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The fundamental mechanisms underlying swimming at the micro-scale have important consequences on bi-
ological systems or the fabrication of micro-fluidic devices. In this analytical work we demonstrate that a
mechanical bead-spring micro-swimmer can undergo two regimes of swimming, where the swimming velocity
decreases or counter-intuitively increases with the viscosity. We show that it is the elasticity of a mechanical
micro-swimmer which dictates this crucial phenomenon. Furthermore, it is generally ignored in the literature
that naturally occurring swimmers are often flexible. To model this phenomenon, we allow the beads of our
micro-swimmer to be weakly deformable and show that such flexibility also leads to a positive or negative
impact on the propulsion of the swimmers.

PACS numbers: 47.63.Gd, 47.63.mh, 87.85.Tu

The study of micro-swimmer motion has gained a lot of
impetus recently, driven in equal measure by advances in ex-
perimental technology [1–12], numerical methods [13–17],
and theoretical modelling [18–24]. The increased analy-
sis has served to highlight the dazzling variety of ways in
which nature accomplishes the difficult task of achieving non-
reversibility of motion in spite of sparsity of material [25].
These greatly varied natural swimming mechanisms are nev-
ertheless mostly mechanical, in that the motion is driven by
different parts of the swimmer body moving in coordinated
yet asymmetric ways, leading to a corresponding asymmetry
in the surrounding flow field. For artificial swimmers, on the
other hand, chemically-driven mechanisms are as popular as
mechanical ones [26–32].

Physically, it is clear that the body deformations in mechan-
ical swimmers, which consist of rotation and translation of
different surface elements leading to the contraction and ex-
pansion of different body parts, can be modelled as elastic
degrees of freedom. For instance, the numerical modelling
of cilia and flagella, two of the most common swimming ap-
pendages in natural micro-swimmers, has been successfully
based on replacing them with linear arrangements of tiny links
with elastic forces including bending and stretching at the
joints [14, 33]. Other motions, such as peristalsis in Euglena,
are more properly modelled as tubes with elastic deformations
running down them [34]. Therefore, elasticity may be said to
be the fundamental property enabling motility in many natural
and artificial swimmers.

Motivated by this, we here discuss the general effects of
elasticity in micro-swimming, a task that has not been at-
tempted so far. Our investigations lead to the remarkable re-
sult that there are two viscosity-dependent regimes in micro-
swimming, where the velocity is promoted or suppressed by
an increase in the fluid viscosity, depending on the swimmer
elasticity. This may help to explain why some swimmers can
speed up in more viscous fluids [35–38]. In addition, we

FIG. 1. (Color online) A three-bead swimmer with rigid or de-
formable beads.

investigate whether more efficient swimming motion results
from rigid construction material–apart from the elastic driving
component–or deformable material. We show that the answer
again hinges on the precise value of the swimmer’s elasticity.

We base our model swimmer on the popular three-sphere
design [39, 40], which is widely accepted in the community
as being ideal for elucidating the general principles of micro-
swimming. In our model, however, we use three beads of
variable flexibility that are connected by two harmonic springs
of arbitrary stiffness. We also stipulate the forces driving the
swimming motion, allowing the swimming stroke to respond
dynamically to the forces instead of being pre-assumed as in
the originating paper [39]. Apart from being arguably more ab
initio, this approach has the important advantage of allowing
us to evaluate separately the effect upon the swimming of the
different forces, namely the spring forces, the driving forces
and the hydrodynamic forces, which is crucial to our study.

We assume the driving forces to be sinusoidal, given by

Fd
1(t) = Asin(ωt) ẑ; Fd

2(t) =−Fd
1(t)−Fd

3(t);

Fd
3(t) = Bsin(ωt +α) ẑ, with α ∈ [−π,π]. (1)

Here A and B are non-negative amplitudes of the time-
dependent driving forces Fd

1(t) and Fd
3(t) applied along the
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ẑ-direction to the outer beads at the frequency ω and with the
phase difference α . The force Fd

2(t) on the middle bead is set
by the condition for autonomous propulsion, which requires
the net driving force on the device to vanish at all times. Each
spring, aligned along ẑ, has a stiffness constant k and a rest
length l (Fig. 1), with l much larger than the bead dimensions.

As micro-swimming typically takes place in the Stokes
regime, the fluid is assumed to be governed by the Stokes
equation η∇2u(r, t)−∇p(r, t) + f(r, t) = 0 and the incom-
pressibility condition ∇ ·u = 0. Here η is the dynamic viscos-
ity of the fluid moving with a velocity u(r, t) under a pressure
p(r, t) at the point r at time t. The force density f(r, t) acting
on the fluid is given by

f(r, t) =
3

∑
i=1

[
Fd

i (t)+Fs
i (t)
]

δ (r−Ri(t)) , (2)

where the index i = 1,2,3 denotes the i-th bead placed at the
position Ri(t) subject to a driving force Fd

i (t) and a spring
force Fs

i (t) (which, for the middle bead, results from two
springs). Assuming no slip at the fluid-bead interfaces, the
instantaneous velocity vi(t) of each bead [41] is given by

vi =
dRi

dt
=
(
Fd

i +Fs
i
)

γ
−1 +

3

∑
j 6=i

T(Ri−R j) ·
(
Fd

i +Fs
i
)
, (3)

with γ being the Stokes drag coefficient [42, 43] and T(r) the
Oseen tensor [44, 45]. The latter is here diagonal, due to the
collinear nature of the driving forces and the employed far-
field approximation (bead dimensions much smaller than l).

We define a ‘reduced drag coefficient’ of the beads, λ =
γ/(6πη), and an ‘effective elastic parameter’, ψ = k/(πωλ ).
The far field approximation translates to λ � l. As discussed
in Ref. [46], the steady state bead positions can be written as

Ri(t) = Si0 +ξξξ i(t)+vt (4)

due to the sinusoidal nature of the forces. Here ξξξ i(t) denotes
small sinusoidal oscillations around the equilibrium configu-
ration Si0 of the device. Si0 moves with a uniform swimming
velocity v, obtained by integrating τ−1[∑3

i=1(vi/3)] over the
time period τ of one cycle.

Rigid beads.—Eqs. (3) and (4) lead to differential equations
in the ξξξ i’s ([46]), which we solve under the assumption of
small oscillations, i.e. |ξξξ i(t)|� l for all i and all times t. Since
the forces and the displacements are all sinusoidal, the first-
order terms in the perturbation variable ξξξ i(t) turn out to be
zero. The velocity expression for swimmers with rigid beads,
accurate to the second order in ξξξ i, is

vr =
7
[
AB
(
ψ2 +12η2

)
sinα +2

(
A2−B2

)
ψη
]

24λ l3π2ω (ψ2 +4η2)(ψ2 +36η2)
ẑ. (5)

The model allows one to include beads of any shape whose
friction coefficient λ is known. In the appropriate limits
(λ � l and |ξξξ i(t)| � l), Eq. (5) can actually be cast in a
stroke-centric form, v = Gd1d2ω sinβ ẑ, where G is a geomet-
ric factor, d1 and d2 are the amplitudes of the oscillations of

the swimmer’s arms, and β gives the phase difference between
the two [40]. In our approach, d1, d2 and β emerge as explicit
functions of the different driving and swimmer parameters.

While the natural expectation is for the velocity vr to de-
crease with the viscosity η (‘conventional’ regime), Eq. (5)
leads to the remarkable result that vr is a non-monotonic func-
tion of η (Fig. 2 (a), (b)). As such, together with the conven-
tional regime, there is an ‘aberrant’ regime where vr increases
with η . Interestingly, the change between these regimes,
marked by an appearance of extrema in the velocity-viscosity
curves, is concurrent with a change in the pusher or puller na-
ture of the swimmer, determined by the relation(

B
A
− A

B

)−1

sinα ≷
2ψη

ψ2 +12η2 . (6)

When the left hand side of relation (6) is larger (smaller),
then the swimmer moves in the direction of the bead with the
higher (lower) force amplitude, and the swimmer is conse-
quently a puller (pusher). These intrinsic phenomena are a
consequence of the interplay of the drag forces on the swim-
mer and its elastic degrees of freedom.

For a three-bead swimmer of a fixed elastic parameter ψ

and varying viscosity η , it can be shown that if the driving
parameters satisfy the relation (A− B)/sinα > 0, then the
swimmer is a pusher and the velocity vr as a function of η

has exactly one extremum (Fig. 2(a)). This maximum di-
vides the conventional regime (shaded in yellow in Fig. 2(a))
and the aberrant regime (dark green), the latter being con-
fined to a region asymptotically bounded by the lines η =

ψ/(2
√

5+2
√

13) and vr = vr|A=B
.

If (A−B)/sinα < 0, then the velocity has zero or several
(2 or 4) local extrema (Fig. 2(b)). In the former case the swim-
mer is in the conventional regime for all values of the viscos-
ity and is always a puller (yellow dashed curve in Fig. 2(b)).
However, if B > A(1 + 6sin2

α + 2sinα

√
3+9sin2

α)1/2,
then a swimmer with a fixed elastic parameter becomes aber-
rant for an intermediate range of viscosities (solid yellow-
green curve in Fig. 2(b)) and can be a pusher.

We summarize these results showing the conventional and
the aberrant regimes in phase diagrams (Fig. 2(c), yellow and
green regions, respectively) which are constructed for a fixed
value of the viscosity η and increasing values of the effective
elastic parameter ψ . We find that when swimmers change be-
tween these regimes, their pusher or puller nature (shown in
pink and blue, respectively) also usually changes. At small
ψ values, pullers are aberrant, except in a small region at the
boundary of pushers and pullers where they are conventional.
For pushers, if (A−B)/sinα < 0 then the swimming is con-
ventional, otherwise it is aberrant. This holds true until the
critical value ψc = 2

√
5+2

√
13η . When ψ increases be-

yond ψc, then all pullers become aberrant, as do all pushers for
which (A−B)/sinα < 0. If this latter relation does not hold,
then pushers may be conventional or aberrant. Ultimately, at
large values of the elastic parameter ψ , the conventional and
the aberrant regimes each occupy half of the phase space.
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FIG. 2. (Color online) For swimmers with rigid beads. (a) Velocity
vs. viscosity curves for different values of A/B (ranging from 1 to
105), with A > B and sinα = 1. The large dots mark the maxima.
(b) Velocity vs. viscosity curves with A < B and sinα = 1. The
value of A/B for the two curves is 0.05 and 0.91. (c) Phase diagrams
for different values of the forcing parameters α , A and B, as well
as the corresponding puller or pusher nature of the swimmer. The
value of η is kept fixed at 1.0, and ψ is varied between the different
plots. The critical elastic parameter value ψc is 6.99. Note that the
phase diagrams do not depend on the particular value of η used, as
the η values where the velocity has extrema are proportional to ψ .
Therefore, for any other viscosity value, one only needs to change
the ψ values by the same factor to obtain the same phase diagrams.

Swimmers with flexible beads.–The harmonic springs con-
sidered so far may represent any elastic degrees of freedom
that affect the motion of neighboring body parts. However, it
is possible for a particular structural element in a swimmer to
possess flexibility that in the absence of the surrounding fluid
do not affect the other degrees of freedom. Such elements
clearly contribute to self-propulsion as evidenced by a two-
bead assembly, which is able to swim only if the bead shapes
are allowed to change [21]. However, it remains to be clarified
under which conditions flexibility promotes or hinders swim-
ming. To address this question we allow each bead to undergo
small but arbitrary fluctuations around an average shape. The
instantaneous effective drag coefficient λi(t) can be expressed
in a Fourier series in ωt,

λi(t) = ai +
∞

∑
n=1

bn
i sin(nωt +φ

n
i ) , i = 1,2,3. (7)

FIG. 3. (Color online) Velocity vs. effective elastic parameter for
swimmers with flexible beads. The light yellow and violet colors
mark regions where the velocity increases and decreases with the
bead flexibility b, respectively. The solid green curve is for a swim-
mer with rigid beads.

Here ai is the effective drag coefficient of the mean shape,
and bn

i and φ n
i are the amplitude and the phase shift of the

contribution from the n-th frequency mode. The oscillations
of the effective drag coefficient are supposed to be weak and
of no bigger order than the oscillations ξi(t) of the arm lengths
(bn

i � a j � lk and bn
i . |ξξξ j| � lk, for all i, j,k,n). This as-

sumption ignores the agitation of the fluid due purely to the
shape deformations, and the change in a bead’s radius only
affects its own motion, not that of the other beads.

The bead flexibility makes the full drag coefficient γ in
Eq. (3) time-dependent. We can still solve Eqs. (3) and (4),
to the first order in b j

i /ak and the second order in ξξξ i, by ig-
noring terms of the form b j

i ξξξ
2
k , since bn

i . |ξξξ j| by assumption.
Due to the coupling of each mode with sinusoidal forces and
bead displacements in the integral equations of motion, and
the orthogonality of sine functions, we find that only the fre-
quency mode in the Fourier series expansion that matches the
driving force frequency (n = 1) contributes to the swimmer
velocity. Consequently, the velocity of a swimmer with de-
formable bodies adopts the form

vdef = vr +
3

∑
i=1

mib1
i . (8)

Here the coefficients mi do not contain the shape deformation
amplitudes b1

j and may be positive or negative. The full ve-
locity expression is in the Supplemental Material (S.M.) in the
form of a Mathematica file. The difference between the rigid
bead and the flexible bead cases is highlighted with symmet-
ric driving (A = B and α = 0), where vr = 0 but vdef 6= 0. If
mi is positive (negative), then clearly the velocity increases
(decreases) with b1

i . If the net effect of these terms is positive,
then the swimmer is in the ‘flexibility-enhanced’ regime of
self-propulsion, otherwise in the ‘flexibility-reduced’ regime .

We identify these two regimes for the special case of a
swimmer with b1

i = b and ai = a, for i = 1,2,3. Then one
can show that there are up to three critical values of the effec-
tive elastic parameter ψflex

i (see S.M. for Mathematica files)
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FIG. 4. (Color online) (a) Phase diagrams for swimmers with flexible
beads, for different values of the forcing parameters α , A and B. The
value of η is kept fixed at 1.0, and ψ is varied between the different
plots. ψc is 6.99. The bead flexibility b/a is 10−3, and the phase
shifts in the shape deformation of the three beads are φ 1

1 = π/3, φ 1
2 =

π/7 and φ 1
3 = π/1.8. (b) Two of the plots from part (a) when φ 1

2 is
increased tenfold to 10π/7.

that separate regions of flexibility-enhanced (dvr/db > 0) and
flexibility-reduced (dvr/db < 0) regimes, as shown in Fig. 3.
Since one of the ψflex

i ’s is always real and positive, both
regimes exist for every choice of the effective elastic param-
eter ψ . Knowledge of ψ , therefore, is sufficient to determine
how the swimmer velocity would change with a change in the
bead flexibility, no matter what the value of this flexibility is.

Finally, we can investigate the effect of the bead flexibility
together with the swimmer’s response to changes in the vis-
cosity. Since both of these effects are sensitive to the effective
elastic parameter of the swimmer, we construct a set of phase
diagrams (Fig. 4) analogous to those shown in Fig. 2(c). Here
the flexibility b/a as well as the viscosity η are kept fixed.
The diagrams show that flexibility changes the position of the
phase boundaries between the aberrant and the conventional
regimes. For ψ � ψc the region occupied by the aberrant
regime (whether flexibility-reduced or enhanced) decreases in
area when compared to the rigid bead case. In contrast, for
ψ � ψc the conventional regime decreases in area. Close to
ψ = ψc either of the two regimes may gain in area on making
the beads more flexible. The precise boundaries between the
regimes depend greatly on the precise values of the flexibil-
ity b/a as well as the shape deformation phase differences φ 1

i
(compare parts (a) and (b) in Fig. 4, where φ 1

2 is different by
a factor of 10).

Conclusion.—By using a simple model that allows analyti-
cal treatment, we have studied the effect of elasticity on micro-

swimming. Contrary to conventionally expected behavior, we
have discovered a swimming regime where the velocity in-
creases as a function of the fluid viscosity, in addition to the
more commonly encountered regime where it decreases. This
is a consequence of the ways in which the swimmer elasticity,
the fluid viscosity and the drag force on the swimmer couple,
and may provide a purely physical explanation of why some
natural swimmers swim more efficiently in more viscous flu-
ids. Furthermore, we have discovered that flexible degrees of
freedom which are not involved in the swimming mechanism
can also either enhance or counteract the motion, with their ef-
fect again being dependent on the swimmer’s dominant elas-
ticity. Our study not only provides new insight into the role
of elastic degrees of freedom in micro-swimming, which are
nearly ubiquitous, but also gives pointers for the construction
of more efficient practical realizations of a micro-swimmer.
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