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We study by means of molecular and Brownian dynamics simulations the influence of bending flexi-
bility on the phase behavior and dynamics of monodisperse hard filamentous particles with an aspect
ratio of 8 and persistence lengths equal to 3 and 11 times the particle length. Although our particles
are much shorter, the latter corresponds to the values for wild-type and mutant fd virus particles that
have been subject of a recent experimental study, where the diffusion of these particles in the ne-
matic and smectic-A phase was investigated by means of video fluorescence microscopy [E. Pouget,
E. Grelet, and M. P. Lettinga, Phys. Rev. E 84, 041704 (2011)]. In agreement with theoretical pre-
dictions and simulations, we find that for the more flexible particles (shorter persistence length)
the nematic (N) to smectic-A (Sm-A) phase transition shifts to larger values of the particle density.
Interestingly, we find that for the more rigid particles (larger persistence length), the smectic layer-to-
layer distance decreases monotonically with increasing density, whereas for the more flexible ones,
it first increases, reaches a maximum and then decreases. For our more flexible particles, we find a
smectic-B phase at sufficiently high densities. Moreover, in line with experimental observations and
theoretical predictions, we find heterogeneous dynamics in the Sm-A phase, in which particles hop
between the smectic layers. We compare the diffusion of our two types of particle at identical values
of smectic order parameter, and find that flexibility does not change the diffusive behavior of particles
along the director yet significantly slows down the diffusion perpendicular to it. In our simulations,
the ratio of diffusion constants along and perpendicular to the director decreases just beyond the
N-Sm-A phase transition for both our stiff and more flexible particles. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4895730]

I. INTRODUCTION

Liquid crystals are states of condensed matter with a
level of ordering in between that of liquids, exhibiting short-
range positional order, and crystals that display long-range
positional and rotational order.1 A host of liquid-crystalline
phases have been found in dispersions of highly anisotropic
colloidal particles, such as rod- and plate-like ones, phases
that have long- or quasi long-range order in some directions
while they exhibit short-range correlations in others.1 For ex-
ample, dispersions of rod-like colloids, including fd virus,
TMV, and DNA, are known to form (chiral) nematic liquid
crystals at sufficiently high concentrations, in which the parti-
cles spontaneously align their principal axes along a common
axis known as the director.2–5 Onsager6 explained this spon-
taneous alignment theoretically by showing that long rods
that interact via excluded-volume interactions self-organize
into a nematic phase by optimizing the sum of translational
and rotational entropy. Simulations on long rod-like particles
have since confirmed this for spherocylinders and ellipsoids
of revolution.7–9

Computer simulations and density functional theory cal-
culations have also shown that at sufficiently high densities
a nematic-smectic-A phase transition occurs in dispersions

a)sbrnaderi@gmail.com

of monodisperse hard spherocylinders.7, 8, 10–13 Particles in the
smectic-A phase form layers and exhibit quasi-long-range po-
sitional ordering along the director, while in the direction per-
pendicular to it they behave like a liquid. McGrother et al.11

found that for spherocylinders with relatively small length
to diameter ratios, L/D = 3.2, a transition directly from the
isotropic to the smectic-A phase occurs. For larger aspect ra-
tios, a nematic phase intervenes before the smectic-A phase
appears at more elevated densities. Smectic ordering has been
observed in solutions of monodisperse stiff rod-like parti-
cles, such as poly(γ -benzyl L-glutamate), silica rods, and
TMV,14–16 as well as in solutions of semi-flexible filamentous
ones, e.g., fd virus.17

Although both rigid and semi-flexible filamentous parti-
cles can form a smectic-A phase, theoretical and simulation
studies have shown that increasing the particle bending flex-
ibility shifts the concentration at which the nematic to smec-
tic phase transition occurs to higher values,18–21 while it also
decreases the smectic layer spacing.18 The experimental ob-
servations of Dogic and Fraden,17 who studied the nematic-
smectic phase transition in suspensions of semi-flexible fd
virus particles, confirmed this. Within a second-virial approx-
imation, Hidalgo et al.20 found from density functional theory
calculation that for infinitely rigid rods the nematic-smectic
phase transition must be of second order whereas for semi-
flexible particles the transition is a weakly first order one.

0021-9606/2014/141(12)/124901/10/$30.00 © 2014 AIP Publishing LLC141, 124901-1
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Particle bending flexibility not only influences the
nematic-smectic phase transition but it also changes the
Brownian kinetics of individual particles in these phases.
The study of kinetics at the level of an individual particle
in suspensions of colloidal particles has been made possible
by the recent advances in experimental techniques, such
as fluorescence microscopy.22–25 Lettinga et al.25, 26 mea-
sured the self-diffusion of semi-flexible fd virus particles in
isotropic and nematic phases. In qualitative agreement with
simulations of hard spherocylinders27 and ellipsoids,28 they
found that the ratio of the diffusion constant parallel to the
director (D‖) and the one perpendicular to it (D⊥) increases
as the nematic order parameter increases. In agreement
with experiments, D‖ initially increases and subsequently
decreases upon reaching the nematic-smectic transition.27, 28

The unusual self-diffusion of filamentous particles in the
smectic-A phase has been the center of attention in com-
puter simulations, theoretical studies and experiments.29–32

Lettinga et al.29, 30 studied the self-diffusion of individual
particles in a suspension of semi-flexible fd virus at con-
centrations for which a smectic-A phase is stable. The au-
thors observed a hopping-type diffusion, in which fd particles
mostly rattle around their equilibrium positions in a smectic
layer and occasionally jump from one layer to another. Later,
it was shown in a study based on dynamical density func-
tional theory that this hopping-type diffusion is dictated by a
temporary caging of particles by their direct neighbors that
competes with the permanent self-consistent molecular field
induced by all other particles.30, 31 A similar type of inter-layer
diffusion was observed in the smectic phases of monodis-
perse rigid rod-like silica particles and in this case, in
contrast to the above mentioned experiments involving semi-
flexible particles, layer-to-layer diffusion was slower than the
in-layer diffusion.32 This indicates that particle bending flex-
ibility may enhance the inter-layer diffusion and/or it may
slow down the in-layer diffusion. In order to shed light on
this we here report on molecular dynamics and Brownian
dynamics (BD) simulations in which we probe the influ-
ence of bending flexibility on the self-diffusion of filamen-
tous particles on both sides of the nematic-Smectic-A phase
transition.

Before presenting our own simulations it is of interest
to mention that simulation studies on the diffusion of paral-
lel and of freely rotating hard spherocylinders in the smec-
tic phase have confirmed that diffusion along the director is
indeed of the hopping-type, while that perpendicular to it
is typical of a dense fluid with a relatively fast relaxation
dynamics.33–35 Cinacchi and De Gaetani36 investigated the
mechanism of diffusion of stiff wormlike particles in the
smectic-A phase by molecular dynamics simulations. For suf-
ficiently long timescales, where the mean square displace-
ment parallel and perpendicular to the director exhibits a dif-
fusive behavior, the value of D‖ was found to be smaller than
D⊥. This is in agreement with experimental data on the diffu-
sion of silica rods in the smectic-A phase,32 but contrasts with
findings on the diffusion of semi-flexible fd virus in the same
phase.29, 30 The difference again might be due to the flexibility
of the fd virus, or alternatively it might be caused by the fact
that silica rods in the experiments of Kuijk et al.32 and worm-

like particles in the simulations of Cinacchi and De Gaetani36

have much smaller aspect ratios than fd virus.
Pouget et al.37, 38 performed experiments on aqueous dis-

persions of wild-type fd virus (fd-wt) and a stiffer mutant (fd-
Y21M). The length, L, of both variants of fd virus is identical,
approximately 880 nm, but their persistence lengths, Lp, dif-
fer. Of the former, Lp = 2800 ± 700 nm, while that of the
latter, Lp = 9900 ± 1600 nm, giving for the ratio L/Lp values
of 0.31 and 0.09.37 The authors found that for both fd-wt and
fd-Y21M in nematic and in smectic phases the ratio D‖/D⊥
is much larger than unity, showing that it is not due to parti-
cle bending flexibility that in the smectic-A phase of fd virus
D‖ is larger than D⊥. Interestingly, for more rigid virus par-
ticles the value of D‖/D⊥ decreases with increasing density
in the smectic phase whereas it increases for the case of fd-
wt particles. The latter happens because for the more flexible
particles D⊥ decreases more strongly with increasing concen-
tration than D‖ does.

To get a more detailed insight in the influence of bending
flexibility on the dynamics of particles in the nematic and the
smectic-A phase, we embark upon a Brownian dynamics sim-
ulation study of rod-like particles. Our fused-sphere represen-
tation of the rods have an aspect ratio of 8.0 and length-over-
persistence-length ratios of L/Lp = 0.09 and 0.31, mimicking
the flexibilities of fd-wt and fd-Y21M. With current computer
power it is not quite feasible to also get the same aspect ratio
as that of the virus particles. First, we carry out simulations in
isobaric-isothermal ensemble in order to obtain the phase di-
agram of our particles that interact via a soft repulsive poten-
tial. Next, we run Brownian dynamics simulations and study
the diffusion of single particles in the nematic and smectic-A
phases. We find that by entering the smectic phase, the ra-
tio of D‖/D⊥ decreases for both values of L/Lp and becomes
less than unity for the case of the more rigid particles with
L/Lp = 0.09.

The remainder of this paper is organized as follows. In
Sec. II, we describe our simulation model and the way we an-
alyze our simulation data. Equilibrium properties and phase
behavior of our filamentous particles at different values of
pressure are discussed in Sec. III. In Sec. IV, we present our
simulation results on the kinetics of the filamentous particles
on both sides of the N-Sm-A transition. A summary of our
work is given in Sec. V.

II. MODEL AND SIMULATION METHODS

We perform simulations using LAMMPS molecular dy-
namics package39 with N = 4464 filamentous particles in the
simulation box. Each of the particles is modeled as a chain
made up of n = 17 spherical beads. Within a chain, adjacent
beads are connected to each other via a harmonic bond poten-
tial of the form Ubond(r) = kb(r − lb)2, where r is the distance
between the two beads, lb = 0.5 σ is the equilibrium bond
length with σ being the bead diameter, and kb is the strength
of the potential. To ensure a fixed bond length in our simula-
tion, we choose a large value for the strength of bond poten-
tial, kb = 50 kBT/σ 2, where kBT is the thermal energy with kB
Boltzmann’s constant and T the absolute temperature. Each
three bonded beads are in addition connected via a harmonic

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

131.155.151.167 On: Tue, 24 Mar 2015 10:19:31



124901-3 S. Naderi and P. van der Schoot J. Chem. Phys. 141, 124901 (2014)

bending potential of the form Ubend(θ ) = ka(θ − π )2, where
θ is the angle that is formed by the two bonds that link these
three beads together and ka is the strength of the bending po-
tential that determines rigidity of a filamentous particle. In
the limit where n → ∞ and kbl

2
b/kBT � 1, ka can be linked

to the persistence length of a particle via a simple relation,
Lp = 2kalb/kBT.40, 41

We carry out our simulations with two values of con-
tour length over persistence length ratio L/Lp = 0.09 and
0.31, where L = (n − 1)lb. The total length of a particle is
(n − 1)lb + σ , which in our simulations equals 9.0 σ .
All beads, excluding those that are nearest- or next-nearest-
neighbors in a chain, interact with each other via the repulsive
part of the shifted Lennard-Jones potential,

ULJ (r) =
{

4ε
((

σ
r

)12 − (
σ
r

)6 + 1
4

)
if r ≤ 2

1
6 σ,

0 if r > 2
1
6 σ ,

(1)

where ε is the strength of the interaction potential, which in
our simulations is equal to the thermal energy, kBT, and r is
again the distance between the centers of mass of the beads.
We choose this potential to mimic the soft screened electro-
static repulsion between the charge-stabilized fd virus parti-
cles in the experiments of Grelet and collaborators.42, 43

To obtain the phase diagram of our particles, we run sim-
ulations in the isobaric-isothermal (NPT) ensemble at differ-
ent pressures, starting from an AAA crystal initial configura-
tion. We incrementally expand the system from the highest
pressure, P∗ = 5.0, to the lowest one, P∗ = 1.0, where
P∗ is related to the actual pressure of the system, P, by
P∗ = Pσ 3/kBT. In each step, we first slowly decrease the pres-
sure in a short simulation run of 105 simulation steps and af-
ter that we carry out a NPT simulation at the final value of
pressure with 6 × 106 time steps. To control the temperature
and pressure in our simulations, we make use of Nose-Hoover
thermostat and barostat. See Sec. III for a discussion on the
shape of our simulation box. To check for a potential effect of
hysteresis in our simulations, we compress the system again
after reaching the nematic phase at the lowest pressure tested.
In all our NPT simulations, the linear dimensions of our simu-
lation box can change independently, which allows the system
to relax properly without unphysical effects due to the finite
size of our system.

To study the dynamics of our particles in the nematic
and smectic phases, we carry out BD simulations. Hence, we
ignore hydrodynamic interactions that might be important.26

We use the final state of a relaxed system obtained from a
NPT molecular dynamics simulation at a given pressure as
the initial state for a BD simulation at a particle density cor-
responding to that pressure. This way we make certain that
the systems are relaxed at the given densities. Depending on
particle density in the BD simulations, we choose a time step
between 10−3 and 5 × 10−3 t∗ where t∗ is the unit of time, set
by the self-diffusion constant of a single bead Db = σ 2/t∗ and
we run simulations for a total of 6 × 106 time steps. Our par-
ticles are made up of 17 beads, so in the free-draining limit of
our simulations their self-diffusion constant is D = Db/17.44

In our simulations, the self-diffusivities of the elongated par-
ticles along and perpendicular to their long axis are equal in

the dilute (non-interacting) limit. We ignore the fact that these
dilute-limit self-diffusion constants differ by a factor of two,
to keep the computational complexity of our simulation code
at a reasonable level.44

The equilibrium properties and the dynamics of our sys-
tem at different pressures and densities, we probe by comput-
ing (i) the pair-correlation function, g, (ii) the nematic order
parameter, S2, (iii) the smectic order parameter, τ s, (iv) free-
energy barriers between layers of the smectic phase, (v) the
bond orientational order parameter, �6, (vi) the mean-square
displacement of particles, and (vii) the self part of the Van
Hove correlation function, Gs. The pair-correlation function
is calculated for the directions parallel and perpendicular to
the nematic director. The former is defined as

g‖(r) = 1

N

〈
1

ρ

∑
i

∑
j 	=i

δ[r − rij · n̂]

〉
, (2)

where δ is the Dirac delta function, rij is the distance between
the beads in the middle of the ith and the jth filamentous parti-
cle, n̂ is the nematic director, ρ = N/V is the particle density
with V being the volume of the simulation box, and the angu-
lar brackets denote an ensemble average. The pair-correlation
function perpendicular to the director is defined as

g⊥(r) = 1

N

〈
1

ρ

∑
i

∑
j 	=i

δ[r− | rij × n̂ |]�
(

L

2
− rij · n̂

)〉
,

(3)
where � is the Heaviside function and L is the length of a
particle.

The nematic order parameter is a measure of the degree
of orientational ordering of the particles. To calculate it, we
first compute for each snapshot of our simulations the orien-
tational order tensor with components given by

Qαβ = 1

N

N∑
i

(
3

2
êiαêiβ − 1

2
δαβ

)
, (4)

where α and β are x, y, z directions, êi is a unit vector along
the main body axis of a particle, which is defined along the
line that connects the first bead to the last bead of the parti-
cle, and δ is the Kronecker delta. To obtain the nematic order
parameter, S2, we calculate the eigenvalues and eigenvectors
of this tensor. The largest eigenvalue is the nematic order pa-
rameter and the eigenvector associated with it is the nematic
director. We compute the nematic order parameter and direc-
tor by averaging over the nematic order parameters that are
calculated for each simulation snapshot in simulation run, so
we are time-averaging the order parameter. In the course of
our simulation, we find the director not to fluctuate much.

We also compute the smectic order parameter, which is a
measure of positional ordering in the direction of the nematic
director. It can be calculated by maximizing the following re-
lation with respect to d:

f (d) =
∣∣∣∣∣∣

1

N

N∑
j=1

exp

(
i2π

rj · n̂

d

)∣∣∣∣∣∣ , (5)

where rj is the position of the jth particle and the smectic or-
der parameter is defined τ s = max f (d). The smectic order
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parameter for each simulation is calculated by averaging over
those computed for each simulation snapshot. In the smec-
tic phase, the value of d that maximizes f (d) is the smectic
layer-to-layer distance that we refer to as dsm. In this phase,
there is a self-consistent molecular field that organizes parti-
cles in the smectic layers and therefore there is a free-energy
barrier between the equilibrium layer positions. By calculat-
ing the probability of finding a particle at a position z along
the nematic director, �(z), we compute the free-energy bar-
rier by using the following relation, βU(z) = −ln �(z), where
β = 1/kBT with kB the Boltzmann factor and T the temperature
and ln denotes the natural logarithm.29

To obtain a measure for the level of ordering within the
smectic layers, we calculate the bond orientational order pa-
rameter, �6, which is given by

ψ6 = 1

3N

∣∣∣∣∣
∑

i

∑
j

exp(6iθij )�(rp − rij · n̂)

×� (rl− | rij × n̂ |)
∣∣∣∣∣, (6)

where θ ij is the angle between the projection of rij on the
plane perpendicular to n̂ and a fixed axis in this plane,
rp = L/2 and rl = 1.35σ are chosen in such a way that only for
the nearest-neighbors the product of the two Heaviside func-
tions is non-zero. Again, for each simulation we calculate ψ6
order parameter for each snapshot and take its average over
all snapshots.

Diffusion of particles in the nematic and smectic phase,
we investigate by computing the mean-square displacement
along the director, 〈(�r(t) · n̂)2〉, and that perpendicular to
it, 〈| �r(t) × n̂ |2〉. Note that in our simulations n̂ does not
change significantly over time (results not shown). In addi-
tion, we calculate the self part of the van Hove function,
which is a measure of the probability of finding a particle at
a given distance from its initial position, after a time inter-
val of t. For the direction along the director, it can be defined
as

G
‖
s (z, t) = 1

N

〈
N∑

i=1

δ[z + zi(t0) − zi(t + t0)]

〉
, (7)

where zi(t) = ri(t) · n̂ and for the direction perpendicular to
the director, G⊥

s , is given by

G⊥
s (R, t) = 1

2πNR

〈
N∑

i=1

δ[R + Ri(t0) − Ri(t + t0)]

〉
,

(8)
where Ri(t) =| ri(t) × n̂ |.

III. PHASE BEHAVIOR OF THE FILAMENTOUS
PARTICLES

As mentioned above, we perform MD simulations in an
isobaric-isothermal ensemble in order to obtain the phase di-
agram of our particles. To this end, we incrementally expand
our simulation box starting from an AAA crystal in which
N = 4464 filamentous particles are arranged in 16 layers
along the z axis of the simulation box. We choose this type
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FIG. 1. Phase diagram of our filamentous particles for three values of the
length-over-persistence-length ratios L/Lp = 0.31, 0.09, and 0 as a function
of (a) reduced pressure, P∗ and (b) reduced volume density ρ/ρcp where ρcp
is the closed packed density for our particles. The red solid line and the green
dashed line indicate the range in which the nematic and smectic-A phases are
stable, respectively. The blue dotted line shows the region where the smectic-
B or crystalline phases are stable and the yellow dotted-dashed line indicates
the range in which the smectic-B phase is stable. The black solid line and
purple dotted line correspond to theoretical predictions for nematic-smectic-
A transition for β = 0.0235 and S2 ≈ 0.84 and 0.9, respectively. See the main
text.

of elongated box to avoid unphysical correlations in the z di-
rection, which is initially along the long axis of all particles.
For both types of particles with L/Lp = 0.31 and 0.09, we do
expansion simulations in which we decrease the dimension-
less pressure from P∗ = 5.0 to P∗ = 1.0. Next, we compress
our simulation box by increasing pressure starting from the
final snapshot of our simulations at the lowest value of the
pressure in our expansion simulations.

Before proceeding with a detailed analysis of our sim-
ulations, in the next two paragraphs we first present in
Fig. 1(a) the phase diagram resulting from our calculations for
the two values of L/Lp as a function of reduced pressure. As
can be seen in this figure, the N-Sm-A phase transition occurs
at a larger value of the pressure for the more flexible parti-
cles with L/Lp = 0.31. The region in which the Sm-A phase
is stable is also smaller for these particles. This is because
at pressures larger than P∗ ≈ 2.6, the more flexible particles
self-organize into a smectic-B phase in which the rods exhibit
hexagonal ordering within the smectic layers. As we shall dis-
cuss later, in the smectic-B phase that these particles form
the layers are randomly displaced with respect to each other,
which causes the bond-orientational order parameter, ψ6, to
be approximately zero if averaged over all the layers. Our re-
sults are supported by very recent experiments on the phase
behavior of fd virus particles in which for flexible particles
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a smectic-B phase has been observed between the smectic-A
and columnar phases.45

In contrast, for the more rigid particles, we also observe
the smectic-B phase in a region between P∗ ≈ 2.0 and 2.5.
However, increasing pressure to values larger than P∗ ≈ 2.5
results in arrangement of particles in layers with hexagonal
ordering, which are not displaced randomly. Consequently,
the value of ψ6 is larger than zero in this case and therefore,
because we cannot measure the long-range hexagonal order
in our system due to the finite size of our simulation box, we
conclude that the phase formed by the particles can be either
a smectic-B phase or a crystalline one.

In Fig. 1(b), the phase diagram is presented for our two
values of L/Lp as well as for rigid spherocylinders, i.e., L/Lp
= 0, as a function of reduced density, ρ/ρcp, where ρcp is the
closed-pack density of our particles. The results correspond-
ing to rigid spherocylinders we obtained from the simulation
results of Bolhuis and Frenkel8 for rods with the same as-
pect ratio as that of our particles. The black and purple lines
are theoretical predictions for the nematic-smectic-A phase
transition from the work of van der Schoot.18 According to
this theory, the nematic-smectic spinodal line is given by
ρ = ρr(1 + βLα0/Lp), where ρr is the nematic-smectic-A
transition density for rigid rods, β is a constant calculated in
the work of van der Schoot18 and α0 ≈ 3/(1 − S2) is related to
the nematic order parameter, S2, of the rigid rods at ρ = ρr.

The black and purple lines in Fig. 1(b) are obtained from
the above mentioned formula with ρr = 0.50, β = 0.0235,
and S2 ≈ 0.84 and 0.9, respectively. The value of S2 = 0.84
corresponds to the nematic ordering of our particles with L/Lp
= 0.09 at the nematic-smectic transition and gives a quantita-
tive agreement with our simulation data. S2 ≈ 0.9 is the ne-
matic order parameter that is equivalent to α0 = 33 computed
by Bladon and Frenkel19 from the orientational distribution of
rigid rods with an aspect ratio of 6 at ρr = 0.51. For this value
agreement is not as good but still semi-quantitative. In the
remaining of this section, we focus attention on an in-detail
analysis of the simulation data and measurement of nematic,
smectic, and bond orientational order parameters.

To measure the level of orientational ordering in our sim-
ulations, we compute the nematic order parameter, S2, as in-
dicated in Sec. II. Shown in Fig. 2 is S2 as a function of
P∗ for the two values of L/Lp and for both our expansion
and compression simulations. For all values of the pressure
S2 → 1, which shows that particles are almost perfectly par-
allel in our simulations. At high pressures, the values of the
nematic order parameter obtained from our expansion sim-
ulations are lower than those from the compression simula-
tions. The discrepancy is presumably caused by the fact that
we start from an AAA crystal structure, which is not neces-
sarily the equilibrium crystalline structure for our particles
at that pressure.8 By looking at the snapshots of our expan-
sion simulations at high pressures, we find that the particles in
the layers are slightly tilted with respect to each other (rem-
iniscent of the smectic-C phase), which results in a smaller
value for the nematic order parameter. This is also why there
is a jump in the value of S2 at P∗ = 2.7 (for L/Lp = 0.31)
and P∗ = 2.0 (for L/Lp = 0.09) as the pressure decreases.
The jump results from the relaxation of layers at lower pres-
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FIG. 2. Nematic order parameter, S2, as a function of reduced pressure P∗ for
NPT simulations in which we vary the pressure of the system starting from
P∗ = 5.0 in an AAA crystalline state (expansion simulations) and for simu-
lations where we increase the pressure from P∗ = 1.0, starting from the final
state of a system in expansion simulations at P∗ = 1.0 (compression simula-
tions). Both expansion and compression simulations are performed with two
types of particles with different flexibilities and length, L, over persistence
length, Lp, of L/Lp = 0.31 and 0.09.

sures and elimination of the tilt that is observed at higher
pressures.

The reason why we started from an AAA crystalline
structure is that we initially aimed at investigating whether the
internal flexibility of particles can force them to self-organize
into a columnar phase rather than a smectic-A phase. In agree-
ment with the simulations of Veerman and Frenkel,46 we find
that for sufficiently small systems a meta-stable columnar
phase does indeed form (results are not shown), but for the
large systems that we study here no stable columnar phase
presented itself.

As discussed above, the value of S2 is close to unity
for all the values of pressure between P∗ = 1.0 and 5.0. In
order to find out what is the highest pressure at which the
nematic phase is stable, we calculate the smectic order pa-
rameter, τ s, as described above. Shown in Fig. 3 is τ s as
a function of the dimensionless pressure P∗ and the dimen-
sionless density ρ/ρcp for the two values of L/Lp = 0.31 and
0.09, where we first expand our system from P∗ = 5 to 1
and then cycle back to a value of 5. Here, ρ is the average
number density of particles at a given pressure and ρcp is
the close packing density of spherocylinders, which is given
by ρcp = 2/(

√
2 + (L/D)

√
3)D3, where L/D = 8 is the as-

pect ratio of our particles. For the case of the more flex-
ible particles with L/Lp = 0.31, the N-Sm-A phase transi-
tion occurs at higher values of pressure and density. This is
in agreement with theoretical predictions,18, 21 simulations,19

and experiments.17 From the behavior of the smectic order
parameter as a function of pressure, one could argue that the
N-Sm-A transition for our particles is of the second order.
However, we also observe that there is hysteresis in our sim-
ulations: the dependence of the particle density as a function
of the pressure in the compression part of our simulations dif-
fers slightly from that in the expansion part (data not shown)
as does the smectic order parameter shown in Fig. 3, which
is an indication that the transition must be of the first order.
Therefore, from our simulation results we cannot determine
the order of this transition.
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FIG. 3. Smectic order parameter, τ s, as a function of the reduced pressure
P∗ (a) and particle density, ρ (b). Here, ρcp is the close packing density of
spherocylinders (see the main text). Purple squares and blue stars correspond
to initial expansion and subsequent compression simulations of our filamen-
tous particles with L/Lp = 0.09. Red pluses and green crosses are associated
with compression and expansion simulations with filamentous particles with
L/Lp = 0.31.

The smectic layer-to-layer distance, dsm, is another quan-
tity of interest. Shown in Fig. 4 is dsm as a function of smec-
tic order parameter, τ s, for the two values of L/Lp investi-
gated. For the more flexible particles, dsm has a smaller value
any given τ s. This is because the effective (projected) length
of these particles is smaller than that of more rigid particles
due to particle flexing. Therefore, these particles form shorter
layers especially at relatively low densities at which there is
more space for undulations within the smectic layers. As the
density increases, the particle-particle spacing within the lay-
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FIG. 4. The smectic layer-to-layer distance, dsm, in the smectic phase as a
function of smectic order parameter τ s, obtained from compression simula-
tions for L/Lp = 0.31 (red pluses) and L/Lp = 0.09 (green crosses). Here,
Lp, L, and L + σ are the persistence length, the contour length, and the to-
tal length of an isolated particle, respectively, with σ being the diameter of
our beads. Because the particles compress slightly at high pressures corre-
sponding to large values of the smectic order parameter dsm/(L + σ ) can be
smaller than unity even though in reality dsm is in that case virtually equal to
the actual rod length.

ers becomes smaller and the effective length of particles in-
creases, which leads to an increase in the value of dsm. In
our simulations, for the more flexible particles dsm initially
increases with increasing τ s and after reaching a maximum
value it decreases again, whereas for the case of more rigid
particles it decreases monotonically. We note that dsm be-
comes slightly smaller than the optimal length of an isolated,
L, at high pressures for both values of L/Lp. This is because
our particles are made up of beads that are connected via
harmonic bonds and, although the strength of the harmonic
bonds is large (kb = 50 kBT/σ 2), particles at high pressures
compress along their principal axis and form slightly thinner
layers.

Particle flexing and undulation can also influence the
level of ordering of particles within the smectic layers. To
investigate this, we compute the bond orientational order pa-
rameter, ψ6, which is a measure of hexagonal ordering in the
direction perpendicular to the director. For a perfect hexago-
nal lattice, ψ6 = 1, and for a system with no hexagonal order,
ψ6 ≈ 0. The bond orientational order parameter for the two
values of L/Lp are shown in Fig. 5 for both our expansion and
compression simulations. The results of our expansion sim-
ulations show that the value of ψ6 is smaller for the more
flexible particles with L/Lp = 0.31 than those for which L/Lp
= 0.09. Moreover, in our expansion simulations, the value of
ψ6 for more rigid particles vanishes at lower values of the
pressure (and density) compared to that of the more flexible
ones showing that particle bending flexibility reduces the level
of hexagonal ordering. Under recompression of the more rigid
particles, we observe that ψ6 attains a lower value at a given
pressure compared to that of the expansion simulations, which
is probably due to the fact that in the expansion simulations
we start from a lattice with perfect hexagonal ordering. As
we alluded to above, this is not a stable configuration even
at the highest pressure tested. Here, our finding of hysteresis
is also an indication that the smectic-A to smectic-B phase
transition must be of first order. Our simulations show that for
P∗ > 2.5 corresponding to densities ρ/ρcp > 0.59 the more
rigid particles self-organize into a phase where both ψ6 and
τ s are non-zero. This phase may be a crystalline phase with
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FIG. 5. The bond orientational order parameter, ψ6, as a function of the
reduced pressure, P∗. Blue open and purple filled triangles correspond to
compression and expansion simulations of filamentous particles with L/Lp= 0.09. Red open and green filled circles are associated with compression
and expansion simulations of filamentous particles with L/Lp = 0.31.
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FIG. 6. The in-layer pair correlation function, g⊥, as a function of the di-
mensionless transverse distance, R/σ , at a dimensionless pressure P∗ = 5.0
for particles with L/Lp = 0.31. Results after expanding from P∗ = 5.0 to 1.0
and re-compression to P∗ = 5.0. Here, σ is the diameter of beads that make
up a particle.

long-range positional order or a smectic-B phase. Due to fi-
nite size of our simulation box we are not able to distinguish
between these two phases.

Surprisingly, when we compress the nematic phase of
the more flexible particles, the value of the ψ6 order pa-
rameter is always very small even at the highest pressure,
P∗ = 5.0, suggesting a smectic-A rather than a crystalline
phase. To further investigate this, we calculate the pair cor-
relation function within the smectic layers, g⊥(r). Shown in
Fig. 6 is g⊥ that is measured for the compression simulation
at P∗ = 5.0. The first peak in g⊥ appears at R1 ≈ 1.15 and
the second and third peaks appear at 2R1 and

√
3R1, respec-

tively, showing that within the smectic layers the particles ex-
hibit hexagonal ordering. This is characteristic of the smectic-
B phase that has also been found in other similar studies by
Cinacchi and De Gaetani47 on shorter (semi-)flexible filamen-
tous particles, although ψ6 was larger than zero for what the
authors call the “crystal (smectic-B) phase.” Here, we find
that particle bending flexibility favors the smectic-B phase
against the crystal phase, which is in agreement with very
recent experiments on wild-type fd virus and its more rigid
mutant.48

The reason why we do not see the hexagonal ordering in
the ψ6 order parameter is because the layers of hexagonally
ordered particles are randomly displaced with respect to each
other and therefore the contributions of layers to exp(6iθ ij)
in Eq. (6) cancel each. To pinpoint for what pressure the
hexagonal ordering starts to increase, we calculate the ψ6 or-
der parameter for each layer of the smectic phase separately
and after that compute its average over all layers. The results
are shown in Fig. 7. As shown in this figure, the transition
from smectic-A to smectic-B phase occurs at a pressure of
approximately P∗ = 2.7 with an averaged in-layer order pa-
rameter ψ6 of 0.28. By comparing the values of averaged
in-layer ψ6 in Fig. 7 and τ s in Fig. 3 we find that for the
case of particles with L/Lp = 0.31, the smectic-A phase is
stable approximately between P∗ = 2.4 and P∗ = 2.7 cor-
responding to average densities between ρ/ρcp = 0.57 and
ρ/ρcp = 0.61.
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FIG. 7. The in-layer bond orientational order parameter, ψ6, averaged over
all the smectic layers in the system as a function of the reduced pressure, P∗,
for particles with L/Lp = 0.31 obtained from compression simulations (red
open circles) and ψ6 for particles with L/Lp = 0.31 obtained from expansion
simulations (green filled circles).

IV. DYNAMICS ON BOTH SIDES OF N-Sm-A
PHASE TRANSITION

As alluded to in Sec. I, recent experiments on wild-type
and mutant fd virus show that the ratio of diffusion con-
stants of the particles parallel, D‖, and perpendicular, D⊥, to
the director increases with increasing density for the case of
more flexible wild-type fd from the nematic phase entering
the smectic-A phase whereas it decreases for the more rigid
mutant. Inspired by this, we rely on Brownian dynamics simu-
lations starting from the last configurations obtained from our
compression MD simulations presented in Sec. III in order to
study the kinetics of particles on both sides of the N-Sm-A
phase transition.

In the smectic phase, long-time diffusion of particles
along the director is dictated by the free-energy barriers re-
sulted from the periodic self-consistent molecular field in
this direction.31 To see how the free-energy barrier varies as
a function of density, we calculate this quantity using the
method that we described in Sec. II. The free-energy barrier,
U(z), is shown in Fig. 8 at four values of the reduced pres-
sure, P∗, and for the two particle bending flexibilities corre-
sponding to L/Lp = 0.31 and 0.09. For both types of particle,
U(z) ≈ 0 at the lowest value of the pressure that corresponds
to a nematic phase. As expected, in the nematic phase parti-
cles do not feel a periodic self-consistent field along the di-
rector. In the smectic phase, the barrier height increases with
increasing pressure (or density). The height of the barrier in
the smectic-A phase ranges from 0.7 kBT to 2.7 kBT for the
more flexible particles and from 2.1 kBT to 4.0 kBT for the
more rigid ones. The barrier heights obtained from the smec-
tic phase of fd virus range between 0.66 kBT and 4 kBT.29, 38

The presence of potential barriers along the director in
the smectic-A phase leads to a heterogeneous kind of dynam-
ics in this direction discussed in the Introduction. Particles in
the smectic phase mostly rattle around their equilibrium po-
sitions in layers and from time to time they overcome this
potential barrier and hop from one layer to another. The con-
comitant heterogeneous dynamics that is the result of this can
be quantified by considering the self part of the Van Hove
function along the director, G

‖
s . Shown in Fig. 9 is G

‖
s (z) at
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FIG. 8. Free energy barrier along the director, U(z), (a) for particles with
L/Lp = 0.31 at P∗ = 2.0 (�), 2.4 (∗), 2.5 (×), and 2.6 (+), (b) and L/Lp
= 0.09 at P∗ = 1.3 (�), 1.6 (∗), 1.7 (×), and 1.8 (+). Here, dsm is the layer-
to-layer spacing of the smectic phase. For both L/Lp = 0.31 and 0.09, the
lowest value of pressure corresponds to a nematic phase for which dsm is set
to one particle length.

time t = 1000t∗ and at three values of reduced pressure for
the two types of particle with L/Lp = 0.31 and 0.09. As can
be seen in Fig. 9, the hopping-type diffusive motion alluded
to above between the layers presents itself as peaks in G

‖
s (z).

The peaks appear at multiples of the layer spacing, which is
usually very close to one particle length. As the height of the
free-energy barriers increases with increasing the pressure it
becomes more difficult for particles to overcome the barri-
ers and therefore the probability that a particle engages in an
inter-layer jump decreases. On the other hand, for larger val-
ues of the barrier height particles are more confined to their
layers, i.e., the width of the barriers decreases with increas-
ing pressure (see Fig. 8), which causes the peaks in G

‖
s to be

sharper at higher pressure.
Again, our aim is to investigate the influence of bending

flexibility on the dynamics in the smectic-A phase. To do so,
we cannot straightforwardly compare our simulation results
for the two values of L/Lp at the same pressure (or density),
because, as we showed earlier, the pressure range at which
these particles self-organize into a smectic-A phase differs.
Even if there is an overlap between the two ranges, the smec-
tic order parameters would still be different at equal pressure.
Therefore, for a sensible comparison we present in Fig. 10 re-
sults of our simulations with the stiff and less stiff particles at
the same value of the smectic order parameter. Shown in the
inset of Fig. 10 is the self part of the Van Hove function paral-
lel, G

‖
s , and in the main figure that perpendicular to the direc-

tor, G⊥
s , for L/Lp = 0.31 and 0.09 with the same value of the

smectic order parameter τ s ≈ 0.61. Interestingly, the corre-
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FIG. 9. Self part of the Van Hove function parallel to the director, G
‖
s (z,

t = 1000t∗), as a function of the scaled distance, z/dsm, for particles (a) with
L/Lp = 0.31 at P∗ = 2.1 (red solid line), 2.5 (green dashed line), and 2.6
(purple dotted line) and (b) with L/Lp = 0.09 at P∗ = 1.3 (red solid line), 1.6
(green dashed line), and 1.8 (purple dotted line). Here, dsm is the layer-to-
layer spacing of the smectic phase. For both L/Lp = 0.31 and 0.09, the lowest
value of the pressure corresponds to a nematic phase state point in which case
dsm is set equal to a single particle length.

lation functions G
‖
s virtually superimpose other showing that

the kinetics of both types of particles along the director is very
similar. Within the smectic layers, however, the more flexible
particles move around much more slowly than the rigid ones
do. We attribute this to particle undulation effects that cause
more flexible particles to be effectively bulkier in the direc-
tion perpendicular to their principal axis, which means that
they have less free space to move within a layer.

The difference between the diffusion of the particles in
the directions parallel and perpendicular to the director can

FIG. 10. Self part of the Van Hove function perpendicular, G⊥
s (R,

t = 1000t∗), and parallel, G
‖
s (z, t = 1000t∗), (inset) to the director obtained

from simulations of systems of particles with L/Lp = 0.31 (red solid line) and
L/Lp = 0.09 (purple dotted line) at two different pressures P∗ = 2.65 and 1.7.
The smectic order parameter for the two simulations is τ s ≈ 0.61.
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FIG. 11. Dimensionless mean square displacement, MSD(t)/σ 2, as a function
of dimensionless time, t/t∗, obtained from simulations on particles with L/Lp= 0.31 and L/Lp = 0.09 at identical values of the smectic order parameter τ s
≈ 0.61, corresponding to the pressures P∗ = 2.65 and 1.7. Here, t∗ is related
to the diffusion constant of a single bead by Db = σ 2/t∗ and σ is the diameter
of a bead.

also be quantified by measuring the long-time diffusion con-
stants in these directions. To measure the diffusion constants,
we first obtain the mean square displacement of the particles,
MSD(t), along and perpendicular to the director. Shown in
Fig. 11 is the MSD(t) above for particles with L/Lp = 0.31
and 0.09 at the pressures P∗ = 2.65 and 1.7. As we expect,
the MSD(t) parallel to the director obtained from these sim-
ulations match at short and long time scales. There are three
regimes in this direction that can be discerned from Fig. 11, a
short-time regime in which the particles in the layers do not
feel the presence of any of particles in the neighboring lay-
ers, an intermediate regime in which diffusion is suppressed
by the self-consistent molecular field in the smectic phase and
finally a long-time regime where particles jump between the
smectic layers and exhibit again the usual diffusive behavior.

For the in-layer MSD(t) perpendicular to the director, we
identify a liquid-like behavior with two regimes: a regime
where particles are caged by the neighboring particles within
their layers and their diffusive motion is slowed down, and a
regime in which particles hop from one cage to another result-
ing in a faster long-time diffusion. The short-time diffusion
regime is lacking here due to the smallness of the lateral cage.
Again, as we expect from what we found from the van Hove
function, the long-time diffusion of more rigid particles is
faster than that of the more flexible ones. In the first,“caging”
regime at shorter times, however, the more flexible ones travel
faster presumably because the cages formed by the more flex-
ible particles are effectively “softer” due to particle flexing.

From the long-time behavior of MSD(t), we calculate
the long-time diffusion constant of particles parallel, D‖, and
perpendicular, D⊥, to the director. Our results are shown in
Fig. 12 as a function of the pressure P∗ for the two bending
flexibilities corresponding to L/Lp = 0.31 (green crosses) and
L/Lp = 0.09 (red pluses). The vertical lines in this figure indi-
cate the approximate location of the N-Sm-A phase transition.
Our results are compatible with earlier simulation studies for
more rigid particles on both sides of the N-Sm-A transition.
The simulations of Löwen27 on colloidal hard spherocylin-
ders with an aspect ration of 10 agree very well with our data
for L/Lp = 0.09, that is to say, the values for long-time dif-

FIG. 12. (a) Ratio of long-time diffusion constants parallel, D‖, and perpen-
dicular, D⊥, to the director, (b) ratio of D‖ to the single particle diffusion
constant in free solution, D, (c) ratio of D⊥ to D, all as a function of re-
duced pressure P∗ for the two particle flexibilities with values of L/Lp = 0.31
(green crosses) and L/Lp = 0.09 (red pluses). The blue and purple symbols
correspond to D‖ calculated from potential barriers in the smectic phase. See
the main text. The black and the red vertical lines indicate the approximate
location of N-Sm-A transition for L/Lp = 0.31 and 0.09, respectively.

fusion constants at the same nematic order parameter match.
Before entering the smectic-A phase the value of D‖/D⊥ in
our simulations weakly increases with increasing pressure
for L/Lp = 0.31 whereas it is almost a constant for L/Lp
= 0.09.

In the smectic phase, D‖ can be computed from the free
energy barrier along the director, U(z), by using the theoretical
prediction49 D‖ = D0

‖/〈exp(−U (z)/kBT )〉〈exp(U (z)/kBT )〉,
where angular brackets indicate an average over one period of
the smectic layers and we take the D0

‖ as the diffusion constant
in the nematic phase at a concentration close to the nematic-
smectic phase transition. The values of D‖ calculated by using
this method are shown in Fig. 12(b). These values are in re-
markable agreement with those computed from the long-time
behavior of MSD(t) for both the rigid and the more flexible
particles.

We furthermore find that for the two particle flexibili-
ties the values of D‖/D, D⊥/D, and D‖/D⊥ at the nematic-
smectic transition do not change significantly with flexibility,
and D‖/D⊥ decreases with increasing density and entering the
Sm-A phase. Our finding is in contrast with the experimen-
tal observations on wild-type and mutant fd virus particles,
where D‖/D⊥ increases with density (and hence pressure) af-
ter entering the smectic-A phase for the more flexible wild-
type fd virus particles. The discrepancy might be due to the
small aspect ratio of our particles compared to that of fd virus
or the impact of hydrodynamic interactions that we ignore
completely.26

V. CONCLUSIONS

We carried out molecular and Brownian dynamics sim-
ulations, and studied the influence of particle bending
flexibility on the equilibrium properties and dynamics of
dispersions of filamentous particles at different densities. Mo-
tivated by recent experiments on fd virus particles, we did our
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simulations for persistence lengths corresponding to those of
wild-type and mutant fd virus particles. By measuring the ne-
matic, smectic, and bond-orientational order parameters, we
located the density at which our particles self-organize into
nematic, smectic-A, smectic-B, and/or crystal phases.

In agreement with theoretical predictions, we find that
the N-Sm-A phase transition density is shifted towards larger
values for the more flexible particles. We also find that par-
ticle flexibility changes the smectic layer-to-layer distance
as a function of density. For the more rigid particles, it de-
creases monotonically with increasing density whereas for the
more flexible ones it first increases and after that decreases.
We attribute this to thermal undulations of the more flexi-
ble particles that are suppressed at higher densities. Moreover,
the more flexible particles at sufficiently high densities self-
organize into the smectic-B phase in which particles within
the smectic layers exhibit hexagonal ordering yet the corre-
sponding hexagonal lattice is displaced randomly from one
layer to another. For the more rigid particles, the hexagonal
lattice of each layer is almost aligned with the next one and in
this case we cannot distinguish between smectic-B and crystal
phases.

Our simulations on the dynamics of these particles in the
smectic-A phase show that both types of particle exhibit a
hopping-type diffusion between the smectic layers. We show
that at densities that both types of particle have the same value
of the smectic order parameter, their diffusion along the direc-
tor is very similar but more flexible particles move slower in
the direction perpendicular to it. We also see this in the long-
time behavior of the mean-square displacement of the parti-
cles in these two simulations. At relatively short time scales,
where caging of particles by neighbors predominates the ki-
netics, the more flexible particles move about faster. We at-
tribute this to the particle flexing that presumably cause the
cages formed by neighbors of each particle to be effectively
“softer.”

Our results on the diffusion of particles shows that parti-
cle flexibility does not change the diffusive behavior on both
sides of the N-Sm-A transition significantly and for the both
stiff and more flexible particles the ratio of D‖ to D⊥ decreases
with entering the Sm-A phase.
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