled energy barrier. In [PSV10, PSV12]
the method relies on a quadratic energy functional and a classical gradient structure. In
[AM∗12] the pE-convergence for the entropic GS is shown, but only diffusion along the
reaction path is allowed. In fact, the result therein gives EDP-convergence, if one takes
the addition in [MPR14, Prop. 4,4] into account.

Here we generalize the latter work by also allowing diffusion in a physical space Ω,
such that the resulting limit equation will be a (linear) reaction-diffusion system. Our
physical domain Ω ⊂ Rd is bounded and has a Lipschitz boundary. For the reaction path
we choose Υ = [0, 7] ⊂ R and define the cylinder Q = Ω × Υ. (Indeed, Υ could by any
bounded or unbounded interval.)

For densities u ∈ L1(Q) the integral
∫
D

∫ y1
y0
udydx denotes the number of particles per

unit volume that are in the subdomain D ⊂ Ω and have a reaction state y ∈ [y0, y1] ⊂ Υ.
The evolution of the density u is driven by diffusion in the x-direction with diffusion
constant mΩ > 0 and a much faster diffusion in the y-direction with diffusion constant
τε ≫ 1 to allow the particles to overcome a huge potential barrier given by Vε(y) =

1
ε
V (y),

see Figure 5.1.
For simplicity we assume that the total mass

∫
Q
u dx dy as well as the volume |Ω|

of the physical domain equal 1. Hence, we can again consider the model as a Markov
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Figure 5.1: The potential V along the reaction path Υ = [0, 7].

process with continuous paths t 7→ (Xt, Yt) ∈ Ω×Υ = Q, whose distribution laws can be
described by densities u(t) ∈ Prob(Q). The Kolmogorov forward equation reads

u̇ = mΩ∆xu+ τε∂y
(
∂yu+ u ∂yVε

)
, (∇xu, ∂yu+u ∂yVε) · ν = 0 on ∂Q. (5.1)

Clearly, the unique steady state w̃ε is independent of x and takes the form

w̃ε(x, y) = wε(y) :=
1

zε
exp

(
−1

ε
V (y)

)
with zε :=

∫

Υ

exp
(
−1

ε
V (y)

)
dy.

Equation (5.1) is a Fokker-Planck equation and, hence, has the Wasserstein gradient
structure introduced in [JKO98] with

Eε(u) =

∫∫

Q

λB
( u
wε

)
wεdydx and R∗

ε(u, ξ) =

∫∫

Q

(mΩ

2
|∇xξ|2+

τε
2
(∂yξ)

2
)
udydx. (5.2)

For studying the limit ε → 0 we now assume that V ∈ C2(Υ) has exactly two non-
degenerate minimizers as pure states, where V = 0 w.l.o.g, and one global maximum as
barrier, namely

V (2) = V (6) = 0, V (y) > 0 on Υ \ {2, 6}, V ′′(2) > 0, V ′′(6) > 0; (5.3)

V (5) > V (y) on Υ \ {5}, V ′′(5) < 0, (5.4)

see Figure 5.1. (Again, any two points in Υ could be taken as the pure states, and any
point in between as barrier.) As a consequence wε concentrates in the points y = 2 and
y = 6 in the limit, viz.

wε
∗
⇀ w0 = α0δ2 + α1δ6 ∈ Prob(Υ), α0 =

√
V ′′(6)√

V ′′(2)+
√
V ′′(6)

, α1 =

√
V ′′(2)√

V ′′(2)+
√
V ′′(6)

. (5.5)

Here the convergence means
∫
Υ
φ(y)wε(y)dy → α0φ(2) + α1φ(6) for all φ ∈ C0(Υ).

The important point is now to choose the diffusion constant τε sufficiently large such
that the transitions between y = 2 and y = 6 can occur on times of order 1. According
to Kramer’s rule (see e.g. [AM∗12]), this is achieved by choosing mΥ > 0 and setting

τε := mΥ

∫

Υ

1

wε(y)
dy, with gives

τε
ε
exp

(
−V (5)/ε

)
→ mΥ

2π
(√

V ′′(2)+
√
V ′′(6)

)
√

−V ′′(5)
√
V ′′(2)V ′′(6)

> 0.

From the concentration of wε in the points {2, 6} we obtain that w̃ε ∈ Prob(Q) con-
centrates in the sets Ω× {2} and Ω× {6}, namely

w̃ε
∗
⇀ w̃0 := χΩ ⊗ w0 in Prob(Q).
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Recalling that Eε is the relative entropy with respect to wε, the Γ-convergence Eε
Γ
⇀∗ E0

appears natural. To be more precise concerning densities and measures, we define

E0(µ) :=

{
E((c0, c1)) for µ = c0dx⊗δ2 + c1dx⊗δ6,

∞ otherwise,

where E((c0, c1)) :=

∫

Ω

(
λB(

c0(x)
α0

)
α0 + λB(

c1(x)
α1

)
α1

)
dx. (5.6)

Proposition 5.1 We have Eε
Γ
⇀∗ E0 in the weak∗ topology of Prob(Q).

Proof: The liminf estimate is established in [AGS05, Lem. 9.4.3].
To construct recovery sequences, we may restrict to the case E0(µ) < ∞, since oth-

erwise the liminf estimate provides the result. Hence, we may assume µ = c0 dx⊗δ2 +
c1 dx⊗δ6 and, using a nonnegative, continuous cut-off function χ : y 7→ max{1−|y|, 0},
we can define the measures

µε = uε(x, y)dx⊗dy with uε(x, y) = c0(x)wε(y)β0,εχ(y−2) + c1(x)wε(y)β1,εχ(y−6),

where the normalization constants βj,ε are given by

β0,ε
∫
Υ
wε(y)χ(y−2)dy = 1 = β1,ε

∫
Υ
wε(y)χ(y−6)dy,

which implies βj,ε → 1/αj > 0 for ε → 0. Then, we easily find Eε(uε) → E0(µ).

Thus, the limit evolution will be described by the densities c0 and c1 on Ω for the
particles being in the pure states y = 2 and y = 6, respectively. In particular, in the limit
ε → 0 the time that the particles spend along the reaction path away from these points,
i.e. in Υ \ {2, 6}, is 0.

One difficulty in deriving the liminf estimate for De Giorgi’s dissipation functional

Dε(u) :=

∫ T

0

Rε(u(t), u̇(t)) + R∗
ε

(
u(t),−DEε(u(t))

)
dt

is that Rε is only implicitly defined via the Legendre transform of R∗
ε. Moreover, we are

not able to employ the classical Wasserstein gradient flow theory in [AGS05] using the
Benamou-Brenier formulation, because of the different roles of the diffusion in x with
mobility mΩ and the diffusion in y with mobility τε → ∞. The first step to establish
the following result follows the idea in [MaM15a], where one obtains a lower estimate
by replacing Rε(u, u̇) by the smaller term 〈ξε, u̇ε〉 − R∗

ε(uε, ξε) and by choosing a suitable
recovery sequence ξε → ξ0 for the limit passage ε → 0. Finally, one takes the supremum
over all ξ0 to recover R0 as dual of R

∗
0. The second step involves a suitable transformation

of the reaction variable z = Zε(y) (first introduced in [AM∗12]) which allows us to control
the relative densities vε := uε/wε and the dual potentials ξε along the reaction path Υ.

In the following result we will again describe the limit GS (Prob(Q),E0,R0) by a
reduced GS (Prob(Ω × {0, 1}),E,R), since in the limit every µ ∈ Prob(Q) with finite
relative entropy satisfies µ = c0 dx⊗δ2(y) + c1 dx⊗δ6(y) with (c0 dx, c1 dx) ∈ Prob(Ω ×
{0, 1}), see (5.6).

Theorem 5.2 (From diffusion to reaction-diffusion) The family of gradient systems
(Prob(Q),Eε,Rε) defined via (5.2) converges in the EDP sense to the gradient system
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(Prob(Q),E0,R0), where E0 is given in (5.6) via E and accordingly R0 is given via R,
which is defined in terms of the dual dissipation potential

R∗(c,η) :=

∫

Ω

mΩ

2

(
c0|∇xη0|2+c1|∇xη1|2

)
+mΥ

√
c0c1
α0α1

C
∗(η1−η0)dx.

The above result means that the limiting GS is a generalized gradient system defined
for c = (c0, c1) ∈ Prob(Ω×{0, 1}), where the limiting system is the coupled system of
linear PDEs given in the form

ċ0 = mΩ∆c0 −mΥ

(
c0/α0 − c1/α1

)
, ċ1 = mΩ∆c1 +mΥ

(
c0/α0 − c1/α1

)
,

with Neumann boundary conditions ∇cj · ν = 0. We emphasize that the original GS
(Prob(Q),Eε,Rε) is the classical GS for the Fokker-Planck equation, while the EDP limit
provides the generalized gradient structure discussed in Section 2.4.3. We observe that for
ε > 0 as well as for ε = 0 we have the GS that is induced by the large-deviation principle
discussed in Section 2.4. Thus, we have found another instance of the interchangeability
of the large-deviation principle and the EDP-limit, as displayed in Figure 1.1.

Sketch of proof of Theorem 5.2: Since the Γ-convergence Eε
Γ
⇀∗ E0 was already established

in Proposition 5.1, it remains to show the liminf estimate for the dissipation functional
Dε. More precisely, assume uε(t)

∗
⇀ µ(t) = c0(t) dx⊗δ2(y) + c1(t) dx⊗δ6(y) in Prob(Q)

for all t ∈ [0, T ] such that supt∈[0,T ] Eε(uε) <∞; then, we have to show

lim inf
ε→0

Dε(uε) ≥ D(c) :=

∫ T

0

R(c, ċ) +R∗(c,−DE(c))dt. (5.7)

Step 1. Dualization of Rε: The first major idea follows [MaM15a] and exploits the
definition of Rε as Legendre transform of R∗

ε. Introducing the functional

Bε(u, ξ) :=

∫ T

0

〈ξ, u̇〉 − R∗(u, ξ) + R∗
ε(u,−DEε(u))dt,

we easily see that Dε(u) can be reconstructed via supξ Bε(u, ξ). Using the definitions of
Eε and R∗

ε we have the explicit form

Bε(u, ξ) =

∫ T

0

∫

Q

[
ξu̇− mΩ

2
|∇xξ|2u−

τε
2
(∂yξ)

2u

+
mΩ

2

|∇xu|2
u

+
τε
2

(
∂y
(
log(u/wε)

))2

u
]
dydxdt.

Step 2. Rescaling the reaction-path variable. The second major idea follows [AM∗12,
Sec. 2.1], where no x-direction was present. We define the diffeomorphism Zε : Υ → Z :=
[0, 1] and its inverse Yε = Z−1

ε : Z → Υ via

z = Zε(y) :=
mΥ

τε

∫ y

y=0

1

wε(y)
dy and Y ′

ε (z) =
τε
mΥ

wε(Yε(z)).

The transformed equilibrium density ŵε on Z is

ŵε(z) := wε(Yε(z))Y
′
ε (z) and satisfies ŵε

∗
⇀ ŵ0 := α0δ0 + α1δ1. (5.8)
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Indeed, for the latter statement we first use that for all g ∈ C0(Z) we have the identity∫
Z
g(z)ŵε(z) dz =

∫
Υ
g(Zε(y))wε(y) dy. Recalling that V has a unique global maximum

at y = 5, the function Zε converges uniformly on compact subsets of Υ \ {5} to the step
function Z0(y) = 0 for y < 5 and Z0(y) = 1 for y > 5. With this and (5.5) we conclude∫
Υ
g(Zε(y))wε(y)dy → α0g(Z0(2)) + α1g(Z0(6)) which is the desired result (5.8).
To estimate Bε in the limit ε→ 0 we use now the independent variable z = Zε(y) and

the dependent variables

v(t, x, z) =
u(t, x, Yε(z))

wε(Yε(z))
and ζ(t, x, z) = ξ(t, x, Yε(z)).

Introducing the domain Q̂ = Ω× Z we find Bε(u, ξ) = B̂ε(v, ζ) with

B̂ε(v, ζ) =

∫ T

0

∫

Q̂

ζv̇ŵε−
mΩ

2
|∇xζ |2vŵε−

mΥ

2
(∂zζ)

2v+
mΩ

2

|∇xv|2
v

ŵε+
mΥ

2

(∂zv)
2

v
dzdxdt.

The transformation of Bε to B̂ε follows easily by using the relations

udy = vŵεdz, ∂yξ =
∂zζ

Y ′
ε (z)

, and
τε

(Y ′
ε (z))

2
=

mΥ

ŵε(z)
.

Step 3. The Γ-limit for B̂ε(·, ζ): The importance of the new form B̂ε is that the
dependence on ε only occurs in the weighting measure ŵε. Since ŵε concentrates in the
points z = 0 and 1, the three terms that are multiplied by the weight ŵε will converge
to simple integrals over [0, T ] × Ω for the densities c0 and c1 respectively. In contrast
there are two terms not involving ŵε, but these terms only involve derivatives in the z-
direction. In particular, they control the smoothness of ζ and v in z-direction, namely√
v ∈ L2([0, T ]× Ω;H1(Z)) such that vŵε indeed has a well-defined limit. With this and

ŵε
∗
⇀ ŵ0 = α0δ1 + α1δ1 (cf. (5.8)), it is possible to show that for fixed and sufficiently

smooth ζ we have B̂ε(·, ζ) Γ
⇀ B̂0(·, ζ) with

B̂0(v, ζ) =

∫ T

0

∫

Ω

[ ∫

Z

mΥ

2

((∂zv)2
v

− (∂zζ)
2v
)
dz

+
1∑

j=0

αj

(
ζj v̇j −

mΩ

2
vj |∇xζj|2 +

mΩ

2

|∇xvj|2
vj

) ]
dxdt,

where vj(t, x) = v(t, x, j) and ζj(t, x) = ζ(t, x, j) for j = 0 and j = 1.

Step 4. Minimization over the reduction path profile. Note that in the definition of
B̂0, the values of the functions v and ζ for z ∈ ]0, 1[ only occur in the first integrand (with
factor mΥ). Hence, one can eliminate the integral by taking the supremum in ζ and the
infimum in v for given boundary values at z = 0 and z = 1. The relevant functional reads

N(v, ζ) =

∫ 1

0

(v′(z)2
2v(z)

− 1

2
ζ ′(z)2v(z)

)
dz,

and Proposition A.3 provides the following explicit inf-sup formula

inf
{

sup
{
N(v, ζ)

∣∣ ζ(0) = ζ0, ζ(1) = ζ1
} ∣∣∣ v(0) = v0, v(1) = v1, v > 0

}

=
√
v0v1 C

∗(log v1− log v0)−
√
v0v1 C

∗(ζ1−ζ0) =: N(ζ1−ζ0, v0, v1).
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Thus, we can reduce B̂0 to a functional B on v = (v0, v1) and ζ = (ζ0, ζ1), namely

B(v, ζ) :=

∫ T

0

∫

Ω

[
mΥN(ζ1−ζ0, v0, v1)

+

1∑

j=0

αj

(
ζj v̇j −

mΩ

2
vj |∇xζj |2 +

mΩ

2

|∇xvj|2
vj

)]
dxdt.

The inf-sup definition of N provides the following relation between B̂0 and B:

∀ v with v|[0,T ]×Ω×{0,1} = v ∃ ζ with ζ |[0,T ]×Ω×{0,1} = ζ : B̂0(v, ζ) ≥ B(v, ζ). (5.9)

Step 5. Identification of the limits: It now remains to relate the limit functions v to
the weak limit of the sequence uε. For this, we consider a sequence uε as in (3.4c), i.e.

uε
∗
⇀ u and Eε(uε(t)) ≤ C <∞. By the definition of v we have

∫ T

0

∫

Q

uε(t, x, y)φ(t, x, y)dydxdt =

∫ T

0

∫

Q

vε(t, x, Zε(y))wε(y)φ(t, x, y)dydxdt. (5.10)

Without loss of generality we assume ∞ > C ≥ Dε(uε) = supξ Bε(uε, ξ) = supζ B̂(vε, ζ),
which gives the bound

‖√vε‖L2([0,T ]×Ω;H1(Z)) ≤ C. (5.11)

This implies Hölder continuity of v(t, x, ·) : Z → R. Moreover, Zε converges uniformly to
0 and 1 near y = 2 and y = 6. Hence, we can pass to the limit in (5.10) and obtain

∫ T

0

∫

Ω

c1(t, x)φ(t, x, 2)+c2(t, x)φ(t, x, 6)dxdt = lim
ε→0

∫ T

0

∫

Q

uε(t, x, y)φ(t, x, y)dydxdt

= lim
ε→0

∫ T

0

∫

Q

vε(t, x, Zε(y)wε(y)φ(t, x, y)dydxdt =

∫ T

0

∫

Ω

∑1

0
vj(t, x)αjφ(t, x, 2+4j)dxdt,

which means c = (c0, c1) = (α0v0, α1v1). Using the explicit form of R∗ and E implies

∫ T

0

〈ζ, ċ〉−R∗(c, ζ)+R∗(c,−DE(c))dt = B
(
(c1/α0, c2/α1), ζ

)
. (5.12)

Step 6. The liminf estimate: With these preparations we can now complete the liminf
estimate. By the construction of vε and ξε(t, x, y) = ζ(t, x, Zε(y)) we obtain the relations

Dε(uε) ≥ Bε(uε, ξε) = B̂ε(vε, ζ),

where ζ is now fixed. For the sequence uε as given in Step 5, we can further assume that
vε ⇀ v in L2([0, T ]×Ω;C0(Z)), using (5.11). According to Step 3 the liminf for ε → 0
yields

lim inf
ε→0

Dε(uε) ≥ lim inf
ε→0

B̂ε(vε, ζ) ≥ B̂0(v, ζ) ≥ B
(
(c0/α0, c1/α1), ζ),

where for the last estimate we have to choose ζ according to (5.9) to fit the limit v
and ζ = ζ |[0,T ]×Ω×{0,1}. Nevertheless, the functions ζ = (ζ0, ζ1) are still free. Using the
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characterization (5.12) and taking the supremum over all ζ gives the desired lower bound:

lim inf
ε→0

Dε(uε) ≥ sup
ζ

B̂0(v, ζ) ≥ sup
ζ

∫ T

0

(
〈ζ, ċ〉−R∗(c, ζ)+R∗(c,−DE(c))

)
dt

=

∫ T

0

(
R(c, ċ) +R∗(c,−DE(c))

)
dt = D(c).

Thus the desired estimate (5.7) is established, which finishes the proof of Theorem 5.2.

A Evaluation of some functionals

Here we give explicit calculations for the functional G occurring in the membrane limit
and the functional N occurring in the limit of diffusion to reaction. It is surprising that
both functional are closely related, see (A.5).

A.1 Derivation of the potential G(α, u0, u1)

We first give the result of the standard case of constant coefficients Â and Ŵ , which was
already derived in [MPR14, Prop. 4.4] under the restriction u0+u1 = 1. For the functional

G(α, u) :=

∫ 1

0

α2 + u′(x)2

2u(x)
dx,

we define the value function

G(α, u0, u1) := min
{
G(α, u)

∣∣∣ u ∈ H1(0, 1), u(0) = u0, u(1) = u1, u > 0
}
, (A.1)

and give a full proof of the derivation of the explicit formula.

Proposition A.1 For all α ∈ R and u0, u1 we have

G(α, u0, u1) =
√
u0u1 C

( α√
u0u1

)
+
√
u0u1 C

∗(log u1− log u0), (A.2)

where the last term simplifies to G(0, u0, u1) = 2(
√
u0−

√
u1)

2. Moreover, the unique
minimizer is given by

u(x) = (1−x)u0 + xu1 + b(x2−x) with b = u0 + u1 −
√
α2+4u0u1. (A.3)

Proof: Since the integrand is convex, there is a unique minimizer u. Denoting the
integrand by f(u, u′) the Euler-Lagrange equations −

(
∂u′f(u, u

′)
)′

+ f(u, u′) = 0 are
uu′′ − (u′)2 +α2 = 0. By Noether’s theorem we also have the first integral u′∂u′f(u, u

′)−
f(u, u′) =

(
(u′)2−α2

)
/(2u) = γ/2 =const. From (u′)2 = α2 + γu it is now easy to see

that all solutions of the Euler-Lagrange equations are parabolas. Using the boundary
conditions we find u in (A.3), where γ = 4b.

To evaluate the integral we restrict to the case u′(x) > 0 on [0, 1], which means
2u0 <

√
α2+4u0u1 < 2u1. In the other cases, one can do the calculation on all monotone

parts in a similar fashion and add the result. We use (A.3) and (u′)2 = α2 + γu to obtain
∫ 1

0

α2 + u′(x)2

2u(x)
dx =

γ

2
+ α2

∫ 1

0

dx

u(x)
= 2b+ α2

∫ u1

u0

du

u
√
α2+γu

,

= 2b− 2α artanh
√

1+ γ
α2u1 + 2α artanh

√
1+ γ

α2u0.
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To proceed we first observe α2+γuj =
(√

α2+4u0u1 − 2uj
)2
, which gives

√
α2+γu0 =√

α2+4u0u1 − 2u0 and
√
α2+γu1 = 2u1 −

√
α2+4u0u1. Now employing the addition rule

artanh(x) + artanh(y) = arsinh
(
(x+y)/

√
(1−x2)(1−y2)

)
and γ = 4b gives (A.2).

In Section 4 we need a more general version with non-constant functions Â and Ŵ :

Ĝ(α, U) :=

∫ 1

0

α2

2ÂU
+
ÂU

2

((
log(U/Ŵ )

)′)2

dy. (A.4)

We will show that the influence of the coefficient functions Â and Ŵ can be calculated
from Proposition A.1 by a suitable rescaling of the layer variable in the form x = X(y).

Proposition A.2 We have the following formula:

Ĝ(α, u0, u1) := min{ Ĝ(α, U) | U > 0, U(0) = u0, U(1) = u1 }
= A∗

√
u0u1
w0w1

C

(
1
A∗

√
w0w1

u0u1
α
)
+ A∗

√
u0u1
w0w1

C
∗
(
log

(
u0w1

u1w0

))
,

where w0 = Ŵ (0), w1 = Ŵ (1), and A∗ = Harm(ÂŴ ) =
( ∫ 1

0
1/(Â(y)Ŵ (y))dy

)−1
.

Proof: We define the new independent variable z and a new function v(z) via

z = Z(y) := A∗

∫ y

0

dη

Â(η)Ŵ (η)
and v(Z(y)) =

U(y)

Ŵ (y)
,

where A∗ =
( ∫ 1

0
1/(Â(η)Ŵ (η))dη

)−1
. By definition we have Z(0) = 0 and Z(1) = 1, and

the inverse Y of Z maps [0, 1] into itself again. Hence, using Z ′(y) = A∗/(Â(y)Ŵ (y)) the

functional Ĝ from (A.4) is transformed into G via Ĝ(α, U) = A∗ Ĝ(α/A∗, v). The result of
Proposition A.2 now follows from Proposition A.1 via

Ĝ(α, u0, u1) = min{ Ĝ(α, U) | U(0) = u0, U(1) = u1 }
= min{A∗G(α/A∗, v) | v(0) = U(0)/Ŵ (0), v(1) = U(1)/Ŵ (1) }.

Thus, the asserted formula is established.

A.2 Derivation of the potential N

We consider the functional

N(v, ζ) =

∫ 1

0

(v′(z)2
2v(z)

− 1

2
ζ ′(z)2v(z)

)
dz

for functions v > 0. Hence, N is convex in v and concave in ζ . We are interested in the
inf-sup for given boundary values, namely

N(δ, v0, v1) := inf
{

sup
{
N(v, ζ)

∣∣ ζ(1)−ζ(0) = δ
} ∣∣∣ v(0) = v0, v(1) = v1, v > 0

}
.

The following result provides an explicit formula in terms of the dual dissipation
potential C ∗. It is based on the following surprising relation between N and G from (A.1):

M(δ, v) := max
{
N(v, ζ)

∣∣ ζ(1)−ζ(0) = δ
} !!

= min
{
G(α, v)− αδ

∣∣ α ∈ R
}
. (A.5)
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The equality
!!
= can be checked by elementary calculations, since in both cases we find

M(δ, v) =

∫ 1

0

v′(z)2

2v(z)
dz − δ2

2
Harm(v), where Harm(v) =

(∫ 1

0

dz

v(z)

)−1

.

Using the strong link (A.5) between N and G we show that N can be calculated from G.

Proposition A.3 We have the relation

N(δ, v0, v1) =
√
v0v1 C

∗(log v1− log v0)−
√
v0v1 C

∗(δ).

Proof: Using (A.5) we want to show that N is related to the Legendre transform
G∗(δ, v0, v1) := supα∈R δα−G(α, v0, v1) of G from (A.1). For this we keep δ ∈ R fixed.

The functional (α, v) 7→ G(α, v)− δα is jointly convex, such that it can be minimized
in any desired order of α and v. Letting V := { v | v > 0, v(0) = v0, v(1) = v1 } we have

N(δ, v0, v1) = inf
v∈V

M(δ, v) = inf
v∈V

(
inf
α∈R

G(α, v)−δα
)

= inf
α∈R

(
inf
v∈V

G(α, v)−δα
)
= inf

α∈R
G(δ, v0, v1)− δα = −G∗(δ, u0, u1).

Thus, evaluating G∗ with G from (A.2) explicitly gives the desired result.
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