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Numerically exact results of hopping charge transport in disordered organic semiconductors show for
uncorrelated and dipole-correlated Gaussian energy disorder a universal, power-law, and non-power-law
dependence, respectively, of the relative conductance fluctuations on the size of the considered region. Data
collapse occurs upon scaling with a characteristic length having a power-law temperature dependence.
Below this length, which can be as high as 100 nm for correlated disorder in a realistic case, fluctuations
dominate and a continuum description of charge transport breaks down.
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Disordered organic semiconductors are the crucial
element in organic devices like organic light-emitting
diodes (OLEDs). Charge transport in these materials occurs
by hopping of charge carriers between localization sites
with random on-site energies. Percolation theories have
been employed to describe this transport and to obtain the
dependence of the charge-carrier mobility μ on temperature
T, carrier concentration c, and electric field F [1–7]. The
presently standard approach in organic device modeling is
to use μðT; c; FÞ in continuum drift-diffusion calculations
of charge transport [8].
There are, however, at least three reasons to critically

analyze the validity of such a continuum approach.
(i) Present-day OLEDs, and in particular white OLEDs,
have sublayers of only a few nanometers thick [9,10]. It is
questionable if such thin layers can still be considered as a
continuum. (ii) A continuum approach to charge transport
in disordered media will fail when the size of the consid-
ered region is below a critical size where sample-to-sample
fluctuations in the conductance are no longer negligible.
(iii) For the spatial correlation in the energetic disorder
believed to be present in small-molecule semiconductors
[8], these fluctuations are expected to be even more
prominent than without correlation. An analysis of the
conditions at which a continuum approach breaks down
and of the character of charge transport under such
conditions is therefore of utmost importance.
In this Letter, we perform such an analysis. We focus on

the widely used Gaussian disorder model (GDM) and the
correlated disorder model (CDM) for site-energy disorder.
In the GDM, proposed by Bässler, the disorder is modeled
by a Gaussian distribution of uncorrelated on-site energies
[11]. In the CDM, the energetic disorder is assumed to be
caused by molecular dipoles with random orientation [12],
creating a spatial correlation between on-site energies that
decays with distance r as 1=r [13]. The GDM and CDM,
extended to the EGDM [4] and ECDM [14] to account for

the c dependence of μ in addition to the originally
considered T and F dependence, are well applicable to
charge transport in polymeric and small-molecule semi-
conductors, respectively [8].
Another important reason for our analysis is that several

theory groups are studying charge transport in these
semiconductors from a fundamental perspective, attempt-
ing to find realistic morphologies and hopping rates from
atomistic studies [15–18]. Because of the involved com-
putational costs, such studies necessarily involve relatively
small systems. An important question is what the influence
of this is on the calculated charge-transport properties.
Lukyanov and Andrienko already noted that the calculated
mobilities are strongly system size dependent. They pro-
pose to find the room-temperature mobility by extrapola-
tion of mobilities calculated at higher temperatures, where
finite-size effects are smaller, to room temperature [19].
Here, we analyze for small F the sample-to-sample

fluctuations in the conductanceG of a cubic simulation box
with side L for different disorder configurations. If the
relative fluctuations are sufficiently small, transport in the
box represents that in a homogeneous medium. An impor-
tant question is at what minimum size of the box this is the
case. The behavior of the fluctuations themselves provides
important information about charge transport in confined
situations, such as a thin organic layer in an OLED or a
small simulation box in the case of atomistic studies. In
analyzing fluctuations, in the case of percolative charge
transport the specific boundary conditions are not important
[2], and we therefore choose computationally convenient
periodic boundary conditions. To investigate possible
influences of the lattice type, we consider simple cubic
(SC) and fcc lattices. We define a length unit a≡ N−1=3

t ,
where Nt is the site density. At most one charge carrier can
be present at a lattice site due to strong on-site Coulomb
repulsion, which is the most important effect of Coulomb
interactions at the carrier concentrations c < 0.01 we will

PRL 113, 116604 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

12 SEPTEMBER 2014

0031-9007=14=113(11)=116604(5) 116604-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.113.116604
http://dx.doi.org/10.1103/PhysRevLett.113.116604
http://dx.doi.org/10.1103/PhysRevLett.113.116604
http://dx.doi.org/10.1103/PhysRevLett.113.116604


consider (higher concentrations are seldom reached in
organic devices). The c dependence of μ was found to
be more important than the F dependence in charge-
transport modeling of hole-only polymer devices [4], so
that the small-F limit considered here is very relevant. In
this limit, an exact mapping onto a random-resistor network
can be made [6], where every resistor represents a bond
between two sites.
We consider Miller-Abrahams (MA) [20] as well as

Marcus [21] hopping rates ωij between nearest-neighbor
sites i and j, since these types of rates have been mostly
used in the literature. For MA hopping from i to j, ωij ¼
ω0 expð−½ΔEij þ jΔEijj�=2kBTÞ, with ω0 a prefactor, ΔEij
the energy difference between sites j and i, including a
contribution by the field F, and kB Boltzmann’s constant.
For Marcus hopping, ωij ¼ ðJ20=ℏÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π=ErkBT

p
expð−

½ΔEij þ Er�2=4ErkBTÞ, where J0 is the charge-transfer
integral and Er the reorganization energy upon charging
or discharging of the site due to nuclear rearrangements.
The use of Marcus hopping rates has a stronger micro-
scopic foundation [15] but needs specification of Er. In
materials for which Er ≫ ΔEij (indicated by Er → ∞
below), however, the Er dependence of the rate appears
only in the prefactor.
The master equation for the occupational probabilities pi

of the sites is solved numerically (see Supplemental
Material [22]). From these, the currents across all bonds
and the conductance G of the box can be calculated.
Disorder configurations are generated by drawing random
site energies from a Gaussian distribution with standard
deviation σ (uncorrelated disorder) or by placing randomly
oriented dipoles on the lattice sites and evaluating the
resulting electrostatic energies at the sites (correlated
disorder). Relations between the dipole moment and the
resulting standard deviation σ of the density of states,
which is very close to Gaussian, are given in Ref. [7] for the
SC and fcc lattice.
We first consider uncorrelated disorder. To visualize the

issues to be addressed, we show in Fig. 1 the bond current

distribution in a two-dimensional (2D) square lattice for a
representative case, for σ̂ ≡ σ=kBT ¼ 3 and 6. The relative
sample-to-sample fluctuations in the conductance of a box
in this lattice will increase with decreasing linear size L of
the box. For the red boxes with characteristic size L0, the
fluctuations in the conductance are as large as the typical
conductance itself. For smaller boxes, fluctuations become
dominant. The important questions to be answered are as
follows: how does L0 depend on σ̂, i.e., on temperature, and
how does the size of the fluctuations depend on L?
For all considered cases, the distribution of G is very

close to log-normal, which can be rationalized from the
exponential dependence of the hopping rates on the site
energies. We therefore study the distribution of lnðG=G0Þ,
where G0 ≡ exp hlnGi (h…i is a disorder average). For a
representative three-dimensional (3D) case, Fig. 2(a) shows
this distribution, which is very close to normal, for different
box sizes L. We define δðLÞ as the standard deviation of
this distribution. Figure 2(b) shows G0 vs a=L and a
comparison to equivalent results for GC

0 ≡ hGi and
GR

0 ≡ hG−1i−1, corresponding to the average conductance
and resistance, respectively. The results for GC

0 (GR
0 ) lie

significantly above (below) these for G0, because of the
skewness of the log-normal distributions (the distribution
of the resistances R ¼ 1=G is also log-normal and has the
same shape as that of G). It is clear from Fig. 2(b) that the
macroscopic conductivity can be much more accurately
obtained from G0 than from GC

0 or GR
0 for calculations on

small systems. Hence, this is an attractive route to calculate
the macroscopic conductivity from simulations on small
systems, providing an alternative to the “temperature-
extrapolation” method of Ref. [19]. GC

0 can be considered
as the conductance of a system of many boxes in parallel,
corresponding to an organic layer in between two highly

Marcus hopping on 2D square lattice;  E  = 
r

     ;  c = 10-5 ;  uncorrelated disorder

σ/k
B

L0 L0

T = 3 σ/k
B
T = 6

σ

FIG. 1 (color online). Bond current distribution (arrows, direc-
tions; line thicknesses, sizes) for a representative 2D case with
uncorrelated disorder, for two disorder strengths. At the size L0 of
the red boxes, conductance fluctuations are comparable to the
conductance itself.

Marcus hopping on 3D SC lattice;  E = σ;
r

  c = 10-3;  σ/k
B
T = 6; uncorrelated disorder
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FIG. 2. (a) Normalized occurrence frequency of lnðG=G0Þ of
conductances of boxes with different size L (offsets applied), for
a representative 3D case with uncorrelated disorder. The mean-
square fluctuation δðLÞ is indicated for one case. The bin size was
0.04, and the numbers of disorder configurations considered are
given. (b) Conductivities vs a=L normalized to the macroscopic
conductivity (dashed horizontal line), calculated from the data in
(a): disorder averages of the conductance (GC

0 ), resistance (GR
0 ),

and logarithm of the conductance (G0). See the main text for the
explanation of the functions exp½δðLÞ2=2� and exp½−δðLÞ2=2�. At
the vertical dashed line, δðLÞ ¼ δðL0Þ ¼ 1. Errors in the data are
smaller than the symbols.
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conducting layers. The conductance can then be consid-
erably higher than following from a continuum description.
For another representative 3D case, Fig. 3(a) shows

δðLÞ vs L for various values of σ̂. We find for all σ̂ a
perfect power-law behavior δðLÞ ∝ ðL=aÞ−κ. Furthermore,
Fig. 3(b) shows that the curves of Fig. 3(a) perfectly
collapse onto a master curve if L is scaled with a character-
istic length L0 ¼ Aaσ̂ν, where the numerical prefactor A is
chosen such that δðL0Þ ¼ 1. For this system size, the
fluctuations in G are comparable to G0. Combining the
two results leads to

δðLÞ ¼
�
L0

L

�
κ

¼
�
Aaσ̂ν

L

�
κ

: ð1Þ

This behavior appears to be universal, since it is found not
to depend on the type of hopping and lattice or on the

carrier concentration. Table I shows fitted values of κ, ν,
and A for a number of cases. Even the presence of traps,
very relevant for electron transport in organic semiconduc-
tors [23] and for OLEDs making use of dyes [9,10], does
not change this behavior [22]. The exponent κ is very close
to 1.5 for all cases. In line with predictions from percolation
theory [2], we find that the exponents ν in Table I are within
the numerical accuracy equal to the percolation correlation-
length exponent, which is ν ¼ 0.875 in 3D [24]. Also
indicated in Fig. 2(b) are the functions exp½δðLÞ2=2� and
exp½−δðLÞ2=2�, corresponding to the normalized averages
of the log-normal distributions of the conductance and
resistance, respectively, using Eq. (1) and the results from
Table I. They agree fairly well with the actual data and can
therefore be used as a rule of thumb in estimating finite-size
corrections.
It is interesting to also analyze the 2D case. Figures 3(c)

and 3(d) show results equivalent to those of Figs. 3(a)
and 3(b) for the 2D case considered in Fig. 1. The
conclusions are similar. Again we find a power-law behavior
δðLÞ∝ ðL=aÞ−κ, but now with an exponent κ¼1.00�
0.02. The exponent ν is now 1.22� 0.02, which is close
to the 2D percolation correlation-length exponent ν ¼ 4=3.
Importantly, several data points are obtained for which
δ > 1, clearly showing that there is no change in behavior
around δ ¼ 1. The red boxes in Fig. 1 have a size equal to the
characteristic length L0 ¼ 0.96aσ̂1.22 at which δ ¼ 1.
The values for κ close to 1 in 2D and 3=2 in 3D suggest

the relation κ ¼ D=2, with D the dimension. In the limit
δ → 0, this can be rationalized as follows. We can sub-
divide the box with size L intoN ¼ ðL=L0ÞD subboxes with
size L0. When δðL0Þ ≪ 1, the distribution of conductances
of the subboxes has become normal and very sharply
peaked around the average conductance. In determining
the conductance of the box with side L from the con-
ductances of the subboxes, we can then linearize in the
fluctuations of these conductances. Since these fluctuations
are uncorrelated, we conclude that δðLÞ ¼ δðL0Þ= ffiffiffiffi

N
p ¼

δðL0ÞðL=L0Þ−D=2, so that κ ¼ D=2. Surprisingly, this
power-law behavior also holds when the condition
δ ≪ 1 is not satisfied. We note that our results deviate
in important respects from the analyses of Shklovskii
and Efros [2] and LeDoussal [25], as discussed in the
Supplemental Material [22].
We now turn to the case of dipole-correlated disorder.

The algebraic decay 1=r of the energy-energy correlation
function, meaning that the disorder has no finite correlation
length, makes this case particularly interesting. Hence,
the standard percolation theory cannot be applied, but we
can nevertheless attempt to apply the same procedures
as above.
We find that, except for the smallest boxes considered,

the distribution ofG is again log-normal. Figure 3(e) shows
results for δðLÞ vs L for a representative case. Clearly, the L
dependence is no longer a power law. However, we still

FIG. 3 (color online). Mean-square fluctuation δ vs box size L
(left) and scaled size L=L0 (right) for different disorder strengths
and three different cases, corresponding to uncorrelated disorder
in 3D [(a),(b)] and 2D [(c),(d)] and dipole-correlated disorder in
3D [(e),(f)]. Values of L0 used in the size scaling are indicated
and a parametrization of the curves according to Eqs. (1) and (2).
Numbers of considered disorder configurations varied between
1000 (uncorrelated disorder) and 150 (correlated disorder) for the
largest box to 50 000 (both cases) for the smallest box. Errors in
the data are smaller than the displayed symbols.
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obtain data collapse by scaling L with a length L0 ¼ A0aσ̂ν0

for some power ν0 and prefactor A0. If results for the
smallest boxes are disregarded, we see in Fig. 3(f) that this
is possible for ν0 ¼ 2.9� 0.3. Table II contains results for
various considered cases, showing very similar values of ν0.
We thus find for dipole-correlated disorder

δðLÞ ¼ f

�
L
L0

�
≈
�
0.33þ 0.67

L

A0aσ̂ν0

�
−1
; ð2Þ

where the second equality gives an approximation to the
master curve fðxÞ. We note that for δ ≪ 1 the decay δðLÞ ∝
ðL=L0Þ−1 with L in Eq. (2) is slower than ðL=L0Þ−3=2. The
reason is that, because of the 1=r spatial correlation in the
disorder, fluctuations in the conductances of subboxes
never become uncorrelated.
In the region δ > 1 above the dashed lines in Fig. 3,

fluctuations in the conductance are dominant. In this
region, the conductance of a specific disorder config can
deviate strongly from the average, and a continuum
approach breaks down. For polymeric semiconductors,
the values σ ¼ 0.14 eV and a ¼ 1.6–1.8 nm [4] were
found from EGDM modeling of hole-only devices. At
room temperature, we then have σ̂ ≈ 5.6, and we estimate
from Eq. (1), taking A ¼ 1, that δ > 1 below about
L ¼ 8 nm. At such layer thicknesses, a continuum
approach breaks down, but also when the mobility varies

significantly on this scale due to large gradients in the
carrier density.
Another important example is Alq3 [tris(8-hydroxyqui-

nolinato)aluminium], a small-molecule semiconductor with
a relatively large molecular dipole moment. Atomistic
modeling yields σ ¼ 0.19 eV [26]. Assuming correlated
disorder, Eq. (2) predicts, by taking A0 ¼ 0.25, a ¼ 1 nm,
and ν0 ¼ 2.9, that at room temperature fluctuations are
dominant up to sizes of even 100 nm. This is of the order of
the organic layer thickness in a typical single-layer OLED
and much larger than the thickness of some organic layers
used in multilayer OLEDs [9,10]. This example shows that
a continuum approach to small-molecule organic device
modeling can fail severely.
In conclusion, we found from numerically exact results

that conductance fluctuations in disordered semiconductors
show a universal size dependence. The results allow an
assessment of the validity of a continuum approach to
charge transport in these semiconductors under various
conditions, showing that this approach can be insufficiently
accurate for organic semiconductor device modeling under
realistic conditions. In particular, a continuum approach
can severely underestimate the conductance of a thin
organic layer. We expect impact of our work in the area
of charge transport in disordered media, in general.
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