

Application of supervisory control synthesis to MRI scannes :
improving evolvability
Citation for published version (APA):
Theunissen, R. J. M., Petreczky, M., Schiffelers, R. R. H., Beek, van, D. A., & Rooda, J. E. (2010). Application of
supervisory control synthesis to MRI scannes : improving evolvability. (SE report; Vol. 2010-06). Technische
Universiteit Eindhoven.

Document status and date:
Published: 01/01/2010

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://research.tue.nl/en/publications/d7cd2268-3193-4e68-9d9c-a6cfca2f35f7

Systems Engineering Group
Department of Mechanical Engineering
Eindhoven University of Technology
PO Box 513
5600 MB Eindhoven
The Netherlands
http://se.wtb.tue.nl/

SE Report: Nr. 2010-06

Application of supervisory control
synthesis to MRI scanners:

improving evolvability

R.J.M. Theunissen M. Petreczky
R.R.H. Schiffelers D.A. van Beek

J.E. Rooda

ISSN: 1872-1567

SE Report: Nr. 2010-06
Eindhoven, April 2010

SE Reports are available via http://se.wtb.tue.nl/sereports

Abstract

This paper presents an application of Ramadge-Wonham supervisory control theory to a
patient support system for MRI scanners. The obtained controller was implemented and
tested on real hardware. A distinguishing feature of the proposed application is that the
evolvability of the controller is an essential requirement. By evolvability is the ability to adapt
the controller to meet modified control objectives. The experiments conducted in the course
of the case-study indicate that the use of supervisory control theory improves the evolvability
of the controller.

1 Introduction

The goal of this paper is to present a specific application of Ramadge-Wonham supervisory
control theory (SCT), see [31, 8], to control problems arising in high-tech systems. The
application addresses the control of a patient support table for MRI scanners of Philips
Medical Systems. More precisely, the task was to design a controller for this patient support
table such that the following requirements are satisfied.

• Functional correctness
The closed-loop system satisfies the specified control objectives

• Evolvability
Roughly speaking, evolvability means the following. If the control objectives change,
then the controller can be easily adapted to meet the new control objectives. The concept
of evolvability is discussed in more detail later on.

The control objectives are of a discrete nature and describe the criteria of functional correctness
of the system. Informally, the control objectives require that the system stays safe and that it
does not enter a deadlock state. Notice that the controller is not only required to ensure correct
functionality. It should also be easily adaptable to changing control requirements. I.e. it should
be evolvable. This emphasis on evolvability renders the considered control problem quite
different from other applications of supervisory control theory. In particular, the requirement
of evolvability means that the control synthesis method should keep the amount of manual
tuning to a minimum and facilitate systematic (re)use of models.

Contribution of the paper The paper describes the main steps of the control synthesis
for the application described above. First, a discrete-event (finite-state automaton) model
of the uncontrolled patient support table was created. Only the behavior of the plant in
the absence of errors is modeled. Second, the control requirements were modeled as a
automata. The language accepted by this automaton represents those sequences of events
which the closed-loop system is allowed to generate. Then SCT is applied to obtain a supervisor
and the supervisor is used to generate the desired controller. The obtained controller was
first tested by means of simulation, and then on the real hardware. The evolvability of the
controller was tested by redesigning it for slightly different control requirements; the design
and implementation of the new controller took only four hours, see Section 6 for more details.

This paper explains the original control problem and present certain components of the plant
model and of the model of requirements. The modeling choices and the procedure and
software which was used to obtain a supervisor are discussed. Finally, the implementation
and the validation of the supervisor, and the effect of using supervisory control theory on
evolvability are described.

In addition, some guidelines are formulated for modeling high-tech systems such that the
obtained models fit the theoretical framework of supervisory control. Although the guidelines
are not claimed to be applicable in general, the guidelines turned out to be useful for the
particular case-study.

It is worth noting that not only a supervisory controller is generated for the particular case-
study, but also a tool chain is developed which allows the automatic translation of the obtained
supervisor to a real-time controller. This tool chain may serve as a starting point for a general
purpose software tool for generating real-time controllers based on SCT.

Finally, note that the models presented in this paper are slight modifications of the models

2

which were used to synthesize the supervisor which was implemented on the real hardware.
These modifications were applied to render the models easier to understand. These modifica-
tions do not influence the functional behavior of the models. Note that software simulation
reveals that the supervisor obtained from the models of this paper also satisfies the control
requirements.

General goal: improving evolvability of high-tech systems The contribution of the paper is
part of a wider research program, which aims at improving of evolvability of high-tech systems.
High-tech systems are complex systems which combine mechanical and electrical components
with electronics and software. Examples of such systems are MRI scanners, printers and
manufacturing lines. The design of high-tech systems is a complex process which requires
a multidisciplinary team of engineers. In addition, for several classes of high-tech systems,
new generations of such systems have to be designed in short time, and with low costs and
high quality, in order to meet the market demands. These systems are typically manufactured
in relatively small numbers and new versions of them have to be developed every few years.
Each new version retains a great deal of functionality of the previous generation. However, the
desired new features require the re-design of the control software of the previous generation.
In turn, the design of control software is often one of the most time consuming and costly
stages of the product development process. Note that control software refers to the software
which controls high-level behavior of the hardware. Controllers of various standard hardware
components such as electrical motors are deliberately excluded. The problem described above
calls for improvement of evolvability of control software, i.e. the improvement of the ability to
quickly adapt existing control algorithms to meet slightly changed control requirements.

Supervisory control to improve evolvability of high-tech systems Supervisory control the-
ory (SCT), see [31], is the branch of control theory dealing with control problems where the
plant is discrete-event and the control objectives involve only discrete (logical) requirements.
It is proposed to use control theory in general, and SCT in particular, to improve evolvability.
From the point of view of evolvability, the most attractive feature of SCT is that it allows
automatic generation of a controller from the formal model of the plant and control require-
ments, such that the generated controller is guaranteed to meet the control requirements. The
envisaged procedure for quick adaptation of controllers is then as follows.

Step 1. A model of the plant and control requirements is created.

Step 2. If the control requirements change, then their models are adapted or extended
accordingly.

Step 3. A controller is generated using SCT (and the corresponding tools) from the modified
model of control requirements and from the original (or modified) plant model. SCT
guarantees that the thus obtained controller meets the (modified) control requirements.

That is, instead of modifying the existing controller, it is proposed to modify the model of
the control requirements and automatically generate a new controller, which is guaranteed to
meet the modified control requirements.

Differences with respect to classical control problems Control theory has been actively
applied in almost every branch of industry. However, traditionally it was used only to obtain
a solution to a specific control problem, evolvability of the solution was not considered as
a major part of the task. The application of control theory to improve evolvability leads to
challenges which are different from the challenges usually encountered in classical control

3 Introduction

engineering. In contrast to classical control, the challenge is not so much to come up with a
control algorithm, but to come up with a method for fast adaptation of the control algorithms to the
ever changing control requirements. This calls for systematic methods for modeling the plant
and control requirements, and for generating the desired controller. The latter is provided by
the existing tools for supervisory control synthesis. The former remains a challenge. Note
however, that the proposed guidelines, while not universal, might help to make the modeling
effort more systematic.

Related work Despite the fact that SCT is well established, the number of industrial applica-
tions is limited. The main causes of this can be found in the computational complexity, model
interpretation and modeling and implementation effort, see [1, 18]. Without claiming for
completeness, previous applications of SCT include: a rapid thermal multiprocessor, see [1],
mobile robots, see [18, 15], passenger land-transport system, see [26], a water bath boiler, see
[20], under-load tap-changing transformers, see [21], automated manufacturing and assembly
systems: [6, 17, 7, 16, 13, 14, 11, 9, 24, 22, 10, 23, 12].

To the best of our knowledge, the application domain of MRI scanners is new. In addition,
none of the above cited papers consider the problem of evolvability. In contrast, improving
evolvability is one of the main tasks in the application considered in this paper.

Some of the results of the paper were announced in the conference proceedings [30]. With
respect to [30], the main difference is that this paper presents more detailed models and a
modeling methodology, in addition this paper systematically explains the role of supervisory
control in improving evolvability. The paper [30] can be viewed as a shorter version of the
current paper. Some of the results described in this paper were also included in the technical
report [29]. However, [29] presents the models and the solution in much less detail, it does not
present a modeling methodology, nor it explains the link between evolvability and supervisory
control.

Outline The outline of the paper is as follows. Section 2 presents the modeling approach that
is used to model the plant. Section 3 contains an informal description of the case-study. Section
4 presents the formal models of some of the plant components and control requirements.
The automatic generation of the supervisory controller, its implementation, and the validation
of the obtained controller by means of simulation are all discussed in Section 5. Section
6 evaluates the effect of the use of supervisory control on evolvability. Section 7 presents
conclusions and proposes directions for future research.

2 Modeling approach

The goal of this section is to present guidelines for developing the model of the plant and
the model of the control requirements. Both the plant and the requirements are modeled as
finite-state automata.

2.1 Method for constructing the plant model

In theory, the goal of the plant model is to capture the dynamic behavior of the un-actuated
systems, i.e. the system without control. That is, the plant model should contain the answer
to the question of what the effect is of the past actuator events (i.e. inputs generated by the
environment or the controller) on the future sensor events (i.e. outputs). This information is

4

necessary in order to construct a controller (supervisor) which, using control inputs, steers the
system in such a way that the outputs satisfy the control requirements. Finally, the internal
structure of the system describes the effect of the actuators on sensors and on control modes.
A control mode is an entity which contains the information relevant for formulating the control
objectives. In contrast to sensors and actuators, control modes need not represent physical
entities. Control modes are introduced by the design engineer to facilitate the formulation of
control requirements.

From a modeling perspective, the plant is viewed as a parallel interconnection of several
components. The components are divided into the following categories.

Models of actuators As the name suggests, these components model the behavior of actua-
tors.

Models of sensors These components model the behavior of sensors.

Models of the internal structure These components represent the "glue" of the model,
relating actions of actuators to activations of sensors and to changes in control modes.

The states of actuator models, sensor models and models of the internal structure are referred
to as actuator states, sensor states and internal states, respectively. The overall state of the system
is the collection of the local states of its components. Hence, actuator states, sensors states and
internal states are components of the global state of the system.

Another important aspect of modeling is the choice of events and the division of events into
controllable and uncontrollable ones. The events are proposed to be grouped according to the
following criteria.

Actuator events The actuator events represent the actions of the actuators. These events can
be either controllable or uncontrollable. The former represent those actuator actions which
can be triggered by the controller, i.e. controllable actuator events represent the control
inputs. In contrast, uncontrollable actuator events correspond to the actions which are
imposed by the environment, i.e. uncontrollable actuator events represent external or user
inputs, imposed on the system by the environment or user. The controller cannot trigger or
prevent the occurrence of such events.

The common feature of all actuator events is that in principle, the events can take place
at any moment of time, and their occurrence triggers a change in the state of the system.
More precisely, actuator events trigger changes of the actuator states and internal states
of the system. However, these events do not directly change the sensor state component
of the global state.

Sensor events The sensor events represent the activation of certain sensors. These events
are always uncontrollable. Although the occurrence of these events may coincide with
changes in the state of the system, sensor events do not trigger a state transition, sensor
events at most indicate that a state transition has occurred. The latter is the main intuitive
difference between sensor events and uncontrollable actuator events. Sensor events
indicate the change of the sensor and internal state component of the global state.

Internal events Internal events are events which are not associated with sensors or actuators.
These events typically occur within the component describing the internal structure
of the system. Internal events can be virtual, in a sense that the events need not be
associated with any specific physical entity. Internal events trigger a change in the
internal state component of the global state. Internal events do not trigger any change in
the actuator or sensor states of the system, nor are these events triggered by a change in

5 Modeling approach

User Interface Light Visor

Bore

Patient support table

Figure 1: MRI scanner

Position encoder
(on/off)

Horizontal motor
(in/out/stopped)

Clutch
(on/off)

Tabletop sensor
(on/off)

Max out sensor
(on/off)

TTR switch
(on/off)

Vertical motor
(up/down/stopped)

Max up sensor
(on/off)

Max down sensor
(on/off)

Emergency
(on/off)

2× Timer
(on/off)

Figure 2: Patient table

the actuator and sensor states. Internal events can be either controllable or uncontrollable.
Controllable internal events could be thought of as internal commands for the potential
supervisor (controller), controllable internal events do not change the behavior of the
physical plant.

2.2 Control requirements

The control requirements of interest are safety requirements. More precisely, the control
requirements are sets of sequences of events which the closed-loop system is allowed to
generate. The control requirements are represented by finite-state automata. The language
accepted by the automaton is exactly the set of all safe sequences of events which the closed-loop
system is allowed to generate.

Notice that the models of control requirements may involve user inputs or external inputs
(uncontrollable actuator events), while the physical closed-loop system can actively generate
control actions (controllable actuator events), sensor events and internal events, but not
external or user inputs. This may look like a contradiction. However, a well-formed model of
control requirements should not impose constraint on uncontrollable actuator events, it should
use them only to formulate conditions for occurrence of certain sensor or internal events. In
fact, supervisory control theory ensures that if this is not the case, i.e. if control requirements
impose a constraint on the sequence of these events, then no supervisor exists which solves
the corresponding supervisory control problem. In other words, incorrect models of control
requirements which impose constraints on uncontrollable actuator events are automatically
detected.

6

3 Informal introduction to the case-study

The patient support system is used to position a patient in an MRI scanner, see Figure 1.
An MRI scanner is used mainly in medial diagnosis to render pictures of the inside of a
patient non-invasively. The patient support system (Figure 2) can be divided into the following
components: vertical axis, horizontal axis and user interface. The vertical axis consists of a
lift with appropriate motor drive and end-sensors. The horizontal axis contains a removable
tabletop which can be moved in and out of the bore, either by hand or by means of a motor
drive depending on the state of the clutch. It contains sensors to detect the presence of the
tabletop, and the position of the tabletop. Furthermore, the system is equipped with hardware
safety systems (emergency stop and tabletop release (TTR)), that allow the operator to override
the control system in emergency situations. Finally, the system contains a light-visor for
marking that part of the patient’s body which is supposed to be scanned. This marking is
then used by the MRI scanner to determine the correct position of the patient in the bore.
The system is controlled via a user-interface (UI). This interface contains a tumble switch to
control the movement of the table, and three buttons to control the clutch, the emergency
system and the light-visor with automatic positioning. Furthermore, the UI contains LEDs to
display the current state of the system to the operator.

The supervisor should accomplish multiple control objectives. When the operator operates the
tumble switch, the table should move up and down, or in and out of the bore. This depends
on the current position of the table and the position of the tumble switch. When the manual
button is pushed, the clutch should be released such that the table can be moved manually by
hand. Pushing the light-visor button, should enable the light-visor, and when the button is
pushed again, the position is stored for automatic positioning. Finally, the table should not
move beyond its end positions, and it should not collide with the magnet.

A subset of the functionality of the patient support systems is discussed in this paper. The
emergency system and the light-visor with automated positioning, are not modeled. Fur-
thermore, only good weather behavior is considered. Errors in sensors and actuators and
disturbances in the system are not modeled.

The patient support system is more difficult to control than it might appear at first sight. It
contains several complex interactions of components, and the overall finite state model of
the uncontrolled system contains 6.3 · 109 states (64 · 106 states without user-interface). The
complexity of the use case becomes even more apparent when one considers the time which
is required to build the control software manually. In fact, it was estimated one would need
a week for manual adaptation of the control software to meet the modified requirements
described in Section 6. Note that with the approach of this paper, the adaptation of the models
of control requirements and the generation of new control software took merely four hours.

4 Formal models

The goal of this section is to describe the formal models of the plant and of the control
requirements. In the models, states are denoted by vertices, initial states are indicated by an
unconnected incoming arrow, and marked states are denoted by filled vertices. Controllable
and uncontrollable events are depicted by solid and dashed edges, respectively. Multiple events
on an edge represent an edge for each event. A bold event name indicates a set of events,
representing an edge for each event in the set.

For notational purposes, the concept of input events is introduced. Input events are denoted

7 Formal models

1 2

a

b

Inputs: {a,b}

(a) With inputs

1 2

a

b

b a

(b) Without inputs

Figure 3: Translation of inputs

1

2

ac

(a) A

α

β

bc

(b) B

1,α 2,α

1,β 2,β

a

a

b b
c

(c) A ‖ B

1,α 2,α

1,β 2,β

a

c

a

c

bc bc

(d) A 9 B

Figure 4: synchronous and interleaving parallel composition

in the upper part of the automaton, indicated by the keyword Inputs. The occurrence of the
events in this set are not restricted by the automaton model. More precisely, to each state one
adds a self-loop, labeled by those input events, for which there exists no outgoing transition
from that state labeled by the designated event. Figure 3 shows an example of how input
events are translated.

A model may consist of several automata. To compose these automata, two parallel compo-
sition operators can be used: 1) the synchronizing parallel composition operator, denoted by ‖,
which requires synchronous execution of shared events (events with common labels) and
interleaved (independent) execution otherwise; 2) the interleaving parallel composition operator,
denoted by 9, which allows only the interleaved execution of events. Figure 4 shows an
example for each of the two parallel composition operators. Note that interleaving parallel
composition can result in non-deterministic models, see Figure 4d. However, in the patient
support case, interleaving does not result in a non-deterministic model. The events which are
shared by the automata which are composted by interleaving parallel composition, only occur
in self-loops.

4.1 Vertical axis

The patient table can move up and down along the vertical axis. The vertical axis contains
two end sensors, maximally up and maximally down, and one actuator for the vertical motor
drive. The motor can move the table up and down. The system should never move beyond the
maximally up and down position. Furthermore, infinite traces of controllable events should
be prevented.

4.1.1 Plant model (VAxis)

The plant model of the vertical axis consists of the synchronous parallel composition of the
models of the actuators, sensors and structure of the vertical axis:

VAxis , VActuators ‖ VSensors ‖ VStructure

8

VERTSTOPPED
VERTMOVING

VERTSTOPPING

vMove

vS
to
p

vStopped

Inputs: vMove ∪ vStop

Figure 5: Model VActuators: vertical actuators

VERTUPOFF VERTUPON

vUpOn

vUpOff

(a) VUpSensor

VERTDOWNOFF VERTDOWNON

vDownOn

vDownOff

(b) VDownSensor

Figure 6: Models VSensors: vertical sensors

The actuator, sensor and structure models are defined as:

VActuators , VMotor

VSensors , VUpSensor ‖ VDownSensor
VStructure , VSensorsRelation ‖ VMotorSensorRelation

Motor drive (VMotor) The motor is controlled by a resource controller, which controls the
brakes, and calculates set-points for the feedback control loop. The model of the motor
drive only includes the behavior exposed to the supervisor, see Figure 5. Initially, the motor
is stopped. From this state, a movement can be started (vMove, see Section 4.1.2 for the
definition). If the motor is moving and a stop event in the set vStop (see Section 4.1.2 for the
definition) is triggered, the motor slows down to come to a halt. When the motor has come to
a halt, the event vStopped is emitted, and the motor enters the stopped state again. Only the
stopped state is marked, because the motor must always be able to return to the stopped state.

Sensors (VDownSensor, VUpSensor) The maximally up and maximally down sensors are
modeled in Figures 6a and 6b. The sensors are active if the table is at the sensor position,
otherwise the sensors are inactive. This is modeled by means of two (marked) states, namely
ON and OFF. The sensors emit the uncontrollable events vDownOn (vUpOn) or vDownOff
(vUpOff), when a sensor becomes active or ceases to be active, respectively. Initially the table
is assumed to be neither up or down, so that both end sensors are inactive, indicated by the
states VERTDOWNOFF and VERTUPOFF.

Sensor-sensor relation (VSensorsRelation) The two sensors are never active at the same
time, as a result of their physical location. This relation is modeled in Figure 7a. The model
includes the complete behavior of the two individual sensors. Hence, the models of the
individual sensors could be omitted from the plant model.

Motor-sensor relation (VMotorSensorRelation) The sensors do not change state when the
table is not moving vertically, see Figure 7b. Only when the motor drive is moving the table
up, the maximally down sensor can turn off (vDownOff) and the maximally up sensor can
turn on (vUpOn), and likewise for the opposite direction.

9 Formal models

VERTMID
VERTUPVERTDOWN

vUpOn

vUpOffvDownOn

vDownOff

(a) VSensorsRelation

VERTSTOPPED
VERTMOVEUPVERTMOVEDOWN

vMoveUp

vMoveDown

vMoveDown

vMoveUp

vStopped

vStopped

vDownOff
vUpOn

vDownOn
vUpOff

Inputs: vMove ∪ {vStopped}

(b) VMotorSensorRelation

Figure 7: Models VStructure: vertical structure

4.1.2 Control requirements (VReq)

In Figure 5 and 7b, the events set vStop denotes a number of different of stop events, namely
vStop , {vStopUp, vStopDown, vStopTTR, vStopTumble}. This facilitates decomposition of
the complete stop behavior into multiple independent requirements. The stops events should
be disabled most of the time, however the stop events should be enabled in distinct cases. For
instance, vStopUp is enabled only when the table has reached its maximally up position. By
having a different stop event for each case, these stop events do not synchronize, so that the
cases can be modeled independently of one another. The event set vMove is an abbreviation
for the move events, vMove , {vMoveUp, vMoveDown}.

The requirement model of the vertical axis consists of the synchronous parallel composition
of multiple control requirements, namely:

VReq , VStopUpDown1 ‖ VStopUpDown2
‖ VMotorSequence

Maximally up and down (VStopUpDown1/2) Movement beyond the maximally up position
is not allowed. This implies that initiating movement in the upper direction must be prevented
when the table is maximally up. Furthermore, movement in the upper direction must be
stopped when the table reaches the maximally up position. Note that the table must be
allowed to move up in the upper most position, otherwise this position could never be reached.
Likewise it is not allowed to move beyond the maximally down position.

These two requirements are modeled together, see Figure 8a. First, the event vMoveUp
(vMoveDown) is only allowed if the table is not maximally up (down). Second, the event
vStopUp (vStopDown) is enabled in the maximally up (down) position. This allows the table
to stop after the end position has been reached. Finally, the vStopUp (vStopDown) event is
only enabled if the motor is moving up (down), see Figure 8b. The synchronizing semantics
of the parallel composition in VStopUpDown1 ‖ VStopUpDown2 ensures that event vStop-
Down (vStopUp) is enabled only if the states VERTDOWN (VERTUP) and VERTMOVEDOWN

(VERTMOVEUP) are both active (see Figures 8a and 8b).

Loop prevention (VMotorSequence) The requirements specified so far still allow loops of
controllable actuator events. For instance, the event vMoveUp can be executed an arbitrary
number of times in succession, when enabled. To prevent such sequences of actuator events,

10

VERTMID
VERTUPVERTDOWN

vUpOn

vUpOffvDownOn

vDownOff

vMoveDown
vStopUpvMove

vMoveUp
vStopDown

Inputs: {vDownOn, vDownOff, vUpOn, vUpOff }

(a) VStopUpDown1

VERTSTOPPED
VERTMOVEUPVERTMOVEDOWN

vMoveUp

vMoveDown

vMoveDown

vMoveUp

vStopped

vStopped
vStopUpvStopDown

Inputs: vMove ∪ {vStopped}

(b) VStopUpDown2

VERTSTOPPED VERTMOVEUPVERTMOVEDOWN

VERTSTOPPING

vS
top

vMoveUpvMoveDown

vStop

vS
to

pp
ed

vMoveDown

vMoveUp

(c) VMotorSequence

Figure 8: Model VReq: vertical axis requirements

requirements are added to the model. The requirement in Figure 8c disables repetitions of
vMove and vStop events motor events: each move event must be followed by a stop event, or
a movement in the other direction. After a stop event, the motor must come to a complete
hold before another move event can be executed.

4.2 Horizontal axis

The horizontal axis consists of a removable tabletop on top of the main table. The tabletop
can be moved in and out of the bore (if present). It can be added and removed only in the
maximally out position. The presence of the tabletop is detected by a sensor. Like the vertical
axis, the horizontal axis contains two end sensors, maximally in and maximally out, and
a motor drive. The motor drive is coupled to the tabletop by a clutch. When the clutch is
released, the tabletop (if present) can be moved freely by an operator, otherwise the positioning
is controlled through the motor drive. Finally, the control of the clutch can be overridden by a
hardware safety system, called TableTop Release (TTR). The clutch is released when the TTR
switch is active, independent of the controller. The system should never move beyond the
maximally in and maximally out positions. Furthermore, the horizontal axis may not move,
when the tabletop is not present, when the clutch is release or when the TTR switch is active.

11 Formal models

HORSTOPPED
HORMOVING

HORSTOPPING

hMove

hS
to
p

hStopped

Inputs: hMove ∪ hStop

(a) HMotor

CLUTCH

hClutch

(b) HClutch

TTROFF TTRON

hTTROn

hTTROff

(c) HTTRSwitch

Figure 9: Model HActuators: horizontal actuators

4.2.1 Plant model (HAxis)

The plant model of the horizontal axis consists of the synchronous parallel composition of the
models of the actuators, sensors and structure of the horizontal axis:

HAxis , HActuators ‖ HSensors ‖ HStructure
The actuator, sensor and structure models are defined as:

HActuators , HMotor ‖ HClutch ‖ HTTRSwitch
HSensors , HInSensor ‖ HOutSensor ‖ HTabletopSensor

HStructure , HSensorsRelation
‖ HActuatorSensorRelations

The components of HActuatorSensorRelations are composed by interleaving parallel composi-
tion:

HActuatorSensorRelations , HMotorSensorRelation
9 HClutchSensorRelation
9 HTTRSensorRelation

Actuators (HMotor, HClutch, HTTRSwitch) The horizontal motor drive is similar to the verti-
cal motor drive, see Figure 9a. The clutch is modeled with one state (CLUTCH) in which the
clutch events are self-looped, see Figure 9b. The tabletop release switch is modeled similarly
to a sensor, see Figure 9c.

Sensors (HInSensor, HOutSensor, HTabletopSensor) The sensors of the horizontal axis are
modeled similarly to the sensors in the vertical axis, see Figures 10a–c. Initially, the tabletop
is not present (TTOFF), the maximally out sensor is on (HOUTON), and the maximally in
sensor is off (VMAXINOFF).

Sensors relations (HSensorsRelation) The two end-sensors cannot be active at the same
time, as result of their physical location, see Figure 11. Furthermore, the tabletop can only be
added and removed in the maximally out position. Note that this model includes the complete
behavior of the individual sensors. Hence, the models of the individual sensors could be
omitted from the plant model.

12

HORINOFF HORINON

hInOn

hInOff

(a) HInSensor

HOROUTOFF HOROUTON

hOutOn

hOutOff

(b) HOutSensor

TTOFF TTON

hTabletopOn

hTabletopOff

(c) HTabletopSensor

Figure 10: Model HSensors: horizontal sensors

HORMID HORINHOUTTTON

TTOFF

hInOn

hInOffhOutOn

hOutOff

hTabletopO
ff

hT
ab

le
to

pO
n

Figure 11: Model HSensorsRelation: horizontal structure (synchronizing parallel composition
part)

Sensor-actuator relation (HActuatorSensorRelations) Only when the tabletop is present
and is moving horizontally, the maximally in and out sensors can change state. The tabletop
can move horizontally in three distinct cases:

• The clutch is released, see Figure 12a; the table can be moved by hand, therefore the
sensors can always switch in any order. Note that the state of the clutch is defined by
the control system.

• The TTR switch is activated, see Figure 12b; the table can be moved by hand, as in the
case that the clutch is released. Note that, the state of the TTR switch is defined by the
operator.

• If the clutch is applied, and the TTR switch is not active, the movement is controlled by
the motor, see Figure 12c; analogous to the vertical axis.

These three cases can be considered as an OR relation. Synchronizing parallel composition
can be considered to model an AND relation. Therefore this form of parallel composition
cannot be used to model these cases independently. Using interleaving parallel composi-
tion, an OR relation can be modeled. An equivalent automaton without parallelism would
consist of 2× 2× 3 = 12 states. I.e. HActuatorSensorRelations , HMotorSensorRelation 9
HClutchSensorRelation 9 HTTRSensorRelation.

4.2.2 Control requirements (HReq)

The event set hStop denotes a number of different stop events, namely hStop, {hStopIn,
hStopOut, hStopTTR, hStopTabletop, hStopTumble}. The event set hClutch is an abbreviation
for the clutch events, hClutch , {hClutchOn, hClutchOff }, and the event set hMove is an
abbreviation for the move events, hMove , {hMoveIn, hMoveOut}.

13 Formal models

CLUTCHOFF CLUTCHON
hClutchOff

hClutchOn

hInOn
hInOff
hOutOn
hOutOff

Inputs: hClutch

(a) HClutchSensorRelation

TTRONTTROFF
hTTROff

hTTROn

hInOn
hInOff
hOutOn
hOutOff

Inputs: {hTTROn, hTTROff }

(b) HTTRSensorRelation

HORSTOPPED
HORMOVEINHORMOVEOUT

hStopped

hMoveIn

hMoveOut

hStopped

hMoveOut

hMoveIn
hOutOn
hInOff

hOutOff
hInOn

Inputs: hMove ∪ {hStopped}

(c) HMotorSensorRelation

Figure 12: Model HActuatorSensorRelations: Actuator sensor relation (interleaving parallel
composition)

The requirement model of the horizontal axis consists of the parallel composition of multiple
control requirements, namely:

HReq , HStopInOut1 ‖ HStopInOut2
‖ HStopTabletop ‖ HClutchMove
‖ HStopTTR ‖ HClutchSequence
‖ HMotorSequence

Maximally in and out (HStopInOut1/2) The horizontal axis may not move beyond its maxi-
mally in and out position, see Figures 13a and 13b.

Tabletop move (HStopTabletop) When the tabletop is not present, initiating horizontal
movement is not allowed and the motor should be stopped, see Figure 13c. It is not possible
to prevent the table from moving horizontally without tabletop, because the tabletop can be
removed by the operator while the table is moving horizontally. In other words, the supervisor
cannot ensure that the table is not moving when the operator removes the tabletop.

Clutch move (HClutchMove) The tabletop may only be moved by the horizontal motor if the
clutch is applied, see Figure 13d. If the clutch is not applied, the motor may not move the
table. While the motor is moving the table, the clutch may not be released.

TTR move and clutch (HStopTTR) Commands for horizontal movement and clutch com-
mands may only be issued when the TTR switch is off, see Figure 13e. However, it cannot
be prevented that the TTR switch is turned on while moving. Whenever the TTR switch is
turned on, the table should be stopped (hStopTTR).

Loop prevention (HClutchSequence, HMotorSequence) Figure 13f prevents sequences of
the same clutch events, Figure 13g prevents sequences of the same motor events.

14

HORMID HORINHOROUT

hInOn

hInOffhOutOn

hOutOff

hMoveIn
hStopOut hMove

hMoveOut
hStopIn

(a) HStopInOut1

HORSTOPPED
HORMOVEINHORMOVEOUT

hStopped

hMoveIn

hMoveOut

hStopped

hMoveOut

hMoveIn

hStopOut hStopIn

Inputs: hMove ∪ {hStopped}

(b) HStopInOut2

TTOFF TTON

hTabletopOn

hTabletopOff

hStopTabletop hMove

Inputs: {hTabletopOn, hTabletopOff }

(c) HStopTabletop

CLUTCHOFF
HSTOPCON

HMOVING

hClutchOn

hClutchOff

hMove

hStopped

hClutchOff hMove

Inputs: {hClutchOn, hStopped}

(d) HClutchMove

TTROFF
TTRON

hTTROn

hTTROff

hMove
hClutch hStopTTR

Inputs: {hTTROn, hTTROff }

(e) HStopTTR

CLUTCHOFF CLUTCHON
hClutchOff

hClutchOn

(f) HClutchSequence

HORSTOPPED
HORMOVEINHORMOVEOUT

HORSTOPPING

hS
top

hMoveInhMoveOut

hStop

hS
to

pp
ed

hMoveOut

hMoveIn

(g) HMotorSequence

Figure 13: Model HReq: horizontal control requirements

15 Formal models

NORMAL

normal

Figure 14: Model HVNormal: control modes

4.3 Horizontal and vertical axis interaction

There is no physical interaction between the transducers of the horizontal and vertical axis.
However, the tabletop might collide with the magnet, when moving inward if the table is not
maximally up, or the table might be damaged, when moving downward if it is not maximally
out. These situations must be prevented. Therefore, either the maximally out sensor or the
maximally up sensor must be on, unless the TTR switch is on. If the TTR switch is on, the
table can be moved freely by the operator. In this case, the control system cannot prevent the
situation in which both sensors are off.

4.3.1 Plant model (HVNormal)

In Figure 14 the internal event normal is introduced. This event is used to distinguish two
control modes in the requirements, namely, 1) control after TTR is activated, and 2) control
after the normal event has occurred.

4.3.2 Control requirements (HVReq)

The control requirements for horizontal and vertical interaction are defined by the synchroniz-
ing parallel composition of two models:

HVReq , HVMove ‖ HVSafe

Movement restrictions (HVMove) Initially the system is in the state RESTRICTED, see Fig-
ure 15a. In this state, the table may not move horizontally inwards (hMoveIn), and all vertical
movements (vMove) are disabled. After the event normal, the system enters the state NORMAL,
in which all movement events are allowed. After occurrence of the event hTTROn, the system
enters the state RESTRICTED again.

Normal operation (HVSafe) The system can switch to normal operation if it can be ensured
that the system stays either maximally out, or maximally up, see Figure 15b. Normal mode
is represented by the states VHN, VHN and VHN. In these states it is ensured that the
table remains either maximally out or maximally up. The letters V, H and N represent the
states vertically maximally up, horizontally maximally out, and normal, respectively. The hat
represents negation, e.g. V represents not vertically maximally up. After an event hTTROn,
any horizontal or vertical position can be reached (corresponding to the states VHN, VHN, VHN

and VHN).

Notice that in Figure 15b state VHN is not present. The control requirement forbids that this
state is reached. Therefore, all events leading to this state are disabled in the requirement
model. The controller synthesis algorithm ensures that this requirement is met by disabling
only controllable events. For instance, in normal mode when the table is not maximally up,
the supervisor will ensure that the clutch is enabled and horizontal movement is prohibited.

16

NORMAL RESTRICTED
normal

hTTROn

vStopTTR
vMove

hMoveIn

Inputs: {hTTROn}

(a) HVMove

VHN

VHN

VHN

VHN

VHN

VHN

VHN

vU
pO

n

vU
pO

ff

hOutOff

hOutOn

vU
pO

n

vU
pO

ff

hOutOff

hOutOn

hOutOff

hOutOn

vU
pO

n

vU
pO

ff

hTTROn

hTTROn

hTTROn

normal

normal

normal

normal

normal

normal

vUpOff

hOutOff

vUpOff

hOutOff

vUpOff
hOutOff

Inputs: {vUpOn, hOutOn, hTTROn}

(b) HVSafe

Figure 15: Model HVReq: horizontal and vertical restrictions

17 Formal models

TUMBNEUTRAL
TUMBUPTUMBDOWN

uTumbleUp

uTumbleNeutraluTumbleDown

uTumbleNeutral

(a) UITumbleSwitch

MANUAL

uManualPushed
uManualTimeout

(b) UIManualBut-
ton

MANUALLED

mLedOn
mLedOff

mLedBlinkFast
mLedBlinkSlow

(c) UIManualLED

Figure 16: Model UI: user interface

4.4 User interface

The user can control the system by means of a button and a tumble switch. When the button
is pushed, the clutch is released (applied) to switch the table to manual mode (motorized
mode). Therefore, this button is called the “manual button”. In the motorized mode, the
position of the tumble switch determines the movement of the table. A LED is used to indicate
whether the system is in the manual mode or in the motorized operation mode. Note that in
manual mode, the supervisor can still prevent the table from performing operations requested
by the user, such as moving the table motorized.

4.4.1 Plant model (UI)

The user interface only contains actuators. The button and switch generate uncontrollable
actuator events. The plant model of the user interface model consists of the synchronous
parallel compositions of the actuators:

UI , UITumbleSwitch ‖ UIManualButton ‖ UIManualLED

Tumble switch (UITumbleSwitch) The tumble switch can either be in the position up, down,
or neutral, see Figure 16a. When released, the switch returns to the neutral state, as a result
of its physical construction. Therefore only state NEUTRAL is marked.

Manual button (UIManualButton) When the manual button is pressed, the event uMan-
ualPushed is emitted and a timer is set. When the timer has elapsed, a timeout event is
emitted. However, when the manual button is pressed before the timer has elapsed, the event
uManualPushed is emitted again, and the timer is set again. An infinite sequence of rapid
presses of the manual button could thus lead to an infinite model. This behavior is simplified
to one state where the two events are self-looped, see Figure 16b.

LED (UIManualLED) The LED indicates manual or motorized operation mode of the system.
It can either be on, off, blinking slowly, or blinking fast. The LED is controlled by events
named accordingly, see Figure 16c.

18

4.4.2 Control requirements (UIReq)

The requirement model for the user interface consists of the parallel composition of multiple
control requirements, namely:

UIReq , UITumbleMove ‖ UIHVSwitch ‖ UIManualClutch
‖ UILedModes ‖ UILedClutch ‖ UILedSequence

Tumble move (UITumbleMove) The position of the tumble switch determines which kind of
movement of the table is allowed. When the tumble switch is up, the table is only allowed to
move up or to move horizontally into the bore. When the switch is in the down position, the
table is only allowed to move down or to move horizontally out of the bore. When the tumble
switch is in its neutral position, all movement should be stopped, see Figure 17a.

Tumble hv switch (UIHVSwitch) If the table is moving up and reaches the upper most posi-
tion, the tumble switch must return to the neutral position before movement into the bore
may begin. Similar behavior is required when moving in the opposite direction. These
requirements are modeled in Figure 17b.

Manual clutch(UIManualClutch) Pushing the manual button should trigger an event hClutchOn
or hClutchOff, if one of these events is allowed by the other requirements. If both hClutchOn
and hClutchOff are not allowed, the push event is ignored when a timeout occurs, see
Figure 17c.

LED (UILedModes, UILedClutch) The LED indicates which operation mode is active, and
whether the clutch is applied. The LED blinks if the system is in restricted mode, otherwise
the LED is on or off, see Figure 17d. If the clutch is applied, the LED is off or blinks slow, see
Figure 17e. If the clutch is released, the LED is on or it blinks fast.

Loop prevention (UILedSequence) In a way similar to other actuators, repetitions of the
events that control the LED must be prevented, see Figure 17f.

5 Generation, implementation and validation of the
control software

The model of the complete uncontrolled patient support system (which is referred to as the
plant model) is defined as the following synchronous parallel composition:

VAxis ‖ HAxis ‖ HVNormal ‖ UI

This model consists of 7.200 states and 190.920 transitions.

The model of the complete control system requirement is obtained in a similar way:

VReq ‖ HReq ‖ HVReq ‖ UIReq

This specification consists of 75.520 states and 997.448 transitions.

19 Generation, implementation and validation of the control software

TUMBNEUTRAL
TUMBUPTUMBDOWN

uTumbleUp

uTumbleNeutraluTumbleDown

uTumbleNeutral

hMoveIn
vMoveUp

hStopTumble
vStopTumble

hMoveOut
vMoveDown

Inputs: {uTumbleUp, uTumbleDown, uTumbleNeutral}

(a) UITumbleMove

NEUTRAL HORIZONTALVERTICAL

hMove

uTumbleNeutralvMove

uTumbleNeutral

hMovevMove

Inputs: {uTumbleNeutral}

(b) UIHVSwitch

NOTPUSHED PUSHED

uManualPushed

uManualTimeout

hClutch

Inputs: {uManualPushed, uManualTimeout}

(c) UIManualClutch

NORMAL RESTRICTED

hTTROn

normal

mLedOn
mLedOff

mLedBlinkFast
mLedBlinkSlow

Inputs: {hTTROn, normal }

(d) UILedModes

CLUTCHOFF CLUTCHON

hClutchOn

hClutchOff

mLedOn
mLedBlinkFast

mLedOff
mLedBlinkSlow

Inputs: {hClutchOn, hClutchOff }

(e) UILedClutch

OFF ON

BLINKSLOW BLINKFAST

mLedOn

mLedOff

mLedBlinkFast

mLedBlinkSlow

m
Le

dB
lin

kS
lo

w

m
Le

dO
ff

m
Le

dB
lin

kF
as

t

m
Le

dO
n

mLedBlinkFast

mLedOff

mLedBlinkSlow

mLedOn

(f) UILedSequence

Figure 17: Model UIReq: User interface requirements

20

From these two models, the supervisor is generated using a Python implementation of the
algorithms described in [28]. Calculation takes about a minute on a Core Duo, 2Ghz, 2Gb
computer. The resulting supervisor contains 31.128 states and 265.364 transitions.

5.1 Validation of functional correctness

Although supervisory control theory ensures that the controller satisfies the control require-
ments by construction, it remains a non-trivial task (but still easier than the development of
the supervisory controller itself) to define the correct plant and requirement models. Thus,
errors or undesired behavior may still be present in the plant models and/or requirement
models. To help validating the controlled system, in [25], a framework has been developed to
support the supervisory controller design process. It is based on the model-based engineering
paradigm, where models are the primary artifacts in the design process. The design process
used in this case study consist of the following steps:

A) Modeling of the uncontrolled plant and control requirements.

B) Synthesis of the supervisory controller using the models from step A, resulting in a
model of the supervisor.

C) Simulation (untimed) of the uncontrolled plant models from step A controlled by the
supervisor obtained in step B.

D) More detailed, e.g. timed or hybrid, modeling of the plant models.

E) Simulation (timed or hybrid) of the plant models from step C controlled by the supervisor
obtained in step B.

F) Real-time, model based simulation of the plant hardware controlled by the model of the
supervisor obtained in step B.

G) Code generation from the supervisor model obtained in step B.

H) Real-time control of the plant hardware controlled by the realization of the supervisor
obtained by step G.

The framework consists of:

• Modeling environments to support the design steps A and D.

• Transformation tools to transform:

1. The models of step A to input models of the synthesis tools used in step B, and

2. The models of steps A, B, and D to input models of the simulation tools used in
steps C and E.

• An infrastructure to couple models and realizations of components for step F.

• Code generators to generate code (step G) from the supervisor model obtained in step B.

The transformation and simulation tools are based on the Common Interchange Format
(CIF), see [4, 3], [27], [2]. Steps C, E, and H are described in more detail in the sections below.

21 Generation, implementation and validation of the control software

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12 14
-1.5

-1

-0.5

 0

 0.5

 1

 1.5

p
o

s
it
io

n

a
n
g

le

V_position(time)
H_position(time)

tumble_angle(time)

Figure 18: Simulation results S/PHY.cif .

5.2 Untimed simulation

To validate the synthesized supervisor, the state space of the model of the controlled system is
explored by hand, using user guided simulation. The model of the controlled system consists
of the synchronizing parallel composition of the plant model and the synthesized supervisor.
Note that, as a result of the used synthesis algorithms, the synthesized supervisor includes
the plant behavior. Therefore, the behavior of the supervisor is equal to the behavior of the
supervisor in parallel with the plant.

Based on different scenarios, events are chosen manually and executed. In each state, the
enabled events (both controllable and uncontrollable) are inspected. For each event it is
determined whether or not it is expected to occur in this state. If an inconsistency between
the modeler’s expectation and the synthesized supervisor occurs, it is investigated whether
there is an error in the models, or the expectation of the modeler is incorrect. In this way the
plant model and control requirements are validated.

5.3 Hybrid simulation

To validate the dynamic behavior of the plant controlled by the synthesized supervisor, the
CIF model of the supervisor is simulated together with (using synchronizing parallel com-
position) a more detailed, hybrid model of the plant and use cases. The hybrid model of the
plant is specified in the CIF, modeling both discrete-event and continuous time behavior.
Furthermore, a use case is included in the hybrid model.

Figure 18 shows the simulation results of the following use case. Initially, the table is halfway
up, and the tabletop is added at the maximally out position. The tumble switch is used to move
the table to the upper position (time = 2, tumble_angle = 1). When the table reaches the upper
position (time = 3), the table stops, and the tumble switch is released (tumble_angle = 0).
Then the table is moved inward, first slowly (time = 4, tumble_angle = 0.3), then faster
(time = 5, tumble_angle = 0.5). After that, the movement is stopped (time = 7, tumble_angle =
0). Then, the table is moved out (time = 8, tumble_angle = −1), until the table reaches
the maximally out position and it stops (time = 9). The tumble switch is released again
(time = 10, tumble_angle = 0). Finally, table is moved down (time = 11, tumble_angle = 0)
until it reaches the lowest position.

22

Patient
support

Control
Unit PC

Firewire

Figure 19: Implementation setup

5.4 Real-time implementation of the controller

Supervisory control theory assumes that the supervisor and the plant interact in a synchronous
manner. That is, the plant makes a state-transition only when the supervisor does, and vice-
versa. This synchronous interaction is also reflected in the previously described simulation
models. However, in the real-time implementation, the supervisor generates controllable
events and sends them to the plant. The details are as follows.

The sensors and actuators of the actual patient support table are connected to an industrial
grade control unit. This control unit is connected to a standard PC by means of a firewire
connection, see Figure 19. The control unit conditions the sensor signals, and takes care
of motion and I/O control. Furthermore, it translates sensor state changes to events and
it executes the high-level commands generated by the PC. On the PC, the events from the
control unit are buffered in an event queue, and handled by an event handler. After receiving
an event from the control unit, the state of the supervisor is updated. If the event queue is
empty, the set of controllable events that is allowed by the supervisor in the current state is
calculated. From this set, an event is selected non-deterministically and sent to the control
unit for execution.

Note that time passes between the occurrence of an uncontrollable event in the plant, and the
arrival of the response of the controller at the plant. More precisely: after a change of state of a
sensor, this change has to be detected by the I/O controller (sensor polling delay). Then the
I/O controller sends an event to the PC (communication delay between I/O controller and PC).
After detection of the event (event queue polling delay), the state of the supervisor is updated,
the allowed events are calculated, and an event is selected (calculation delay).

Hence, in principle, the real plant could perform a state-transition triggered by an uncontrol-
lable event, while at the same time a controllable event is underway from the supervisor to
the plant. If this happens, then the state of the supervisor will not correctly reflect the state of
the plant. However, in the setup, first all events from the event queue are processed. Then,
when the event queue is empty, an allowed controllable event is selected and sent to the I/O
controller. This ensures that all uncontrollable events that have been generated by the plant
and have been received by the controller during the calculation of the controller response, are
taken into account. Furthermore, the delay in communication between PC, the I/O controller
and the actual hardware is in the order of a few milliseconds. Therefore, when a controllable
event is sent to the I/O controller, it is unlikely that the plant generates an uncontrollable
event before the controllable event is processed.

6 Evaluation of evolvability

The goal of this section is to present the experimental results on the effect of using supervisory
control theory on evolvability of the controller. The experiment involved generating a new
controller in order to meet a user request for improved functionality. Note that for the actual
experiment, models are used which are slightly different from, but functionally equivalent to,
the models presented above.

23 Evaluation of evolvability

The original control requirements resulted in a controller such that if the table is not maximally
up and not maximally out, there is no movement of the table when the user switches the
tumble switch up. This behavior of the closed-loop system was considered to be counter-
intuitive for the user. The desired new behavior in this case was that when the tumble switch
was up, the table should first move out, and when the table had reached the maximally out
position, the table should move up (if the tumble switch is still up).

To model this requirement, the event hMoveOut is changed to denoting two different events:
hMoveOut , {hMoveOutNor, hMoveOutRest}. Furthermore, in Figure 15a, the hMove-
OutNor is added as a self-loop in state NORMAL, and event hMoveOutRest is added as a
self-loop in state RESTRICTED. Finally, in Figure 17a, the event hMoveOut is replaced by
hMoveOutNor, and the event hMoveOutRest is added to the self-loops in states TUMBLE-
DOWN and TUMBLEUP. This new requirement has been implemented on the actual patient
support table four hours after it was conceived. Implementing the same requirement using
the currently used design approach is estimated to take a week.

7 Conclusions and future work

In this paper, supervisory control theory has been used to synthesize a supervisory controller
for a patient support system of an MRI scanner. The use of supervisory control enables easy
adaptation to changing control requirements. In the case of a change, the only thing that
needs to be done manually is to formalize the new requirements. After the formalization step
is completed, the theory and tools provided by supervisory control framework allow automatic
generation of control software.

This paper presents first results on the use of SCT for improving evolvability of high-tech
systems. Much more work needs to be done to explore the scope of applicability of SCT for
this purpose. In particular, our research focuses on the following issues.

• Further case-studies More industrial case-studies are carried out in order to further
evaluate the applicability of the approach.

• Modular supervisory control The usefulness of modular supervisory control for the
system presented in the paper is investigated.

• State based requirements and models In this paper classical event-based supervisory
control theory is applied. In event-based supervisory control the control requirements are
formulated as the set of sequences which the closed-loop system is allowed to generate.
However, the actual control requirements often demand that the closed-loop system
never enters a certain state or that certain events are not generated if the closed-loop
system is in a certain state. Expressing such state-based control requirements in classical
event-based supervisory control is cumbersome. In addition, the plant model often has
a hierarchical structure, where the states of the plant consist of several components.
The presence of state-based control requirements and hierarchical structure lead us to
think that state-based supervisory control theory as defined in [19] might be more suitable
for control of certain high-tech systems. For this reason, the application of state-based
supervisory control theory to the case-study of the paper and to other case-studies is
investigated. For preliminary results, see [5].

• Initialization Classical supervisory control assumes that the plant has one initial state.
However, in practice the plant may have several possible initial states. Developing
a controller for each initial state separately is not very practical. For this reason, the

24

possibility of adapting the supervisory control synthesis procedure is investigated so
that several initial states would be allowed.

• Error behavior The plant model of this paper describes the behavior of the plant in
the absence of errors. However, error-handling is one of the most challenging control
problems for high-tech systems. Modeling and control of the error behavior of high-tech
systems gives rise to a number of research questions. One of them is how to model
the error behavior of the plant. While it is always possible to incorporate the error
behavior into the plant model, it is not at all desirable to build monolithic plant models
which attempt to incorporate all the error behavior. Rather, one would like to develop
systematic methods to add error behavior to the models in a modular way. This calls for
methods for modular modeling of error behavior. For preliminary results see [5].

• Asynchronous communication between plant and supervisor Supervisory control the-
ory assumes that the supervisor and the plant interact in a synchronous manner. That
is, the plant makes a state-transition only when the supervisor does, and vice-versa.
However, this is usually not the case, see Section 5.4. Hence, the question arises whether
the closed-loop system functions correctly, if the assumption of synchronous commu-
nication is dropped. Note that the specific features of the case-study, as explained in
Section 5.4, imply that asynchronity is not likely to cause incorrect behavior of the
closed-loop system. For other systems, this need not be the case.

Acknowledgment The authors thank Albert Hofkamp and Dennis Hendriks for their contri-
bution to the development of the software tools. The authors thank Rong Su for his help with
the theoretical aspects of SCT.

25 Conclusions and future work

26

Bibliography

[1] S. Balemi, G.J. Hoffmann, P. Gyugyi, H. Wong-Toi, and G.F. Franklin. Supervisory
control of a rapid thermal multiprocessor. Automatic Control, IEEE Transactions on,
38(7):1040–1059, 1993.

[2] D. A. van Beek, P. Collins, D. E. Nadales, J.E. Rooda, and R. R. H. Schiffelers. New
concepts in the abstract format of the compositional interchange format. In A. Giua,
C. Mahuela, M. Silva, and J. Zaytoon, editors, 3rd IFAC Conference on Analysis and Design
of Hybrid Systems, pages 250–255, Zaragoza, Spain, 2009.

[3] D. A. van Beek, M. A. Reniers, J. E. Rooda, and R. R. H. Schiffelers. Concrete syntax and
semantics of the compositional interchange format for hybrid systems. In 17th Triennial
World Congress of the International Federation of Automatic Control, pages 7979–7986,
Seoul, Korea, 2008.

[4] D. A. van Beek, M. A. Reniers, R. R. H. Schiffelers, and J. E. Rooda. Foundations of
an interchange format for hybrid systems. In Alberto Bemporad, Antonio Bicchi, and
Giorgio Butazzo, editors, Hybrid Systems: Computation and Control, 10th International
Workshop, volume 4416 of Lecture Notes in Computer Science, pages 587–600, Pisa, 2007.
Springer-Verlag.

[5] E. Bertens, R. Fabel, M. Petreczky, D.A. van Beek, and J.E. Rooda. Supervisory control
synthesis for exception handling in printers. In In Proceedings Philips Conference on
Applications of Control Technology, 2009.

[6] B. Brandin and F. Charbonnier. The supervisory control of the automated manufac-
turing system of the AIP. Proc. Fourth International Conference on Computer Integrated
Manufacturing and Automation Technology, pages 319–324, 1994.

[7] B.A. Brandin. The real-time supervisory control of an experimental manufacturing cell.
Robotics and Automation, IEEE Transactions on, 12(1):1–14, 1996.

[8] Christos G. Cassandras and Stephane Lafortune. Introduction to Discrete Event Systems.
Springer, 2nd edition, 2007.

[9] Vigyan Chandra, Zhongdong Huang, and Ratnesh Kumar. Automated control synthesis
for an assembly line using discrete event system control theory. Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 33(2):284–289, 2003.

[10] Gde.O. Costa, B. Tortelli, E.A.P. Santos, and M.A. Busetti. Design and implementation
of a low cost control system for a manufacturing cell. In Robotics, Automation and
Mechatronics, 2004 IEEE Conference on, volume 1, pages 281–286 vol.1, 2004.

[11] M.H. de Queiroz and J.E.R. Cury. Synthesis and implementation of local modular
supervisory control for a manufacturing cell. In Discrete Event Systems, 2002. Proceedings.
Sixth International Workshop on, pages 377–382, 2002.

[12] Í. Hasdemir, Salman Kurtulan, and Leyla Gören. An implementation methodology for
supervisory control theory. The International Journal of Advanced Manufacturing Technology,
36(3):373–385, March 2008.

[13] A. Hellgren, M. Fabian, and B. Lennartson. Modular implementation of discrete event
systems as sequential function charts applied to an assembly cell. In Control Applications,
2001. (CCA ’01). Proceedings of the 2001 IEEE International Conference on, pages 453–458,
2001.

[14] Sangkyun Kim, Jinwoo Park, and Robert C. Leachman. A supervisory control approach
for execution control of an FMC. International Journal of Flexible Manufacturing Systems,
13(1):5–31, February 2001.

27

[15] J. Kosecka and L. Bogoni. Application of discrete events systems for modeling and
controlling robotic agents. In Robotics and Automation, 1994. Proceedings., 1994 IEEE
International Conference on, pages 2557–2562 vol.3, 1994.

[16] S.C. Lauzon, A.K.L. Ma, J.K. Mills, and B. Benhabib. Application of discrete-event-system
theory to flexible manufacturing. Control Systems Magazine, IEEE, 16(1):41–48, 1996.

[17] R.J. Leduc and W.M. Wonham. Discrete event systems modeling and control of a
manufacturing testbed. In Electrical and Computer Engineering, 1995. Canadian Conference
on, volume 2, pages 793–796 vol.2, 1995.

[18] Jing Liu and Houshang Darabi. Ramadge-Wonham supervisory control of mobile robots:
lessons from practice. In Robotics and Automation, 2002. Proceedings. ICRA ’02. IEEE
International Conference on, volume 1, pages 670–675, 2002.

[19] C. Ma and W. M. Wonham. Nonblocking supervisory control of state tree structures, volume 51
of IEEE Transactions on Automatic Control. IEEE, 2006.

[20] M. Moniruzzaman and P. Gohari. Implementing supervisory control maps with PLC. In
American Control Conference, 2007. ACC ’07, pages 3594–3599, 2007.

[21] M. Noorbakhsh and A. Afzalian. Design and PLC based implementation of supervisory
control for under-load tap-changing transformers. In Control, Automation and Systems,
2007. ICCAS ’07. International Conference on, pages 901–906, 2007.

[22] M. Nourelfath and E. Niel. Modular supervisory control of an experimental automated
manufacturing system. Control Engineering Practice, 12(2):205–216, February 2004.

[23] Jean-Fran cois Pétin, David Gouyon, and Gérard Morel. Supervisory synthesis for product-
driven automation and its application to a flexible assembly cell. Control Engineering
Practice, 15(5):595–614, May 2007.

[24] E.A. Santos, M.A. Busetti, and A.D. Vieira. Control synthesis and implementation for
an integrated manufacturing system based on supervisory control theory. In Control
Applications, 2006. CCA ’06. IEEE International Conference on, pages 1885–1890, 2006.

[25] R. R. H. Schiffelers, R. J. M. Theunissen, D. A. van Beek, and J. E. Rooda. Model-based
engineering of supervisory controllers using CIF. Electronic Communications of the EASST,
21:1–10, 2010.

[26] Kiam Tian Seow and M. Pasquier. Supervising passenger land-transport systems. Intelli-
gent Transportation Systems, IEEE Transactions on, 5(3):165–176, 2004.

[27] C. Sonntag, R. R. H. Schiffelers, D. A. van Beek, J. E. Rooda, and S. Engell. Modeling and
simulation using the Compositional Interchange Format for hybrid systems. In I. Troch
and F. Breitenecker, editors, 6th International Conference on Mathematical Modelling,
Vienna, Austria, 2009.

[28] R. Su, J.H. van Schuppen, and J.E. Rooda. Aggregative synthesis of distributed super-
visors based on automaton abstraction. Automatic Control, IEEE Transactions on, page
accepted, 2009. It also appears in SE Technical Report No. 2009-1, Systems Engineering
Group, Department of Mechanical Engineering, Eindhoven University of Techonology,
Eindhoven, The Netherlands, 2009. ISSN 1567-1872. URL: http://se.wtb.tue.nl/sereports.

[29] R. J. M. Theunissen, R. R. H. Schiffelers, D. A. van Beek, and J. E. Rooda. Supervisory
control synthesis for a patient support system. SE Report 2008 – 08, Eindhoven Univer-
sity of Technology, Systems Engineering Group, Department of Mechanical Engineering,
Eindhoven, The Netherlands, 2008.

28 Bibliography

[30] R. J. M. Theunissen, R. R. H. Schiffelers, D. A. van Beek, and J. E. Rooda. Supervisory
control synthesis for a patient support system. In Proceedings of the European control
conference, Budapest, Hungary, 2009.

[31] W.M. Wonham. Supervisory control of discrete-event systems. Dept. Elect. Comput. Eng.,
Univ. Toronto, Toronto, ON, Canada, 2007.

29

