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The dynamics of large amounts of dislocations is the governing mechanism in metal
plasticity. The free energy of a continuous dislocation density profile plays a crucial role in
the description of the dynamics of dislocations, as free energy derivatives act as the
driving forces of dislocation dynamics.

In this contribution, an explicit expression for the free energy of straight and parallel
dislocations with different Burgers vectors is derived. The free energy is determined using
systematic coarse-graining techniques from statistical mechanics. The starting point of the
derivation is the grand-canonical partition function derived in an earlier work, in which
we accounted for the finite system size, discrete glide planes and multiple slip systems. In
this paper, the explicit free energy functional of the dislocation density is calculated and
has, to the best of our knowledge, not been derived before in the present form.

The free energy consists of a mean-field elastic contribution and a local defect energy,
that can be split into a statistical and a many-body contribution. These depend on the
density of positive and negative dislocations on each slip system separately, instead of
GND-based quantities only. Consequently, a crystal plasticity model based on the here
obtained free energy, should account for both statistically stored and geometrically ne-
cessary dislocations.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The governing mechanism of metal plasticity is the dynamics of dislocations, which are line-like defects in the crystal
structure. Crystals can contain up to 109 dislocation lines intersecting a square millimeter. Therefore, the collective behavior
of many dislocations together determines the mechanical properties associated with crystal plasticity.

A number of dynamical frameworks have been developed to describe the dynamics of dislocation densities, in which the
free energy plays a key role, see e.g. Groma (1997), Gurtin (2000), Gurtin and Anand (2005), Gurtin et al. (2007) and Gurtin
(2008, 2010). Moreover, stationary states have been derived from the free energy, see e.g.. Groma et al. (2006), Scardia et al.
(2014), and Geers et al. (2013).

To obtain the equilibrium behavior and driving forces for dislocations on a macroscopic scale, it is thus necessary to have
a free energy expression that results from coarse-graining the microscopic description of dislocations. Furthermore, a de-
rivation from the microscopic level could help in choosing proper macroscopic variables for a dynamical model.
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In the literature, several attempts have been made to retrieve the free energy of dislocations. First, different phenom-
enological assumptions are made to match different macroscopic plasticity models, see e.g. Ertürk et al. (2009), Bayley et al.
(2007), Svendsen (2002), Klusemann et al. (2012) and Bargmann and Svendsen (2012). These free energy expressions are all
local or weakly non-local in terms of the dislocation densities.

Second, straight dislocations were considered as an example of two-dimensional Coulomb particles that interact with a
logarithmic interaction potential, see e.g. the work of Kosterlitz an Thouless (Kosterlitz and Thouless, 1973; Nelson, 1978;
Nelson and Halperin, 1979), Mizushima (1960), Ninomiya (1978) and Yamamoto and Izuyama (1988). In these papers, the
free energy of systems with an homogeneous dislocation density was derived. This system exhibits a dislocation mediated
melting transition. Below the critical temperature, dislocations occur in tightly bound pairs, but above this temperature,
dislocation pairs tend to unbind, and thereby destroy the long-range order in a two-dimensional crystal. However, the
anisotropic character of the dislocation interaction was not taken into account in these works, and the effect of mechanical
loading was not considered.

Third, the free energy of dislocations was derived by Groma and coworkers using a mean-field assumption in the coarse-
graining (Groma and Balogh, 1999; Groma et al., 2006, 2007). As the physical temperature of the system is almost zero
relative to the other characteristic energy scales at hand, a second, phenomenological temperature is introduced to obtain a
non-vanishing statistical contribution, which results in screening.

Fourth, the equilibrium dislocation profile of a single slip system of dislocations was determined by means of Γ-con-
vergence of the energy expression, see Scardia et al. (2014), Geers et al. (2013). In this work, it was assumed that the
dislocations are arranged in wall structures on equally spaced glide planes and that the system is at zero temperature.

Despite all these efforts, no explicit free energy expression has been proposed yet, that is derived from the microscopic
properties of the system, and thus includes the anisotropy of the dislocation interaction, the finite system size and the
presence of glide planes, and which is valid in different temperature regimes. The aim of this paper is to obtain such a free
energy expression. In this contribution, we limit ourselves to straight dislocations with parallel line orientation.

The free energy is derived by systematically coarse-graining the microscopic description of dislocations as used in
Discrete Dislocation Dynamics (DDD) simulations. In an earlier paper (Kooiman et al., 2014), we derived the partition
function of dislocations for a grand-canonical ensemble of straight and parallel dislocations. In this contribution, we derive
the Helmholtz free energy of dislocations from this by means of a Legendre transform. The obtained free energy contains
elastic energy and statistical terms, as found earlier by Groma et al. (2006), but yields also a many-body contribution beyond
these mean-field terms. It is, to our best knowledge, for the first time that the free energy was derived by coarse-graining
only.

The resulting free energy depends on densities of positive and negative dislocations separately for each slip system. This
implies that the defect forces in crystal plasticity models (see e.g. Gurtin, 2008) cannot be determined in terms of GND
densities alone.

The paper is organized as follows. In Section 2, we discuss the microscopic and macroscopic descriptions of the system.
Then, we briefly outline the derivation of the grand-canonical partition function and perform a Legendre transform to obtain
the canonical free energy in Eq. (2.22). In Section 3, we discuss the interpretation and limitations of the obtained free energy
expression. In Section 4, three special cases are considered in which the free energy expression simplifies considerably,
namely a local density approximation (LDA), the zero temperature limit, and equally spaced glide planes. In Section 5, the
connection is made between this work and current dislocation-based crystal plasticity models.
2. Derivation

2.1. Mathematical preliminaries

In this paper, both two-dimensional and three-dimensional position vectors are used. To avoid confusion, the two-
dimensional position vector is denoted by s and consists of an x and a y-coordinate. Integration over this vector is denoted
by dA∫ . On the other hand, the three-dimensional position vector is denoted by r and consists of an x, y and z-coordinate.
Integration over the 3D position vector is denoted by dV∫ .

The line direction ξ̂ of the straight and parallel dislocations is parallel to the ẑ-direction, and the position in this direction
is denoted by z. Thus, the vector r can be expressed in s and z by r s zξ= + ^, and analogously, the integration over 3D
position vectors can be expressed as dV dA dz∫ ∫ ∫= . See Fig. 1 for a sketch of the coordinate system.

In this work, the cross product on a tensor is interpreted as the cross product on the first index, so the cross product
between vector v and second rank tensor A is v A v A( )ij ikl k lj× = ϵ , where ϵ is the anti-symmetric Levi–Cività tensor. A con-

traction of a second rank tensor A and a fourth rank tensor B is defined by A A B( : B)kl ij ijkl= , and the trace of a fourth rank

tensor B is ⎡⎣ ⎤⎦ BTr B ijij= . The symmetric and anti-symmetric parts of a second rank tensor are indicated with a superscript s

and a; A A A( ) ( )/2ij ij ji
s,a = ± . The ⊗-symbol is used to indicate a dyadic product.

In this work, round brackets indicate a function, and square brackets indicate a functional.
Furthermore, Fourier transforms are used multiple times in this contribution. We use the non-unitarian convention here,



Fig. 1. Sketch of the coordinate system used in this paper.
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and hence the 2D Fourier transform is defined by

s q q sf f dAf e[ ( )]( ) ( ) ( ) , (2.1)
q s

D D D2 2 2
D2∫= ˜ = −ı ·

where q D2 is the 2D wave-vector. Consequently, the inverse 2D Fourier transform is defined by

q s
q

qf
d

f e[ ( )]( )
(2 )

( ) .
(2.2)

q s
D D

D
D2

1
2

2
2

2 2
D2∫

π
˜ = ˜− ı ·

The Fourier transform in 3D is defined analogously.

2.2. Multiscale description of the problem

Microscale: The microscopic description of our system is closely related to the description of crystals with dislocations
used in DDD simulations, see e.g. Van der Giessen and Needleman (1995).

A linear elastic body is considered. The volume of the body is denoted by Ω, and the elastic properties of the matrix
material are governed by the fourth order stiffness tensor  that relates the stress to the strain. For convenience, the fourth
order compliance tensor  is also defined as the inverse of the stiffness tensor:  ijkl kli j ii jjδ δ′ ′ = ′ ′, where the Einstein sum-
mation convention is used.

In this linear elastic body, straight and parallel dislocations are embedded. Each dislocation is characterized by its Burgers
vector b and the direction of its line vector ξ̂ . As straight and parallel dislocations are considered, the line vector is equal for
all dislocations.

In this study, climb of dislocations is not accounted for. For the static states of the system, this implies that dislocation
can only be positioned on discrete glide planes.

The elastic body is furthermore subjected to a boundary deformation ub. The dependence of the free energy on the
boundary deformation obtained in Kooiman et al. (2014) is implicit. Therefore, two quantities related to ub are defined here.
Since the positions of the dislocations are independent of the z-coordinate, it only makes sense to consider deformations of
the boundary that are independent of z as well.

Hypothetical strain- and stress fields 0ε and 0σ can be defined as the strain- and stress field one would find in the same
elastic body Ω with the same boundary deformation ub, but without dislocations. These fields have to satisfy mechanical
equilibrium in the bulk, and it has to match the imposed boundary deformation ub:

u( ) (2.3a)0
sε ≡ ∇
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: (2.3b)0 0σ ε≡

( ) 0 (2.3c)0σ∇· =

u u . (2.3d)b=

Due to Eq. (2.3c), a second field 0Ψ can be defined by

. (2.4)0 0σΨ∇ × ≡

The field 0Ψ is thus uniquely defined up to a gradient. The Beltrami stress potential 0Φ , as used in Carlson (1966), is related to

0Ψ by ( )0 0
TΨ Φ= ∇ × , where T indicates the transpose. Note that, as ub is independent of the z-coordinate, both 0ε and 0Ψ are

independent of the z-coordinate as well.
The field 0Ψ turns out to be convenient to work with, as it is related to the Peach–Koehler force on a dislocation line.

Namely, a dislocation with Burgers vector b would experience the following Peach–Koehler force in the hypothetical strain
field 0ε :

( ) ( ) ( )s b s b s b b sF dz dz dz( ) ( ) ( ) ( ) : ( ) , (2.5)PK,0 0 0 0 0∫ ∫ ∫σ ξ ξ ξ ξΨ Ψ Ψ= · × ^ = ∇ × · × ^ = ^·∇ · − ∇ ^ ⊗

which is the integral of the Peach–Koehler force on a dislocation line element, see e.g. Landau and Lifshitz (1975), integrated
along the line. The first term vanishes as 0Ψ is independent of the z-coordinate, and hence s s( ) ( ) ( ) 0z0 0ξ Ψ Ψ^·∇ = ∂ = . Then this
expression implies that b sdz z: ( , )0∫ ξ Ψ^ ⊗ can be interpreted as the potential energy of a dislocation with Burgers vector b in
the strain field 0ε . Therefore, we define the Peach–Koehler potential for dislocations with Burgers vector b by

s b sV dz( ) : ( ). (2.6)b,0 0∫ ξ Ψ= ^ ⊗

This potential is uniquely defined up to a constant. The free energy will only depend on ub via 0ε and Vb,0.
Finally, microstates are characterized by the strain field ε in the body. This strain field has to match the incompatibility

imposed by the dislocations and the applied boundary deformation ub, but it does not have to be in mechanical equilibrium.
This implies that we allow for elastic waves or phonons in the material, on top of a mechanical equilibrium state.

Macroscale: On the macroscopic level, the same elastic body Ω with the same bare stiffness tensor  is considered. This
body is subjected to the same boundary deformation ub. Therefore, in view of Eqs. (2.3) and (2.6), 0ε and Vb,0 are also defined
on the macroscopic scale. Hence no coarse-graining of the boundary conditions is considered. But rather than discrete
dislocation positions, the coarse-grained density profile of dislocations with Burgers vector b, s( )bρ , is used as a variable on
the macroscopic level.

For the coarse-graining procedure it is more convenient to control the average of the dislocation density profile by controlling
the local chemical potential s( )bμ of dislocations with Burgers vector b. This is called the grand-canonical ensemble. We refer the
reader to Chaikin and Lubensky (1995) for more details. It can be proven that the relation between s( )bμ and s( )bρ is unique, see
e.g. Evans (1979). This means that for every density profile one can find the corresponding local chemical potential, and that
every local chemical potential corresponds to just one dislocation density profile. Hence once the free energy is known as a
functional of the local chemical potential, it can also be obtained in terms of the density profile.

The coarse-graining of dislocation positions can be performed in two ways. First, one can average the density in the glide
plane, but keep the discrete character of the glide planes, as depicted in Fig. 2(b). The glide plane positions should then be
considered as material parameters. An example of this is worked out in Section 4.2.1, where it is assumed that glide planes
are equally spaced, and the spacing h is a material parameter.

Second, the averaging can be done both in the glide plane and in the direction perpendicular to it, as depicted in Fig. 2(c).
Then, the glide plane distribution is no longer a material parameter. An example of this averaging is worked out in Section 4.1.

In both cases, the free energy can be determined by the expression obtained in this paper. In the first case, the density
should be zero in between the glide planes, and only take non-zero values at these glide planes. In the second case, there are
no restrictions on the density profile.

One could also consider a hybrid version of the above two averaging techniques, where glide planes are smeared out, but
not necessarily to a homogeneous profile. This would imply that some regions are almost empty (these are the regions in
between the smeared out glide planes), whilst others are more likely to contain a lot of dislocations. Such a hybrid version is
not considered here.

2.3. Coarse-graining method

In this contribution, the coupling between the microscale and the macroscale is made with averaging techniques from
statistical physics. This means that the macroscopic free energy F can be determined from the so-called partition function Z,
see e.g. Chaikin and Lubensky (1995):

F k T Zln . (2.7)B= −



Fig. 2. In Fig. 2(a), the microstate is depicted. The microstate is characterized by the positions of discrete dislocations in an elastic body Ω subjected to a
boundary deformation ub. In Fig. 2(b), the macrostate is depicted. The macrostate is characterized by the density of dislocations in the same elastic body Ω ,
subjected to the same boundary deformation ub. The density of dislocations can be defined either on discrete glide planes only, see e.g. Fig. 2(b), or on the
whole space, see e.g. Fig. 2(c). The body is held at a fixed temperature T.
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The partition sum is a sum over all microstates weighted with their Boltzmann weight, and hence it can, in principle, be
calculated from the microscopic system description. The Boltzmann weight depends on the macroscopic state variables and
is defined as the exponent of minus the energy Emicro of the microstate divided by the thermal energy; E k Texp( / )Bmicro− .
Here, kB is the Boltzmann constant, equal to 1.4 10 J/K23× − , and T is the absolute temperature. The Boltzmann weight is a
measure for how likely a microstate is; microstates with lower energy are more likely, and this preference is stronger at
lower temperature T. So to conclude, the partition function reads:

Z E k Texp( / ).
(2.8)

B
microstates

micro∑= −

In an earlier contribution (Kooiman et al., 2014), we already determined an expression for the partition function of a crystal
with dislocations. In this contribution, this partition sum is used to obtain an explicit expression for the free energy as a
function of the dislocation density.

When the free energy is calculated as in Eq. (2.7), local organization of dislocations is also accounted for. Namely, mi-
crostates in which dislocations locally organize themselves in low energy states are more likely, and hence contribute more
to the partition function. This lowers the overall free energy in the system.

In this work, average quantities should be interpreted as the statistical average, as opposed to for example a spatial or
time averages. Thus, if one would be able to consider multiple microscopic realizations of the same macroscopic system, this
is the average one would find. For perfectly ergodic systems, the statistical average matches the time average by definition.

It has been suggested that the ergodicity assumption might not be valid on realistic timescales for dislocation systems.
Namely, the behavior in discrete dislocation simulations is very sensitive to the initial dislocation distribution, as the system
exhibits high energy barriers. However, it has been shown recently, see Ispánovity et al. (2010), that the statistical average of
the behavior in discrete dislocation simulations over many randomly selected initial dislocation distributions gives realistic
predictions for the response of large systems.

Therefore, it is assumed here that a statistical average is representative for the macroscopically observed behavior.

2.4. The partition sum

To evaluate the partition function in Eq. (2.8), one should sum the Boltzmann weight over all possible microstates. The
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summation over microstates involves an integration over the positions of the dislocations in the glide-plane, and a sum-
mation over all possible numbers of dislocations from zero to infinity in each glide plane.

Furthermore, the summation involves an integration over all possible strain fields ε that match the incompatibility
imposed by the dislocations and the applied deformation of the boundary. The integration over fields can be performed by
means of a path integral.

The Boltzmann weight follows from the energy of a microstate, see Eq. (2.8). This energy consists of the elastic strain
energy and the so-called chemical energy of dislocations. The elastic energy reads

E dV
1
2

: : . (2.9)elas ∫ ε ε=

This automatically incorporates the energy due to the dislocations and due to boundary conditions, as the elastic strain field
in the body matches the incompatibility of the dislocations and the imposed boundary conditions.

The chemical energy of a dislocation with Burgers vector b at position s is minus the chemical potential s( )bμ at that
position. The total chemical energy of the dislocations together is thus

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟sE ( ) ,

(2.10)b
b

k

N

kchem
1

b

∑ ∑ μ= −
=

where Nb is the number of dislocations with Burgers vector b and sk is the position of the kth dislocation.
The summation over microstates, as described in the previous paragraph, was performed analytically in our earlier work.

The only approximation that was made in the derivation is that the system is far from its transition point. In Section 3.3, we
will comment further on the implications of this approximation. In this section, the results for the partition function and
dislocation density of Kooiman et al. (2014) are summarized.

The partition function is most conveniently expressed in terms of the average dislocation density, although it is a
functional of the chemical potential, and not of the dislocation density. The partition function and dislocation density
obtained in Kooiman et al. (2014) read
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where s( )b,0ρ is a parameter indicating glide planes when these are defined on the macroscopic scale. In this case, s( )b,0ρ is
zero in those points where there is no discrete glide plane for dislocations with Burgers vector b and a Dirac delta function at
Fig. 3. When glide planes are defined on the macroscopic scale (as in Fig. 2(b)), the parameter s( )b,0ρ indicates the presence of glide planes (solid line).
When glide planes are not defined (as in Fig. 2(c)), s( )b,0ρ is a spatial constant (dashed line).
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the glide planes, see Fig. 3. When no discrete glide planes are considered, as in Fig. 2(c), the parameter s( )b,0ρ is a spatial
constant. The trace runs over both discrete and continuous indices. The natural logarithm in the last term is the logarithm of
an operator, and not just the logarithm of the components. This means that the last term in Eq. (2.11a) can be written as the
sum of the logarithm of all eigenvalues of the operator s s s s s b bk T dzdz z zI ( ) (1/ ) G ( , ; , ): ( )b bB 0∫ ξ ξδ ρ− ′ + ∑ ′ ′ ′ ′ ^ ⊗ ⊗ ^ ⊗ .

The dependence on the boundary deformation ub is via Vb,0, and the functions r rG ( ; )0 ′ , s su ( , )b b, ′ ′ and s su ( , )b beff, , ′ ′ are the
bare Greens function and the bare and effective interaction between dislocations, that will be defined next.

The function s su ( , )b b, ′ ′ is the interaction energy of two dislocations with Burgers vector b and b′ at positions s and s′ in
finite space. The interaction energy is the extra energy that is needed to create a dislocation in the material while another
dislocation is already present. The interaction energy can be written in terms of the Green's function r rG ( , )ijkl0, ′ by

s s b s s bu dzdz z z( , ) : G ( , ; , ): . (2.12)b b iji j, 0,∫ ξ ξ′ ′ = ′^ ⊗ ′ ′ ′ ′ ^ ⊗ ′

In Kooiman et al. (2014), it was found that the fourth order tensor r rG ( , )0 ′ is such that, for all fields r( )Ψ that are divergence
free ( 0)Ψ∇· = and for which r( )Ψ∇ × is symmetric, one finds

r r r r r rdV dVdV( ): : ( ) ( ): G ( , ): ( ). (2.13)0
1∫ ∫Ψ Ψ Ψ Ψ∇ × ∇ × = ′ ′ ′−

Furthermore, r rG ( , )0
1 ′− is defined such that the RHS of this equation is infinite for all fields that are either not divergence free

or for which r( )Ψ∇ × is not symmetric. The defining equation (2.13) of r rG ( , )0
1 ′− is thus rather implicit and cannot be written

in an easier form. Namely, the spatial integration acts over a finite volume, and hence the above cannot be written in a
partial differential equation for r rG ( , )0 ′ . However, in this form, Eq. (2.13) incorporates the effect of finite space and can be
used to derive a differential equation for the dislocation density profile.

It was shown that in infinite space and for an isotropic material, Eqs. (2.12) and (2.13) yield the interaction energy per
unit length between dislocations as known from the literature, see e.g. Hirth and Lothe (1982) and Raabe et al. (2004):
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where Q q q q/ij ij i j
2δ= − and R q q/ij ijk k= ϵ , where ijkϵ is the anti-symmetric Levi–Cività tensor. Furthermore, μ is the shear

modulus, and ν is the Poisson's ratio, such that the isotropic compliance tensor reads  2 ( /(1 ) )iji j ii jj ij i jμ δ δ ν ν δ δ′ ′ = ′ ′ − + ′ ′ .
The function s su ( , )b beff, , ′ ′ in Eq. (2.11b) can be interpreted as the effective interaction energy between two dislocations, in

which the effect of screening is incorporated as well. It can analogously be written as

s s b s s bu dzdz z z( , ) : G ( , ; , ): , (2.15)b b iji jeff, , ∫ ξ ξ′ ′ = ′^ ⊗ ′ ′ ′ ′ ^ ⊗ ′

where it was shown in previous work that the two tensors G0 and G are related by the implicit relation

r r r r r s s b b s rdzdz dA z zG( , ) G ( , ) G( ; , ): ( ) : G ( , ; ).
(2.16)b
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Then, u 0( )/2b beff, , can be interpreted as the effective self-energy of a dislocation with Burgers vector b. Note that the relation
between s( )bρ and s( )bμ in Eq. (2.11b) is an implicit expression as the terms in the exponent depend on the density. The
dependence of Z on the local chemical potential s( )bμ in Eq. (2.11a) is therefore implicit as well.

The average density profile for a given chemical potential can be determined directly from Eq. (2.11b) without using a
free energy expression in terms of the density profile. However, the free energy does not only yield the equilibrium dis-
location configuration, but also other static properties of the system, and the driving forces for dislocation dynamics.

From Eq. (2.7) and (2.11a), the thermodynamic potential can be determined:
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2.5. Legendre transform

To obtain the free energy from the thermodynamic potential of the grand-canonical ensemble, the following Legendre
transform is applied

s u s u s u s s u sF T T T dA T[ ( ), , ] [ [ ( ), , ; ], , ] ( ) [ ( ), , ; ],
(2.18)b b b

b
b b bb b b b∫∑ρ Ω μ ρ ρ μ ρ= +

where s s/ ( ) ( )b bδΩ δμ ρ= . It can be checked that this is indeed the case by taking the derivative with respect to s( )bμ in Eq.
(2.17). To perform this transformation, it is thus necessary to find the chemical potential in terms of the dislocation density
profile. This can be done by inverting Eq. (2.11b):

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟s

s

s
s s s sk T V dA u u 0( ) ln

( )

( )
( ) ( , ) ( )

1
2

( ).
(2.19)

b
b

b
b

b
b b b b bB

0,
,0 , eff, ,∫∑μ

ρ
ρ

ρ= + + ′ ′ ′
′

′ +
′

Combining Eqs. (2.17), (2.18) and (2.19) yields:
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The first three terms can be recombined in a single term that captures the mean field contributions of the system. This term
can be written in terms of the mean field elastic strain, mfε , defined by
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Note that r( )mfε is a strongly non-local functional of the dislocation density profiles s( )bρ , as a dislocation at position s causes
a strain field in the whole volume, and not only at s. The free energy in terms of mfε reads (see Appendix A for the
derivation):
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The dependence of the free energy on the boundary deformation ub in this expression enters via the boundary conditions on

mfε in Eqs. (2.21). The dependence on the finite volume is via mfε and r rG ( ; )0 ′ , as the finite volume appears explicitly in the
definitions in Eqs. (2.21) and (2.13) respectively. Analogously, the free energy expression in Eq. (2.20) depends on the
loading via sV ( )b,0 , and on the finite volume via both sV ( )b,0 and r rG ( ; )0 ′ .

The expressions in Eqs. (2.20) and (2.13) are equivalent. The advantage of the former is that it is an explicit functional of
the dislocation density profiles s( )bρ . Namely, the interaction potential s su ( , )b b, ′ ′ and the Green's function r rG ( , )0 , as im-
plicitly defined in Eqs. (2.12) and (2.13), are independent of the dislocation density profile. The advantage of the latter is that
the first contribution in terms of the mean-field elastic strain, is quite common in literature. For example, this term is
equivalent to the contribution to the internal power in the work of Gurtin, see Eq. (3.1) in Gurtin (2008) that relates stress to
the rate of elastic distortion. Therefore, the latter will be used primarily for comparison with literature. The rest of the paper
is devoted to the interpretation of the free energy expressions in Eqs. (2.20) and (2.22), and examples of how they can be
used.
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3. Interpretation of the free energy expression

3.1. Interpretation of different contributions

In this section, the different terms of the obtained expression for the free energy, Eq. (2.22), are interpreted.
The first term in Eq. (2.22) can be interpreted as the mean field elastic energy:

F dV
1
2

: : . (3.1)elas mf mf∫ ε ε≡

The strain field mfε is the strain field in the body due to boundary loading and the average dislocation density. Consequently,
Felas contains three effects: first, the elastic energy, due to loading, which is there when no dislocations are present, second,
the interaction between net amounts of dislocations due to the strain field that they produce, and third the influence of
mechanical loading on dislocations. These three effects are separated in Eq. (2.20), and one can define the background
elastic energy, the two-body interaction energy and the loading energy by

F dV
1
2

: : (3.2a)background 0 0∫ ε ε≡
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( ) ( , ) ( )
(3.2b)b b
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′

′
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s sF dA V( ) ( ).
(3.2c)b

b bloading ,0∫∑ ρ≡

The definition of the two-body contribution F2b is motivated by s su ( , )b b, ′ ′ , which is the interaction energy of two discrete
dislocations with Burgers vector b and b′ at positions s and s′, respectively. This expression for the two-body interaction is a
mean-field expression, as the two-body density is written as the product of one-body densities, see e.g. Groma (1997). The
mean field contribution is expected to be the leading order term for the interaction between dislocations.

Furthermore, the definition of the loading contribution Floading is motivated by Eq. (2.6), which shows that sV ( )b,0 is the
potential energy corresponding to the Peach–Koehler force that a dislocation would feel in an otherwise dislocation-free
body where ub is the imposed boundary deformation. Hence sV ( )b,0 is the work that the external Peach–Koehler force has
performed to move a dislocation with Burgers vector b from infinity to position s.

The second term in Eq. (2.22) is a statistical contribution of the dislocations. This is what the free energy of the dis-
locations would be if they would not interact (i.e. if it would be a sort of an ideal gas). Following the work of Evans for
inhomogeneous systems (Evans, 1979), this contribution reads
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A similar contribution is also accounted for by Groma et al. (2006), based on phenomenological arguments.
The third term in Eq. (2.22) is a truly many-body contribution that arises from the coarse description of the system:
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This term accounts for the effect of the local arrangement of dislocations. As we found in our earlier work (Kooiman et al.,
2014), Statistically Stored Dislocations are likely to arrange themselves in pairs, which are low energy structures. This was
confirmed by DDD simulations in Groma et al. (2010). The local arrangement of dislocations can reduce the energy of the
system, and thus yields a correction to the two-body interaction term that accounts only for the leading order mean field
term. This correction is what is accounted for in the many-body contribution.

3.2. Influence of dislocation length

In the derivation in Kooiman et al. (2014), and hence in the above derivation, it was used that the dislocations are straight
and of infinite length. The question thus arises to what extent the results obtained in this paper are also applicable to
dislocations that are curved.

To this end, we consider a slab of the material with a thickness L in which dislocations can be considered approximately
straight. To be more precise, we consider the case where the radius of curvature of the dislocation line is substantially larger
than the slab thickness L.

The dependence on the slab thickness L of the free energy expression in Eq. (2.22) is non-trivial, as both volume and
surface integrals are present. These differ by a factor L. The origin of this different dependency is that on the microscale, the
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elastic energy scales linearly with the dislocation length, see Eq. (2.9), while the chemical energy in Eq. (2.10) and the
number of possible arrangements are independent of the dislocation length, as the arrangement of straight and parallel
dislocations is described points in a two-dimensional plane (independent of the z-coordinate).

There is no experimental value for the typical radius of curvature of dislocations, as measurements on individual dis-
locations are notoriously difficult. Even so, one can give a rough estimate on the absolute lower bound for this radius.
Namely, this radius could not be shorter than the lattice spacing, and moreover, it would not make sense to model dis-
locations with a radius of curvature shorter than a few Burger's vectors as straight and infinitely long. Therefore, one can
safely assume that the slab thickness L is longer than one Burger's vector: b L| | < .

To study the influence of L on the qualitative behavior of the system, it is most convenient to study the free energy
expression in Eq. (2.22) in units of k TB . When no external loading is applied, the elastic contribution Felas reduces to the two-
body contribution F2b, see Eqs. (3.2), which is proportional to b L k T/ B

2Ξ μ≡ , cf. Eq. (2.14b). It can be shown that also in the
many body contribution, the term in the logarithm depends on the coupling parameter Ξ . The overall prefactor of both the
statistical and many body contribution is 1. Physical results thus only depend on the value of the coupling parameter Ξ .

The parameter Ξ is a dimensionless coupling parameter that compares the typical interaction energy with the thermal
energy. When Ξ is much larger than 1, the energetic effects are more important than thermal fluctuations. As for aluminium
at room temperature, the shear modulus, the length of the Burgers vector and k TB are known.1 Therefore, the lower bound of
Ξ is 1.6 102Ξ > × (from the lower bound of L estimated above). This implies that, in aluminum at room temperature, the
characteristic energy of the dislocation interaction b L( )2μ dominates over the characteristic energy of the thermal lattice
vibrations k T( )B , even at the lower bound for L. It is expected that this holds for other metals as well. Therefore, the exact
value of the slab thickness L will not affect qualitatively the behavior of dislocations.

In the limit of infinitely long dislocations, Ξ goes to infinity. As Ξ is already large for dislocations in a reasonably thick
slab, it can be concluded that they will behave as if they are infinitely long.

3.3. Limitations

The grand canonical partition function in Eq. (2.11a) was derived using a Gaussian approximation for the partition
function. This approximation is accurate far away from transition points, around which the macroscopic behavior of the
material changes qualitatively. An example of a transition point in this model is dislocation-mediated melting, see for
example the work of Kosterlitz and Thouless (1973) and Mizushima (1960). Below a certain critical temperature, dislocations
tend to arrange themselves in tightly bound pairs and the material is considered to be solid. Above this temperature,
dislocations are able to move more or less freely through the crystal.

Another example is of a transition point is the change from elastic to plastic material response.
The proposed free energy expression is, because of this Gaussian approximation, inaccurate close to transition points of

dislocation systems. To study the properties of the system close to the transition, it is better to use the more involved
partition function without Gaussian approximation obtained in Kooiman et al. (2014). For example, renormalization group
theory can be used to study transition points, even for complicated partition functions. Another option is to use more
sophisticated approximation techniques instead of a single Gaussian approximation. For example, the Villain approximation
(Kleinert, 1989) is accurate in a much larger range of parameters, but this approximation is computationally more involved.
4. Application to specific cases

In this section, the free energy expression in Eq. (2.22) will be applied to three specific cases. First, a Local Density
Approximation (LDA) will be considered, as this is often assumed in literature. The validity of the LDA is examined and the
resulting energy expression is compared to literature. Second, the zero temperature limit of the free energy will be studied.
And third, a completely regular, equally spaced arrangement of glide planes will be considered in the zero temperature limit.

4.1. Local density approximation (LDA)

In several dynamical models, a local form is assumed for the free energy. This means that the free energy is the spatial
integral of a free energy density, where the latter is only a function of the dislocation density at that point, rather than a
functional of the full dislocation density profile. Such an expression is easier to work with. Furthermore, the exact position of
glide planes is not used as a material parameter in these models, and moreover, these are almost impossible to obtain
experimentally.

In this section, local approximations and gradient corrections for the two body- and the many body contribution are
determined from standard expressions from density functional theory, introduced in Eqs. (4.1) and (4.2). The glide planes
are smeared out completely, as depicted in Fig. 2(c). For simplicity, only a single slip system is considered. Furthermore, it is
assumed that the infinite space solution can be used for the interaction potential s su ( )b b, ′ − ′ and for the Green's function
1 For aluminium at room temperature, 26 GPaμ = , .33ν = , b 2.9= Å (see Smallman and Ngan, 2011) and k T 4 10 JB
21= × − at 298 K.
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r rG ( )0 − ′ . Namely, no explicit position dependence is expected within the LDA. Then, the explicit expressions in Eqs. (2.14)
can be used.

First, it is shown that for the two body contribution, the gradient corrections dominate over the local term, and hence a
local approximation for this term is not accurate. Second, the local approximation of the many body contribution is derived
in Eq. (4.12) and it is shown that the gradient corrections do not dominate over the local term, provided that the density
varies slowly enough.

In general, the local density approximation of a free energy functional and its gradient corrections can be written as,
see e.g. Evans (1979),

( )s s s F s sdA f[ ( )] ( ( )) ( ) ( ( )) ( ) ( ) , (4.1)2
4∫ρ ρ ρ ρ ρ= + ∇ · ·∇ + ∇

where f ( )ρ is a scalar-valued function, which gives the free energy density of a homogeneous system with density ρ.
Furthermore, F ( )2 ρ is a tensor-valued function given by
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This expression could be obtained by a Taylor expansion of s( )ρ around s and an expansion of s[ ( )]ρ in powers of ∇.
It is assumed that it is sensible to make a local approximation, provided that both terms f ( )ρ and F ( )2 ρ are finite, and the

gradient correction does not dominate over the first term. The latter sets a lower limit for the typical length scale on which
the density profile varies.
4.1.1. Single slip system
The system is simplified by only considering one slip system with only two possible Burgers vectors, namely edge

dislocations with opposite Burgers vector. Hence without loss of generality, one can say that zξ̂ = ^ and b bx= ± ^. Using this
simplification, the free energy expression in Eq. (2.20) reads
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where s sV V( ) ( )xbedge,0 ,0≡ ^ is the Peach Koehler potential that the edge dislocations feel, and where s s s su u( ) ( , )x xb bedge ,− ′ ≡ ′^ ^ is
the interaction potential between two equal edge dislocations. It is convenient to use the interaction potential in Fourier
space. Using Eqs. (2.14), this reads:
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where qy is the y-component of q: q yqy = ·^, and where q is the length of q: qq = | |. The parameter L is the typical persistence
length of a dislocation, as introduced in Section 3.2.
4.1.2. LDA and gradient corrections of the two body contribution
In this section, the first and second term in Eq. (4.1) are determined for the two-body contribution. First, the local term is

determined from the two-body energy of a homogeneous system with a GND density GNDρ :
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where A is the surface area. The term in parenthesis on the RHS diverges with q 2− for small q. The smallest wave number in
the system in inversely proportional to the largest length scale, which is the system size R. The energy density thus diverges
as R2.

Second, the gradient correction of the two-body contribution is determined using Eq. (4.2):
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where the second equality is just a mathematical identity that is introduced for convenience. The RHS now diverges with
q 4− , and hence it diverges as R4 with the system size.

It can thus be concluded that (i) the local contribution is large for large systems and diverges with the system size, and
(ii) that the gradient correction dominates over the local contribution when the typical length scale of density fluctuations is
smaller than the system size. Therefore, the local density approximation is inaccurate for the two body contribution. This
agrees with what was found by Mesarovic (2005).

4.1.3. LDA and gradient corrections of the many body contribution
In this section, the local density approximation of the many body term will be determined by calculating the many-body

contribution for a homogeneous system with total dislocation density totρ ρ ρ= ++ −. To this end, first, the eigenvalues of the
matrix in the logarithm will be determined, and second, the summation over the logarithm of all eigenvalues will be
performed to obtain the trace. This yields the local expression in Eq. (4.12).

The first step is thus to determine the eigenvalues of s s b bk T dzdz z z1/ G ( , ):B tot0∫ ξ ξ ρ′ − ′ − ′ ^ ⊗ ⊗ ^ ⊗ . Note that this tensor
is a convolution, and therefore, it can be read as a product in Fourier space. Therefore, it turns out to be more convenient to
determine the eigenvalue in Fourier space. The eigenvalue in Fourier space reads
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where q D2 is the 2D wave-vector. Note that the term in the second bracket on the RHS is a scalar and that the term in the first

bracket is a second order tensor independent of U q( )D2 . This implies that either the eigenvalue is 0, or that, up to a mul-

tiplicative constant, U q q b( ) G ( ):D D2 0 2 ξ˜ = ˜ ^ ⊗ . Inserting this in Eq. (4.7) implies that the only non-zero eigenvalue is
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The second step is to calculate the many body contribution from these eigenvalues. The logarithm in Eq. (4.3) is the sum of
logarithm of the eigenvalues of s s s s b bk T dzdz z zI ( ) (1/ ) G ( , ):B tot0∫ ξ ξδ ρ− ′ + ′ − ′ − ′ ^ ⊗ ⊗ ^ ⊗ , which is q1 ( )λ+ in Fourier
space. The trace over the continuous index can be taken by integrating over the wave vector q D2 and by integrating over real
space. This yields
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In this explicit form, the integral over q D2 can be performed exactly. For readibility, the shorthand notation
a b L k T2 / (1 )tot B

2ρ μ ν≡ − is introduced. Note that a has the dimension of density. Then, using polar coordinates for the in-
tegration over q, the free energy density as introduced in Eq. (4.1) reads

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦
⎥⎥

f T
k T

dq d q a
q

k T
d

q a
q

a
q a

( , )
1

(2 ) 2
ln 1

sin

8 2
ln 1

sin sin
2

ln sin .
(4.10)

mb tot
B

B

q

2 0 0

2 2

2

2 0

2 2 2

2

2
2 2

0

∫ ∫

∫

ρ
π

ϕ ϕ

π
ϕ ϕ ϕ ϕ

= +

= + + +

π

π

∞

=

∞

At the lower boundary q¼0, the term in square brackets is equal to ( )a asin /2 ln sin2 2ϕ ϕ , and hence it is finite. However, for
large q it diverges. Large values of the wave vector q correspond to small length scales. Integrating over q up to infinity thus
corresponds to incorporating phenomena at very small length scales. However, at very small length scales, comparable to
the atom spacing in the crystal, we already know that linear elasticity theory breaks down. Hence integrating q up to infinity
is physically speaking not admissible, and one should introduce a large cutoff Λ0 for the integration over q, such that
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q [0, ]D2 0Λ| | ∈ . However, physical results should not depend on the exact value of the cutoff Λ0, since they do not depend on
the exact length scale at which elasticity theory breaks down.

It is now assumed that 0
2Λ is much larger than a. This yields for the many body contribution:
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The integration over ϕ can now be performed straightforwardly using a symbolic toolbox. This finally yields for the free
energy density
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where Λ is introduced for convenience: k T b L4 (1 )/2B
2

0
2 2Λ Λ ν μ≡ − . Note that Λ has the dimension of inverse length, and that

tot
2Λ ρ≫ , which follows directly from a0

2Λ ≫ . This implies that the cutoff length Λ�1 should be much smaller than the
typical dislocation spacing. Hence the many-body contribution is non-zero if ρtot is non-zero.

As the free energy density f T( , )mb totρ depends only on the logarithm of Λ, all physical quantities are independent of the
exact value of the cutoff Λ0. Namely, if we would take the cutoff twice as large, the free energy would increase by an amount

b L/8 (1 ) ln 4tot
2μ π ν ρ− , which is a constant times the density. The constant can thus be interpreted as an additive constant to

the chemical potential, which has no physical meaning.
Now, the gradient correction, as introduced in Eq. (4.1), is determined for the many body contribution, see Eq. (4.14) for

the result. From this expression, it is then determined under which conditions the gradient correction is small compared to
the local contribution, see Eqs. (4.15) and (4.16).

To determine the gradient correction, the second derivative of the free energy with respect to the density profile is
needed, see Eq. (4.1). For the many body correction, this derivative is
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This is again a convolution, which results in a product in Fourier space. This can be expressed in the eigenvalues q( )λ from
the previous section. Again, the integration over the wave vector can be performed using a symbolic toolbox. Details of this
derivation can be found in Appendix B. This yields for the gradient correction:
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where R is the system size. Derivatives in the x-direction do therefore not dominate over the local term provided that
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where the parameter Ξ is defined in Section 3.2, and it is typically much larger than 1. Moreover, ( )Tln / ( )tot
2ρ Λ is much

larger than one, as tot
2Λ ρ≫ .

It can thus be concluded that the LDA is valid if the typical length scale of variations of the total dislocation density in x-
direction, /tot x totρ ρ|∂ |, is much longer than the average dislocation spacing 1/ totρ . As both Ξ and ( )Tln / ( )tot

2ρ Λ are large, the
condition in Eq. (4.15) is not very restrictive.

However, when the total dislocation density varies in the y-direction, the gradient does not dominate over the local term
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provided that

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

s

s

k T
R

b L
k T

b L
T

R T

1
64

2
(1 )

( )
8 (1 )

ln
( )

( )
4

2
1

ln
( )

.
(4.16)

B

tot B
y tot tot

tot

y tot

tot

tot tot

3/2

2
2

2

2

2

2

π ρ
μ

ν
ρ μ

π ν
ρ

ρ

Λ

ρ
ρ

Ξ
ν

ρ ρ

Λ

−
|∂ | ≪

−

⇒
|∂ |

≪
−

The LDA is thus valid if the typical length scale of variations in the y-direction, /tot y totρ ρ|∂ |, is much larger than R/ totρ , which
is much larger than the average dislocation spacing. If the system is infinitely large, Eq. (4.16) implies that no variations in
the y-direction are allowed. Furthermore, the RHS of Eq. (4.16) is only inversely proportional to the square-root of Ξ .
Therefore, the condition in Eq. (4.16) is much more restrictive than in Eq. (4.15).

The difference between variations in x- and y-direction originates from the difference in screening in both directions. As
can be seen in Fig. 4, in the x-direction, dislocations with opposite Burgers vector are attracted. These dislocations screen the
effect of the dislocation at the origin. However, in the y-direction, dislocations with equal Burgers vector are attracted. These
dislocations enhance the effect of the dislocation at the origin.

The restriction on the variations in density in the y-direction also restricts the possible choice for the glide-plane dis-
tribution. Namely, if a dislocation density profile is considered which is only nonzero at discrete glide-planes, this implies
that the derivative of the density in y-direction is large, and hence that the condition in Eq. (4.16) is violated. Therefore, only
profiles that are more or less homogeneous in the y-direction are allowed for. This means that the glide planes are smeared-
out.

4.1.4. Conclusions about the LDA and comparison to literature
It was found in this section that the LDA is applicable for the many-body contribution, provided that the density profile

varies slow enough, but that the LDA is not applicable for the two body contribution. As in Eq. (2.22), the background, two-
body and loading contributions can be combined into the elastic contribution. This results in the following semi-local free
energy expression:
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This expression might seem local at first glance, as it is written as a single spatial integral. However, one should realize that
the free energy is not to be interpreted as a functional of the mean field strain mfε , but rather of the dislocation density
profiles s( )ρ+ and s( )ρ− , and the displacement ub of the boundary. The mean field strain itself is a strongly non-local functional
of the dislocation density, see Eq. (2.21).

In the work of Mesarovic (2005), it was also shown that the two-body interaction energy cannot be approximated by a
Fig. 4. In the white regions, edge dislocations with opposite Burgers vector are attracted by the dislocation in the origin, and thereby they screen the effect
of the central dislocation. In the shaded regions, edge dislocations with equal Burgers vector are attracted, which strengthens the effect of the central
dislocation.
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local expression. Moreover, in later work (Mesarovic et al., 2010), it was shown that the contribution due to coarsening can
be approximated by a local form provided that the typical length over which the dislocation density profile varies is much
longer than the average dislocation spacing. This agrees with the explicit expression obtained here.

In the work of Groma et al. (2014), it was argued that no new internal length scale should arise from coarse-graining, as
the interaction between dislocations is scale-free. The free energy obtained here satisfies this constraint, as the many-body
contribution depends only logarithmically on the cutoff Λ.

The free energy of a system with spatially constant dislocation density was determined by Mizushima (1960), Ninomiya
(1978), Yamamoto and Izuyama (1988) and Burakovsky et al. (2000). The systems considered in their work do not have a net
dislocation content, and the free energy expressions were used to explain the melting transition of crystals. The suggested
expressions all entail a lnρ ρ− -term with a prefactor proportional to the shear modulus and the Burgers vector squared, but
independent of temperature, which is analogous to the expression for Fmb found here.

Additional terms proportional to ρ, 3/2ρ and ρ2 were suggested in Mizushima (1960), Ninomiya (1978), Yamamoto and
Izuyama (1988), Burakovsky et al. (2000). The terms linear in the density result from the energy of individual dislocation
lines. In our study, self-energy contributions are neglected, and hence the linear contributions are absorbed in the chemical
potential. The term proportional to 3/2ρ results from the configurational entropy of dislocation networks. This term is not
found in our work, as joggs and connections between dislocations do not occur in systems with only straight and parallel
dislocations. The term quadratic in the density in Yamamoto and Izuyama (1988) resulted from a non-overlapping condition
for dislocations. This was not accounted for in our analysis, and hence such a term is not found.

In the work of Svendsen, Klusemann et al. (2012), Bargmann and Svendsen (2012), Svendsen (2002), the free energy is
separated in a linear elastic part, and another contribution that is written as a power series in the GND and SSD density
separately. In later work (Svendsen and Bargmann, 2010), forms other than polynomials were also considered for this
second term. Here it was shown that a local expression is indeed possible for the many body contribution, and a series
expansion of the local expression obtained here could be valid in a certain regime.

In the work of Panyukov and Rabin (1999), the free energy of a system of dislocation loops was determined. In that work,
the density of dislocations was assumed to be independent of the Burgers vector, and hence no net dislocation was con-
sidered, both locally and globally. Despite the differences in problem setup with our analysis, the free energy expression
found in Panyukov and Rabin (1999, Eq. (65)) is remarkably similar to what we found in Eq. (4.9). As in our work, only
straight and infinitely long dislocations are considered, it was possible to perform the integration over the wave vector in Eq.
(4.9) explicitly, which was impossible in the work of Panyukov and Rabin (1999).

4.2. Zero temperature

In this work, the coarse-graining was performed at non-zero temperature, and the temperature dependence in Eq. (2.22)
is explicit. On the contrary, in literature, the temperature dependence is often not clear, as the system is considered at
isothermal conditions. Sometimes, an explicit split is made between energetic and entropic contributions, for example in
Groma et al. (2006, 2007). In this section, we determined the zero temperature limit of our free energy expression, to see
what the effect of working at non-zero temperature is. The result will be compared to literature.

To study the zero temperature limit of the free energy expression in Eq. (2.22), it is first noted that the mean field elastic
contribution Felas as defined in Eq. (3.1), is independent of the temperature, and hence does not change in the limit.

Second, the statistical contribution defined in Eq. (3.3) is proportional to the temperature. Therefore, it vanishes in the
zero temperature limit Flim 0T 0 stat =→ . And finally, the many body contribution as defined in Eq. (3.4) is considered. This term
can be written as
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where s( )mλ is the mth eigenvalue of the matrix s s s b bdzdz z zG ( , ; , ): ( )b b0∫ ξ ξρ∑ ′ ′ ′ ′ ^ ⊗ ⊗ ^ ⊗ , and the sum runs over all ei-
genvalues. As s sz zG ( , ; , )0 ′ ′ is independent of the temperature T, the eigenvalues s( )mλ are independent of temperature as
well. Thus, in the zero temperature limit, the many body contribution reads

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟sF dA

k T
k T

dAlim lim
2

ln 1
1

( ) 0 0,
(4.19)T

mb
m

T

B

B
m

m
0

1

9

0
1

9

∫ ∫∑ ∑λ= + = =
→ = → =

and hence vanishes.
At first glance, this result is contradictory with the explicit result that was obtained for a spatially homogeneous dis-

location density in Eq. (4.12). Namely, that many body contribution is non-zero when the dislocation density is non-zero.
However, in the derivation, it was used just before Eq. (4.12) that one can choose a cutoff wave number Λ0 such that

b L k T2 / (1 )tot B0
2 2Λ ρ μ ν≫ − , which is clearly impossible in the zero temperature limit.
Hence once the LDA is made at finite temperature, the zero temperature limit cannot be taken anymore. Other ap-

proximation techniques for the free energy might also involve additional assumptions on the temperature. Therefore, we
think that in general one should be careful in taking the zero temperature limit when approximations are made.
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So to conclude, the free energy at T¼0 can be expressed as

s u s u u s s uF T F F F F[ ( ), , 0] [ ( ), ] [ ] [ ( )] [ ( ), ]. (4.20)b b b bb b b belas background 2b loadingρ ρ ρ ρ= = = + +

It is tempting to interpret the free energy at zero temperature as the internal energy U of the system, as F U TS= − .
However, the internal energy should formally be determined by first calculating the entropy from S F T/δ δ= − and subse-
quently using the relation U F TS= + . When this is done using the free energy expression in Eq. (2.22), it turns out that the
internal energy U differs from (4.20) by a contribution that vanishes only at zero temperature. Therefore, the internal energy
U at T 0> is not given by the free energy at zero temperature.

It was recognized in the work of Groma et al. (2006, 2007) and Limkumnerd and Van der Giessen (2008) that the
physical temperature of the system is close to zero, which means that the statistical contribution Fstat is much smaller than
the energetic contribution. Hence it was concluded that it plays no role. However, another ‘phenomenological temperature’
was introduced to cover many body effects. In our work here, it was indeed found that many body effects vanish at zero
temperature. However, at small but finite temperature, many body effects appear naturally and in a scale-free form, as was
anticipated in Groma et al. (2014).

In the crystal plasticity model of Bammann (2001), the temperature dependence is explicit. Three important differences
with our model can be distinguished. First, the elastic constants depend on temperature. In our work, this dependence was
not put in the model on the microscopic level, and therefore, it is not present in the result either. An extension to tem-
perature dependence on the microscopic level could be made. Second, in the work of Bammann, an energy contribution is
found that depends only on temperature, and not on the strain of the material. This energy contribution is perhaps related
to the phonon energy in the crystal. The mechanical response of the system was found to be independent of this energy
contribution. In the work presented here, the focus was on deriving the free energy due to mechanical loading. Therefore,
phonon energy was interpreted as an irrelevant constant contribution, and was therefore neglected. Third, the free energy
expression obtained here comprises an statistical and a many body contribution that depends both on temperature and on
dislocation density. Comparable terms were not proposed by Bammann. This is probably because these contributions are
due to the effect of non-zero temperature on dislocation distributions, rather than only the effect of the temperature on the
lattice.
4.2.1. Equally spaced glide planes
The free energy at zero temperature can be further simplified for dislocations on equally spaced glide planes. As shown in

several papers (Scardia et al., 2014; Geers et al., 2013; Baskaran et al., 2010), this geometry simplifies the mathematical
analysis of the problem considerably and the coarse graining can be done using Γ-convergence, see Scardia et al. (2014),
Geers et al. (2013). In this section, the free energy at zero temperature in Eq. (4.20) is evaluated in this special geometry, and
the results are compared with those obtained using Γ-convergence. This case can be considered as an example in which the
discrete glide planes are still resolved on the macroscopic level.

The exact geometry that is used is depicted in Fig. 5(a). The glide planes are oriented in x̂-direction and the dislocations
pile up against an infinitely long, vertical wall at x¼0. Note that only glide planes with dislocations are considered, and that
planes without dislocations are not accounted for. The glide plane spacing is h, and, as in Scardia et al. (2014), Geers et al.
(2013), only positive dislocations are considered. Moreover, it is assumed that the loading is the same on each glide plane
and hence 0ε and Vedge are both only functions of x.

Because of the symmetry of the system and loading under a translation over a distance h in ŷ-direction, the density of
dislocations in the glide plane is independent of the y-coordinate of the glide plane. Therefore, the density of dislocations
can be written as

s x y hn( ) ( ) ( ),
(4.21)n

∑ρ ρ δ= −+
=−∞

∞

where the summation runs over all integers, and where the delta function indicates the positions of the glide planes as in
Fig. 3. Hence, the density is zero if there is no glide plane, and x( )ρ in the glide plane. Note that both y hn( )δ − and x( )ρ have
the dimension of inverse length. The background energy was not accounted for in Scardia et al. (2014), Geers et al. (2013),
and will thus be left out here as well. Using Eq. (4.21) in Eq. (4.20) for the free energy at zero temperature yields
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This expression can be rewritten by performing the summations over n and the integrations over y and y′. The energy can
then be expressed in terms of the number of glide planes Ny and the interaction energy of a regular wall of dislocations with
a single dislocations, u x( )wall Δ , which reads



Fig. 5. The geometry studied in this section: positive dislocations on equally spaced glide planes that pile-up against a wall at x¼0 (fig. (a)), and the
interaction potential between two dislocation walls, as in Eq. (4.23) (fig. (b)).
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as shown in Appendix C. The potential u x( )wall Δ is plotted in Fig. 5(b). The free energy per glide plane thus reads
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As shown in Fig. 5(b), the interaction potential is not long-ranged anymore, as opposed to the original interaction potential
uedge. Therefore, the two body term can be approximated by a local expression as in Eq. (4.1), as long as the length scale
associated with density fluctuations is small enough. This is clear by considering the LDA of Eq. (4.24) explicitly using the
expressions in Eqs. (4.1) and (4.2). The free energy density of the homogeneous system reads
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and the gradient correction term reads
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where both integrals were evaluated straightforwardly using a symbolic toolbox. The gradient correction is thus much
smaller than the local contribution as long as

⎛
⎝⎜

⎞
⎠⎟

h h
x

h
x

3 180
( )

60 ( )
,

(4.27)
2

3
2

2

2
π ρ π ρ ρ

ρ
≫ | ′ | ⇒ ≫ | ′ |

so when the typical length scale of density changes x/ ( )ρ ρ| ′ | is much larger than the glide plane spacing h. The energy in Eq.
(4.22) can thus be rewritten as

⎧

⎨
⎪⎪

⎩
⎪⎪

⎛
⎝⎜

⎞
⎠⎟s uF T

N

dx x V x
h b L

x
x

h

dx x V x dxdx x x u x x

[ ( ), , 0] ( ) ( )
12 (1 )

( ) if
( ) 60

( ) ( )
1
2

( ) ( ) ( ) else.
(4.28)

b b

y

edge

2
2

2

2

edge wall

∫

∫ ∫

ρ ρ μ
ν

ρ ρ
ρ

ρ ρ ρ

=
=

+
−

| ′ | ≪

+ ′ ′ − ′

Now, the result in Eq. (4.28) is compared to what was found in Scardia et al. (2014), Geers et al. (2013). In these papers, three
parameter regimes were distinguished in which different asymptotic forms of the energy expression were found. The exact
separation of these regimes depend on the details of the coarse-graining method, and can thus not be compared with the
result obtained here. However, in the three regimes good agreement with the expression in Eq. (4.28) is found.

In the so-called subcritical parameter regime, the glide plane spacing is large compared to the typical thickness of the
pile-up. Therefore, the influence of different glide planes on each other is assumed to be negligible in Scardia et al. (2014),
Geers et al. (2013), and hence it is the ”single glide plane regime”. The scaling implies that the second case in Eq. (4.28)
should be considered. The interaction energy u x x( )wall − ′ is logarithmic at small distances, and hence the obtained ex-
pression is equivalent to Eq. (24) in Scardia et al. (2014).

In the intermediate parameter regime, the thickness of the pile-up is much longer than the glide plane spacing, but the
typical distance between dislocations in x-direction is smaller than h. This implies that the first case in Eq. (4.28) should be
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considered. And indeed, this energy expression is equivalent to Eq. (40) in Scardia et al. (2014).
In the supercritical parameter regime, the typical distance between dislocations in x-direction is larger than h. This

implies again that the second case in Eq. (4.28) should be considered. To study the extreme case, the limit h 0→ should be
taken. The result of this limit depends on the behavior of x( )ρ in this limit. If x( )ρ increases slower than h 1/2− if h goes to 0, the
second term in Eq. (4.28) vanishes. On the contrary, if x( )ρ increases faster than h 1/2− , the second term blows up and
dominates the integral. This extreme case is what was found in Scardia et al. (2014), Geers et al. (2013). However, the
behavior under the limit h 0→ is only a mathematical limit that cannot be achieved in an experimental setting.

An important difference between the coarse-graining using Γ-convergence, as performed in Scardia et al. (2014), Geers
et al. (2013), and the method employed in this work is that for the former, dislocations align in so-called tilt walls. This
means that the discrete dislocation density is the same for all glide planes. In the latter procedure presented here, it is only
assumed after coarse-graining that the average density of dislocations is independent of the glide plane. It is remarkable
that despite this difference between the two coarse-graining methods, the resulting energy expressions are equivalent.
5. Implication for crystal plasticity

The free energy plays a crucial role in most crystal plasticity frameworks. In this section, the implications for crystal
plasticity that follow from the free energy derivation presented in this paper are presented. For clarity, our work is only
compared with Gurtin (2008).

The free energy used in the work of Gurtin is “given by standard elastic strain energy, augmented by a defect energy
( )ρΨ ”, where { , , , , , }N N
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1
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1

GND,sρ ρ ρ ρ ρ= … … with i
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GND,sρ the densities of geometrically necessary edge and
screw dislocations on slip system i, respectively. The free energy density thus reads

E E: ( ). (5.1)
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2
ρψ Ψ= +

The derivative of the defect energy with respect to the dislocation densities are used as a closure for the dynamic equations.
These derivatives are referred to as the energetic defect forces.

The split between standard (mean field) elastic energy and a local contribution that only depends on dislocation density,
can also be recognized in our result in Eq. (4.12). The defect energy for a single slip system with only edge dislocations that
follows from Eq. (4.12), reads
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where totρ ρ ρ= ++ − and GNDρ ρ ρ= −+ − are the total and GND density, respectively. The energetic defect forces are then
different for positive and negative dislocations and read:
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The striking difference between Eqs. (5.1) and (5.2) is that in the former, the defect energy only depends on GND densities,
while in the latter, the defect energy depends on both positive and negative density independently. To use the free energy
expression obtained here, the modeling as performed in Gurtin (2008) should thus be extended to positive and negative
densities separately.

At first sight, it is remarkable that the macroscopic free energy depends also on the total dislocation density, and not only
on the GND density, whereas the driving force on microscopic level, i.e. the Peach–Koehler force, can be written in terms of
GNDs only. However, the total density appears in the many body contribution, which is the screening correction to the
leading order mean field contribution, see the discussion in Section 3.1. Screening arises as a dislocation influences its
environment, i.e. it is more likely to find positive dislocations in the immediate neighborhood of a negative dislocation, than
to find negative ones. Screening effects usually depend on the total dislocation density, and not on the GND density, see e.g.
Limkumnerd and Van der Giessen (2008). On the microscopic level there is no screening, as the positions of the dislocations
are prescribed.

So to conclude, the research presented here implies that for a single slip system, a crystal plasticity model should in-
corporate the density and current of both positive and negative dislocations, and not just the net density. It is expected that
the same holds for multiple slip systems. It is however beyond the scope of this research to decide whether it is more
appropriate in a dynamical framework to use the total and GND density of dislocations for each slip system as a modeling
variable, or to use densities of dislocations with different Burgers vectors.

Previously, it was indicated by Svendsen and Bargmann (2010) that thermodynamically consistent crystal plasticity
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models based on the free energy are not restricted to the use of GND densities only. However, most models treated in that
work use either only the GND density (Kuroda and Tvergaard, 2008; Evers, 2004; Evers et al., 2004; Bayley et al., 2007;
Ertürk et al., 2009) or use a form of the free energy that can be split additively into a part depending on the GND or SSD
density Ekh et al. (2007).

Another difference between this work and Gurtin (2008), is that here, it was shown that the full free energy expression in
Eq. (4.12) is strongly non-local, and hence that local forms of thermodynamic laws do not apply. On the contrary, in the work
of Gurtin (2008), a local form of the second law, the local free energy imbalance, is used.
6. Summary and discussion

In this work, an explicit expression is derived for the free energy of a coarse-grained dislocation density profile in a finite
medium, subjected to a prescribed boundary deformation. The free energy was determined by using statistical mechanics
tools to average over many microscopic realizations of the system to retrieve the coarse-grained system properties.

The main result of this paper is the free energy expression in Eq. (2.22). This has been obtained from the grand-canonical
partition function, derived in our earlier work (Kooiman et al., 2014). In the present paper, a Legendre transform to the
canonical ensemble is performed, which results in the free energy expression in terms of the dislocation density, Eq. (2.22).
The obtained expression is an explicit functional of the dislocation density profile, the mechanical loading at the boundary
and the temperature. The free energy depends on the finite volume as the elastic energy density is only integrated over a
finite volume, and as the interaction between dislocations is determined in a finite medium.

The free energy in Eq. (2.22) comprises three terms: the mean field elastic energy, the statistical contribution of the
dislocations and the many-body contribution that results from the local arrangement of dislocations. Explicit expressions for
these three terms arise naturally from the coarse-graining procedure.

For the statistical and many-body contribution, the local density approximation (LDA) can be used to obtain the semi-
local expression in Eq. (4.12) in terms of the dislocation density, provided that the density profile does not vary too much on
small length scales (see Section 4.1.3 for a detailed discussion). These two contributions together form the so-called defect
energy, used in crystal plasticity models. From this, explicit expressions for the defect forces were derived, see Eq. (5.3).

The most prominent difference between the defect energy from most crystal plasticity models and the defect energy
derived here, is that the former depends usually only on GND densities, while the latter depends on the density of both
positive and negative dislocations separately. This implies that a microscopically based crystal plasticity model should in-
corporate the density and current of both positive and negative dislocations for slip system, rather than the GND-related
quantities only.

Furthermore, it was shown that the statistical and many-body contribution vanish at zero temperature. However, at low
but finite temperature, the many-body contribution cannot be neglected.

The energy at zero temperature is simplified further for a system with equally spaced glide planes. In this specific case,
the coarse-graining was also done using Γ-convergence in the literature. It is concluded here that coarse-graining using
statistical physics yields the same result as Γ-convergence.

The free energy was derived by systematic coarse-graining of microstates, characterized by a finite volume subjected to
given boundary deformations which contains discrete dislocations with different possible Burgers vectors b on discrete glide
planes. The averaging is then performed over all possible numbers and positions of dislocations, and over all strain fields
that match the incompatibility imposed by the dislocations and the applied deformation at the boundary.

The main approximation in the derivation is that the system is far away from criticality. This implies that the obtained
free energy expression is only accurate far away from transition points. Examples of such points are the unbinding transition
of dislocations and the transition from elastic to plastic material response.

So to conclude, the new and innovative aspects of the free energy expression in Eq. (2.22) are the following:
�
 The free energy expression originates from statistically averaging straight and parallel, discrete dislocations in a finite
volume. Apart from the straight and parallel nature of the dislocations, no assumptions on the dislocation arrangement
were made.
�
 Properties that have proven to be important for the mechanical behavior have been included, namely the presence of
glide planes and the finite volume.
�
 In several special cases the free energy expression reduces to a simple expression that can be implemented efficiently in
a numerical scheme. The special cases considered here are a local density approximation for a single slip system, the zero
temperature limit, and equally spaced glide planes.
�
 This free energy expression yields microscopically derived expressions for energetic defect forces in crystal plasticity
models (Gurtin, 2008). Moreover, the derivation implies that crystal plasticity models can better be formulated in terms
of densities and currents of both positive and negative dislocations on each slip system, rather than in terms of GND-
related quantities only.

For future research, it would be interesting to weaken the limitations as described in Section 3.3. This can be done by
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replacing the Gaussian approximation by a more accurate one, for example the Villain approximation (Kleinert, 1989). Then,
the free energy expression could also be used to study the melting transition, as was also studied by Mizushima (1960),
Ninomiya (1978), Yamamoto and Izuyama (1988) and Burakovsky et al. (2000).

Besides that, it may be possible to derive along the same lines a free energy expression for dislocations that are not
straight and not parallel. Such an extended phase space was also argued for by Hochrainer et al. (2014). A comparable
analysis for a homogeneous system of curved dislocations was performed before by Panyukov and Rabin (1999).

Furthermore, new simple expressions can be obtained by considering other special cases. For example, the local density
approximation can be determined for multiple slip systems. From such an expression and the resulting dislocation density
profiles, the importance of the different slip systems and their mutual influence can be determined.

As we have shown that the zero temperature limit is very sensitive to approximations made in the derivation of the free
energy, it would be worthwhile to extend the mathematical coarse-graining procedure of Γ-convergence to non-zero
temperatures to obtain results that are more generally valid.

Based on this work, crystal plasticity models should be improved by extending the set of variables, such that the obtained
free energy expression could be used. Particularly, the extension concerns including the densities for both positive and
negative dislocations on each slip system, rather than only the GND-related quantities. The current derivation also suggests
that, as the free energy is a strongly non-local functional, only the global version of the dissipation inequality should be used
in the derivation of crystal plasticity models. It would be worthwhile to compare such a new crystal plasticity model with
DDD simulations and, ultimately, experiments.
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Appendix A. The mean field elastic energy

In this section, the first three contributions of Eq. (2.20) are combined into a single expression in terms of mfε , as
defined in Eq. (2.21). To this end, the first three contributions of Eq. (2.20) are rewritten using the definitions in Eqs. (2.6)
and (2.12)
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To rewrite this equation, it should be used that the following combination is divergence free and symmetric:
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These two properties will first be shown. First, the divergence free character of : 0ε follows immediately by Eq. (2.3), and
r r b rdV G ( , ): ( )b b D0 2∫ ξ ρ∇ × ′ ′ ∑ ^ ⊗ ′ is a rotation, and hence it is divergence free by definition.

Second, this combination is symmetric. For : 0ε , this is immediately clear. For r r b rdV G ( , ): ( )b b D0 2∫ ξ ρ∇ × ′ ′ ∑ ^ ⊗ ′ , this is
more subtle. As mentioned below Eq. (2.13), r r rdV G ( , ): ( )0

1∫ Ψ′ ′ ′− is infinite if r( )Ψ∇ × is not symmetric. Therefore,
r rG ( , )0∇ × ′ should be symmetric in the first two indices. One can check that this is indeed the case for the infinite space

solution for G0 in Eq. (2.14).
From these two properties, the following relationship can be derived for any arbitrary second order tensor field h r( ) for

which h r( )∇ × is symmetric:
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Gauss’ theorem and the symmetry of h r( )∇ × and in the fourth step the definition of mfε in Eq. (2.21). By applying this
identity twice in Eq. (A.1), it is found that
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This expression is used in Eq. (2.22).
Appendix B. The Gradient correction in the LDA

In this section, the gradient correction for the many body contribution is calculated using Eq. (4.2). To this end, the
second derivative of the gradient correction with respect to the density profile is determined first:
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The convolution on the RHS can be written as a product in Fourier space. Therefore, this expression reads, using the ei-
genvalues q( )λ̃ in Eq. (4.8),
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The integrations over q and q′ can be performed independently. The function sj( ) is used as shorthand notation for the
integral over q:
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where, as in the main text, a is the shorthand notation for a b L k T2 / (1 )SSD B
2ρ μ ν= − . Eq. (B.2) can thus be written as

s

0 s
s s s

T k T
j j

k T
j

[ ( ), ]

( ) ( ) 2
( ) ( )

2
( ) ,

(B.4)

mb SSD

SSD SSD

B B
2

2

SSD

δ ρ
δρ δρ

= − − = −
ρ

where the symmetry of sj( ) was used. Hence the matrix F ( )mB SSD2, ρ , as expressed in Eq. (4.2), reads
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This can be rewritten as follows:
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where in the third line, the inverse of the convolution theoremwas used, and where for the last equality, the explicit form of
qj ( )˜ in Eq. (B.3) was used. These integrations can now be performed. Note that the qx derivative is antisymmetric in qx, and

the qy derivative is antisymmetric in qy. Therefore, the off-diagonal terms in the matrix vanish. Using polar coordinates for
the q′-integral, this yields
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where q0 is the lower bound of the q′-integral. The lower bound q0 is inversely proportional to the largest length scale in the
system, which is the system size R.
Appendix C. Summation over glide planes

In this appendix, the integrations over the y-coordinate and the summations over n in Eq. (4.22) are performed. First, the
summation in the first term can be evaluated:

dy y hn N( ) 1 ,
(C.1)n n

y∫ ∑ ∑δ − = ≡
=−∞

∞

=−∞

∞

where the latter equality is the definition of Ny. The number Ny can be interpreted as the number of glide planes. In the
geometry considered here, this number is in principle infinite. However, it will be shown later that it is a common prefactor
of all terms in Eq. (4.22).

Second, the summation in the second term can be evaluated using the explicit expression of the interaction potential in
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Eq. (2.14b):
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where in the first line nΔ is shorthand notation for n n− ′. To evaluate further, it is convenient to define A by
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which is a constant independent of x x− ′. The summation does not converge as the number of glide planes is infinite.
However, it will be shown later that the dislocation density profile is independent of A. Furthermore, the following identities
can be used:
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This finally yields
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where the second term is a constant independent of x x− ′. An additive constant in the interaction potential has no physical
meaning. Therefore, it will be neglected further on.

The interaction potential in the second line of Eq. (C.5) is equal to the interaction energy used in Scardia et al. (2014)],
Geers et al. (2013)] and will be denoted by u x( )wall Δ further on.
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