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Nonparticulate continuum descriptions allow for computationally e±cient modeling of sus-

pension °ows at scales that are inaccessible to more detailed particulate approaches. It is well
known that the presence of particles in°uences the e®ective viscosity of a suspension and that

this e®ect has thus to be accounted for in macroscopic continuum models. The present paper

aims at developing a nonparticulate model that reproduces not only the rheology but also the

cell-induced velocity °uctuations, responsible for enhanced di®usivity. The results are obtained
from a coarse-grained blood model based on the lattice Boltzmann (LB) method. The bench-

mark system comprises a °ow between two parallel plates with one of them featuring a smooth

obstacle imitating a stenosis. Appropriate boundary conditions are developed for the particulate
model to generate equilibrated cell con¯gurations mimicking an in¯nite channel in front of the

stenosis. The averaged °ow ¯eld in the bulk of the channel can be described well by a non-

particulate simulation with a matched viscosity. We show that our proposed phenomenological

model is capable to reproduce many features of the velocity °uctuations.

Keywords: E®ective di®usion; continuous blood modeling; channel °ow; boundary conditions;

lattice Boltzmann method.

PACS Nos.: 82.70.Kj, 87.19.U-, 47.11.Qr.

1. Introduction

The presence of particles in a °owing suspension causes macroscopically relevant

e®ects via small disturbances of the local velocity of the suspending medium even for

laminar homogeneous °ows. This e®ect can augment the transport through the

suspension.1,2 An important example is blood which is a suspension mostly consisting
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of red blood cells (RBCs) in blood plasma. Of special interest for medical applications

is the transport of plasma molecules which due to their dimensions can be assumed to

follow the streamlines of the °ow and which play a crucial role in blood clotting

phenomena. While advances in the development of coarse-grained blood models have

been made, simulations of realistic vessel geometries at particulate resolution are still

computationally expensive.3,4 Therefore, continuous descriptions of blood are ap-

plied frequently to study °ows at large scales, compared to single cells, eventually

supported by a continuous description of the e®ective transport of cellular and

molecular blood constituents.5–7

The present work aims instead at developing a continuous description of the °uid

velocity °uctuations and its comparison with large-scale particulate simulations in

an in¯nite channel with a single constriction. A similar geometry is modeled, for

example, in Ref. 8. De¯ning appropriate boundary conditions for the inlet and outlet

is not trivial in the case of suspensions. Section 2 brie°y introduces the coarse-grained

particulate blood model3 employed here. Section 3 contains a description of the

required boundary conditions in a parallel implementation. Section 4 deals with the

reconstruction of the °ow ¯eld and of the plasma velocity °uctuations in a non-

particulate simulation. Conclusions are drawn in Sec. 5.

2. Simulation Method

In an earlier work, a simpli¯ed particulate blood model was developed.3 RBCs are

described as oblate spheroids coupled to a lattice Boltzmann (LB) method9 that

accounts for the blood plasma. One lattice spacing resembles 0.667�m, one LB time-

step 6:80� 10�8 s. All parameters are chosen as in Ref. 3. A pair of mutual forces

Fþ ¼ 2n eq
r ð��;u ¼ 0Þcr and F� ¼ �Fþ ð1Þ

at lattice links connecting two cells corrects for the lack of °uid pressure at cell–

cell interfaces. n eq
r ð��;uÞ stands for the LB equilibrium distribution function for

density �� and velocity u of the °uid and cr for the respective lattice vector. The

present simulations are the ¯rst application of this model to a situation where ���
due to the drop of the pressure P induced by the stenosis ��� the °uid density

� � P varies macroscopically across a system with many cells. Under these con-

ditions, the global average �� in Eq. (1) has to be replaced by a local average

ð��i þ ��jÞ=2 between the cells i and j to prevent arti¯cial attraction or repulsion. ���

is an average over all °uid sites at the surface of cell �. Further, ��i is used as the

new °uid density wherever a lattice site occupied by cell i before is freed and to

compute Eq. (1) at direct cell-wall links. Sometimes a slight mass drift is observed

whereas a constant density �� makes signi¯cant spatial variations of � impossible in

the presence of many cells. Therefore, all densities are rescaled periodically to keep

the global average density constant. In the simulations below, the required

rescaling factor di®ers by less than 10�3 from unity if rescaling is performed every

1000 time-steps.
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Since Eq. (1) does not account for dissipation at cell–cell contacts, a further

adaption is made: the force on cell i resulting from a link to a site of cell j is computed

not from Eq. (1) but assuming °uid at distribution n eq
r ðð��i þ ��jÞ=2;ujÞ at the site

belonging to j. uj is j's local velocity half-way along the link. The resulting forces on

two cells remain opposite but equal up to ¯rst-order in velocity. Similarly, for cell-

wall links, a °uid distribution n eq
r ð��i;0Þ is assumed at the wall site. At a cell volume

fraction of � � 0:43, the new contact rule leads to an enhancement of the relative

suspension viscosity �r by 0.5 to 1 or about 10% to 30% for shear rates

50 s�1 < �
:
< 2� 103 s�1. Accurate sub-lattice corrections for the hydrodynamic

interactions of rigid spheroidal particles near contact have been presented recently.10

3. Periodic In°ow Boundary Conditions

The transition length that a suspension needs to °ow through a channel until a

macroscopically stable state is achieved is known to be particularly large because of

the time required for the particles to re-distribute in response to the laterally inho-

mogeneous °ow.11 Since an appropriately long simulation volume is computationally

too expensive, one could close the geometry in the °ow direction with periodic

boundary conditions and simulate for times long enough that each cell and each

volume of °uid passes the system several times. There is the concrete risk, however,

that because of the same e®ect11 the suspension would retain a memory of the

stenosis and the simulation would describe not the °ow through a stenosed channel

but, in fact, the °ow through an in¯nite series of stenoses. Appropriate boundary

conditions are required that provide the cell con¯gurations expected for a long

channel without stenosis. The con¯guration expected for a long channel, however, is

not known a priori. A solution is to develop boundary conditions that allows to

independently simulate a periodic sub-volume resembling an in¯nitely long channel

while the resulting con¯gurations are fed into the inlet of the volume that contains

the stenosis. The cells leaving the stenosed sub-volume are then discarded.

The full procedure is sketched in Fig. 1. Copies of model cells in the periodic sub-

volume are generated as soon as they approach the periodic boundary. While the

copied cells are entering the nonperiodic volume, their motion is still prescribed by

the motion of the original cells. Once the cells in the nonperiodic sub-volume have

reached a longitudinal position about one cell diameter away from the entrance layer,

the connection to the original cells is dismissed and the copied cells interact with the

°uid and the surrounding cells as free particles. Before a cell in the nonperiodic sub-

volume reaches the last lattice layer, the sites occupied by it are replaced with °uid

initialized according to the local rigid body motion of the cell and the average °uid

density ��i. On-site boundary conditions12 impose the density � and the mass °ow �u

obtained for every site of the ¯rst lattice layer of the periodic sub-volume on the ¯rst

and the last layer of the nonperiodic sub-volume, respectively. If, in the case of the

mass °ow, the source position is occupied by a model cell, an estimate is made based

on its rigid body motion and the average °uid density.
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In a parallel implementation, additional communication in the longitudinal di-

rection is required with respect to a conventional three-dimensional domain de-

composition scheme with periodically closed topology. The necessary communication

steps are sketched exemplarily for the case of a two-dimensional decomposition into

5� 2 computational domains in Fig. 2. First, two-way communication is needed to

establish the link to close the ¯rst sub-volume of the system periodically. Second, the

density and mass °ow need to be transferred to the processes holding the ¯rst and the

last lattice layer of the remaining nonperiodic volume. Similarly, the cell velocities

from the beginning of the periodic sub-volume have to be sent to the beginning of the

nonperiodic sub-volume. The last step might involve communication to more than

one destination process if the end of the entrance region (drawn as dashed line in

Fig. 2(b)) lies in another domain than the sub-volume interface.

The simulations are driven by a volume force gz in z-direction acting on every

site within the periodic sub-volume. At sites occupied by a cell, the force is

incorporated by the cell locally. gz is updated to a new value g�
z ¼ gzM

�
z =Mz at

empirically determined time intervals in order to steer the mass °ow Mz toward

an analytically estimated value M �
z for which the maximum °ow velocity is close

(a) (b)

Fig. 2. (Color online) Communication requirements of the boundary conditions. Here, an example is

shown for the case of a decomposition into 5� 2 domains. Arrows indicate the direction along which
information is sent. For (a) the plasma, the on-site boundary conditions require data from the periodic sub-

volume which itself needs to be closed periodically. For (b) the cells, communication is required for the

periodic boundaries as well and to prescribe the cell motion in the nonperiodic entrance region.

Fig. 1. (Color online) Schematic outline of the boundary conditions: °uid density � and mass °ow �u are

copied from the ¯rst lattice layer of the periodic sub-volume to the ¯rst and last layer of the nonperiodic

volume, respectively. Translational and rotational cell velocities v and ! of original periodic cells are
imposed on copies in the nonperiodic inlet region. The dashed lines indicate the end of this region and the

start of the out°ow region where cells are replaced with °uid.
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to 0.1 in lattice units as a compromise between short simulation runs and the

stability of the LB method. The resulting quotient of the maximum velocity umax

and the half-width of the opening of the constriction, an estimate for the average

shear rate, amounts to �5� 104 s�1 in physical units. Though such shear rates, as

the maximum °ow velocity umax � 1m/s, under physiological conditions are not

known for vessels with a diameter of only 85�m (see Ref. 13), the geometry can

be understood as a very rough simpli¯cation of a real pathological stenosis and its

partially curved geometry provides an interesting and well-de¯ned test case. The

Reynolds number is Re ¼ �Humax=ð�r�0Þ � 9 with the plasma viscosity �0 when

de¯ned using the viscosity of the blood model for high shear rates as obtained in

separate simulations.

4. Reconstruction of Flow Velocities and Their Fluctuations

The following study is performed for °ow between two planar walls at a distance of

85�m in the x-direction and a length of 341�m in the z-direction. In the y-direction,

the system is periodic with a depth of 85�m. The lower wall carries a sinusoidal

\stenosis" with a maximum height H ¼ 42�m. A mid-link bounce-back scheme

ensures no-slip conditions at all walls. Figure 3 shows an equilibrated snapshot of

both the periodic and the nonperiodic sub-volume. The volume fraction � ¼ 0:4

leads to a total of �104 cells. After the constriction, a cell-free region develops in

which recirculation is found. The °ow velocity in z-direction huzi is reproduced in a

continuous simulation without cells but with a viscosity matched to the high-shear

viscosity of the blood model at � � 0:4 which is achieved with an LB relaxation time

of � ¼ 2:15. The averaging \h� � � i" is performed over equilibrated samples at di®erent

times and the periodic y-direction.

Figure 4 compares the velocity ¯elds huzðz;xÞi from the particulate and u¼
z ðz;xÞ

from the nonparticulate simulation. Also the absolute and relative di®erences u�
z ¼

u¼
z � huzi and ju�

z =u
þ
z j with uþ

z ¼ u¼
z þ huzi are plotted. Of course, the continuous

model does not take into account the �-induced deviations of �r close to the solid

walls. Thus, u¼
z is too low in the otherwise cell-free boundary layers and consequently

too high in the central region of the channel since the °ow rate is kept constant. Still,

the macroscopic features of the velocity ¯eld are reproduced relatively well. The

relative di®erence is less than 10% in the bulk region but higher than 50% close to the

walls and particularly in the recirculation zone which has two reasons: the low

velocities there, which make small absolute di®erences more visible, and cell-deple-

tion e®ects.

Fig. 3. Snapshot of both sub-volumes after equilibration at a cell volume fraction of � ¼ 0:4.
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Fluctuations of the °ow velocity u are quanti¯ed by the standard deviation

V ¼ stdev u ¼
X

�¼x;y;z

ðhu2
�i � hu�i2Þ

" #
1=2

: ð2Þ

The lateral pro¯le V ðxÞ distant from the constriction is plotted in Fig. 5. V

reaches a maximum about one cell diameter away from the wall but does not

increase further for shorter distances. Directly at the wall, no °uid is present and

V is zero. In the center of the channel, V approximates a constant value of about

one third of its maximum. In between, a roughly linear increase toward the wall is

observed.

Assuming that in the bulk of the suspension the time scale relevant for V is the

inverse undisturbed shear rate �
:�1, which at scales much larger than single cells can

0.00
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Fig. 5. Lateral pro¯le of the °uid velocity °uctuations V without constriction. Shown is half of the

channel cross-section with the center at the right. Simulation data is compared to the dimensional estimate

V ¼ de¯ned in Eq. (3) based on the shear rate in a continuous simulation.
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Fig. 4. Comparison of (a) huzi at � ¼ 0:4 and (b) u¼
z at � ¼ 0 with matched viscosity. (c) and (d) show

the absolute and relative di®erences.
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easily be obtained from a nonparticulate simulation, and that the relevant length

scale must be of the order of the size of the cells, a dimensional estimate

V ¼ ’ �
:
Rjj ð3Þ

for V induced by cells with shorter half-axes Rjj is made. Also this estimate is plotted

in Fig. 5, where the shear rate is obtained numerically from the continuous simulation

as the derivative �
: ¼ @xu

¼
z . For a Poiseuille °ow, �

:
is a linear function of the lateral

position and reaches its maximum at the wall. The decrease directly at the wall visible

in Fig. 5 is caused by the absence of °uid at the wall itself and by artefacts of the

numerical derivation. Equation (3) reproduces the order of magnitude of the plasma

velocity °uctuations correctly with an over-prediction of less than a factor two in the

largest part of the plot. Also the linear dependence on the lateral position is observed

for V as well, at least in parts of the curve. The two regions, where deviations from the

linear shape are visible, have a width of about one cell diameter and can indeed be

attributed to cell e®ects: Since cells cannot pass the vessel wall, the cell concentration

immediately near to the wall is reduced and the motion of cells close to the wall is

hindered. Both e®ects reduce cell-induced velocity °uctuations. On the other hand,

even the plasma at the channel center, where the averaged shear rate vanishes, is

disturbed by nearby cells that at their o®-center position experience nonzero shear.

At last the applicability of the model to the full geometry with the stenosis is

demonstrated. This requires the scalar shear rate to be determined in an isotropic

way as �
: ¼ ffiffiffiffiffiffiffiffiffi

2DII

p
, similarly as in Ref. 14 based on the second invariant DII ¼

TrS 2
�� � Tr2S�� of the numerically computed strain rate tensor S�� ¼ ð@�u

¼
� þ

@�u
¼
� Þ=2 assuming incompressibilityTrS�� ¼ 0where both � and � stand for x and z.

For the whole geometry, Fig. 6 compares the resulting V ¼ to V . While, as already
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Fig. 6. Comparison of (a) V as obtained from a particulate simulation at � ¼ 0:4 and (b) the recon-
struction V ¼ de¯ned in Eq. (3) based on the isotropic shear rate obtained from a nonparticulate simulation

(� ¼ 0) with matched viscosity. (c) and (d) show the absolute and relative di®erences V � ¼ V ¼ � V and

jV �=V þj with V þ ¼ V ¼ þ V .
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in Fig. 5, the agreement is not perfect, many features of V are reproduced qualita-

tively and it has to be pointed out that the correct order of magnitude is well

captured without ¯tting parameters. As expected from Fig. 5, the absolute devia-

tions are strongest at the walls and at the center of the channel, especially at the

constriction where �
:
is highest. Still, the relative errors are below 50% in large parts

of the geometry.

5. Conclusions

Boundary conditions suitable for e±cient modeling of equilibrated suspension °ow

through an in¯nite channel followed by a single stenosis were implemented in a

parallel LB code. The time-averaged °ow ¯eld produced by a coarse-grained par-

ticulate blood model was reproduced by a nonparticulate model with a matched

viscosity. Moreover, the cell-induced plasma velocity °uctuations in the bulk of the

suspension can be well understood from a simple dimensional argument and therefore

may be reproduced qualitatively from the nonparticulate simulation.

A continuous model for blood can be run at reduced resolution and therefore

allows to simulate °ows in larger geometries more e±ciently, stretching to arteries

or veins.5,6 The estimate of Eq. (3) would allow to equip such models with a

qualitative prediction of the RBC-induced plasma velocity °uctuations. The

combined model might be useful for studying transport phenomena in geometries

inaccessible to the more expensive particulate blood models. In view of these

applications the deviations of the continuous model at cell-depleted boundary

layers are no serious limitation since these scales would not be resolved in a con-

tinuous simulation at a practical spatial resolution. A next important step would be

to connect the velocity °uctuations to an e®ective di®usivity for scalar transport in

the medium.
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