

History-based construction of log-process alignments for
conformance checking : discovering what really went wrong
Citation for published version (APA):
Alizadeh, M., Leoni, de, M., & Zannone, N. (2014). History-based construction of log-process alignments for
conformance checking : discovering what really went wrong. In R. Accorsi, P. Ceravolo, & B. Russo (Eds.), 4th
International Symposium on Data-driven Process Discovery and Analysis (SIMPDA 2014, Milan, Italy, November
19-21, 2014) (pp. 1-15). (CEUR Workshop Proceedings; Vol. 1293). CEUR-WS.org.

Document status and date:
Published: 01/01/2014

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://research.tue.nl/en/publications/81e9c176-e954-41f2-b550-a0b41d899e46

History-based Construction of Log-Process
Alignments for Conformance Checking:
Discovering What Really Went Wrong?

Mahdi Alizadeh, Massimiliano de Leoni, and Nicola Zannone

Department of Mathematics and Computer Science,
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{m.alizadeh,m.d.leoni,n.zannone}@tue.nl

Abstract. Alignments provide a robust approach for conformance check-
ing which has been largely applied in various contexts such as auditing
and performance analysis. Alignment-based conformance checking tech-
niques pinpoint the deviations causing nonconformity based on a cost
function. However, such a cost function is often manually defined on the
basis of human judgment and thus error-prone, leading to alignments
that do not provide the most probable explanations of nonconformity.
This paper proposes an approach to automatically define the cost func-
tion based on information extracted from the past process executions.
The cost function only relies on objective factors and thus enables the
construction of the most probable alignments, i.e. alignments that pro-
vide the most probable explanations of nonconformity. Our approach
has been implemented in ProM and assessed using both synthetic and
real-life data.

Keywords: Conformance checking, alignments, cost functions

1 Introduction

Modern organizations are centered around the processes needed to deliver prod-
ucts and services in an efficient and effective manner. Organizations that oper-
ate at a higher process maturity level use formal/semiformal models (e.g., UML,
EPC, BPMN and YAWL models) to document their processes. In some case these
models are used to configure process-aware information systems (e.g., WFM or
BPM systems). However, in most organizations process models are not used to
enforce a particular way of working. Instead, process models are used for discus-
sion, performance analysis (e.g., simulation), certification, process improvement,
etc. However, reality may deviate from such models. People tend to focus on
idealized process models that have little to do with reality. This illustrates the
importance of conformance checking [1,2,9].

? This work has been funded by the NWO CyberSecurity programme under the PriCE
project and the Dutch national program COMMIT under the THeCS project.

Conformance checking aims to verify whether the observed behavior recorded
in an event log matches the intended behavior represented as a process model.
The notion of alignments [2] provides a robust approach to conformance check-
ing, which makes it possible to pinpoint the deviations causing nonconformity.
An alignment between a recorded process execution and a process model is a
pairwise matching between activities recorded in the log and activities allowed
by the model. Sometimes, activities as recorded in the event log (events) cannot
be matched to any of the activities allowed by the model (process activities).
For instance, an activity is executed when not allowed. In this case, we match
the event with a special null activity (hereafter, denoted as �), thus resulting
in so-called moves on log. Other times, an activity should have been executed
but is not observed in the event log. This results in a process activity that is
matched to a � event, thus resulting in a so-called move on model.

Alignments are powerful artifacts to detect nonconformity between the ob-
served behavior as recorded in the event log and the prescribed behavior as
represented by process models. In fact, when an alignment between a log trace
and process model contains at least one move on log or model, it means that
such a log trace does not conform the model. As a matter of fact, the moves
on log/model indicate where the execution is not conforming by pinpointing the
deviations that have caused this nonconformity.

In general, a large number of possible alignments exist between a process
model and a log trace, since there may exist manifold explanations why a trace
is not conforming. It is clear that one is interested in finding the most probable
explanation. Adriansyah et al. [4] have proposed an approach based on the prin-
ciple of the Occam’s razor: the simplest and most parsimonious explanation is
preferable. Therefore, one should not aim to find any alignment but, precisely,
one of the alignments with the least expensive deviations (one of the so-called
optimal alignments), according to some function assigning costs to deviations.

Existing alignment-based conformance checking techniques (e.g. [2,4]) require
process analysts to manually define a cost function based on their background
knowledge and beliefs. The definition of such a cost function is fully based on hu-
man judgment and, thus, prone to imperfections. These imperfections ultimately
lead to alignments that are optimal, according to the provided cost function, but
that do not provide the most probable explanation of nonconformity.

In this paper, we propose an alternative way to define a cost function, where
the human judgment is put aside and only objective factors are considered. The
cost function is automatically constructed by looking at the logging data and,
more specifically, at the past process executions that are compliant with the
process model. The intuition behind is that one should look at the past history
of process executions and learn from it what is the most probable explanations of
nonconformity. We believe that the most probable explanation of nonconformity
of a certain process execution can be obtained by analyzing the behavior observed
for such a process execution in each and every state and the behavior observed
for other confirming traces when they were in the same state. Our approach

gives a potentially different cost for each move on model and log (depending on
the current state), leading to the definition of a more sensitive cost function.

The approach has been fully implemented as a software plug-in for the open-
source process-mining framework ProM. To assess the practical relevance of our
approach, we performed an evaluation using both synthetic and real event logs
and process models. In particular, we tested it on a real-life case study about the
management of road-traffic fines by an Italian town. The results show that our
approach significantly improves the accuracy in determining the most probable
explanation for nonconformity compared to existing techniques.

The paper is organized as follows. Section 2 introduces preliminary concepts.
Section 3 presents our approach for constructing optimal alignments. Section 4
presents experiment results, which are discussed in Section 5. Finally, Section 6
discusses related work and concludes the paper with directions for future work.

2 Preliminaries

This section introduces the notation and preliminaries for our work.

2.1 Labeled Petri Nets, Event Logs, and Alignments

Process models describe how processes should be carried out. Many languages
exist to model processes. Here, we use a very simple formalism, which however
allow one to define all the aspects to take into account for this paper:

Definition 1 (Labeled Petri Net). A Labeled Petri net is a tuple (P, T, F,A, `,mi,mf)
where

– P is a set of places;
– T is a set of transitions;
– F ⊆ (P × T) ∪ (T × P) is the flow relation between places and transitions

(and between transitions and places);
– A is the set of labels for transitions;
– ` : T → A is a function that associates a label with every transition in T ;
– mi is the initial marking;
– mf is the final marking.

The label of a transition identifies the activity represented by such a transition.
Multiple transitions can be associated with the same activity label; this means
that the same activity is represented by multiple transitions. This is typically
done to make the model simpler. Some transitions can be invisible. Invisible
transitions do not correspond to actual activities but are necessary for routing
purposes and, as such, their execution is never recorded in event logs. Given
a Labeled Petri net N , InvN ⊆ A indicates the set of labels associated with
invisible transitions. As a matter of fact, invisible transitions are also associated
with labels, though these labels do not represent activities. We assume that a
label associated with a visible transition cannot be also associated with invisible
ones and vice versa.

Fig. 1: A process model for managing road traffic fines. The green boxes repre-
sent the transitions that are associated with process activities while the black
boxes represent invisible transitions. The text below the transitions represents
the label, which is shortened with a single letter as indicated inside the transi-
tions.

In the remainder, the simpler term Petri net is used to refer to Labeled Petri
nets. The state of a Petri net is represented by a marking, i.e. a multiset of tokens
on the places of the net. A Petri net has an initial marking mi and a final marking
mf . When a transition is executed (i.e., fired), a token is taken from each of its
input places and a token is added to each of its output places. A sequence of
transitions σM leading from the initial to the final marking is a complete process
trace. Given a Petri net N = (P, T, F,A, `,mi,mf), ΓN indicates the set of all
complete process traces.

Example 1. Fig. 1 shows a process model for handling road traffic fines in Italy
[14]. A process execution starts with recording a traffic fine in the system and
sending it to Italian residents. Traffic fines might be paid before or after they are
sent out by police or received by the offenders. If the fine is not paid in 180 days,
a penalty is added. In addition, offenders may appeal against fines to prefecture
and/or judge. If an appeal is accepted, the fine management is closed. Finally, if
the fine is not paid by the offender, eventually the process terminates by handing
over the case for credit collection.

Given a Petri net N = (P, T, F,A, `,mi,mf), a log trace σL ∈ A∗ is a se-
quence of events where each event records the firing of a transition. In partic-
ular, each event records the label of the transition that has fired. An event log
L ∈ B(A) is a multiset of log traces, where B(X) is used to represent the set of
all multisets over X. Here we assume that no events exist for activities not in
A; in practice, this can happen: in such cases, such events are filtered out before
the event log is taken into consideration.

Not all log traces can be reproduced by a Petri net, i.e. not all log traces
perfectly fit the process description. If a log trace perfectly fits the net, each

γ1 =
c s n t � � o �
c s n t l r o i3

γ2 =
c s n t o � �
c s n t � l i6

γ3 =
c s n t o �
c s n � � d

Fig. 2: Alignments of σ1 = 〈c, s, n, t, o〉 and the process model in Fig. 1

“move” in the log trace, i.e. an event observed in the trace, can be mimicked by
a “move” in the model, i.e. a transition fired in the net. After all events in the log
trace are mimicked, the net reaches its final marking. In cases where deviations
occur, some moves in the log trace cannot be mimicked by the net or vice versa.
We explicitly denote “no move” by �.

Definition 2 (Legal move). Let N = (P, T, F,A, `,mi,mf) be a Petri net. Let
SL = (A \ InvN)∪ {�} and SM = A∪ {�}. A legal move is a pair (mL,mM) ∈
(SL × SM) \ (�,�) such that

– (mL,mM) is a synchronous move if mL ∈ SL, mM ∈ SM and mL = mM ,
– (mL,mM) is a move on log if mL ∈ SL and mM =�,
– (mL,mM) is a move on model if mL =� and mM ∈ SM .

ΣN denotes the set of legal moves for a Petri net N .

In the remainder, we indicate that a sequence σ′ is a prefix of a sequence
σ′′, denoted with σ′ ∈ prefix(σ′′), if there exists a sequence σ′′′ such that σ′′ =
σ′ ⊕ σ′′′, where ⊕ denotes the concatenation operator.

Definition 3 (Alignment). Let ΣN be the set of legal moves. An alignment of
a log trace σL and a Petri net N = (P, T, F,A, `,mi,mf) is a sequence γ ∈ Σ∗N
such that, ignoring all occurrences of�, the projection on the first element yields
σL and the projection on the second element yields a sequence 〈a1, . . . , an〉 such
that there exists a sequence σ′P = 〈t1, . . . , tn〉 ∈ prefix(σP) for some σP ∈ ΓN
where, for each 1 ≤ i ≤ n, `(ti) = ai. If σ′P ∈ ΓN , γ is called a complete
alignment of σL and N .

Fig. 2 shows three possible complete alignments of a log trace σ1 = 〈c, s, n, t, o〉
and the net in Fig. 1. The top row of an alignment shows the sequence of events
in the log trace, and the bottom row shows the sequence of activities in the net
(both ignoring �). Hereafter, we denote |L the projection of an alignment over
the log trace and |P the projection over the net.

As shown in Fig. 2, there can be multiple possible alignments for a given log
trace and process model. The quality of an alignment is measured based on a
provided cost function K : Σ∗N → R+

0 , which assigns a cost to each alignment
γ ∈ Σ∗N . Typically, the cost of an alignment is defined as the sum of the costs of
the individual moves in the alignment. An optimal alignment of a log trace
and a process trace is one of the alignments with the lowest cost according to
the provided cost function.

As an example, consider a cost function that assigns to any alignment a cost
equal to the number of moves on log and model for visible transitions. If moves
on model for invisible transitions ik are ignored, γ1 has two moves on model, γ2

has one move on model and one move on log, and γ3 has one move on model
and two moves on log. Thus, according to the cost function, γ1 and γ2 are two
optimal alignments of σ1 and the process model in Fig. 1.

2.2 State Representation

At any point in time, a sequence of execution of activities leads to some state, and
this state depends on which activities have been performed and in which order.
Accordingly, any process execution can be mapped onto a state. As discussed
in [3], a state representation function takes care of this mapping:

Definition 4 (State Representation). Let (P, T, F,A, `,mi,mf) be a Petri
net. Let R be the set of possible state representations of sequences in A∗ A state
representation function abst : A∗ → R produces a state representation abst(σ)
for each process trace σ ∈ Γ .

Several state-representation functions can be defined. Each function leads to a
different abstraction, meaning that multiple different traces can be mapped onto
the same state, thus abstracting out certain trace’s characteristics. The following
are examples of state-representation functions:

Sequence abstraction. It is a trivial mapping where the abstraction preserves
the order of activities. Each trace is mapped onto a state that is the trace
itself, i.e. for each σ ∈ A∗, abst(σ) = σ.

Multi-set abstraction. The abstraction preserves the number of times each
activity is executed. This means that, for each σ ∈ A∗, abst(σ) = M ∈ B(A)
such that, for each a ∈ A, M contains all instances of a in σ.

Set abstraction. The abstraction preserves whether each activity has been
executed or not. This means that, for each σ ∈ A∗, abst(σ) = M ⊆ A such
that, for each a ∈ A, M contains a if it ever occurs in σ.

Example 2. Table 1 shows the state representation of some process traces of the
net in Fig. 1 using different abstractions. For instance, trace 〈c, p, p, s, n〉 can be
represented as the trace itself using the sequence abstraction, as {c(1), p(2), s(1), n(1)}
using the multi-set abstraction (in parenthesis the number of occurrences of ac-
tivities in the trace), and as {c, p, s, n} using the set abstraction. Traces 〈c, p, s, n〉
and 〈c, p, p, s, n, p〉 are also mapped to state {c, p, s, n} using the set abstraction.

3 History-based Construction of the Most Probable
Alignments

This section presents our approach to construct alignments that give the most
probable explanations of deviations based on objective facts, i.e. the historical
logging data, rather than on subjective cost functions manually defined by pro-
cess analysts. To construct an optimal alignment between a process model and
an event log, we use the A-star algorithm, analogously to what proposed in [4].

Section 3.1 discusses how the cost of an alignment is computed, whereas
Section 3.2 briefly reports on the use of A-star to compute the most probable
alignment.

Table 1: Examples of state representation using different abstractions

Sequence # Multi-set # Set #
〈c, p〉 25 {c(1), p(1)} 25 {c, p} 25
〈c, s, n, p〉 15 {c(1), p(1), s(1), n(1)} 15

{c, p, s, n} 45〈c, p, p, s, n〉 5 {c(1), p(2), s(1), n(1)} 5
〈c, p, p, s, n, p〉 25 {c(1), p(3), s(1), n(1)} 25
〈c, s, n, a, d〉 10 {c(1), s(1), n(1), a(1), d(1)} 10 {c, s, n, a, d} 10
〈c, s, n, p, a, d〉 10 {c(1), s(1), n(1), p(1), a(1), d(1)} 10 {c, s, n, p, a, d} 10
〈c, s, n, p, t, l〉 25 {c(1), s(1), n(1), p(1), t(1), l(1)} 30

{c, s, n, p, t, l} 60
〈c, s, p, n, t, l〉 5
〈c, p, s, n, p, t, l〉 5 {c(1), s(1), n(1), p(2), t(1), l(1)} 30〈c, s, p, n, p, t, l〉 25
〈c, s, n, p, t, l, r, o〉 50 {c(1), s(1), n(1), p(1), t(1), l(1), r(1), o(1)} 50 {c, s, n, p, t, l, r, o} 50

3.1 Definition of cost functions

The computation of the most probable alignment relies on a cost function that
accounts for the probability of an activity to be executed in a certain state.
The definition of such a cost function requires an analysis of the past history as
recorded in the event log to compute the probability of an activity to immediately
occur or to never eventually occur when the process execution is in a certain
state.

The cost of moves depends on probabilities. For this purpose, we need to
introduce a functions’ class F ⊆ [0, 1] → R+ such that f ∈ F if and only if
f(0) = ∞ and f is monotonously decreasing between 0 and 1 (with f(1) > 0).
Hereafter, these functions are called cost profile. It is easy to observe that if f(p)
is a cost-profile function, then f(p)i is also a cost-profile function for every i > 0.
Examples of these functions are:

f(p) = 1
p f(p) = 1√

p f(p) = 1 + log
(

1
p

)
(1)

Similarly to what proposed in [4], the cost of an alignment move depends on the
move type and the activity involved in the move but, differently from [4], it also
depends on the position in which the move is inserted:

Definition 5 (Cost of an alignment move). Let N = (P, T, F,A, `,mi,mf)
be an Petri net. Let γ ∈ Σ∗N be a sequence of legal moves for N and f ∈ F
a cost profile. The cost of appending a legal move (mL,mM) ∈ ΣN to γ with
state-representation function abst is:

κabst((mL,mM), γ) =
0 mL = mM

0 mL =� and mM ∈ InvN
f
(
Pabst(mM occurs after γ |P)

)
mL =� and mM 6∈ InvN

f
(
Pabst(mL never eventually occurs after γ |P)

)
mM =�

(2)

Readers can observe that the cost of a move on log (mL,�) is not simply the
probability of not executing activity mL immediately after γ |P ; rather, it is
the probability of never having activity mM at the any moment in the future
for that execution. This is motivated by the fact that a move on log (mL,�)
indicates that mL is not expected to ever occur in the future. Conversely, if it
was expected, a number of moves in model would be introduced until the process
model, modeled as a Petri net, reaches a marking that allows mL to occur (and,
thus, a move in both can be appended). Different cost profiles account for the
probabilities computed from historical logging data differently. In Section 4, we
evaluate the cost profiles in Eq. 1 with different combinations of event logs and
process models. The purpose is to verify whether a cost profile universally works
better than the others. The following two definitions describe how to compute
the probabilities required by Def. 5. For reliability, we only consider the subset
of traces Lfit of the original event log L that comply with the process model.

Definition 6 (Probability that an activity occurs). Let L be an event log
and Lfit ⊆ L be the subset of traces that comply with a given process model
represented by a Petri net N = (P, T, F,A, `,mi,mf). The probability that an
activity a ∈ A occurs after executing σ with state-representation function abst is
the ratio between number of traces in Lfit in which a is executed after reaching
state abst(σ) and the total number of traces in Lfit that reach state abst(σ):

Pabst(a occurs after σ) =
|{σ′∈Lfit : ∃σ′′∈prefix(σ′). abst(σ′′)=abst(σ)∧σ′′⊕〈a〉∈prefix(σ′)}|

|{σ′∈Lfit : ∃σ′′∈prefix(σ′). abst(σ′′)=abst(σ)}|
(3)

Definition 7 (Probability that an activity never eventually occurs).
Let L be an event log and Lfit ⊆ L be the subset of traces that comply with
a given process model represented by a Petri net N = (P, T, F,A, `,mi,mf).
The probability that an activity a ∈ A will never eventually occur in a process
execution after executing σ ∈ A∗ with state-representation function abst is the
ratio between the number of traces in Lfit in which a is never eventually executed
after reaching state abst(σ) and the total number of trace in Lfit that reach state
abst(σ):

Pabst(a never eventually occurs after σ) =

|{σ′∈Lfit : ∃σ′′∈prefix(σ′). abst(σ′′)=abst(σ)∧∀σ′′′ σ′′⊕σ′′′⊕〈a′〉∈prefix(σ′)∧a′ 6=a}|
|{σ′∈Lfit : ∃σ′′∈prefix(σ′). abst(σ′′)=abst(σ)}|

(4)

The cost of an alignment is the sum of the cost of all moves in the alignment,
which are computed as described in Definition 5:

Definition 8 (Cost of an alignment). The cost of alignment γ ∈ Σ∗N with
state-representation function abst is computed as follows:

Kabst(γ ⊕ (mL,mM)) =

{
κabst((mL,mM), 〈〉) γ = 〈〉
κabst((mL,mM), γ) +Kabst(γ) otherwise

(5)

Hereafter, the term most-probable alignment is used to denote any of the
optimal alignments (i.e., with the lowest cost) according to the cost function
given in Definition 8.

3.2 The use of the A-star algorithm to construct alignments

The A-star algorithm [10] aims to find a path in a graph V from a given source
node v0 to any node v ∈ V in a target set. Every node v of graph V is associated
with a cost determined by an evaluation function f(v) = g(v) + h(v), where

– g : V → R+
0 is a function that returns the smallest path cost from v0 to v;

– h : V → R+
0 is an heuristic function that estimates the path cost from v to

its preferred target node.

Function h is said to be admissible if it returns a value that underestimates the
distance of a path from a node v′ to its preferred target node v′′, i.e. g(v′) +
h(v′) ≤ g(v′′). If h is admissible, A-star finds a path that is guaranteed to have
the overall lowest cost.

The A-star algorithm keeps a priority queue of nodes to be visited: higher
priority is given to nodes with lower costs. The algorithm works iteratively: at
each step, the node v with lowest cost is taken from the priority queue. If v
belongs to the target set, the algorithm ends returning node v. Otherwise, v is
expanded: every successors v′ is added to priority queue with a cost f(v′).

We employ A-star to find any of the optimal alignments between a log trace
σL ∈ L and a Petri net N . In order to be able to apply A-star, an opportune
search space needs to be defined. Every node γ of the search space V is associated
to a different alignment that is a prefix of some complete alignment of σL and N .
Since a different alignment is also associated to every search-space node and vice
versa, we use the alignment to refer to the associated state. The source node is
an empty alignment γ0 = 〈〉 and the set of target nodes includes every complete
alignment of σL and N .

Let us denote the length of a sequence σ with ‖σ‖. Given a node/alignment
γ ∈ V , the search-space successors of γ include all alignments γ′ ∈ V obtained
from γ by concatenating exactly one move. Given an alignment γ ∈ V , the cost
of path from the initial node to node γ ∈ V is:

g(γ) = ‖γ |L ‖+K(γ).

where K(γ) is the cost of alignment γ according to Definition 8. It is easy
to check that, given two complete alignments γ′C and γ′′C , K(γ′C) < K(γ′′C) iff
g(γ′C) < g(γ′′C) and K(γ′C) = K(γ′′C) iff g(γ′C) = g(γ′′C). Therefore, an optimal
solution returned by A-star coincides with an optimal alignment. To define a
more efficient and admissible heuristics, we consider term ‖σL‖ in h; this term
does not affect optimality. Given an alignment γ ∈ V , we employ the heuristics:

h(γ) = ‖σL‖ − ‖γ |L ‖.

For alignment γ, the number of steps to add in order to reach a complete align-
ment is lower bounded by the number of execution steps of trace σL that have
not been included yet in the alignment, i.e. ‖σL‖ − ‖γ |L ‖. Since the additional
cost to traverse a single node is at least 1, the cost to reach a target node is at
least h(γ), corresponding to the case where the part of the log trace that still
needs to be included in the alignment perfectly fits.

γ′ =
c s n

c s n︸ ︷︷ ︸
γ

⊕


(l,�) κ

(
(l,�), γ

)
= 1.49

(�, p) κ
(
(�, p), γ

)
= 1.04

(�, a) κ
(
(�, a), γ

)
= 2.04

(�, d) κ
(
(�, d), γ

)
=∞

. . .

Fig. 3: Construction of the alignment of log trace σ2 = 〈c, s, n, l, o〉 and the net in
Fig. 1. Cost of moves are computed with sequence state-representation function,
cost profile f(p) = 1 + log (1/p), and Lfit in Table 1.

Example 3. Consider a log trace σ2 = 〈c, s, n, l, o〉 and the net N in Fig. 1. An
analyst wants to determine the most probable explanations for nonconformity
by constructing the most probable alignment of σ2 and N , based on historical
logging data. In particular, Lfit consists of the traces in Table 1 (the first column
shows the traces, and the second the number of occurrences of a trace in the
history). Assume that the algorithm has constructed an optimal alignment γ of
trace 〈c, s, n〉 ∈ prefix(σ2) and N (left part of Fig. 3). The next event in the
log trace (i.e., l) cannot be replayed in the net. Therefore, the algorithm should
determine which move is the most likely to have occurred. Different moves are
possible; for instance, a move on log for l, a move on model for p, a move on
model for t, etc. The algorithm computes the cost for these moves using Eq. 5
(right part of Fig. 3). As move on model (�, p) is the move with the least cost
(and no other alignments have lower cost), alignment γ′ = γ⊕ (�, p) is selected
for the next iteration. It is worth noting that activity d never occurs after 〈c, s, n〉
in Lfit ; consequently, the cost of move (�, d) is equal to ∞.

4 Implementation and Experiments

We have implemented our approach for history-based construction of alignments
as a plugin of the open-source ProM framework (http://www.promtools.org).
The plug-in takes as inputs a process model and two event logs. It computes
the most probable alignments for each trace in the first event log based on the
frequency of the traces in the second event log (historical logging data).

To assess the practical feasibility and accuracy of the approach, we performed
a number of experiments using both synthetic and real-life logs. In the experi-
ments with synthetic logs, we assumed that the execution of an activity depends
on the activities that were performed in the past. In the experiments with real-
life logs, we tested if this assumption holds in real applications. Accordingly, the
real-life logs were used as historical logging data. To evaluate the approach, we
artificially added noise to the traces used for the experiments. This was necessary
to assess the ability of the approach to reconstruct the original traces.

4.1 Synthetic Data

For the experiments with synthetic data, we used the process for handling credit
requests in [14]. Based on this model, we generated 10000 traces consisting of

Table 2: Results of experiments on synthetic data. CA indicates the percentage of
correct alignments, and LD indicates the overall Levenshtein distance between
the original traces and the projection of the alignments over the process. For
comparison with existing approaches, the standard cost function as defined in [4]
was used. In bold the best result is highlighted for each amount of noise.

1/p 1/
√
p 1 + log(1/p) Existing

Seq Multi-set Set Seq Multi-set Set Seq Multi-set Set approach
Noise CA LD CA LD CA LD CA LD CA LD CA LD CA LD CA LD CA LD CA LD
10% 93 259 93 258 87 514 95 164 95 164 88 430 95 153 95 154 88 409 92 233
20% 85 569 85 561 78 968 87 426 87 431 79 852 87 410 87 415 79 823 83 534
30% 74 1084 74 1077 65 1653 76 950 75 963 66 1509 76 944 75 958 67 1474 71 1110
40% 63 1658 62 1659 55 2285 64 1519 64 1537 56 2148 64 1512 64 1535 56 2118 60 1685

69504 events using the CPN Tools (http://cpntools.org). To assess the accu-
racy of the approach, we manipulated 20% of these traces by introducing differ-
ent percentages of noise. In particular, given a trace, we added and removed a
number of activities to/from the trace equal to the same percentage of the trace
length. The other traces were used as historical logging data. We computed the
most probable alignments of the manipulated traces and process model, and
evaluated the ability of the approach to reconstruct the original traces. To this
end, we measured the percentage of correct alignments (i.e., the cases where a
projection of an alignment over the process coincides with the original trace)
and compute the overall Levenshtein distance [12] between the original traces
and the projection of the computed alignments over the process. This string
metric measures the distance between two sequences, i.e. the minimal number
of changes required to transform one sequence into the other. In our setting, it
provides an indication of how much the projection of the computed alignments
over the process is close to the original traces.

We tested our approach with different amounts of noise (i.e., 10%, 20%, 30%
and 40% of the trace length), with different cost profiles (i.e., 1/p, 1/√p, and 1 +
log(1/p)), and with different state-representation functions (i.e., sequence, multi-
set, and set). Moreover, we compared our approach with existing alignment-
based conformance checking techniques. In particular, we used the standard
cost function introduced in [4]. We repeated each experiment five times. Table 2
shows the results where every entry reports the average over the five runs.

The results show that cost profiles 1/√p and 1 + log(1/p) in combination with
sequence and multi-set abstractions are able to better identify what really hap-
pened, i.e. they align the manipulated traces with the corresponding original
traces in more cases (CA). In all cases, cost profile 1 + log(1/p) with sequence
state-representation function provides more accurate diagnostics (LD): even if
log traces are not aligned to the original traces, the projection over the process
of alignments constructed using this cost profile and abstraction are closer to the
original traces. Compared to the cost function used in [4], our approach com-
puted the correct alignment for 4.4% more traces when cost profile 1 + log(1/p)
and sequence state-representation function are used. In particular, our approach
correctly reconstructed the original trace for 18.4% of the traces that were not

Table 3: Results of experiments on real-life data. Notation analogous to Table 2.
1/p 1/

√
p 1 + log(1/p) Existing

Seq Multi-set Set Seq Multi-set Set Seq Multi-set Set approach
Noise CA LD CA LD CA LD CA LD CA LD CA LD CA LD CA LD CA LD CA LD
10% 99 397 99 397 99 415 99 384 99 389 99 408 99 366 99 371 99 389 98 1274
20% 99 585 99 585 99 602 99 570 99 575 99 592 99 554 99 559 99 576 97 1448
30% 89 3349 89 3349 89 3371 89 3300 89 3341 89 3362 89 3281 89 3322 89 3344 87 4284
40% 76 9160 76 9160 75 9238 76 9091 76 9152 75 9230 76 9103 75 9165 75 9243 74 9861

correctly reconstructed using the cost function used in [4]. Moreover, an analysis
of LD shows that, on average, the traces reconstructed using our approach have
0.37 deviations, while the traces reconstructed using the cost function used in [4]
have 0.45 deviation. This corresponds to an improvement of LD of about 15.2%.

4.2 Real-life Logs

To evaluate the applicability of our approach to real-life scenarios, we used an
event log obtained from a fine management system of the Italian police [14]. The
process model in form of Petri net is presented in Fig. 1. We extracted a log
consisting of 142408 traces and 527549 events, where all traces are conforming
with the net. To these traces, we applied the same methodology used for the
experiments reported in Section 4.1. We repeated the experiments five times.
Table 3 shows the results where every entry reports the average over five runs.

The results confirm that cost profiles 1/√p and 1+log(1/p) in combination with
sequence and multi-set state-representation functions provide the more accurate
diagnostics (both CA and LD). Moreover, the results show that our approach
(regardless of the used cost profile and state-representation function) performs
better than the cost function in [4] on real-life logs. In particular, using sequence
state-representation function and cost profile 1 + log(1/p), our approaches com-
puted the correct alignment for 1.8% more traces than what the cost function in
[4] did. In particular, our approach correctly reconstructed the original trace for
19.3% of the traces that were not correctly reconstructed using the cost function
used in [4]. Moreover, our approach improves LD by 21.1% compared to the
cost function used in [4]. Such an improvement shows that when the original
trace is not reconstructed correctly, our approach returns an explanation that is
significantly closer to the actual explanation.

5 Discussion

The A-star algorithm requires a cost function to penalize nonconformity. In our
experiments, we have considered a number of cost profiles to compute the cost
of moves on log/model based on the probability of a given activity to occur in
historical logging data. The selection of the cost profile has a significant impact
on the results as they penalize deviations differently. For instance, cost profile
1/p penalizes less probable moves much more than 1 + log(1/p). To illustrate

a1 //�������� // a2 //�������� // · · · //�������� // a50

AAA�������� // x //��������99% =={{{

1% **UUUUUUUUUU �������� // y //��������
b

22eeeeeeeeeeeeeeee

(a) Process model

γ1 =
x � � � � y

x a1 a2 ... a50 y

γ2 =
x � y

x b y

(b) Alignments

Fig. 4: Process model including two paths formed by a (sub)sequence of 50 activ-
ities and 1 activity respectively. The first path is executed in 99% of the cases;
the second in 1% of the cases. γ1 and γ2 are two possible alignments of trace
σ = 〈x, y〉 and the process model.

this, consider a trace σ = 〈x, y〉 and the process model in Fig. 4a. Two possible
alignments, namely γ1 and γ2, are conceivable (Fig. 4b). γ1 contains a large
number of deviations compared to γ2 (50 moves on log vs. 1 move on log). The
use of cost profile 1/p yields γ1 as the most probable alignment, while the use of
cost profile 1 + log(1/p) yields γ2 as the most probable alignment. Tables 2 and 3
show that cost profile 1 + log(1/p) usually provides more accurate results. Cost
profile 1/p penalizes less probable moves excessively, and thus tends to construct
alignments with more frequent traces in the historical logging data even if those
alignments contain a significantly larger number of deviations. Our experiments
suggest that the construction of the most probable alignments requires a trade-
off between the frequency of the traces in historical logging data and the number
of deviations in alignments, which is better captured by cost profile 1 + log(1/p).

Different state-representation functions can be used to characterize the state
of a process execution. In this work, we have considered three state-representation
functions: sequence, multi-set, and set. The experiments show that in general the
sequence abstraction produces more accurate results compared to the other ab-
stractions. The set abstraction provides the least accurate results, especially
when applied to the process for handling credit requests (Table 2). The main
reason is that this abstraction is not able to accurately characterize the state,
especially in presence of loops: after each loop iteration the process execution
yields the same state. Therefore, the cost function constructed using the set ab-
straction is not able to account for the fact that the probability of executing
certain activities can increase after every loop iteration, thus leading to align-
ments in which loops are not captured properly.

To conclude, the experiments show that our technique tends to build align-
ments that give better explanations of deviations. It is easy to see that, when
nonconformity is injected in fitting traces and alignments are subsequently built,
the resulting alignments yield perfect explanations if the respective process pro-
jections coincide with the respective fitting traces before the injections of non-
conformity. Tables 2 and 3 have shown that, basing the construction of the cost
function on the analysis of historical logging data our technique tends to build
alignments whose process projection is closer to the original fitting traces and,
hence, the explanations of deviations are closer to the correct ones.

6 Related Work and Conclusions

In process mining, a number of approaches have been proposed to check confor-
mance of process models and the actual behavior recorded in event logs. Some
approaches [7,8,13,15,16] check conformance by verifying whether traces satisfies
rules encoding properties expected from the process. Petkovic̀ et al. [17] verify
whether a log trace is a valid trace of the transition system generated by the pro-
cess model. Token-based approaches [6,18] use the number of missing and added
tokens obtained by replaying traces over the process model to measure the con-
formance between the log and the process. However, these approaches only give
a boolean answers diagnosing whether traces conform to a process model or not.
When they are able to provide diagnostic information, such information is often
imprecise. For instance, token-based approaches may allow behavior that is not
allowed by the model due to the used heuristics and thus may provide incorrect
diagnostic information.

Recently, the construction of alignments has been proposed as a robust ap-
proach for checking the conformance of event logs with a given process model [4].
Alignments have proven to be very powerful artifacts to perform conformance
checking. By constructing alignments, analysts can be provided with richer and
more accurate diagnostic information. In fact, alignments are also used as the
main enablers for a number of techniques for process analytics, auditing, and
process improvement, such as for performance analysis [2], privacy compliance
[5] and process-model repairing [11].

To our knowledge, the main problem of existing techniques for constructing
optimal alignments is related to the fact that process analysts need to provide
a function which associates a cost to every possible deviation. These cost func-
tions are only based on human judgment and, hence, prone to imperfections.
If these techniques are fed with imprecise cost functions, they create imperfect
alignments, which ultimately leads to unlikely or, even, incorrect diagnostics.

In this paper, we have proposed a different approach where the cost function
is automatically computed based on real facts: historical logging data recorded in
event logs. In particular, the cost function is computed based on the probability
of activities to be executed or not in a certain state (representing which activities
have been executed and their order). Experiments have shown that, indeed, our
approach can provide more probable explanations of nonconformity of process
executions, if compared with existing techniques.

We acknowledge that the evaluation is far from being completed. We aim
to perform more extensive experiments to verify whether certain cost-profile
functions provide more probable alignments than others or, at least, to give
some guidelines to determine in which settings a given cost-profile function is
preferable. We also aim to develop a technique that, given a model and log, allow
for (semi-)automatic tuning of the cost-profile function and state abstraction.

In this paper, we only considered the control-flow, i.e. the name of the activ-
ities and their ordering, to construct the cost function and, hence, to compute
the most probable alignment. However, the choice in a process execution is of-
ten driven by other aspects. For instance, when instances are running late, the

execution of certain fast activities are more probable; or, if a certain process at-
tribute takes on a given value, certain activities are more likely to be executed.
We expect that our approach can be significantly improved if the other business
process perspectives (i.e., data, time and resources) are taken into account.

References

1. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhance-
ment of Business Processes. Springer (2011)

2. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on
process models for conformance checking and performance analysis. Data Min.
Knowl. Discov. 2(2), 182–192 (2012)

3. van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on
process mining. Information Systems 36(2), 450–475 (2011)

4. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Memory-efficient align-
ment of observed and modeled behavior. BPM Center Report 03-03, BPMcen-
ter.org (2013)

5. Adriansyah, A., van Dongen, B.F., Zannone, N.: Privacy analysis of user behavior
using alignments. it–Information Technology 55(6), 255–260 (2013)

6. Banescu, S., Petkovic, M., Zannone, N.: Measuring privacy compliance using fitness
metrics. In: Business Process Management. pp. 114–119. LNCS 7481, Springer
(2012)

7. Borrego, D., Barba, I.: Conformance checking and diagnosis for declarative busi-
ness process models in data-aware scenarios. Expert Syst. Appl. 41(11), 5340–5352
(2014)

8. Caron, F., Vanthienen, J., Baesens, B.: Comprehensive rule-based compliance
checking and risk management with process mining. Decision Support Systems
54(3), 1357–1369 (2013)

9. Cook, J.E., Wolf, A.L.: Software process validation: quantitatively measuring the
correspondence of a process to a model. TOSEM 8(2), 147–176 (1999)

10. Dechter, R., Pearl, J.: Generalized best-first search strategies and the optimality
of A*. Journal of the ACM 32, 505–536 (1985)

11. Fahland, D., van der Aalst, W.M.P.: Model repair - aligning process models to
reality. Information Systems (2014)

12. Levenshtein, V.: Binary codes capable of correcting deletions, insertions, and re-
versals. Soviet Physics Doklady 10(8), 707–710 (1966)

13. Ly, L.T., Rinderle-Ma, S., Göser, K., Dadam, P.: On enabling integrated process
compliance with semantic constraints in process management systems - require-
ments, challenges, solutions. Information Systems Frontiers 14(2), 195–219 (2012)

14. Mannhardt, F., de Leoni, M., van der Aalst, W.M.P.: Balanced multi-perspective
checking of process conformance. BPM Center Report 14-08, BPMcenter.org (2014)

15. de Medeiros, A.K.A., van der Aalst. Wil M. P., Pedrinaci, C.: Semantic Process
Mining Tools: Core Building Blocks. In: Proc. ECIS. pp. 1953–1964. AIS (2008)

16. Montali, M.: Specification and Verification of Declarative Open Interaction Models
- A Logic-Based Approach. LNBIP 56, Springer (2010)

17. Petković, M., Prandi, D., Zannone, N.: Purpose control: Did you process the data
for the intended purpose? In: Secure Data Management. pp. 145–168. LNCS 6933,
Springer (2011)

18. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Information Systems 33(1), 64–95 (2008)

