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Shock loading of layered materials with SPH
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Abstract — Hypervelocity impacts into structures produce
shock waves propagating through the colliding bodies. SPH
has given insight into shock loading of homogeneous
materials; nevertheless, shock wave propagation through
solids with discontinuous density distribution, has not been
considered in depth, yet. In previous studies using SPH,
impact loading of laminated or composite materials was
modeled by homogenization of the structure or under the
assumption of being functionally graded materials. Both
models neglect the reflection-transmission effects on the
interface of different density materials. To capture these
reflection-transmission effects, a holistic treatment for the
multi-phase material is proposed, with kernel interaction over
all parts of the structure. The algorithm employs a variable
smoothing length formulation. A dissipative mass flux term is
also introduced in order to remove spurious post-shock
oscillations on the interface of different materials. In this
paper, the SPH solution is presented, along with a relevant
benchmark case. The algorithm’s performance is studied and
the necessity of a variable smoothing length formulation is
investigated.

I. INTRODUTION

The shields of spacecraft in orbit experience impacts by
small sized particles of space debris which travel at speeds
of 10km/s. These Hypervelocity Impacts (HVIs) are
characterized by the projectile’s velocity being higher than
the target’s material speed of sound. Sharp density changes
occur, propagated through the target as shock waves.
Normal stress effects on an incremental element of the
material overweight the deviatory stress effects and
hydrodynamic loading regime occurs [1, 2]. Solid materials
will effectively behave like fluids in this loading regime.
HVIs are typical processes involving extreme
compressibility effects of solids, making them substantially
different than ballistic impacts.

The efficiency of Smoothed Particle Hydrodynamics
(SPH) in simulating HVIs was exhibited in the original
simulation of HVI events into monolithic materials by
Libersky et al. [3]. Later combined numerical and
experimental works established the method as the state-of-
the-art tool for HVI simulations [4,5]. Within SPH’s
context, disintegration of materials under impact is
described without severe algorithmic complexity, compared
to other methods like Finite Elements Method (FEM) [2].
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Shields of multi-material structures have a lower weight-
to-performance ratio and are preferred to monolithic ones
[6]. SPH was also used to simulate HVIs into multi-
component structures [7-9]. Johnson et al. [10] suggested a
special interface algorithm to treat non-bonded interfaces
(e.g. projectile/target), claiming that when two bodies
exchange momentum through simple SPH kernel
interaction large errors are produced; this observation was
also studied by Campbell et al. [11]. Homogenized
materials were introduced in [7-9], with properties the
averaged properties of their components. A rigorous
procedure of producing averaged versions of anisotropic
materials [2,7-9]. Nevertheless, two major drawbacks are
apparent in this approach: the homogenization process is
based on assumptions coming from quasi-static loading
regimes, and the effects of shock reflection-transmission
are neglected.

In the case of layered composite materials, shock waves
will not propagate undisturbed through the specimen. The
transition from one layer to its adjacent layer is not a
smooth function of space; it shows up as a discontinuity in
the density distribution of the target and reflections-
transmissions will occur, whenever a shock encounters a
material interface [12]. Hence, the shock loading problem
becomes a multiphase shock problem.

SPH algorithms for multi-phase simulations focus on
incompressible flow regimes [13-15]. In another approach,
the Modified-SPH method is introduced [16] to solve an
elastic wave propagation problem through a functionally
graded material. The properties of such a material are
smooth functions of space. Therefore, without any
discontinuities in the properties of the material it is
impossible for any transmission-reflection pattern to occur.

The type of artificial viscosity introduced by Monaghan
and Ginold [17] is used in all previously mentioned studies.
It is a popular way to remove the spurious oscillations in
the vicinity of the shocks. An alternative shock capturing
technique is the implementation of a Riemann solver in the
SPH scheme; such SPH algorithms are described by
Intuska [18] and Cha et al. [19]. In a similar manner, an
SPH scheme based on the acoustic approximation of the
Riemann problem is developed by Parshikov et al. [20].
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In this paper, an SPH formulation is discussed that is
able to simulate shock loading of a material with purely
discontinuous properties. It is based on artificial dissipation
techniques. A new artificial term is added to the discretized
continuity equation, which smoothens out unphysical blips
occurring from shocks on interfaces of materials. It is tested
upon a one dimensional benchmark case. The modified
scheme conserves momentum exactly and captures the
transmission-reflection of shocks on interfaces of materials.

II. MATHEMATICAL MODEL

A. Governing equations

The governing equations for HVIs are the conservation
of mass, momentum and energy, which in a Lagrangian
frame of reference write:

Dp ou® Du 1 0% De _ o gu®

Dt~ Pax«'Dt _pax® ‘Dt p 9xB’

dx®

It =u% for a,f =1,2,3. (D

In (1) superscripts indicate the directional index and
stresses o are composed by a normal and a deviatoric part
as 0% = —Plap + 7%F where 84p is the Kronecker delta.

A simplified model of (1) to benchmark algorithms
related to shock effects are the Euler equations. They
describe the flow of compressible media, allowing for
shock formation. Opting for a simple paradigm, system (1)
is reduced to one spatial dimension and thermal processes
are neglected, giving:

Dp ou Du 10p dx

bt~ Poax’ Dt pox’ ac )
Since in one dimension only “normal” stresses p are
exerted, no distinction can be made between fluids and
solids. The following linear Equation of State (EoS),
describes a compressible elastic structure, consisting of a
spatially varying bulk modulus constant in time. Pressure
from a reference density p, = p(x, 0) is measured [2] as:

plx,t) 1)
p(x,0) '

p(x,t) = K(x) ( 3)

B. Non-dimensionalization

The following dimensionless magnitudes transform (2) into
its non-dimensional form:

x*:=x/L,t:=t/t, u:=u/u,

P =p/pPo, 0" =D/ - )

Choosing timescale 7 = L/u, and pressure scale p, =
pou2 = p(x,0)u? the non-dimensional form of (2) is
identical to itself. Dividing (3) by p,, the non-dimensional
EoS becomes:
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K@ 1 .
P = 0 (p"—1 =G (-1, (5)
where

_ p(x, 0)u?
Ca(x): = W (6)

is the Cauchy number. It is a spatially varying
dimensionless quantity, measuring the ratio of the initial
inertial forces over the resistance of the materials to
compression.

After removing all asterisks, the system of equations
looks similar to (2):

Dp du Du  1dp dx 70)
bt~ Pox’ Dt pox’ dr @
1
= H-1). 7
PO = gy (PO = 1) (7b)

Given the compressibility effects produced by the
projectile’s inertia on the target, the bulk modulus K(x)
scales with the dynamic pressure at the moment of impact.
Therefore, a suitable choice for the velocity scale is u, =
Uimpact; the relative velocity at which projectile and target
travel.

Typical length scales of targets in HVIs are in the order
of millimeters to centimeters [6]. Velocity scales with the
relative impact velocity Ujmpace. Considering a HVI of
Uimpact = 10 km/s and L = 1 cm, the time-scale is brought
down to T = 1 psec. As an example, for Aluminum 2045-T4
the magnitude of Ca for a 10 km/s impact is computed;
with a nominal density p, = 2,700 kg/m’ and K = 73 GPa,
Ca =3.7 is found, according to (6).

The material’s non-dimensional speed of sound c is
defined in [2] as:

c(x) =+/dp/dp = Ca(x)"/? . (8)
III.  SPH DISCRETIZATION

A. Discretization of equations
The continuity equation formulation of SPH writes:

(Dt)i_pizjzl o= w) 5l ©

Not all combinations of continuity and momentum SPH
discretizations furnish momentum conserving schemes. The
coupling of the continuity equation with the following
momentum discretization was shown to conserve mass and
momentum exactly [15,21]:

(Du> _ 121\1 mj( N )BWU (10)
Dt/; pib=j=1p; Pt by ax;
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B. Varying smoothing length formulation

The above discretization of balance equations has been
used to simulate multiphase phenomena in the
incompressible regime [15]. However, when severe
compression effects are studied, particle spacing varies
substantially. Since particle spacing affects the SPH
interpolation, the resolution of the scheme is corrupted. A
solution to this is to rescale the interpolation kernel
according to a spatially varying smoothing length. It should
automatically increase as the particle system expands and
decrease as it contracts [22].

Several smoothing length variations have been
proposed, without all of them furnishing a scheme
variationally consistent [22]. In the formulations by Price
[23] and Monaghan [22], the smoothing length varies with
density as:

hi=n—, (11)
L

where n =1.2 (following [23]) and the interpolation kernel
is scaled with the factor:

oh; ZN 0 VVL']' (h)

— m _—
0p; Laj=y 7 Oy

For the system of (9) and (10), the following modification

is proposed.

Q=1 (12)

Dp\ _ pi ZN m; oWy (h)

o) = Ly, — u)—L—2 1
(Dt)i 'Qi j=1Pj (ul u]) axi ( 3)
(D_u) 3 _iz” ﬁ(&avvﬁ(hi) + &aWij(hj))

Dt/; pid=j=1 pj \Q;  0x; & ox .

(14)

The system is closed with a particle based calculation of the
pressure and the position change.

1
T =—(p: —1 1
Pi= (pi—1), (15)
dxi
E =u; . (16)

C. Interpolation kernel

The Gaussian function is chosen as the interpolation kernel,
with a scaling such that ZIIVW(XL- - Xj, h) V; =1 inside
the computational domain:

Wi = %exp{— (xi ;xj)z} , (17)

where h is the smoothing length.
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D. Initialization and time integration

For the cases tackled in this paper, free boundary
conditions are considered, discontinuous initial data and a
discontinuous parameter Ca.

: I —

material y material @ material § material o

fprojectie = 0.5 0.2 0.2 02

Figure 1. Initial configuration of the materials

TABLE 1. Material’s initial positions and velocities

Material Initial position x,, Velocity u
a 05<x,<0.7 0
)4 09<x,<11 0
14 0 <x,<0.5 1

The initial configuration of the materials is depicted in
Fig.1, where the length of the projectile £prgjectile 1S chosen
large enough so that no effects from rebounded waves
occur. Combined with the initial data of Table 1, a velocity-
induced shock is described.

The SPH particle system is initialized by distributing N
particles over the domain that the materials initially occupy
(Table 1). The initial interparticle distances are taken to be
of equal length dx,. Particles of materials with different
density, o and S, have proportional masses as m,/mg =
Pa/Pp; these, remain constant in time.

After a number of particles per unit length n, is defined,
the particles are distributed over initial positions x,;,
according to the following scheme:

6x, =4/ny, Xo; = 0x,(i—1) . (18)

where ¢ is the total length of the computational domain
considered.

Updates of variables and particle positions in time are
achieved via the following scheme. Magnitudes are
obtained in the order presented. Braces denote
simultaneous update of the enclosed variables and
superscripts are reserved for time steps, while subscripts for
particle indices. The smoothing length is initially taken as
h) = nm;/p?. Advancing half a time-step for density and
velocity from the initial conditions:

Dip, u}>°

Dt (19a)

1
toul” = {p,u}f + 50t (
and a full-step for position:

xt=x0+6tul/?. (19b)

i



8" international SPHERIC workshop

At every subsequent time step k variables are updated
according to:

Lz 1 (D{pul\T

_ k-1/2

{p,ul¥ = {p,u}; +§8t (T) , (19¢)
ml

hf=n—, (19d)
pi

k

from which (%)_ is calculated for each i-th particle
L

according to (11) — (15).

k
{p’u}i(+1/2 _{ }k 1/2 +6t (D{g;:u}) ) (196)

xft = xk 4+ 5t uk+1/2 (191)

A limit to the time-step size is set by the CFL criterion,
which by taking the smoothing length as the shortest spatial
scale (similarly to [3,17]) gives:

h
—) ) (20)

6t < w min (
Ci + ulmpact

where w € (0, 1] is a “safety” parameter. The largest time-
step allowed is found by computing c¢; from (8) and the
non-dimensional Ui pace= 1 (Uimpact 18 the velocity scale).
For all calculations a constant 5t = 10™ was sufficient.

IV. SHOCK CAPTURING

A. Artificial viscosity

In order to capture shocks in gas dynamic simulations
with SPH, Price [23] and Monaghan [24] suggest a
generalized way to construct dissipative terms for the
balance equations (1). By @ each variable on the left hand
side of (1) is represented:

D@) ZN Qg vSlg <6m]>
—_— = m; 0, —0;)r; | =—),
<Dt i,diss j=1 / p ( ]) Y axl

I (W, _ 1 /ow;(h) N ow;;(hy)
Y |x- —x|’ ox, 2\ ax ox; )’
U?lg (Ct +¢— .B(Ui - uj) Tij) ) (21)

where ag and f are parameters and USlg is the propagation
speed of the information carried by the dissipative terms.
These terms are frequently used to produce dissipation for
the solution of the momentum and energy equations.

For the momentum equation in the case studied here the
above expression is used for the velocity:
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(D_u> -y mauv;tig u — W), (—aw”)
Dt/ aiss j=1 7 py - Y \ox )

1
Vgig = E(Ci +¢—Bu; — uj)) . (22)

B. Artificial dissipative mass flux

The following discussion, presents a new term,
developed in order to smoothen out spurious blips in
density and pressure, for a shock through a material
interface.

Using equation (21), an artificial term is added in the
discretized continuity equation (14):

(D_p> zz” Mﬁ(aﬂ) 23)
Dt/ aiss j=1 Cij p;i 7\ ox,

Unphysical oscillations occur in pressure, while density
discontinuities are natural characteristics of inhomogeneous
materials. Therefore, an expression in the same manner as
(21) needs to account for pressure differences. Exploiting
(14), (21) is written as:

P P
a, v a, U.; . .
m] P “sig ( _ P]) ; P_ sig (P; _ pé) ' (24)
Pij pij \¢ ¢

u
for vﬂg Usig-

Averaging of the density of different materials is not
favorable, because would smoothen material interfaces that
are naturally present in the domain. Hence, m;/p;; is
replaced with m;/p; and with a further approximation the
final form is furnished:

ap SLg Pi pj mj ap (pi - pj)
= 2 2|~ p ’ (23)
Pij c Pj v

i G sig

j

The dissipative term (23) introduces a mass flux into the
system, smoothens out the spurious oscillations of density
and pressure, occurring on the interface of two materials.
Its effect is similar and complementary to the effect of (22).

V. RESULTS AND DISCUSSION

A simple test case is set up with the initial values
appearing in Table 2. For all computations 1,=400 particles
per unit length were used.

TABLE II. Material’s initial density and Ca number

Material Density Ca
a 1 1
s 0.5 0.25

% 1 1
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The discontinuous initial data of the test case constitute
a Riemann problem. After the impact, two shocks appear; a
left-travelling and a right travelling. The exact solution is
given according to the procedures in Toro’s book [25],
considering the isothermal Euler equations and an equation
of state of the form (7b).

In order to test the effectiveness of the artificial mass
flux term, dissipation is first added only in the momentum
equation according to (22). In Fig.2, the particle and
continuous (particle values are cast in the SPH interpolation
formula) values of density are plotted at + = 0.1. Particle
spacing is well-preserved, due to the rescaling of the
kernel; however, unphysical oscillations persist. This effect
was underlined by Campbell et al. [11].

continuous values

1851 " *  particle values

052 053 0.54 055 0.56 057 058
X - position

Figure 2. Density in the impact region at = 0.1 .

2 T T . . . .
. without dissipative mass
with dissipative mass
o= ———exact Riemann solution
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05 1 Il 1 " 1 Il

02 0.4 06 0.8 1 12 1.4
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Figure 3. Density and pressure at 7 =0.1 .

Trondheim, Norway, June 4-6, 2013

When the dissipative mass flux term (23) is added to the
continuity equation with @, = 0.4, the spurious oscillations
of the solution at r = 0.1 disappear (Fig.3); both from
density and pressure. Furthermore, the new term, does not
affect the jumps in the material’s density away from the
shock, as is shown in the density distribution in Fig.3.

In Fig.3, the exact solution of the relevant Riemann
problem (pPexact=1.640, Pexact=0.640) is also plotted with
dotted line in Fig.3. The agreement with the SPH solution
is remarkable. In particular, the dissipative mass flux term
captures correctly the strength of the shock.

. « without dissipative mass
™ « with dissipative mass

2 15- H ’

[zl .

S .

el *

o 1k — ———

05 1 1 I h\\—. I 1
0 02 04 08 08 1 1.2 14
X - position

e
3
a t
o 3 %
S o4r . i 1
a . P
02h . %
] A\
0 L -} L 1 " 1
0 02 04 086 038 1 12 14
X - position

Figure 4. Density in the impact region at 1 =0.2 .

At t = 0.2, the shock has already encountered the
interface of the two materials (Fig.4). One wave is reflected
back to material o and another is transmitted to material £.
When dissipation is only added to the momentum equation,
severe oscillations occur in the pressure distribution, in the
vicinity of the two materials’ interface. Additionally, the
effects of the initial impact have not disappeared.

The effects of the dissipative mass term are clearly
beneficial. Both materials experience the same pressure, as
is expected on contact discontinuities emerging from the
Riemann problem [25]. However, compared to the solution
without dissipative mass flux, higher smoothening of the
shock is observed.
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Figure 5. Density, pressure and velocity at £=0.35 .

At ¢t = 0.35 (Fig.5) the initial left-running and right-
running shocks arrive on the edges. Density has not
changed on any edge, nor the velocity. Colliding waves
have created a region of increased density and pressure to
the right of x = 0.6. In the same region, velocity is
decreased. The contact discontinuity on the interface f-a
(near x = 1) was set to motion when the shock arrived. The
value of pressure across it is not changing significantly,
describing the physically relevant situation of a zero
pressure gradient across it.

maomentum relative changes
o]

o
o

0 10 20 a0 40 50 50 70
recorded time-step

Figure 6. Relative changes in momentum from ¢ =0 to ¢ = 0.35.
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Finally, relative changes to momentum are calculated based
on the particle velocity as:

J(t) —J(0)
J(0)

and are plotted in Fig.6 for # = 0 to ¢ = 0.35. Momentum
changes are in the order of machine precision and therefore
negligible. This fact, exhibits the momentum conservative
property of the developed SPH scheme.

AM(t) =

N
=) mue @4

VI. CONCLUSIONS

In the present work a method was developed which
removes spurious oscillations observed during shock
loading of layered materials. It is an improvement to the
ability of SPH to capture the reflection-transmission of
shock waves on material interfaces. It is holistic approach,
since every particle interacts only through its SPH kernel
with the whole computational domain.

An artificial mass flux term was devised and combined
with the varying smoothing length formulation of SPH. The
scheme which was furnished was shown to be momentum
conservative.

Further steps of development include the exploration of
the proposed scheme’s properties and limitations.
Concerning the former, the complete solution of the
Riemann problem will be enlightening. Additionally, the
optimal value of the @, parameter, is also a critical issue.
The same holds for the limiting value of the materials’
density ratio that can be incorporated by the scheme.
Finally, since the term is based on a generic formulation,
extension to more spatial dimensions is straightforward.
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