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Iterative Learning Control for Varying Tasks:
Achieving Optimality for Rational Basis Functions

Jurgen van Zundert, Joost Bolder and Tom Oomen - ACC2015_IV_v99(31/05/2018)

Abstract— Iterative Learning Control (ILC) can achieve su-
perior tracking performance for systems that perform repeating
tasks. However, the performance of standard ILC deteriorates
dramatically when the task is varied. In this paper ILC
is extended with rational basis functions to obtain excellent
extrapolation properties. A new approach for rational basis
functions is proposed where the iterative solution algorithm is
of the form used in instrumental variable system identification
algorithms. The optimal solution is expressed in terms of
learning filters similar as in standard ILC. The proposed
approach is shown to be superior over existing approaches in
terms of performance by a simulation example.

I. INTRODUCTION

For systems performing the same task over and over, the
performance can be optimized by learning from previous
executions. In Iterative Learning Control (ILC) [1], [2], [3],
[4], the repetitive behavior is exploited by updating the
command signal using data from previous executions.

ILC achieves optimal performance for a specific task only
since the command signal is learned. For varying tasks the
performance may severely deteriorate [5]. The main reason
is that the command signal is not a function of the reference
trajectory. In [6], the extrapolation properties are enhanced
by constructing the task such that it comprises basis tasks
that are learned in a training routine. Consequently, this
approach is limited to tasks which can be constructed by
a finite set of basis tasks. A more general approach is to
parameterize the command signal in a set of basis functions
[7], [8]. Examples of basis functions include polynomial
basis functions [9], [10], [11], [12], and more recently
rational basis functions [13]. Rational basis functions are
more general than polynomial basis functions, since the latter
are recovered as a special case.

The optimization associated with polynomial basis func-
tions in ILC has an explicit analytic solution [3], whereas
this is generally not the case for rational basis functions.
In [13], an iterative solution based on Steiglitz-McBride is
presented. The approach achieves fast convergence and is
insensitive to local optima [14], however, the stationary point
is not necessarily an optimum, as is well known in related
system identification algorithms [15].
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Although important contributions have been made by
developing general rational basis functions in ILC, presently
available optimization algorithms suffer from non-optimality
or poor convergence properties.

The aim of this paper is to show non-optimality of the
pre-existing approach and develop a new solution algorithm
for which the stationary point is always an optimum. The
proposed approach has strong connections to instrumental
variable system identification [16]. The contributions of this
paper are threefold:

I Non-optimality of the pre-existing approach in [13] for
rational basis functions in ILC is illustrated.

II A new iterative solution algorithm for rational basis
functions in ILC is proposed and its optimality is shown
which constitutes the main contribution of this paper.

III It is shown that the proposed approach outperforms the
pre-existing approach by a simulation example.

The outline of this paper is as follows. In section II, the
problem considered in this paper is introduced. The non-
optimality of the pre-existing approach [13] is illustrated in
section III. The proposed approach is presented in section IV.
The iterative approaches are compared by use of a simula-
tion example in section V, demonstrating that the proposed
approach outperforms the pre-existing approach. Section VI
contains conclusions.

II. PROBLEM FORMULATION

In this section the considered problem is defined.

A. Notation

In this paper discrete-time, linear, time-invariant (LTI),
singe-input, single-output (SISO) systems are considered to
facilitate the presentation.

Let z ∈ C be the complex indeterminate and x(k)
the signal x evaluated at time index k. Let h(l) be the
impulse response of the system H(z). The output y(k)
of the response of H(z) to input u is given by the [17]
y(k) =

∑∞
l=−∞ h(l)u(k− l). Assuming u(k) = 0 for k < 0

and k > N−1, then



y[0]
y[1]

...
y[N−1]




︸ ︷︷ ︸
y

=




h(0) h(−1) ... h(1−N)
h(1) h(0) ... h(2−N)

...
...

. . .
...

h(N−1) h(N−2) ... h(0)




︸ ︷︷ ︸
H




u[0]
u[1]

...
u[N−1]




︸ ︷︷ ︸
u

, (1)

with H the finite-time matrix representation of H(z), and
u, y ∈ RN the input and output, respectively, with N ∈
Z+ the trial length. Let j be the trial index and ‖xj‖W :=

1



fj

+

P
r

C
+

−
+ej yj

Fig. 1. Closed-loop system under consideration.

x>j Wxj , where xj ∈ RN and W ∈ RN×N . W is positive
definite if x>Wx > 0, ∀x 6= 0 and positive semi-definite if
x>Wx ≥ 0, ∀x.

Let a system G(θ, z) be linearly parameterized as

G(θ, z) =

m−1∑

n=0

xn(z)θ[n],

with parameters θ ∈ Rm and basis functions ξn(z), which
is equivalent to

y = ΨGuθ, (2)

with ΨGu =
[
ξ0u, ξ1u, . . . , ξm−1u

]
∈ RN×m where

ξn ∈ RN×N are finite-time matrix representations of ξn(z)
according to (1).

Example 1. Consider G(θ, z) with N = 3 and ξ0(z) = z,
ξ1(z) = 1, ξ2(z) = z−2, i.e., G(z) = θ[0]z+ θ[1] + θ[2]z−2.
Using (1):
[
y[0]
y[1]
y[2]

]

︸ ︷︷ ︸
y

=

[
θ[1] θ[0] 0
0 θ[1] θ[0]
θ[2] 0 θ[1]

]

︸ ︷︷ ︸
G

[
u[0]
u[1]
u[2]

]

︸ ︷︷ ︸
u

=

[
u[1] u[0] 0
u[2] u[1] 0

0 u[2] u[0]

]

︸ ︷︷ ︸
ΨGu

[
θ[0]
θ[1]
θ[2]

]

︸ ︷︷ ︸
θ

,

where the latter is in the form of (2).

B. System description

The considered ILC setup is shown in Fig. 1. Here is P ∈
RN×N a single-input, single output system and C ∈ RN×N
a stabilizing feedback controller. The aim is to determine the
feedforward fj ∈ RN such that the output yj ∈ RN follows
the reference r ∈ RN as accurately as possible, i.e., such that
the tracking error ej = r − yj is minimized. The tracking
error for trial j is given by

ej = Sr − SPfj , (3)

with sensitivity S := (I + PC)
−1. The tracking error

evaluated at trial j + 1 is given by

ej+1 = Sr − SPfj+1. (4)

Eliminating Sr from (4) by (3) yields the tracking error
propagation from trial j to trial j + 1:

ej+1 = ej + SP (fj − fj+1) .

C. Norm-optimal ILC

The goal is to minimize the error signal ej+1 at the next
trial using fj+1. ILC [1] enables the determination of fj+1

through an iterative procedure that only requires approximate
model knowledge.

Norm-optimal ILC is an important class of ILC in which
the feedforward signal fj+1 for the next trial is selected

as the signal that minimizes the performance criterion in
Definition 2.

Definition 2 (Performance criterion norm-optimal ILC). The
performance criterion for norm-optimal ILC is given by

J (fj+1) := ‖ej+1‖We
+ ‖fj+1‖Wf

+ ‖fj+1 − fj‖W∆f
,(5)

with We ∈ RN×N a symmetric, positive definite weighting
matrix, and Wf ,W∆f ∈ RN×N symmetric, positive semi-
definite weighting matrices.

Norm-optimal ILC is well-known and can be found in,
for example, [1], [18]. In norm-optimal ILC the signal fj
is learned over the trials. However, the optimal feedforward
signal yielding ej = 0 in (3) is given by fj = P−1r, under
the assumption that P is invertible. This case corresponds
to inverse model feedforward and shows that the optimal
feedforward signal is a function of the reference signal.
Hence, the learned signal in norm-optimal ILC will only be
optimal for one specific reference signal and non-optimal for
different reference signals. In order to introduce extrapolation
properties, basis functions are exploited in the next section.

D. Introducing extrapolation properties with basis functions

Inspired by inverse model feedforward, extrapolation prop-
erties are introduced in ILC by use of basis functions [9]:

fj = F (θj)r, θj ∈ Rm. (6)

Substitution of (6) in (3) yields

ej = S(I − PF (θj))r.

Hence, if F (θj) = P−1, ej = 0 ∀r.
In this paper rational basis functions are chosen for the

feedforward filter F (θj) (see Definition 3 and Fig. 2) since
it allows to fully describe the plant inverse P−1 and thereby
obtain perfect tracking.

Definition 3 (Rational basis functions). Rational basis func-
tions in the parameters θj ∈ Rm with reference r as basis
are defined as in (6) with F (θj) the matrix representation of
F (θj , z) ∈ F ,

F =

{
A(θj , z)

B(θj , z)

∣∣∣∣ θj ∈ Rma+mb

}
,

with

A(θj , z) =

ma−1∑

n=0

ξAn (z)θj [n],

B(θj , z) = 1 +

mb−1∑

n=0

ξBn (z)θj [ma + n],

where ξAn (z), n = 0, 1, 2, . . . ,ma−1, and ξBn (z), n =
0, 1, 2, . . . ,mb−1 are basis functions.

The polynomial basis functions in [9], [10], [11], [12]
are recovered by setting mb = 0. Interestingly, an analytic
solution for the case mb = 0 is presented in [9]. Such
analytic solution does not exist for the general case mb > 0.
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Fig. 2. Implementation of rational basis functions (Definition 3) in Fig. 1.

Evaluating (5) for (6) yields the performance criterion
stated in Definition 4, which is a function of the parameters
θj+1. Instead of determining the optimal feedforward signal,
the optimal parameters are to be determined. Since m =
dim(θj+1)� dim(fj+1) = N , additional robustness against
model uncertainties is introduced.

Definition 4 (Performance criterion ILC with basis func-
tions). The performance criterion for norm-optimal ILC with
basis functions is given by

J (θj+1) := ‖ej+1(θj+1)‖We
+

‖fj+1(θj+1)‖Wf
+

‖fj+1(θj+1)− fj(θj)‖W∆f
,

(7)

with We ∈ RN×N a symmetric, positive definite weighting
matrix, and Wf ,W∆f ∈ RN×N symmetric, positive semi-
definite weighting matrices.

E. Problem formulation

The goal in this paper is to solve Problem 5.

Problem 5 (Main problem). Given Definition 3 and θj ,
determine

θ∗j+1 = arg min
θj+1

J (θj+1),

with J (θj+1) in Definition 4.

III. NON-OPTIMALITY PRE-EXISTING APPROACH

In this section the non-optimality of the pre-existing
approach of [13] is demonstrated, forming contribution I.

A. Pre-existing approach

Similar to standard norm-optimal ILC [1], there is an
analytic solution to Problem 5 if both ej+1 and fj+1 are
linear in θj+1, which is not the case for mb > 0. In the
pre-existing approach, which is closely related to Steiglitz-
McBride system identification, the performance criterion in
Definition 6 is considered. Note that if θ〈q〉j+1 = θ

〈q−1〉
j+1 =

θj+1, then Ĵ (θ
〈q〉
j+1) = J (θj+1).

Definition 6 (Weighted performance criterion).

Ĵ (θ
〈q〉
j+1) :=

∥∥∥B−1(θ
〈q−1〉
j+1 )B(θ

〈q〉
j+1)e

〈q〉
j+1

∥∥∥
We

+
∥∥∥B−1(θ

〈q−1〉
j+1 )B(θ

〈q〉
j+1)f

〈q〉
j+1

∥∥∥
Wf

+
∥∥∥B−1(θ

〈q−1〉
j+1 )B(θ

〈q〉
j+1)f

〈q〉
j+1 − fj

∥∥∥
W∆f

.

Note that Ĵ (θ
〈q〉
j+1) is quadratic in θ〈q〉j+1. Hence, there is a

unique solution for the optimal parameters θ〈q〉∗j+1 , which can
be determined analytically from:

(
dĴ (θ

〈q〉
j+1)

dθ
〈q〉
j+1

)>∣∣∣∣∣∣
θ
〈q〉
j+1=θ

〈q〉∗
j+1

= 0. (8)

The idea is to iteratively determine the optimal parameters
θ
〈q〉∗
j+1 for Ĵ (θ

〈q〉
j+1) in Definition 6, using (8). The idea is that

upon convergence of the parameters, i.e., θ〈q〉j+1 → θ
〈q−1〉
j+1 ,

θ
〈q〉∗
j+1 are also the optimal parameters for Problem 5, because
J (θj+1) is recovered from Ĵ (θ

〈q〉
j+1) for θ〈q〉j+1 = θ

〈q−1〉
j+1 =

θj+1. There is thus an analytic solution which after conver-
gence provides the solution to Problem 5. The procedure of
the iterative algorithm is formulated in Algorithm 7.

Algorithm 7 (Pre-existing algorithm). The pre-existing al-
gorithm [13] for solving Problem 5 is given by the following
sequence of steps.

1) Let rj , fj , ej be given, set q = 1, and initialize θ〈q−1〉
j+1 =

θj .
2) Compute θ〈q〉∗j+1 from (8).
3) Set q → q + 1 and go back to 2) until an appropriate

stopping criterion is satisfied.

The advantage of Algorithm 7 over Gauss-Newton itera-
tion is that Algorithm 7 is insensitive for local optima and
typically converges in a few iterations [14].

B. Non-optimality pre-existing approach

In the pre-existing approach (8) is solved which yields the
minimum of Ĵ (θ

〈q〉
j+1). However,

dĴ (θ
〈q〉
j+1)

dθ
〈q〉
j+1

= 0 ;
dJ (θj+1)

dθj+1
= 0.

Consequently, there is no guarantee that the found parameters
are also the optimal parameters for J (θj+1) and therefore the
performance is non-optimal. A detailed proof is beyond the
scope of the present paper and will be published elsewhere.
The non-optimality of the pre-existing approach is confirmed
by a simulation example in section V.

IV. PROPOSED APPROACH

In this section a new iterative solution algorithm is pro-
posed and its optimality is shown which constitutes contri-
bution II.

The starting point of the proposed approach is

dJ (θj+1)

dθj+1)
= 0, (9)

with the gradient given by Lemma 9, exploiting the auxiliary
result in Lemma 8. Note that the gradient is not linear in
θj+1 for mb > 0. Hence, there will in general be no analytic
solution to (9).
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Lemma 8 (Gradient quadratic matrix function). Let x, b ∈
RN , A ∈ RN×N , and W> = W ∈ RN×N , then

d (‖Ax+ b‖W )

dx
= 2(Ax+ b)>WA.

Proof. Generalization of Proposition 10.7.1 in [19].

Lemma 9 (Gradient performance criterion). The gradient
of the performance criterion J (θj+1) in Definition 4 with
respect to the parameters θj+1 is given by

(
dJ (θj+1)

dθj+1

)>
=

− 2

(
dfj+1

dθj+1

)> (
(SP )

>
WeSP +W∆f

)
fj

− 2

(
dfj+1

dθj+1

)>
(SP )

>
Weej

+ 2

(
dfj+1

dθj+1

)> (
(SP )

>
WeSP +Wf +W∆f

)
·

B−1(θj+1)A(θj+1)rj .

where dfj+1

dθj+1
= Krj , with K the matrix representation of

K(z) =
1

B(θj+1, z)

dA(θj+1, z)

dθj+1

− A(θj+1, z)

B2(θj+1, z)

dB(θj+1, z)

dθj+1
.

Proof. Follows from applying Lemma 8 to (7).

The second step is to apply a weighting similar as in
the pre-existing approach, see Definition 10. Lemma 9 is
recovered from Definition 10 for θ〈q〉j+1 = θ

〈q−1〉
j+1 = θj+1.

Definition 10 (Weighted gradient of performance criterion).
Let

dJ (θ

〈q〉
j+1)

dθ
〈q〉
j+1



>

=

− 2ζ〈q〉
(

(SP )
>
WeSP +W∆f

)
B(θ

〈q〉
j+1)fj

− 2ζ〈q〉 (SP )
>
WeB(θ

〈q〉
j+1)ej

+ 2ζ〈q〉
(

(SP )
>
WeSP +Wf +W∆f

)
A(θ

〈q〉
j+1)rk,

(10)

with

ζ〈q〉 =


df

〈q−1〉
j+1

dθ
〈q−1〉
j+1



>

B−1(θ
〈q−1〉
j+1 ),

df
〈q−1〉
j+1

dθ
〈q−1〉
j+1

= K̄rj

with K̄ the matrix representation of

K̄(z) =
1

B(θ
〈q−1〉
j+1 , z)

dA(θ
〈q−1〉
j+1 , z)

dθj+1

−
A(θ

〈q−1〉
j+1 , z)

B2(θ
〈q−1〉
j+1 , z)

dB(θ
〈q−1〉
j+1 , z)

dθ
〈q−1〉
j+1

.

The term ζ〈q〉 in (10) is not a function of θ〈q〉j+1; (10) only
depends on θ

〈q〉
j+1 through linear dependencies on A(θ

〈q〉
j+1)

and B(θ
〈q〉
j+1). Since both these filters are linear in θ〈q〉j+1, (10)

is also linear in θ〈q〉j+1. Therefore the solution of equating (10)
to zero has an analytic solution, see Theorem 11.

Theorem 11 (Optimal parameters for weighted gradient
performance criterion). The optimal parameters θ〈q〉∗j+1 of (10)
in Definition 10 are given by

θ
〈q〉∗
j+1 =

(
ζ〈q〉Ψ〈q〉

)−1

ζ〈q〉
(
Q〈q〉fj + L〈q〉ej

)
, (11)

with

Ψ〈q〉 =
[(

(SP )
>
WeSP +Wf +W∆f

)
ΨA
rj , . . .

− (SP )
>
WeΨ

B
ej −

(
(SP )

>
WeSP +W∆f

)
ΨB
fj

]
,

Q〈q〉 = (SP )
>
WeSP +W∆f ,

L〈q〉 = (SP )
>
We.

Proof. Due to space restrictions, the proof will be published
elsewhere.

The final step is the formulation of the algorithm. In
the previous steps two key elements are derived. First, a
weighted gradient is introduced in Definition 10, from which
the gradient in Lemma 9 is recovered for θ〈q〉j+1 = θ

〈q−1〉
j+1 =

θj+1. Second, an analytic solution for the parameters θ〈q〉∗j+1 =

θ
〈q〉
j+1 is obtained for which the weighted gradient in Defini-

tion 10 is zero. Hence, upon convergence, the actual gradient
also converges to zero and optimal performance is achieved.
Combining these two elements, there is an analytic solution
to Problem 5 when there is convergence in the parameters,
i.e., θ〈q〉j+1 → θ

〈q−1〉
j+1 . The iterative algorithm to obtain this

solution is given by Algorithm 12. The proposed algorithm is
closely related to instrumental variable system identification
[16].

Algorithm 12 (Proposed algorithm). The proposed algo-
rithm for solving Problem 5 is given by the following
sequence of steps.

1) Let rj , fj , ej be given, set q = 1, and initialize θ〈q−1〉
j+1 =

θj .
2) Compute θ〈q〉∗j+1 from (11).
3) Set q → q + 1 and go back to 2) until an appropriate

stopping criterion is satisfied.

V. SIMULATION EXAMPLE

In this section the pre-existing and proposed approach for
solving ILC with rational basis functions are analyzed by use
of simulation. This section constitutes contribution III.

A. System description

The system under consideration is an Océ Arizona 550
GT flatbed printer, see Fig. 3. In this simulation example
only the movement in y-direction is considered. Given are
the transfer from the input current of the carriage motor [A]
to the output position of the carriage [m] as identified using
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gantry UV lights carriage printing surface

y

Fig. 3. Océ Arizona 550 GT at the CST Motion laboratory, Eindhoven
University of Technology. The carriage moves in y-direction over the gantry
which can be moved parallel to the y-direction over the printing surface.
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Fig. 4. Bode plot of the FRF and
identified 20th order model of the
transfer of the y-position of the carriage.
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Fig. 5. The reference signal
r consists of a symmetric 4th
order polynomial.

a frequency response function (FRF) measurement. A 20th
order model based on this FRF measurement is given and
used as plant model. The Bode plots of the FRF measurement
and the model are depicted in Fig. 4. The sampling time is
Ts = 0.001 s. The feedback controller consists of a weak
integrator, a lead-filter and a first-order low-pass filter, and
yields a bandwidth of 25 Hz.

B. Simulation setup

Fig. 5 depicts the reference signal r which consists of
a fourth order polynomial, preceded and followed by zeros
to allow for pre- and post-actuation, respectively and has
a trial length of N = 8000 samples. The weighting filters
in Definition 4 are set to We = 106I , Wf = W∆f = 0.
Rational basis functions (Definition 3) are exploited with

A(z) = γ(z − 1)2, |A(z)P (z)|z=1 = 1,

B(θj , z) = 1 +

1∑

n=0

ξBn θj [n], θj ∈ R2,

with ξB0 (z) = z−1
zTs

, and ξB1 (z) = ( z−1
zTs

)2, respectively, i.e.,
a first- and second-order differentiator.

C. Simulation results

The results are depicted in Fig. 6 and Fig. 7. From analysis
of the performance criterion over a grid of parameters, it
is concluded that there is only one minimum, namely for
θj+1 ≈

[
3.13, −0.18

]>
.

Next, the convergence behavior of both approaches is
analyzed. The new parameters θ

〈q〉
j+1 only depend on the

previous parameters θ
〈q−1〉
j+1 . Therefore, given θ

〈q−1〉
j+1 , an

approach will always yield the same parameters θ〈q〉j+1. For
both iterative approaches, the direction of θ〈0〉j+1 → θ

〈1〉
j+1 is

indicated in Fig. 6a and Fig. 7a for a grid in θj+1. The result
is a vector field indicating the direction the parameters θ〈1〉j+1

move to given θ
〈0〉
j+1 = θj . Moreover, the evolution of the

parameters θ〈q〉j+1 for q = 0, 1, 2, . . . , 7 of three trajectories is
displayed: starting from the upper-left ( ) and lower-right
( ) corner, and from the optimum (). The corresponding
performance criterion Ĵ (θ

〈1〉
j+1) is displayed in Fig. 6b and

Fig. 7b. The 2-norm of the gradient with respect to the
parameters is depicted in Fig. 6c and Fig. 7c. The figures
indicate that both approaches converge within a couple of
iterations.

Pre-existing approach: Fig. 6a indicates that the pre-
existing approach always converges to a non-optimal sta-
tionary point. This can also be observed in Fig. 6c, which
shows that the gradient after convergence is still considerably
large. Even if the approach is initialized in the optimum (),
it diverges to the non-optimal stationary point with poorer
performance.

Proposed approach: In contrast, for the proposed ap-
proach the gradients for all three initial conditions converge
to a value close to zero, i.e., the approach converges to the
minimum. Correspondingly, the value of Ĵ (θ

〈q→∞〉
j+1 ) is also

significantly smaller than for the pre-existing approach.

D. Conclusion on simulation example

The simulation example shows that the pre-existing ap-
proach is non-optimal. Even if initialized in the optimum,
it diverges to a stationary point with worse performance. In
contrast, the proposed approach converges to a stationary
point close to the optimum.

For cases with multiple optima the stationary point of
gradient-based algorithms, such as the Gauss-Newton algo-
rithm, depends on the initial parameters. In contrast, the
proposed algorithm in this case converges to the global
optimum, independent of the initial parameters [14].

VI. CONCLUSION

In this paper, extrapolation properties of norm-optimal
ILC are enhanced through use of rational basis functions.
The associated optimization problem is significantly more
challenging than for polynomial basis functions. The main
contribution of this paper is a new iterative solution algorithm
for rational basis functions in ILC. The proposed approach
has advantageous properties compared to the pre-existing
approach [13], as is well-known from a related algorithm
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Fig. 6. The pre-existing approach
converges to a stationary point that
is different than the optimum, even
when starting in the optimum.
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Fig. 7. The proposed approach
always converges to the optimum,
independent of the initial parame-
ters θ〈0〉j+1.

used in system identification. In particular, upon convergence
the proposed approach is guaranteed to be in a minimum,
whereas this is not the case for the pre-existing approach. As
a result, the proposed approach outperforms the pre-existing
approach.

The convergence behavior of both approaches is analyzed
using simulations of a complex industrial system. The sim-
ulations confirm that the proposed approach is superior over
the pre-existing approach in terms of performance.

Currently, the simulation results are experimentally val-
idated. Ongoing research focuses on: application to MIMO
systems, selection of basis functions, robustness analysis, and
numerical conditioning along the lines of [20].
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