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Two parallel insurance lines with simultaneous arrivals
and risks correlated with inter-arrival times

E.S. Badila1, O.J. Boxma2 and J.A.C. Resing2

Abstract: We investigate an insurance risk model that consists of two reserves which receive
income at fixed rates. Claims are being requested at random epochs from each reserve and the
interclaim times are generally distributed. The two reserves are coupled in the sense that at a
claim arrival epoch, claims are being requested from both reserves and the amounts requested are
correlated. In addition, the claim amounts are correlated with the time elapsed since the previous
claim arrival.
We focus on the probability that this bivariate reserve process survives indefinitely. The infinite-
horizon survival problem is shown to be related to the problem of determining the equilibrium
distribution of a random walk with vector-valued increments with ’reflecting’ boundary. This
reflected random walk is actually the waiting time process in a queueing system dual to the
bivariate ruin process.
Under assumptions on the arrival process and the claim amounts, and using Wiener-Hopf factor-
ization with one parameter, we explicitly determine the Laplace-Stieltjes transform of the survival
function, c.q., the two-dimensional equilibrium waiting time distribution.
Finally, the bivariate transforms are evaluated for some examples, including for proportional
reinsurance, and the bivariate ruin functions are numerically calculated using an efficient inversion
scheme.

Keywords: insurance risk, multivariate ruin probability, reinsurance, dependence, duality, par-
allel queues, bivariate waiting time.

2000 Mathematics Subject Classification. Primary 91B30, 60K25.

1. Introduction

We study a two-dimensional ruin problem for a bivariate risk reserve process in which claims are
simultaneously requested from both reserves. The amounts of two simultaneously arriving claims
may be correlated, and may also be correlated with the time elapsed since the previous claim
arrival. Under assumptions on the arrival process and the claim sizes, we explicitly determine the
Laplace-Stieltjes transform (LST) of the survival function.

Studies of multidimensional risk reserve processes are scarce in the insurance literature, although
results about risk measures related to such models are highly relevant both from a theoretical and
a practitioner’s perspective. Multivariate ruin problems are relevant because they give insight into
the behaviour of risk measures under various types of correlations between the insurance lines. One
example is presented by multiple insurance lines within the same company which are interacting
with each other as they evolve in time, via, say, coupled income rates. Another typical example
is an umbrella type of insurance model, where a claim occurrence event generates multiple types
of claims which may be correlated, and each type i claim is paid from its corresponding reserve
R(i), such as car insurance together with health insurance or insurance against earthquakes. Yet
another class of models is related to reinsurance problems, where a claim is shared between the
insurer and one or more reinsurers.

1Supported by Project 613.001.017 of the Netherlands Organisation for Scientific Research (NWO)
2Supported by the IAP BESTCOM Project funded by the Belgian government
E-mail addresses: e.s.badila@tue.nl, o.j.boxma@tue.nl, resing@win.tue.nl.
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In the existing risk and insurance literature, there are not many approaches towards analyzing
such complicated multidimensional models. A first attempt to assess multivariate risk measures
can be found in the paper of Sundt [16] about developing multivariate Panjer recursions which are
then used to compute the distribution of the aggregate claim process, assuming simultaneous claim
events and discrete claim sizes. Other approaches are deriving integro-differential equations for
the various measures of risk and then iterating these equations to find numerical approximations
[8, 12], or computing bounds for the different types of ruin probabilities that can occur in a setting
where more than one insurance line is considered (see [7] which considers multivariate phase-type
claims). It is worth mentioning that very few papers (like [2], [4] and [6]), analytically determine,
e.g., the ruin probability for insurance models with more than one reserve.

In an attempt to solve the integro-differential equations that arise from such models, Chan et
al. [8] derive a so called ’boundary value problem’ of a Riemann-Hilbert type for the bivariate
Laplace transform of the joint survival function (see [6] for details about such problems arising
in the context of risk and queueing theory and the book [10] for an extended analysis of similar
models in queueing). However, Chan et al. [8] do not solve this functional equation for the Laplace
transform. The law of the bivariate reserve process usually considered in the above mentioned
works is that of a compound Poisson process with vector-valued jumps supported on the negative
quadrant in R2, conditioned to start at some positive reserve, and linearly drifting along a direction
vector that belongs to the positive quadrant. In [6] a similar functional equation is taken as a
departure point, and it is explained how one can find transforms of ruin related performance
measures via solutions of the above mentioned boundary value problems. It is also shown that
the boundary value problem has an explicit solution in terms of transforms, if the claim sizes are
ordered. A special, important case is the setting of proportional reinsurance, which was studied
in Avram et al. [2], [3]. There it is assumed that there is a single arrival process, and the claims
are proportionally split among two reserves. In this case, the two-dimensional exit (ruin) problem
becomes a one-dimensional first-passage problem above a piece-wise linear barrier. Badescu et
al. [4] have extended this model by allowing a dedicated arrival stream of claims into only one of
the insurance lines. They show that the transform of the time to ruin of at least one of the reserve
processes can be derived using similar ideas as in [2].

The approach we take in this paper generalizes ideas in [5] and [6], and will allow us to extend
those two studies. In Section 3 we derive a similar functional equation as in [6] for the survival
function related to a 2-dimensional reserve process, but unlike [6] we do not assume that the
claim intervals are exponentially distributed. Furthermore we assume the claim size vector to be
correlated with the time elapsed since the previous arrival. Such a correlation is quite natural;
e.g., a claim event that generates very large claims could be subjected to additional administra-
tive/regulatory delays. The type of correlation between the inter-arrival time and the vector of
claim sizes is an extension to two dimensions of the dependence structure studied in [5] for a gener-
alized Sparre-Andersen model. It involves making a rationality assumption regarding the trivariate
LST of interarrival time and claim size vector (Assumption 2.1). In addition, we also make the
assumption that the claim sizes are a.s. ordered (Assumption 2.2). Under these assumptions,
we obtain our main result: An explicit expression for the (LST of the) two-dimensional survival
function, for a large class of vectors of interclaim times and claim amounts of both reserves.

The paper is organized in the following way. In Section 2 we describe the model and present
the main assumptions we will be working with. Section 3 is dedicated to some general theory for
random walks in the plane; we show a useful relation between the two-dimensional risk reserve
process and a version of the random walk which has the boundary of the nonnegative quadrant
in R2 as an impenetrable barrier. This relation also makes it clear that determining the survival
function is equivalent with determining the two-dimensional waiting time distribution in a dual
two-queue two-server queueing model with simultaneous arrivals of customers at both queues.
With the help of the random walk/queueing process we derive, in Section 4, a stochastic recursion
for the LST of the finite horizon survival function. In Section 5 we resolve the stationary version
of this stochastic recursion, Formula (5.1). The key tool used is a one-parameter Wiener-Hopf
factorization of the bivariate kernel appearing in Equation (5.1). More precisely, the Wiener-Hopf
factors will depend on one parameter, which is the first argument of that bivariate kernel; see
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Proposition 2 in Section 5. The main result, Theorem 2, gives the LST of the survival function,
or equivalently the stationary distribution of the waiting time/reflected random walk inside the
positive quadrant (see also Remark 2).

In Section 6 we explain how to calculate the transform obtained in Theorem 2 for some exam-
ples, and we numerically calculate the ruin functions/waiting time distributions using an efficient
inversion algorithm of den Iseger [11]. Finally we also point out that the numerical results sug-
gest that the ruin functions appear to be stochastically ordered for various types of correlations
between inter-arrival times and claim sizes.

2. Model description

Let us begin with the general assumptions on the two reserves. The reserves start with non-
negative initial capital (u(1), u(2)); as long as there are no arrivals, the reserves increase linearly

with positive rates (c(1), c(2)). At the nth claim arrival epoch, claim sizes B
(1)
n and B

(2)
n are

respectively requested from each reserve. The time between the (n− 1)th and nth claim arrival is

denoted by An. The sequence {An, B(1)
n , B

(2)
n }n≥1, is assumed to be an i.i.d. sequence, but within

a triple, (An, B
(1)
n , B

(2)
n ) are allowed to be correlated. We will use A, B(1), B(2) respectively for

the generic inter-arrival time and claim sizes. In the above-described very general set-up, the
following assumption will allow us to explicitly determine the ruin/survival probabilities by using
Wiener-Hopf factorization:

Assumption 2.1 (On the joint transform of A, B(1), B(2)). The triple transform

H(q0, q1, q2) := Ee−q0A−q1B
(1)−q2B(2)

(2.1)

is a rational function in qi, i = 0, 1, 2, i.e., it has representation N(q0,q1,q2)
D(q0,q1,q2)

such that N(q0, q1, q2)

and D(q0, q1, q2) are polynomials in the variables qi, i = 0, 1, 2.

N(q0, q1, q2) and D(q0, q1, q2) must satisfy some conditions, because their ratio is a transform,
such as,

lim
|q0|→∞,Re q0>0

H(q0, q1, q2) = E[e−q1B
(1)−q2B(2)

1{A=0}].

We can assume without loss of generality that A > 0 a.s. Because of the above limit, this
means the degree of N as a polynomial in q0, Nq1,q2(q0), is strictly less than the degree of D as a
polynomial in q0: Dq1,q2(q0), for all q1 and q2.

The reserve process R̄t = (R̄
(1)
t , R̄

(2)
t ) evolves as

R̄t = ū+ ct−
n(t)∑
i=1

Bi, where ū := (ū(1), ū(2)), c := (c(1), c(2)), Bi := (B
(1)
i , B

(2)
i ),

and n(t) is the number of arrivals before t. We use the notation R̄ with a bar because furtheron

we want to scale the reserve process by dividing R̄
(i)
t by c(i), using the notation R

(i)
t without a bar

for the resulting process. In this model, the two reserves are correlated due to simultaneous claim
arrivals and due to correlations that may exist in the claim size vector (B(1), B(2)).

This paper is concerned with measuring the event that both reserve processes survive indefi-
nitely, i.e., we aim to determine the survival function

F̄ s(ū(1), ū(2)) := P(R̄
(1)
t ≥ 0, ∀t > 0 AND R̄

(2)
t ≥ 0, ∀t > 0 | R̄0 = (ū(1), ū(2))).

In terms of times to ruin, F̄ s is related to the first time at least one of the two insurance lines is
ruined,

τ̄∧(ū(1), ū(2)) = inf{t; min(R̄
(1)
t , R̄

(2)
t ) < 0} = τ̄ (1)(ū(1)) ∧ τ̄ (2)(ū(2)), (2.2)

where τ̄ (i)(u(i)) are the marginal times to ruin, i = 1, 2. In particular,
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F̄ s(ū(1), ū(2)) = 1− P(τ̄∧(ū(1), ū(2)) <∞).

We can also define the first time at which both insurance lines are ruined:

τ̄∨(ū(1), ū(2)) = τ̄ (1)(ū(1)) ∨ τ̄ (2)(ū(2)).
It is similarly related to the probability that at least one of the two reserves survives indefinitely,

F̄ sOR(ū(1), ū(2)) := P(R̄
(1)
t ≥ 0, ∀t > 0 OR R̄

(2)
t ≥ 0, ∀t > 0 | R̄0 = (ū(1), ū(2))),

by

F̄ sOR(ū(1), ū(2)) = 1− P(τ̄∨(ū(1), ū(2)) <∞).

Notice that τ̄∨ is not the same as inf{t; max(R̄
(1)
t , R̄

(2)
t ) < 0}, that is, joint ruin may not happen

simultaneously.

The above survival functions are then related by

F̄ sOR(ū(1), ū(2)) = F̄ s(ū(1),∞) + F̄ s(∞, ū(2))− F̄ s(ū(1), ū(2)),
where F̄ s(ū(1),∞) and F̄ s(∞, ū(2)) are the marginal survival functions. Moreover, we also have
F̄ i,j(ū(1), ū(2)), the probability that reserve i survives indefinitely, while reserve j ruins, for i, j =
1, 2, i 6= j.

F̄ 1,2(ū(1), ū(2)) = F̄ s(ū(1),∞)− F̄ s(ū(1), ū(2)),
and similarly for F̄ 2,1(ū(1), ū(2)). In view of the above, it suffices to determine F̄ s(ū(1), ū(2)) in
order to obtain all the other survival/ruin functions.

Remark 1. For the study of survival functions, we can normalize the reserve processes by their
respective income rates. The survival function is preserved, with the starting capital scaled accord-
ingly. To be more precise, let

R
(i)
t = ū(i)/c(i) + t−

n(t)∑
k=1

B
(i)
k /c(i), i = 1, 2.

Since R
(i)
t ≥ 0 ⇔ R̄

(i)
t ≥ 0, for τ̄∧, τ∧ the exit times of R̄t respectively Rt from the non-negative

quadrant, we have the relation

τ∧(u(1), u(2)) = τ̄∧(c(1)u(1), c(2)u(2))

and then also F s(u(1), u(2)) = F̄ s(c(1)u(1), c(2)u(2)), with F s the survival function of the scaled
process.

This means that for our purposes it suffices to study the process Rt and the associated survival
functions F s(u(1), u(2)). F sOR and the complementary ruin time τ∨ are similarly defined.

The main idea of our approach is to exploit the fact that the embedded process at arrival

epochs of claims is a random walk in the plane with increments (An −B(1)
n /c(1), An −B(2)

n /c(2)),
conditioned on starting at (u(1), u(2)). The different ways in which the reserve process can be
ruined correspond to the possible positions of the random walk

Rtn := u+
n∑
i=1

Xi, Xn := (X(1)
n , X(2)

n ) := (An −B(1)
n /c(1), An −B(2)

n /c(2)), (2.3)

at the time of exit from the non-negative quadrant. Here and below, tn denotes the nth arrival
epoch.

This is a difficult model to analyze in full generality; in particular, it is much more general
than the 2-dimensional ruin process described in [8] and [6]. However, in the quite natural and
important case that the claims in insurance line 1 are larger than those in insurance line 2, we are
able to determine the two-dimensional survival function.
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Assumption 2.2 (Ordering assumption). For a generic claim event (B(1), B(2)):

B(1)/c(1) ≥ B(2)/c(2) a.s. (2.4)

A special, important example for this ordering assumption is the case when there is a single
arrival process such that the common claim is partitioned into fixed proportions (α, 1 − α), and
we can always take w.l.o.g. α ∈ [1/2, 1] (α may even be a random variable with this interval as
support). This special case then significantly generalizes the setting in [2], where it is assumed
that the common arrival process is compound Poisson (and in particular the inter-arrival times
are independent of the claim sizes).

We take the following approach: using a duality argument (Section 3), we derive a recursive
equation for the survival function (Section 4). Using complex function theory, and under Assump-
tions 2.1 and 2.2, we solve the functional equation that corresponds to the stochastic recursion in
terms of survival function LSTs (Section 5).

3. Duality

It turns out that it is more fruitful to regard the survival function defined in the previous section
as a distribution rather than as a function. In this section we point out that the finite horizon
survival functions F sn can be seen as the c.d.f.s of the so called reflected version of the random
walk. This reflected version satisfies a recursive equation that is then exploited in the subsequent
sections in order to calculate the infinite horizon survival function.

For a one-dimensional random walk it is well known that its running maximum has the same
distribution as the reflected version of the random walk:

sup
0≤i≤n

S
(1)
i

d
= S(1)

n − inf
0≤i≤n

S
(1)
i , (3.1)

where
d
= denotes equality in distribution. Here we could, e.g., take S

(1)
n = −

∑n
i=1X

(1)
i , where

X
(1)
i = Ai − B(1)

i /c(1) as defined in (2.3) for the one-dimensional first risk reserve process. In
this section we show that this relation is still valid for the embedded random walk related to the
general bivariate process {−Rt}t≥0, without having enforced the assumptions from the previous
section. This relation is further used to derive a recursion for the two-dimensional transform of
the survival function. We also give an interpretation of this recursion in terms of excursions away
from the running maximum of the reserve process {Rt}t≥0.

Throughout this section we will work with the natural order on R2. For x := (x(1), x(2)), y :=
(y(1), y(2)) ∈ R2, denote

x � y ⇔ x(1) ≤ y(1), x(2) ≤ y(2).
To keep notations short, set

x ∨ y := (max(x(1), y(1)), max(x(2), y(2))),

x ∧ y := (min(x(1), y(1)), min(x(2), y(2))).

Denote by Sn :=
∑n
i=1(−Xi), n ≥ 1 and S0 = 0, the origin of R2. Xn was defined in (2.3).

Ruin can only occur at arrival epochs, and since arrivals are simultaneous, we can introduce the
maximum aggregate loss up to the nth arrival epoch Mn :=

∨n
i=0 Si, so that we have the following

relation for τ∧, the scaled version of the exit time that was defined in (2.2):

{τ∧(u(1), u(2)) > tn} = {Mn � (u(1), u(2))}, (3.2)

for tn the nth arrival epoch. Note also that τ∧ can now be rewritten in terms of the order relation
’�’:

τ∧(u(1), u(2)) = inf{tn ;Rtn � 0 |R0 = (u(1), u(2))}.
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The duality approach described in the following, allows one to obtain a recursion for the two-
dimensional survival function by turning this ’exit problem’ for the embedded random walk into
a so-called ’reflection problem’ (Theorem 1). This recursion is then solved in Section 5 under
Assumptions 2.1 and 2.2. The behaviour of the bivariate reserve process {Rt}t≥0 is similar to the
behavior of the reserve process studied in [2], one of the main differences being that in our set-up
this is not a Markov process anymore.

For fixed n let S∗k := Sn − Sn−k, k = 0, ..., n, so that S∗0 = 0, S∗1 = −Xn, S∗2 = −Xn −Xn−1,
etc. Thus S∗i , i ≤ n, is obtained from Si by circularly permuting its increments. The following
lemma is the 2-dimensional version of (3.1). It remains valid in any number of dimensions by
making some straightforward modifications.

Lemma 1. For all n ≥ 0,

Mn
d
= Sn −

n∧
i=0

Si.

Proof. We can write

Sn −
n∧
i=0

Si = Sn +
n∨
i=0

(−Si) =
n∨
i=0

(Sn − Si) =
n∨
i=0

S∗n−i.

Here we used the relation: −(x ∧ y) = (−x) ∨ (−y), x, y ∈ R2. The above are all sample-path
identities. The final step is to remark that the joint distribution of (S∗1 , ..., S

∗
n) is the same as the

distribution of (S1, ..., Sn) because the increments Xi are i.i.d., and the proof is complete.

Denote Wn := Sn −
n∧
i=0

Si, n ≥ 0, the random walk reflected inside the nonnegative quadrant.

An important step in our analysis of the survival function is the following recursion for the sequence
(Wn)n≥0.

Proposition 1. The sequence (Wn)n≥0 satisfies the following recursion path-wise:

Wn+1 = (Wn −Xn+1) ∨ 0,

and initial condition W0 = 0.

Roughly speaking, as soon as one of the components of Sn reaches a new minimum, the running
infimum is updated accordingly and therefore the corresponding component of Wn is set to zero.

Proof. The proof follows by exploring all four possibilities, depending on the position of Wn −
Xn+1 = Sn+1−

n∧
i=0

Si relative to the origin. For example, if Wn−Xn+1 is in the second quadrant,

that is, if S
(1)
n+1 ≤ inf

i≤n
S
(1)
i and S

(2)
n+1 ≥ inf

i≤n
S
(2)
i , then

S
(1)
n+1 = inf

i≤n+1
S
(1)
i , and S

(2)
n+1 ≥ inf

i≤n+1
S
(2)
i .

Therefore Wn+1 = Sn+1 −
n+1∧
i=0

Si = (0, S
(2)
n+1 − inf

i≤n+1
S
(2)
i ), and remark that this is the same as

(Wn −Xn+1)∨ 0. The other cases follow by analogous considerations, which completes the proof.

We can regard the finite horizon survival function

F sn(u(1), u(2)) := P(τ∧(u(1), u(2)) > tn)

as the c.d.f. of a survival measure. Relation (3.2), Lemma 1 and Proposition 1 imply that this
survival measure is nothing else but the distribution of the reflected random walk Wn inside the
non-negative quadrant of R2.

Theorem 1 (Duality). The following identity relates the distribution of the reflected version of
the random walk to the finite horizon survival functions of the reserve process:
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P(Rti � 0, i = 1, ..., n |R0 = (u(1), u(2))) = P(Wn � (u(1), u(2)) |W0 = 0). (3.3)

Proof. That Wn is the reflected version of the random walk follows directly from the fact that it
is the solution of the recursive equation in Proposition 1. In view of Lemma 1 and (3.2), the other
statement is obvious, so this concludes the proof.

Remark 2. In fact {Wn}n≥0 is the waiting time process in an initially empty two-dimensional
queueing model with two servers, each with its own queue, and with simultaneous arrivals and the

same {An, B(1)
n , B

(2)
n }n≥0 input process as for the risk reserve process; An indicates interarrival

time and (B
(1)
n , B

(2)
n ) denotes the vector of service requirements for the two servers.

One-dimensional instances of the above ’duality relation’ are well known in the risk insur-
ance/queueing literature, see for example [1], p. 45, p. 161 etc.

4. A functional equation

In this section we consider the Laplace-Stieltjes transform of the survival function F sn(u(1), u(2));
Theorem 1 and (3.3) imply that this equals the transform of the bivariate waiting time for the nth

customer:

Ee−s1W
(1)
n −s2W

(2)
n =

∫
e−s1u

(1)−s2u(2)

dF sn(u(1), u(2)), Re si ≥ 0, i = 1, 2. (4.1)

Our main goal in this section is to obtain a recursion between the LSTs of (W
(1)
n+1,W

(2)
n+1) and

(W
(1)
n ,W

(2)
n ) using the path-wise recursion in Proposition 1. But first we point out a sample-path

relation between the reserve process and the reflected random walk which will be useful in the next
section (the relation in Lemma 1 holds in distribution only). The event that any of the reserves
is running at the maximum is the same as the event that the corresponding component of the
reflected random walk is at 0.

Lemma 2.

{W (i)
n+1 = 0} = {R(i)

tn+1
= u(i) + max(0,−S(i)

1 , ...,−S(i)
n+1)}, i = 1, 2.

Proof. R
(i)
tn+1

= u(i) − S(i)
n+1 and notice the following equivalence:

S
(i)
n+1 −min(0, S

(i)
1 , ..., S(i)

n , S
(i)
n+1) = 0⇔ −S(i)

n+1 = max(0,−S(i)
1 , ...,−S(i)

n ,−S(i)
n+1).

Remark 3. The event {W (i)
n = 0} does not depend on the initial capital. The event on the RHS

in Lemma 2 above does not restrict the reserve process to staying above 0; equivalently W
(i)
n on

the LHS is not restricted to staying below level u(i). This is in line with (3.3) in Theorem 1.

Below we point out how one can obtain a recursive equation for the LST of the survival function
F sn(u(1), u(2)) in the general case without the ordering assumption. In Section 5 we solve this
equation for the case when the risks are ordered.
The bivariate recursion in Proposition 1 becomes in terms of LSTs:

Ee−s1W
(1)
n+1−s2W

(2)
n+1 = Ee−s1(W

(1)
n −X

(1)
n+1)

+−s2(W (2)
n −X

(2)
n+1)

+

,

with (x)+ denoting max(x, 0). Hence, with 1{E} the indicator function of event E,

Ee−s1W
(1)
n+1−s2W

(2)
n+1 =E

[
e−s1(W

(1)
n −X

(1)
n+1)−s2(W

(2)
n −X

(2)
n+1)1{X(1)

n+1<W
(1)
n , X

(2)
n+1<W

(2)
n }

]
+ E

[
e−s1(W

(1)
n −X

(1)
n+1)1{X(1)

n+1<W
(1)
n , X

(2)
n+1≥W

(2)
n }

]
+ E

[
e−s2(W

(2)
n −X

(2)
n+1)1{X(1)

n+1≥W
(1)
n , X

(2)
n+1<W

(2)
n }

]
+ P(X

(1)
n+1 ≥W (1)

n , X
(2)
n+1 ≥W (2)

n ). (4.2)
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In view of (4.1), the left-hand side of (4.2) represents the LST of the survival measure F sn+1.
Below we also interpret each of the four terms in the righthand side in terms of transforms of
survival measures.
Term 1: In terms of excursions away from the maximum reserve (Lemma 2), the first term on the
RHS represents the transform of the survival measure in the event that both reserves are during
an excursion below the running maximum at time tn+1,

Ee−s1W
(1)
n+1−s2W

(2)
n+11{W (1)

n+1>0,W
(2)
n+1>0} =

∫
e−s1u

(1)−s2u(2)

1{Rtn+1
≺

∨
k=0,...,n

Rtk
}dF

s
n+1(u(1), u(2)).

Above we used that on the event {W (i)
n+1 > 0}, it holds that W

(i)
n −X(i)

n+1 = W
(i)
n+1 (Proposition

1).
Terms 2 and 3: These can be translated in terms of survival functions using (4.1) again:

Ee−s1W
(1)
n+11{W (1)

n+1>0,W
(2)
n+1=0} =

∞∫
0+

e−s1u
(1)

1{R(1)
tn+1

< max
k=0,...,n

R
(1)
tk

;R
(2)
tn+1

≥ max
k=0,...,n

R
(2)
tk
}dF

s
n+1(u(1), 0),

Ee−s2W
(2)
n+11{W (1)

n+1=0,W
(2)
n+1>0} =

∞∫
0+

e−s2u
(2)

1{R(1)
tn+1

≥ max
k=0,...,n

R
(1)
tk

;R
(2)
tn+1

< max
k=0,...,n

R
(2)
tk
}dF

s
n+1(0, u(2)),

are ’boundary’ transforms. The survival measure that corresponds to F sn can have positive mass
on the axes of the non-negative quadrant, if nowhere else, at least F sn(0, 0) = P(Wn = 0 |W0 = 0)
is positive, i.e., it has an atom in the origin.
Term 4: This is the probability that both reserves are surviving and running at a maximum, which
by Lemma 2 and Theorem 1 is F sn+1(0, 0).

From an analytic point of view it is more convenient to rewrite (4.2) as a recursion. After
adding and subtracting appropriate terms, one obtains,

Ee−s1W
(1)
n+1−s2W

(2)
n+1 = Ees1X

(1)
n+1+s2X

(2)
n+1 Ee−s1W

(1)
n −s2W

(2)
n

+ E
{
e−s1(W

(1)
n −X

(1)
n+1)[1− e−s2(W

(2)
n −X

(2)
n+1)]1{W (1)

n+1>0,W
(2)
n+1=0}

}
+ E

{
e−s2(W

(2)
n −X

(2)
n+1)[1− e−s1(W

(1)
n −X

(1)
n+1)]1{W (1)

n+1=0,W
(2)
n+1>0}

}
+ E

{
[1− e−s1(W

(1)
n −X

(1)
n+1)−s2(W

(2)
n −X

(2)
n+1)]1{W (1)

n+1=0,W
(2)
n+1=0}

}
. (4.3)

Above we used that the increment Xn+1 is independent of Wn. Under the assumption that the
vector Wn has a limit in distribution, W , as n→∞, (4.3) becomes

K(s1, s2)Ee−s1W
(1)−s2W (2)

= E
{
e−s1(W

(1)−X(1))[1− e−s2(W
(2)−X(2))]1{W (1)>X(1),W (2)≤X(2)}

}
+ E

{
e−s2(W

(2)−X(2))[1− e−s1(W
(1)−X(1))]1{W (1)≤X(1),W (2)>X(2)}

}
+ E

{
[1− e−s1(W

(1)−X(1))−s2(W (2)−X(2))]1{W (1)≤X(1),W (2)≤X(2)}

}
,

(4.4)

with ”kernel” K(s1, s2) := 1− Ees1X(1)+s2X
(2)

and Re si = 0, i = 1, 2.

Remark 4. From Lemma 1, W has the same distribution as the all-time supremum M :=
lim
n→∞

Mn; and Mn being a sequence of nondecreasing random vectors w.r.t. the order ’�’, the

limit always exists a.s., although it may have a defective distribution. In the next section we give
a sufficient condition for M to have a proper distribution under the assumption that risks are
ordered.
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5. Wiener-Hopf analysis of the stochastic recursion

In this section we resolve the functional equation (4.4) under the Assumptions 2.1 and 2.2, i.e.,
we find the LST of the infinite horizon survival function:

F s = lim
n→∞

F sn,

the limit being considered in distribution. Theorem 1 together with a limit argument shows that
this weak limit is the same as the c.d.f. of the stationary version of the waiting time process
(Wn)n≥0 (see also Remark 2).

The section is divided into three subsections. Subsection 5.1 prepares the ground, by making a
key observation about the functional equation (4.4), introducing some notation and discussing the
stability condition. Subsection 5.2 expresses the two-dimensional LST ψ(s1, s2) of F s in a one-
dimensional unknown function C(s1) (Proposition 2). That function is determined in Subsection
5.3, yielding our main result: Theorem 2.

5.1. Preparations. Introduce the extra claim amount Dn := B
(1)
n /c(1)−B(2)

n /c(2) = X
(2)
n −X(1)

n ,

so that the increments of the random walk Sn can be represented as −Xn = (−X(2)
n +Dn,−X(2)

n ).
We first make the following key observation: The ordering assumption (2.4) implies that when

R
(1)
tn is at a maximum, necessarily R

(2)
tn is at a maximum. Via Lemma 2, this corresponds to the

fact that the events

{W (1)
n ≤ X(1)

n+1, W
(2)
n > X

(2)
n+1} = {W (1)

n+1 = 0,W
(2)
n+1 > 0}

are null for all n ≥ 0. This means that the third term on the RHS of (4.3) is null and hence the
second term on the RHS of (4.4) vanishes as well, so that after regrouping terms, (4.4) can be
rewritten as

K(s1, s2)ψ(s1, s2) = −ψ1(s1, s2) + ψ2(s1) + P(X(1) ≥W (1)), (5.1)

where

ψ1(s1, s2) = Ee−s1(W
(1)−X(2)+D)−s2(W (2)−X(2))1{X(2)≥W (2)},

ψ2(s1) = Ee−s1(W
(1)−X(2)+D)1{W (1)+D>X(2)≥W (2)}.

Consider the following function:

K̃(s1, z) := 1− Ee−s1D+zX(2)

, Re s1 ≥ 0, Re z = 0.

This is related to K(s1, s2) that appears in (4.4) through a change of coordinates: K̃(s1, z) =

K(s1, z − s1). In addition, remark that for fixed z, K̃(s1, z) is indeed analytic in Re s1 > 0
because D ≥ 0 a.s. Now let us change the coordinates: (s1, s2) → (s1, s1 + s2) =: (s1, z), and

denote ψ̃(s1, z) := ψ(s1, z − s1). Then ψ1(s1, s2) becomes

ψ1(s1, s2) = E
[
e−s1(W

(1)−W (2)+D)−z(W (2)−X(2))1{X(2)≥W (2)}

]
=: ψ̃1(s1, z),

and therefore (5.1) can be rewritten as

K̃(s1, z)ψ̃(s1, z) = −ψ̃1(s1, z) + ψ2(s1) + P(X(1) ≥W (1)). (5.2)

Running example: One of the simplest examples that we will use throughout is obtained when
taking the joint distribution of (A,D,B(2)) to be such that conditional on a random variable N ,
these A, D and B(2) have Erlang distributions of order N and rates respectively λ, µD and µ. To
keep things as simple as possible, we choose P(N = 1) = P(N = 2) = 1

2 and rates λ = 1, µD = 3,

µ = 2; we also choose the income rates c(1) and c(2) to be equal to 1.
The kernel K̃(s1, z) has the following simple form:

K̃(s1, z) = 1− 3(3 + s1)(1− z)(2 + z) + 18

(3 + s1)2(1− z)2(2 + z)2
. (5.3)
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From a specific example like this it becomes clear that the coefficients of the numerator, for
example, as a polynomial in z are themselves polynomials in s1 and vice versa.

We are now ready to formulate a Wiener-Hopf boundary value problem in variable z. For fixed
s1, Re s1 > 0, ψ̃1(s1, z) is analytic inRe z < 0 (by analytic continuation), while ψ̃(s1, z) is analytic
(by analytic continuation) in Re z > 0. These statements follow easily from the probabilistic

nature of these functions. In particular, notice that ψ̃(s1, z) = Ee−s1(W
(1)−W (2))−zW (2)

. Also on

the event {W (2) < X(2)}, the random variable e−z(W
(2)−X(2)) is uniformly bounded in Re z ≤ 0,

hence the analyticity of ψ̃1(s1, z) follows by an application of Lebesgue’s dominated convergence
theorem.

The approach we take in order to solve (5.2) uses a Wiener-Hopf factorization with a parameter.

More precisely, for each fixed s1, Re s1 > 0, we will factorize the bivariate kernel K̃(s1, z) = K̃s1(z)

that appears in (5.2) into K̃s1(z) = K̃+
s1(z)K̃−s1(z), such that K̃+

s1(z) can be analytically continued

in Re z > 0 and K̃−s1(z) can be analytically continued in Re z < 0. The Wiener-Hopf factorization
that solves (5.2) is discussed in the next subsection. Finally, once we resolve (5.2), the solution to
(5.1) follows by reverting to the original coordinate system (s1, s2).

Remark 5. A reason why we prefer the notation using the argument s1 as a subscript K̃±s1(z)
for these factors is that they are in general obtained by pasting together different branches of
multi-valued complex functions in s1 using analytic continuation. More precisely, since K̃(s1, z)
is a rational function, the 1-parameter Wiener-Hopf factors may have branch cuts in Re s1 > 0
(discontinuities) as functions of the argument s1; then as it follows from Proposition 2 below, we
must choose the values of the zeroes of the kernel that have positive real part for Re s1 > 0 and
glue them together (using analytic continuation). Because of this, the 1-parameter Wiener-Hopf

factors K̃+
s1(z) and K̃−s1(z) are not functions of s1 in the real sense. This will be the case with the

zeroes of the kernel from Example 2 in Section 6.

Finally a word about conditions under which the limiting distribution of the two-dimensional

waiting time process {W (1)
n ,W

(2)
n }n=1,2,... exists, or equivalently, under which survival of both

risk reserves has a positive probability. It will turn out from the analysis below that a necessary
condition for the existence of a proper limit in distribution W is ρ1 := EB(1)/(c(1)EA) < 1.
This is easy to interpret in our case, because it is sufficient to ensure positive safety loading for
line 1 which receives always larger claims - we then automatically have positive safety loading
for the second insurance line. The safety loading condition for the second reserve process ρ2 :=
EB(2)/(c(2)EA) < 1 will be necessary for the Wiener-Hopf factorization to hold. The two Wiener-
Hopf factors will be initially determined up to a certain unknown ’boundary’ function C(s1) that
appears in Equation (5.4) below; we further determine this boundary function by noting that

the marginal reserve process R
(1)
t behaves as a (one-dimensional) generalized Sparre-Andersen

reserve process with dependence between inter-arrival times and subsequent claim sizes, for which
an analysis of the survival function is available in [5]. At this point the safety loading condition
ρ1 < 1 becomes necessary.

5.2. A Wiener-Hopf factorization. In this subsection we determine the double transform
ψ̃(s1, z) up to a – yet – unknown one-dimensional function C(s1). In the next subsection we
will determine this function, which turns out to be related to the first insurance line only.

Proposition 2 (Wiener-Hopf factorization with a parameter). Under Assumption 2.1 the

double LST ψ̃(s1, z) is of the form

ψ̃(s1, z) = Ee−s1(W
(1)−W (2))−zW (2)

= C(s1) K̃+
s1(z)−1. (5.4)

C(s1) is a yet to be determined analytic function, Re s1 > 0. For fixed Re s1 > 0, K̃+
s1(z) is

analytic for Re z > 0, continuous up to the boundary and it factorizes K̃(s1, z) into

K̃(s1, z) = K̃+
s1(z) K̃−s1(z),
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such that K̃−s1(z) is analytic for Re z < 0 and continuous up to the boundary.

Proof. Under the above Assumption 2.1, the triple transform of A, B(1)/c(1), B(2)/c(2) is

H(q0, q1/c
(1), q2/c

(2)) and the kernel is K̃(s1, z) = 1 −H(−z, s1/c(1), (z − s1)/c(2)) which is also

a rational function with representation K̃(s1, z) := 1 − f(s1,z)
g(s1,z)

. The assumption that A > 0 a.s.

implies that the degree of fs1(z) is strictly less than the degree of gs1(z) as polynomial functions
in the argument z (see the discussion in Remark 5). Now the functional equation (5.2) becomes

g(s1, z)− f(s1, z)

g(s1, z)
ψ̃(s1, z) = −ψ̃1(s1, z) + ψ2(s1) + P(X(1) ≥W (1)). (5.5)

The first step is to factorize the kernel into two factors with respect to the z variable and regroup
(5.5) into an analytic function in Re z > 0 on the LHS and an analytic function in Re z < 0 on
the RHS. Once we have this representation, we can use Liouville’s Theorem to determine both
sides of (5.5) up to the function C(s1) .

Remove all the poles with nonnegative real part from the LHS of (5.5). We keep for now s1
fixed with Re s1 ≥ 0, and denote by

g−s1(z) :=
∏

i:Re zi(s1)<0

(z − zi(s1)),

where zi(s1) are zeroes of g(s1, z) = gs1(z); also put g+s1(z) :=
gs1 (z)

g−s1 (z)
, so that we have the factor-

ization gs1(z) = g+s1(z) g−s1(z). Upon multiplying both sides of (5.5) by g+s1(z), the LHS becomes
analytic for all Re z > 0 and continuous up to the imaginary axis. Similarly, the RHS is analytic
for all Re z < 0 and continuous for Re z ≤ 0. Since these two coincide for Re z = 0, they are

analytic continuations of each other, in particular
gs1 (z)−fs1 (z)

g−s1 (z)
ψ̃s1(z) is an entire function in z.

Because deg fs1(z) ≤ deg gs1(z), asymptotically

gs1(z)− fs1(z)

g−s1(z)
ψ̃s1(z) = O(zm+(s1)),

where m+(s1) := deg g+s1(z). By virtue of Liouville’s theorem ([17], p.85),

ψ̃s1(z) =
g−s1(z)

gs1(z)− fs1(z)
Ps1(z), (5.6)

where (for fixed s1 ≥ 0), Ps1(z) is a polynomial in z with degPs1(z) ≤ m+(s1). From (5.6)
it follows immediately that Ps1(z) must have all the zeroes with non-negative real part of the
denominator gs1(z) − fs1(z). Now a key part in the argument is the fact that the denominator
gs1(z)− fs1(z) has the same number of zeroes in Re z ≥ 0 as g+s1(z). The proof of this statement
is deferred to the Appendix in Proposition A.1. Thus we have degPs1(z) ≥ m+. Together with
the upper bound on the degree of Ps1(z), this implies degPs1(z) = m+; moreover, this determines
Ps1(z) up to a constant factor (constant being relative to z !)

Ps1(z) = C(s1)
∏

i:Re vi(s1)≥0

(z − vi(s1)),

where vi(s1) are zeroes of gs1(z) − fs1(z). Upon replacing the above in (5.6), we have found the
one-parameter positive Wiener-Hopf factor

K̃+
s1(z) =

∏
i:Re vi(s1)<0

(z − vi(s1))

g−s1(z)
. (5.7)

And in particular the above also determines K̃−s1(z):

K̃−s1(z) =
K̃(s1, z)

K̃+
s1(z)

,
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and the proof is complete.

Running example: For fixed s1, we can carry out the factorization for the kernel (5.3) in the
running example. Below we give the zeroes of the numerator

v1(s1) =
−s1 − 3−

√
3
√

(s1 + 3)(1 + 3s1)

2(3 + s1)
, v2(s1) =

−s1 − 3 +
√

3
√

(s1 + 3)(3s1 + 1)

2(3 + s1)
,

v3(s1) =
−s1 − 3−

√
(s1 + 3)(3s1 + 13)

2(3 + s1)
, v4(s1) =

−s1 − 3 +
√

(s1 + 3)(3s1 + 13)

2(3 + s1)
.

The radicals above are defined when the cut in the complex plane is taken along the negative
half of the real axis and the complex arguments are measured from −π to π. This convention
determines the so-called principal value of the square root function. The negative real half-axis
will be a discontinuity line for the square root function

√
z as a function of a complex variable

because as the argument z approaches the negative real half-axis,

(z− − z0)1/2 = eiπ(z+ − z0)1/2,

where z0 lies on the negative real half-axis, that is, Re z0 < 0 and Imz0 = 0; z± denotes the
limit of z towards z0 from respectively above and below the real axis. We will call such lines of
discontinuity branch cuts. The branch points of v1 (and v2) are −3 and −1/3. The branch cuts
are then the curves generated by the equations

arg(s1 + 3) + arg(1 + 3s1) = ±π.

It is a problem of plane geometry to see that these branch cuts are constituted by the line
segment joining the two branch points, together with the perpendicular line on this segment that
passes through its mid-point. The situation is similar for v3(s1) and v4(s1).

By inspecting the zeroes of the numerator for Re s1 > 0, exactly v1(s1) and v3(s1) are negative,
where by positive/negative values of complex numbers we will always refer to their real parts.
There are as many negative zeroes in the denominator, which is already confirmed by Proposition
A.1. Moreover, the branch cuts of neither v1 nor v3 are located in the right half-plane, which
means these zeroes are regular functions for positive values of s1.

Having isolated the negative zeroes, the one-parameter positive Wiener-Hopf factor from (5.7)
is

K̃+
s1(z) =

(z − −s1−3−
√
3
√

(s1+3)(1+3s1)

2(s1+3) )(z − −s1−3−
√

(s1+3)(3s1+13)

2(s1+3) )

(z + 2)2
. (5.8)

Remark 6. Interestingly, K̃+
s1 is not a rational function anymore in the argument s1 (however,

in this example it is meromorphic in the argument s1, for Re s1 > 0). A queueing theoretic
explanation of this remark can be found by comparing the double transform (5.9) obtained below
with the decomposition results for a particular case of the present model in [6]. For the process
with Markov arrivals studied therein, the stationary waiting time stochastically decomposes into
two components, one of which is related to the extra busy period length in the longest queue and it
is well known that busy periods in general do not have rational transforms (already in the case of
an M/M/1 system, the busy period has a non-rational transform).

Moreover, it is easy to see that the marginal factor K̃+
s1(s2)|s1=0 is a rational function. From

this and (5.9) below follows that the marginal transform ψ(0, s2) is a rational function. Also,

ψ(s1, 0) is a rational function because for s2 = 0 the factor K̃+
s1 cancels against itself in (5.9).

The rationality of the marginal transforms is clear from their queueing interpretation because
these are the transforms of the univariate survival functions/waiting times for the two insurance
lines/queueing systems in isolation (see the discussion in [9] p.325 and the references therein).
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5.3. The main result. We are now ready to formulate and prove the main result.

Theorem 2. Under the safety loading condition for the riskier line 1, ρ1 < 1, the infinite horizon
survival function F s(u(1), u(2)) is a (proper) probability distribution function with support the non-
negative quadrant in R2, and its LST is given by

ψ(s1, s2) =

∫
e−s1u

(1)−s2u(2)

dF s(u(1), u(2)) =
K+
pr(0)

K+
pr(s1)

K̃+
s1(s1)

K̃+
s1(s1 + s2)

, (5.9)

for Re si ≥ 0, i = 1, 2. K̃+
s1(z) is given in (5.7) and here is evaluated at z = s1 and at z = s1 + s2.

K+
pr(s1) is the positive Wiener-Hopf factor of the projected one-dimensional kernel K̃(s1, s1) =

K(s1, 0), i.e., the unique function analytic in Re s1 > 0, continuous in Re s1 ≥ 0 that factorizes
K(s1, 0) into

K(s1, 0) = K+
pr(s1)K−pr(s1),

with K−pr(s1) analytic in Re s1 < 0 and continuous in Re s1 ≤ 0 (see for instance [14], Thm.7
p.55). Under Assumption 2.1 it is of the form (see also [5])

K+
pr(s1) =

∏
j(s1 − ṽ

−
j )∏

j(s1 − v
−
j )
, (5.10)

with ṽ−j the negative zeroes of K(s1, 0) and v−j its negative poles.

Proof. Our starting-point is (5.4), and our goal is to determine the one yet unknown function
C(s1) in that formula. The idea is that, since C(s1) stays the same irrespective of the value of z,

we are free to choose any z. Since by definition, K̃+
s1(z) is analytic for all Re z > 0 and continuous

in Re z ≥ 0, take z = s1:

ψ̃(s1, s1) = Ee−s1W
(1)

= C(s1)[K̃+
s1(s1)]−1. (5.11)

We can determine C(s1) from (5.11), because ψ̃(s1, s1) = ψ(s1, 0) = Ee−s1W (1)

is the steady-
state waiting time transform in the marginal G/G/1 queue with dependence between inter-arrival
times and service requirements, which has been determined in [5]. That paper was devoted to an
analysis of a one-dimensional risk/queueing model that amounts to the present model with B(2) ≡
0. The kernel of the functional identity for this marginal queue with generic service requirement
B(1) and correlated inter-arrival time A is K̃(s1, s1); the corresponding Rouché problem is to prove
that g(s1, s1) and g(s1, s1)−f(s1, s1) have the same number of nonnegative zeroes. This has been
carried out in [5]. Its Formula (6) reads

ψ̃(s1, s1) = Ee−s1W
(1)

= K+
pr(0)[K+

pr(s1)]−1, (5.12)

with K+
pr(s1) the positive Wiener-Hopf factor of the projected kernel K(s1, 0):

K+
pr(s1) =

∏
j(s1 − ṽ

−
j )∏

j(s1 − v
−
j )
,

such that ṽ−j are the negative zeroes of K(s1, 0) and v−j its negative poles, and the normalizing

constant K+
pr(0) is equal to the atom at 0 of W (1):

P(W (1) = 0) =
∏
k

(−v−k )/
∏
j

(−ṽ−j ).

Formula (5.12) together with (5.11) now determine C(s1):

C(s1) = K+
pr(0) [K+

pr(s1)]−1 K̃+
s1(s1), (5.13)

and with this we obtain the transform of the joint waiting time distribution, or equivalently of the
survival function F s(u(1), u(2)), from (5.4), upon switching back to the original coordinates. The
proof is complete.
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Remark 7. An important remark is that the factors in (5.9), K̃+
s1(s1) and K+

pr(s1), as defined in
Proposition 2 and in Theorem 2, are not the same. One can already compare (5.8) with (6.2) for
Example 1 in the following section.
More precisely, the operations of taking the projection and carrying out the factorization do not
commute with each other, in contrast with the one-dimensional Fluctuation Theory of random
walks. See also Section 13 in [13].

K̃+
s1(s1) is defined by first carrying out the one-parameter Wiener-Hopf factorization for K̃(s1, z)

and then projecting the positive factor onto the main diagonal of the 2-dimensional complex space:
z = s1.
On the other hand, K+

pr(s1) is obtained by first projecting K̃(s1, z) onto the main diagonal z = s1

and then carrying out the Wiener-Hopf factorization for the projected kernel K̃(s1, s1) = K(s1, 0).

Remark 8. The LST in (5.9) has a product form. It can be shown that the bivariate LST of
the reflected random walk decomposes in a similar way as in Theorem 1 of [6], where one of the
factors is related to a modified workload process.

6. Examples and numerical inversion

In the previous sections we dealt with some theoretical aspects related to obtaining the trans-
form of the survival function. It turns out that additional insight can be obtained by applying the
previous results to some specific examples. Our aims in this section are:

(i) to provide examples for which the Laplace-Stieltjes transforms of the survival measures can
be calculated, based on the general results obtained in the previous section.

(ii) to explain the various analytic challenges that appear when one tries to determine the
Laplace-Stieltjes transform of the survival measure for some specific classes of distributions for the
input (A,D,B(2)).

(iii) numerical inversion of the bivariate Laplace-Stieltjes transform in (5.9) and the comparison

between the risks for various possible correlations between the claim sizes (B
(1)
n , B

(2)
n ) and inter-

arrival times An.
We begin by explaining the inversion algorithm and how we applied it. However, in order

to obtain the input for the algorithm, we need to follow the steps in Section 5 and construct
the Wiener-Hopf factors. It turns out that this presents a challenge because of the branch cuts
(discontinuities) that the zeroes of the kernel might have in the right half-plane of the complex
s1-plane. The running example from Section 5.1 can thus be considered a simple instance of the
inversion algorithm.

Numerical inversion. For the purpose of inverting (5.9), consider the Laplace transform of the
bivariate tail probability of the waiting time. By a straight-forward integration by parts, this can
be related to the Laplace-Stieltjes transform of the waiting time/survival function:

∫∫
e−s1u1−s2u2 P(W (1)>u1,W

(2)>u2) du1du2 =
1

s1s2
[1− ψ(s1, 0)− ψ(0, s2) + ψ(s1, s2)]. (6.1)

The key remark is that under mild conditions, this transform is continuous up to the boundary
of the non-negative quadrant, as opposed to the Laplace transform of the survival function:∫∫

e−s1u1−s2u2 P(W (1)≤u1,W (2)≤u2) du1du2

which has by definition a singularity at (s1, s2) = (0, 0). It is easy to see that for example

lim
s1→0

Re s1>0

1

s1s2
[1− ψ(s1, 0)− ψ(0, s2) + ψ(s1, s2)] =

1

s2

[
∂ψ

∂s1
(0, s2)− ∂ψ

∂s1
(0, 0)

]
,

and even further



15

lim
s1,s2→0

Re s1,s2>0

1

s1s2
[1− ψ(s1, 0)− ψ(0, s2) + ψ(s1, s2)] =

∂2ψ

∂s1∂s2
(0, 0),

and it is clear that this mixed derivative is equal to E[W (1)W (2)], which is the same as the left-
hand side of (6.1) evaluated at s1 = s2 = 0. The partial derivatives on the right-hand side above
must be considered as limits from the interior of the positive quadrant. The Laplace transform of
the ruin function is continuous up to the boundary given that the above partial derivatives exist.

The main point of the above discussion is that we may now use the standard form of the
multidimensional inversion algorithm developed in [11], for which it is essential that the Laplace
transform is regular and continuous up to the boundary of the positive quadrant. The above
trick of passing to tail probabilities thus frees one from considering modifications of the inversion
algorithm for non-smooth functions (see [11]). Once the tail probability/ruin function has been
obtained, the survival function follows from an identity similar to (6.1):

P(W (1) > x1,W
(2) > x2) = 1− P(W (1) ≤ x1)− P(W (2) ≤ x2) + P(W (1) ≤ x1, W (2) ≤ x2),

for any x1, x2 ≥ 0.
There are no regularity problems with the transforms we will be working with throughout this

section because they are all meromorphic in both arguments for positive real values (in some
cases they are constructed from branches of various locally meromorphic functions via analytic
continuation – see Example 2).

Above we discussed how to consider the input for the inversion algorithm; some remarks are
also needed about the output. This is an M1 ×M2 matrix, that represents the values of the ruin
function P(τ∨(·, ·) <∞) on a grid: the entry (k, l) stands for

P(τ∨((k − 1)∆1, (l − 1)∆2) <∞) = P(W (1) > (k − 1)∆1,W
(2) > (l − 1)∆2),

where ∆i are division sizes. The values of the inverted transform are plotted in the figures below
for various examples.

Example 1. This is the running example that started at (5.3). We have calculated the one-
parameter Wiener-Hopf factor for this example in (5.8). For the LST of the survival function we
need also the positive Wiener-Hopf factor of the projected kernel:

K̃(s1, s1) = K(s1, 0) =
−9s1 − 35s21 − s31 + 18s41 + 8s51 + s61

(−1 + s1)2(2 + s1)2(3 + s1)2
.

The numerator can be factorized as s1(s21+4s1+1)(s31+4s21+s1−9) where the order 2 polynomial
further factorizes as

s21 + 4s1 + 1 = (s1 + 2−
√

3)(s1 + 2 +
√

3)

and the zeroes of the factor s31 + 4s21 + s1 − 9 are

v0 := −4

3
+

1

3 3
√

2

(
151− 9

√
173
)1/3

+
1

3 3
√

2

(
151 + 9

√
173
)1/3

,

v1 := −4

3
− 1

6 3
√

2
(1 + i

√
3)
(

151− 9
√

173
)1/3

− 1

6 3
√

2
(1− i

√
3)
(

151 + 9
√

173
)1/3

,

v2 = −4

3
− 1

6 3
√

2
(1− i

√
3)
(

151− 9
√

173
)1/3

− 1

6 3
√

2
(1 + i

√
3)
(

151 + 9
√

173
)1/3

, with v2 = v̄1.

The positive Wiener-Hopf factor of the projected kernel becomes, cf. (5.10),

K+
pr(s1) =

(s21 + 4s1 + 1)(s1 − v1)(s1 − v̄1)

(s1 + 2)2(s1 + 3)2
. (6.2)

(5.8) and (6.2) are the necessary components for constructing the LST of the survival function in
this example, as given by (5.9). The atom at (0, 0) is
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P(W (1) = 0,W (2) = 0) = P(W (1) = 0) = K+
pr(0) =

|v1|2

36
≈ 0.204.

Here we used the ordering between W (1) and W (2). Below is given the final formula for the
transform of the survival function in the original coordinates:

ψ(s1, s2) =
[(s1 + 3)(2s1 + 1) +

√
(3s1 + 9)(1 + 3s1)][(s1 + 3)(2s1 + 1) +

√
(s1 + 3)(3s1 + 13)]

[(s1 + 3)(2s1 + 2s2 + 1) +
√

(3s1 + 9)(1 + 3s1)][(s1 + 3)(2s1 + 2s2 + 1) +
√

(s1 + 3)(3s1 + 13)]
·

|v1|2

36

(s1 + s2 + 2)2(s1 + 3)2

(s21 + 4s1 + 1)(s1 − v1)(s1 − v̄1)
. (6.3)

√
s1 + 3 cannot be simplified above. The reason is the same as the one given in Remark 10 below.

The marginal transforms are

ψ(s1, 0) =
|v1|2

36

(2 + s1)2(3 + s1)2

(s21 + 4s1 + 1)(s1 − v1)(s1 − v̄1)
,

ψ(0, s2) =
(3 +

√
39)(s2 + 2)2

4(6s2 + 3 +
√

39)(s2 + 1)
.

The atom at zero of W (2) is approximately 0.575. We have carried out the numerical inversion for
the transform in Example 1: the division size is chosen ∆1 = ∆2 = .1 and the grid size is M1 =
M2 = 26. An important performance measure is the 5% quantile curve of the tail probability – the
two dimensional version of the 5% quantile, also known as value at risk. This is the (not necessarily
continuous in general) curve that contains all (u1, u2), such that P(W (1) > u1,W

(2) > u2) ≥ .05
and P(W (1) > u1+,W (2) > u2+) ≤ .05. To put it simply, the ruin function P(τ∨(·, ·) < ∞) (see
Formula (2.2) and Remark 1) is less than 5% whenever it is evaluated at a point which lies outside
the region bounded by this curve in the non-negative quadrant. This, together with several other
quantile curves, is displayed in Figure 1 below.

Finally, as a verification, we estimated the ruin function using simulation. Upon choosing
suitable bin sizes that account for the atom at (0, 0) of (W (1),W (2)), the uniform distance between
the output of the inversion algorithm and the simulated ruin function is of the order of 10−3:

(x1, x2) (0, 0) (2,0) (2,2) (4, 0) (4, 2) (4, 4) (6, 0) (6, 2) (6, 4) (6,6)

F̂ s(x1, x2) .423 .297 .060 .180 .050 .008 .107 .034 .007 .001
F s(x1, x2) .424 .301 .060 .184 .050 .008 .110 .035 .007 .001

Table 1. Comparison between the simulated survival function (F̂ s) and the in-
verted function (F s) for various values of the initial capital (x1, x2).

Remark 9. The quantile curve plots in Figure 1 contain lines which below the main diagonal are
straight. This is a consequence of the ordering assumption on the claims (and implicitly on the
waiting times) since we can write for x1 ≤ x2

P(W (1) > x1,W
(2) > x2) = P(W (2) > x2),

because W (2) > x2 implies W (1) > x1 for all x1 ≤ x2.

Example 2. The parameters are the same as in Example 1, except now the order is n = 3. The
kernel is

K̃(s1, z) = 1− 72

(3 + s1)3(1− z)3(2 + z)3
− 12

(3 + s1)2(1− z)2(2 + z)2
− 2

(3 + s1)(1− z)(2 + z)
.
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5% q-curve

10% q-curve

15% q-curve

25% q-curve

Figure 1. 25%, 15%, 10%, and respectively 5%-quantile curves for the ruin
function in Example 1. The abscissa corresponds to the values at risk in the
second insurance line/the marginal tail of W (2).

Below we list the zeroes of the numerator. The radicals are again defined when the cut is taken
along the negative half of the real axis.

v1(s1) =
−(s1 + 3)2 −

√
(s1 + 3)4 − 4(s1 + 3)2(−24− 14s1 − 2s21 + 2

√
2
√
−(3 + s1)2)

2(s1 + 3)2
,

v2(s1) =
−(s1 + 3)2 +

√
(s1 + 3)4 − 4(s1 + 3)2(−24− 14s1 − 2s21 + 2

√
2
√
−(3 + s1)2)

2(s1 + 3)2
,

v3(s1) =
−(s1 + 3)2 −

√
(s1 + 3)4 − 4(s1 + 3)2(−24− 14s1 − 2s21 − 2

√
2
√
−(3 + s1)2)

2(s1 + 3)2
,

v4(s1) =
−(s1 + 3)2 +

√
(s1 + 3)4 − 4(s1 + 3)2(−24− 14s1 − 2s21 − 2

√
2
√
−(3 + s1)2)

2(s1 + 3)2
,

v5(s1) =
−(s1 + 3)−

√
3
√

(s1 + 3)(1 + 3s1)

2(s1 + 3)
, v6(s1) =

−(s1 + 3) +
√

3
√

(s1 + 3)(1 + 3s1)

2(s1 + 3)
.

Remark 10. The above formulae cannot be simplified. When choosing a branch for the square
root as a function of a complex variable, one has for a 6= b:√

(z − a)(z − b) 6=
√
z − a

√
z − b.

In addition, the term
√
−(3 + s1)2 is discontinuous (its discontinuity line is Ims1 = 0) and it

contributes towards the discontinuities of the zeroes vi(s1), i = 1, 4.

It is not clear a priori which one of the four zeroes to choose when constructing the one-
parameter factor K̃s1(z) from (5.7) because, in contrast to Example 1, the branch cuts of v1(s1)
up to v4(s1) cross inside the right half-plane, and the zeroes vi(s1) jump from positive to negative
real values when the argument passes between the regions bounded by the cuts in Re s1 > 0.

The key observation is that v1(s1) is an analytic continuation of v2(s1), and v3(s1) is an analytic

continuation for v4(s1). Therefore, in order to obtain K̃s1(z), one has to glue together (using
analytic continuation) the negative branches of v1(s1) and v2(s1) on the one hand, and of v3(s1)
and v4(s1) on the other, for Re s1>0. v5(s1) is negative for any Re s1>0 so it will always enter
the formula for K+

s1(·) as opposed to v6(s1) which is positive and doesn’t play any role. Moreover
the branch cuts of v1(s1) up to v4(s1) partition the complex half-plane in 4 regions symmetric
around the real axis and the cuts are pairwise parallel lines at angles ±π/4. To be more precise,

we have to use the 3 different branches of K̃+
s1(z):
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K̃1,3
s1 (z) =

(z − v1(s1))(z − v3(s1))(z − v5(s1))

(z + 1)3
, K̃2,3

s1 (z) =
(z − v2(s1))(z − v3(s1))(z − v5(s1))

(z + 1)3
,

K̃2,4
s1 (v) =

(z − v2(s1))(z − v4(s1))(z − v5(s1))

(z + 1)3
. (6.4)

The branches C1,3(s1), C2,3(s1) and C2,4(s1) are obtained similarly because from (5.13), these

are related to the corresponding branches of K̃+
s1(z) by setting z = s1; the branch cuts and the

partition of the complex plane are therefore the same. Since both C(·) and K+
s1(·) enter Formula

(5.9), the expression for the LST of the survival function/joint waiting time (see Remark 2) is
obtained by patching together (via analytic continuation) the positive branches (in the s1-plane)
of the generalized Wiener-Hopf factors from Proposition 2 and Theorem 2.

In Figure 2 below we plot a section in the three branches of the real part of the LST of the
survival measure in Example 2. More precisely consider the section

ζ(y) := Reψ(iy, 14 + iy) (6.5)

that runs along the imaginary axis in the first argument s1 (the argument that generates the
discontinuities). From this figure it becomes apparent how the three different branches of ζ(y) are
continuations of each other: the central branch belongs to Reψ1,3(iy, 14 + iy) (the blue curve).
This is continued by the branch Reψ2,3(iy, 14 + iy) (the dashed red curve) which in turn is
continued by Reψ2,4(iy, 14 + iy) (the orange curve segment) towards the ends of the plot.

ΖHyL

-4 -2 2 4

-0.4

-0.2

0.2

0.4

0.6

Figure 2. The plot of the three branches of the section ζ(y) from (6.5).

We numerically inverted the expression obtained for the transform ψ(s1, s2) using den Iseger’s
algorithm [11]. Again, the division size is ∆ = .1 and the grid size is M = 26 in both directions.
In Figure 3(a) the plot of the ruin function P(τ∨(·, ·) < ∞) is presented (see Formula (2.2) and
Remark 1) or equivalently the tail of the equilibrium distribution for the bivariate waiting time
(W (1),W (2)) (Remark 2) in Example 2. We can write in general

P(W (1) > 0,W (2) > 0) = 1− P(W (1) = 0)− P(W (2) = 0) + P(W (1) = 0,W (2) = 0),
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and because of the ordering, P(W (1) = 0,W (2) = 0) = P(W (1) = 0). And then the value at (0, 0)
of the joint ruin function is P(W (2) > 0), which in this example approximately equates 0.37.

Finally, in Figure 3(b) we present various quantile curves for the ruin function/stationary tail
of the waiting time.

(a) The joint ruin function /the bivariate tail of the waiting
time from Example 2.

2 4 6 8 10
W H2L

2

4

6

8

10

W H1L

(b) 25%, 15%, 10%, 5%, respectively 1%-quantile
curves for the ruin function in Example 2. The x-

axis corresponds to the marginal tail of W (2).

Figure 3.

Comparison of risks. In Figure 4 we compare the results for quantile curves of the ruin
function of Example 1 with the quantile curves of the ruin function for the case where the input
is decoupled. By this we mean we take three samples N1, N2 and N3 from a uniform distribution

on {1, 2} and define the random variables Adec =
∑N1

i=1Ai, Ddec =
∑N2

i=1Di, B
(2)
dec =

∑N3

i=1B
(2)
i ,

where (Ai)i≤n, (B
(2)
i )i≤n, and (Di)i≤n are mutually independent sequences of exponential random

0 1 2 3 4
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(a) 25% quantile curves
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(b) 15% quantile curves
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(c) 10% quantile curves
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6

(d) 5% quantile curves

Figure 4. Comparison of risks. Dashed curves correspond to decoupled input.
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variables with rates λ, µ and µD respectively. In this case the inter-arrival time becomes indepen-

dent of the claim size vector, while marginally Adec, B
(2)
dec and B

(1)
dec have the same distribution as

in Example 1. The kernel for this instance is

K̃(s1, z) =

(
9

2(3 + s1)2
+

3

2(3 + s1)

)(
1

2(1− z)2
+

1

2(1− z)

)(
2

(2 + z)2
+

1

2 + z

)
.

The zeroes of the numerator as a polynomial in z are already too complicated to present here.
This instance is similar to Example 2 in terms of the analytic behaviour of these zeroes.

The main point is that, similarly as in [5], numerical data suggests that the ruin functions
corresponding to positively correlated input on the one hand, and the ruin functions for decoupled
input on the other are stochastically ordered (Figure 4).
Example 3 (proportional reinsurance) This is the case with proportional claims. There is a
common arrival process such that the inter-arrival time An is correlated with the claim size Bn,
and αBn is deducted from the first insurance line and (1−α)Bn from the second. As in Example
1, we take N ∼ Unif{1, 2} and A ∼ Erlang(N,λ), B ∼ Erlang(N,µ), with λ = 1, µ = 1, α = 3/4,
and unit income rates. It is easy to see that the kernel is

K̃(s1, z) = Ee−[s1(2α−1)B+z(1−α)]B+zA =
1

2(1− z)(1 + s1/2 + z/4)
+

1

2(1− z)2(1 + s1/2 + z/4)2
.

The zeroes of the numerator are

v1(s1) = −3 + 2s1
2

− 1

4

√
(2s1 + 9)(2s1 + 1), v2(s1) = −3 + 2s1

2
+

1

4

√
(2s1 + 9)(s1 + 1),

v3(s1) = −3 + 2s1
2

− 1

2

√
4s21 + 20s1 + 33, v4(s1) = −3 + 2s1

2
+

1

2

√
4s21 + 20s1 + 33.

The zeroes of the denominator are 1 and −2(2+s1), both with multiplicity two. v1(s1) and v3(s1)
are the zeroes we are looking for and their branch cuts do not cross inside the positive half of the
s1-plane so there is nothing to choose from; the one-parameter positive factor is thus

K̃+
s1(z) =

(z − v1(s1))(z − v3(s1))

(z + 2s1 + 4)2
.

The marginal kernel is

K(s1, 0) =
−6s1 − 17s21 + 6s31 + 9s41

(−1 + s1)2(4 + 3s1)2
,

and the numerator factorizes into s1(s1+ 1
3 )(s1+ 1+

√
73

6 )(s1+ 1−
√
73

6 ), so that the positive marginal
factor is

K+
pr(s1) =

(s1 + 1
3 )(s1 + 1+

√
73

6 )

(3s1 + 4)2
.

Inverting the final transform of the ruin function is not so computationally intensive as in Example
2. This case can be considered a simple instance, much like Example 1. The atom at the origin of
the survival function is approximately 0.82. Numerical illustrations are in Figure 5.

Appendix A.

Proposition A.1 (On the zeroes of the kernel 1− K̃(s1, z)). For each s1, Re s1 ≥ 0, g(s1, z)−
f(s1, z) and g(s1, z) have the same number of zeroes in Re z ≥ 0.

Proof. We show that g(s1, z) dominates f(s1, z) on a suitably chosen contour in the complex
z-plane. From this the claim in the proposition will follow via Rouché’s theorem [17], p.116.
Consider the contour which is made up from the extended arc:

Cε :=
{
reiϕ; ϕ ∈ [−π/2− arccos ε, π/2 + arccos ε]

}
,



21

(a)

2 4 6 8 10 12
W H2L

2

4

6

8

10

12
W H1L

(b)

Figure 5. Bivariate tail (left) and respectively 10%, 5%, and 1% quantile curves
(right) for proportional reinsurance.

together with the line segment

I :=
{
−ε+ iω; |ω| ∈

[
0, r
√

1− ε2
]}

.

The rationality of the transform ensures that K̃(s1, z) can be analytically continued on a thin
strip: Re z < 0, |Re z| < ε. We first consider the contour Cε. On the one hand we have the
triangle inequality for f : |f(s1, z)| ≤ f̄(|s1|, |z|), where f̄ is a polynomial with the same degree as
f . On the other hand, if we represent gs1(z) for fixed s1 as gs1(z) = am(s1)

∏
i(z − ξi(s1)), with

ξi(s1) its zeroes and am(s1) the coefficient of zm, m = m(s1) = deg gs1(z), then the same triangle
inequality gives a lower bound for |g(s1, z)|:

|g(s1, z)| = |am(s1)|
∏
i

|z − ξi(s1)| ≥ |am(s1)|
∏
i

(|z| − |ξi(s1)|) =: ḡ(s1, |z|),

with the remark that ḡs1(|z|) has the same degree as gs1(z).
Now we can bound for r sufficiently large, such that the interior of Cε∪ I contains all the zeroes

of ḡs1(|z|) and z ∈ Cε: ∣∣∣∣f(s1, z)

g(s1, z)

∣∣∣∣ ≤ f̄(|s1|, |z|)
ḡ(s1, |z|)

→ 0, as r →∞.

Convergence holds because the degree of the numerator is strictly less than that of the denom-
inator, by Assumption 2.1. This establishes the bound |g(s1, z)| > |f(s1, z)| on Cε, for r large
enough.

For the segment I, we use the safety loading condition for the second(!) line: c(2)EA−EB(2) > 0.

That is, we start with the fact d
dz

f(0,z)
g(0,z) |z=0 = c(2)EA− EB(2) > 0. So for ε > 0 sufficiently small,

f(0,−ε)
g(0,−ε) <

f(0,0)
g(0,0) = 1. Then we can write for z ∈ I:∣∣∣∣f(s1, ε+ iω)

g(s1, ε+ iω)

∣∣∣∣ ≤ E(|e−s1D| · |e−ε(A−B(2))| · |e−iω(A−B
(2))|
)
≤ Ee−ε(A−B

(2)) =
f(0,−ε)
g(0,−ε)

< 1.

Above we used the rough bound |e−s1D| ≤ 1. This completes the proof.
Notice that the key role in the proof is played by ρ2 < 1 and not ρ1 < 1 (ρ2 < ρ1).
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