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Abstract—Linear embedding via Green’s operators (LEGO)
is a domain decomposition method in which complex radiation
and scattering problems are modelled and solved by means of
interacting electromagnetic “bricks”. We propose an extension of
LEGO able to handle bodies with anisotropic constitutive param-
eters and metallic objects (e.g., antennas). Since the anisotropic
objects are dealt with LEGO, and the metallic parts are treated
with the electric field integral equation (EFIE), we refer to the
overall approach as hybrid LEGO-EFIE. The characterization
of an electromagnetic brick which embeds an anisotropic object
requires solving a volume integral equation (VIE). Since this
procedure is carried out for each brick independently, the
LEGO approach per se is extremely advantageous over the
direct solution of a global VIE for all the bodies at once.
Nonetheless, we further mix the hybrid LEGO-EFIE approach
with the eigencurrents expansion method in order to tackle
relatively larger problems. The technique is used to analyze
a reconfigurable plasma antenna array (PAA) comprised of
magnetized-plasma tubes placed around a two-dipole antenna
array.

Index Terms—Antennas, anisotropic media, surface integral
equations, volume integral equations, equivalence principles,
Method of Moments, domain decomposition, macro basis func-
tions, eigencurrents, magnetized plasma, scattering operators,
plasma antennas.

I. INTRODUCTION

Media with anisotropic constitutive parameters exist in
nature and have found applications such as in the fabrication of
optical components [1]. Besides, nowadays artificial materials
can be engineered, for instance, by inserting metallic or
dielectric inclusions within a host dielectric matrix; then, if
the distribution and orientation of the underlying inclusions
is asymmetric, the resulting material is likely to exhibit
anisotropic behaviour [2], [3]. Also, magnetized plasma dis-
charges, which have been employed as metamaterials [4] and
antennas [5], [6], under certain conditions can be described
macroscopically in the spatial domain by means of a non-
Hermitian dyadic permittivity [7].

Electromagnetic (EM) radiation and scattering problems,
which simultaneously involve perfectly electrically conducting
(PEC) objects and penetrable bodies with anisotropic prop-
erties, are better formulated in terms of coupled volume-
surface integral equations (VSIE) (e.g., [7]–[11]) because

Sommerfeld’s radiations conditions [12], [13] are automati-
cally accounted for by the integral operators. However, it is
well known that, when solved numerically with the Method
of Moments (MoM) [14], surface integral equations (SIE) [8],
[15]–[18] and volume integral equations (VIE) [11], [19]–[24]
invariably yield dense and possibly large matrices.

One way of coping with this issue consists of reducing
the number of degrees of freedom and, thus, the size of the
algebraic system to be inverted. Said reduction can be realized
by either breaking the original EM problem into electrically
“smaller” sub-problems or by adopting specialized basis func-
tions devised ad hoc for the geometry at hand; combinations
of both strategies are also possible. An incomplete list of
the methods that implement these ideas are: the synthetic
functions expansion (SFX) [25]–[29], the characteristic basis
function method (CBFM) [30]–[39], and its multilevel version
[40], [41], the equivalence principle algorithm [42]–[45] and
the tangential equivalence principle algorithm (T-EPA) [46],
[47], the generalised surface integral equation (GSIE) method
[48], the eigencurrents expansion [49], [50], and the linear
embedding via Green’s operators (LEGO) method [51]–[56].

In this paper we propose an extension of the LEGO ap-
proach to the analysis of EM radiation and scattering problems
comprised of PEC objects (e.g., antennas) and an aggregate
of anisotropic bodies, as is sketched in Fig. 1a. Since the
anisotropic objects are dealt with LEGO, while the metallic
parts are treated with the standard electric field integral equa-
tion (EFIE) so as to gain more generality (the magnetic field
integral equation alone would, in fact, limit the application to
closed surfaces) we call the overall approach hybrid LEGO-
EFIE [57].

The basic idea of the LEGO method [54], [56] is the mod-
elling of a complex and possibly large structure by means of
simple-shaped EM “bricks”. In this way, the local geometrical
complexities [55] and even elementary sources confined to
the inside of the bricks [58] can be treated efficiently, though
separately, from the interactions which take place among the
various “distant” parts of a structure. The EM behavior of each
brick is expressed in terms of surface scattering operators of
equivalent current densities, whereas the multiple scattering
that occurs among any two bricks is captured by means of
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surface transfer operators. By combining these two ingredients
we can rigorously formulate the original EM problem. For
this reason, LEGO constitutes a type of domain decomposition
technique applied to SIEs.

In principle, there is no limitation to the contents of an
EM brick, but to handle the aggregate of anisotropic bodies
of interest here, it is convenient to enclose each body (tagged
medium Â) into a separate domain, as suggested in Fig. 1b. By
the same token, the host material (labelled Á in Fig. 1b) that
pads the inside of the bricks can be arbitrary [55]. This feature
was exploited, for instance, to analyze dielectric waveguides
in which confinement is provided by electromagnetic band-
gaps [58], [59]. For the sake of simplicity, though, we restrict
our discussion to the special case where medium Á and the
homogeneous background (labelled À) possess the same EM
properties.

Furthermore, although the EM bricks can have any shape,
defining bricks with different shapes for a given problem may
be unwise for computational purposes, or even impractical
sometimes. Actually, if the bricks have all the same shape —
but not necessarily the same content — then, the numerical
calculations of the scattering and transfer operators are facili-
tated because some intermediate results can be recycled, and
this helps reduce the computational workload. Secondly, while
for general distributions of objects in space [60] the shape of
the bricks is not restricted at all, adopting identical and simple
shapes may be necessary when one needs to stack the bricks
tightly in a regular pattern so as to model, e.g., dielectric slabs
with inclusions [59].

The formulation of the antenna problem of Fig. 1 with
hybrid LEGO-EFIE was outlined in [61] for the special in-
stance of isotropic bodies, whereas the standard LEGO method
(i.e., in the absence of PEC antennas) applied to clusters of
anisotropic objects was described in [62]. In this regard, it will
be clear further on that the LEGO functional equations take
on the very same form, irrespective of the nature of the EM
problem inside the bricks. As a result, the hybrid LEGO-EFIE
to be discussed here will be based on the same modified EFIE
we deduced in [61]. By contrast, the calculation of the scatter-
ing operators — which implies the solution of the scattering
problem inside the bricks — must perforce be updated in order
to allow for the dyadic constitutive parameters of medium Â.
In particular, this could be done by combining the integral
representation of the EM fields over a brick’s boundary with
the equivalent variational formulation of Maxwell’s differential
equations within the brick (e.g., [63], [64]). Alternatively, we
prefer to adopt an approach based on the MoM solution of
a VIE for the anisotropic object [62], as this strategy is in
keeping with the embedding philosophy, which has already
been developed for PEC and isotropic bodies [54]–[56].

It should be noted that, since the anisotropic nature of
the body inside a brick is rigorously accounted for by the
relevant scattering operator, which is a surface operator, the
very application of the LEGO algorithm provides a means for
reducing the number of unknowns in the context of the MoM
solution. More precisely, we need to solve at most as many

independent and relatively “small” VIEs as the number of
bodies; evidently, this task is far less computationally intensive
and memory demanding than the inversion of a global VIE
for the aggregate of objects as a whole. Nevertheless, for EM
problems modelled with a moderate to large number of bricks,
the algebraic counterpart of the LEGO functional equations
can still be too large for inversion with direct solvers, such
as the LU factorization [65]. Therefore, in an attempt to
overcome the memory limitations that large matrices would
pose, we combine the hybrid LEGO-EFIE approach with the
eigencurrents expansion method (EEM) [54], [57], [61], [66].

Simply put, in the EEM the eigenfunctions of a brick’s
scattering operator are employed as a set of locally entire-
domain basis functions to expand the unknowns (i.e., equiva-
lent surface current densities) introduced over the boundary of
a brick. Since ordinarily only few lower-order eigenfunctions
[57] are sufficient to accurately represent the unknowns, the
EEM allows compressing the algebraic system of LEGO and
hence, speeding up the matrix filling phase and the inversion.

The rest of the paper is organized as follows. In Section
II, we review the basic concepts of LEGO (II-A), introduce
the relevant unknown current densities through the EM equiv-
alence principles (II-B), derive the LEGO equations for the
bricks (II-C), formulate the EFIE for the conducting parts of
the problem (II-D), and deduce the modified EFIE (II-E). In
Section III the derivation of scattering and transfer operators is
discussed with a focus on bodies with anisotropic constitutive
parameters. The numerical solution with the MoM and sub-
sectional basis functions is outlined in Section IV, whereas the
compression of the algebraic counterpart of the LEGO equa-
tions with EEM is the subject of Section V. The validation of
the numerical implementation and the convergence of the EEM
are presented in Section VI. As an example of application of
hybrid LEGO-EFIE to a complex EM problem, in Section
VII we investigate the radiation properties of a reconfigurable
plasma antenna comprised of a two-dipole linear antenna array
surrounded by cylindrical magnetized-plasma tubes.

Finally, a time-dependence in the form exp(jωt) for fields
and sources is assumed and suppressed throughout.

II. FORMULATION

A. Description of the problem and LEGO model

We are concerned with the solution of an EM radiation
problem (Fig. 1a) which consists of a metallic multi-port
antenna and ND ≥ 1 identical penetrable bodies immersed in
a homogeneous unbounded background (medium À). Our goal
is to determine the network parameters (e.g., the impedance
matrix) and the radiation pattern of the antenna-objects system.

The objects — which can have arbitrary shape and position
in space — are made of an anisotropic material (medium Â)
endowed with dyadic permittivity (ε3) and permeability (µ3);
let VO denote the region of space occupied by an object. As is
customary, we assume the antenna and the other metallic parts,
if any are present, to be perfect electrical conductors (PEC).
We indicate with VA the volume occupied by the conductors
and with SA ≡ ∂VA the boundary thereof. Besides, for the
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Fig. 1: EM problem and LEGO bricks: (a) a metallic antenna operating in
the presence of ND anisotropic bodies (medium Â); (b) in accordance with
the LEGO approach, each object is embedded inside an EM brick Dk , k =
1, . . . , ND , in turn described by means of a scattering operator Skk . In this
work we examine the special instance of background material (À) and host
medium (Á) endowed with the same constitutive parameters.

sake of simplicity we model the antenna excitation by means
of the delta (or voltage) gap generator [67], [68]. As a result,
since we set the voltage at each antenna port and we compute
the current flowing therein, the natural network quantity, which
can be obtained by solving the EM problem, is the admittance
matrix.

We are now ready to apply LEGO to the EM problem of
Fig. 1a. We start by enclosing the ND anisotropic bodies in
as many simple-shaped bricks Dk, k = 1, . . . , ND, and we
denote the boundary of Dk with ∂Dk. The unit normal n̂k to
∂Dk is taken as pointing inwards Dk (Fig. 1b); correspond-
ingly, the positive (negative) side of ∂Dk is indicated by ∂D+

k

(∂D−
k ). However, here the distinction between ∂D+

k and ∂D−
k

is immaterial, since ∂Dk constitutes a mathematical separation
surface [54] rather than a material interface (cf. [55]), and the
EM properties of medium À and Á are the same by hypothesis.

We suppose that Dk has been characterized by means of
the scattering operator Skk, whereas the multiple scattering
among Dk, Dn, n = 1, . . . , ND, n ̸= k has been accounted
for through the pair of transfer operators Tkn and Tnk [54]. To
keep the exposition lucid, though, we postpone the derivation
of Skk, Tkn, and Tnk until Section III.

As we are concerned with a cluster of ND identical bodies,
all the scattering operators can be made equal to each other,
provided we also consider bricks with the same shape, as we
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Fig. 2: Equivalent EM problems: (a) The SEP is repeatedly applied on a
surface that tightly wraps one brick at a time (say, Dk) so as to preserve
equivalence inside that brick and to remove the antenna (VA) as well as the
remaining bricks (∪n ̸=kDn); (b) The SEP is applied on a disjoint surface that
tightly encloses all the bricks and the antenna so as to preserve equivalence
outside the bricks and the antenna region, and to remove the antenna (VA)
and the bricks (∪kDk).

have argued in the Introduction. Nevertheless, the equations to
be derived in the following are completely general, inasmuch
as they depend neither on the shape nor on the content of Dk.

B. Equivalent problems and unknown current densities

The theoretical framework for the definition of the EM
bricks and the formulation of the EM problem of Fig. 1a is
the Surface Equivalence Principle (SEP) [14], [69]. Thanks to
the SEP, equivalent problems in a given region of space can
be built as long as suitable surface electric (J) and magnetic
(M) current densities are placed on the separation surface.

For instance, we invoke the SEP ND times on ∂Dk, k =
1, . . . , ND, as illustrated in Fig. 2a, in order to obtain ND new
problems that are equivalent to the original one inside Dk,
whereas the outside of Dk is the excluded region. With each
step we end up introducing a set of equivalent total incident
surface current densities, namely,

Ji
k,tot ≡ n̂k ×H i

k,tot, (1a)

Mi
k,tot ≡ E i

k,tot × n̂k, (1b)

where E i
k,tot, H i

k,tot represent the total (unknown) incident
EM field on the boundary ∂Dk, and n̂k is the inward pointing
unit normal thereon. Moreover, the above currents radiate in
the presence of the object inside Dk only, provided we “fill”
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the excluded region with a material that has the same EM
properties as those of medium À.

A further application of the SEP, simultaneously on a
disjoint surface comprised of the boundaries ∪ND

k=1∂Dk plus
the antenna surface SA (see Fig. 2b), allows us to define an
equivalent problem in the region of space outside ∪ND

k=1Dk

and VA. In the process we introduce i) ND sets of equivalent
scattered surface current densities, viz.,

J s
k ≡ −n̂k ×H s

k, (2a)
M s

k ≡ −E s
k × n̂k, (2b)

where E s
k, H s

k is the (unknown) scattered EM field on ∂Dk,
and ii) the equivalent surface current densities

JA ≡ n̂A ×HA, (3a)
MA ≡ EA × n̂A = 0, (3b)

where EA, HA are the total electric and magnetic fields on
the antenna surface SA, and n̂A denotes the unit normal
thereon. Lastly, upon replacing the inside of the bricks and the
conductors with a material endowed with parameters ε1, µ1,
we are left with J s

k, M s
k, and JA radiating in a homogeneous

unbounded medium.
We observe that Ji

k,tot, M
i
k,tot (Fig. 2a) radiate the incident

EM field due to all external sources towards the inside of
Dk. For the EM problem of Fig. 1b, such sources will be
both (2a) and (2b) flowing on the boundaries of the remaining
ND−1 bricks and (3a) induced on the antenna conductors SA

(Fig. 2b). Conversely, each pair J s
k, M s

k produces the scattered
EM fields that are actually radiated by secondary (polarization
or magnetization) volume currents flowing in the region VO

occupied by the anisotropic object within Dk.

C. LEGO equations for the bricks

The relationship between Ji
k,tot, M

i
k,tot and J s

k, M s
k, just

defined, is provided by the scattering operator Skk, as follows:

qs
k = Skk q

i
k,tot, on ∂Dk, (4)

where qik,tot, q
s
k are the abstract 2× 1 vectors

qik,tot ≡
[ √

η1J
i
k,tot

−Mi
k,tot/

√
η1

]
, (5a)

qs
k ≡

[ √
η1J

s
k

−M s
k/
√
η1

]
, (5b)

and η1 =
√
µ1/ε1 is the intrinsic impedance of medium

À. The latter normalization factor endows qik,tot, q
s
k with the

physical dimension of a power wave, i.e., W1/2/m. In light of
(4), Skk can be rightfully regarded as a generalization of the
scattering matrix in network or waveguide theory [70], [71].

To proceed, we split the total equivalent incident currents
into the contributions of the various sources, namely,

qik,tot = qi
k +

ND∑
n=1
n ̸=k

qi
k(n), (6)

where qi
k represents the equivalent incident currents due to JA

on the antenna conductors, and the nth term of the summation
constitutes the equivalent incident currents due to qs

n flowing
on the boundary of Dn. The link between equivalent scattered
currents on ∂Dn and additional incident currents qi

k(n) on ∂Dk

reads
qi
k(n) = Tknq

s
n, on ∂Dk, n ̸= k, (7)

where Tkn is the transfer operator between ∂Dn and ∂Dk (see
Section III).

Next, upon substituting (7) into (6) and the latter into (4),
and then formally solving for qi

k and rearranging, we arrive at
the set of ND coupled functional equations

S−1
kk q

s
k −

ND∑
n=1
n̸=k

Tknq
s
n = qi

k, k = 1, . . . , ND, (8)

which can be cast in a compact abstract matrix form as:

S−1qs = qi, on ∂D1 ∪ . . . ∪ ∂DND
, (9)

where qs,i are ND × 1 abstract vectors

qs,i ≡

 qs,i
1
...

qs,i
ND

 , (10)

and
S−1 ≡ diag{S−1

kk } − T, (11)

is the total inverse scattering operator of the aggregate of
the bricks [54]. Additionally, the total transfer operator T, an
abstract ND ×ND matrix, is defined as

T ≡


0 −T12 · · · −T1ND

−T21 0 · · · −T2ND

...
...

. . .
...

−TND1 −TND2 · · · 0

 , (12)

and, since Tkn ̸= Tnk, it is not symmetric (Section III).
The total inverse scattering operator in (11) rigorously and

elegantly captures the multiple scattering that occurs among
the ND anisotropic bodies. And yet, (11) is just a formal
result, because first of all Skk and its inverse cannot be
obtained analytically for general geometries; secondly, S−1

kk

may not be defined at all when the scattering operator happens
to be singular. Nevertheless, we shall show in Section V
that the numerical solution of (9) is by no means critical,
provided we apply the eigencurrents expansion and organize
the calculations properly.

D. Electric field integral equation for the antenna

We now turn our attention to the antenna part of the EM
problem. By enforcing the boundary condition (3b) for the
total tangential electric field on SA we arrive at the electric
field integral equation (EFIE)[

Eg
A +Es

A +

ND∑
k=1

E s
Ak

]
tan

= 0, on SA, (13)
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where Eg
A is the impressed field supplemented by the external

generator in the delta-gap approximation [67], [68], Es
A is the

secondary field produced by JA on SA, and E s
Ak represents

the field radiated by the scattered currents qs
k on ∂Dk. The

subscript “tan” implies that (13) must hold true for the field
components that are tangential to SA.

Since the voltage gap generator [67] consists of the quasi-
static approximation of the electric field existing at the open
end of the coaxial cables connected to the antenna, Eg

A is
effectively non-zero only at the antenna ports. In fact, the
voltage gap model can be applied successfully as long as the
actual antenna port is small as compared to a) the operational
wavelength in the background medium and b) the antenna size.
As an example, in the case of a single-port antenna

[Eg
A]tan ≡ VGν̂δγA , on SA, (14)

where VG is the intensity of the voltage generator, γA is a line
on SA that defines the antenna port, ν̂ is a unit vector tangen-
tial to SA and locally perpendicular to γA, and δγA denotes
a one-dimensional Dirac distribution on γA. Furthermore, in
light of (14), there is no direct contribution from the generator
onto the aggregate of bricks; this is reflected in the absence
of a corresponding equivalent incident current in (9).

The tangential part of the electric field produced by JA on
itself is given by

[Es
A]tan = η1LANTJA, on SA, (15)

where

LANT{◦} ≡ −jk1

∫
SA

d2r′G1(R) I s · {◦}

− j∇s

k1

∫
SA

d2r′G1(R)∇′
s · {◦}, r ∈ SA, (16)

is the standard EFIE operator [14]. Besides, k1 = ω
√
ε1µ1

represents the wavenumber1 in medium À, R = |r− r′| is the
distance between field (r) and source (r′) points, and

G1(R) ≡ exp (−jk1R)

4πR
, (17)

is the pertinent 3-D scalar Green function. Finally, I s = I −
n̂An̂A is the surface unit dyadic tangential to SA, ∇s = I s ·∇,
and ∇′

s = −∇s means differentiation with respect to r′.

E. Formulation with a modified EFIE

To finalize the formulation of the EM problem we need
to include the multiple scattering phenomenon which occurs
between the antenna and each one of the ND bodies.

For instance, we observe that the antenna current JA radi-
ates the EM field E i

k, H i
k on the boundary of Dk. This can

be written symbolically as

F i
tk ≡

[
0

√
η1 H

i
tk

]
=

√
η1 PkAJA, (18)

where the surface integro-differential operator PkA is called
the propagator from SA to ∂Dk (see Appendix A-C); besides,

1The wavenumber k1 should not be confused with the brick index k.

the subscript ‘t’ stands for “tangential” to ∂Dk. To convert the
fields impinging on ∂Dk into the equivalent incident currents
in (6), we resort to another propagator, as follows:

Pi
kk q

i
k = F i

tk, on ∂Dk, (19)

where Pi
kk is a 2 × 2 abstract matrix of integro-differential

operators on ∂Dk, which is given explicitly in Appendix A-A.
Note that a null vector appears in the definition of F i

tk
above, because the propagator Pi

kk has been conveniently
defined in such a way that only the incident magnetic field
is required to produce the corresponding incident currents.
Thanks to this expedient step followed, in the context of the
numerical solution through the MoM and a symmetric inner
product, the algebraic counterpart of Pi

kk happens to be a
symmetric matrix. It is also worthwhile mentioning that the
calculation of qi

k through (19) is preferable over the definition
in terms of twisted tangential fields, namely,

J i
k ≡ n̂k ×H i

k, (20a)

M i
k ≡ E i

k × n̂k, (20b)

since the latter equations are likely to yield less accurate results
when evaluated numerically.

Now, solving (18) and (19) for qi
k yields

qi
k =

√
η1(P

i
kk)

−1PkAJA, on ∂Dk, (21)

which mathematically accounts for the interaction between the
antenna and the brick Dk.

The equivalent scattered currents qs
k flowing on ∂Dk as a

result of the presence of the body inside Dk, in turn produce
the EM fields E s

Ak, H s
Ak on the antenna surface. Since only

the electric field enters (13), we can express E s
Ak symbolically

as
[E s

Ak]tan =
√
η1 PAk q

s
k, on SA, (22)

where the surface operator PAk is called the propagator from
∂Dk to the antenna, and it is a 1×2 abstract matrix of integro-
differential operators on ∂Dk, as detailed in Appendix A-C.

With the aid of (10) and (22) we can cast the combined
contribution of the ND bricks onto the antenna in a compact
form as follows:

ND∑
k=1

[E s
Ak]tan =

√
η1 PAOq

s, on SA, (23)

where PAO is a 1×ND abstract matrix with entries

(PAO)k = PAk, (24)

and qs is given by (10). By inserting (21) into (9) and solving
for qs we obtain

qs =
√
η1 STOAJA, on ∂D1 ∪ . . . ∪ ∂DND

, (25)

where TOA is an ND × 1 abstract matrix of operators with
entries

(TOA)k = (Pi
kk)

−1PkA. (26)
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Finally, inserting qs as given by (25) into (23), and the result
into (13), yields the modified EFIE for the current density JA,
viz.,

η1 (LANT + LLEGO)JA = −[Eg
A]tan, on SA, (27)

where the operator

LLEGO ≡ PAOSTOA, (28)

factors in the effect of the aggregate of bricks (and hence, of
anisotropic bodies) on the antenna current JA. In this regard,
if we were able to cast LANT + LLEGO in the form of a
radiation integral over SA and to single out the corresponding
kernel explicitly, we would have obtained the Green’s function
relevant to the electric field produced by an elementary electric
current density in the presence of the ND objects.

The fact that (27) and (28) have exactly the same functional
form as [61, Eq. (5)] — which were derived for antennas and a
cluster of isotropic objects — is a welcome consequence of the
modularity of LEGO. Indeed, it is evident that the assumption
of anisotropic objects has an impact solely on the calculation
of the scattering operators Skk.

Once the antenna current density JA has been computed
from (27), we can determine the equivalent scattered densities
qs from (25). Both JA and qs contribute to the radiated EM
field.

III. SCATTERING AND TRANSFER OPERATORS

In this section we derive explicit, though formal, expressions
for Skk and Tkn, Tnk in terms of suitable integral operators.
We recall that in deriving Skk we assume that media À and
Á possess the same EM properties. To gain more generality,
we suppose that the object inside Dk has dyadic permittivity
ε3 and permeability µ3. Also, by invoking linearity and
superposition we can work with a solitary brick Dk in medium
À illuminated by incident EM fields E i

k, H i
k, which are

generated by some external source of radiation. In fact, we
may as well assume that the equivalent incident currents qi

k

have been obtained by inverting (19).
To begin with, we observe that the EM field produced by

qi
k in the region VO occupied by the object inside Dk can be

written formally as (Fig. 3a)

F i
o ≡

[
Di

o/(ε1
√
η1)

Bi
o
√
η1/µ1

]
= Pok q

i
k, in VO, (29)

with Di
o, Bi

o, the incident electric and magnetic flux densities
within VO. The propagator Pok is a 2 × 2 matrix of dyadic
surface operators whose kernel is the Green’s function of
media À and Á (see Appendix A-B).

Next, we apply the Volume Equivalence Principle (VEP)
and we replace the object with the equivalent electric and
magnetic volume current densities (e.g., [22])

Jo ≡ jω[ I− (ε3(r)/ε1)
−1] ·Do

= jωαe(r) ·Do, r ∈ VO, (30a)

Mo ≡ jω[ I− (µ3(r)/µ1)
−1] ·Bo

= jωαh(r) ·Bo, r ∈ VO, (30b)

where αe and αh are the contrast dyadics, and Do and Bo

are the total electric and magnetic flux densities, respectively,
within VO. Accordingly, Do, Bo can be obtained from F i

o by
solving the VIE (Fig. 3b)

Xoo qo = F i
o, in VO, (31)

where

qo ≡
[

Do/(ε1
√
η1)√

η1 Bo/µ1

]
, (32)

and Xoo is a 2 × 2 matrix of volume operators over VO (see
Appendix B). The volume currents Jo, Mo in turn generate
a scattered EM field on the ∂Dk. The latter can be expressed
mathematically in terms of Do, Bo as (Fig. 3c)

F s
tk ≡

[
0

√
η1 H

s
tk

]
= Pk oqo, on ∂Dk, (33)

where the propagator Pk o is a 2× 2 abstract matrix of dyadic
volume operators involving the Green’s function of media À
and Á (see Appendix A-B). The superscript ‘s’ (short for
“scattered”) signifies that the fields in question propagate away
from the object and out of the brick.

Eventually, a further application of the SEP over ∂Dk

enables us to replace the scattered field F s
tk with equivalent

scattered densities (Fig. 3d), as follows:

P s
kk q

s
k = F s

tk, on ∂Dk, (34)

where qs
k is the abstract 2× 1 vector introduced in (5b). The

propagator P s
kk — which plays a similar role to Pi

kk in (19)
— is defined so as to require only the magnetic field H s

tk to
determine qs

k, and this accounts for the presence of the null
vector in F s

tk in (33). In this way, as already observed for Pi
kk,

the algebraic counterpart of P s
kk is also a symmetric matrix.

Now, by formally solving (29), (31), (33) and (34) for qs
k

as a function of qi
k we find that2

qs
k = (P s

kk)
−1Pk o(Xoo)

−1Pok q
i
k = Skk q

i
k, (35)

which provides us with a suitable recipe for computing the
scattering operator Skk. The propagators Pk o, Pok and the
integral operator Xoo are given in Appendices A-B, B for the
special instances of either a dielectric body (with µ3 = µ1I)
or a magnetic one (with ε3 = ε1I).

The interaction between bricks Dk, Dn can be obtained as
follows. In a similar fashion to (19), we turn the incident fields
onto ∂Dk (or ∂Dn) into equivalent surface current densities
qi
k(n) (or qi

n(k)). Symbolically, we write

Pi
kk q

i
k(n) = Pkn q

s
n, on ∂Dk, n ̸= k, (36a)

Pi
nn q

i
n(k) = Pnk q

s
k, on ∂Dn, k ̸= n, (36b)

where the propagators Pi
kk, Pi

nn are the same as in (19).
Besides, the propagators Pkn, Pnk (given in Appendix A-A)
are 2× 2 abstract matrices whose non-null entries are dyadic

2This expression for Skk differs from the one in [54, Eq. (11)] for a minus
sign, which is due to different definitions adopted for the operator Xoo.
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Fig. 3: Derivation of the scattering operator of Dk in the case when host (Á) and background (À) medium have the same EM properties: (a) The equivalent
incident currents qi

k on ∂Dk produce incident fields F i
o in the region occupied by the object; (b) The object “reacts” with polarization and/or magnetization

currents qo; (c) The currents qo produce scattered fields F s
tk on ∂Dk; (d) The scattered fields are replaced with equivalent scattered currents qs

k .

integro-differential operators. The formal inversion of (36a),
(36b) yields

qi
k(n) = (Pi

kk)
−1Pkn q

s
n = Tkn q

s
n, n ̸= k, (37a)

qi
n(k) = (Pi

nn)
−1Pnk q

s
k = Tnk q

s
k, k ̸= n, (37b)

where the dimensionless transfer operators Tkn, Tnk map
scattered currents on ∂Dn,k onto incident currents on ∂Dk,n.

The propagators involved in (37a) and (37b) depend solely
on the shape of a brick. Therefore, regardless of the content of
a brick, if Dk and Dn have the same shape, then Pi

kk = Pi
nn,

hence, we need only compute either one. By contrast, even
in the case when ∂Dk = ∂Dn, it turns out that Pkn ̸= Pnk.
For these reasons — but also because Pi

kk and Pi
nn do not

commute with Pkn and Pnk — no simple relationship exists
between Tkn and Tnk, and the total transfer operator T in (12)
is not symmetric, as we anticipated. It can be shown that the
algebraic counterparts of the non-null entries of Pkn and Pnk

(see Appendix A-A) are transposes of each other, provided the
MoM is implemented by using a symmetric inner product.

IV. NUMERICAL SOLUTION WITH MOMENTS METHOD

We now describe the application of the baseline Method of
Moments (MoM) in the Galerkin’s form [14] for the calcu-
lation of scattering and transfer operators in (35) and (37a),
(37b), the object-to-antenna propagators (24) and the antenna-
to-object transfer operators (26). Furthermore, we derive a
weak form corresponding to (25) and (27).

We begin by modelling the surface of the bricks and the
conducting elements with 3-D triangular tessellations, and the
anisotropic objects with tetrahedral meshes. Then, we express
the surface electric and magnetic current densities flowing on
the boundary of a brick as [54]

qi
k =

NF∑
p=1

[
fkp(r)

√
η1J

i
kp

−gkp(r)M
i
kp/

√
η1

]
, r ∈ ∂Dk, (38a)

qs
k =

NF∑
p=1

[
fkp(r)

√
η1J

s
kp

−gkp(r)M
s
kp/

√
η1

]
, r ∈ ∂Dk, (38b)

where {fkp(r)}NF
p=1 and {gkp(r)}NF

p=1 constitute two sets of NF

sub-sectional real divergence-conforming surface vector basis
functions [72] associated with all the edges of the underlying
3-D triangular-facet mesh. Here, we choose fkp = gkp, al-
though the functions used to express the electric and magnetic
current densities need not be the same.

Likewise, we expand the flux densities within an anisotropic
body as [62]

qo =

NO∑
m=1

[
vm(r)Dm/(ε1

√
η1)

vm(r)
√
η1Bm/µ1

]
, r ∈ VO, (39)

where {vm(r)}NO
m=1 represents a set of NO sub-sectional real

divergence-conforming volume vector basis functions [73].
In particular, if the body is either electric or magnetic, (39)
will reduce to an expansion for just Do or Bo, respectively
(see Appendices A-B and B). To account for the fact that
the normal components of Do and Bo do not vanish on
the boundary ∂VO of the object, the functions vm are to be
associated with all the triangular facets of the tetrahedral mesh.

Finally, we express JA on SA as [61]

JA(r) =

NA∑
l=1

hl(r)Il, r ∈ SA, (40)

where {hl(r)}NA

l=1 are NA real divergence-conforming surface
vector basis functions [72] associated with the inner edges of
the relevant triangular tessellation.

To finalize the application of the MoM we also need three
L2 symmetric inner products defined as

(a,F)∂Dk
≡

∫
∂Dk

d2r a · F, a ∈ {fkp,gkp}NF
p=1, (41a)

(a,F)VO
≡

∫
VO

d3r a · F, a ∈ {vm}NO
m=1, (41b)

(a,F)SA ≡
∫
SA

d2r a · F, a ∈ {hl}NA

l=1, (41c)

with F a complex vector field in ∂Dk, VO and SA, in (41a),
(41b) and (41c), respectively.
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For ease of manipulation, it is convenient to collect the
expansion coefficients in (38a), (38b), (39) and (40) into
column vectors [qi

k], [q
s
k], [qo], [JA], as follows

[qs,i
k ] =



J s,i
k1

√
η1

...
J s,i
kNF

√
η1

−M s,i
k1/

√
η1

...
−M s,i

kNF
/
√
η1


, [qo] =



D1/(ε1
√
η1)

...
DNO/(ε1

√
η1)

√
η1B1/µ1

...√
η1BNO

/µ1


, (42)

[JA] =

 I1
...

INA

 . (43)

Following the manipulations above, we proceed to deter-
mine the weak form of equations and operators.

For instance, we insert (38a) into (29), (39) into (31), and
we project them onto VO with (41b); then, we insert (38b) into
(34), and we project it onto ∂Dk with (41a). Upon solving the
trio of resulting equations for [qs

k] in terms of [qi
k], we arrive

at the expression for the algebraic scattering operator

[Skk] = [P s
kk]

−1 [Pko] [Xoo]
−1

[Pok] , (44)

where with transparent notation each matrix represents the
algebraic counterpart of the corresponding integral operator
in (35). As regards the size of the matrices in (44), [P s

kk]
is 2NF × 2NF , [Xoo] is 2NO × 2NO, and [Pko], [Pok]
are 2NF × 2NO, 2NO × 2NF , respectively. However, if the
object within Dk is either electric or magnetic, then [Xoo] is
NO×NO, and [Pko], [Pok] are 2NF×NO, NO×2NF , because
either Mo or Jo is zero in VO.

By inserting (38b) and a similar expansion for qi
k(n) into

(36a), projecting onto ∂Dk with (41a), and formally solving
for [qs

k] versus [qi
k(n)], we can express the algebraic transfer

operator as

[Tkn] = [P i
kk]

−1
[
P i
kn

]
, (45)

where both matrices are 2NF ×2NF ; the expression for [Tnk]
ensues from (45) by swapping the indices n, k.

By substituting (38a) into (19) and (40) into (18), projecting
onto ∂Dk with (41a), and solving for [qi

k] with respect to [JA]
we get

[TOAk] = [P i
kk]

−1 [PkA] , (46)

where [PkA] is size 2NF ×NA. Similarly, inserting (38b) into
(22) and projecting onto SA with (41c) yields [PAk], whose
size is NA×2NF . The matrices [TOAk] and [PAk] are needed
to form [LLEGO], the algebraic counterpart of (28).

By inserting (40) into (15), and projecting onto SA with
(41c), we obtain [LANT], the algebraic counterpart of the EFIE
operator (16). More specifically, the source term corresponding
with (14) and the right-hand side of (27) is a column vector

[Eg
A] with NA entries given by

Eg
Al =

∫
SA

d2r hl(r) ·Eg
A(r)

= VG

∫
γA

dr hl(r) · ν̂, (47)

which, as a result of the delta-gap generator model (14), are
non-null only for those test functions among hl(r) that are
associated with the inner edges spanning the line γA in the
triangular-facet mesh of SA.

Now, by making use of (44) and (45) the algebraic total
inverse scattering operator (of size 2NFND × 2NFND) can
be written as

[S]
−1

=


[S11]

−1 − [T12] · · · − [T1ND
]

− [T21] [S22]
−1 · · · − [T2ND

]
...

...
. . .

...
− [TND1] − [TND2] · · · [SNDND

]
−1

 , (48)

whereas the algebraic equivalent of the LEGO operator (28)
reads

[LLEGO] = [PAO] [S] [TOA] , (49)

with
[PAO] =

[
[PA1] · · · [PAND

]
]
, (50)

[TOA] =

 [TOA1]
...

[TOAND
]

 , (51)

and [S] is the inverse of [S]−1.
Lastly, in light of (47), (49), (50) and (51), the weak form

of (25), (27) reads

[qs] =
√
η1 [S] [TOA] [JA] , (52)

η1([LANT] + [LLEGO]) [JA] = − [Eg
A] , (53)

where [qs] is a column vector with ND block entries [qs
k] as

defined in (42).
As long as the number NA of basis functions hl(r) is not

too large, we can solve the system (53) (of rank NA) by
means of direct solvers, such as the LU factorization [65]. The
real challenge, though, is posed by the very determination of
the LEGO matrix [LLEGO], because that computation entails
an inversion of [S]

−1 in (48), as can be gleaned from (49).
In fact, even if we suppose the scattering matrices [Skk] are
invertible so that [S]−1 can actually be built explicitly, [S]−1

may already become a large matrix, even for a moderate
number ND of EM bricks in the model. Worse still, if [Skk]
is singular, then the representation (48) — being just formal
— cannot be used to determine [S] in the first place. These
considerations also apply to (52) which we need to retrieve
the coefficients of the scattered currents on ∪ND

k=1∂Dk. Thus,
to cope with the occurrence of a large and possibly undefined
matrix [S]

−1, we adopt the eigencurrents expansion method
(EEM).
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V. EIGENCURRENTS EXPANSION AND COMPRESSION

The application of the eigencurrents expansion method
(EEM) to the solution of the LEGO equation (9) alone was
extensively described in [54], [66]. Here, we follow the same
strategy to compute the matrix product [S] [TOA], which enters
the algebraic LEGO operator (49) and the expression of the
scattered currents coefficients [qs] in (52). Therefore, the main
goal is the efficient and stable calculation of [S].

To begin, we consider the matrix of 2NF eigenvectors [Vkk]
of the algebraic scattering operator (44) defined through

[Skk] [Vkk] = [Vkk] diag{λ(k)
q }, (54)

where λ
(k)
q , q = 1, . . . , 2NF , denote the eigenvalues of [Skk].

We also assume that the eigenvalues are sorted in descending
order, i.e., |λ(k)

q | ≥ |λ(k)
q+1|, and that this ordering is reflected

on the columns of [Vkk] in an obvious way. Upon combining
the 2NF elements of each eigenvector with the basis functions
fkp, gkp, as is prescribed by (38a), we obtain on ∂Dk a set of
surface current densities which we refer to as the eigencurrents
of Dk, in light of (54) and the role played by [Skk].

In the eigencurrents expansion method (EEM) we employ
the eigencurrents as local entire-domain basis functions on
∂Dk. The desired compression of [S]

−1 is then achieved
because only the eigencurrents associated with the larger
eigenvalues λ

(k)
q (usually only a few) must be retained to

expand the currents on ∂Dk.
This is accomplished by first expressing [S]

−1 in the basis
of the eigenvectors of [Skk], as follows:

[S̃]−1 = [V ]
−1

[S]
−1

[V ] , (55)

where [V ] is a block-diagonal matrix with ND diagonal blocks
given by [Vkk]. More specifically, in view of (48) and (54),
we can write

([S̃]−1)kn =

{
diag{1/λ(k)

q }, k = n,

− [Vkk]
−1

[Tkn] [Vnn] , k ̸= n.
(56)

Now, [S̃]−1 would be an exactly diagonal matrix, if we had
used its true eigenvectors, but the latter are just the quantities
we cannot compute either because [S̃]−1 is too large, or
because [Skk] is singular, or both. As it turns out, though,
most of the entries of (55) are relatively small and can be
safely set to zero.

To this purpose, we observe that the eigencurrents of Dk

can be separated into two complementary sub-sets: coupled
and uncoupled. The former — corresponding with the larger
eigenvalues λ

(k)
q , q = 1, . . . , NC — produce substantial radi-

ation, and hence they contribute to the multiple scattering that
takes place among the bricks. On the contrary, the uncoupled
eigencurrents — associated with the smaller and possibly null
eigenvalues λ

(k)
q , q = NC +1, . . . , 2NF — generate scattered

fields that remain mostly confined around Dk; hence, they are
only necessary to describe the scattered currents on the very
same brick.

To proceed with the inversion of [S̃]−1 we rearrange rows
and columns as follows:

 

RECIPROCAL	

HIGHER-ORDER	

EIGENVALUES	

ASSOCIATED	WITH	

THE	UNCOUPLED	

EIGENCURRENTS	

NEGLIGIBLE	

ENTRIES	CONTRIBUTION	

OF	THE	COUPLED	

EIGENCURRENTS	

�Λ�UU�
��

 ��	CC�
��

 

Fig. 4: To illustrate the partition and subsequent compression of the total
inverse scattering operator [S]−1 in the basis of the eigencurrents.

1) The entries relevant to two coupled eigencurrents are
shifted to the upper left corner of the matrix;

2) The entries corresponding with two uncoupled eigen-
currents are displaced to the lower right corner of the
matrix;

3) The entries pertinent to a pair of coupled and uncoupled
eigencurrents are moved either to the upper right part or
to the lower left part of the matrix.

Symbolically, we can write

[Ŝ]−1 = [P ]
T
[S̃]−1 [P ] =

[
[S̃CC]

−1 [S̃CU]
−1

[S̃UC]
−1 [S̃UU]

−1

]
, (57)

where the subscript ‘C’ (‘U’) stands for coupled (uncoupled)
and [P ] represents a suitable 2NFND × 2NFND permuta-
tion matrix [65]. In accordance with the notion of coupled-
uncoupled eigencurrents we observe that:

1) the matrix [S̃CC]
−1 is dominant;

2) the off-diagonal matrices [S̃CU]
−1 and [S̃UC]

−1 must be
relatively small;

3) the off-diagonal entries of [S̃UU]
−1 must be relatively

small or null.
Based on these observations, we approximate (57) as

[Ŝ]−1 ≈

[
[S̃CC]

−1 [0]

[0] [Λ̃UU]
−1

]
, (58)

with [Λ̃UU] representing a diagonal matrix that contains all the
eigenvalues associated with the uncoupled eigencurrents; the
reduction process is graphically illustrated in Fig. 4. In this
way, the calculation of [S] has been reduced to the separate
inversion of [S̃CC]

−1 and [Λ̃UU]
−1.

The matrix [S̃CC]
−1 has the rank NCND, which is relatively

small as compared to the rank of the original uncompressed
inverse scattering operator (48); thus, we can obtain [S̃CC] with
the LU factorization [65]. Besides, the diagonal of [S̃CC]

−1

is comprised of the reciprocal eigenvalues germane to the
coupled eigencurrents, as is evident from (56). Since these
eigenvalues are relatively large — although |λ(k)

q | ≤ 1 —
their numerical inversion is stable, and hence, [S̃CC]

−1 is
well defined. In addition, we need not build [Λ̃UU]

−1 at
all, since from (55) we already know the eigenvalues of
[Skk]. Therefore, the occurrence of very small or possibly null
eigenvalues does not pose any numerical issue.
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To determine the algebraic LEGO operator (49) we first ex-
press the matrices [PAO] and [TOA] in the basis of eigenvectors
of [Skk] as well and then shuffle the entries thereof with the
permutation matrix [P ]. The result reads

[LLEGO] =

= [PAO] [V ] [P ] [Ŝ] [P ]
T
[V ]

−1
[TOA]

=
[
[P̃AO,C] [P̃AO,U]

]
[Ŝ]

[
[T̃OA,C]

[T̃OA,U]

]
≈ [P̃AO,C][S̃CC][T̃OA,C] + [P̃AO,U][Λ̃UU][T̃OA,U], (59)

where we have made use of (58) in computing [Ŝ]. The second
contribution in the rightmost r.h.s. of (59) can be neglected
altogether, because the uncoupled eigenvalues are relatively
small. From a physical standpoint, the latter implies that the
uncoupled eigencurrents generate fields that do not propagate
towards the antenna.

For the calculation of [qs] in (52) we proceed in a similar
fashion, namely,

[qs] =
√
η1 [V ] [P ] [Ŝ] [P ]

T
[V ]

−1
[TOA] [JA]

=
√
η1 [V ] [P ] [Ŝ]

[
[T̃OA,C]

[T̃OA,U]

]
[JA]

≈ √
η1 [V ] [P ]

[
[S̃CC][T̃OA,C]

[Λ̃UU][T̃OA,U]

]
[JA] , (60)

where again the matrix [Λ̃UU][T̃OA,U] can be neglected.
If all the scattering operators are equal to each other, then

we have to perform the spectral decomposition (54) and the
formal inversion of [Vkk] only once. Besides, the total number
of coupled eigencurrents will be NCND, which is the size of
[S̃CC]

−1, the only matrix we really have to invert to compute
[LLEGO] and, at a later stage, the scattered current coefficients
[qs].

We conclude this section by observing that, from a compu-
tational viewpoint, it is desirable to use as few eigencurrents
as possible, so as to keep the size NCND of [S̃CC]

−1 at
bay. Obviously, the number of coupled eigencurrents cannot
in any case exceed the total number of basis functions 2NF

introduced on ∂Dk to expand the equivalent current densities
thereon. Furthermore, the very form of (44) suggests that [Skk]
may be rank deficient, if the size of [Xoo] is smaller than the
size of [P s

kk]. Therefore, the maximum number of coupled
eigencurrents is

NC,max = min{2NF , 2NO}, (61)

if the embedded object is both magnetic and dielectric or else,

NC,max = min{2NF , NO}, (62)

if the object is either magnetic or dielectric [see (39)].

VI. VALIDATION AND CONVERGENCE

The solution of (25) and (27), which is based on the weak
form (52) and (53), has been implemented in an extended nu-
merical code. In this section we consider the validation of the
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Fig. 5: For testing LEGO-EFIE: surface and volume meshes of two strip-
dipoles and two dielectric spheres embedded in as many cubic bricks. Data:
radius of spheres 25 cm, width of dipoles 10 cm, height of dipoles (d) and
edge of bricks 100 cm, separation of dipoles 220 cm. (After [57].)

hybrid LEGO-EFIE approach, and we discuss the convergence
of the solution with the number coupled eigencurrents retained
for the inversion of (57).

A. Example of validation

We examine the simple antenna problem of Fig. 5 in which
two strip-dipole antennas are symmetrically placed across two
dielectric spheres (medium Â) from each other.

The antenna-objects system is immersed in free space
(medium À and Á have the same EM parameters), in ac-
cordance with the general setup sketched in Fig. 1. To model
the problem with LEGO we embed each sphere inside a cubic
brick; the center of the sphere coincides with that of the sur-
rounding brick (see the caption of Fig. 5 for geometrical data).
The number of basis functions on the dipoles, on the surface
of each brick and in each sphere are NA = 15 × 2 = 30,
2NF = 1800 and NO = 1834, respectively.

To obtain a reference solution we have solved the problem
with a previous version of the code [61] for the special case
where the spheres are comprised of an isotropic dielectric
material with ε3 = 2ε0I and µ3 = µ0I. For the calculation of
[S11] in this case we have performed the MoM solution of the
Poggio-Miller-Chang-Harrington-Wu-Tai SIE [14], [15] on the
surface of the sphere inside a brick [54] by expanding electric
and magnetic surface current densities with NO = 2× 294 =
588 surface divergence-conforming vector basis functions [72]
of the same type as in (38a), (38b) or (40).

In assembling the system (53) we have obtained the al-
gebraic LEGO operator [LLEGO] through (59) by employ-
ing NC = 30 coupled eigencurrents out of NC,max =
min{2NF , NO} = 1800. Likewise, we have constructed the
system given by [61, Eqs. (9), (14)] by using NC = 30 coupled
eigencurrents out of NC,max = min{2NF , NO} = 588.
Therefore, in both cases the reduced inverse scattering operator
[S̃CC]

−1 in (58) has the rank NCND = 60. Then, from the
knowledge of [JA] and [qs] we have computed the 2 × 2
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Fig. 6: Impedance matrix entries for the problem of Fig. 5: real (a) and imaginary (b) parts versus the electric length of the dipoles; (−) old LEGO-EFIE with
SIE inside bricks [61], (◦) LEGO-EFIE (53) and VIE inside bricks [62]. Data: ε1 = ε2 = ε0, ε3 = 2ε0I, µ1 = µ2 = µ3 = µ0, NC = 30. (After [57].)
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Fig. 7: Normalized radiated electric field versus the elevation angle (θ) for
the problem of Fig. 5; (−) old LEGO-EFIE with SIE inside bricks [61], (◦)
LEGO-EFIE (53) and VIE inside bricks [62]. Data: see caption of Fig. 6;
each port excited with VG = 1 V, d/λ0 = 0.467. (After [57].)

antenna impedance matrix for seventeen frequency samples
in the range f ∈ [120, 200] MHz, and the normalized radiated
field at f = 140 MHz.

The entries Z11 and Z21 of the antenna impedance matrix
are plotted in Fig. 6 versus the dipole electric length d/λ0. The
magnitude of the radiated electric field is plotted in Fig. 7 as
a function of the elevation angle (θ) in the half-planes ϕ = 0◦

and ϕ = 90◦ at f = 140 MHz. Since the results show perfect
agreement, we can conclude that the LEGO-EFIE approach
with VIE is not only viable, but that it has been implemented
correctly.

B. Convergence of EEM with NC

It is interesting to investigate how well the solution of (52),
(53) converges when the number NC ≤ min{2NF , NO} of
coupled eigencurrents is increased, because the latter have
a direct impact on the accuracy of the reduced scattering
operator [S̃CC] and hence, on [LLEGO] in (59).

Towards this end we have repeatedly solved the antenna
problem of Fig. 5 at f = 140 MHz (d/λ0 = 0.47) by
using NC ∈ {5, 10, 15, 20, 25, 30} coupled eigencurrents.
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0.0375
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0.0385

NC

‖
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s k
]‖

2

 

 

brick #1
brick #2

d/λ0 = 0.47

Fig. 8: Convergence of EEM: L2-norm of
[
qs
k

]
, k = 1, 2, versus number

of coupled eigencurrents (NC ) for the antenna problem of Fig. 5. Data: see
caption of Fig. 9. (After [57].)

Accordingly, we have determined the impedance matrix from
[JA] and the radiated field from both [JA] and [qs]. The L2-
norms of [qs

k], k = 1, 2 are shown in Fig. 8, whereas the entries
Z11 and Z21 of the impedance matrix are plotted in Fig. 9.

It is apparent that, for the problem at hand, convergence is
reached when we employ just NC = 15 coupled eigencurrents
out of 1800. As can be expected, the convergence of the
radiated fields is even more rapid. This can be ascertained from
Fig. 10, in which the magnitude of the normalized electric field
obtained with NC ∈ {10, 20} at f = 140 MHz is compared
to the same quantity computed with NC = 30, the latter being
assumed as a reference solution in view of Fig. 8.

In Section V we have argued that the coupled (uncoupled)
eigencurrents of the algebraic scattering operator are asso-
ciated with the larger (smaller) eigenvalues λ

(k)
q of [Skk].

To support this speculation, in Fig. 11 we have plotted the
spectrum of [S11] pertinent to the antenna-objects problem of
Fig. 5 again at f = 140 MHz. As can be seen, the eigenvalues
decay very fast (exponentially) until they drop down to the
threshold of numerical noise for double-precision floating-
point calculations.

In general, this trend is common to all EM bricks containing
a PEC [66] or a penetrable object [62], [66]. However,
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with VG = 1 V, d/λ0 = 0.467. (After [57].)

|λ(k)
1 | depends substantially on the relative size of brick

and embedded object and the constitutive parameters thereof.
Besides, a sharp threshold separating the coupled eigencurrents
from the uncoupled ones may appear (cf. [66, Figs. 2-4]), if
2NO < 2NF or NO < 2NF , that is, the number of basis
functions employed to solve (31) is smaller than the number
of expansion functions introduced over ∂Dk. Actually, in this
instance the algebraic scattering operator (44) is obviously
rank-deficient.

VII. APPLICATION EXAMPLE: PLASMA ANTENNA ARRAY

A Gaseous Plasma Antenna (GPA) is a plasma discharge
(usually, in the form of a dielectric tube filled with gas) in
which the generated plasma behaves as a conducting medium
when the tube is energized, and this enables the tube to
transmit and receive EM waves [6], [74]. GPAs have many
potential advantages over conventional metallic antennas [75],
namely:

• They are reconfigurable with respect to radiation pattern,
frequency, bandwidth [5], [6].
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Fig. 11: Convergence of EEM: spectrum of eigenvalues of [S11] as a function
of their index q = 1, . . . , 2NF for the antenna-objects system of Fig. 5 at
f = 140 MHz. Inset: close-up of the eigenvalues pertinent to the strongly
coupled eigencurrents.

• They can be reconfigured electrically — rather than
mechanically — on time scales that are on the order of
microseconds to milliseconds.

• They have lower thermal noise and minimise signal
degradation, as they are activated only while communi-
cation takes place.

• They are virtually “transparent” above the plasma fre-
quency, and become “invisible” once turned off.

Also, GPAs operating at different frequencies do not interfere
with one another, a property which makes it possible to stack
arrays of plasma antennas.

A Plasma Antenna Array (PAA) is a cluster of GPAs and
possibly conventional metallic elements [74]. In addition to
having all the advantages of baseline GPAs, PAAs allow (i)
steering the beam and (ii) improving directivity by adding
nulls to the radiation pattern. Moreover, an array of plasma
discharges surrounding a radiating element — which can be
either metallic or a GPA — effectively realizes a “plasma
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Fig. 12: Modelling a reconfigurable PAA with LEGO: (a) two PEC center-fed
cylindrical dipoles surrounded by a circular screen of ND = 20 plasma tubes;
(b) same as before, but with three plasma tubes switched off (ND = 17).
Data: radius of the plasma screen 5 cm. (Also see caption of Figs. 13, 14).

blanket” of sorts that can be used to shield unwanted incoming
EM waves and open “windows” in selected positions so as to
let outward EM waves through.

As a practical realization of these concepts, we consider the
PAA shown in Fig. 12. The radiating element is a linear array
of two PEC center-fed cylindrical dipoles (Fig. 13), whereas
the plasma blanket is comprised of ND = 20 cylindrical
plasma tubes arranged in a circular fashion around the dipoles
(Fig. 12a). This PAA is reconfigurable primarily in the sense
that the plasma tubes can selectively be switched on and off
as needed to create windows for beam-forming and beam-
steering. For instance, the PAA operating with only ND = 17
tubes switched on is shown in Fig. 12b.

In order to apply the hybrid LEGO-EFIE method, we embed
each plasma tube in a cuboidal EM brick, as shown in Fig. 14.
The width and height of the bricks are 11 mm and 71 mm,
respectively. The background and host media are free space;
therefore ε1 = ε2 = ε0. However, since the plasma (medium
Â) is modelled with a dyadic permittivity, then µ3 = µ0I,
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Fig. 13: Modelling a reconfigurable PAA with LEGO: 3-D triangular tessel-
lation of two PEC center-fed cylindrical dipoles. Data: height of dipoles (d)
15 mm, diameter of dipoles 1 mm, separation of dipoles along the x-axis 15
mm, NA = 312.
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Fig. 14: Modelling a reconfigurable PAA with LEGO: (a) tetrahedral mesh
of a plasma tube; (b) surface mesh of the brick that embeds the tube. Data:
diameter of tube 10 mm, height of tube 60 mm, width of brick 11 mm, height
of brick 71 mm, NO = 3056, 2NF = 1656.

and (31) takes on the special form given by (74), (75a),
(75b) in Appendix B. The cylindrical plasma tubes are evenly
distributed on a circle with radius of 50 mm; each tube is
aligned with the z-axis, and has a diameter of 10 mm and a
height of 60 mm. The plasma is assumed cold, weakly ionized,
collisional, and magnetized. Then, in a system of Cartesian
coordinates with magneto-static field B0 = B0ẑ, the dyadic
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permittivity ε3 reads

ε3 = ε0

 S jD 0
−jD S 0
0 0 P

 , (63)

where

S ≡ 1−
∑
ξ

ω2
pξ(ω − jνξ)

ω[(ω − jνξ)
2 − ω2

cξ]
, (64a)

D ≡
∑
ξ

σξωcξ

ω

ω2
pξ

(ω − jνξ)
2 − ω2

cξ

, (64b)

P ≡ 1−
∑
ξ

ω2
pξ

ω (ω − jνξ)
, (64c)

are the Stix parameters [76], with ωpξ ≡ [nξq
2
ξ/(ε0mξ)]

1/2 the
plasma frequency, ωcξ ≡ σξqξB0/mξ the gyrofrequency, νξ
the collision frequency, and σξ = ± the particle charge sign;
the subscript ‘ξ’ refers to the plasma species. By letting ε3 be a
function of position, profiles of plasma density, magnetic field,
electron temperature, and neutral pressure can be handled;
however, in the numerical experiments described below ε3 is
considered constant.

The PEC dipoles both have a diameter of 1 mm and a height
of 15 mm, they are aligned with the z-axis, and are placed at
a distance of 15 mm along the x-axis (see Fig. 13). They are
excited in phase with VG = 1 V [cf. (14)] at the frequency
f = 10 GHz.

The surface (volume) basis functions on the boundary of
a brick (in a plasma tube) are 2NF = 1656 (NO = 3056).
The current density induced over the dipoles is represented by
means of NA = 312 surface basis functions. The problem in
Fig. 12a is modelled with ND = 20 EM bricks, whereas only
ND = 17 bricks are employed for the PAA with a window in
Fig. 12b.

We have investigated the role played by plasma discharge
parameters in the two configurations of Fig. 12. Specifically,
the plasma is made of argon ions (Ar+) and electrons with
the same uniform density n0 = 1019 m−3. The chosen
neutral pressure and electron temperature are such that the
electron collision frequency is νe = 89 GHz, and the collision
frequency of the argon ions is negligible with respect to νe.
Two scenarios in terms of magneto-static field have been
considered: (i) B0 = 0 T (non-magnetized case); and (ii)
B0 = 0.1 T (magnetized case). With these positions, the Stix
parameters take on the values listed in Table I.

The antenna gain function g(θ, ϕ) relative to the ideal
isotropic radiator [68] is plotted in Figs. 15 and 16 for the two
scenarios. For the sake of reference, the gain of the two-dipole
array in the case when all the plasma tubes are switched off
(solid blue line) is superimposed to each plot to help appreciate
the combined effect of the plasma blanket (window) and the
plasma discharge parameters.

In particular, from Fig. 15a we notice that the PAA with
ND = 20 energized plasma tubes exhibits six narrow main
lobes in the E-plane for ϕ ∈ {90◦, 270◦}; correspondingly,

TABLE I: Plasma parameters for the PAAs of Fig. 12

B0 = 0 [T]
S −7.061727403150083− j0.013250915072170
D 0
P −7.061727403150083− j0.013250915072170

B0 = 0.1 [T]
S −7.747114953842780− j0.016822229467298
D 0.008733555419741− j2.448490150087137
P −7.061727403150083− j0.013250915072170

the maximum gain is lower that that of the two-dipole array
in free space. As expected, the plasma window renders the
gain asymmetric, and enhances the three main lobes in the
ϕ = 90◦ half-plane. In the H-plane (Fig. 15b), the angular
distribution of power of the PAA with ND = 20 energized
plasma tubes is similar to that of the two-dipole array in free
space, but the gain is significantly smaller. When a window is
opened in the blanket, the beam-forming effect of the active
plasma tubes becomes evident: A narrow main lobe appears
in the broadside direction θ = ϕ = 90◦, while the backward
radiation is reduced.

Quite similar observations apply to the gain in the second
scenario (i.e., magnetized plasma tubes) reported in Figs. 16a
and 16b. In fact, a non-null magneto-static field makes the
plasma non-reciprocal [cf. (63)], which in turn results in
asymmetric gain for ϕ ∈ {90◦, 270◦} in the E-plane for the
case ND = 20 plasma tubes. Furthermore, in the H-plane
the magneto-static field reduces the maximum gain in the
case of the windowed PAA as compared to the corresponding
configuration with B0 = 0 T (Fig. 15b).

We conclude this discussion with a comment on the effi-
ciency. While it is clear from Figs. 15 and 16 that the PAA
under investigation is capable of beam-forming and beam-
steering, we also note that the maximum gain is lower than
that of the two-dipole array alone in the H-plane and for some
directions in the E-plane, owing to the lossy nature of the
plasma. Therefore, at least in our example higher input power
should be provided to exploit the reconfigurability afforded by
PAAs while preserving the level of the maximum gain.

As regards the computational performance of the hybrid
LEGO-EFIE approach, the size of the algebraic total inverse
scattering operator [S]

−1 in (48) is 2NFND = 33120 for
the PAA with ND = 20 tubes and 2NFND = 28152
for the PAA with a window (ND = 17). However, by
applying the EEM with NC = 50 coupled eigencurrents out
of NC,max = min{2NF , NO} = 1656, the calculation of
[LLEGO] in (53) boils down to inverting a matrix [S̃CC]

−1 with
a rank NCND ∈ {1000, 850}. More importantly, the size of
the system matrix in (53) is just NA = 312, i.e., determined
by the number of basis functions used to expand JA on
the dipoles. Furthermore, as all the plasma tubes have the
same shape and EM properties, only one algebraic scattering
operator, say [S11], must be computed; therefore, the solution
of the VIE (31), which is time-consuming, has to be carried
out only once for each of the scenarios described above. In
contrast, the direct solution of the problems of Fig. 12 with a
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Fig. 15: Modelling a reconfigurable PAA with LEGO: antenna gain (natural
units) for various configurations; (a) E-plane (ϕ ∈ {90◦, 270◦}), (b) H-plane
(θ = 90◦). Data: each antenna port excited with VG = 1 V at f = 10 GHz,
plasma density n0 = 1019 m-3, plasma magnetizing field B0 = 0 T.

VSIE formulation (e.g., [7]) would require the solution of a
system with rank NOND +NA ∈ {61432, 52264}.

VIII. CONCLUSION

The hybrid LEGO-EFIE method uses EM bricks in tan-
dem with the standard EFIE to model complex problems,
which involve conventional PEC antennas or scatterers and
media with anisotropic constitutive parameters. The strategy
is particularly well-suited when the problem at hand comes
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Fig. 16: Modelling a reconfigurable PAA with LEGO: antenna gain (natural
units) for various configurations; (a) E-plane (ϕ ∈ {90◦, 270◦}), (b) H-plane
(θ = 90◦). Data: each antenna port excited with VG = 1 V at f = 10 GHz,
plasma density n0 = 1019 m-3, plasma magnetizing field B0 = 0.1 T.

naturally decomposed in many separated parts. The calculation
of the scattering operators of the bricks with the baseline MoM
entails the inversion of one small VIE at a time, which is
extremely competitive over the solution of coupled VSIEs for
the entire problem. Besides, the very introduction of scattering
operators enables us to reduce the degrees of freedom, because
expanding the unknown equivalent current densities on the
boundary of a brick usually requires fewer basis functions than
are necessary to solve the VIE for the embedded anisotropic
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object. As the modularity of the approach enables us to
combine and recycle the EM bricks with few restrictions, the
time required to analyze similar structures (such as the PAAs
addressed in Section VII) can also be considerably reduced. Fi-
nally, the usage of the eigencurrents of the scattering operators
as locally entire-domain basis functions over the boundaries of
the bricks enables us to handle and compress the weak form
of the LEGO functional equations to derive the modified EFIE
efficiently.

APPENDIX A
PROPAGATORS USED IN LEGO

Listed in this appendix are the propagators involved in the
definition of Skk, Tkn, (TOA)k, and (PAO)k.

In what follows, k1 denotes the wavenumber in medium À,
r (r′) denotes the field (source) point, I s is the transverse
unit dyadic tangential to ∂Dk,n or SA. The surface ‘del’
operator is defined as ∇s = I s · ∇, and ∇′

s = −∇s means
differentiation with respect to r′. The specification ‘PV’ before
an integral sign means that integration is performed in the
Cauchy principle value sense, while d2r′, d3r′ represent the
area and the volume elements, respectively. The unit normal
n̂k to ∂Dk points inward Dk (Fig. 1b).

A. Brick-to-brick interaction

The propagators Pi
kk, P s

kk, Pkn are 2× 2 abstract matrices
whose entries are dyadic integro-differential operators involv-
ing the Green’s function G1(R) in (17).

P i
kk : ∂Dk → ∂Dk

(from incident currents to incident fields)

(P i
kk)11{◦} ≡ −jk1

∫
∂Dk

d2r′G1(R) I s · {◦}

− j∇s

k1

∫
∂Dk

d2r′G1(R)∇′
s · {◦}, r ∈ ∂Dk, (65a)

(P i
kk)12{◦} ≡ −PV

∫
∂Dk

d2r′∇′
sG1(R)× I s · {◦}

+
1

2
n̂k × I s · {◦}, r ∈ ∂Dk, (65b)

(P i
kk)21{◦} ≡ PV

∫
∂Dk

d2r′∇sG1(R)× I s · {◦}

− 1

2
n̂k × I s · {◦}, r ∈ ∂Dk, (65c)

(P i
kk)22{◦} = −(P i

kk)11{◦}, (65d)

P s
kk : ∂Dk → ∂Dk

(from scattered currents to scattered fields)

(P s
kk)11{◦} ≡ −jk1

∫
∂Dk

d2r′G1(R) I s · {◦}

− j∇s

k1

∫
∂Dk

d2r′G1(R)∇′
s · {◦}, r ∈ ∂Dk, (66a)

(P s
kk)12{◦} ≡ −PV

∫
∂Dk

d2r′∇′
sG1(R)× I s · {◦}

− 1

2
n̂k × I s · {◦}, r ∈ ∂Dk, (66b)

(P s
kk)21{◦} ≡ PV

∫
∂Dk

d2r′∇sG1(R)× I s · {◦}

+
1

2
n̂k × I s · {◦}, r ∈ ∂Dk, (66c)

(P s
kk)22{◦} = −(P s

kk)11{◦}, (66d)

Pnk : ∂Dn → ∂Dk, n ̸= k
(from scattered currents to incident fields)

(Pkn)11{◦} = (Pkn)12{◦} ≡ 0 · {◦}, (67a)

(Pkn)21{◦} ≡ PV

∫
∂Dn

d2r′∇sG1(R)× I s · {◦}

+
1

2
n̂n × I s · {◦}, r ∈ ∂Dk, (67b)

(Pkn)22{◦} ≡ jk1

∫
∂Dn

d2r′G1(R) I s · {◦}

+
j∇s

k1

∫
∂Dn

d2r′G1(R)∇′
s · {◦}, r ∈ ∂Dk, (67c)

The entries (Pkn)11 and (Pkn)12 are null, because the
propagator Pi

kk [cf. (36a)] requires only the magnetic field
to determine the equivalent incident currents.

B. Brick-to-object and object-to-brick interaction

In the special case when the anisotropic body is either
dielectric (with µ3 = µ1I) or magnetic (with ε3 = ε1I),
the propagators Pok (Pk o) reduce to 1 × 2 (2 × 1) abstract
matrices whose entries are dyadic integro-differential operators
involving the Green’s function G1(R) in (17). The contrast
dyadics αe(r) and αh(r) are defined in (30a) and (30b).

Anisotropic dielectric body
Pok : ∂Dk → VO

(from incident currents to incident electric flux density)

(Pok)11{◦} ≡ −jk1

∫
∂Dk

d2r′G1(R) I s · {◦}

− j∇s

k1

∫
∂Dk

d2r′G1(R)∇′
s · {◦}, r ∈ VO, (68a)

(Pok)12{◦} ≡ −PV

∫
∂Dk

d2r′∇′
sG1(R)× I s · {◦}

− 1

2
n̂k × I s · {◦}, r ∈ VO, (68b)

Anisotropic magnetic body
Pok : ∂Dk → VO
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(from incident currents to incident magnetic flux density)

(Pok)21 ≡ −PV

∫
∂Dk

d2r′∇′
sG1(R)× I s · {◦}

− 1

2
n̂k × I s · {◦}, r ∈ VO, (69a)

(Pok)22{◦} ≡ jk1

∫
∂Dk

d2r′G1(R) I s · {◦}

+
j∇s

k1

∫
∂Dk

d2r′G1(R)∇′
s · {◦}, r ∈ VO, (69b)

Anisotropic dielectric body
Pk o : VO → ∂Dk

(from total electric flux density to scattered fields)

(Pk o)11{◦} ≡ 0 · {◦}, (70a)

(Pk o)21{◦} ≡ jk1

∫
VO

d3r′ I s · ∇G1(R)×αe(r
′) · {◦},

r ∈ ∂Dk, (70b)

Anisotropic magnetic body
Pk o : VO → ∂Dk

(from total magnetic flux density to scattered fields)

(Pk o)12{◦} ≡ 0 · {◦}, (71a)

(Pk o)22{◦} ≡ k21

∫
VO

d3r′G1(R) I s ·αh(r
′) · {◦}

+∇s

∫
VO

d3r′G1(R)∇′ · [αh(r
′) · {◦}], r ∈ ∂Dk (71b)

The entries (Pk o)11 and (Pk o)12 are null, since the propaga-
tor P s

kk [cf. (34)] requires only the magnetic field to determine
the equivalent scattered currents.

C. Antenna-to-brick and brick-to-antenna interaction

The propagators PkA (PAk) are 2× 1 (1× 2) abstract ma-
trices, whose entries are dyadic integro-differential operators
involving the Green’s function G1(R) in (17).

PkA : SA → ∂Dk

(from antenna current to incident fields)

(PkA)11{◦} ≡ 0 · {◦}, (72a)

(PkA)21{◦} ≡
∫
SA

d2r′∇sG1(R)×I s·{◦}, r ∈ ∂Dk, (72b)

PAk : ∂Dk → SA

(from scattered currents to incident fields)

(PAk)11{◦} ≡ −jk1

∫
∂Dk

d2r′G1(R) I s · {◦}

− j∇s

k1

∫
∂Dk

d2G1(R)∇′
s · {◦}, r ∈ SA, (73a)

(PAk)12{◦} ≡
∫
∂Dk

d2r′∇sG1(R)×I s ·{◦}, r ∈ SA, (73b)

The entry (PkA)11 is null, because the propagator Pi
kk

in (36a) requires only the magnetic field to determine the
equivalent incident currents. Provided the antenna and the
conducting parts do not touch the bricks, it is not necessary
to take the principal value of the integrals (72b) and (73b) nor
do they contribute a residue, for the kernel is never singular.

APPENDIX B
EXPLICIT FORMS OF (31)

In the special instance of either dielectric (with µ3 = µ1I)
or magnetic (with ε3 = ε1I) anisotropic object, Xoo in (31)
reduces to a volume integro-differential operator involving the
Green’s function G1(R) in (17) and either αe(r) or αh(r).
Also, qo and F i

o become one-element abstract column vectors.

Anisotropic dielectric body
Xoo : VO → VO

(from flux density to flux density)

Xoo{◦} ≡
[
ε3(r)

ε1

]−1

· {◦} − k21

∫
VO

d3r′G1(R)αe(r
′) · {◦}

− ∇
∫
VO

d3r′G1(R)∇′ · [αe(r
′) · {◦}], r ∈ VO, (74)

qo ≡ Do/(ε1
√
η1), (75a)

F i
o ≡ Di

o/(ε1
√
η1), (75b)

Anisotropic magnetic body
Xoo : VO → VO

(from flux density to flux density)

Xoo{◦} ≡
[
µ3(r)

µ1

]−1

· {◦} − k21

∫
VO

d3r′G1(R)αh(r
′) · {◦}

− ∇
∫
VO

d3r′G1(R)∇′ · [αh(r
′) · {◦}], r ∈ VO, (76)

qo ≡ Bo
√
η1/µ1, (77a)

F i
o ≡ Bi

o

√
η1/µ1, (77b)
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