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a b s t r a c t

This paper considers receding horizon control of finite deterministic systems, which must satisfy a high
level, rich specification expressed as a linear temporal logic formula. Under the assumption that time-
varying rewards are associated with states of the system and these rewards can be observed in real-time,
the control objective is tomaximize the collected rewardwhile satisfying the high level task specification.
In order to properly react to the changing rewards, a controller synthesis framework inspired by model
predictive control is proposed, where the rewards are locally optimized at each time-step over a finite
horizon, and the optimal control computed for the current time-step is applied. By enforcing appropriate
constraints, the infinite trajectory produced by the controller is guaranteed to satisfy the desired temporal
logic formula. Simulation results demonstrate the effectiveness of the approach.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

This paper considers the problem of controlling a determinis-
tic discrete-time system with a finite state-space, which is also
referred to as a finite transition system. Such systems can be ef-
fectively used to capture behaviors of more complex dynamical
systems, and as a result, greatly reduce the complexity of control
design. A finite transition system can be constructed from a con-
tinuous system via an ‘‘abstraction’’ process. For example, for an
autonomous robotic vehicle moving in an environment, the mo-
tion of the vehicle can be abstracted to a finite system through
a partition of the environment. The set of states can be seen as
a set of labels for the regions in the partition, and each transi-
tion corresponds to a controller driving the vehicle between two
adjacent regions. By partitioning the environment into simpli-
cial or rectangular regions, continuous feedback controllers that
drive a robotic system from any point inside a region to a de-
sired facet of an adjacent region have been developed for linear
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(Kloetzer & Belta, 2008a), multi-affine (Habets, Collins, & van
Schuppen, 2006), piecewise-affine (Desai, Ostrowski, & Kumar,
1998; Habets, Kloetzer, & Belta, 2006; Wongpiromsarn, Topcu, &
Murray, 2009), and non-holonomic (unicycle) (Belta, Isler, & Pap-
pas, 2005; Lindemann, Hussein, & LaValle, 2007) dynamical mod-
els. By relating the initial continuous dynamical system and the
abstract discrete finite system through simulation or bisimula-
tion relations (Milner, 1989), the abstraction process allows one
to replace the original more complex continuous system with the
‘‘equivalent’’ abstract system when solving a control synthesis
problem.

Due to their expressivity and resemblance to natural language,
temporal logics (Clarke, Peled, & Grumberg, 1999), such as linear
temporal logic (LTL) and computation tree logic (CTL), have been
proposed by several authors (Karaman & Frazzoli, 2009; Kloetzer
& Belta, 2008a; Kress-Gazit, Fainekos, & Pappas, 2007; Loizou &
Kyriakopoulos, 2004;Wongpiromsarn et al., 2009) as specification
languages for control problems. In particular, LTL formulas can be
used to specify persistent surveillance missions such as ‘‘pick up
items at the region pickup, and then drop them off at the region
dropoff, infinitely often, while always avoiding unsafe regions’’.
Model checking techniques (Clarke et al., 1999) and temporal
logic games (Piterman, Pnueli, & Saar, 2006) can be adapted to
derive algorithms for controlling finite systems from temporal
logic specifications (Karaman & Frazzoli, 2009; Kloetzer & Belta,
2008a; Kress-Gazit et al., 2007; Loizou & Kyriakopoulos, 2004;
Wongpiromsarn et al., 2009).

While the works mentioned above address the temporal logic
controller synthesis problem, several questions remain to be
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answered. In particular, the problem of combining temporal logic
controller synthesis with optimality with respect to a suitable cost
function is not well understood. In Kloetzer and Belta (2008a),
the authors considered a simple cost function that penalized the
combined cost of the prefix and suffix of an infinite run satisfying
an LTL formula. This idea was extended in Smith, Tůmová, Belta,
and Rus (2011), where the goal was to minimize the maximum
distance in between successful satisfactions of a given proposition,
while satisfying an LTL specification.

This problem becomes even more difficult if the optimiza-
tion problem depends on time-varying parameters, e.g., dynamic
events that occur during the operation of the plant. For traditional
control problems (without temporal logic constraints) and dynam-
ical systems, this problem can be effectively addressed using a
model predictive control (MPC) paradigm (see e.g., Rawlings &
Mayne, 2009), which has reached a mature level in both academia
and industry, with many successful implementations. The basic
MPC setup consists of the following sequence of steps: at each time
instant, a cost function of the current state is optimized over a fi-
nite horizon, only the first element of the optimal finite sequence of
controls is applied, and the whole process is repeated at the next
time instant for the new measured state. For this reason, MPC is
also referred to as receding horizon control. Since the finite hori-
zon optimization problem is solved repeatedly at each time in-
stant, real-time dynamical events can be effectivelymanaged.MPC
has already been applied successfully to hybrid dynamical systems
with mixed continuous and discrete dynamics, see, for example,
Bemporad and Morari (1999), Di Cairano, Lazar, Bemporad, and
Heemels (2008) and the references therein.

However, it is not yet understood how to combine a receding
horizon control approach with a control strategy satisfying a
temporal logic formula. The aim of this paper is to address this
issue for a relevant class of systems (i.e., deterministic system
with a finite state-space) and problem formulation (i.e., dynamic
optimization of rewards). Specifically, the role of the receding
horizon controller is to maximize over a finite horizon the
accumulated rewards associated with states of the system, under
the assumption that the rewards change dynamically with time
and they can only be locally observed in real-time. Note that this
event-triggered reward process is widely used in the coverage
control literature (Li & Cassandras, 2006). The key challenge is
to ensure correctness of the produced infinite trajectory and
recursive feasibility of the optimization problem solved at each
time step. In a constrained MPC optimization problem, which is
solved recursively on-line, recursive feasibility means that the
problem has a solution for all times if it has a solution for
the initial state at the initial time. In this paper, we propose a
control strategy that satisfies both properties for deterministic
transition systems and full LTL specifications. Similar to standard
MPC, where certain terminal constraints must be enforced in the
optimization problem in order to guarantee certain properties for
the system (e.g., stability), correctness and recursive feasibility are
also ensured via a set of suitable constraints.

This work is a combination and generalization of the results
presented in Chu Ding, Belta, and Cassandras (2010) and Chu Ding,
Lazar, and Belta (2012). In Ding et al. (2010), an optimization
based controller was designed, which consisted of repeatedly
solving a finite horizon optimal control problem every N steps
and implementing the complete sequence of control actions. Its
main drawback came from the inability of reacting to dynamical
events (i.e., rewards) triggered during the execution of the finite
trajectory. In Ding et al. (2012), we removed this limitation by
attaining a truly receding horizon controller for deterministic
systems with finite state-spaces. In the current paper, we extend
upon (Ding et al., 2012) by allowing a more general cost function,
and provide full proofs and complexity analysis as they were
omitted in the preliminary works (Ding et al., 2010, 2012).
This work is also related toWongpiromsarn et al. (2009), where
a provably correct control strategy was incrementally obtained
by dividing the control synthesis problem into smaller sub-
problems in a receding horizon-like manner. The specifications
were restricted to a fragment of LTL, called GR(1) (Piterman et al.,
2006), which allowed for the definition of a partial order over
satisfying runs. By defining a Lyapunov-like energy function that
enforces the acceptance condition of an automaton, we are able to
provide a complete solution for full LTL, while at the same time
guaranteeing local optimality. To the best of our knowledge, this
is one of the first attempts to combine temporal logic controller
synthesis with local optimization techniques so that the controller
reacts to environmental changes during its operation.

The remainder of the paper is organized as follows. The problem
formulation and the main ingredients of the proposed approach
are included in Section 2. In Section 3 we formulate the energy
function that will be used in defining the terminal cost of the
MPC optimization problem. The proposed receding horizon control
framework and the main results are presented in Section 4. An
illustrative case study is included in Section 5. Conclusions are
summarized in Section 6.

2. Problem formulation and approach

In this paper, we consider a dynamical system that evolves on a
finite graph by deterministically choosing an available edge at the
current state. Such a system can be described by a finite determin-
istic transition system, which can be formally defined as follows.

Definition 2.1 (Finite Deterministic Transition System). A finite
(weighted) deterministic transition system (DTS) is a tuple T =
(Q , q0, ∆, ω, Π, h), where

• Q is a finite set of states;
• q0 ∈ Q is the initial state;
• ∆ ⊆ Q × Q is the set of transitions;
• ω : ∆→ R+ is a weight function;
• Π is a set of observations; and
• h : Q → 2Π is the observation map.

For convenience of notation, we denote q→T q′ if (q, q′) ∈ ∆. We
assume T to be non-blocking, i.e., for each q ∈ Q , there exists
q′ ∈ Q such that q→T q′ (such a system is also called a Kripke
structure Browne, Clarke, & Grumberg, 1988). A trajectory of a DTS
is an infinite sequence q = q0q1 . . . , where qk ∈ Q and qk→T qk+1
for all k ≥ 0. A trajectory q generates an output trajectory o =
o0o1 . . . , where ok = h(qk) for all k ≥ 0.

Note the absence of control inputs in the definition of T . It is
assumed that a transition (q, q′) ∈ ∆ can be deterministically
chosen at q. This implies that there is a one-to-one map between
a trajectory q = q0q1q2 . . . and a sequence of transitions
(q0, q1), (q1, q2), . . . . Throughout this paper, a strategy that
specifies an available transition (q, q′) ∈ ∆ at state q at time kwill
be referred to as a control strategy, or controller.

An example of a DTS is shown in Fig. 1. States with observation
{base, survey, recharge, unsafe} are shown in large circles
with color blue, cyan, purple and black, respectively, and states
with no observation are shown as small black circles.

We employ Linear Temporal Logic (LTL) for system specifica-
tions. A detailed description of the syntax and semantics of LTL is
beyond the scope of this paper and can be found in Clarke et al.
(1999). Roughly, an LTL formula is built up from a set of atomic
propositions Π , standard Boolean operators ¬ (negation), ∨ (dis-
junction), ∧ (conjunction), and temporal operators X (next), U
(until), F (eventually), G (always). An LTL formula over Π is in-
terpreted over an (infinite) sequence o = o0o1 . . . , where ok ⊆ Π
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Fig. 1. An example of a finite DTS T (Definition 2.1) modeling the motion of a
robot in a graph-like environment. In this example, T has 100 states, which are
at the vertices of a rectangular grid with cell size 10. The weight function ω is the
Euclidean distance between vertices, and there is a transition between two vertices
if the Euclidean distance between them is less than 15. The set of observations is
Π = {base, survey, recharge, unsafe}.

for all k ≥ 0, such as the words generated by a DTS T . A word sat-
isfies an LTL formula φ if φ is true at the first position of the word;
Gφ means that φ is true at all positions of the word; Fφ means
that φ eventually becomes true in the word; φ1 Uφ2 means that
φ1 has to hold at least until φ2 is true. More expressivity can be
achieved by combining the above temporal and Boolean operators
(more examples will be given throughout the paper).

The goal of this paper is to synthesize trajectories q of T =
(Q , q0, ∆, ω, Π, h) satisfying a specification given as an LTL
formula over Π . LTL is chosen as a desirable specification due to
its rich expressivity and similarity to natural language. Examples
of specifications that can be easily translated to LTL formulas
include (1) Sequence: ‘‘first visit states satisfying a, and then states
satisfying b’’ (F (a∧F b)); (2) Coverage: ‘‘visit states satisfying a and
states satisfying b, regardless of order’’ (F a ∧ F b); (3) Persistent
surveillance: ‘‘achieve a sequence task φ infinitely many times’’
(GFφ); and (4) Safety: ‘‘achieve task φ and always avoid states
satisfying c ’’ (G¬c ∧ φ).

The system is assumed to operate in an environment with
dynamical events. In this paper, these events are modeled by a
reward process R : Q × N→ R+, i.e., the reward associated with
state q ∈ Q at time k is R(q, k). Note that rewards are associated
with states in Q in a time varying fashion. We do not make any
assumptions on the dynamics governing the rewards, butwemake
the natural assumption that, at time k, the system can only observe
the rewards in a neighborhood N (q, k) ⊆ Q of the current state q.

We are now ready to formulate the main problem:

Problem 2.2. Given a DTS T = (Q , q0, ∆, ω, Π, h) and an
LTL formula φ over Π , design a controller that maximizes the
collected reward locally, while it ensures that the produced infinite
trajectory satisfies φ.

Note that it does notmake sense tomaximize the total collected
reward over an infinite trajectory. Since the rewards are time-
varying and can only be observed around the current state,
inspiration from the area of MPC is drawn (see, e.g. Rawlings &
Mayne, 2009) with the aim of synthesizing a controller such that
the rewards are maximized in a receding horizon fashion.

The main ingredients of the MPC strategy that we propose
in this paper are as follows. At time k when the state is qk, we
generate a finite trajectory qk+1qk+2 . . . qk+N by solving an on-line
optimization problem maximizing the collected rewards over a
horizon N . The first control action (qk, qk+1) is applied, and then
the optimal trajectory is computed again at time k+1.We consider
two key properties for a receding horizon controller tailored for
LTL specifications: (1) Correctness and completeness: the controller
must generate a trajectory satisfying the given LTL formula if
one exists and (2) Recursive feasibility: if the repeatedly solved
optimization problem is feasible at initial time, then it is feasible
for all iterations.

We show that a Lyapunov-like energy function defined on the
product between the DTS and an automaton that is generated from
the LTL formula can be used to enforce both these properties. This
energy function creates ameasure of ‘‘progress’’ towards satisfying
the given formula. It will be computed off-line once, and then it
will be used on-linewith the receding horizon controller.We show
that suitable terminal constraints placed in terms of this energy
function can be used to enforce both correctness–completeness
and recursive feasibility of the proposed controllers.

Remark 2.3. DTSs form a particular class of hybrid dynamical
systems as considered in Bemporad and Morari (1999) and Di
Cairano et al. (2008). In Bemporad andMorari (1999), convergence
and recursive feasibility of the MPC strategy was guaranteed
via a terminal equality constraint. In Di Cairano et al. (2008),
asymptotic stability and recursive feasibility of the MPC strategy
was guaranteed via a set of inequality constraints involving a
hybrid control Lyapunov function. While in this paper we restrict
our attention to DTSs, as opposed to general hybrid dynamical
systems, the specifications that can be represented by LTL formulas
are much richer and more suited for surveillance applications,
compared to classical systems theory specifications, such as
convergence or asymptotic stability.

3. Energy function

In this section, we first review the definition of a Büchi
automaton corresponding to an LTL formula. We then describe the
construction of an energy function on the states of the product
between the DTS T and the Büchi automaton. We show how this
function can be used to enforce the satisfaction of the formula.

Definition 3.1 (Büchi Automaton). A (non-deterministic) Büchi
automaton is a tuple B = (SB, SB0, Σ, δ, FB), where

• SB is a finite set of states;
• SB0 ⊆ SB is the set of initial states;
• Σ is the input alphabet;
• δ : SB ×Σ → 2SB is the transition function;
• FB ⊆ S is the set of accepting states.

We denote s
σ
→Bs′ if s′ ∈ δ(s, σ ). An infinite sequence σ0σ1 . . . over

Σ generates trajectories s0s1 . . . where s0 ∈ SB0 and sk
σk
→Bsk+1 for

all k ≥ 0. B is said to accept an infinite sequence over Σ if the
sequence generates at least one trajectory of B that intersects the
set FB of accepting states infinitely many times.

For any LTL formulaφ overΠ , one can construct a Büchi automaton
with input alphabet Σ = 2Π accepting all (and only) sequences
over 2Π that satisfy φ (Clarke et al., 1999). Efficient algorithms
and implementations to translate an LTL formula over Π to a
corresponding Büchi automaton B can be found in Gastin and
Oddoux (2001).

Definition 3.2 (Weighted Product Automaton). Given a weighted
DTS T = (Q , q0, ∆, ω, Π, h) and a Büchi automaton B =

(SB, SB0, 2Π , δB, FB), their product automaton, denoted by P =
T ×B, is a tuple P = (SP , SP0, ∆P , ωP , FP ) where

• SP = Q × SB ;
• SP0 = {q0} × SB0;
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a

c

b

Fig. 2. The construction of product automaton and energy function. In this example, the set of observations is Π = {a, b}. The initial states are indicated by incoming
arrows. The accepting states are marked by double-strokes. (a): A weighted DTS T . The label atop each state indicates the set of associated observations. (i.e., {a, b}means
both a and b are observed). The labels on the transitions indicate the weights. (b): Büchi automaton B corresponding to LTL formula G (F (a ∧ F b)) obtained using the tool
LTL2BA (Gastin & Oddoux, 2001). (c): The product automaton P = T × B constructed according to Definition 3.2 (the weights are inherited from T and not shown). The
number above a state p ∈ SP is the energy function V (p). Note that in this example, the set F ⋆

P = FP , thus V (p) is the graph distance from p to any accepting states.
• ∆P ⊆ SP × SP is the set of transitions, defined by:
(q, s), (q′, s′)


∈ ∆P iff q→T q′ and s

h(q)
−→Bs′;

• ωP : ∆P → R+ is the weight function defined by:
ωP


(q, s), (q′, s′)


= ω


(q, q′)


• FP = Q × FB is the set of accepting states on P .

We denote (q, s)→P (q′, s′) if ((q, s), (q′, s′)) ∈ ∆P . A trajectory
p = (q0, s0)(q1, s1) . . . of P is an infinite sequence such that
(q0, s0) ∈ SP0 and (qk, sk)→P (qk+1, sk+1) for all k ≥ 0. Trajectory
p is called accepting if and only if it intersects FP infinitely many
times.

We define the projection γT of p onto T as simply removing the
automaton states, i.e.,

γT (p) = q = q0q1 . . . , if p = (q0, s0)(q1, s1) . . . . (1)

We also use the projection operator γT for finite trajectories
(subsequences of p). Note that a trajectory p on P is uniquely
projected to a trajectory γT (p) on T . By the construction ofP from
T and B, p is accepted if and only if q = γT (p) satisfies the LTL
formula corresponding to B (Clarke et al., 1999).

We now introduce a real positive function V on the states of
the product automaton P that uses the weights ωP to enforce the
acceptance condition of the automaton. Conceptually, this function
resembles a Lyapunov or energy function. While in Lyapunov
theory energy functions are used to enforce that the trajectories
of a dynamical system converge to an equilibrium, the proposed
‘‘energy’’ function enforces that the trajectories of T satisfy the
acceptance condition of a Büchi automaton.

Let D(pi, pj) denote the set of all finite trajectories from a state
pi ∈ SP to a state pj ∈ SP :

D(pi, pj) = {p1 . . . pn|p1 = pi, pn = pj;

pk→P pk+1 for k = 1, . . . , n− 1}, (2)

where n ≥ 2 is an arbitrary number. Note that D(pi, pj) may not
be a finite set due to possible cycles in P . We say pi reaches pj, or
pj is reachable from pi, if D(pi, pj) ≠ ∅.

Next, we define a path length function for a finite run p =
p1 . . . pn:

L(p) =

n−1
k=1

ωP (pk, pk+1). (3)

We can now define a distance function from a state p ∈ SP to
p′ ∈ SP as follows:

d(p, p′) =


min

p∈D(p,p′)
L(p) if D(p, p′) ≠ ∅

∞ if D(p, p′) = ∅.
(4)

Since ωP is a positive-valued function, we have d(p, p′) > 0 for
all p, p′ ∈ SP . We note that d(p, p′) for all p, p′ ∈ SP can be
efficiently computed by several shortest path algorithms, such as,
for example, Dijkstra’s algorithm (Papadimitriou & Steiglitz, 1998).

We say that a set A ⊆ SP is self-reachable if and only if all states
in A can reach a state in A (∀p ∈ A, ∃p′ ∈ A such thatD(p, p′) ≠ ∅).
We define F ⋆

P to be the largest self-reachable subset of FP .

Definition 3.3 (Energy Function of a State in P ). The energy
function V (p), p ∈ SP is defined as

V (p) =


min
p′∈F⋆

P

d(p, p′), if p ∉ F ⋆
P

0, if p ∈ F ⋆
P .

(5)

Clearly, V (p) ≥ 0 for all p ∈ SP , V (p) = 0 if and only if p ∈ F ⋆
P ,

and V (p) ≠ ∞ if and only if a state in the set F ⋆
P is reachable from

p. Thus, we note that V (p) represents the minimum distance from
p to the set F ⋆

P .
Fig. 2 shows an example of T , B, and their product P , as well

as the induced energy function defined on states of P . Next we
characterize some properties of V .

Theorem 3.4 (Properties of the Energy Function). V satisfies the
following:
(i) If a trajectory p on P is accepting, then it cannot contain a state

p where V (p) = ∞.
(ii) All accepting states in an accepting trajectory p are in the set F ⋆

P
and have energy equal to 0; all accepting states that are not in F ⋆

P
have energy equal to∞.

(iii) For each state p ∈ SP , if V (p) > 0 and V (p) ≠ ∞, then there
exists a state p′ with p→P p′ such that V (p′) < V (p).

Proof. The proof of claim (i) makes use of a contradiction
argument. Suppose property (i) does not hold. Then there is an
accepting state p in the trajectory p such that p ∉ F ⋆

P . By definition
of the acceptance condition of P , p intersects FP infinitely many
times, thus there must be another accepting state p′ ∈ FP which
is reachable from p. If p′ ∈ F ⋆

P , then by the definition of F ⋆
P (largest

self-reachable subset of FP ), pmust be in F ⋆
P , which contradicts our

assumption that p ∉ F ⋆
P .

For the case when p′ ∉ F ⋆
P , there must be a non-trivial strongly

connected component (SCC) consisting of at least one accepting
state (denoted as p′′) reachable from p′ (Clarke et al., 1999). All
states in a SCC can reach every other state in the SCC, and a SCC is
trivial if it consists of a single state with no self-transition. Hence,
p′′ is reachable from itself. By the definition of F ⋆

P , p′′ ∈ F ⋆
P , and

consequently p′ is in F ⋆
P , which contradicts our assumption.

(ii) follows directly from (i).
(iii) By definition of V in (5), we have p ∉ F ⋆

P and therefore there
exists one shortest finite trajectory p1p2 . . . pn where p1 = p and
pn ∈ F ⋆

P . Bellman’s Optimality Principle states that the finite run
p2 . . . pn is the shortest run starting at p2 to reach a state in F ⋆

P , and
therefore V (p) = d(p, p2)+ V (p2). Since d(p, p2) > 0, (iii) follows
with p′ := p2. �
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We see that the set F ⋆
P is crucial since it is the largest subset

of accepting states where its member can appear in an accepting
trajectory of the product automaton, and V (p) is the ‘‘distance’’
from state p to this set of states. We refer to the value of V (p) at
state p as the ‘‘energy of the state’’. From Theorem 3.4, we see that
satisfying the LTL formula is equivalent to reaching states where
V (p) = 0 for infinitely many times.

We propose Algorithm 1 to obtain the set F ⋆
P and the energy

function V . This algorithmobtains the largest self-reachable subset
of FP by construction, because it starts with the whole set FP and
prunes out one by one states that cannot reach a state in itself, until
all states in the set satisfy the definition of a self-reachable set.

Algorithm 1 Algorithm to compute V (p), given a product
automaton P = (SP , SP0, δP , ωP , FP ), for all p ∈ SP

1: Compute d(p, p′) for all p ∈ SP and p′ ∈ FP .
2: Set F ⋆

P = FP .
3: while there exist q ∈ F ⋆

P such that

min
p∈F⋆

P

d(q, p) = ∞

do
4: Remove q from F ⋆

P .
5: end while
6: Obtain V (p) using definition (5) for all p ∈ SP .

4. Design of receding horizon controllers

In this section, we present a solution to Problem 2.2. The
central component of our control design is a state-feedback
controller operating on the product automaton that optimizes
finite trajectories over a pre-determined, fixed horizon N , subject
to certain constraints. These constraints ensure that the energy
of states on the product automaton decreases in finite time, thus
guaranteeing that progress is made towards the satisfaction of the
LTL formula. Note that the proposed controller does not enforce the
energy to decrease at each time-step, but rather that it eventually
decreases. The finite trajectory returned by the receding horizon
controller is projected onto T , the controller applies the first
transition, and this process is repeated again at the next time-step.

In this section, we first describe the receding horizon controller
and show that it is feasible (a solution exists) at all time-steps
k ∈ N. Then, we present the general control algorithm and show
that it always produces (infinite) trajectories satisfying the given
LTL formula.

4.1. Receding horizon controller

In order to explain the working principle of the controller, we
first define a finite predicted trajectory on P at time k. Denote the
current state at time k as pk. A predicted trajectory of horizon N at
time k is a finite sequence pk := p1|k . . . pN|k, where pi|k ∈ SP for all
i = 1, . . . ,N, pi|k→P pi+1|k for all i = 1, . . . ,N−1 and pk→P p1|k.
Here, pi|k is a notation used frequently in MPC, which denotes the
ith state of the predicted trajectory at time k. We denote the set
P(pk,N) as the set of all finite trajectories of horizonN from a state
pk ∈ SP . Note that the finite predicted trajectory pk of P uniquely
projects to a finite trajectory qk := γT (pk) of T .

For the current state qk at time k, we denote the observed
reward at any state q ∈ Q as Rk(q), and we have that

Rk(q) =

R(q, k) if q ∈ N (qk, k)
0 otherwise. (6)

Note that R(q, k) = 0 if q ∉ N (qk, k) because the rewards outside
of the neighborhood cannot be observed. We can now define
the predicted reward associated with a predicted trajectory pk ∈

P(pk,N) at time k. The predicted reward of pk, denoted as ℜk(pk),
is simply the amount of accumulated rewards by γT (pk) of T :

ℜk(pk) =

N
i=1

Rk

γT (pi|k)


. (7)

The receding horizon controller executed at the initial state at time
k = 0 is described next. This is a special case because the initial
state ofP is not unique, and as a result we can pick any initial state
of P from the set SP0 = {q0} × SB0. We denote the controller ex-
ecuted at the initial state as RH0(SP0), and we define it as follows

p⋆
0 = RH0(SP0)

:= argmax
p0∈{P(p0,N)|V (p0)<∞}

ℜ0(p0). (8)

The controller maximizes the predicted cumulative rewards over
all possible projected trajectories over horizon N initiated from a
state p0 ∈ SP0 where the energy is finite, and returns the optimal
projected trajectory p⋆

0. The requirement that V (p0) < ∞ is crit-
ical because otherwise, the trajectory starting from p0 cannot be
accepting. If there does not exist p0 such that V (p0) <∞, then an
accepting trajectory does not exist and there is no trajectory of T
satisfying the LTL formula (i.e., Problem 2.2 has no solution).

Lemma 4.1 (Feasibility of (8)). Optimization problem (8) always has
at least one solution if there exists p0 such that V (p0) <∞.

Proof. The proof follows from the fact that T is non-blocking, and
thus the set P(p0,N) is not empty. �

Next, we present the receding horizon control algorithm for any
time instant k = 1, 2, . . . and corresponding state pk ∈ SP . This
controller is of the form

p⋆
k = RH(pk, p⋆

k−1) (9)

i.e., it depends both on the current state pk and the optimal pre-
dicted trajectory p⋆

k−1 = p⋆
1|k−1 . . . p⋆

N|k−1 obtained at the previous
time-step. Note that, by the nature of a receding horizon control
scheme, the first control of the previous predicted trajectory is al-
ways applied. Therefore, we have the following equality

pk = p⋆
1|k−1, k = 1, 2, . . . . (10)

As it will become clear in the text below, p⋆
k−1 is used to enforce

repeated executions of this controller to eventually reduce the en-
ergy of the state on P to 0.

We define controller (9) with the following three cases:

4.1.1. Case 1. V (pk) > 0 and V (p⋆
i|k−1) ≠ 0 for all i = 1, . . . ,N

In this case, the receding horizon controller is defined as
follows.

p⋆
k = RH(pk, p⋆

k−1)

:= argmax
pk∈P(pk,N)

ℜk(pk),

subject to: V (pN|k) < V (p⋆
N|k−1). (11)

The key to guarantee that the energy of the states on P eventually
decreases is the terminal constraint V (pN|k) < V (p⋆

N|k−1), i.e., the
optimal finite predicted trajectory p⋆

k must end at a statewith lower
energy than that of the previous predicted trajectory p⋆

k−1. This
terminal constraint mechanism is graphically illustrated in Fig. 3.

To verify the feasibility of the optimization problem under
this constraint, we make use of the third property of V in
Theorem 3.4. Namely, each state with positive finite energy can
make a transition to a state with strictly lower energy.
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Fig. 3. Constraints enforced for the receding horizon control law p⋆
k = RH(pk, p⋆

k−1) for Cases 1 and 2.
Lemma 4.2 (Feasibility of (11)). Optimization problem (11) always
has at least one solution if V (pk) <∞.

Proof. Given p⋆
k−1 = p⋆

1|k−1 . . . p⋆
N|k−1, since pk = p⋆

1|k−1, we
have pk→P p⋆

2|k−1. Therefore, we can construct a finite predicted
trajectory pk = p1|k . . . pN|k where pi|k = p⋆

i+1|k−1 for all i =
1, . . . ,N − 1. Using Theorem 3.4(iii), there exists a state p where
pN−1|k→P p such that V (p) < V (pN−1|k). Setting pN|k = p,
the finite trajectory pk = p1|k . . . pN|k ∈ P(pk,N) satisfies the
constraint V (pN|k) < V (p⋆

N|k−1), and therefore (11) has at least one
solution. �

4.1.2. Case 2. V (pk) > 0 and there exists i ∈ {1, . . . ,N} with
V (p⋆

i|k−1) = 0
We denote i0(p⋆

k−1) as the index of the first occurrence in p⋆
k−1

where the energy is 0, i.e., V (p⋆

i0(p⋆
k−1)|k−1

) = 0. We then propose

the following controller.

p⋆
k = RH(pk, p⋆

k−1)

:= argmax
pk∈P(pk,N)

ℜk(pk),

subject to: V (p⋆

i0(p⋆
k−1)−1|k

) = 0. (12)

Namely, this controller enforces a state in the optimal predicted
trajectory to have 0 energy if the previous predicted trajectory
contains such a state. This constraint is illustrated in Fig. 3. Note
that, if i0(p⋆

k−1) = 1, then from (10), the current state pk is such
that V (pk) = 0, and Case 2 does not apply but Case 3 (described
below) applies instead.

Lemma 4.3 (Feasibility of (12)). Optimization problem (12) always
has at least one solution if V (pk) <∞.

Proof. Given p⋆
k−1 = p⋆

1|k−1 . . . p⋆
N|k−1, since pk = p⋆

1|k−1, we
have pk→P p⋆

2|k−1. Therefore, we can construct a finite predicted
trajectory pk = p1|k . . . pN|k where pi|k = p⋆

i+1|k−1 for all i =
1, . . . ,N − 1. If we let pN|k to be any state where pN−1|k→P pN|k
and V (pN|k) < ∞, then pk = p1|k . . . pN|k ∈ P(pk,N) satisfies
the constraint. Theorem 3.4(iii) guarantees that such a state pN|k
exists. �

4.1.3. Case 3, V (pk) = 0
In this case, the terminal constraint is that the energy value of

the terminal state is finite. The controller is defined as follows.

p⋆
k = RH(pk, p⋆

k−1)

:= argmax
pk∈P(pk,N)

ℜk(pk)

subject to: V (pN|k) <∞. (13)

Lemma 4.4 (Feasibility of (13)). Optimization problem (13) always
has at least one solution.
Proof. If V (pk) = 0, then there exists p1|k such that pk→P p1|k
and V (p1|k) < ∞ (if not, then V (pk) must equal to ∞).
From Theorem 3.4(iii), we have that there exists p2|k such that
p1|k→P p2|k and V (p2|k) < V (p1|k) <∞. By induction, there exists
pk ∈ P(pk,N) such that V (pN|k) <∞. �

Remark 4.5. The proposed receding horizon control law is de-
signed using an extension of the terminal constraint approach in
model predictive control (Rawlings & Mayne, 2009) to finite de-
terministic systems. The particular setting of the Büchi acceptance
condition, combined with the energy function V , makes it possible
to obtain a non-conservative analogy of the terminal constraint ap-
proach, via either a terminal inequality condition (11) or a terminal
equality condition (12).

4.2. Control algorithm and its correctness

The overall control strategy for the transition system T is
given in Algorithm 2. After the off-line computation of the
product automaton and the energy function, the algorithm applies
the receding horizon controller RH0(SP0) at time k = 0, or
RH(pk, p⋆

k−1) at time k > 0. At each iteration of the algorithm,
the receding horizon controller returns the optimal predicted
trajectory p⋆

k . The immediate transition (pk, p⋆
1|k) is applied on P

and the corresponding transition (qk, γT (p⋆
1|k)) is applied on T .

This process is then repeated at time k+ 1.
First, we show that the receding horizon controllers used in

Algorithm 2 are always feasible. We use a recursive argument,
which shows that if the problem is feasible for the initial state, or
at time k = 0, then it remains feasible for all future time-steps
k = 1, 2, . . . .

Theorem 4.6 (Recursive Feasibility). If there exists p0 ∈ SP0 such
that V (p0) ≠ ∞, then RH0(SP0) is feasible and RH(pk, p⋆

k−1) is
feasible for all k = 1, 2, . . . .

Proof. From Lemma 4.1, RH0(SP0) is feasible. From the definition
of V (p), for all p ∈ SP , if p→P p′, then V (p′) < ∞ if and only
if V (p) < ∞. Since RH0(SP0) is feasible, we have p1 = p⋆

1|0 and
thus V (p1) < ∞. At each time k > 0, if V (pk) < ∞, from
Lemmas 4.2–4.4, we have that controller RH(pk, p⋆

k−1) is feasible.
Since pk+1 = p⋆

1|k, we have V (pk+1) <∞. Using induction we have
that RH(pk, p⋆

k−1) is feasible for all k = 1, 2, . . . . �

Finally, we show that Algorithm 2 always produces an infinite
trajectory satisfying the given LTL formula φ, giving a solution to
Problem 2.2.

Theorem 4.7 (Correctness of Algorithm 2). Assume that there exists
a satisfying run originating from q0 for a transition system T and
an LTL formula φ. Then, Algorithm 2 produces an (infinite) trajectory
q = q0q1 . . . satisfying φ.
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Algorithm 2 Receding horizon control algorithm for T =

(Q , q0, ∆, ω, Π, h), given an LTL formula φ over Π

Executed Off-line:
1: Construct a Büchi automaton B = (SB, SB0, 2Π , δB, FB)

corresponding to φ.
2: Construct the product automaton P = T × B =

(SP , SP0, ∆P , ωP , FP ). Find V (p) for all p ∈ SP .
Executed On-line:
3: if there exists p0 ∈ SP0 such that V (p0) ≠ ∞ then
4: Set k = 0.
5: Observe rewards for all q ∈ N (q0, k) and obtain R0(q).
6: Obtain p⋆

0 = RH0(SP0).
7: Implement transition (p0, p⋆

1|0) on P and transition
(q0, γT (p⋆

1|0)) on T .
8: Set k = 1
9: loop

10: Observe rewards for all q ∈ N (qk, k) and obtain Rk(q).
11: Obtain p⋆

k = RH(pk, p⋆
k−1).

12: Implement transition (pk, p⋆
1|k) on P and transition

(qk, γT (p⋆
1|k)) on T .

13: Set k← k+ 1
14: end loop
15: else
16: There is no run originating from q0 that satisfies φ.
17: end if

Proof. If there exists a satisfying run originating from q0, then
there exists a state p0 ∈ SP0 such that V (p0) < ∞. Therefore,
from Theorem 4.6, the receding horizon controller is feasible for all
k > 0, and Algorithm2will always produce an infinite trajectory q.

At each state pk at time k > 0, if V (pk) > 0, then either Case
1 or Case 2 of the controller RH(pk) applies. If Case 1 applies, since
V (p⋆

k|N) > V (p⋆
k+1|N) > V (p⋆

k+2|N) . . . , there exists j > k such that
V (p⋆

j|N) = 0. This is because the state-space SP is finite, and there-
fore, there is only a finite number of possible values for the energy
function V (p). At time j, Case 2 of the proposed controller becomes
active until time l = j + i0(p⋆

j ), where V (pl) = 0. Therefore, for
each time k, if V (pk) > 0, there exists l > k such that V (pl) = 0 by
repeatedly applying the receding horizon controller. If V (pk) = 0,
then Case 3 of the proposed controller applies, in which case either
V (pk+1) = 0 or V (pk+1) > 0. In either case, using the previous ar-
gument, there exists j > k where V (pj) = 0.

Therefore, at any time k, there exists j > k where V (pj) = 0.
Furthermore, since j is finite, we can conclude that the number of
times where V (pk) = 0 is infinite. By the definition of V (p), p ∈
SP , Vk = 0 is equivalent to pk ∈ F ⋆

P ⊆ FP . Therefore, the trajectory
p is accepting. The trajectory produced on T is exactly the projec-
tion q = γT (p), and thus, it can be concluded that q satisfies φ,
which completes the proof. �

Remark 4.8. In this paper, we focus on a cost function in the
form of (7). However, more general cost functions can be easily
accommodated. For example, we can define a cost associated with
state q at time k as Ck(q) (in addition to the rewards Rk(q)), and the
following combined cost function:
N
i=1

Rk

γT (pi|k)


− Ck


γT (pi|k)


.

The main properties of our proposed receding horizon control
algorithm, namely recursive feasibility and eventual correctness of
the output trajectory, still hold when using this cost function.

4.3. Complexity

The complexity of the off-line portion of Algorithm 2 depends
on the size of P . Denoting |φ| as the length of a formula φ (which
is the total number of all symbols and operators), from Gastin and
Oddoux (2001), a Büchi automaton translated from an LTL formula
contains at most |φ| × 2|φ| states.2 Therefore, denoting |S| as the
cardinality of a set S, the size of SP is bounded by |Q | × |φ| × 2|φ|.

Remark 4.9. The problem of the exponential blow-up caused by
the construction of the automaton accepting the language satis-
fying a LTL formula is well known (Clarke et al., 1999). Recently,
there have been advances in controller synthesis for fragments of
LTL such as the General Reactivity fragment (GR(1)), that is able
to express almost all properties of practical interest, but for which
automata synthesis is polynomial (Piterman et al., 2006). Since our
method does not depend on how the Büchi Automaton is con-
structed, we can take advantage of any such work in reducing the
size of the automaton.

The computation in Algorithm 1 involves the computation of
d(pi, pj) for all pj ∈ FP and checking the termination condition
for the WHILE loop. The first task requires |FP | runs of Dijkstra’s
algorithm. Each run of Dijkstra’s algorithm is linear in the size of
the product automaton. For the second, the WHILE loop requires
at most |FP |

3 checks to see if d(pi, pj) (already computed) is∞ or
not. The last step in Algorithm 1 requires at most |FP |

2 numerical
comparisons. Overall, the complexity of Algorithm 1 is O(|FP |

3
+

|FP |
2
+ |SP |

2
× |FP |). Note that this algorithm is run only once

off-line.
The complexity of the on-line portion of Algorithm 2 is highly

dependent on the horizon N . If the maximal number of transitions
at each state of P is ∆max

P , then the complexity at each iteration of
the receding horizon controller is bounded by (∆max

P )N , assuming a
depth first search algorithm is used to find the optimal trajectory.
It may be possible to reduce this complexity from exponential to
polynomial if one applies a more efficient graph search algorithm
using Dynamic Programming. We will explore this direction in
future research.

4.4. Extensions

Even though our approach assumes that the underlying system
T is deterministic, the results presented here can be easily
extended to non-deterministic systems. The simpler extension
is for the case when the LTL formula can be translated to a
deterministic Büchi automaton. The procedure would start with
the construction of the product automaton P = T × B
using Definition 3.2, with the difference that the weights on the
transitions of T andP would not be simply defined as given in this
paper, but rather as a cost associated with each non-deterministic
action. In this case, we would then define the set A ⊆ SP as self-
reachable if it can reach another state in A, and the energy at each
state of P as the number of steps required to reach the set A. At
each time step, the controller would then be required to solve a
Büchi game, similar to the control strategy used in Kloetzer and
Belta (2008b). Similar to Kloetzer and Belta (2008b), this method
would be restricted to LTL formulae that can be translated to
deterministic Büchi automata, because the product between two
non-deterministic systems is not well-defined.

Removing this restriction is not straightforward. Possible future
directions to address this limitation point to game-theoretical
approaches, such as Henzinger and Piterman (2006). Another
possible direction is to translate the specification to a deterministic
Rabin Automata (DRA) (Baier, Katoen, & Larsen, 2008). However,
such methods would require the added computational complexity
to deal with a DRA as it can be much larger than the equivalent
Büchi automaton. In this paper, we decided to only focus on
deterministic transition system to keep thenotation to aminimum.

2 In practice, this upper limit is almost never reached (see Kloetzer & Belta,
2008a).
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5. Software implementation and case studies

The control framework presented in this paper was imple-
mented as a user friendly software package, available at http://
hyness.bu.edu/LTL_MPC.html. The tool takes as input the finite
transition system T , an LTL formula φ, the horizon N , and a func-
tion R(q, k) that generates the time-varying rewards defined on
the states of T . It executes the control algorithm outlined in
Algorithm 2, and produces a trajectory in T that satisfies φ
and maximizes the rewards collected locally with the proposed
receding horizon control laws. This tool uses the LTL2BA (Gastin &
Oddoux, 2001) tool for the translation of an LTL formula to a Büchi
automaton. We note that very recently LTL2BA was updated and
improved in Babiak, Křetínskỳ, Řehák, and Strejček (2012), and the
improved version can be used instead.

We illustrate the use of the tool on the example defined in Fig. 1.
We consider the following LTL formula, which expresses a robotic
surveillance task:

φ := GF base
∧G (base −→ X¬baseU survey)
∧G (survey −→ X¬surveyU recharge)

∧G¬unsafe. (14)

The first line of φ,GF base, enforces that the state with
observation base is repeatedly visited (possibly for uploading
data). The second line ensures that after base is reached, the
system is driven to a state with observation survey, before
going back to base. Similarly, the third line ensures that after
reaching survey, the system is driven to a state with observation
recharge, before going back to survey. The last line ensures that,
for all times, the states with observation unsafe are avoided.

We assume that, at each state q ∈ Q , the rewards at state q′ can
be observed if the Euclidean distance between q and q′ is less than
or equal to 25. In the first case study, we define R(q, k) as follows.
At time k = 0, there is a 50% chance that a reward value R(q, 0)
is associated to state q, and the actual value is generated randomly
from a uniform distribution in the range [10, 25]. Similarly, at each
subsequent time k > 0, the reward is reassigned randomly from
a uniform distribution in the range of [10, 25]. In this case study,
the states with rewards can be seen as ‘‘targets’’, and the reward
values can be seen as the ‘‘amount of interest’’ associatedwith each
target. The control objective of maximizing the collected rewards
can be interpreted as maximizing the information gathered from
surveying stateswith high interest.Wenote that, in this case study,
the rewards function varies with the highest possible speed (it can
change at each time-step).

By applying the method described in the paper, our software
package first translates φ to a Büchi automaton B, which has 12
states. This procedure took 0.5 s on a Macbook Pro with a 2.2 GHz
Quad-core CPU. Since T contains 100 states, we have |SP | = 1200.
The generation of the product automaton P and the computation
of the energy function V took 4 s. In this case study, we chose the
horizon N = 4. By applying Algorithm 2, the first four snapshots
of the system trajectory are shown in Fig. 4. Each iteration of
Algorithm 2 took around 1–3 s.

We applied the control algorithm for 100 time steps and plotted
the results in Fig. 5. At the top, we plot the energy V (p) at the
each time-step. We see that after 48 time-steps, the energy is 0,
meaning that an accepting state is reached. Note that each time
an accepting state is reached, the system visits the base, survey
and recharge states at least once i.e., one cycle of the surveillance
mission task (base – survey – recharge) is completed. An
example video of the evolution of the system trajectory is also
available at http://hyness.bu.edu/LTL_MPC.html.

Since we have chosen a fast varying rewards function (changes
at each time-step)R(q, k), it can be seen from Fig. 5 that the plot of
the energy function is almost always decreasing. The controller of-
ten chooses to satisfy the terminal constraints (for recursive feasi-
bility and correctness guarantees), instead of choosing to increase
the energy function so that a reward can be collected. Therefore,
in this case, the constraint on the energy function dominates the
maximization of the local rewards. However, we note that in prac-
tical applications where receding horizon controllers are applied,
the dynamics governing the time varying costs or rewards function
is typically slower than the speed of the controller.

For comparison, we generated two additional case studies, with
the same settings as above, except that the rewards function
R(q, k) variesmore slowly (we used the same sequence of random
numbers in order to produce comparable results). The plots of the
energy function versus iterations are shown in Fig. 6. It can be seen
that the controller now chooses to increase the energy more often,
and in most cases it takes more iterations to complete a base –
survey – recharge cycle. This also poses an interesting trade-off
between the performance in terms of the collection of rewards and
the speed of finishing each iteration of the mission objective.

5.1. Performance analysis

In this section, we present a brief study of the controller
performance in terms of rewards accumulation, as a function
of the horizon length N . Note that the receding horizon must
enforce the terminal constraints as listed in (11)–(13), therefore
the control strategy is sometimes ‘‘greedy’’, i.e., the enforcement of
the terminal constraints may take precedence over the collection
of local rewards.

N 1 3 4
Average rewards per iteration 0.22 1.19 1.67
Average time per iteration (s) 0.002 0.12 1.07

In the table above, we compared the results for the cases where
the horizon length N is chosen to be 1, 3 and then 4 respectively.
The other settings are kept the same as the previous case study in
which the rewards function varies at every 3 time steps. To make a
fair comparison, we used the same time-varying reward function
R(q, k). We see that the performance (i.e., the collected rewards)
of the controller is directly affected by the horizon length. In short,
the performance of the controller is improved by increasing N .
However, increasing N will also increase the computation time
required at each time-step. Therefore, these results demonstrate
a trade-off that must bemade between the controller performance
and the computation time required in each iteration.

An interesting case is when N = 1. In this case, the controller
will always only choose to satisfy the terminal constraints instead
of collecting rewards (the rewards collected in this case are only
incidental). The proposed receding horizon controller is still useful
for producing a provably correct trajectory satisfying the given LTL
formula, but the controller does not spend any additional control
effort on gaining rewards.

6. Conclusion and final remarks

In this paper, a receding horizon control framework that opti-
mizes the trajectory of a finite deterministic system locally, while
guaranteeing that the infinite trajectory satisfies a given linear
temporal logic formula, was proposed. The optimization criterion
was defined as maximization of time-varying rewards associated
with the states of the system. A provably-correct control strategy
based on the definition of an energy-like function enforcing the ac-
ceptance condition of an automaton was developed. The proposed
framework brings together ideas and techniques from model pre-
dictive control and formal synthesis, andwebelieve it benefits both
areas.

http://hyness.bu.edu/LTL_MPC.html
http://hyness.bu.edu/LTL_MPC.html
http://hyness.bu.edu/LTL_MPC.html
http://hyness.bu.edu/LTL_MPC.html
http://hyness.bu.edu/LTL_MPC.html
http://hyness.bu.edu/LTL_MPC.html
http://hyness.bu.edu/LTL_MPC.html
http://hyness.bu.edu/LTL_MPC.html
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a b
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Fig. 4. Snapshots of the system trajectory under the proposed receding horizon control laws. In all snapshots, the states with rewards are marked in green, where the
size of the state is proportional with the associated reward. (a) At time k = 0, the initial state of the system is marked in red (in the lower left corner). (b) The controller
p⋆
0 = RH0(SP0) is computed at the initial state. The optimal predicted trajectory p⋆

0 is marked by a sequence of states in brown. (c) The first transition q0→T q1 is applied on
T and transition p0→P p1 is applied on P . The current state (q1) of the system is marked in red. (d) The controller p⋆

1 = RH(p1, p⋆
0) is computed at p1 . The optimal predicted

trajectory p⋆
1 is marked by a sequence of states in brown. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)
Fig. 5. Plot of energy V (p) at the current state for 100 time-steps (rewards function
R(q, k) can vary at each time-step).

This work can be extended in several directions. The optimiza-
tion problem of maximizing rewards can be easily extended to
other meaningful cost functions. For example, it is possible to as-
sign penalties or costs on states of the system and minimize the
accumulated cost of trajectories in the horizon. It is also possible
to define costs on state transitions andminimize the control effort.
Combinations of the above are also easy to formulate and solve. Our
current efforts focus on extending the proposed framework to fi-
nite probabilistic systems, such as Markov decision processes and
partially observed Markov decision processes, and specifications
given as formulas of probabilistic temporal logic. As discussed in
Section 4.4, we also aim to extend the results to other finite sys-
tem models, such as non-deterministic systems.
a

b

Fig. 6. Plot of energy V (p) at the current state for 100 time-steps: (a) rewards
function R(q, k) varies at every 3 time-steps; (b) rewards function R(q, k) varies
every 5 time-steps.
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