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ABSTRACT

Sugar alcohols have been recently under investigation for their use as phase change materials in long-term

heat storage systems. The thermal performances in such systems are strongly dominated by the nucleation

and crystal growth kinetics, which on their turn are linked to the crystal-melt interfacial free energy γSL.

We report a novel technique using first principle calculations to accurately predict γSL of xylitol and β-D-

mannitol, as well as their anisotropy, from molecular modeling. The molecular model is based on a well-

proven generalized AMBER force field, which can reliably reproduce the physics during the phase change.

The calculation technique is generalized from a cleaving method which has been successfully implemented

in monoatomic and rigid polyatomic molecular systems. This method essentially creates an artificial interface

and gradually puts the crystal and melt phases into contact under the guidance of a cleaving potential. We

extended this method for the calculation of flexible polyatomic molecules. A specific cleaving potential is

designed for molecular systems with many degrees of freedoms. We made many efforts to achieve reliable

equilibrium Boltzmann sampling and reduction of hysteresis, including the selection of transition paths. The

samples of transition states are processed based on the Bennett Acceptance Ratio method. The predicted free

energies agree with available experimental estimations, and the large anisotropy in the interfacial free energy

is found which could be responsible for the dendritic growth of xylitol and D-mannitol systems as observed

in experiments.

KEY WORDS: statistical thermodynamics, molecular modeling, interfacial free energy, thermodynamic integration,

phase transition, cleaving method

1. INTRODUCTION

Phase change materials are extensively used in many industrial and residential applications. One such applica-

tion involves storing solar heat in summer in order to cut down the energy consumption in the built environment

in winter. Recent studies suggest using sugar alcohols (C4-C6 polyols) as seasonal heat storage media [1].

These materials have relatively high latent heat, proper melting temperatures (80-120 ◦C) for residential heat-

ing, and an evident subcooling effect to achieve storage of subcooled liquid at ambient temperature. However,

the low nucleation rate and unpredictable growth pattern hinder the heat transfer process, resulting in low and

poorly controlled discharge power, which in turn introduces difficulties in large-scale commercial applications.

These difficulties make it indispensable to have an in-depth understanding of the nucleation and crystal growth

processes.

∗Corresponding Huaichen Zhang: h.zhang@tue.nl
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To our knowledge, the key thermodynamic quantity that governs homogeneous nucleation and the morphology

of dendritic growth is the crystal-melt interfacial free energy (IFE), γSL. Classical nucleation theory takes an

isotropic γSL as an approximation, but it fails to predict the intricate dendritic growth of sugar alcohol systems

as observed in experiments. As a matter of fact, the complicated growth patterns and the morphology therein,

are dependent on and very sensitive to the anisotropy of γSL values. Therefore, accurate anisotropic values of

γSL, either from experimental measurements or from theoretical predictions, are of great importance. Many

experimental techniques have been developed over the recent years; however, no method is both reliable and

easy to carry out [2]. Meanwhile, various simulation techniques have been proposed. These methods include:

the cleaving method [3], the capillary fluctuation method (CF) [4], the superheating-undercooling hysteresis

method (SUH) [5], the classical nucleation theory based method (CNT-based) [6], the grain boundary mutation

method (GBM) [7], the mean lifetime method [8], the metadynamics based method [2], and contact angle

simulations (such as [9]). Most of these methods give reliable values of γSL for the hard sphere or the Lennard-

Jones (LJ) models and are claimed by their authors to be transferrable to poly-atomic molecules. However, so

far, only a few applications to poly-atomic molecules are found in the literature [10–14], and not all of them are

capable of calculating anisotropic values. Additionally, sugar alcohols systems suffer from low nucleation rates

and poor crystal growth kinetics. Therefore, simulating spontaneous nucleation using a large box of subcooled

metastable liquid is very inefficient considering the length and time scale of molecular simulations, and so

are the methods that rely on observable phase boundary transformations (such as CF, CNT-based, GBM). All

the above considerations have led us to the relatively mature cleaving method, which is direct, fast, from the

fundamentals, and independent of spontaneous phase boundary transformations.

Despite of the successful applications of the cleaving method to LJ and water systems, the extension to flexible

poly-atomic organic molecules is not an easy task. On the one hand, sugar alcohol molecules have many more

degrees of freedom and require more complicated cleaving potential to align the molecules. On the other hand,

bigger molecules have intrinsic hysteresis that require additional treatments. To tackle these problems, we have

designed a cleaving potential that is both competent of cleaving and easy to implement. This cleaving potential

is readily generalizable to all sugar alcohols or carbon chain molecules. The irreversibility is inherently much

stronger in these molecular systems, and thus we made many efforts to reduce this irreversibility. The crystal

facet selected for constructing interfacial systems are the ones with the lowest Miller indices. Our calculations

are based on a truncated model, with the electrostatic interaction switched off at certain rc. This model is much

faster to compute given the long-range electrostatic contributions are negligible. Our results are compared

with the much simpler SUH method [5], with discrepancies pointed out and discussed. Finally, the calculation

results are used to interpret some of the experimental findings such as the long prismatic-shaped growth of

β-D-mannitol crystal.

2. METHODOLOGY

2.1 Molecular model

In this case study, the calculations are performed for pure xylitol and D-mannitol crystal-melt interfacial sys-

tems, two of the most promising sugar alcohols for seasonal heat storage applications. To choose an appropriate

force field, we first considered our scopes and perspectives of the calculations. Since there are no chemical re-

actions during the phase change, it is possible to use faster non-reactive classical force fields (such as AMBER

[15], CHARMM [16] and OPLS-AA [17]) to represent these molecular compounds. These classical models

have good performance in non-reactive situations, and are simple to support nanosecond or microsecond scale

simulations. This feature is essential to study phase change phenomena, which are generally considered as

rare events in molecular simulations. We apply a generalized AMBER force field (gaff) [18] in our molecular

models. In this model, every atom is modeled explicitly. The potential energy can be expressed as

Ep = Ebond + Eangle + Edih + ELJ + Eel (1)
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where the energy terms represent total potential energy, bond stretching energy, angle bending energy, dihedral

rotation energy, van der Waals interaction with Lennard-Jones form, and electrostatic interaction, respectively,

with

Ebond =
∑
bond

1

4
kb,ij(rij − r0,ij)

2 (2a)

Eangle =
∑
angle

1

2
ka,ijk(θijk − θ0,ijk)

2 (2b)

Edih =
∑

dihedral

4∑
n=0

Vn,ijkl

2
[1 + cos(nφn,ijkl − γn,ijkl)] (2c)

ELJ =
∑

rij<rc,LJ

(
Aij

r12ij
−Bij

r6ij
) (2d)

Eel =
∑

rij<rc,el

qiqj
4πε0

(
1

rij
− 5

3rc,el
+

5r3ij
3r4c,el

− r4ij
r5c,el

) (2e)

The parameters kb, b0, ka, θ0, Vn, γ, A, B, and q are fitted from density functional theory calculations. Details

can be found in [18]. rc,LJ, rc,el are the cut-off radii of LJ interactions and electrostatic interactions. For LJ

interactions, Lorentz-Bertelot combination rule is applied in generating non-bonded LJ parameters. To increase

calculation speed, the electrostatic interactions are gradually switched off at rc,el using equation (2e). This

switching scheme is in conjunction with a Poisson solver for long range part [19].

The molecular dynamics simulations in this work follows Newtons equations of motions. First, the atomic

forces are derived from the negative gradient of Ep; then the velocities and displacements are updated using a

leap-frog integration scheme in each iteration. More details are given in section 2.4.

2.2 Free energy calculation

The free energy difference ΔF between two states, for example, A and B, is equivalent to the reversible work

needed to transform from one state to the other. Using the definition of the Helmholtz free energy in statistical

mechanics, one can design a set of intermediate states by linearly interpolating between the two end states,

E(λ) = EA + λ(EB − EA) (3)

with 0 ≤ λ ≤ 1. Then ΔF can be obtained by integral over the transition path.

ΔF =

∫ 1

0

∂F (λ)

∂λ
dλ =

∫ 1

0
〈∂E(λ)

∂λ
〉λdλ (4)

where 〈〉λ denotes ensemble averages. This method is called thermodynamic integration. The derivation is

stated elsewhere [20].

The integral in equation (4) can be done numerically by varying λ from 0 to 1 in a time-dependent manner.

The ensemble average is replaced by a time-dependent term,

∂F (λ)

∂λ
dλ = 〈∂E(λ)

∂λ
〉λdλ � ∂E(Γ(t), λ)

∂λ
λ̇(t)dt (5)

where Γ(t) is a phase space trajectory. Usually the transition is made very slow, because the equal sign is only

valid in the limit of infinite time and infinite samples. Therefore, the method is named ‘slow growth’. It has

been shown that slow growth by a single simulation has intrinsic biases and yields poor results [21].
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A better method recommended by Shirts and Pande [21] is the Bennett acceptance ratio method (BAR) [22].

The idea is to use the distribution of forward works WF and reverse works WR to get the estimator of re-

versible work with minimal moment bias. However, when the phase spaces between the two end states have

little overlap, the estimator yields to large variances. Davidchack et al. [13] have proved that BAR can be used

in combination with slow growth by performing multiple forward (λ:0 → 1) and reverse (λ : 1 → 0) simula-

tions. BAR results in an asymptotically unbiased estimator W when both forward and reverse information are

available. This estimator W is solved from the following equation:

n∑
i=1

1

1 + exp[β(WF,i −W )]
=

n∑
j=1

1

1 + exp[β(W −WR,j)]
(6)

where β = 1/kBT , kB is the Boltzmann constant, and T is temperature [K]. It is not hard observe the mono-

tonicity on both sides of equation (6). Thus W can be quickly solved numerically. WF and WR are defined

as

WF = 〈E(λB)− E(λA)〉λA (7a)

WR = 〈E(λB)− E(λA)〉λB (7b)

In the work of Davidchack et al., the above definition is replaced by

WF =

∫ 1

0

∂E(ΓF(t), λF)

∂λF
λ̇F(t)dλF (8a)

WR =

∫ 0

1

∂E(ΓR(t), λR)

∂λR
λ̇R(t)dλR (8b)

with the integrands taken the from of equation (5). In the limit of infinite forward and reverse measurements,

ΔF = W .

Sometimes it is helpful to design benchmark intermediate states (P1, P2, · · · , PN ) to assist the reversible

transition between end states when a direct end-to-end state transition is not feasible. The total free energy

difference between the initial and the end states ΔF (A → B) is then expressed as the sum of the free energy

differences between each pair of adjacent states ΔF (A → P1) + ΔF (P1 → P2) + · · · ΔF (PN → B). The

cleaving method is one such example.

2.3 Cleaving method

Developed by Davidchack and Laird in 2000 [3], this method has gone through ten years of development

[12, 13, 23–26]. The cleaving potential has evolved from the initial ‘pushing wall’ into the most recent guiding

potential wells in accordance with the crystalline structure. Nevertheless, the concept of cleaving and the

four step approach has never changed. These four steps are namely 1. Cleaving solid; 2. Cleaving liquid; 3.

Rearrange boundary conditions; and 4. Removing cleaving potential. The λ-dependent potential energy of each

step is defined as

E1(λ) = ES1 + ES1−S2 + ES2 + λΦ (9a)

E2(λ) = EL1 + EL1−L2 + EL2 + λΦ (9b)

2E3(λ) = (1− λ)(ES1−S2 + EL1−L2) + λ(ES1−L2 + ES2−L1) + ES1 + ES2 + EL1 + EL2 + 2Φ (9c)

E4(λ) = ES1 + ES1−L2 + EL2 + (1− λ)Φ (9d)

respectively, where Φ represent the cleaving potential. S and L denote crystal (solid) and melt (liquid) phases.

ES1, ES2, EL1, and EL1 represent the potential energy within each region; while ES1−S2, ES1−L2, EL1−S2, and

EL1−L2 represent cross-boundary terms.
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Position of cleaving potentials

S1 S2

L1 L2

S1 S2

L1 L2

1-λ

λ

1-λ

0 0

(a) Crystal (solid) with cleaving poten�al

(b) Melt (liquid) with cleaving poten�al

(c) Superposed liquid and solid in pbc rearrangement

Fig. 1 Graphical illustration of the cleaving method.(a) Duplicated solid with cleaving potential; (b) Duplicated

liquid with cleaving potential and a thin crystal layer aligned on the potential; (c) Superposed configuration

with specifically defined interaction rules.

In the first two cleaving steps, the cleaving potential is gradually introduced into the system. During this

process, some molecules near or at the well sites are gradually trapped in and form a thin crystalline layer.

In the third step, the solid-solid and liquid-liquid interactions are gradually switched off, with the solid-liquid

interaction switching on simultaneously. This is done by first, duplicating the liquid and solid to form structure

shown in figure 1a,1b. Then the solid and liquid systems are spatially superposed. To superpose the solid with

the liquid, it requires the solid and the liquid have the same volume and density. The free energy difference

between the high density liquid and normal density liquid can be easily evaluated by the work of expansion

(
∫
pdV ) and will be discussed in the result section. Finally the interaction strengths are defined based on

molecule groups (figure 1c). For example, molecule group L1 and S1 never interact while L1 and S2 can

interact with a prefactor λ. When λ = 0, the system is equivalent to two separate systems of liquid and solid,

although they are spatially superposed. When λ is turning on from 0 to 1, the cross-boundary L1-L2 interaction

becomes weaker, in contrast to the L1-S2 interaction, and finally, L1 does not ‘feel’ L2 anymore and instead,

interacts only with S2. In this way, the boundary condition is rearranged such that the solid and liquid gradually

join together. The molecule groups (Si and Li ) are easy to define, because the pre-formed crystalline structures

forbid molecular movement across the boundaries. In step 4, the cleaving potential is switched off. All the

above transitions are performed with λ switched forwardly (λ:0 → 1) and reversely (λ:1 → 0) multiple times.

2.4 Simulation details

β-D-mannitol is selected out of all three polymorphs because of its stability and dominance in crystallization

studies [27, 28]. The crystalline structures of xylitol and β-D-mannitol are obtained from literature [29, 30]

To begin with, the facets with the lowest Miller index, i.e. the (100), (010), and (001) surfaces, are chosen for

anisotropic γSL calculation. The initial configuration of crystalline xylitol consists of 6 × 4 × 4, 4 × 6 × 4, 4

× 4 × 6 lattices, respectively, each of which contains 4 xylitol molecules (384 molecules in total). The case-

dependent choice is to ensure a longer box side length in the direction perpendicular to the cleaving surfaces.

It increases the distance between two adjacent cleaving walls (coming from periodic boundary condition) and

therefore minimizes finite-size effects. For β-D-mannitol, the initial configuration of solid consists of 9 × 4 ×
2, 6 × 6 × 2, and 6 × 4 × 3 lattices, each of which contains 4 D-mannitol molecules. The initial configurations

of liquid before cleaving are generated by first heating up the solids far above their melting point. The resultant

liquid state can be easily recognized by a sudden increase in the mean squared displacement. Then the melt

5



IHTC15-8636

is equilibrated and cooled down gradually. All C-H bond and O-H bond lengths are constrained using the

P-LINCS algorithm [31]. With the constraints, The time step per iteration can be safely set to a relatively

large 2 femtosecond. The temperatures for cleaving simulations are set according to the experimental melting

conditions, 367.5K for xylitol [32] and 438.0K for D-mannitol [28]. The temperatures are controlled by a

Berendsen thermostat [33] with a time constant 0.1 ps. All cleaving simulations are done in the constant volume

scheme (canonical ensemble). The density for xylitol is 1500.00kg/m3, and the density for beta-D-mannitol is

1461.41kg/m3.

All simulations are performed using the GROMACS 4.5.5 package [34]. For each transition, the simulation

goes for 3 to 5 cycles with 2 million iterations (4ns) in each cycle. The cut-off radii rc,LJ and rc,el are both set

to 1.5nm.

3. RESULTS AND DISCUSSIONS

3.1 Designing the cleaving potential

The design of the cleaving potential is crucial to the whole cleaving concept. Here, two criteria should be met:

first, after cleaving the liquid (step 2b), the liquid should form a thin crystalline layer; second, the cleaving

potential should help achieve reversibility. In addition, the cleaving potential should be easy to implement in

available molecular simulation packages without compromising computation speed.

The cleaving potential chosen here has the same form as used by Handel et al. [12]. In his application with

water, the orientation and location of a water molecule can be determined and fixed by fixing the coordinate of

the oxygen atom and a well-defined orientation vector. In this work, the polyatomic molecules are much more

complicated. For example, xylitol (C5H12O5) has 22 atoms and 66 degrees of freedom (DOF), in contrast

with the rigid water model which has only 6 DOF. Defining the orientation of the xylitol molecule requires 21

independent vectors. Besides, the orientation itself in the crystalline structure has four possibilities (P212121
space group, orthorhombic), making it necessary to define orientations in a location dependent manner.

1

1

2

2

3

3

4

4

5

5

1

2

2

r
C

2D
2

1

5

5

1

repulsive

(a) (b)

(c) (d)

Fig. 2 Schematic diagram of a molecule aligned by the cleaving potential. Small solid circles represent carbon

atoms in a xylitol molecule; big dashed circles are potential wells. Only atoms and wells with the same index

number can interact with each other. (a) before alignment; (b) after alignment; (c) atom by atom alignment; (d)

two-molecule-in-one-chain situation.
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To avoid these complications, we decided to control the orientation of the molecules by only considering the

carbon chain atoms. This is done as follows. Take xylitol (001) case as an example. First of all, the config-

uration of xylitol crystalline structure is generated by duplicating 4 × 4 × 6 lattices (section 2.4). Then the

coordinates are scaled to match the density. The generated configuration look similar to the one shown in figure

3a. Secondly, all carbon atoms are labeled as type C1 to C5 according to their relative positions in the carbon

chain (figure 2a) (for D-mannitol, C1 to C6, same below). Thirdly, one layer of molecules on the (001) sur-

face is selected. The coordinates of the carbon atoms in the selected molecules are read and saved. Fourthly,

a group of dummy atoms is generated according to the coordinates saved in the previous step. These dummy

atoms are labeled as type D1 to D5, and they occupy exactly the same spots as the selected carbon atoms, C1 to

C5, respectively. These dummy atoms will be fixed throughout the cleaving simulations. At last, the topology

is defined such that the atoms of type Ci only interact with atoms of type Di, with i = 1 to 5. The cleaving

potential Φ is then defined as

Φ =
5∑

i=1

∑
rCiDi

<rc,w

di[(rCiDi/rc,w)
2 − 1]3 (10)

where di is i-dependent potential well depth, rc,w is the well width beyond which the interaction is cut off.

The above definition ensures the sugar alcohol molecules to lie on the dummy chains with the correct orien-

tations, as illustrated in figure 2b. The major advantage of this design is the possibility to treat these potential

wells as atoms, and the interactions between these well atoms and the real atoms can be treated as non-bonded

interactions, with a user defined potential. This enables the use of many commercial software packages without

additional programming.

The well width rc,w in equation (10) is 0.3 nm, approximately twice the C – C bond lengths. When a molecule

is only partially trapped in a potential well chain, like the one in figure 2c, this choice of rc,w is sufficient

to guide the rest of the molecule to sit in the well chain atom by atom. This is because rC2D2 never exceeds

twice the C – C bond length if rC1D1 = 0. One can argue that an even larger rc,w can better assist to align

the molecules. This is true. However, a larger rc,w also results in oversized potential wells that can easily trap

multiple carbon atoms (of the same index number i) in one potential well. This situation should apparently be

avoided.

Another undesired situation is called ‘two-molecule-in-one-chain’, as illustrated in figure 2d. This situation

can be avoided by designing di in an index number i-dependent manner. The idea is to make deeper potential

wells for the center carbon atoms. In this way, when the center carbon atoms are trapped in the wells, they are

dominant enough to assist the rest of their molecules to ‘kick’ the other molecules away using the LJ repulsive

force. The well depths are in the order of 10 kJ/mol (the reason will be given in section 3.3), and the individual

values are given as follows. In the case of xylitol, d3 = 45 kJ/mol, d2 = d4 = 25 kJ/mol, and d1 = d5 = 20 kJ/mol.

For D-mannitol, d3 = d4 = 45 kJ/mol, d2 = d5 = 25 kJ/mol, and d1 = d6 = 20 kJ/mol. The number of cleaving

potential well chains N in xylitol case is 32 (32 Di each, i = 1 to 5); and in D-mannitol case is 32 for the (100)

surface or 24 for the (010) surface and (001) surface.

3.2 Reducing irreversibility

As the definition for free energy being the reversible work, the reversibility of the transitions is the most

important criterion of choosing benchmark intermediate states and choosing cleaving potential. It is already

pointed out by Handel et al. [12] that the purpose of forming a crystalline layer in step 2 is to reduce the

irreversibility in step 3, by transferring the irreversibility to step 2. The irreversibility in step 2 can then be

easily be reduced or eliminated at a higher temperature or a reduced potential.

In this work, we adopted the same approach. The liquid potential EL (defined as EL = EL1 + EL1−L2 + EL2)

is reduced to 30%. However, this reduction is only applied upon the non-bonded terms (ELJ and Eel) and

7
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the dihedral term (Edih). This is to avoid energy equipartition on vibration degrees of freedom that causes

unnecessary poor phase space overlap. The potential is scaled back to full strength after the cleaving. In this

way, the cleaving step 2 is split into 3 substeps: step 2a, step 2b, and step 2c, defined by the following equations,

respectively

E2a(λ) = (1− 0.7λ)(EL,dih + EL,LJ + EL,el) + EL,bond + EL,angle (11a)

E2b(λ) = 0.3(EL,dih + EL,LJ + EL,el) + EL,bond + EL,angle + λΦ (11b)

E2c(λ) = (0.3 + 0.7λ)(EL,dih + EL,LJ + EL,el) + EL,bond + EL,angle + λΦ (11c)

The effect of further reduction of potential on reducing hysteresis is no longer evident. Instead, it will increase

the free energy difference in step 2a and 2c, resulting in larger inaccuracies. The residue hysteresis in step 2b

at 30% potential is negligible as illustrated in figure 5.

3.3 Performance of the cleaving potential

Snapshots are taken to examine if the a thin crystal layer is formed at the cleaving potential positions after step

2b. One such example is shown in figure 3b. On the left of 3b for the (001) surface of xylitol, the molecules

in good structural order are the ones trapped in the cleaving potential wells. To further ascertain that all the

potential wells are filled, a histogram of distances (denoted as li) of the nearest Ci type atom around each Di

type well is plotted for this snapshot (figure 4). It can be seen that the largest distance between the pairs never

exceeds 0.12nm, much less than the radius of the cleaving potential, 0.3nm.

(a) Final configuration of step 1 (b) Final configuration of step 2b

Position of cleaving potential Position of cleaving potential

Fig. 3 Configuration of xylitol liquid after cleaving step 2b. The cleaved surface belong to the (001) surface.

A one-molecule layer thick crystalline layer is formed along the cleaving potential. Hydrogen atoms are made

invisible.

Three cycles of integrand dF /dλ for step 2b are plotted in figure 5 to examine the hysteresis. The forward and

reverse curves almost overlap each other, showing a negligible hysteresis. The shapes of the curves can very

well answer the question whether the magnitudes of well depths di are chosen properly. Define the tails of the

curves to be the almost flat part at larger λ values (in the case of figure5, at λ > 0.8). If the cleaving continues

such that λ approaches infinity, the tail will converge to a number, which is -|max(Φ)| = -N
∑

di (in the xylitol

case, -4320 kJ/mol). If the potential wells are deeper, the atoms will be trapped in in an earlier stage and the tails

will become longer. At the same time, the tails will converge to a lower value. Both the above consequences

will result in much lower values of WF and WR in equation (8) after the integral. And the larger WF and WR

values will result in a larger free energy difference in step 2b, which introduces unnecessary inaccuracies. On

the contrary, shallower potential wells produces shorter tails and an insufficiently cleaved surface (molecules

have chances to escape), which dissatisfy the first cleaving criterion in section 3.1.
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Fig. 4 A histogram of the distances of the nearest Ci to each Di. The histogram is made according to the

configuration in figure 3.
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Fig. 5 Integrand dF /dλ in equation (8) with respect to λ. 3 forward and 3 reverse transition results are shown.

3.4 Anisotropic interfacial free energy

The anisotropic IFE values are listed in Table 1. ΔFi values are estimated by the unbiased estimator W in ac-

cordance with equation (6). The subscripts denote each cleaving step. Note that in each crystal-melt coexistent

system, there are two interfacial areas. Therefore, the free energy sum of each step should be divided by twice

the intersection area, 2A.

The anisotropy in both systems are large. Although the same cleaving potential is applied to both solid and

liquid, ΔF1 and ΔF2b values are very different. Because the cleaving potential is tailored according to the

atomic arrangement of the crystal, the crystalline structures are easier to trap in the potential wells. The cleaving

step 2a and 2c have the opposite effect on the system, so are step 1+2b and 4. The sum
∑

ΔF can therefore

be viewed as the residue of the cancellation of each terms. This makes
∑

ΔF very sensitive to the individual

ΔF terms. This sensitivity is the reason for the choice of not-too-deep cleaving potential and the 30% potential

scaling argued in both section 3.3 and section 3.2. The free energy difference contributed by the liquid density

change is not included. This contribution can be evaluated by the work of expansion or compression. Since

both the initial bulk liquid state and the final solid-liquid interfacial system involve high density liquid, the
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Table 1 Anisotropic interfacial free energies (∗Xylitol, †D-mannitol)

ΔF1 ΔF2a ΔF2b ΔF2c ΔF3 ΔF4
∑

ΔF 2A γSL

(kJ/mol) (kJ/mol) (kJ/mol) (kJ/mol) (kJ/mol) (kJ/mol) (kJ/mol) (nm2) (mJ/m2)

(100)∗ -4050.86 -2623.19 -8389.94 +85.31 7810.54 1102.61 25.9034 70.683

(010)∗ -4050.12 8313.40 -2953.95 -8291.49 -18.82 7647.05 655.48 23.8518 45.634

(001)∗ -4069.99 -2960.45 -8257.84 +315.84 8025.19 1208.23 24.0269 83.503

(100)† -4950.42 -3676.55 -12724.53 +411.95 9888.54 1280.61 23.6141 90.052

(010)† -3810.48 12537.59 -2788.65 -12686.54 +131.11 7759.78 1077.26 22.8631 78.241

(001)† -3987.58 -2736.35 -12633.00 +127.63 7533.87 778.35 23.3600 55.328

total free energy contribution is then the expansion work difference between both systems. Since both liquids

follow the same expansion path, the expansion work contribution to a large extent cancel each other, and is

hence not included in the calculations.

Overall, the interfacial free energies are larger than those of xylitol. This means more free energy is needed to

form a unit area of β-D-mannitol crystal-melt interface than xylitol.

3.5 Comparison with the superheating-undercooling hysteresis method

The superheating-undercooling hysteresis (SUH) method [5] is based on empirical formulae. It offers a way to

quickly estimate the isotropic interfacial free energy from a simple set of simulations. Wang et al. [11] applied

the SUH method on water systems, and obtained reasonable agreement with experimental and simulation

results. Based on the theory of the original paper, γSL is related to a melting temperature, a volumetric heat of

fusion ΔH 2
m,V, and a dimensionless nucleation barrier parameter β in the following form [5]

γSL =

(
3

16π
βkBTmΔH2

m,V

)1/3

(12)

where Tm is the melting temperature in the limit of a zero heating or cooling rate. β can be decided by an

empirical formula

β = (59.4− 2.33log10Q)
T+/−
T

(
T+/−
T

− 1

)2

(13)

where T+/− is the melting temperature obtained from SUH simulations (figure 6) or experiments, Q is the

scalar heating or cooling rate in [K/s].

In our simulations, we chose 3 different scaling heating (or cooling) rates with Q = 1, 0.2, or 0.05 K/ps.

The initial configurations are generated according to their corresponding perfect crystalline structures. Then

the systems are heated up with the aforementioned heating rates until a sudden drop in the density profile

occurs. Then the systems are cooled down using the same Q. The pressures are set to 1 bar and controlled

by a Berendsen barostat [33] with a time constant 0.5 ps. The maximum superheating temperatures T+ are

determined as the points with the least radii of curvature around the density drop region. In both xylitol and

β-D-mannitol cases (figure 6), the first order phase transitions during the heating-up process can be easily

identified from the sudden drop in the density profile. With lower heating rates, the materials melt at lower

temperatures, resulting in lower T+ values. During the cooling process, the crystallization is not observed.

Instead, the liquids become glassy.

Table 2 lists the calculation results using the simulation data. Tm is the experimental melting temperatures. The

results from SUH match those from the cleaving method. In both cases, SUH gives values closer to the lowest

value from the cleaving method. This is not surprising given that SUH mimics a spontaneous process which

has preferred directions of melting. The system finds for itself the lowest energy barrier before it goes across.
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Fig. 6 The density profiles by superheating-undercooling simulations at various heating-up and cooling rates.

Left: xylitol; Right: β-D-mannitol.

Table 2 Isotropic approximations of γSL (Tm and ΔHm,V taken from [35])

Q (K/s) T+ (K) Tm,exp (K) β ΔHm,V (J/m3) γSL (mJ/m2) γ̄SL (mJ/m2)

Xylitol 1 ×1012 535 367.5 9.51 2.903×108 62.4

Xylitol 2 ×1011 504 367.5 6.26 2.903×108 54.3 53.0

Xylitol 5 ×1010 464 367.5 3.00 2.903×108 42.5

D-mannitol 1 ×1012 633 438.0 9.01 4.595×108 88.2

D-mannitol 2 ×1011 591 438.0 5.44 4.595×108 74.6 77.8

D-mannitol 5 ×1010 578 438.0 4.65 4.595×108 70.8

3.6 Other discussions

It is possible to predict the crystal habit from the anisotropic interfacial free energies via Wulff’s construc-

tion rules [36]. However, an accurate prediction relies on a detailed calculation involving all potential crystal

facets. Nevertheless, the available γSL values suggest grains with uneven aspect ratios. In recent experiments

of homogeneous nucleation and crystal growth in a subcooled liquid, anisotropic long needle shaped prisms

are observed to be the main growth pattern of D-mannitol while strong surface nucleation and a dendritic

growth pattern dominates the growth of xylitol [35]. Both phenomena can be ascribed to the presence of large

anisotropy of γSL.

A simple arithmetic average of anisotopic γSL values give γSL,xyl = 67mJ/m2 and γSL,man = 75mJ/m2.

From classical nucleation theory, the average population of critical nuclei n∗ is proportional to exp(-ΔG∗/kBT ),

where ΔG∗ = β(Tm/ΔT )2 is the free energy barrier, β is the dimensionless barrier parameter in equation

(12) and ΔT is the degree of subcooling. Taking the above average γSL values, we have βxyl = 11.8, and βman

= 5.5. The free energy barrier at small ΔT is hence small for D-mannitol compared with that of xylitol at

the same ΔT . This agrees with experimental observations, where D-mannitol has a substantial faster kinetics

during crystallization [35]. The linear scaling between γSL and Tm still exists, although this rule was only

assigned to metal systems at the first place. This scaling effect also applies to water systems [13]. The validity

of the scaling rule opens up the possibility of estimating interfacial free energies of unknown systems.
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4. CONCLUSIONS

We have successfully extended and implemented the cleaving method on sugar alcohol systems and calculated

some selected anisotropic interfacial free energy values. During the implementation, specific cleaving poten-

tials were designed, to tackle the intrinsic irreversibility to the largest extent. This cleaving potential is easily

generalizable to other sugar alcohol systems. The anisotropic values were compared with the superheating-

undercooling hysteresis method, and the results showed good agreement. The linear scaling rule of interfacial

free energy over melting temperature seems to apply to sugar alcohol systems as well, making future estima-

tions of unknown systems possible. We bridged up the scales to understand some experimental phenomena

extrapolated from the fundamentals. We found that the large anisotropies in the interfacial free energies could

be responsible for the dendritic growth of xylitol and the needle shaped prismatic growth of D-mannitol.
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