

RTTOOL : a tool for extracting relative thresholds for source
code metrics
Citation for published version (APA):
Oliveira, P., Lima, F., Valente, M. T., & Serebrenik, A. (2014). RTTOOL : a tool for extracting relative thresholds
for source code metrics. In 30th IEEE International Conference on Software Maintenance and Evolution Tool
Track (ICSME2014) 28 September-3 October 2014, Victoria, British Columbia, Canada (pp. 629-632). IEEE
Computer Society. https://doi.org/10.1109/ICSME.2014.112

DOI:
10.1109/ICSME.2014.112

Document status and date:
Published: 01/01/2014

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://doi.org/10.1109/ICSME.2014.112
https://doi.org/10.1109/ICSME.2014.112
https://research.tue.nl/en/publications/7e160360-0b44-423d-b44d-a9c2cc2c821b

RTTOOL: A Tool for Extracting Relative
Thresholds for

Source Code Metrics

Paloma Oliveira, Fernando P. Lima
Department of Computing

IFMG-Formiga, Brazil

{paloma.oliveira,fernando.lima}@ifmg.edu.br

Marco Tulio Valente
Department of Computer Science

UFMG, Brazil

mtov@dcc.ufmg.br

Alexander Serebrenik
Eindhoven University of Technology

The Netherlands

a.serebrenik@tue.nl

Abstract—Meaningful thresholds are essential for promoting
source code metrics as an effective instrument to control the
internal quality of software systems. Despite the increasing
number of source code measurement tools, no publicly available
tools support extraction of metric thresholds. Moreover, earlier
studies suggest that in larger systems significant number of
classes exceed recommended metric thresholds. Therefore, in
our previous study we have introduced the notion of a relative
threshold, i.e., a pair including an upper limit and a percentage
of classes whose metric values should not exceed this limit.

In this paper we propose RTTOOL, an open source tool for
extracting relative thresholds from the measurement data of a
benchmark of software systems. RTTOOL is publicly available at
http://aserg.labsoft.dcc.ufmg.br/rttool.

Index Terms—Source code metrics; Relative thresholds; Soft-
ware quality; Software measurement.

I. INTRODUCTION

Software metrics have been around since the dawn of

software engineering. Well-known source code metrics include,

e.g., cyclomatic complexity, number of attributes (NOA),

number of methods (NOM), response for a class (RFC), number

of other classes referenced by a class (FAN-OUT) and weighted

method count (WMC) [1, 2, 3]. To promote the use of metrics

as an effective measurement instrument to decision making, it

is essential to establish meaningful thresholds [4, 5, 6]. In this

way, for example, software quality managers can rely on such

thresholds to assess the maintainability of software systems.

Most metric thresholds proposed in literature are based on

experience or vision of what constitutes desirable software

properties. For instance, industrial code standards for Java

recommend that classes should have no more than 20 methods

and that methods should have no more than 75 lines of code [7].

However, many source code metrics are known to follow heavy-

tailed distributions [6, 8]. Therefore, it is not surprising that

many studies report extremely high metric values violating any

preconceived or suggested thresholds [9, 10].

We argue that metric thresholds should accommodate those

outlier values. Specifically, in our previous work we advocated

relative thresholds, stating that at least p% of the system entities

should not exceed a threshold k [4]. Moreover, we proposed a

corpus-based extraction algorithm for automatic derivation of

relative thresholds. In the current paper, we present RTTOOL, a

tool supporting the proposed algorithm. We illustrate the usage

of RTTOOL by deriving relative thresholds for four metrics

based on 106 open-source Java systems from the Qualitas

Corpus [11]. To assess the performance of RTTOOL we also

derived the thresholds for 20 metrics based on systems from

the Qualitas Corpus.

RTTOOL is applicable to any software metric measured at the

level of a class as long as low(er) metric values are considered

to be more desirable than the high(er) ones, and the metrics

distribution is heavy-tailed. Numerous metrics including NOA,

NOM, FAN-OUT, RFC and WMC satisfy these conditions [4,

12, 13]. Examples of a metric that does not follow the traditional

heavy-tailed distribution and therefore should not be subject

to RTTOOL are DIT (Depth of Inheritance) [6] and Dn [14].

RTTOOL is independent of the exact way the metric values

are calculated. Indeed, importance of differences between

tools calculating “the same metrics” has been observed in

the past [15]: RTTOOL does not take a stance in this debate.

Moreover, RTTOOL can be configured for different contexts,

e.g., system size or application domain, since context is known

to be crucial when deriving metrics thresholds [16].

RTTOOL also indicates the systems with outlier behavior,

i.e., systems that do not adhere the relative thresholds. It also

generates several partial results, e.g., plot of the cumulative

density function, to examine the distribution of the values of

a metric and identify relative thresholds for a given projects’

collection. Those thresholds can be used to benchmark new

projects or to monitor evolution of the existing ones.

The remainder of this paper is structured as follows. Sec-

tion II summarizes our previous work on deriving relative

thresholds [4]. Section III presents the design and implemen-

tation of the RTTOOL, Section IV illustrates the use of the

RTTOOL by means of a case study, Section V discusses related

work and Section VI presents final remarks.

II. RELATIVE THRESHOLDS

This section presents our method to extract relative source

code metric thresholds [4]. We focus on software metrics that

follow heavy-tailed distributions, when measured at the level

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSME.2014.112

630

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSME.2014.112

629

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSME.2014.112

629

ComplianceRate[p, k] =
| { S ∈ Corpus | p% of the classes in S have M ≤ k} |

| Corpus |

penalty1[p, k] =

⎧⎨
⎩

90− ComplianceRate[p, k]
90

if ComplianceRate[p, k] < 90

0 otherwise

penalty2[k] =

⎧⎨
⎩

k −Median90
Median90

if k > Median90

0 otherwise

ComplianceRatePenalty[p, k] = penalty1[p, k] + penalty2[k]

Fig. 1. ComplianceRate and ComplianceRatePenalty functions [4]

of classes as long as low(er) metric values are considered

to be more desirable than the high(er) ones. Our goal is to

derive relative thresholds, i.e., pairs [p, k] such that p% of the
classes should have M ≤ k, where M is a given source code

metric. This relative threshold tolerates, therefore, (100− p)%
of classes with M > k.

Figure 1 presents the functions used to calculate the parame-

ters p and k that define the relative threshold for a given metric

M . Function ComplianceRate[p, k] returns the percentage of

systems in the Corpus that follows the relative threshold

defined by the pair [p, k]. To determine the best p and k our

approach tries to maximize ComplianceRate with a minimal

ComplianceRatePenalty, where ComplianceRatePenalty is the

sum of penalties introduced as follows:

• A ComplianceRate[p, k] less than 90% receives a penalty

proportional to its distance to 90%, as defined by func-

tion penalty1[p, k]. This penalty fosters the selection of

thresholds followed by at least 90% of the systems in the

Corpus.
• A ComplianceRate[p, k] receives the second penalty pro-

portional to the distance between k and the median of

the 90-th percentiles of the values of M in each system

in the Corpus, denoted Median90, as defined by function

penalty2[k].

III. RTTOOL: AN OVERVIEW

The execution of the RTTOOL is divided into three stages:

configuration, processing, and presentation (Figure 2).

In the configuration stage, the user selects the dataset, with

the metric values collected for a given corpus. Since metrics

calculation is separate from relative thresholds derivation,

Fig. 2. RTTOOL stages

RTTOOL does not depend on the way the metrics have been

calculated, and can be used in conjunction with any metrics

calculation tool. The current version of RTTOOL accepts CSV

or XML files with metrics values as input.

The processing stage is responsible for deriving the p and

k values of the relative threshold. In this stage, RTTOOL also

identifies the systems considered as outliers, i.e., systems that

do not conform to the relative thresholds. More specifically,

this stage calculates functions showed in Figure 1.

Finally, in the presentation stage, the results are shown

as spreadsheets and graphs. The spreadsheets summarize

the relative thresholds derived and the outlier systems

identified (Figure 4). The presentation stage also plots

a number of graphs including ComplianceRate[p, k], and

ComplianceRatePenalty[p, k] (Figures 5 and 6, respectively).

IV. EVALUATION

A. Example of usage

In order to illustrate the usage of our tool, we derive relative

thresholds for a number of metrics collected for the 106 systems

in Qualitas Corpus (version 20101126r) [11]. We used the

Moose platform [17] and VerveineJ1 to compute the values of

the metrics for each class of each system and store them as

CSV files.

First, to use the RTTOOL, the user must select the metrics

to extract relative thresholds. After uploading the CSV files

generated by Moose, 20 metrics become available for analysis

(Figure 3) and the user selects four of them: FAN-OUT, NOA,

LOC, and NOM.

Then, RTTOOL calculates the p and k values, that char-

acterize relative thresholds for each metrics and shows the

number and the names of the outlier systems (Figure 4). We

can observe that the p values derived for different metrics are

close suggesting that the k thresholds derived hold for 75%-

80% of the systems. Moreover, we see that Weka, HSQLDB,

and JTOpen appear as outliers for at least three metrics.

Finally, by inspecting Figures 5 and 6 we can see how RT-

TOOL has selected the relative thresholds. Indeed, by inspecting

Figure 6 we observe that 80% is the highest value of p such

that there exists k satisfying ComplianceRatePenalty[p, k] = 0.

1http://www.moosetechnology.org/tools/verveinej

631630630

This k equals 15 and is denoted with a small black circle on

Figure 6. By consulting Figure 5 we observe that 90% of the

Corpus systems follow the relative threshold [80%, 15] derived.

Using the slide bar on the right the user can select the p
values she would like to inspect. The value on the slide bar

indicates the lowest value to be visualized together with the

curves obtained for p with increments of 5%. As expected,

relaxing the relative threshold p value e.g., to 70% results in

a lower k equals 10 and in a comparable ComplianceRate of

82% (Figure 5).

Fig. 3. Configuration window

Fig. 4. Final results — with thresholds and outliers systems for each metric

Fig. 5. ComplianceRate function (FAN-OUT metric)

Fig. 6. ComplianceRatePenalty function (FAN-OUT metric)

B. Performance

To evaluate the performance of RTTOOL we have measured

the runtime in four experiments by varying the size of the

corpus, i.e., the entire Qualitas Corpus (106 systems) vs.

Qualitas Corpus systems classified as Tools by the corpus

curators (27 systems), and the number of metrics (four metrics

selected as in the example above vs. all twenty metrics available

in the dataset). Table I summarizes the runtime measurements

as reported by RTTOOL itself. The experiments have been run

on a device with core i5 processor and 4GB DDR3 memory.

As expected, increasing the number of metrics or the size

of the corpus results in higher execution times. However, even

for the largest corpus and the maximal number of metrics the

calculation time remains acceptable, slightly exceeding one

minute (75949 milliseconds).

C. Availability

RTTOOL is an open-source project, distributed under the

MIT license. We have opted for the MIT license since it permits

632631631

TABLE I
RUNTIME OF RTTOOL

Corpus # systems # metrics time (ms)
Qualitas Corpus—Tools 27 4 13753
Qualitas Corpus—Tools 27 20 35056

Qualitas Corpus 106 4 15867
Qualitas Corpus 106 20 75949

reuse of the source code in the proprietary software: in this way

we hope that the relative threshold calculation implemented in

RTTOOL can find a way both to mainstream metrics calculation

tools [18] and to research prototypes focusing on software

analytics [19]. The proposed tool is available at http://aserg.

labsoft.dcc.ufmg.br/rttool.

V. RELATED WORK

Extraction of thresholds based on system corpus has been

studied in the literature [6, 16, 20, 21]. Unfortunately, most

of these approaches are not supported by tools, the work

of Alves, Ypma and Visser [16] being the only notable

exception. The tool proposed in this work focuses on extracting

absolute thresholds, weights the metrics based on LOC of

the corresponding entities and constructs four quality profiles

corresponding to low risk (0 to 70th percentiles), moderate risk

(70th to 80th percentiles), high risk (80th to 90th percentiles),

and very-high risk (90th percentile). As opposed to this line of

work, RTTOOL derives relative thresholds, does not perform

weighting and considers only two “quality profiles” (adhering

to the relative thresholds or not). Finally, the tool of Alves,

Ypma and Visser is proprietary, while RTTOOL is open source.

Rather then deriving thresholds, absolute or relative, distin-

guishing between “good” and “bad” metrics values, a number

of papers suggest to evaluate distribution of metrics values by

means of more advanced aggregation techniques [13, 22, 23,

24].

VI. CONCLUSIONS

In this paper we describe RTTOOL, an open-source tool

capable of extracting relative thresholds for software metrics

based on benchmark collections. Uniqueness of the tool is due

to the choice for relative thresholds, i.e., thresholds that should

be followed by “most” of the system classes rather than all

of them. The tool has been successfully applied to Qualitas

Corpus, a well-known curated collection of open source Java

systems, and its run-time performance has been evaluated in a

series of experiments.

ACKNOWLEDGMENTS

Our research is supported by CAPES (Process Number: BEX

14468/13-1), FAPEMIG, and CNPq.

REFERENCES

[1] S. Chidamber and C. Kemerer, “A metrics suite for object
oriented design,” IEEE Transactions on Software Engineering,
vol. 20, no. 6, pp. 476–493, 1994.

[2] F. B. Abreu and R. Carapuça, “Object-oriented software engi-
neering: Measuring and controlling the development process,”

in 4th International Conference of Software Quality, 1994, pp.
3–5.

[3] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice:
Using Software Metrics to Characterize, Evaluate, and Improve
the Design of Object-Oriented Systems. Springer, 2006.

[4] P. Oliveira, M. T. Valente, and F. Lima, “Extracting relative
thresholds for source code metrics,” in CSMR-WCRE, 2014, pp.
254–263.

[5] M. Foucault, M. Palyart, J.-R. Falleri, and X. Blanc, “Computing
contextual metric thresholds,” in SAC, 2014, pp. 1–10.

[6] K. Ferreira, M. Bigonha, R. Bigonha, L. Mendes, and
H. Almeida, “Identifying thresholds for object-oriented software
metrics,” Journal of Systems and Software, vol. 85, no. 2, pp.
244–257, 2011.

[7] California Institute of Technology, “JPL institutional coding
standard for the Java programming language,” Tech. Rep., 2010.

[8] G. Baxter, M. Frean, J. Noble, M. Rickerby, H. Smith, M. Visser,
H. Melton, and E. Tempero, “Understanding the shape of Java
software,” in OOPSLA, 2006, pp. 397–412.

[9] I. Herraiz, D. Rodriguez, and R. Harrison, “On the statistical
distribution of object-oriented system properties,” in WETSOM,
2012, pp. 56–62.

[10] J. Kaczmarek and M. Kucharski, “Size and effort estimation
for applications written in Java,” Information and Software
Technology, vol. 46, no. 9, pp. 589–601, 2004.

[11] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe,
H. Melton, and J. Noble, “The Qualitas corpus: A curated
collection of Java code for empirical studies,” in APSEC, 2010,
pp. 336–345.

[12] R. Wheeldon and S. Counsell, “Power law distributions in class
relationships,” in SCAM, 2003, pp. 45–54.

[13] A. Serebrenik and M. G. J. van den Brand, “Theil index for
aggregation of software metrics values,” in ICSM, 2010, pp. 1–9.

[14] A. Serebrenik, S. A. Roubtsov, and M. G. J. van den Brand,
“Dn-based architecture assessment of Java open source software
systems,” in ICPC, 2009, pp. 198–207.

[15] R. Lincke, J. Lundberg, and W. Löwe, “Comparing software
metrics tools,” in ISSTA, 2008, pp. 131–142.

[16] T. L. Alves, C. Ypma, and J. Visser, “Deriving metric thresholds
from benchmark data,” in ICSM, 2010, pp. 1–10.

[17] O. Nierstrasz, S. Ducasse, and T. Gı̌rba, “The story of Moose: an
agile reengineering environment,” Software Engineering Notes,
vol. 30, no. 5, pp. 1–10, 2005.

[18] G. A. Campbell, P. P. Papapetrou, and O. Gaudin, SonarQube
in Action. Manning Publications Company, 2013.

[19] M. G. J. van den Brand, S. A. Roubtsov, and A. Serebrenik,
“SQuAVisiT: A flexible tool for visual software analytics,” in
CSMR, 2009, pp. 331–332.

[20] S. Herbold, J. Grabowski, and S. Waack, “Calculation and
optimization of thresholds for sets of software metrics,” Journal
of Empirical Software Engineering, vol. 16, no. 6, pp. 812–841,
2011.

[21] R. Shatnawi, W. Li, J. Swain, and T. Newman, “Finding software
metrics threshold values using ROC curves,” Journal of Software
Maintenance and Evolution: Research and Practice, vol. 22,
no. 1, pp. 1–16, 2010.

[22] B. Vasilescu, A. Serebrenik, and M. G. J. van den Brand, “You
can’t control the unfamiliar: A study on the relations between
aggregation techniques for software metrics,” in ICSM, 2011,
pp. 313–322.

[23] ——, “By no means: a study on aggregating software metrics,”
in WETSoM, 2011, pp. 23–26.

[24] K. Mordal, N. Anquetil, J. Laval, A. Serebrenik, B. Vasilescu, and
S. Ducasse, “Software quality metrics aggregation in industry,”
Journal of Software: Evolution and Process, vol. 25, no. 10, pp.
1117–1135, 2013.

633632632

