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We analyze the dynamics of small particles vertically confined, by means of a linear restoring force, to move
within a horizontal fluid slab in a three-dimensional (3D) homogeneous isotropic turbulent velocity field. The
model that we introduce and study is possibly the simplest description for the dynamics of small aquatic organisms
that, due to swimming, active regulation of their buoyancy, or any other mechanism, maintain themselves in a shal-
low horizontal layer below the free surface of oceans or lakes. By varying the strength of the restoring force, we are
able to control the thickness of the fluid slab in which the particles can move. This allows us to analyze the statistical
features of the system over a wide range of conditions going from a fully 3D incompressible flow (corresponding
to the case of no confinement) to the extremely confined case corresponding to a two-dimensional slice. The back-
ground 3D turbulent velocity field is evolved by means of fully resolved direct numerical simulations. Whenever
some level of vertical confinement is present, the particle trajectories deviate from that of fluid tracers and the
particles experience an effectively compressible velocity field. Here, we have quantified the compressibility, the
preferential concentration of the particles, and the correlation dimension by changing the strength of the restoring
force. The main result is that there exists a particular value of the force constant, corresponding to a mean slab depth
approximately equal to a few times the Kolmogorov length scale η, that maximizes the clustering of the particles.

DOI: 10.1103/PhysRevE.91.053002 PACS number(s): 47.27.Gs, 47.27.T−, 47.27.ek, 47.63.Gd

I. INTRODUCTION

The problem of the distribution of inertial particles in a
turbulent flow is a crucial topic in many different fields [1–9],
for instance, modeling the interactions between small particles
carried by a turbulent flow for the study of cloud formation
in the atmosphere, the development of industrial processes, or
the study of the dynamics of plankton organisms in oceans and
lakes. It is known that while noninertial particles follow exactly
the flow streamlines, and are homogeneously distributed in
the fluid volume, inertial particles lighter than the fluid tend
to be trapped inside vortices, as opposed to heavier inertial
particles, that tend to accumulate in strain-dominated regions
of the flow [1,3,10,11]. This preferential concentration has
important consequences in the dynamics of particles under the
influence of gravity [9], and in all the situations where the
clustering of particles may have nontrivial consequences, as
in, for example, cloud formation [12–14] or the biology of
aquatic microorganisms [15–18].

In this paper we will study an “idealized” situation that
could be interesting both as a particular case of particles falling
through a weakly stratified fluid, until they reach a buoyant
equilibrium, and as a model of the dynamics inside plankton
layers. Observations of marine ecosystems often report the
striking finding of plankton populations living confined in
horizontally extended and vertically thin layers [19,20]. Many
different physical and biological mechanisms such as buoy-
ancy regulation, gyrotaxis [16,18], or nutrient variability [21]
may be at the basis of the formation of such planktonic
layers, and the relevance of the different mechanisms may
vary amongst different plankton species [20]. The spatial

confinement of living populations has direct consequences
on the total population size (carrying capacity). This is the
case also when, independently from the particular physical
mechanisms, an effective compressibility is produced, leading
to preferential accumulation [17,22–28].

In this paper, we propose and analyze a simple model meant
to describe the effects of preferential concentration on passive
small particles confined to move on a vertical slab inside a
chaotic and turbulent flow. We are not interested in the biolog-
ical or structural reason leading to the confinement; we will
limit ourselves to imagine that there exists a bias in the equation
of motion that does not allow the particles to move freely in
the vertical-direction and analyze the consequences of this
fact. To do that, we introduce a linear restoring force, capable
of providing a tunable confinement level for particles in a
specific depth interval. These confined particles are advected
by a velocity field obtained by a direct numerical simulation
(DNS) of homogeneous and isotropic turbulence. Dispersion
and transport processes under real marine conditions are
usually complicated by many more phenomena which we have
not included in our model. For example, stratification due to
density differences will be important for oceans and estuarine
flows (salinity and temperature gradients) and also for lakes
(temperature gradients). Density stratified turbulent flows will
change the dynamics of the flow, the particle trajectories,
and the dispersion properties [29,30]. Moreover, simulation
of real plankton dynamics should include many biological
phenomena like reproduction or nutrient cycles that are not
incorporated in this model.

The paper is structured as follows: in Sec. II we describe
in detail the model used for the dynamics of the particles
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and the parameters of the simulation. In Sec. III the results
of the simulations are presented. Our main result shows that
there exists a nontrivial correlation between the distribution
of passive particles as a function of the degree of vertical
confinement and the underlying homogeneous and isotropic
turbulent flow field.

II. MODELING AND METHODS

A. The flow

The numerical integration of the homogeneous and
isotropic turbulent velocity field is performed by means of
DNS of the Navier-Stokes equations employing a standard
pseudospectral algorithm. The domain size is a cube with
size L3 = (2π )3 and a 1283 grid has been used for the
discretization. Periodic boundary conditions have been applied
in all three directions. The nonlinear term is dealt with by the
2/3 rule for dealiasing; temporal advancement is based on the
Adams-Bashforth second order (AB2) scheme.

Energy is injected at small wave numbers in order to achieve
a stationary state. The external forcing is such that the energy
injected in the system is constant [31]. All values of physical
parameters that follow are given in units of the numerical
simulation. The viscosity, in our simulation, was ν = 0.01 and
the energy dissipation rate ε � 2.39. The Kolmogorov length
scale is calculated using the standard dimensional argument
η = (ν3/ε)1/4 � 0.025 and the Kolmogorov time scale is τη �
0.065. As to the integral scales, the rms velocity is vrms � 1.32
and the large-scale eddy-turnover time is TL = L/vrms � 4.7.

The resulting Reynolds number was Re = vrmsL/ν � 800
(corresponding to a Taylor scale Reynolds number Reλ =
vrmsλ/ν � 60). Let us notice that the underlying flow is only
moderately turbulent. This is not considered a problem, being
in the sequel mainly interested in small-scales clustering, i.e.,
at length scales smaller than the Kolmogorov scale, where the
flow would be smooth anyway (but chaotic in time and with
nontrivial spatial correlations).

In total, Np = 105 particles have been injected at time t = 0
on a plane of constant height z0. The particles are randomly
and homogeneously distributed within the chosen plane. The
particle equations of motion (see Sec. II B) are also advanced in
time using the AB2 scheme. Both fluid and particle equations
of motion were numerically integrated for about 100 large
eddy-turnover times TL. To ensure that the dynamics of the
system is statistically stationary (and transient phenomena
have decayed), ensemble averaging starts from time larger
than 4TL.

B. Equations of motion for the particles

The particles are treated as passive (i.e., they produce no
feedback on the fluid) pointlike tracers with a confining force
acting along the vertical, ẑ, direction. The equations of motion
are

dx(t)

dt
= u(x,t),

u(x,t) = v(x,t) − K(z(t) − z0)ẑ, (1)

where u is the velocity of the particle at time t at position x, v
is the velocity of the fluid at the particle position, K is a force

constant (determining the strength of the confinement), and z0

(here z0 = L/2) is the center of the vertical confinement layer.
Equation (1) must be understood as the simplest (minimal)

set of equations that might mimic one of the many cases
when small particles are constrained to move on a given
layer inside an otherwise three-dimensional (3D) volume.
The physical mechanism leading to this constraint can have
a very different origin. Here we limit ourselves to notice
that, for example, Eq. (1) can be formally derived from the
Maxey-Riley equations [32], in the case of almost neutrally
buoyant particles in a linear density profile. If we neglect
the Basset history term and the Faxén corrections, we can
write [33]

du
dt

= β
Dv
Dt

− u − v
τs

+ (1 − β)g, (2)

where β = 3ρf

ρf +2ρp
is the density ratio (with ρp and ρf

the particle and fluid density, respectively), τs = a2

3νβ
is the

particle relaxation time (or Stokes time), and g = −gẑ is
the acceleration due to gravity. We consider a linear density
profile for the flow ρf (z) � ρ0 + (dρf /dz)(z − z0) and use
the definition of the Brunt-Väisälä frequency N , for writing
|dρf /dz| = ρ0N

2/g [34] (note that the density gradient is
negative for stable stratification). We assume that N � 1 and
that ρp = ρ0, as we release neutrally buoyant particles at the
reference depth z0. With this in mind, the buoyancy term in
Eq. (2) can be expressed as

(1 − β)g � −2g(dρf /dz)

3ρ0
(z − z0) = −2

3
N2(z − z0)ẑ. (3)

Multiplying by τs and rearranging terms in Eq. (2) we obtain

v − u = τs

du
dt

− τsβ
Dv
Dt

+ K(z − z0)ẑ, (4)

where K = 2
3N2τs .

In the limit of small τs , Eq. (4) can be further simplified.
Following Ref. [32] for small inertia Dv/Dt ∼ du/dt and
substituting Eq. (3) in Eq. (4) under the further hypothesis that
(Dv/Dt)/g � 1 we obtain our model equation (1).

Other mechanisms may support or counteract confinement.
Examples are swimming of algae or buoyancy self-regulation
of cells. We assume that it is possible to model the combined
effect of such mechanisms with a (weak) background density
stratification with an effective potential. If this is the case,
Eq. (4), and its simplified version Eq. (1) for small Stokes
numbers, stay the same, with the only difference being
a modified force constant K . The resulting equation of
motion (1) leads to a Gaussian-like concentration profile, as
we will show later (Fig. 2). In the remaining part of this paper
we restrict ourself to and discuss the physical aspects of the
particle distribution in confined layers.

III. OBSERVABLES AND RESULTS

First of all we analyze the effects of confinement on the
distribution of particles at large scales, by measuring the
particles probability distribution, NK (z), in the z direction and
its standard deviation, σ , from the middle plane (also referred
to as an effective layer or slab depth). These quantities provide

053002-2



CLUSTERING OF VERTICALLY CONSTRAINED PASSIVE . . . PHYSICAL REVIEW E 91, 053002 (2015)

indications on the effective spatial extent and the strength of the
vertical confinement. In order to characterize the implication
of particle confinement on the particle distribution in the
horizontal slab of fluid within a 3D statistically homogeneous
and isotropic turbulent flow field, we also analyze both the
two-dimensional (2D) and 3D compressibility effects as well
as the velocity correlation integrals.

A. Vertical distribution

In Fig. 1 we show some representative snapshots of the
system, for different values of the force constant K . From
these pictures it is evident that confinement has strong effects
both at large and small scales.

FIG. 1. Plot of the spatial distribution of particles for different
values of the force constant K . The magnitude of the slab depth σ is
also shown for comparison. Top: Free tracers case, corresponding to
the choice of parameters K = 0. Middle: Intermediate confinement
case, with force constant K = 0.125. The associated effective slab
depth is σ � 21η. Bottom: Strong confinement case corresponding to
parameters K = 6 and σ � 0.46η. Here, particles are almost perfectly
confined in a plane. The presence of the vertical confinement induces
an evident and strong preferential concentration in the horizontal
plane.

0

L/2

L

10-4 10-3 10-2 10-1 1

Z

N

FIG. 2. Plot of the normalized z distribution of particles,
NK (z), for different values of the force constant K (or differ-
ent values of σ ). The curves correspond to the values σ/η =
38,21,9.1,4.7,3.48,2.33,1.41,0.46; the vertical width of the distribu-
tion monotonically increases. The points show a normalized Gaussian
fit for the curve with σ/η = 21. η is the Kolmogorov length scale.

For unconfined particles we observe the classical homoge-
neous distribution on the whole volume, while in the extreme
case of particles bound to move on a plane we observe a
fractal-like distribution with a dimension considerably smaller
than 2. For each different value of the force constant we
estimated the probability density of finding a particle with
a z coordinate in the range [z; z + δz] computing a histogram,
NK (z). Figure 2 shows the histograms for the z distribution
of the particles. The distribution is well approximated by a
Gaussian with center at z = z0 and variance σ 2.

Each curve in Fig. 2 corresponds to a specific value of σ .
There is a one-to-one correspondence between the values of
σ and those of the force constant K . Measuring σ is thus an
intuitive way for quantitatively describing the strength of the
confinement of the particles around the central plane z = z0.

For a linear restoring force, we expect σ to be inversely
proportional to K . Furthermore, it is possible to calculate
analytically the value of σ in two limit cases: unconfined
particles or particles restricted to a plane. In the limit of
particles strictly confined on a plane, i.e., K → ∞, σ is exactly
zero. In the limit of K → 0, i.e., no vertically constraining
force, particles are freely advected over the full domain
following the underlying fluid motion (3D turbulent diffusion).
The particle density becomes homogeneous over the cubic
domain and σ evolves to a constant value that is a fraction of
L. Figure 3 shows the relation between the dispersion σ and
the force constant K . We see that, for large values of K , σ is
proportional to 1/K , as we expect. This proportionality should
disappear when K is decreased.

B. 2D and 3D compressibility

We measured two different compressibilities for the system
of particles (the underlying flow is always incompressible):
the 2D compressibility based only on the horizontal velocity
components and the full 3D compressibility. In both cases, in
order to obtain an ensemble average, the compressibility has
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FIG. 3. Plot of the slab depth σ vs the inverse of the force constant
1/K . The horizontal dotted line is the asymptotic value of σ for
K → 0. The slab depth is given in units of η, the Kolmogorov length
scale. 1/K is given in units of τ−1

η , where τη is the Kolmogorov time
scale. The diagonal dashed line is obtained from a linear least squares
fit.

been calculated averaging on both particles and time. The error
is then given by the standard deviation of the mean.

1. 2D compressibility

The 2D compressibility is defined as

C2D =
〈( ∑

i ∂iui

)2〉
〈∑

i,j (∂iuj )2
〉 , (5)

where i,j = x,y and u is the particle velocity.
In the limit K → 0 we can calculate analytically the value

of C2D. This limit corresponds to extracting the velocity data
from a plane in a fully 3D flow field. For a 3D homogeneous
and isotropic turbulent flow (HIT), by simply substituting the
relations between the velocity gradients inside Eq. (5), we find
CHIT

2D = 1
6 � 0.167.

Figure 4 shows the relation between the 2D compressibility
Eq. (5) and particle dispersion σ (that is inversely proportional
to the force constant K). In the case of unconfined particles
we correctly recover C2D = CHIT

2D . Increasing the confinement,
the 2D compressibility has a value lower than CHIT

2D . This
is because the exact value CHIT

2D is calculated in an Eulerian
framework, averaging the velocity field of the flow in the whole
plane, while in our case we use the “Lagrangian” velocity
gradients, i.e., the Eulerian velocity gradients measured at the
positions of the particles (thus not homogeneously distributed
in a plane, due to the presence of preferential concentration).
Only without preferential concentration do we expect C2D =
CHIT

2D .

2. 3D compressibility

The 3D compressibility is defined as

C3D =
〈( ∑

i ∂iui

)2〉
〈∑

i,j (∂iuj )2
〉 , (6)

where i,j = x,y,z and u is the particle velocity.

 0
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FIG. 4. Plot of the 2D compressibility c2D vs the slab thickness
σ . Here, σ is given in units of the Kolmogorov length scale η. Data
points are obtained averaging on both time and particles. Errors are
the standard deviation of the mean.

Substituting the equations of motion (1) in Eq. (6) we obtain

C3D = 〈(∂xvx + ∂yvy + ∂zvz − K)2〉〈[∑
i,j (∂ivj )2

] − 2K∂zvz + K2
〉

= K2

〈∑
i,j (∂ivj )2

〉 + K2
, (7)

where we explicitly used the incompressibility of the 3D flow
field and the fact that 〈∂zvz〉 = 0. So we expect C3D = 0 in the
K → 0 limit and C3D = 1 in the K → ∞ limit.

Figure 5 shows the relation between the 3D compress-
ibility (6) and the particle dispersion σ (that is inversely
proportional to the force constant K). As expected, C3D is zero
for tracers and increases monotonically with the confinement
strength.

10-5
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 C
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y

Slab depth σ

FIG. 5. Log-log plot of the 3D compressibility C3D vs the slab
thickness σ . Here σ is given in units of the Kolmogorov length scale
η. The dashed line is a fit of Eq. (7).
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C. Accumulation of particles and pair correlations in space

Another important way of characterizing the system is
to look at the distribution of particles at small scales, i.e.,
the tendency of particles to inhomogeneously concentrate in
space. This behavior is the result of the interplay between
the motion induced by the underlying fluid and the presence
of a vertically confining force on the particles. Because of
the inhomogeneity on the vertical direction, we decided to
characterize the spatial distribution centering the analysis on
a small volume around the central equilibrium plane:

A = {zi ∈ [L/2 − z; L/2 + z]}, (8)

with z � 0.2η. In this way, measurements on horizontal
scales larger (smaller) than z will be mainly two dimensional
(three dimensional).

We defined a pair distribution integral P2(r) as follows:
having defined the set A of all particles falling in the central
volume of vertical width z, one counts how many pairs with
a relative distance �r can be formed with a particle in A and
another particle anywhere in the volume. Formally,

P2(r) =
∑

i∈A

Np∑

j=1

�(r − |xi − xj |), (9)

where �(x) is the Heaviside step function and xi , xj are
the particle coordinates. If one had chosen A equal to the
whole system of particles then one would obtain the classical
correlation dimension [35].

In order to quantify the scale-by-scale clustering properties
it is useful to introduce the local scaling exponent:

ζ (r) = d log(P2(r ′))
d log(r ′)

∣∣∣∣
r ′=r

. (10)

In the limit r → 0 one expects that the scaling exponent
recovers the definition of correlation dimension of the particle
distribution.

This local scaling exponent expresses how the number
of pairs scales with the distance r , for the particles in the
innermost part of the layer.

Figure 6 shows the local scaling exponent ζ (r) versus
the radial distance of the pairs, where the error bars have
been estimated by comparing results between two different
subsets of the whole statistics. Figure 7 show the local scaling
exponents ζ (r) at different values of the distance r versus
the particle dispersion σ . This figure confirms the results of
Fig. 6: there exists a minimum in the exponent (corresponding
to a maximum in the accumulation of particles) for σ � 5η,
at least in a range of scales 0.02 < r/η < 19.6. For σ � 5η

the exponent grows, corresponding to a decrease in clustering
because of the reduced confinement effects. On the other hand,
if σ is decreased below η the exponent stays constant, since
the particles are already constrained to be very close to the
central plane.

Let us notice that using the correlation integral as introduced
in Ref. [35] to analyze the particle distribution leads to an
undesirable effect for our setup: centering the spheres on
peripheral particles (far from the central plane) gives a lower
number of pairs inside a given sphere of radius r because of
the vertical nonhomogeneous distribution. Using our definition

 0.5
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σ = 72.43η

FIG. 6. Log-log plot of the local scaling exponents ζ (r) vs the
radial distance of the pairs, for different values of the effective slab
thickness σ . Continuous lines represent all the available data; the
purpose of the symbols is to help the reader to distinguish the different
curves. Both the slab thickness σ and the pair distance r are given in
units of the Kolmogorov length scale η. Only a few indicative error
bars are shown, in order to keep the figure clear. The error bars have
been estimated by comparing results between two different subsets
of the whole statistics. The curve corresponding to σ = 4.70η is
emphasized to stress the fact that the minimum in fractal dimension
does not correspond to the minimum in slab thickness.

to measure the pair distribution integral P2(r) corresponds
to measuring the original three-dimensional distribution in
such a way that the “central” particles have a larger weight
with respect to the peripheral ones, and the effect of the
inhomogeneity in the z direction is less pronounced. The
value z � 0.2η has been chosen because it allows us to shift
the abrupt drop in the scaling exponent (visible in Fig. 6) at
large scales, leaving a cleaner power-law behavior at the scales

FIG. 7. Plot of the value of the power-law exponent ζ (r) vs σ

for different values of r . We can see that the curves in the range
0.02 < r/η < 19.6 exhibit nonmonotonicity, and a minimum around
r � 5η. Points are taken intersecting the curves in Fig. 6 with lines
r = constant. Both the slab thickness σ and the pair distance r are
given in units of the Kolmogorov length scale η. The error estimation
procedure is detailed at the end of Sec. III C. The dashed line is merely
a guide for the eye.
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we are interested in. Increasing z would shift the drop in the
scaling exponent at smaller length scales.

IV. CONCLUSIONS

In this study we have investigated the dynamics of a
system of particles suspended in a turbulent flow and vertically
constrained to evolve within a horizontal slab with a certain
thickness depending on an effective linear restoring force.
In particular, we quantified the effective compressibility of
the particle distribution and particle accumulation varying the
degree of confinement.

Using DNS we have studied a simplified model in which
particles are suspended in a 3D isotropic and homogeneous
turbulent flow. These particles are passive, pointlike, and
confined only in the vertical direction by means of a restoring
force. We studied different situations, varying the thickness
of the slab, in order to analyze the characteristics of the
particle suspension in a range of conditions from having full
accessibility to the 3D incompressible flow to a 2D slice of
a 3D incompressible flow. The particle distribution shows a
certain degree of compressibility, except for K → 0.

We have also shown that there exists a particular—
optimal—value of the effective slab thickness σ (or, equiv-
alently, of the force constant K) that maximizes the accumu-
lation of the particles (minimizing the fractal dimension of the
system). This happens when the depth of the horizontal slab is
of the order of a few Kolmogorov length scales η (σ ∼ 5η). Let
us point out that viscous effects are known to be important up to
5 − 10η in turbulent flows, meaning that the maximum particle
accumulation is achieved when their vertical displacement is
bounded to be no larger than the size of viscous eddies.

We want to stress how our model, though simple, could
be important towards the quantitative understanding of the
phenomenology of passive, pointlike entities in a turbulent

marine thin layer. Indeed, our model captures the generic
features associated with the presence of a vertical localization,
irrespective of the biological or physical reason beyond its
production and its stability. Thin phytoplankton layers are
always much thicker than the size of individual cells and for
this reason one may question how the discussed confinement
may be relevant at all to plankton population dynamics. Here it
must be stressed that what is important is the relation between
time scales, and not length scales, in the system. Indeed the
typical generation time for plankton and bacteria in a marine
environment is well within the inertial range and such that
over a generation the cell has been transported to distances
much larger than the vertical confinement. Clearly real marine
conditions are complicated by many more phenomena that we
have not included in our model and the real plankton dynamics
shows phenomena that the simplified model discussed here
cannot incorporate. The improvement of our model in order
to apply it to more complex situations and to the modeling of
systems more similar to real-life plankton particles in oceans
is a challenge for future studies. For example, an obvious
follow-up to this investigation would be to simulate inertial
particles instead of passive tracers, integrating more physically
accurate equations of motion, while keeping a simple linear
restoring force for the vertical confinement.
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