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Abstract— The recent hypothesis on the occurrence of sheet structure in 
the brain has posed many questions to the diffusion MRI (dMRI) 
community as to whether this structure actually exists and can be 
measured with dMRI. In this work, we exploit the capability of the 
discrete Lie bracket to infer information on the existence of sheet 
structure in real dMRI data. 

I. INTRODUCTION 
The question whether our brain’s structure is best reflected by a three-
dimensional Manhattan street grid or by the intricate streets of Victorian London 
added three Science publications to the dMRI literature [1-3]. Wedeen et al. 
[1,3]  analyzed adjacency and crossings between cerebral fiber pathways of the 
brain using diffusion spectrum imaging (DSI) and tractography, and proposed 
that cerebral white matter pathways form parallel sheets of interwoven paths. 
Catani et al. [2] concluded that the grid pattern is most likely an artifact, biased 
by the limited angular resolution of DSI.  

We believe that in order to accept or reject the sheet structure conjecture, more 
extensive quantitative analyses are needed. Previous work [5] focused on 
evaluating the discrete Lie bracket as a tool to quantitatively assess the presence 
of sheet structure in simulated vector fields. In this work, we extend this 
approach to real dMRI data.  

II. THEORY AND METHODS 

A. Lie bracket theory 
The Lie bracket [𝑉𝑉,𝑊𝑊]𝑝𝑝 is a measure of the 
deviation from 𝑝 when trying to move 
around in an infinitesimal loop along the 
integral curves of the fields 𝑉𝑉 and 𝑊𝑊 (Fig. 
1). If and only if [𝑉𝑉,𝑊𝑊]𝑝𝑝 lies in the plane 
spanned by 𝑉𝑉𝑝𝑝 and 𝑊𝑊𝑝𝑝, i.e., when the normal 
component of the Lie bracket [1] [𝑉𝑉,𝑊𝑊]𝑝𝑝⊥ =
[𝑉𝑉,𝑊𝑊]𝑝𝑝 ⋅ �𝑉𝑉𝑝𝑝 × 𝑊𝑊𝑝𝑝� is equal to zero, the 
vector fields form a sheet at 𝑝 [6]. The Lie 
bracket can be approximated by various 
difference vectors 𝑟|𝑝𝑝 2 according to  

  𝑟|𝑝𝑝(ℎ1,ℎ2) = ℎ1ℎ2[𝑉𝑉,𝑊𝑊]𝑝𝑝 + ∆(ℎ1,ℎ2) ,               (1) 

Where ℎ1 and ℎ2 are walking distances and ∆(ℎ1,ℎ2) an error term that scales 
with ℎ1 and ℎ2. See references [5,7] for details. 

B. Implementation and experiments 
Starting from point 𝑝 in the data, we assign two fiber orientation distribution 
function (fODF) peaks [4] as representative members of vector fields 𝑉𝑉 and 𝑊𝑊.  

We use nearest neighbor streamline tractography using steps of size ∆ℎ to find 
the difference vectors. Each difference vector is based on 4 consecutive 
tractography paths 2 (Fig. 1) of up to 𝑛𝑚𝑎𝑥 = ℎ𝑚𝑎𝑥/∆ℎ streamline steps. At 
each streamline step the local vectors are assigned to one of the fields based on 
their cosine similarity with the vectors at the previous position. Tracts passing 
through voxels with only one peak are ignored. Subsequently, [𝑉𝑉,𝑊𝑊]𝑝𝑝⊥ is 
calculated as an indicator of sheet structure in a simulated dMRI dataset that 
was known to represent a sheet [5,8] and in high resolution mouse brain data.  

III. RESULTS AND DISCUSSION 
Complementing previous results on the method’s dependence on resolution [5], 
Fig. 2 shows the influence of curvature of the present sheet structure on the 
ability to detect it. Fig. 3 shows the presence of sheets formed by the two largest 
fODF peaks. Within the blue demarcation there is clear evidence for the 
presence of sheet structure, while in the yellow area other combinations of 
fODF peaks need to be taken into account before we can conclude anything. 

 
Fig. 2 Diffusion data generated from vector fields 𝑉𝑉 = {1, 0,𝜅𝑥}𝑇 and 𝑊𝑊 = {0, 1,𝜅𝑦}𝑇 defined on 
domain [−10 mm, 10 mm]3 with 1 mm voxel size and 𝜅 the curvature in point 𝑝 = 𝟎. These have zero 
Lie bracket by design and are locally tangent to the surface z(x, y) = 0.5𝜅(x2 + y2). ℎ𝑚𝑎𝑥 = 2.5 𝑚𝑚𝑚𝑚 
and ∆ℎ = 0.1 𝑚𝑚𝑚𝑚. For 𝜅 > 2, [𝑉𝑉,𝑊𝑊]𝑝𝑝⊥ deviates significantly from 0. The number of paths used 
(numbers above each graph) is lower for higher 𝜅, partially causing the increased standard deviation. 

IV. CONCLUSION 
In this work we extend the analysis of the Lie bracket normal component as a 
tool for the detection of sheet structure in artificial vector fields, to vector 
fields derived from diffusion MRI data. We have shown that spatial resolution 
and the curvature influence the ability to detect sheet structures. We present 
preliminary but promising results of a high resolution mouse brain, which 
shows the presence of a sheet formed by two main fODF peaks in correlation 
with a diffusion tensor imaging (DTI) geometry map.  
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Fig. 3 Mouse brain dMRI data with 𝑏 = 4000 𝑠/𝑚𝑚𝑚𝑚2, measured with 120 different directions and 11 𝑏 = 0 images, voxel size 0.043 𝑚𝑚𝑚𝑚 isotropic. (a) Direction encoded fractional anisotropy map. (b) [𝑉𝑉,𝑊𝑊]𝑝𝑝⊥ 
between two largest fODF peaks, with ∆ℎ = 0.043 𝑚𝑚𝑚𝑚 and 𝑛𝑚𝑎𝑥 = 5. The blue location shows a region with low [𝑉𝑉,𝑊𝑊]𝑝𝑝⊥, the yellow location one with noisy [𝑉𝑉,𝑊𝑊]𝑝𝑝⊥. (c) The corresponding DTI geometry map. 
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2In this work we consider the difference vectors �𝛷−ℎ2

𝑊 ∘ 𝛷−ℎ1
𝑉  ∘ 𝛷ℎ2

𝑊  ∘ 𝛷ℎ1
𝑉 � (𝑝) − 𝑝, 𝑝 − �𝛷−𝑠𝑉 ∘  𝛷−𝑠𝑊 ∘ 𝛷𝑠𝑉 ∘ 𝛷𝑠𝑊 � (𝑝), and �𝛷ℎ2

𝑊  ∘ 𝛷ℎ1
𝑉 � (𝑝) − �𝛷𝑠𝑉 ∘ 𝛷𝑠𝑊 � (𝑝), where the flow operator 𝛷𝑠𝑋 (𝑝) denotes moving a 

distance 𝑠 along the integral curve of vector field 𝑋 starting from point 𝑝. 
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Fig. 1       Walking loop with �𝛷−𝑠𝑊 ∘ 𝛷−𝑠𝑉  ∘
𝛷𝑠𝑊 ∘ 𝛷𝑠𝑉� (𝑝) 2 the end point. Difference 
vector 𝑟|𝑝𝑝 approximates [𝑉𝑉,𝑊𝑊]𝑝𝑝  [5]. 
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