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Samenvatting

Nieuwe typen televisiebeeldbuizen moeten voldoen aan strenge eisen betreffende de
veiligheid van de glasballon, voordat de nieuwe buizen op de markt geintroduceerd
mogen worden. Voor het testen van de veiligheid zijn internationale standaards zoals
de ,,ball-drop test” ontwikkeld. Eén van de eisen bij deze test is dat er geen implosie
van de beeldbuis optreedt, wanneer het glazen scherm wordt onderworpen aan een
inslag van een stalen bal met voorgeschreven afmeting, gewicht en valhoogte. Beperkte
scheurgroei is toegestaan. Het doel van het in dit proefschrift beschreven onderzoek
is het ontwikkelen van analytische en numerieke methoden voor het berekenen van
scheurgroei tijdens de ball-drop test en voor het bepalen van de glasveiligheid van
nieuwe beeldbuisontwerpen. Het onderzoek heeft geleid tot twee nienwe methoden
voor de analyse van dynamische scheurgroei in brosse materialen: (i) de ontkoppelde
dynamische breukaanpak en (ii) de hybride breuk/schade-aanpak.

De ontkoppelde dynamische breukaanpak is gebaseerd op de breukmechanica en op een
{gedeeltelijke) ontkoppeling van spanningsgolven en scheurgroei. Enerzijds wordt de
scheurgroei bepaald door de spanningen in het materiaal. Anderzijds leidt scheurgroei
tot een verandering van de geometrie en aldus tot een verstoring van de spannings-
verdeling. Dit laatste effect wordt in de ontkoppelde aanpak buiten beschouwing
gelaten. De methode bestaat uit twee delen. Eerst worden de dynamische spanningen
als gevolg van de bal-inslag berekend met behulp van de eindige-elementenmethode,
waarbij wordt aangenomen dat er geen scheurvorming optreedt. Vervolgens worden
mogelijke scheurpatronen berekend op basis van deze spanningsgegevens. Door toe-
passing van de ontkoppelde aanpak op eenvoudige voorbeelden en op televisiebeeld-
buizen zijn betrouwbare resultaten voor de scheurpatronen verkregen. Vanwege de
relatief korte rekentijden is de ontkoppelde dynamische breukaanpak een efliciénte
methode voor het analyseren van dynamische scheurgroel.

De hybride breuk/schade-aanpak is gebaseerd op een combinatie van breukmechanica
en schademechanica in de context van de eindige-elementenmethode. Bij de punt van
de scheur wordt breukmechanica toegepast. Het singuliere spanningsgedrag wordt
beschreven met speciale elementen en de scheurgroei wordt berekend met behulp van
bekende breukcriteria. De staart” van de scheur wordt uitgesmeerd over een gebied
met eindige breedte, waar schademechanica toegepast wordt en elementen met een
verminderde elasticiteitsmodulus gebruikt worden. De interactie tussen spannings-
golven en scheurgroei wordt in deze aanpak volledig in rekening gebracht. Aangezien
de resultaten van analyses met schademechanica vaak afhangen van de element-
breedte en van de elementenoriéntatie, zijn er diverse berekeningen uitgevoerd om
de betrouwbaarheid van de hybride aanpak te onderzoeken. De resultaten laten zien,
dat de berekende scheurpatronen niet afhangen van de elementenverdeling en steeds
maximaal één element verwijderd zijn van de exacte scheurpatronen die volgen uit
experimenten of theoretische beschouwingen. Deze resultaten worden beoordeeld als
voldoende nauwkeurig. Ondanks de grote rekentijden blijkt de hybride breuk/schade-
aanpak een bruikbare methode te zijn voor het berekenen van dynamische scheurgroei
in twee-dimensionale en in eenvoudige drie-dimensionale structuren.



Summary

New designs of television picture tubes or cathode-ray tubes must satisty strict require-
ments regarding the safety of the glass bulb, before the new tubes are allowed to
be introduced into the market. To test the safety, international standards like the
“ball-drop test” have been developed. This test demands that no implosion of the
tube should occur, when the glass screen is subjected to an impact by a steel ball
of prescribed size, weight, and energy. Limited crack propagation is permitted. The
aim of the research presented in this thesis is to develop analytical and numerical
methods for the calculation of crack propagation during the ball-drop test and for
the determination of the glass safety of new tube designs. Two new methods for
the analysis of dynamic crack propagation in brittle materials are proposed: (i) the
uncoupled dynamic fracture approach and (ii) the hybrid fracture/damage approach.

The uucoupled dynamic fracture approach is based on fracture mechanics and on a
(partial) uncoupling of stress waves and crack propagation. On the one hand, the
crack propagation is determined by the stresses in the material. On the other hand,
crack propagation leads to a change in the geometry and, thus, to a disturbance of
the stress distribution. The latter effect is disregarded in the uncoupled approach.
The method consists of two parts. First, the dynamic stresses due to the ball impact
are calculated with the use of the finite-element method, where it is assumed that no
crack initiation occurs. Next, possible crack patterns are calculated from these stress
data. Reliable results for the crack patterns have been obtained from applications of
the uncoupled approach to simple examples and to television picture tubes. Because
of the relatively short computing times, the uncoupled dynamic fracture approach
proves to be an efficient method for the analysis of dynamic crack propagation.

The hybrid fracture/damage approach is based on a combination of fracture mechanics
and continuum damage mechanics within the context of the finite-element method.
At the crack tip, fracture mechanics is employed. The singular stress behaviour is
described by special elements and the crack propagation is calculated with the use
of well-established fracture criteria. The “tail” of the crack is smeared out over a
region of finite width, where damage mechanics is employed and elements with a
reduced modulus of elasticity are used. The interaction between stress waves and crack
propagation is fully incorporated in this approach. Sinece the results of analyses with
continuum damage mechanics often depend on the element width and the element
orientation, several calculations have been performed to investigate the reliability
of the hybrid approach. The results reveal that the calculated crack paths do not
depend on the element division and are always at most one element away from the
exact crack paths that follow from experiments or theoretical considerations. These
results are regarded as sufficiently accurate. Despite the large computing times, the
hybrid fracture/damage approach appears to be a useful method for the calculation
of dynamic crack propagation in two-dimensional and in simple three-dimensional
structures.
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Chapter 1

Introduction

Since the beginning of the twentieth century the theories of fracture and damage
have evolved from ad-hoc simple models for specific mechanical problems to mature
sciences in their own right. The pioneering work of Griffith [31] provided a first step
towards the understanding of material failure. It was not until the destructive period
of World War II, however, that the importance of examining fracture phenomena was
fully perceived. From that time on, the interest in fracture mechanics has steadily
increased. Investigations of Irwin [41, 42] and Orowan [70] have led to the evolution
of energy concepts of fracture and the inclusion of plasticity effects. Contributions of
various aunthors on the fundamentals of fracture are gathered in the series edited by
Liebowitz [52..

A new approach to failure was proposed by Kachanov [44] and developed further
in recent years among others by Chaboche [14, 15, 16] and Lemaitre [50]. Failure
of a coustruction was not regarded as rupture of the material but as deterioration
{softening) due to internal damage. Contrary to fracture mechanics where crack
growth is synonymous to geometrical changes, these models assume a continuous,
deformable body where failure is interpreted as a change in material structure, This
new field of science is therefore named continuum damage mechanics.

Both theories, fracture and damage, are considered in this thesis and are applied to
dynamic crack propagation in brittle materials, The dynamic effects are incorporated
in the analyses; these effects include the crack-growth speed, accelerations, and wave
propagation. We restrict ourselves to brittle materials without microstructure, like
glass.

The specific area of application is the safety tests for television picture tubes or
cathode-ray tubes. The background of this research is explained below. Because
of the particular problems encountered in the study of dynamic brittle fracture, two
new approaches are presented: (i) an uncoupled dynamic fracture approach in which
the interaction between stress waves and crack propagation is only partially incor-
porated, and (ii) a hybrid fracture/damage approach in which the two theories are
combined,
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1.1 Safety tests for television picture tubes

New designs of television picture tubes must satisfy special requirements regarding
the safety of the glass bulb. During operation, unintended mechanical hazards may
occur. For example, the glass front screen may be hit by a sharp or hard object.
When such a mechanical hazard occurs, the glass will fracture and crack patterns are
formed in the screen. One cannot expect that the television set remains undamaged
in such situations, because the strength of glass is limited. The TV will evidently
have reached the end of its life, but it is undesirable that the impact leads to an
implosion of the television tube. Since accidents cannot be avoided, special safety
tests have been developed. All new designs of television tubes must satisfy very strict
test requirements, before they are allowed to be introduced into the market.

{—: frit

E—

screen

{vacuum)

\\'\;\ shadow mask
N4
\\

\\\

internal magnetic shield

™ rimband

Figure 1.1: Cross section of television picture tube.

We start with a description of the TV-tube geometry and an explanation of frequently
used terms. A cross section of a television picture tube is schematically shown in
Fig. 1.1. The screen, the cone, and the neck are glass components which are sealed
together by melting or with the use of frit. The combination of screen, cone and neck
is called the glass bulb. The electron gun is located in the neck and contains the
cathode which emits an electron beam. The electrons are deflected by a magnetic
field generated by a set of deflection coils. The electrons pass the shadow mask, a
perforated thin metal sheet which also serves as anode, and arrive at a (red, green or
blue] phosphor dot. To protect from external magnetic fields which may distort the
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deflection of the electron beam, an internal shield is added. The glass bulb with the
shadow mask, the internal magnetic shield, the deflection coils, and the electron gun
is called a cathode-ray tube or a television {picture} tube. When the tube is buils
into its housing and is completed with loudspeakers and additional electronics, it is
called a television set.

Inside the television picture tube there is vacuum, which is required for a proper
functioning of the electron gun. The internal vacuum introduces high compressive
and tensile stresses in the glass. In order to alleviate these high tensile stresses, a
metal rimband is added to the construction around the outer edge of the glass screen.
The rimband is applied by heating and subsequent cooling. As a result, it shrinks
around the screen boundary and induces extra compressive stresses, which partially
compensate the tensile stress introduced by the internal vacuum of the tube. Practical
experience reveals that the rimband pressure has a strong negative effect on possible
crack propagation and thus a positive effect on the safety of the design.

We now turn to the impact safety tests. We distinguish between the “ball-drop
test” and the “missile test” which are described in the documents of the Netherlands
Norm and European Standard NEN--EN 60065 [26, 64] and of the Canadian Standard
Association CAN/CSA and Underwriters Laboratory UL 1418 12]. The first test,
the ball-drop test, demands that no implosion of the tube should occur when a steel
ball of pre-specified weight hits the screen. The impact position and impact energy
are also prescribed according to the international test standards. The second test is
the so-called missile test in which a heavy steel projectile is used in order to enforce
an implosion of the television tube. In addition, scratches have been applied to the
screen at critical positions. Cracks may initiate at these scratches and also at the
point of impact. Both tests impose severe restrictions to the glass deposition. The
maximum allowed weight of all glass particles that are blown away further than a
critical distance from the TV set is limited to only a few grams.

The response of the television tube to the ball-drop and missile tests is essentially a
dynamic process. In this process four different stages are distinguished, dependent on
the time elapsed since the moment of impact:

1. Impact of the steel ball. Because of the contact between ball and screen, a
Hertzian cone crack is created. This is a cone-shaped crack which starts near the
boundary of the contact area between ball and screen and propagates through
the thickness of the glass. As a consequence, a hole is punched out of the glass
screen. This stage also involves the initiation of cracks originating from the hole
and the initiation of stress waves in the glass. (For a discussion of Hertzian
cone cracks we refer to Li and Hills [51] and for an extensive treatise of contact
mechanics to Johnson [43].)

2. Dynamic fracture (crack and wave propagation). The stress waves which are
initiated by the impact propagate through the screen. This gives rise to a
dynamic stress state which will induce crack growth. Since the impact zone is
emnbrittled by the punching of the hole, there are many small cracks. Only a
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few of these cracks will extend and propagate over larger distances. Of course,
this is influenced by the stress state. On the other hand, the propagating cracks
will disturb the dynamic stresses. So, there exists an interaction between the
fracture process and the stress waves.

3. Crack arrest or collapse. The requirement of the ball-drop test is that the tube
does not implode. This means that all propagating cracks must stop. Crack
growth requires energy. Therefore, crack arrest will occur when the amount of
available energy is not sufficient to create new crack surfaces. If this is not the
case or if the impact energy is too large (e.g. in the missile test), the tube will
implode.

4. Glass deposition. When the tube collapses, the glass screen is fractured into
smaller and larger pieces. The devacuation of the tube (ending the internal
vacuum) involves an in-flow of air, resulting in the glass particles being blown
away from the TV set.

The analysis of the dynamic and fracture phenomena in all these stages becomes
increasingly complicated in course of time. The impact stage is well defined and the
initiation of cracks and waves can be described with reasonably simple methods. The
next stage of dynamic fracture becomes more difficult, but despite its complexity it is
a challenging problem to tackle. This second stage of the fracture process is decisive
for the next two stages: depending on the direction of crack propagation and the final
length of the cracks, either crack arrest will occur or the tube will collapse. This also
depends on the glass thickness which increases from the central region to the screen
boundary and on the local stresses in the glass. Regarding the fourth and last stage
of the impact tests involving the deposition of the glass, it is almost impossible to
determine the final position of each glass particle after collapse.

The research presented in this thesis is focused on the ball-drop test. The main
objective is the development of analytical and numerical methods for the calculation
of the dynamic response of a television tube to a mechanical impact and for the
determination of the glass safety of a given tube design. These methods can be used
as design tools for the optimisation of the product itself and of the manufacturing
processes. The formation of erack patterns playvs a central role in the safety tests.
Namely, the direction of crack propagation is of major importance in determining
whether an implosion may cccur and thus whether a tube design is safe or not. Since
the crack propagation is influenced by the dynamic stresses in the glass, the analysis
is based on the research disciplines dynamics, fracture mechanics, and continuum
damage mechanics.

1.2 Fracture and damage mechanics

The analysis of fracture phenomena in brittle materials focuses on stress concentra-
tions in the vicinity of crack tips. A crack introduces a discontinuity in the elastic
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body and, within the scope of linear elasticity theory, the crack tip becomes a singular
point where the stresses attain infinite values. The singular behaviour of the stress
components is proportional to the inverse square root of the distance to the crack
tip and the singularity is normalised by stress-intensity factors. This relationship is
illustrated in Fig. 1.2 and can be represented in the simplified form

oo B (11)

where ¢ denotes the stress and r is the distance to the crack tip. The parameter K
is a stress-intensity factor related to the external forces and the boundary conditions.
A common fracture criterion for brittle materials is that crack extension will occur
when the stress-intensity factor reaches a critical value, the fracture toughness, which
is a material constant; see Broek {11] and Cherepanov [18]. As long as K is below
this upper bound, the crack remains stationary.

Figure 1.2: Stress singularity at crack tip.

From (1.1) it is clear that the yield stress will be exceeded at positions sufficiently close
to the tip of the crack, introducing local plasticity and causing the material to flow.
For ductile materials this plastic behaviour is essential in the fracture analysis. For
brittle materials, however, there exists only limited plasticity or small-scale vielding
which is confined to a very small neighbourhood around the crack tip; see England
122} and Rice [76, 77]. The principle of stress-intensity factors can thus be used for a
wide class of brittle fracture problems,

The theory of continuum damage mechanics follows a different approach. Instead
of a material discontinuity, the crack is modelled in a continuous, smeared way and
internal parameters are introduced to represent material damage. The physical crack
is replaced by a small zone where the material stiffness (the modulus of elasticity) is
reduced. The interpretation is straightforward: the material strength decreases due
to the presence of microscopic flaws or due to failure of molecular bonds; see Fig. 1.3.
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This method works quite well for constructions where the damage stretches out over
larger areas, such as materials with ductile or viscoplastic behaviour. It is believed
that we can also obtain reliable results for brittle materials. The introduction of
internal damage parameters affects the constitutive stress-strain relations. Basically,
this is characterised by

o= {1-D)Ee, (1.2

where ¢ and ¢ denote the stress and the strain, F is the Young's modulus of the
original undamaged material, and D a damage parameter. With the definition of the
effective elasticity modulus Ey = (1 — D)E, the usual relationship o = Eje recurs.
Adopting distinct relations (1.2) in different directions, we may obtain anisotropic
behaviour of the damaged material.

undamaged damaged

Figure 1.3: Material damage caused by microcracks.

The introduction of damage parameters implies that extra relations are needed to
describe the rate of damage increase D as a function of the stresses or strains and
of the actual damage itself. This damage-evolution equation is usually chosen as an
exponential relation. Chaboche [16] and Kachanov 44] suggest for example for creep
damage

D = Ac*(1-D)", (1.3)

where the scaling constant and the exponents are material-dependent constants to be
determined experimentally. Although this extra equation prevents the mathematical
formulation of the problem from being incomplete, other peculiarities of continuum
damage mechanics will occur in practical applications.

1.3 Analysis and approach

The finite-element method has proved to be an efficient means for the solution of
complicated mechanical problems involving non-linear constitutive behaviour and/or
large geometries; see Hughes [37], MacNeal [56] and Zienkiewicz [100]. Standard
elements have linear or quadratic interpolation of the displacements and, consequently,



1.3. ANALYSIS AND APPROACH 9

the internal stresses are constant or linear. In fracture-mechanics applications it is
necessary to describe the singular stresses (1.1) correctly. It is evident that standard
finite elements cannot be used. To overcome this difficulty, special crack-tip elements
have been developed, which include the stress singularity either by interpolation of
the displacements with the use of square-root functions (Stern and Becker [86, 87]) or
by application of quarter-point nodes on the element sides adjacent to the crack tip
(Barsoum [3]).

The major advantage of fracture-mechanics methods is that they have been studied
extensively such that a broad range of applicability has been found, and that these
methods possess a high degree of accuracy. A strong disadvantage, however, occurs
when the finite-element method is applied to problems of dynamic crack propagation.
Because of the material rupture and the creation of new crack surfaces, the geometry
of the elastic body changes continuously. This necessitates a continuous adaptation
of the element mesh, a shift of the singular crack-tip elements to the new position
of the crack tip, and an interpolation of the mechanical quantities from the old to
the new element division. An overview of computational studies on dynamic crack
propagation, including moving-finite-element techniques, is presented by Nishioka,
Murakami and Takemoto [68]. In such procedures, the crack path is often assumed to
be straight or otherwise to be known beforehand. When the crack propagates along
an arbitrary curved path, many elements must be adapted. Since the assembly of all
element contributions into one global stiffness matrix requires much computing time,
a full-scale dynamic fracture analysis will be very time-consuming and is therefore
considered inappropriate for the present impact problem. Two alternative methods
for failure analysis are proposed.

1.3.1 Uncoupled dynamic fracture approach

An uncoupled fracture approach is proposed, based on dynamic stress calculations
for the undamaged configuration. The dynamic response of the television tube to the
impact is determined first with the use of the finite-element method and standard
finite elements. It is assumed that the glass screen remains linearly elastic and that
fracture does not occur. Afterwards, as a form of post-processing, predictions of crack
patterns are derived from the dynamic stress data. The interaction between the crack
propagation and the stress waves (as described at point 2 in Section 1.1) has only
partially been accounted for in this uncoupled analysis, because the disturbing effect
of the crack growth on the stress situation is neglected. Also, the mutual influence
of multiple cracks is not incorporated. Of course, it cannot be expected that this
uncoupled approach will produce highly accurate results for the entire fracture process,
especially near the moment of collapse or implosion. Nevertheless, it is possible to
analyse the first and second stages of crack growth with reasonable accuracy.

The great benefit of the uncoupled approach is that a fixed finite-element division is
sufficient and that mesh adaption is not necessary. In addition, several independent
crack patterns can be determined from one dynamic stress calculation, which implies a
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considerable reduction of computing time in comparison with a fully-coupled fracture
analysis. Since the initial stages of fracture are of crucial importance for the overall
safety of the television tube, it is sufficient to study the first and second stages of
the impact tests. This corresponds precisely to the range of validity of the uncoupled
fracture approach. Therefore, it is expected that the uncoupled approach will produce
useful results with rather limited effort.

1.3.2 Hybrid fracture/damage approach

In order to include the interaction between dynamic stresses and crack growth in a
coupled failure approach, the possible applications of continuum damage mechanics
are investigated. Regarding finite-element implementations, there is a great advantage
of damage-mechanics methods over fracture-mechanics methods. Namely, continuous
mesh adaptation has become superfluous, because changes in the geometry do not
occur. Instead, the elasticity parameters are adapted. There also exist some com-
plications, however. The local damage-evolution law (1.3} for instance can be chosen
rather arbitrarily, as long as it agrees with the global material response. Moreover,
severe material degradation may lead to softening behaviour: the internal stresses
decrease with increasing strain. As a result, the mathematical formulation of the
problem becomes ill-posed. In such cases, it is often seen that the damage increase
ig highly susceptible to small variations in the local stress values and in the finite-
element division, leading to pathological mesh dependences. On the one hand, these
dependences concern the width of the damaged zone: refinement of the element mesh
generally leads to higher values of the damage parameters in a region of smaller width.
This effect is referred to as “localisation” and has been studied by various authors
{4, 5, 49, 71, 85, These papers are discussed in Section 8.1. On the other hand, the
orientation of the finite elements plays an important role: it is often seen that damage
accumulation appears along element boundaries and not in the required direction as
derived from a fracture-mechanics analysis. This problem even occurs for simple geo-
metries. These drawbacks restrict the applicability of continuum damage mechanics
in its original form.

Because of the particular disadvantages of both fracture and damage mechanics, ap-
plication of either method te problems of dynamie crack propagation was considered
as not appropriate. Focusing on the positive aspects of the two theories, Horsten and
van Vroonhoven [36] developed the idea of a hybrid fracture/damage approach. This
approach consists of the following details. Subsequent positions of the crack tip are
calculated, such that the crack path is known at every moment of the fracture process.
Since the local stresses in the vicinity of the crack must be known with highest possible
accuracy, fracture mechanics is employved and the special elements with singular stress
behaviour are used at the crack tip. In order to avoid large-scale mesh adaptations,
continuum damage mechanics is utilised to describe the “tail” of the crack. At these
positions the modulus of elasticity is reduced in the direction perpendicular to the
surfaces of the crack. In fact, we should not speak of a crack in the strict sense but
of a damaged zone, since there is no geometrical discontinuity in the material.



1.4. OUTLINE OF THE THESIS 11

This hybrid approach combines the accuracy of the singular crack-tip elements in
fracture mechanics and the flexibility of crack representation in damage mechanics,
such that the necessary mesh alterations during crack growth are avoided. Thus, we
have developed an effective means for the analysis of crack propagation in combination
with the finite-element method. We shall investigate the possible mesh dependences
which often occur in damage-mechanics applications. These dependences must be
excluded to ensure the correctness of the hybrid fracture/damage approach.

1.4 Outline of the thesis

Part I: General

The thesis is divided into four parts which successively focus on a general introduction,
the uncoupled dynamic fracture approach, the hybrid fracture/damage approach, and
a discussion of the results. The first part is concluded by Chapter 2 in which the
basic equations of mechanics are summarised for later reference. The problems of
plane stress and anti-plane shear and two theories for plate bending are presented for
general dynamic loading conditions. In addition, formulations in terms of complex
holomorphic functions are given for situations of static deformation.

Part II: Fracture Mechanics

This part focuses on the uncoupled dynamic fracture approach and starts with an
overview of well-known fracture concepts in Chapter 3. This includes a discussion of:
the principle of brittle fracture, stress-intensity factors, the three distinct modes of
fracture, the energy release rate, and fracture criteria. The near-tip distributions of the
stresses and displacements are given for both stationary and dynamically propagating
cracks. Furthermore, the effect of rapid crack propagation on the elastodynamic
stress-intensity factors is considered.

Chapter 4 is devoted to the fracture of thin plates by bending moments. This study
is required in view of the perpendicular impact loading which involves considerable
bending deformation. Two plate bending theories based on different assumptions are
employed: the classical theory of Kirchhoff and the refined theory of Reissner. The
near-tip bending moments, shear forces, rotations, and deflections are examined and
expressed in terms of new bending stress-intensity factors. The correspondences and
differences between hoth theories are investigated and a comparison with anti-plane
deformation is made. In addition, the effects of crack closure and the combination of
tension and bending are analysed.

Since crack propagation does not necessarily occur along straight lines, a study of
stress-intensity factors for curvilinear cracks is performed in Chapter 5. This concerns
planar deformation, anti-plane deformation, as well as out-of-plane bending. The
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analysis is based on the theory of complex functions. The resulting expressions are
utilised in the uncoupled dynamic fracture approach in Chapter 6. Applications to
several test problems and to television picture tubes are presented.

Part I11: Damage Mechanics

In the third part we explain the hybrid fracture/damage approach. The theoretical
and numerical aspects necessary for a successful combination of fracture and damage
mechanics are worked out in more detail. In Chapter 7 we discuss the essentials of the
finite-elernent method, including the singular crack-tip elements for fracture applica-
tions and the softening elements for damage applications. Since bending deformation
is important to the television impact problem, extra attention is given to the bending
behaviour of the finite elements.

Chapter 8 starts with a critical review of continuum damage mechanies and continues
with the implementation of the hybrid fracture/damage approach in a finite-element
method. The elements of Chapter 7 are utilised in a specific combination, such that the
dynamic fracture behaviour of brittle materials is described in a numerically effective
manner. The hybrid approach is applied to fracture simulations of test specimens and
television picture tubes.

Part IV: Conclusion and Perspective

Finally, in Chapter 9, we review the results of the theoretical studies on fracture
in plate bending and on curvilinear cracks. We compare the results of the various
numerical caleulations performed with the use of the uncoupled dynamic fracture
approach and the hybrid fracture/damage approach. The results of applications on
television picture tubes are summarised. Open ends of the present research and some
options for future research are put into perspective in Chapter 10.



Chapter 2

Basic equations of mechanics

In this chapter we present an overview of the equations that form the basis of the
mathematical analysis of mechanics problems. Since these basic equations will be used
frequently throughout this thesis, a summary is presented here for later reference.
Derivations are not given but can be found in the literature as indicated. We restrict
ourselves to the theory of small deformations or linear elasticity theory.

The first section deals with the loading of general three-dimensional configurations.
The next sections focus on specific geometries and deformation situations, such as
plane strain, (generalised) plane stress, and anti-plane shear. The equations for the
bending of thin flat plates are also presented. We shall adopt classical plate theory
and Reissner’s theory, The analysis is restricted to isothermal situations; temperature
effects are thus not included.

2.1 Deformation of linearly elastic bodies

Cousider a deformable body consisting of a homogeneous, isotropic, linearly elastic
material. The body comprises a domain V' C R? and is subjected to prescribed
displacements and (time-dependent) forces on its outer boundary dV. In addition,
volume forces may exist. The material behaviour is characterised by the Young's
modulus of elasticity F, the Poisson contraction ratio v, and the shear modulus G =
E/2{1 4 v), while the density of the material equals p.

The deformation of the body is expressed in terms of displacements u;, strains z,;,
and stresses o5, with respect to a Cartesian coordinate system {e,, e,, e,}, and with
indices ¢, = z,y, z. The notation ; is adopted for differentiation with respect to the
coordinate 7, while a superposed dot is used for the derivative with respect to time ¢.
In addition, the Kronecker delta 6;; is introduced, which egnals 1 for 7 = j and 0 for
7 # 7, and the Einstein convention of summation over repeated indices is employed.

The deformation problem is described by kinematic relations, constitutive relations,

13
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the equations of motion, and suitable boundary conditions; see Eringen [25, Sec. 6.5].
The prescribed displacements and the externally applied forces on the boundary 9V
are given by u; and P;, respectively, while the components of the outward normal to
AV are denoted by n;. The volume forces are equal to f;. The dynamic problem for
deformation of a three-dimensional linearly elastic body is then formulated as follows.
The static problem is obtained by putting p i = 0.

Problem of elastic deformation: determine displacements u;, strains &;;, and
stresses oy as suffictently smooth functions of ©, y, z and t, satisfying the equa-
tions (with indices 1,3,k = x,y,2)

& = %(Ui‘j +uji) {(2.1)
o = 2G (f-ij + 1%5}; Ekk 5ij) ; (2.2)
o+ I = pili, (2.3)
in the domain V' occupied by the elastic body and subject to the conditions
up = U on S, (2.4)
Ting = Py on S, , (2.5)

on the boundary 0V = S, U S, with S, and S, being disjoint.

For the dynamic problem additional initial conditions for the displacements u; and
their time derivatives «; are required. In most applications the volume forces f; will
be disregarded. Because of the linearity of the equations, the superposition principle
applies. This means that problems for general loading situations can be separated
into several simpler problems which are analysed independently. After the separate
analyses, the total deformation of the linearly elastic body is obtained by summation
of all individual responses.

Elimination of the strains and the stresses from the relations (2.1}—(2.3) produces

Ui g5 + 1%2; Ujji = g'uz (2.6)
which are known as the Navier differential equations for the displacements. It has
been shown by Sternberg [88] that the solution to these equations can be written
as the sum of the gradient of a scalar potential ¢ = &{x,y, 2,t) and the curl of a
divergence-free vector potential ¢ == ¥;{x,y, z,t) e;, which is the Helmholtz additive
decomposition. In vector notation this reads as

u=Vé+Vx, Vih=0, (2.7)

where bold-faced letters are used to indicate vectors. The potential functions satisfy
appropriate wave eguations

by — =6 = 0, (2.8)

Yigi — 5% = 0, (2.9)
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where the dilatational and shear wave speeds for general three-dimensional problems

are defined by
2G (1 — ) ) ,
S —r 2.
Cy P (1 - 27}) s ( ]0}

| c
¢y = — .

T
1t is noted that ¢; < ¢y. The completeness of the representation (2.7)-(2.9) for the
solutions to (2.6) has been proven in [88] and it is emphasised that the potential
functions can be time-dependent, even in the case of static elassicity problems. This
1s explained as follows. When the potential functions are independent of time, the
displacements satisfy the Laplace equation because of (2.8)-(2.9). Since this class of
displacements is too much restricted in comparison with the general solution to the
equation (2.6) with 4; = 0, the completeness of the representation (2.7) would be
violated.

2.2 Planar deformation

The three-dimensional deformation problem in its general form is difficult to solve.
However, several simplifications can be made when the elastic body has a certain
degree of symmetry. For example, suppose the body has large thickness and let the
z-axis coincide with the thickness direction. Assume that the deformation only occurs
in the z- and y-directions and is independent of z. This is the situation of plane strain,
because the displacement u, and the strain components z;, {7 = x,y, 2} vanish. As a
result, the shear stress components o,, and o,. are equal to zero, while the normal
stress in the z-direction is derived from

O = V(0Opp+ Oyy ). (2.12)

The problem of plane strain is similar to (2.1)-(2.5) but is reducible to two dimensions.
All quantities are independent of the variable z and the indices are restricted to z, y.
The elastic body may be taken as two-dimensional, occupying the domain V' in the
zy-plane with the boundary 9V being a curve.

Another example of planar deformation concerns thin plate-like structures. Let the
z-axis be perpendicular to the plate, while the z- and y-axes are in the plane of
the plate. Now, it is assumed that the normal and shear stresses in the z-direction
are zero, ie., g;, = 0 for ¢ = 2,4, 2. Thus, a situation of plane stress is obtained.
Consequently, the shear strain components e, and g, are zero, while the strain in
the z-direction is determined by

v

e (Eoz + €4y ) - (2.13)

In many practical cases the stresses o, only vanish after integration over the thickness
of the plate. Obviously, the averaged quantities do not depend on the perpendicular
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z-coordinate. This procedure results in the following problem which is usually referred
to as generalised plane stress.

Problem of plane stress:  determune displacements u;, strains gy, and stresses
oy as sufficiently smooth functions of x, y and t, satisfying the equations (with
indices 1,7,k = x,y)

1,
sy = Hlu+uga), (2.14)
TiT Tz ((1 —v) &yt Ve (52']-) , (2.15)
Tijg = Pl (2.16)

in the plane domain V' occupied by the plate and subject to the conditions

u, = on S, , (2.17)
Oigny = P on 5, (2.18)

on the boundary OV = S, U S, unth S, and S, being disjoint.

Since E/(1— v*) equals 2G//(1 — v), the problems of plane strain and of (generalised)
plane stress are identical when the Poisson’s ratio v of plane strain is replaced by
the quotient v/(1 + v). The shear modulus G is equal for both problems, while the
Young’s modulus £ for plane stress corresponds to £/(1 — v?) for plane strain.

The displacemens solutions to the problems of plane strain and of (generalised) plane
stress admit the representation {2.7) in terms of potential functions. Because of the
geometrical simplifications, the scalar potential ¢ == ¢{x,y,{) is independent of z,
whereas the vector potential has the form v = ¢*(z,y,1)e,. These functions satisfy
the respective wave equations (2.8){2.9), where the summation over the repeated
indices is now restricted to two dimensions (4,7 = z,y). In the case of plane stress,
the Poisson ratio must be adapted as described above, so that the velocities of the
dilatational and shear waves become

feo . [E
5 e /.__ - P~ .
“ Vp (1—1) v p{l—12)’ (2.19)
e |
=y 2.20
° Vo (2.20)

2.3 Anti-plane deformation

Suppose that the thickness of the elastic body is large and let the z-axis again be in
the thickness direction. Assume that the deformation occurs only in this direction
and is independent of z. Thus, the displacements u, and v, vanish and the only non-
zero strains and stresses are the zz- and yz-components. It is customary to denote
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the shear stresses by 7, with ¢ = r,%. Since the displacement is perpendicular to
the xy-plane, this type of deformation is called anti-plane shear. The elastic body
may be taken as two-dimensional, occupying the domain V' in the zy-plane with the
boundary 0V being a curve. From (2.1)-(2.5) the following problem is deduced.

Problem of anti-plane shear: determine displacement u,, strains g;,, ond shear
stresses 1;, as sufficiently smooth functions of x, y and t, satisfying the equations
{with index i = z,y)

Tiz = 2@552 = Guz)i s (221}

Tizg = puz N (222)

in the two-dimensional domain V' occupied by the elastic body and subject to the
conditions

u, = T, on S, , (2.23)

Ty = 7 on Sy, {(2.24)

on the boundary 0V = S, U S, with S, and S, being disjoint.

For the static problem with p iz, == 0, the displacement satisfies the Laplace equation
A, = u,; = 0. Consequently, the normal displacement can be written as the real
part of a complex holomorphic function ¢{z) of the complex variable z = x + i y; see
Cherepanov [18]. The function ¢(z) and its derivative ®(z) = ¢’(z) are holomorphic
{or analytic) in the plane region occupied by the elastic body with possible cuts
from internal holes to the outer boundary. Because of the two-dimensional geometry,
no confusion with the perpendicular coordinate z can arise. If necessary, the latter
coordinate will be denoted by x3. The displacement and the two stress components
are now written in the form

u, = Red¢{z), {2.25)
Tz ™ [({Ty: = G @(3) . (226)

The holomorphic function ¢(z) is fully determined by the boundary conditions and
by additional conditions at singular points such as crack tips.

2.4 Plate bending

Another simplification of the general three-dimensional deformation problem arises
for elastic bodies with relatively small thickness, such as thin flat plates. Whereas
the plane stress problem was concerned with planar loading of these geometries, this
section deals with loading by out-of-plane bending moments.

Two different theories have been developed for the analysis of plate bending: the
classical theory of Kirchhoff (see Timoshenko and Woinowsky-Krieger [90]) and the



18 CHAPTER 2. BASIC EQUATIONS OF MECHANICS

more refined theory of Reissner [74, 75]. In both theories it is assumed that there is no
deformation in the middle plane of the plate and that the normal stress in the direction
perpendicular to the plate can be neglected. The differences concern among others the
in-plane displacements and the rotations in the middle plane. Historically, the classical
theory was developed prior to Reissner’s theory, but for a better understanding of plate
bending problems the latter will be discussed first.

2.4.1 Reissner’s plate theory

Let the z-axis be in the direction perpendicular to the plate, with z = 0 along the
middle plane and z = +h/2 along the upper and lower planes of the plate, where h
is the plate thickness. The in-plane coordinates are denoted by z and y. Bending
problems are usually formulated in terms of moment and stress resultants. These
cross-sectional quantities are obtained by integration of the stresses over the thickness

of the plate (see Mindlin [59] and Reissner [75]):

+h/2 )

A{ZJ = /_;1{!3 Gij FA dZ s {227)
+h/2

Q = [ o, (2.28)
S b2

where ¢,7 = x,y. On the basis of these representations the in-plane and transverse
stresses are approximated by linear and quadratic functions in z, respectively. Taking

oy = 6%“ ‘*2:, (2.29)

3¢, 2272 .
- 1 - (2= 2.30
iz 2h (1 (h) )’ (2:30)

while the stress component o, is assumed o vanish [74, 75].

The moment and stress resultants are coupled with the displacements by constitutive
relations and elasticity constants. Instead of the Young’s modulus F and the shear
modulus G, new parameters are introduced for the analysis of plate bending. The
bending rigidity D; and the shear stiffness [, are defined by

Eh? \

Dy = 2.31
’ 12(1—-12)° (23
D, = kGh, (2.32)

where the constant k is the shear-correction factor. Strictly speaking, one must take
k = 1 which corresponds with the exact three-dimensional theory. Reissner [74, 75]
has shown by a variational method based on the elastic strain energy that & = 5/6
vields better results, although an inconsistency occurs. Mindlin [59] has adopted
the value £ = 72/12 in his study of rotatory inertia and shear corrections in the wave
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equations for plate bending. We shall adhere to Reissner’s choice. With these bending

constants the wave speeds (2.19)—(2.20} can be written as

2 b .
Cqg = fg—‘s 5 (233)
2 & s

J 2.34
s [)h3 5 ph ( )

In Reissner’s plate theory, it is assumed that infinitesimal fibers which are initially
straight and perpendicular to the middle plane of the plate remain straight during
deformation but may rotate over small angles ©, and O, in the z2z- and yz-planes.
These angles are independent of the out-of-plane displacement (deflection} of the
plate. The in-plane displacements are then given by [59, 74]

U = o2 @z s (235)

with ¢ = z,y, while the out-of-plane displacement is assumed independent of z and
written as u, = w(xz,y). The function w is called the deflection of the plate. In his later
work [75], Reissner showed that this function can be regarded as a weighted average
of the out-of-plane displacement u, over the plate thickness. A similar statement was
made about the rotations. The expressions (2.35) and the relation u, = w are only
approximations, which is due to the inconsistency appearing any plate theory. The
rotation angles and the deflection are defined in [75] as

6 th/iz 2z
R AV s dz, 2.36
© h? /-h/2 h v ( )
3 p+h/2 2272
= — 1—1 = L dz. 2.37
v 2h /—&;2 ( ( h > ) te 6 (237)

Analogous to the strains ¢;; in planar deformation, curvatures s;; are introduced as
derivatives of the rotation angles. The equilibrium equations (2.3) are integrated over
the plate thickness in a manner similar to (2.27)-(2.28). The boundary of the plate
can be subjected to prescribed rotations and deflections and to prescribed bending
moments and shear forces. The equations for plate bending due to dynamic loading are
now given below; see also [59, 74, 75]. The corresponding static problem is obtained
by putting 5ph® O, = 0 and ph = 0.

Problem of plate bending in Reissner’s theory: determine deflection w, rotations
0y, curvatures r;;, bending moments My;, and shear forces € as sufficiently
smooth functions of z, y and t, satisfying the equations (with indices 4,7,k =
z,Yy)

1 7
rij = (i +05), (2.38)

ﬁ/[ij e —D& ((1 — I/) iy + UV Kik 533) . [239)
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Qi = Dy(w;—0,), (2.40)

1 .
A/M'ij’j — Qi = *ﬁ p;?,a e, (241)
Q”‘ = {}h w s (242)

in the plane domain V' occupied by the plate and subject to the conditions

97; - @i 011 59, (243)
Afw n; = f\v_/lz on Sm, (244)

on the boundary OV = S, U S, with Sy and S, being disjoint, and

w o= T on Sy . (2.45)
Qing = Q on S, , {2.46)

on the boundary OV = S, U S, with S, and S, being disjoint.

2.4.2 Classical plate theory

The classical theory of plate bending is based on the idea that infinitesimal fibers
which are initially straight and perpendicular to the middle plane of the plate remain
straight and perpendicular to the middle plane during deformation; see Timoshenko
and Woinowsky-Krieger [90]. In other words, the shear strains =,, and £,, vanish.
This is a stronger assumption than in Reissner’s theory. One might also say that the
shear stiffness D, of the plate has an infinite value. Consequently, the relation (2.40)
no longer applies and the rotations are equal to the gradient of the deflection:

@3‘ = Wy . (247)

ut T e u},i s (248}

for index i = z,y, while the curvatures are the second derivatives of the deflection,
Ky = wy. [t is customary to substitute this relation into (2.39)(2.41) and omit the
kinematic relations (2.38).

Because of the connection (2.47), the boundary conditions (2.43) and {2.45) are no
longer independent. The rotation ©; = w, in the tangential direction is completely
determined by the boundary’s deflection, but the rotation &, = w, in the normal
direction can still be prescribed as an independent condition. Similarly, the normal
bending moment M, of {2.44) can be prescribed independently, while the torsional
moment M, and the perpendicular shear force @, of (2.46) are related. The condi-
tions for M, and @, are combined into one boundary condition for the generalised
shear force (), + M,; . Thus, it is sufficient to prescribe two independent boundary
conditions on the boundary 8V instead of three. This fact was first recognised by
Kirchhoff. For further details we refer to [90]. The classical problem of plate bending
is now given below.
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Problem of plate bending in the classical theory: determine deflection w, bend-
ing moments My, and shear forces Q; as sufficiently smooth functions of z, y
and t, satisfying the equations {with indices 1,7,k = z,y)

My = —1 ((1 — Vw4 VW &U) , (2.49)

1
M —Q; = 1 ph i, (2.50)
Qii = phuw, (2.51)

in the plane domain V' occupied by the plate and subject to the conditions

w, = O, on Sp, {2.52)
My, = M, on S, , (2.53)

on the boundary OV = Sy U S, with Sy and S, being disjoint, and

wo e ID on Sy , (':2.54:]
Qn -+ A/[ns?s = Q" on Sq B §255}

on the boundary OV = S, U S, with S, and Sy being disjoint.

In the case of a static analysis, one must put li.zph:‘ w,; = 0 and ph = 0 in (2.50)
and (2.51). Doing so, we observe that the deflection satisfies the biharmonic equation
AAw = wyyy = 0. As a result, the solution to the static plate-bending problem
can be represented in terms of complex holomorphic functions; see Savin [80, Ch. VI].
These representations are similar to those of Muskhelishvili [63] for problems of planar
deformation. We introduce the complex coordinate z = z + ¢y and denote the per-
pendiculal coordinate by x5 to avoid confusion. Now, there exist complex functions
d(2), ¥(z), with derivatives ®(z) = ¢'(z), ¥(z) = ¢'(#), and primitive function x{z)
with x'(z) = ¥(z), which are holomorphic (or analytic) in the plane domain occupied
by the plate with possible cuts from internal holes to the outer boundary, such that
the displacements, the bending moments and the shear forces can be expressed as

w = Re{zd(z) +x(2)}, (2.56)
Up iUy = —T3| Bz} + 2 d)(z)—l—t z ] (2.57)
My + M, = -2(1 +z/)D )+ ( (2.58)

Myw — My + 20 My, = — 2(1-11)1)[ ¥'(z) (2.59)
Q. —iQ, = —4D¥(z), (2. 60)

where the notation D = D, is used for simplicity.

It proves convenient to eliminate the functions ¥{(z) and ¥{z) by the introduction of
two new complex functions

w(z) = z¢(z)+
Qz) = d'(z) = 20(2) + <I)

¥(Z), (2.61)
7) + ¥(z), (2.62)
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which have the property that the conjugates w(z) and €2(Z) are holomorphic in the
region occupied by the plate. In terms of these functions, the relations (2.56), (2.58)
and (2.60) remain unaltered, while the relations (2.57) and (2.59) change into

wp iy = —rg | w(z) 4 (z = 2) P 2) +o(z) | (2.63)
My — My +2i Moy = —2(1=0)D[0Q(3) + (2= 2)(2) - B(z)] . (264)

The holomorphic functions are completely determined by the boundary conditions, by
additional conditions at singular points such as crack tips, and by extra conditions for
the single-valuedness of the displacements in the case of multiply connected domains.

As mentioned above, the torsional moment and the perpendicular shear force on the
boundary cannot be described independently and are combined into the generalised
shear force (2.55). One may also express the boundary condition (2.55) in terms of
the generalised torque. With xg being an arbitrary but fixed point in the domain V',
this quantity is defined for any x in V' by

M, = My + [ Quds. (2.65)

X0

The parameter s is the arc length and the normal and tangential vectors, n and s,
are chosen such that n X 8 == e3. In the case of multiply connected domains, we
must apply cuts from internal holes to the outer boundary. The generalised torque is
determined up to an additional constant due to the arbitrariness of x¢. The definition
{2.65) is also unique because of local equilibrium. Namely, for any closed contour L
with interior A C V such that 4 = L, we have

/ Q,ds = / Qinds = / Qi ds = 0. (2.66)
L DA Ja 77

Thus, the definition of the generalised torque is independent of the choice of the arc
from xq to x. The representation of the generalised torque with respect to a Cartesian

coordinate system is not symmetric. The quantities M} and M - are different and
are given by

o .
M2, = M, + / Q. dy, (2.67)
Yo

My = My o+ [ Qs (268)
o

According to Savin [80, Ch. VI], the perpendicular shear force acting on an arbitrary
arc AB with normal and tangential vectors satisfying dz/ds = i(n, + in,), equals

B - B . | .
/A Q.ds = R,e{/ﬂ (Qx—zQy)(nm—f—zny)ds}

2 D[ @(z) - ()] . (2.69)

Il
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The normal bending moment A, and the generalised torque M}, are given by

M, +i M +iC = ]\/f,m—{—ii\/fns—i—i/S Q,ds+iC
50

= (1=0)D [k ®(2) + 8(z) - (A2 + (z ~ D ¥(z) — () ) (ne —imy)? ], (2.70)

where ' is an arbitrary real infegration constant. The parameter & differs from the
usual values for planar deformation; for bending problems it is given by
3+v

;o= — . 2.71
K 1= (2.71)
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Chapter 3

Fracture mechanics concepts

The basic principles of fracture mechanics have been summarised briefly in Section 1.2
of the introductory chapter and will be discussed here in more detail. The description
of stress concentrations in the vicinity of cracks in brittle materials is based on stress-
intensity factors K which are normalising constants for the singular stresses near the
crack tip as demonstrated by the relation (1.1). Brittle fracture is characterised by
the occurrence of small-scale yielding (see England [22] and Rice [76, 77]) as opposed
to ductile fracture where larger areas of plasticity are present. The yielding is confined
to a small area, the fracture-process zone. This zone is immediately surrounded by a
region, where the material remains linearly elastic and the singular stress field applies,
which is therefore called the region of K-dominance.

% // _ %
/ '\\‘
e T pa—_
> e .
/ \\\
Mode 1 Mode 11 Mode III
opening mode shding mode tearing mode

Figure 3.1: Three modes of fracture.

27
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The concepts of linear elastic fracture mechanics are illustrated on the basis of the
problems of planar deformation and of anti-plane shear. Three distinct modes of
fracture may occur, depending on the orientation of the applied loads with respect to
the crack; see Fig. 3.1. A crack is an internal boundary of the elastic body where the
material is discontinuous. This boundary consists of two parts: the crack surfaces,
also called crack flanks. The line joining the crack surfaces is the crack front (in two
dimensions: the crack tip}. Each mode is associated with a different stress-intensity
factor. The crack-opening mode (mode 1} occurs when the elastic body is loaded
by tensile forces acting perpendicular to the crack surfaces. Shear forces parallel to
the crack flanks and perpendicular to the crack front result in fracture by the sliding
mode (mode I1), while shear forces parallel to the crack front give rise to fracture by
the tearing mode {mode 111}. In general situations a combination of these modes will
be present and crack extension will take place in a direction different from the initial
orientation of the crack.

In this chapter we summarize the results for the near-tip stresses of the various fracture
modes and we distinguish between geometries with stationary cracks and those with
dynamic crack propagation. In addition, several fracture criteria are discussed, based
on the critical values of the stress-intensity factors, the local near-tip stresses, and on
the amount of energy which is available for crack growth. Conditions for the onset
of fracture and expressions for the determination of the crack-growth direction are
presented. Prior to a study of the fracture eriteria, it is necessary to investigate the
stresses in the vicinity of the crack tip.

3.1 Fracture in planar deformation

3.1.1 Static solution

Consider a linearly elastic body containing a crack of arbitrary shape and being loaded
under planar conditions as described in Section 2.2. We shall focus on situations of
plane stress. Firstly, we consider the static problem, such that we may put pi, = 0
in the equations {2.14)—(2.16). Since our attention is focused on the crack tip, it is
allowed to employ a standard interior asymptotic expansion and to replace the crack
by a semi-infinite slit; see Achenbach and Bazant [1] and Freund (28, Secs. 2.1, 4.2].
In order to obtain the near-tip stress solutions, the origin of the Cartesian coordinate
system {e,,e,} is located at the crack tip and the crack is positioned along the
negative x-axis; see Fig. 3.2.

It is assumed that the crack surfaces are stress-free, such that P, = 0 may be put in
the boundary conditions {2.18) with S, equal to the crack surfaces. The conditions
at large distance from the crack are disregarded, because we focus on the crack-tip
region. The solution to the static plane-stress problem is given in several textbooks,
e.g., Broek 11, Sec. 3.3], Cherepanov [18, Sec. 3-5], Freund 28, Sec. 2.1], Irwin [42].
Stress-intensity factors Ky and Ky are introduced as normalising constants for the
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symmetric and anti-symmetric parts of the local crack-tip stress fields. These factors
are the fracture parameters of the corresponding modes [ and I and are expressed in
units MPa /m or N m™2. With the use of local polar coordinates r and 6 specified
by © = rcosf, y = rsin@ with r > 0, —7 < 0 < 7, the stress-intensity factors are
defined by

K, = hII(l) V27 oy, (1,0) (3.1)
K = ljn(l) V27r 04,(r,0). (3.2)
y
T
0
X

Figure 3.2: Local crack-tip coordinates.

The solution for the stress components can be expressed as [11, 18, 28, 42]

Ky K 0
0,;(r,0) = —= fi;(0) + 0) + o + O(Vr), 3.3
18 = SO + HL e + o+ o(vr), @)
for distance r — 0 and indices i, 7 = z,y. The term a?j indicates the finite stresses
at the crack tip. The angular variations for modes I and 1T are well-known functions

and are illustrated in Fig. 3.3. For the crack-opening mode we have

1 1 3
T(0) = cos—0 (1 — sin =6 sin —9) , (3.4)
' 2 2 2
L (§) = cos l() (1 + sin 19 sin§9) (3.5)
vy 2 2 2 ’
1 1 3
I o .
w(0) = sin 59 cos 59 cos 59 ; (3.6)
while the functions for the sliding mode are given by
1 1 3
1) = —sin 59 <2+cos 59 cos 59) ) (3.7)
1 1 3
I o .
sy (0) = sin 59 CoS 59 cos 59 , (3.8)

1 1
1) = cos=6 (1 —gin =0 sin §9) : (3.9)
2 2 2

Yy
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(a) mode | (b) mode H
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Figure 3.3: Angular variations of the singular stresses f/(0) and ,;;‘r {87 of
modes I and II for indices ¢, ] = 2, ».

‘We note that the singular stress behavionr is also valid for stationary {non-propagating)
cracks under dynamic loading conditions such as transient forces. In those situations,
the same angular variations and the same inverse square-root singularity are found,
but the stress-intensity factors become time-dependent [28, Sec. 2.1}.

(a) mode | (b} mode 1l
2 : ; 2 : g
X
o - ////"‘"" o
,/y// /’//
1 /,,// 1 /, o
e e /
— e .
e X T
— S / I e
044 _______________________________________ 0 e e e ; :';;”/:{"”“""”}:“
,/’//W A
| R V//,"
o T30 60 90 120 150 180 "0 30 60 90 120 150 180
angle theta (degrees) angle theta (degrees)

Figure 3.4: Angular variations of the displacements «/(#) and u!/(8) of
modes I and II for index i == z, y and Poisson’s ratio v = .25,

The corresponding displacements near the crack tip are given hy [18, 42]

w(r,0) = u® + %i\v/-f- ul(6) + %’- V’% uH(0) + O(r), (3.10)
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for distance 7 — 0 and index i = z,y, where u{ are the crack-tip displacements. The

angular functions are shown in Fig. 3.4 and are given by

) 1-— . , .
ul(0) = cos %9 ( 1 —I—Z +sin‘3(%6)> ) (3.11)
1 2 5, 1 )
W0) = sin=0( —— — cos?(=6) ) . 3.1:
%(6‘) 51112(9<1+y €oS (28)> , (3.12)
1 2 5,1
17 : 2
o b — - '1
w,' (6) sin 2§<]+y+cos {263}), (3.13)
» 1- . .
u;](t?j = oS %9 (f T Z + sin%%é)) . (3.14)

3.1.2 Dynamic solution

Next, the problem for a propagating crack is considered. It was shown by Achenbach
and Bazant [1] and Freund [28, Ch. 4] that effects of crack rotation and acceleration
do not play a role in the near-tip singular stress field. Therefore, these effects are not
taken into account in the present investigation. The crack is taken as a semi-infinite
slit with its tip positioned at & = I(t}, ¥ = 0 at time ¢. The velocity of crack growth
equals ¢ = [{#) in the z-direction and is restricted to the range 0 < ¢ < ¢,. A moving
Cartesian coordinate system is introduced with its origin attached to the crack tip,
similar as in Fig. 3.2, with coordinates

& o= a—=11t), 4= y. (3.15)

Also, local polar coordinates (r, #) are introduced such that & == rcosf, § = rsin § with
7 > 0and —7m < 6 < 7. Because of the moving frame of reference, it is convenient
to express the singular stresses in terms of distorted polar coordinates (r4,64) and
{r.,0.) associated with the dilatational and shear wave speeds ¢4 and ¢, as given in
{2.193-(2.20}. The radii r4 and r, are defined by

ra = T4, 7a(e.0) = /1~ (csind/c)?, (3.16)
Te T TV, vele,8) = /1= {(csinf/eg)?, (3.17)
while the polar angles 8; and 4, are in the same guadrant as 8 and are defined by
tanfy = o4 tanf, aglc) = /1—_(?76(_)2 (3.18)
tanf, = o, tanf, as(c) = \/1 — (c/eg)?. (3.19)
In addition, we introduce the Rayleigh function
R(c) = daga, — (1+a2)%. {3.20)
The equation R{e) = 0 has a double roct ¢ = 0 and two single roots ¢ = fcg with

0 < ¢g < ¢,. The root cp defines the Rayleigh speed of surface waves, which depends
on Poisson’s ratio. For 0 < » £ (.50, we find that the ratio cg/c, varies from 0.8740
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to 0.9325 in the case of plane stress, and from 0.8740 to 0.9553 in the case of plane
strain. The Rayleigh wave speed is the physical upper bound of the crack-growth
speed for cracks in planar deformation. This relates to the energy dissipation during
crack growth. When the crack-growth speed exceeds the Rayleigh wave speed, the
function R{c) becomes negative and energy is radiated from the advancing crack
tip; see Cherepanov [18, Sec. 5-4] and Freund [28, Sec. 4.3]. Since this is physically
impossible, it is required that 0 < ¢ < ¢p.

The solution to the elastodynamic equations (2.14)-{2.16) satisfying homogeneous
(stress-free} boundary conditions {2.18) along the crack surfaces was derived in [1]
and [28, Sec. 4.3]. The stress components in the vicinity of a crack tip moving at
instantaneous speed ¢ are given by

. _ K J K 11 0 - .
oulr, 8 c) = %Eﬂj(ﬁ-ﬁ) + %TFF” 0,¢) + o) + O(\/?), (3.21)

for distance v — 0 and indices 7, j = z,y. The dynamic stress-intensity factors are
defined in the same manuer as in (3.1)-{3.2) and may depend on the crack-growth
speed. The angular variations for modes I and Il are well known [1, 28] and are
displayed in Fig. 3.5 for several crack-growth speeds. The functions F%» {0, ¢) for the
crack-opening mode can be expressed as

FLi0,) = (1+a2)(1+2af —af) cos 3y daqa cos 30, )
R RV
F(0.0) —(1+a?)? cos by daga, cos o, (3.23)
b RV Ry
2004(1 + o) [ sin 16, sin 46,
Fl(0,¢) = £ 28 _ 22} 3.24
P ) i N7 ) ( )

while the functions Fi‘;l {6, ¢} for the gliding mode are given by

~20,(1+20% — o) sindds  20,(1+a?) sin 10,

Flpe) = 3 . (3.25
200, (1 + 2} ( sin 16, sin 26, ) )

@) = = s D = I (3.26
w!0:€) R Vi v o

R/ R /7

It is noted that the functions F(6,¢) and F}/(f.c) are singular for ¢ = cz and
change their sign for ¢ > cg, because of the factor R{c) in the denominator. This
demonstrates that the Rayleigh wave speed is the upper bound for the crack-growth
speed.
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Figure 3.5: Angular variations of the dynamic singular stresses F;‘;(f}, c)
and Fél (8,¢) of modes T and 11 for indices 4,7 = z,y and Poisson’s ratio
v = 0.25 in plane stress and for crack-growth speeds ¢/e, = 0 (marked
by 0}, 0.4 {x)}, 0.6 (+), and 0.8 (B).
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The corresponding displacements for dynamic fracture are [28, Sec. 4.3

1”&1 ,[_'T‘— . AH ,. T

wi(r 00) = u + =V Ul(e,¢) + — UM(0.¢) + O(r), (3.28)

for distance r — 0 and index ¢ = z,y, where «{ are the crack-tip displacements. The
angular functions are given by

2 9y X 1 1 1 .
Ultg,c) = = ((1 + o) v; cos 59‘* — 200g0e; Y3 COB 565) , {3.29)
224 2 2 i 1 L 1 -
U,(0,¢) = & —{1 + aZ)ayy; sin *é}cg + 20042 sin ;95 ) , (3.30)
i1 2 1 .
Uii{f,c) = & 2, wd sin - écg — (1 +aha, *,vq sin - 0 (3.31)
.y 2 ,
(/‘f(é},c} = 3 (2 Qe ’M cos Gd —(1+a? 75 Cos — 8 ) (3.32)

These results for the near-tip fields during dynamic crack propagation depend only
on the instantaneous crack-growth speed. Consequently, the near-tip stresses and
displacements for nonuniform motion (¢ # 0) and for steady-state crack propagation
(¢ = 0) are identical {1, 28]. In the limit of no crack propagation, i.e., for ¢ - 0, the
angular variations tend to the corresponding values (3.4)-(3.9) and (3.11)-(3.14) for
stationary cracks,

lim Fi(d.c) = f500), (3.33)
lim Fif(0.c) = fif0), (3.34)
Jimy Ultg,e) = ul(8), (3.35)
lim U/ (0,¢) = «l1(6). (3.36)

3.2 Fracture in anti-plane shear

Consider a linearly elastic body containing a crack of arbitrary shape and subjected
to anti-plane deformation as described in Section 2.3, such that the crack is loaded
under mode III conditions. Local crack-tip coordinates as in Fig. 3.2 are introduced
with the z-axis perpendicular to the zy-plane, along the crack front. Again, the crack
Hanks are assumed stress-free and conditions at large distance from the crack are
disregarded. The solution to the static problem of anti-plane shear is presented by
Broek 11, Sec. 3.3], Cherepanov [18, Sec. 3-5], Freund [28, Sec. 2.1], and Irwin [42].
The singular shear stress components are normalised by the stress-intensity factor
K77 which is defined by

K = l'mg V21 Ty, (r,0). (3.37)
s
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The shear-stress components in the vicinity of the crack tip, i.e. for distance r — 0,
are given by [11, 18, 28, 42]

Ky

v enr

with index i = z,y and 7, being a finite shear stress at the crack tip. The angular
variations are well-known functions, viz.

T:{r,0) =

o) + )+ o(vr), (3.38)

1 1
Jisi - st -
@) = —sin 20, {3.39)
1 /
o) = cos 0. (3.40)

The displacement near the crack tip can be expressed as [18, Sec. 3-5]

. K 2 1 . .
u(r,0) = u) + CI; x/; sinz6 + O(r), (3.41)

for r — 0 and with u? being the crack-tip displacement. Similar to Subsection 3.1.1,
the near-tip solution (3.38)-(3.41} is also valid for dynamic loading of statiopary
cracks. Only the stress-intensity factor (3.37) will vary with time.

The solution for a propagating crack with instantaneous velocity ¢ = ¢(t) and loaded
in anti-plane shear is expressed in the same moving frame of reference ag defined in
(3.15). The singular shear siresses are obtained as 28, Sec. 4.2]

K
Venr
for distance r — 0 and index ¢ = x,y. The elastodynamic stress-intensity factor Ky

is defined by (3.37) and may depend on the crack-growth speed. Expressed in terms
of v, a, and 0, (see {3.17) and (3.19})}, the angular variations are given by

Ti.(r, 8y 0) = Fllg ey + 2 + O(\/Q) (3.42)

sin 14, /
FUIp ) — _Smgbs ) (3.43)
(& \/’E
o cos %93 )
Fyz (97 C) - = {3’44)

The displacement for dynamic fracture is equal to [28, Sec. 4.2]

K [or 1 1,
w7, 0;¢) = v + THGI \»'; ¢ sin 563 + Ofr}, {3.45)

with 42 being the crack-tip displacement.

These results apply to both steady-state and nonuniform crack propagation [1, 28].
In the limit for ¢ — 0, the angular variations tend to the corresponding values (3.39)-
(3.41) for stationary cracks. Thus, we have (with index ¢ = z,y)
lin% Elg oy = flig). (3.46)
o

(¥4
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3.3 Energy release rate

Because of the stress singularity, a concentration of energy occurs in the neighbour-
hood of the crack tip. Fracture will take place when the available energy exceeds a
critical level. This is expressed in terms of the energy release rate which is defined as
the amount of energy required to separate the material aud dissipated per unit area of
crack extension. For thin plate-like structures it is common to multiply this amount
by the plate thickness (or to integrate over the thickness of the plate} and to express
this rate as energy dissipated per unit length of crack extension. The dissipated energy
equals the work performed when the newly created crack is closed over an infinitesimal
distance Aa. This work is calculated from the stresses o, (7, 0) in the direction ahead
of the crack and from the crack-flank displacements u;(Aa — 7, 7) — 1 {A&a — 7, ~7)
with 0 < r < Aa. The dependences on ¢ and possibly on » have been suppressed for
clarity. The energy release rate is then determined by

1 t-h /2
G = lim

Aa
— S 0) [udAa — 7, 7) = w(Aa — v, —7) drdz, (347
Jim oo —~h;’2/0 Tiy(r,0) [ (Da — 7, 7w) — u{Da — 1 Jdrd (3.47)

with summation over the index i = z,y, z. This method of the crack-closure integral
was developed by Irwin [41, 42]; see also [11, 18] or Young and Sun [98, 99].

The connection with the stress-intensity factors is derived by substitution of the near-
tip solutions. Thus, the energy release rate for dynamic fracture at crack speed ¢ in
a plate of thickness h loaded under plane-stress or anti-plane conditions is calculated
as

h - o h . o
G = E(A;(C)K? + Aprle) K3y )+ 5@ (e Ky (3.48)

where the velocity-dependent coefficients are given by Freund [28, Ch. 5] and also by
Nishioka and Atluri [67). With the use of the definitions {3.18)~(3.19) of oy and «

B

and the definitions (2.19)-(2.20) of ¢4 and ¢,, we find

v 2 22y

Agle) = (“’”}(}% @)ad _ 2Aeg R%)%y (3.49)
1 Ay 2 9

Ale) = (1+1/)(; oo _ 2(a3 RGS)&S: (3.50)
1

A”{(C} == _C—l_ (35])

In the limit of a stationary crack, i.e., for ¢ — 0, these coefficients tend to unity and
the energy release rate (3.48) reduces to the well-known results of [11, 18, 67]. On the
other hand, the coefficients A;(c) and Ay;{c) become infinite of the order O[{c—cp)™]
when the Rayleigh wave speed is approached, while the coefficient A;;7(c) is of the
order O[(c — ¢;)7!] when the crack speed tends to the shear-wave speed.

An alternative method for the calculation of the energy release rate has been de-
veloped by Rice [76] and is based on path-independent contour integrals or so-called
J-integrals. This technique has been elaborated further by Atluri [2] for a wide class
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of materials having properties as finite strains, inelasticity, rate sensitivity and elasto-
viscoplastic behaviour. Freund [28, Ch. 5] and Nishioka and Atluri [67] applied these
integrals to dynamic fracture of linearly elastic bodies undergoing infinitesimal elastic
deformation, which is also assumed in this thesis.

Consider a circular contour C in the xy-plane with center at the crack tip and lving
entirely inside the region of K-dominance. The end points of the contour are on
the lower and upper crack surfaces and the components of the outward normal are
denoted by n;; see Fig. 3.6. For indices 7, = x,y, 2 and k = @,y {or 1, 2}, we define
the integrals |2, 28, 67, 76]

p+h2

Jy = (hi% e /C ((W +Tyng — oyny ui,k.) ds dz, (3.52)
with W = oy, and T = gp-a,a,; being the elastic and kinetic energy densities,

respectively. The limit € — 0 is to be understood as the limit for a contour C
shrinking onto the crack tip. The integrals J; form a vector J = Jy ey in the xy-
plane. An interpretation of this vector is given in the next section where fracture
criteria are discussed.

Figure 3.6: Integration path for the J-integrals.

The J-integrals can also he calculated for other than circular contours, shrinking onto
the crack tip. In Appendix A it is shown that J; is independent of the shape of the
contour C (the integration path) when the crack surfaces are stress-free. Therefore,
the integral J; is often called path-independent. This property also holds true for J;
but only for stationary cracks and not for dynamic fracture. In practical calculations,
e.g. based on the finite-element method, it is more convenient to use an integration
path which is not located in the proximity of the crack tip but at some remote position.
Expressions for Jp which involve an integral along a contour outside the region of
K-dominance, are presented in Appendix A and [67]. These expressions contain
- extra contributions due to integration paths along the crack flanks and, in the case of
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dynamic loading, an extra surface or volume integral to incorporate the elastodynamic
eflects.

Athari [2] has proved that the integral Jy coincides with the cuergy release rate G.
This can also be shown by evaluation of J; for a shrinking cireular [67] or rectangular
(28, ClL. 5] contour via substitution of the elastodynamie near-tip solutions. So. we
have

Ji=g. (3.53)
Evaluation of the integral Jy for a shrinking circular contonr yields

2 R .
-]2 = —E A/L'((‘) [\1 [\” . ({51)

where the cocfficient Ay (¢) is given in [67] and by (A.3) of Appendix A. When the
crack-growth speed approaches zero, this coefficient tends to unity and the expression
(3.54) reduces to the results of [18. Ch. 5]. The coeflicient is of the order Of(¢ ~ cr) ™7
for crack-growth speeds approaching the Rayleigh wave speed. It is emphasised that
Jy depends on the shape of the shrinking contour (for dvnamic fracture only), For
non-circular contours symmetric with respect to the r-axis, expressions for Jy similar
to {3.54) are obtained with different coefficients Apy {¢). For example, the result for a
shrinking rectangular contour is given in (A.4) of Appendix A. When the contour is
not symetric with respect to the r-axis, the expression for J, may contain additional
tovms with A7, A7, and A%, (Boersma [8]). The velocity-dependent coefficients of
these terms depend on the shape of the shrinking contour and vanish for zero crack
propagation (¢ = 0).

3.4 Fracture criteria

In fracture mechanices we distinguish between (i) erack initiation. which is the sudden
rupture of initially undamaged material, and {ii) crack extension, which is the growth
of pre-existing cracks. The mechanism of erack initiation can he explained by a micro-
mechanical approach. When the local stresses al a certain position exceed a critical
value, molecular houds will fail. For granular materials such as concrete or rock, but
also for fiber-reinforced composites, the matrix material between the graing or fibers
will fracture. As soon as a sufficient number of minuscule flaws has originated on the
microscopic level, interlinkage of the microcracks may occur. Finally, the strength
of the material has decreased so far that the remaining bonds cannot withstand the
increased tension and fail too. This becomes apparent on the macroscopic level in the
forin of crack initiation.

In this thesis we restriet ourselves to the growth of pre-existing cracks. Regarding the
area of application, it 18 reasonable to assume that crack initiation has occurred and
that at least one crack is present in the material. The deformation of an clastic hody
is governed by the equations and boundary conditions {2.1) (2.5). These cquations
are not suflicient for the analysis of cracks. An additional postulate on the fracture
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behaviour must be supplied: a so-called fracture criterion; see Broek [11. Ch. 2],
Cherepanov [18, Ch. 1] and Freund [28, Sec. 7.4], who elaborated further the ideas of
Griffith [31], Irwin [42] and Orowan [70]. We shall discuss two fracture criteria that
can be emploved to decide whether an existing crack will extend, and if so, in which
direction. Although the ideas underlying these criteria are different, their predictions
are in good agreement with each other and with experimental data.

We start with a stationary crack (¢ = 0) located along a semi-infinite slit and loaded
under mode I conditions. Because of the symmetric loading, the crack extends in
the direction 8 = 0 ahead of the crack. The first fracture critetion is based on the
stress-intensity factor; see [11, Ch. 1] and [18, Sec. 4-1]. Tt is postulated that crack
growth will aceur when the stress-intensity factor exceeds the critical limit A,.. the
fracture toughness of the material, that is

f\’[ > I&’]C. (355)

The second fracture criterion is based on the energy release rate; see Broek [11.
Sec. 1.7], Cherepanov [18, Secs. 4-2, 5-1] and also Irwin [42]. It is postulated that
crack extension will take place when the energy stored in the immediate surroundings
of the crack tip is sufficient to break the material and to induce fracture. This energy
is released during crack extension. The critical level for the energy release rate is
denoted by G, and the fracture criterion is

g > G (3.56)

The two fracture criteria are equivalent, since the stress-intensity factor A and the
energy releasc rate G are connected by {3.48). By putting ¢ = 0in (3.48), a relationship
between the fracture toughness and the critical energy release rate is derived. namely
-2
h K

G. = 7o (3.57)

Next, we consider a stationary crack located along a semi-infinite slit and loaded by
a combination of modes I and II. We assume K; > 0, which corresponds to crack
opening instead of crack closure, while A’y; can be positive or negative. The critical
stress and the direction of crack extension are to be determined. As a generalisation of
{3.55), we discuss a criterion based on the circumferential tensile stress in the vicinity
of the crack tip. This stress component is calculated from the singular stress field
(3.3)-(3.9) and is given by

cop{r.0) = o,,sin’f — 20, sind cosf + oy, cos® 4
[\-05(6) _ 1
V2rr V2mr

Experimental research has led to the following hypotheses; see e.g. [11, Sec. 14.5] and
[18. Sec. 4-3] and also Erdogan and Sih [23]. Fracture occurs when the maximam

5.1 1 5.1
(KI cos‘;(éﬁ) - 3Ky sin(??) cosz(i(i)> . {3.58)
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of the effective stress-intensity factor Kyy reaches the critical value Ky,. The crack
extends in the direction § = 8, for which Kyg is maximum. The critical stress-intensity
factor and the angle 8, of crack growth are thus determined by

Keol0,) = Kie., dg— =0, R (3.59)

The solution for 6, is given by

(A}j - \’Kff -+ SK?I )

0% = 2 arctan

4

(3.60)

where the superscript S refers to the circumferential stress criterion. Substitution of
this result into the equation (3.59)! yields the condition for crack extension

Koo(tp) = + = Ki.. (3.61)
( KF+8ih)’

K} + 12K} — K1 /K + 8K,

The crack-growth angle 9185) is plotted as a function of the ratio K;/K; in Fig. 3.7
and approaches 2 arctan(g%\/ﬁ) =z —T0.5°, when K vanishes while K;; remains non-
zero. In the case that the fracture process is dominated by mode I, which occurs very
often for brittle materials, the expressions (3.60)-(3.61) can be approximated by the

first two terms of their Taylor expansions for K/ K, — 0, viz.

3 7Kz Kt A
(1 + 5(—5) + o((—Kt’j) ))m - K, (3.62)
K 14 /K \° Ki\°?
(5) _ _o B _<J) (_ﬂ)
05 2 e + 3 X, + O( K, . (3.63)

The second fracture criterion (3.56) is generalised with the use of the J-integrals of
Section 3.3, which are considered as components of the vector J = J; e;. Since the
integrals J; have the dimension of energy per unit length or also the dimension of
force, the vector J can be regarded as the energy flux into the crack tip [18] or as the
crack-extension force [11, 41, 42]. The fracture criterion states that crack extension
will occur when the length of the vector J reaches the critical energy release rate G..
while the crack extends in the direction # = 6, of J; see [18, Ch. 5]. With the use of
(3.48) and (3.53)—(3.54) with ¢ = 0, the fracture criterion can be expressed as
1 h 5 1
(+) = = (K{ +6 K} K} + Kl)' = G, (3.64)

while the crack-growth angle is determined by

Js -2K; K
91()‘0 = arctan (f) = arc‘can(KE{3 +IK§]—;>’ (3.65)
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where the superscript J refers to the J-integral criterion. The angle 8} is also plotted
in Fig. 3.7. When the fracture process is dominated by mode I, a Taylor expansion
of (3.64)-(3.65) for small values of the ratio K;;/K; can be employed. The leading
terins of the expansions are exactly the same as in the approximations (3.62)~(3.63)
pertaining to the circumferential stress criterion. Differences only oceur in the terms
of higher order in K;,;/K].
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Figure 3.7: Crack-growth angles (9;5 ) (—) of circumferential stress criterion
and é};}‘} ) (- - -) of J-integral criterion, as functions of the ratio K/ K;.

Interchanging the stress-intensity factors K; and Ky in (3.64) and in (3.65) does
not alter the results. In addition, it is noted that the absolute value of 9:};]) is at
most 7/4 radians or 45°. This reveals that the expressions (3.64} and (3.65) are
not suitable in the case when the fracture process is dominated by mode II, ie,
when |K7| > K. In these cases it is more appropriate to use the expressions {3.60)
and (3.61) of the circumferential stress criterion. This is particularly relevant to the
beginning of fracture of pre-existing cracks, since these cracks are often subjected
to non-symmetric loads where fracture by mode II is dominant. During continued
fracture and without sudden changes in the externally applied forces, however, smooth
crack surfaces are observed. The crack extends in such a way that a certain degree
of symmetry in loading is preserved with respect to the tangent plane to the crack
surfaces at the crack tip. As a result, fracture occurs mainly in mode I and the stress-
intensity factor Kj; becomes negligible [18, Sec. 4-3], so that the two fracture criteria
are equivalent,

Another difference between the fracture criteria pertains to material characteristics.
Stress-intensity factors are defined as normalising constants of the singular stresses
under the assumption of small-scale vielding. As a result, they only apply to materials
with a relatively small zone of plasticity around the crack tip. This class of materials is
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called brittle or quasi-brittle and comprises materials as glass, ceramics and concrete.
Materials for which the plastic zone surrounding the crack tip is significant to the
fracture process are called ductile. Metals for example belong to this category, because
the yield stress is at a low level and is reached rather quickly, while the ultimate
failure stress is larger by several orders of magnitude. Even glass may behave in a
ductile manner when it is loaded under compression, for instance during indenter
tests. Obviously, the concept of stress-intensity factors does not apply to ductile
material behaviour because of the large amount of plasticity involved. For this type
of materials the fracture criterion based on the energy release rate is more suitable.

3.5 Effects of dynamic crack propagation

In the preceding section we have discussed fracture criteria for stationary cracks. In
this section we shall deal with propagating cracks. The behaviour of the singular
stresses and the corresponding displacements near the crack tip is fixed to a large
extent. The singularity by the inverse square root of the distance to the crack tip is a
characteristic feature of the near-tip stresses, while the variations with the polar angle
are pre-determined. The only remaining “degrees of freedom” are the stress-intensity
factors which are related to the externally applied forces, the boundary conditions,
and the geometry of the elastic body including crack size and crack speed. Generally,
these dependences of the elastodynamic stress-intensity factor can be denoted by
K; = K(0,a,c), where o represents the applied forces, a the crack length, and ¢ = &
the crack speed. The dependence on other geometrical parameters has been omitted
for clarity. When o and a are known, the fracture criterion (3.55) or (3.56) provides
an equation for the crack-growth speed ¢. The dependences of K; and G on ¢ are
discussed below.

The monograph of Freund [28] provides an extensive treatment of various aspects
of dynamic fracture mechanics. It is shown in [28, Ch. 6] that the dynamic stress-
intensity factor K;(o,a, ¢} for a propagating crack is equal to the stress-intensity factor
K1(o,a,0) for the static equilibrium state of a stationary crack of the same size a and
subjected to the same external forces o, multiplied by a universal function of the crack
speed c¢. This important result can be expressed as

Ki(o,a,¢) = ki(c) Ky(o,a,0) (3.66)

where k;(c) is the (dimensionless) universal function of crack speed for mode I with
0 <c¢<cpr and is plotted in Fig. 3.8. This representation holds true for cracks
propagating at constant speed as well as for arbitrary crack-tip motion due to transient
loading conditions [28, Ch. 7].

Similar representations are derived for the stress-intensity factors of modes II and III,
but the universal function of crack spced attains a different form for each of these
modes. Useful approximations to the universal functions for modes I and II are given
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by [28, Sec. 6.4]

\/1 - C/Cd
k(e) = 1ocer (3.68)
\{;’1 — /ey

where 0 < ¢ < cg. The universal function of crack speed for mode 111 is defined for
0 < ¢ < ¢, and is represented by the exact formula [28, Sec. 6.4]

krr(e) = \gfl —cfcs . (3.69)

The universal functions have the common property that they decrease monotonically
from unity to zero for crack speeds increasing from zero to the Rayleigh wave speed
(for mode IIT: the shear-wave speed). This behaviour is illustrated in Fig. 3.8. The
monotonicity is explained by the physical argument that higher stress levels lead to
higher crack-growth speeds. Because of the linearity of the deformation problem, an
increase in ¢ produces a higher equilibrium stress-intensity factor. Since the dynamic
stress-intensity factor equals K., the universal function of crack speed must decrease
for higher stresses and thus for higher crack speeds.
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Figure 3.8: Universal functions kj{c), k() and ksyr(c) as functions of
the dimensionless crack-growth speed ¢/cg for Poisson’s ratio v = 0.25.
A straight dashed line is added for comparison.

Because of the relation (3.48) between the energy release rate and the stress-intensity
factors, we can derive a representation similar to (3.66) for the energy release rate
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G(o,a,c) for a crack of length a, subject to external forces o, and propagating at
speed ¢. Substituting (3.66) into (3.48), we obtain for mode I fracture that

G(o,0,6) = & Ar(e) B(e) K¥(0,0,0) = gi(c) Glo,0,0).  (3.70)
K

Thus, the energy release rate for a propagating crack is equal to its value for the
corresponding equilibrium situation with a stationary crack, multiplied by a universal
function of crack speed. Similar expressions are obtained for the other fracture modes.
The universal functions of crack speed are ¢;(c) = A;{c) k?(c) with index =1, II, III
and are plotted in Fig. 3.9. The coefficients A;{c) are given by (3.49)-(3.51) and the
functions k;{c} by (3.67)-(3.69). The functions g,{¢) are also monotonically decreasing
with increasing crack speed; see Fig. 3.9. Acceptable approximations to the universal
functions for modes I and 1I are

grle) = (L—c/er) /1 —c/ca, (3.71)
gile) = 1-c/er, (3.72)

where 0 < ¢ < ¢g. The universal function for mode T11 is given for 0 < ¢ < ¢, by the
exact formula

1—c¢/cs

= — 3.73
grri(c) 1+ c/c (3.73)
1
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Figure 3.9: Universal functions g;{c), gri{c) and g;r{c} as functions of
the dimensionless crack-growth speed ¢/cg for Poisson’s ratio v = 0.25.
A straight dashed line is added for comparison.

We can now formulate a fracture criterion for dynamic problems with propagating
cracks, which enables us to determine the crack-growth speed. Consider an elastic
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body with a crack propagating at (yet unknown) speed ¢ under mode I conditions.
The equilibrium energy release rate G{o,a,0) is determined by the externally applied
forces and the boundary conditions, and can be calculated for example by means of
the finite-element method. Next, the crack-growth speed can be obtained from the
fracture criterion (3.56) with equality sign and where G is interpreted as the dynamic
energy release rate. With the use of relation (3.70) we find

gf(c} g(a? i, O) = gc B (374)

which is to be considered as an equation for the crack-growth speed c.
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Chapter 4

Fracture in plate bending

In addition to the three traditional modes of fracture considered in Chapter 3, one
can also define three fracture modes for the bending of thin plates; see Fig. 4.1.
The bending modes are indicated by arabic instead of roman numerals to distinguish
them from the previous modes. The normal-bending mode (mode 1) corresponds to
the erack-opening mode of planar deformation and is induced by bending moments
syminetric with respect to the crack flanks. The twisting mode (mode 2) is similar to
mode 1T of in-plane loading and is induced by torsional or twisting moments which are
anti-symmetric with respect to the crack flanks. When the plate is loaded by shear
forces in the direction perpendicular to the plate, bending fracture may occur in the
shearing mode (mode 3). There exists great similarity between the latter bending
mode and the tearing mode (mode 11T},

— T ]

L
Mode 1 Mode 2 Mode 3
normal-bending mode twisting mode shearing mode

Figure 4.1: Three modes of fracture in plate bending.
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In this chapter we present expressions for the singular bending moments in the vicinity
of the crack tip, the corresponding shear forces, the deflection of the plate, and for the
rotations of the middle plane. The analyses have been carried out in both Reissner’s
plate theory and the classical plate bending theory of Kirchhoff. The results for
dynamically propagating cracks are new, whereas the results for stationary cracks have
been derived previously by Hui and Zehnder [38]. The near-tip stress distributions
for the two plate theories are compared with each other and also with the near-tip
stress fields of planar deformation and anti-plane shear.

It is assumed that the bending loads are applied in combination with in-plane tensile
forces, such that crack closure does not oceur. If the crack surfaces do come into
contact, the compressive stresses can be incorporated by adding extra terms to the
stress-intensity factors; see Young and Sun [97!. Because of the principle of super-
position, the problem of plate bending is analysed independently from the problem of
plane stress. Stress-intensity factors for situations of combined tension and bending
are introduced and some results on the energy release rate are derived.

4.1 Bending fracture in Reissner’s plate theory

Consider a flat plate of thickness h consisting of a linearly elastic material, containing
a crack of arbitrary shape, and being subjected to bending moments as described
in Subsection 2.4.1. The analyses of static and dynamic fracture can be carried
out simultaneously. So, the coordinates & and g of (3.15) and also the local polar
coordinates r and # with the origin attached to the moving crack tip are used. The
instantaneous crack-growth speed at time ¢ is denoted by ¢ = e(¢).

For the analysis of the singular behaviour of the bending moments and shear forces,
the mechanical quantities are expanded into series in powers of the distance r to
the crack tip. In this procedure it turns out that a separation into two independent
problems is allowed. Firstly, we obtain a problem of the singular bending moments,
the curvatures and the rotations, which is similar to the problem of planar deformation
{modes T and 11). Secondly, we obtain a problem of the singular shear forces and the
deflection, which is similar to the problem of anti-plane shear (mode I1I).

The series expansions must satisfy the following conditions. Firstly, it follows from the
analysis of the boundary conditions [1, 28, 67] that the series can only contain terms
with powers r#? for integer values of p. Secondly, the displacements {deflection and
rotations) attain finite values at the crack tip. Thirdly, the elastic energy density is an
integrable function of the spatial coordinates. These conditions impose restrictions on
the exponents in the series expansion, such that the bending moments and the shear
forces are of the order O(r*%) for r — 0. Comnsequently, the series expansions of the
mechanical quantities in local polar coordinates r and # are of the form [67]

X0 X

wo= > w®(r 8,t) = > 3P @t (0,1),

p=1 p=1
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It is noted that the deflection w® and the rotations G)EO) of the crack tip (r = 0)
have been omitted, since they are constant and therefore not relevant to the near-tip
solutions. The bending moments Mé%” and the shear forces QE”, which are of the

order O(r~%) for r — 0, are called the singular terms.

These expansions are substituted into the equations (2.38)-(2.42) and the boundary
conditions (2.43)-(2.46). Because of the moving frame of reference, we must transform
the total time derivatives to spatial derivatives according to the following rules. For
any function g = ¢(2,7,) we have
dg dg 8g
o R il 3 s 4.2
5 @ T a o (4.2)
d® o? s o) , 0°
i = 2 =29 929 o, 2209
ot o o D2

de? ot (43)
Substituting the series expansions (4.1) into (4.2)—(4.3), we observe that differentiation
with respect to # or 4 lowers the exponents of r by one, while (partial) differentiation
with respect to time lets the exponents unchanged. Equating the terms with equal ex-
ponents of v results in separate systems of equations for the singular bending moments
and the singular shear forces; see below. Because of (4.2)-(4.3), the dependence on
time f in the two problems of the singular terms can be interpreted as a dependence
on the coordinate #. Therefore, we shall omit the argument ¢ from the leading terms
in the series expansions (4.1).

4.1.1 Problems of singular bending moments and shear forces

For index p = 1, the following problem of the singular bending moments is obtained.
According to (4.3} the total time derivative (L)EU is equal to ¢* 9:;2 plus other terms,
which are neglected since they are of higher order in r. For stationary cracks {¢ = 0)
these derivatives vanish.

) , . 4 (1 1
Problem of singular bending moments: determine rotations ©; >,. curvatures /féj),

and bending moments zMigl) as sufficiently smooth functions of ¥, 4 and t, satis-
fying the equations (with indices 1,j = 2,1)

1 1 1 1
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1'\/1571) - '“Db ( (l — E/} s‘ig:‘ -+ v h;;i) 653') 5 (45\)
i — _ 1 sa0 |
My; = 12 ph”O;7 (4.6}

in the plane domain V occupied by the plote and subject to the conditions
oV = o on Sy, (4.7)
MZ%U n; = ME” on S, , (4.8)

on the boundary OV = Syt 5, with Sy and S, being disjoint.

In addition, the problem of the singular shear forces is deduced, where the time
derivative @1 of the deflection is equated to ¢? w(;; In static fracture situations,
these terms are identically zero.

Problem of singular shear forces: determine deflection wt) and shear forces E /

as sufficiently smooth functions of &, i and t, satisfying the equations (with index

i=2,9)
QEU = D w’(l]\ , (4.9)
g f” = phw'V, {4.10)

in the plane domain V' occupied by the plate and subject to the conditions

w = g on S, , (4.11)

QWn, = g% on S, (4.12)

on the boundary OV = S, U S, with S, and S, being disjoint.

It is clear from the problems defined in this subsection that the singuler bending
moments and the singular shear forces are independent. The connection between the
bending moments, curvatures and rotations on one hand and the shear forces and
deflection on the other hand, as reflected in the relations (2.40) and {2.41), appears
only in the terms of higher order in r, i.e., the terms with indices p > 1.

4.1.2 Singular bending moments

The equations (4.4)-(4.8) for the problem of the singular bending moments show
great similarity with the equations (2.14)-(2.18) for the problem of plane stress. It
is possible to compare the rotations @EU with the in-plane displacements u; and the
singular bending moments MS) with the stress components o;; of modes I and 11
(i,j = z.y). The plate thickness h is incorporated such that corresponding quantities
have the same dimensions. In Table 4.1 we present the correspondence between the
bending and plane-stress quantities. The density p and Poisson’s ratio v for bending
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bending | plane stress | units
o | - ;u ~~~~~~~~
i; ) mijaj m~}
My -;126& Nm/m
Dy 12(??;!2) Nm

Table 4.1: Correspondence between bending and plane-stress quantities.

are equal to their values for plane stress, while the bending rigidity Dy is defined by
{2.31).

As a result of this correspondence, the expressions for the near-tip bending moments
and rotations in mode 1 and 2 bending fracture are derived immediately from the
singular stress and displacement fields for modes T and II as given in the preceding
chapter. For dynamic crack growth at instantaneous speed ¢, the singular bending
morments are obtained from the solution (3.21) for the stress components and the
rotations are obtained from the expression (3.28) for the displacements. In terms of
the local polar coordinates the result is expressed as

2
W, Ky Ky i
M {r8¢) = —=F..(8,¢ FA{B, ¢}, 4.13
Py = L F0.0) + L Fl0,0) (413
K WK r
oW o) = — —— 2L STyl 2 vl ), 14
2 (r767 C) BDb(l . I/ \/ L (6 C) 305(1 — ]/) v ‘)T (9?(;\" (4 )

with the angular functions given by (3.22)-(3.27) and (3.29)-(3.32), respectively. The
constants K and K are the stress-intensity factors for plate bending in modes 1 and
2; see Fig. 4.1. They have the same dimension as K; and Kj; and may depend on
the crack-growth speed. The bending stress-intensity factors are defined by

» . 6+ 2mr .
K, = PLT(I) Tz My, (r,0;¢) , (4.15)
" . 6v2r
Ky = 11}1}& e Mey(r,0;¢). (4.16)

Because of the factor 6/h?, the stress-intensity factors K; and K> are also normalising
constants for the in-plane stresses {2.29) in the upper plane (z = h/2) of the plate. In
the case of stationary cracks (¢ = 0), the near-tip solutions for the bending moments
and the rotations reduce to their static limits, which coincide with the formulae given
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by Hui and Zehnder [38]. It is remarkable that the angular variations of the singular
bending moments in Reissner’s theory coincide with those of the singular stresses for
planar deformation. This was shown in [38] for static fracture, but it has been proved
here that this statement also holds true for elastodynamic crack propagation.

4.1.3 Singular shear forces

Analogously, there exists a similarity between the equations (4.9)-{4.12) for the prob-
lemn of the singular shear forces and the equations (2.21)-(2.24) for the problem of
anti-plane shear. This means that we can compare the deflection w(V of the plate
with the displacement 4, in anti-plane shear and the singular shear forces QEU with
the shear stresses 7, of mode III fracture {i = z,y). This comparison is not trivial
for two reasons.

Firstly, Reissner’s theory of plate bending involves the shear-correction factor k = 5/6,
which appears in the definition (2.32) of the shear stiffness D,. Therefore, we compare
kw® with the displacement u,. Secondly, the shear stresses 7;, of anti-plane shear
are independent of z, while the shear stresses in the cross section of the plate are
quadratic functions of z according to (2.30). Integration of the latter shear stresses
over the plate thickness produces the shear forces Qi{l}. As a result, we may compare
the singular shear forces QED of mode 3 bending fracture with A 7, of fracture in anti-
plane shear. The correspondences between all quantities are summarised in Table 4.2.
The shear stiffness D, is defined by (2.32), while the density p and Poisson’s ratio v
for mode 3 bending fracture are equal to their values for mode III fracture.

bending | anti-plane | units
shear :
kD u, m
§1) hr, N/m
D, kGh N/m

Table 4.2: Correspondence between bending and anti-plane shear quantities.

Despite the correspondences, there exists a dissimilarity between the two problems
due to the shear-correction factor & = 5/6. This becomes apparent for situations of
dynamie fracture. Elimination of the shear stresses 7;, from (2.21)-(2.22) produces a
wave equation for the displacement wu, and elimination of the shear forces QEU from
(4.9)—(4.10) produces a wave equation for the deflection w*) of the plate. We find
respectively

Li, = o, (4.17)

w’m——{)é o = 0 {4.18)
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Clearly, two different characteristic wave speeds occur: the usual shear-wave speed
¢, as in (2.20) or (2.34), and a modified velocity ¢, = ¢,vk. Consequently, the
solutions are the same only for & = 1 and different otherwise. Since the angular
functions F/(6,¢) in (3.43)-(3.44) depend on the crack-growth speed through the
ratio ¢/¢,, we must replace ¢, with ¢, for mode 3 bending and use the ratio ¢/¢y
instead. Alternatively, the same result is obtained when the crack-growth speed ¢ is
replaced with the modified crack-growth speed ¢ = ¢/ vk, which is defined such that
cfey = é/c.. The solution for the singular shear forces in the case of dynamic fracture
is now derived from (3.42) as

Wy Iy = )
Q' (r, 8¢} = Wor= Fl'9,¢), (4.19)
with the angular functions as in (3.43) (3.44), where we must use the parameters 7,
&, and 6, as defined by (3.17) and (3.19) with the crack-growth speed ¢ replaced by
the modihed crack-growth speed é.

The parameier K; is the stress-intensity factor, which is chosen such that it is the
normalising constant for the maxirmum shear stress oy, in the middle plane (z = 0)
of the plate; see (2.30) and also Hul and Zehnder [38] and Young and Sun [98]. The
stress-intensity factor K3 has the same dimension as Ky, may still depend on the
crack-growth speed ¢, and is defined by

3v2
K; = hn% vV 2wy crw(?x[};cﬂ y = lin’(l} """" T;W Qy(r,0;0) . (4.20)
f 2= ey L

The deflection of the plate is derived from Table 4.2 and the solution (3.45) for mode
IIT fracture as o
\ 4Ks [2r 1 -

w(l’(r,(?;c) = 54;:2 ,’i; ¢ sin %(95, (4.21)
where the factor 4/5 stemns from the quotient of the factor 2/3 in (4.19) and the
shear-correction factor 5/6. Thus, we see that corresponding angular variations are
obtained for fracture in modes 3 and IIL. In the limit of zero crack growth, i.e. for
¢ — 0, the dynamic results above reduce to their static equivalents

(.. gy — 2h K3 111 0 4,99
Q) — S ), 4.22)
- 4K [2r 1
(U = 302 e s
wt {r, 8) e v - sin 2(9, (4.23)

with the angular functions f{7/(#) given by (3.39)-(3.40). For later use we also give

the higher-order term w'® of the expansion (4.1) of the deflection, which term depends
on Poisson’s ratio and the stress-intensity factors K; and K,. The linear term w'?
relates to rigid-body motions and is of less importance. For a stationary crack we
obtain from [38] that

\ b2 372 1 3 1
w(r 6) = ! {KI (7(7 4 wv}cos =0 — (1 —v)cos —9)
’ 6D,(1 — )/ 2% 3 2 2

d 1 - AN § - ; . M 1
— K5 (g( ;31/)81112(9 {1 —wv)sin 249)}. (4.24)
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4.1.4 Energy release rate

The energy release rate due to bending moments and shear forces is calculated from
the expression (3.47). The expressions (2.29) (2.30) for the stress components in
the cross section of the plate are substituted, while the in-plane displacements are
given by (2.35) and the deflection is assumed to be independent of z. Carrying out
the integration with respect to z in (3.47) and suppressing the dependence on the
crack-growth speed ¢, we obtain the following expression for the energy release rate:

Aa
g = / Qy(r,0) [w(Aa —r,7) — w(Aa —r,—m)]dr

I
(llrEU{ 2 Aa
1 “Aa
2Aa o

M,y (r,0) [0:(Aa —7r.7) — ©;(Aa — 1, —7)] dr} . (4.25)

With the use of the near-tip solutions of the preceding subsections the encrgy release
rate for dynamic bending fracture in Reissner’s theory is determined. Tt is found that

G = L (Afe) K3+ A(e) K3) +

5 (&) K2, (4.26)

G

where the velocity-dependent coefficients are given by (3.49)—(3.51). For stationary
cracks these coefficients are equal to wnity and the corresponding energy release rate
coincides with results of Hui and Zehnder [38] and Young and Sun [98, 99].

The integrals J, (k = 1,2) can also be expressed in terms of the bending moments
and shear forces. The contour C' in (3.52) is again taken as a circle inside the region of
K-dominance with the outward normal having components n; with n, = 0. In view of
the behaviour (2.29)—(2.30) and (2.35) of the stresses and displacements in the cross
section of the plate, the elastic and kinetic energy densities transform into

, 1 6 2° 3Q: Qi 2z
W = 502';‘52';'4-%61'2 = —71[ Kij + 1h D, 1= (h) (427

T

o . 1 A
P (22 0, 0, + u? ) =3 pc? (f 0,:0;:+ w?@ ) ; (4.28)
with 7, j = x,y, while the stress-work terin becomes

12 22 30, n; wy, 222
Tig by Wik = — 735~ Mijn;©;x + TI\ (1 - (7) : (4.29)

Substitution into (3.52) and subsequent integration over the thickuess of the plate
vields the expression for the J-integrals in plate bending. As a generalisation of the
static formulae [38] we find (with indices i, j,k = 2,y or 1, 2)

C—0

_|_/ {(QlQZ + phw )nk,—Qiniwk}ds}. (4.30)

. 1 h].‘i . 3
Jk, = lim { / |: (—— Mljj Rij + 02_4 @L ®1> ny + I\/f g Ty @i,k] ds
JC
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Since we apply the limit for the contour € shrinking onto the crack tip, we may replace
all guantities in the integrand of {4.30) with the corresponding leading terms of the
series expansions (4.1}, The first integral in {4.30) corresponds to the bending modes
1 and 2 and is similar to the expression {3.52) for modes I and II; see also Table 4.1.
This first integral differs by only a wultiplieative factor 1/3 from the results (3.48)
and {3.54). The second integral in {4.30) corresponds to the shear mode 3 and is
similar to the expression (3.52) for mode I see Table 4.2, This second integral
differs by a multiplicative factor 8/15 from the results (3.48) and (3.54), which is due
to the different scaling of the shear stresses and to the shear-correction factor. In
addition, we must replace the crack-growth speed ¢ with the modified crack-growth
speed ¢ = ¢ \1;"6#/—5 in the case of mode 3 fracture. Combining the two integrals in
(4.30}, we obtain the relations between the J-integrals and the bending stress-intensity
factors.

We find that the integral J; is equal to the energy release rate (4.26), viz. J; = G.
This integral is independent of the shape of the contour C' and is therefore called
path-independent. For the integral J, we find that

Qh [N I - T
i 4[1,/‘\(‘} }XI K. ((151}

Cni
e ¥ s

Jy = —

where the coefficient Ayy(¢) is a function of the crack-growth speed, which depends
on the shape of the contour C: see Section 3.3 and Appendix A. Ewaluation of J,
for shrinking circular and rectangular contours produces different expressions for the
coefficient Ajy(c), which are given in formulae {A.3) and {A.4). When the contour
' is not symmetric with respect to the z-axis, the expression (4.31) may contain
additional terms with K7, K3 and K%,

4.2 Bending fracture in classical plate theory

Consider a linearly elastic. thin flat plate of thickness A containing an arbitrary crack
and being loaded by bending moments as described in Subsection 2.4.2. This con-
figuration resembles the one of the preceding section with the difference that the
rotations must now satisfy the relations (2.47). This implies that the shear stiffness
D, az defined in (2.32) and the shear-wave velocity ¢, of (2.34) attain infinite values.
In addition, the boundary conditions for the torsional moment and the perpendicular
shear force must be combined.

4.2.1 Static solution

Firstly, the solution for stationary cracks (¢ = 0} is investigated. Cartesian coordinates
z and y and polar coordinates r and # with the origin at the crack tip are introduced;
see Fig. 3.2, The plate is subjected to remote loading by bending and torsional
moments in combination with perpendicular shear forces, while the crack surfaces are
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not loaded and remain stress-free. The deformation of the plate is governed given
by the equations (2.49)-(2.51) with zero accelerations, i.e., with $5ph®w,; = 0 and
ph = 0. Elimination of the bending moments M;; and the shear forces Q; from
these equations produces the biharmonic equation

AAw = 0, (4.32)

where Aw = w; is the Laplace operator. Since the crack flanks are stress-free,
we impose homogeneous boundary conditions (2.53) and (2.55). Expressing these
conditions in terms of the deflection w leads to the relations

Wy =+ VWey = 07 (433)
Wyyy + (2= V) wWaey = 0, (4.34)

valid on the crack flanks where z < 0, y = +0orr >0, 6 = 7.

Since our interest lies in the near-tip stress and displacement fields, we employ series
expansions in powers of the distance r to the crack tip similar to the expansions (4.1).
The series expansions for classical plate theory must satisfy the same conditions as
those for Reissner’s theory; see the beginning of Section 4.1. These conditions imply
that the bending moments are of the order O(r~/2) for 7 — 0, and that the term w("
of the series representation of the deflection vanishes. The singular bending moments
Ml-(jl> are normalised by stress-intensity factors, which are denoted by small letters to
distinguish them from those for Reissner’s theory. The stress-intensity factor k; is
the normalising constant for the symmetric bending moment M,, and the factor k,
for the generalised torque M, which is defined in (2.65) and (2.68), in the direction

¢ = 0 ahead of the crack. In agreement with Erdogan, Tuncel and Paris [24], Hui and
Zehnder [38], and Sih, Paris and Erdogan [84], we define

6v2mr

ki = 11_15% h2 Myy(T7 0) > (435)
. 62w

It is noted that in [98] the stress-intensity factor k, was defined in relation to My,
and consequently differs by a factor (14 v)/(3 + v}); see below.

Now, we calculate the solution to the biharmonic equation (4.32) subject to the
boundary conditions (4.33)-(4.34). Since the term w) of the series expansion of
the deflection vanishes and the term w® relates to rigid-body motions, we focus on
the term w(® which is of interest to the near-tip fields. The result is taken from [38]:

B2 3/2
w®(r 0) = " Ky v cos §€ — cos 16
6D4(3 + v)V/271 3(1-v) 2 2

54+3vr . 3 1
— /{;-2 (m s1n 59 — 81n 59) } . (437)
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The corresponding terms @E” = w;(f)

obtained by differentiation (see (2.47})

in the series expansions of the rotations are

0 h? 7 1, /1+v 1
oW g = — {L, 0( 2( 6>
z (Ty ) 3D5<3+V) V?’]’ 1CO§2 1= 3
1 , 1
Y 8)
+kzs1n26(1_l+com(2 )} (4.38)
1 1
(1} g — { ( VVVVVVV . 3 0)
e(r,0) sDbs-w) \/ krsing6 (= cos’(3

1 1
“+ ky cos %9 (—1 i + Sin2(§6’) )} . (4.39)

The corresponding singular bending moments ﬂa"g} are obtained by differentiation of
the rotations or from second-order derivatives of the deflection; see (2.49). Contrary
to the results (4.13) by Reissner’s theory, the bending moments for classical plate
theory depend on Poisson’s ratio v (see also [24, 38, 84]),

MP(r,0) = ﬁfkf_ glo,v) + é\j,f_f o,y (4.40)
where the angular variations 9’@;‘(5}) v) for the normal-bending mode are equal to
a8, = IL: ; :13 cos %6 ( 1~ sin 19 sin éé’) , (4.41)
g 0,v) = z; ;) cos %9 (34-—? + sin - 9 sin ié) (4.42)
giy(é}, vy o= lL: _T_ ; sin %f} (]—i—v -+ cos %8 cos g@) ; (4.43)
while the angular variations g” (8, v) for the twisting mode are
glle,v)y = v ;?1) sin %6 (g(%j%) - COS %9 cos g@) , (4.44)
gyl((y‘ vy = z ; i sin %6 cos %9 cos g@ , (4.45)
gié(t’?,zx) = Z;é cos %0 (Zi 1 — gin %@ sin %9) (4.46)

The shear forces @; are derived by differentiation of the bending moments M;; accord-
ing to the equation (2.50) with 5ph? @, = 0. These shear forces have an essential
singularity of order O(r~%?) for » — 0, which is a typical effect of the classical plate
theory [38]. As a result, we must adapt the series representation (4.1) for the shear
forces and let the summation index start at p = —1. The leading terms Qg_l) are
found to he

- — 7 h? 3 3
(—1)y., — i D A7
QL (r8) = 30340 T (kl cos 29 ko sin 26) , (4.47)
2 .
(-1) _ —mh ( in oo ks e ‘.‘5*) 4.48)
Qy H(r,0) 53+ 0) @2 ky sin 26’ + ks cos 2(9 . (4.48)
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It is now possible to caleulate the leading terms of the generalised torques which are
. . 9 pe . ‘ -1

given by the equations (2.67) and (2.68). We integrate the shear forces Qf ) and

disregard the integration constant. Combining the results with the expression for
170 we find

M), we find

M (1 gy = 6—}%7;?5—}—;{&1 sin—é—é‘ (ijy +cosl€ cosgﬁ\)
+ kg cos %6’ (1 — gin = f9 sin ; )} . (4.49)
1*‘1)(7 8 = p h;_} . jj:ri {k1 sin ;{9 COS — 6‘ o —20
4+ ky oS %6 (1%? - sm%@ sm%ﬁ)} . (4.50)

From the latter representation, the scaling property of the bending stress-intensity

factor ky becomes clear; see (4.36). Namely, we have .’\I*”’ 7.0} = 152}\2/6\/7: in
the direction ahead of the crack.

4.2.2 Dynamic solution

The dynamic problem (2.49)-(2.51) of plate bending in the classical theory can be
reduced to one equation for the deflection only. Elimination of the bending moments
and the shear forces results in a partial differential equation of fourth order

phd ph . o
AW 4+ = o= O, 4.51
12D, w D, w X {4.51)

where Aw = w ; is the Laplace operator and 1w is the second derivative with respect
to time. Furthermore, we have the property that 12 Dy/ph® = ¢3 by (2.33).

Adw -

We use the Cartesian coordinates (I, 4) and the polar coordinates (r,8) with the
origin attached to the crack tip, which moves at speed ¢ see {3.15). The solution
procedure is identical to that for the static probleni. The deflection is represented by
a series expansion as in (4.1) with the term w!) being equal to zero and the term
w? corresponding to rigid-body motions. The series expansion for the shear forces
starts with the leading term Qf;'” . The bending moments and the rotations have
representations similar to those in (4.1) with leading terms ﬁig) and (—)El’:, respectively.
Transformation of (4.51) to the moving frame of reference with the use of (4.3) yields
the following differential cquation for the term w'®, viz.

Anw® — S aw® < o, (4.52)
A

or equivalently, expressed in the distorted polar coordinates (ry, 6,) defined in (3.16)

and (3.18),
9 19 1 #N[(& 19 1 ,
D e B e e B = . 4.53]

(87*-' ror 1l ()6?3> (87'§ rd@?“d+ éf)()%) v 0 (4:53)
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It is customary [59, 90] to omit the middle term in (4.51), because it is of order
O(h?/L?*) in comparison with the third term, with h being the plate thickness and L
some (large) in-plane length measnre. In the present situation, however, the in-plane
length measure is small. because we focus on the crack-tip region and ou the dynamic
crack-growth effects. Omission of the middle term in (4.51) would imply that the term
w® of the series expansion of the deflection satisfies the biharmonic equation, because
the second term in (4.52) would be absent. Consequently, the near-tip dynamic solu-
tion would be equal to the near-tip static solution and a study of the dynamic effects
is not possible. Moreover, Mindlin [58] has shown that the equation (4.51) can be
inferred from higher-order plate theory by neglecting the transverse shear deformation
and retaining the rotatory inertia terms. For these reasons, we ghall retain the middle
term in {4.51). Pursuing this dypamic fracture problem in classical plate theory is
especially useful, because it enables us to investigate the validity of this theory in the
neighbourhood of cracks. The limited validity near boundaries is a well-known fcature
of the classical plate theory 90] and is due to the combined boundary conditions for
the torsional moment and the perpendicular shear force.

The term w® of the series expansion of the deflection is of order O(r%/?) and gives
rise to singular bending moments ALSD of order O(r~%?) and to shear forces Q\ ™"
having an essential singularity of order O(r~3/2) at the crack tip. These cross-sectional
quantities are related to the deflection by the equations (2.49)-(2.51). For situations
of dynamic fracture, the relations between the leading terms of the rebpective series
expansions can be written as {(with i, 7,k = 2. y)

MY = =D, (1 =v)u) +vui &), (4.54)
o . Dy o
Q; L - M:; + ;; Le,i:;? = —D, (aé w‘% + ww) )1 , {(4.55)

where ay is defined by (3.18). The equation (2.51) reduces to Q ~Y = 0. This is in
perfect agreement with the differential equation {‘4‘02/.

The boundary conditions for the dynamic fracture problem differ from (4.33)-{4. ‘34)
for the static fracture problem. From the relations (2.53), (2.55) and ({4.54)-(4.55)
the boundary values of the normal bending moment and the generalised shear force
are derived. On the crack flanks where r > 0 and 6 = +n, we have

| {: (3 (4 56)
?L{;é’ = D ('u;‘;; vy ) ) = 0, (4.56)
Q- + Uﬁik = —D, ( e (L—v+aw :w) = 0. (4.57)

The solution to the differential equation {4.53) subject to the dynamic boundary
conditions (4.56)-(4.57) is derived in a straightforward manner. The term w'® of
the series expansion of the deflection depends on the local polar coordinates, the
crack-growth speed ¢, and Poisson’s ratio v. We define the elastodvuamic bending
stress-intensity factors ki and ky for classical plate theory in the samne manuner as in
{4.35)-(4.36). These parameters may depend on the crack-growth speed. The term
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w® is now given by

2 (9,7\3/2
&1(2)( 9 C) & ( ;)

ISD{,S’\F

f 3 3
{ (—i\ozi - zx)Afj/Z cos 59d +(1 ey cos 9)

+ ko ( (1= v}y, "sin ;9(1 + (o — v) sin 59) } ,  {4.58)
where 7y, is defined by (3.16) and the function S
S{e,v) =

S{e¢,v) in the denominator by
(1=1)ag— (g —v)* =

(1— ay) (adil +ag)? ~ (og + I/}j (4.59)
The corresponding terms O; == w(f )
obtained by differentiation {see (2.47))

in the series expausions of the rotations are

: h? I ) o1 ) \ 1
o) = 5D S \/-Q—W{M ( (af — v)7E co s—~§€g+(l,—1/)adcosha9>
1 2 1 ,
+ ky <—(1 — Vi sin - 9d+{ ) sm2€>} (4.60)
T .
oty I SR IS 2
% 30,5 V2x {;" (md

1
)Gd”}(g sin - 9d — (1 —v)agsin 9)

. 2 1 . . 1 \
-~ ky (—(l = UgYy COS §9d + (a3 — v)cos 56’) } . {46l

iy BI€ al
according to (4.54). The dependence on the crack-growth speed ¢ and Poisson’s ratio

5

The corresponding singular bending moments M ()

are obtained by differentiation
v 18 explicitly incorporated in the arguments of the angular variations. We find

N h2k
_M,gl"('r, f;c) = !

A%k,
,,,,, — GL(6;
6 N/Q’m“ (Be.v) +

GHig; e v 4.62
6 m ij \W J ( )
with the angular variations G (0 ¢,v) for the normal-bending mode given by

Gl = ¢ (a-vatiai-

1 1 ,
¥i%y, ?cos §6d — (1 —v)%ay cos 9> (4.63)
1 oL 1 , .
Géy == 5’ ( (0 —v)? v, ? cos 5603 + (1 — 1)y cos 6) {4.64)
: . -1 1 ) .
Giy ((1 vi{ag — vicgy, ° sin §€d — {1 —v)°ay sin §§‘> , (4.65)
while the angular variations G” (6; ¢, v} for the twisting mode are
1 7. 1 \
G B ((1 —v)(vai — 1), % sin —éd + (1 - v)(a3 —v) sin 59) . (4.66)
7 (1-v)(aj—v) 5 y P
Gy, = - — ( 7a ° Sin 5% — sin 59) : (4.67)
Gfly 5 ((1 —v)ay ’y;% cos %{%d — (1= v){a; — v) cos ()) (4.68)
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As in the case of a stationary crack, the shear forces @; for a propagating crack have
. . . R YoT . -1

an essential singularity of order O(r=%?) for » — 0. The leading terms Q,E ) of the

series expansion are derived from (4.55). We obtain

2 2 .
(~1) _ ((l’a; - 1} ’JTh _ o ‘é . 2 ) § .
Q, " = CS @ (1 —vjogky cos 29 {ay —~v) ko sin 20 , (4.69)
» (a? — 1) wh? 3 4 ‘ 3
—~1y _ %4 LR 2 5 4 7
QLY = S @) ((1 — Vg Ky sin -{29 + (aj —v) ke cos 59) . (4.70)

Next, the generalised torques (2.67) and (2.68) are determined for dynamic crack
growth. The shear forces QEMU are integrated and combined with the expression for

M;;}. It is found that the leading terms of the series expansions are given by

; h? . . S 1 1
Ag*(l) , , 2 ~ ATY e 2 e — Y &G
;L{I'g' ) = 6 Gy {kl (1 lf)ad ((ad - f/) Yd 2 gin 2()4 b (Oﬁd -V 2) S 29)

h?
6.5/ 2mr
+ ko ((] ~ z/)'z«i)fd’y;% cos %ﬁd — (o —v)* cos %@)} , (4.72)

¢ : ~1 1 13
A/I;‘:}J = { k(1 —v)(a? — v)ag (ﬂgd *gin 59‘1 — sin 59)

In analogy with the static problem, we observe the scaling properties of the elasto-
dynamic bending stress-intensity factors. Namely, we have M;;;} = k% k, /64277 and
MY = B? ky /64/277 in the direction @ = 0 ahead of the crack, in agreement with
the definitions (4.35)-(4.36). Finally, we remark that the dynamic solutions reduce

to the static solutions of Subsection 4.2.1 in the limit for zero erack growth {¢ — 0.

4.2.3 Energy release rate

The energy release rate G in the classical plate theory is calculated from an adap-
ted version of (4.25), because the first integral in that formula diverges due to the
essential singularity of the perpendicular shear forces. The term with the product
(), w is integrated by parts and the integration constant is neglected. In the resulting
expression we recognise the generalised torque A, defined in (2.68), such that we
finally obtain

G = lim {—

Aa
Jim / My, (r,0:¢) [wy(Dda —r,m¢) —wy,(Da —r, —m;¢)] dr

2A7a o

Aa
e -/0 My, (r,0;c) [wa{da—r,mc) —wy(Aa—r,—7;c)] d’r} (4.73)

in analogy with Young and Sun [98, 99]. With the use of the near-tip solutions of
the preceding subsections we derive that the energy release rate for dynamic bending
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fracture in the classical theory is equal to

h 14+v

9 = @'3%—1/

(ar(e) I + az(c) B3 ) | (4.74)
where the coefficients a;(¢) and az(c) depend on the crack-growth speed ¢ by

(1 -3+ v)(1 —a?)ay

mie) = ) | (1.75)
(1 =v)B+r —a?)
ax(c) = 55 . (4.76)

The parameters oy and S = S{c,v) are defined in (3.18) and (4.59), respectively.
A third coeflicient aj3(c) does not exist due to the coupling between the torsion and
perpendicular shear effects. For stationary cracks (¢ = 0) the coefficients are cqual to
unity and the expression (4.74) becomes equal to the results of [38, 98, 99].

The J-integrals in the classical theory are derived from the expression (4.30} in
Reissner’s theory. The shear stiffness D, must be taken equal to infinity and the
relations (2.47) must be substituted for the rotations. In the next step, the term
(Qin;wy is integrated by parts and the expression (2.68) for the generalised torque
My, 1s used. This procedure leads to (with i,7,k=z,yor 1, 2)

' 1 h? 1 .
‘]k = lm / [(—M,;jw,ij + pi’u.}’iﬂ.)_’i —+ 5phw2> ng + Aii]-njw:ik — Qm,kaJ ds

C—0.J¢ 2 24
= lim | gy 2 i Lphii? ) g 4 M+ M0, s, (477)
- CIE%J o 9 AW 55 24 W,W 2P w g MpnW nk VL, W sk | AS. .

Since the limit for the contour C' shrinking onto the crack tip is applied, all quantities
in the integrand of (4.77) may be replaced with the corresponding leading terms of
the series expansions. It is then observed that the contribution of the term %phw2
vanishes.

Evaluation of (4.77) yields expressions for J; and J, in terms of the stress-intensity
factors. Again, we find that the integral J; is equal to the energy release rate G and
is independent of the shape of the contour C'. The integral J, is given by

2 — 2

Iy = —g—;%?/)l as(c) ey ko | (4.78)
where the coeflicient a4(c) depends on the crack-growth speed ¢ and on the shape of the
coutour C'. This coefficient has been calculated for circular and rectangular shrinking
contours and the results are given in (A.5) and (A.6) of Appendix A.3, respectively.
In the limit of zero crack propagation, i.e., for ¢ — 0, the coefficient a4(c) tends to
unity. When the contour C is not symmetric with respect to the z-axis, additional
terms with &7 and k2 may be present in the expression (4.78).
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4.3 Comparison of plate bending theories

The differences between the plate theories of Kirchhoff and of Reissner concern the
shear deformation in the transverse direction. In Kirchhoff’s classical plate theory
it is assumed that perpendicular line elements remain perpendicular to the middle
plane during bending deformation, while in Reissuer’s theory such line elements may
rotate and a finite shear stiffness Dy is introduced. An hnmediate consequence of
these assumptions is that the deflection and the rotations are independent variables
in Reissuer’s theory, whereas the connection {2.47) exists in the classical theory. Both
plate theories have been applied to bending fracture of plates containing a crack.
This section discusses the differences between the two plate theories, regarding the
solutions in the vicinity of the crack tip for the bending modes 1 and 2 in both cases
of dynamic fracture and of {quasi-)static fracture. (A deformation problem which is
not static in the strict seuse, for example due to time-dependent external forces, is
called quasi-static when the dynamic effects such as accelerations can be neglected.)
The solutions for the shear mode 3 and the related tearing mode 111 are discussed
in the next section, togethier with the combined shear and torsion effects in classical
plate theory.

4.3.1 Static near-tip solutions

Because of the relative simplicity of the near-tip fields. the solutions for stationary
cracks (¢ = 0} are considered first. We start with a comparison of the singular bend-
ing nioments ﬁié-l'} which are given by (4.13) with angular variations (3.4)+3.9) for
Reissner’s theory and by (4.40) with angular variations (4.41)- (4.46) for the classical
plate theory. It is remarkable that the angular variations gff{ #,v) and gg {6,v) in
the classical theory are dependent on Poisson’s ratio v, while the functions f;; {(#) and
f,f]f' (#) for Reissuner’s theory are not. An important observation is that these functions
become equal in the limit for v — oo, That is, for 4,7 = , ¥,

oF ¢ . o Y o
L0 = lim g,(0,v), (4.79)
) = Tim gll0,v). (4.80)

In addition, the generalised torques M’;g” and M;EU attain the same limit as the
torsional moment M) in classical plate theory; see (4.43). (4.46) and (4.49)~{4.50}.

This is a strange phenomenon because usually 0 < v < 0.5 in practical applications.
Therefore, this limit has no clear physical interpretation and must be regarded as
a formal mathematical substitution. A possible explanation can be as follows. In
classical plate theory the shear stiffness D, has an infinite value, while in Reissner’s
theory it is related to the bending rigidity Dy, Poisson’s ratio v, and the plate thickness
h. Using (2.31)—(2.32) with & == 5/6 and the relation £ = 2G(1 + v), we have

D, h?

Dy, = =", 4.81)
T s —w) (481
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The results of the classical theory can only resemble those of Reissner’s theory, when
the infinite shear stiffness Dy is “compensated” in some way. Since the bending rigidity
DJy and the plate thickness h are finite, there is the alternative of putting » = o in
order that the equation (4.81) is “satisfied”. Although this reasoning is somewhat
vague, no other explanation seems suitable.

Next, the perpendicular shear forces (J; are examined. It is noted that they are of
different orders: @; = O(r~/?) in Reissner’s theory by (4.22) and @; = O(r~%?) in
the classical theory by (4.47)—(4.48) forming an essential singularity. This results from
the fact that the number of boundary conditions in classical plate theory is restricted
to two, while in Reissner’s theory it is still possible to prescribe three independent
boundary conditions, as usual in mechanics problems. Consequently, a true compar-
ison of the shear forces is not possible. In analogy with the singular bending moments,
we put ¥ = oo in the solution for the shear forces in classical plate theory. Since a
factor 3+ v appears in the denominator of the expressions {4.47)-(4.48), it is observed

the essential singularities are eliminated.

Great similarity is observed between the terms w®® of the deflection of the plate for
the two theories; see (4.24) and (4.37). The dependences on the polar angle 6 coincide
and the terms only differ by a multiplicative factor (1 + v)/(3+ v). The rotations in
Reissner’s theory are given by (4.14) with angular variations (3.11)—(3.14), while those
in the classical theory are given by (4.38)-(4.39). Although several similarities exist,
the angular variations are not identical. Application of the limit v — oo, however,
vields equal results for the functions {1 — v/} @E” in both plate theories.

We also compare the energy release rates and the J-integrals for crack-growth speed
¢ = 0. We confine ourselves to fracture modes 1 and 2. While the bending moments
in the classical theory show great dependence on Poisson’s ratio, the influence of v
on the energy release rate G and the integrals J, is rather limited. The results (4.26)
and (4.74) for G = Jy in the two plate theories differ by a factor (1 +v)/(3+ v) and
the results (4.31) and (4.78) for J, by a factor —(1 — 1*)/(3+ v)?. These factors tend
to unity in the limit for v — oo,

Finally, we seek a comparison between the bending stress-intensity factors k; and &, of
the classical plate theory on the one hand and the bending stress-intensity factors K,
and Ky of Reissner’s theory on the other hand. Of course, the two plate theories are
different and a true comparison is not possible. Nevertheless, it is useful to seek such a
comparison, because that would enable us to derive the stress-intensity factors of the
more complicated Reissner’s theory when k; and ko are known from an analysis in the
classical theory. The comparison between the stress-intensity factors can be derived
on the basis of the similarities between the respective bending moments, deflections,
or energy release rates. These three options are elaborated below.

1. The first possibility is to impose that (the singular terms of ) the normal bending
moments M, for both theories are equal and that the torsional moment M., of
Reissner’s theory and the generalised torque M, of the classical plate theory are
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equal, in the direction # = 0 ahead of the crack. This is a reasonable assumption,
since the singular bending moments were normalised in the same manner; see
definitions (4.15)-(4.16) and (4.35)-(4.36). As a consequence of this imposition
we find that

Mo = 1. (4.82
K K (4.82)
2. The second possibility is to impose that the terms w® of order O(r3/2) of the
deflection for the classical theory and for Reissner’s theory coincide. This is also
a reasonable assumption, because the terms w!® have equal dependence on the
polar angle 8, as discussed above. This imposition leads us to
IT‘C] kz 3+v

LI R A 4.
K, Ky 1+4v (4.8

3. The third possibility is to impose that the energy release rates ¢ for the two
plate theories are equal. This assumption is based on the physical consideration
that the energy dissipation during crack growth must be the same in the two
different approaches. From this imposition we draw the same conclusion as
Young and Sun [99], namely

[

ki ke _ (3—%-1/‘) (4.84)

K K 1+v
Since the energy release rate is an important physical quantity for the analysis of
fracture processes, the third relation (4.84) between the stress-intensity factors of the
two plate bending theories seems most acceptable. In addition, this relation is sort of
“average” between the relations (4.82) and (4.83).

4.3.2 Dynamic near-tip solutions

Let us again start with an examination of the singular bending moments. The results
of Reissner’s theory are given by (4.13) with angular variations (8.22)~(3.27). These
angular functions consist of two separate parts: one corresponding to dilatational
waves with speed c; and expressed in terms of the distorted polar angle 6, and
the other corresponding to shear waves with speed ¢, and expressed in terms of the
distorted polar angle #,. The results of classical plate theory are given by (4.62)

depend on the dilatational-wave parameters ¢y and 64 and on the undistorted polar
angle #, but not on the shear-wave parameters ¢, and ;. This effect is caused by the
differential equation (4.52), which is a combination of a (dilatational) wave equation
and a Laplace equation. The fact that there is no contribution of shear waves is due
to the infinite shear stiffness 1), in the classical plate theory., Other consequences of
D; = oo are that the shear-wave speed ¢, also attains an infinite value according to
(2.34), whereupon the parameters o, and 7, become equal to unity and the polar
angles 6, and 8 coincide according to (3.17) and {3.19). Similar to the static solution,
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the dynamic near-tip bending moments in the classical theory depend on Poisson’s
ratio v.

As we have seeu for stationary cracks, taking the limit for v — oo i the solution by
classical plate theory produces results that match the solution by Reissner’s theory; sce
(4.793-(4.80). On the other hand, Reissner’s theory reserables the elassical Kirchhoff
theory when the shear stiffness [, is assigned an infinite value. This implies that
cs — 00, oy =1, v, = 1, and #, = 8. Applying these substitutions, we observe that
the angular variations (3.22)-(3.27) and (4.63)~(4.68) have the properties

Cli‘y}( Fé(ﬂc’) = lim C—‘f(ﬁ;(i, vy, {4.85)
Jim Fil(8.c) = lim Gl(6;c,0), (4.86)

with indices .7 = =z, 2 Hence, the singular bending moments become squal when
Ky = ki and K5 = ks is assumed.

The shear forces Q,:f*l"‘ in the classical plate theory. as given bv (4 69)-(4.70), have an
essential singularity of order O(r=3/2), while the shear forces Q in Reissner’s theory,
as given by (4.19). are of order O(r~1/?). When we let ¥ — oo in the former results,
the essential singularity vanishes because the function S{c,») as defined in {4.59) in
the denominator is approximated by (g — 1) v%, while the numerators are only linear
in . As a conscquence, the generalised torques fla{jﬁl"' and [\f;é” become equal to the
torsional moment M) in the classical theory after the same formal limit transitions;
see {(4.71)-(4.72).

A comparison of the leading terms (4.21) and (4.58) of the deflections is not possible,
because these terms are of different orders O(r'/?) and O(r¥?). On the other hand,
the rotations (4.14) of Reissner's theory can very well be compared with the rotations
{4.60) (4.61) of classical plate theory. When the same limits as for the bending
moments are applied, i.e. ¥ - oo in the Kirchhoff results and ¢, — o0 in the Reissner
results, it is concluded that the products {1 -1} ©; show perfect corvespondence. This
conclusion can also be drawn for the energy release rates (4.26) and {4.74), when only
the contributions of modes 1 and 2 are considered.

4.4 Comparison with anti-plane shear

In this section, we discuss bending fracture in the shear mode (mode 3) and restrict
ourselves to stationary cracks (¢ = 0). The shear mode arises in the loading of plates
by perpendicular shear forces and is characterised by the stress-intensity factor (s
in Reissner’s theory. Since the torsional moments and the perpendicular shear forces
are combined in the classical plate theory, their effects are jointly represented by the
stress-intensity factor k,. Therefore, it is likely that a connection between Ky and K
on the one hand and &, on the other hand will exist. This connection is derived from
the energy release rates (4.26) and {4.74) with ¢ = 0. Regarding the normal-bending
mode (mode 1}, we obtain (4.84} for the stress-intensity factors &y of the classical
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theory and K of Reissner’s theory. Regarding the combination of modes 2 and 3, we
obtain, as a supplement to the relation (4.84) for the stress-intensity factors ky and
1(2, that
1+w
3+v

which agrees with the conclusions drawn by Hul and Zehnder [38] and Knops [45].

8(1+v)

=

k3 = Kj +
3]

K3, (4.87)

The stress-intensity factor K3 has been introduced as the normalising constant for the
singular shear forces QEI) in Reissner’s theory; see (4.20) and (4.22). Since the shear
forces QE_U in the classical theory have an essential singularity, it is neither possible
nor relevant to compare the results of single mode 3 fracture for the two plate theories.
It is more appropriate to seek a comparison between the stress-intensity factors Kj
and K7, because the problem (4.9)-(4.12) for the shear mode 3 of plate bending
corresponds to the problem (2.21)—(2.24) for the tearing mode 11 of anti-plane shear.

The definitions (3.37) and (4.20) of the stress-intensity factors Ky and K3 in terms
of the shear stresses o, and 7,. are similar. According to Table 4.2, we must compare
h 7, of mode IIT with QEU of mode 3. From (3.38) and (4.22) we deduce the following
equivalence relation between the stress-intensity factors, namely [94]

3
Ky = 5 Kiir - {4.88)

The same relation is obtained from a comparison of the displacement u, (see (3.41))
with the deflection w (see (4.23)), where the shear-correction factor k = 5/6 must
be accounted for by Table 4.2. The latter is due to the fact that the deflection is an
averaged value of the out-of-plane displacement for plate bending; see (2.37).

Next, we examine the contributions of fracture modes 3 and III to the energy release
rates in (3.48) and (4.26). Equating these contributions for stationary cracks, i.e.,
with crack-growth speeds ¢ = 0 and é = 0, Knops [45] arrived at

115
1(3 = § Krrr. (489)

We believe, however, that this inference is incorrect, since the shear-correction factor
has not been taken into account. Multiplying the mode 3 contribution in (4.26) by
5/6 and equating the result to the mode 11T contribution in (3.48) yields the correct
expression (4.88).

Strictly speaking, a relation between K;;; and K3 cannot be derived, because these
parameters refer to different geometries. The stress-intensity factor Kjj; relates to
problems of anti-plane shear and corresponds to geometries with large thickness, where
the shear stresses are assumed to be constant in the direction parallel to the crack
front. The factor Ky, on the contrary, relates to thin plate-like structures, for which
the transverse shear stresses are quadratic functions of z over the cross section of
the plate. So, depending on the type of geometry, it becomes apparent which stress-
intensity factor, K3 or Ky, should be used in a specific problem.
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Hui and Zehnder {38] suggested on the basis of equation (4.87) that the stress-intensity
factors Ky and Ky cannot be independent: when k; is determined from the external
loading conditions, a relation between K, and K3 and Poisson’s ratio v is obtained.
In the light of the analysis above, it seems more likely that a relation between K, K3
and Ky, exists [94]. Unfortunately, such a relation has not been obtained, neither in
[38, 84] nor in the present investigation.

These considerations indicate that general situations of mixed-mode fracture of ar-
bitrary geometries can adequately be described by five independent stress-intensity
factors [94], namely K and K/; for the crack-opening and sliding modes, A and Ks
for the normal-bending and twisting modes, and either Kjj; for the tearing mode or
K3 for the shear mode.

4.5 Combined tension and bending

When a thin flat plate containing a crack is loaded by a combination of in-plane
tensile forces and out-of-plane bending moments, the fracture behaviour of the plate
can be described by the stress-intensity factors K, K;; for modes I and I of planar
deformation and by the factors K3, K5 for modes 1 and 2 of bending deformation.
These factors may depend on the crack-growth speed ¢ in the case of dynamic fracture.
Councerning the bending modes we apply Reissner’s plate theory, which yields similar
angular variations of the near-tip stress distributions as a plane-stress analysis does.

The problems of planar deformation and plate bending have been studied separately
in Sections 3.1 and 4.1. The solutions for the in-plane stresses o;; are given by (3.21)
for modes 1 and II and by (2.29) and (4.13) for modes 1 and 2. These solutions
are added to obtain the solution to the problem of combined tension and bending.
With the superscript T indicating the total response due to the tensile forces and the
bending moments, the singular stress components are given by

122 My (r, 8¢
oé(?‘}é,z;d = o;(r,0;c) + "-—;;—)
K -
= Ks@) prg gy BaG) pigg (4.90)
2rr Y 2mr Y

where 4,7 = @,y and z is the coordinate in the direction perpendicular to the plate
with —h/2 < z < +h/2. The angular variations F/(f,c) and F//(#,c) are given
by (3.22)-(3.27). The stress-intensity factors Kg(z) and K.{z) correspond to the
loads that are symmetrically and anti-symmetrically applied with respect to the crack
surfaces; they are defined by [93]

2z

Ks(2) = K; + W Ky, {4.91)
P . 2z
AA(Z) = Ky + 7 K. {492)
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The fracture behaviour can then be described with these new factors. Assuming
Kj > 0, it is observed that the stress-intensity factor Kg{z) becomes largest in the
upper plane of the plate. When the crack-opening and normal-bending modes are
dominant over the sliding and twisting modes, the maximum stress-intensity factor
Kg(h/2) = K+ K, will be determinative in the fracture process.

The solutions for the displacements u; are given by (3.28) for modes I and II and
by (2.35) and (4.14) for modes 1 and 2. Adding these solutions, we obtain the total
displacements for the combined tension-bending problem:

ul(r 8, z¢) = wi(r,8;¢) — 260,(r,6;¢)
Kq(z) rr
TG g B
where i = x, y and u{ are the crack-tip displacements. The angular variations U/ (6, ¢)
and U]1(8,c) are given by (3.29)-(3.32).

KA(Z V Ull,c),  (4.93)

We now turn to the calculation of the energy release rate G and of the J-integrals.
The representations (4.90) and (4.93) of the near-tip stress and displacement fields
are substituted into the expressions (3.47) and (3.52). Carrying out the integration
over the thickness of the plate first reveals that the integrals split into three parts:
two parts relating to the tension and to the bending effects, which are even in z, and
one part relating to the mixed effects, which is odd in z and vanishes after integration.
Carrying out the integration over the interval [0, Aq] in (3.47) and over the contour C
in (3.52) first yields integral expressions similar to the results (3.48) for G and .J; and
(3.54) for Jp. By either method, we obtain as generalisation of the results in (38, 93]
that
1 g2

g=4h=4 o (Af{(‘)f(s( )+ Anle) Ki(z ))d~

= 2(41(6)}(1 Arrle) )+ é%(A;(c)Kf—i—Au(c)KS), (4.94)

D) +h/2

J;g B E A]V (C) [&’5(2\) I(A(Z> dz
2h 2h
=% Ay (C> Kr K — o) Ay (c) Ky Ky (4.95)

where the coefficients A;{c) and A;;{c) are given in (3.49) and (3.50} and Apv(c} in
{A.3) or {A.4) of Appendix A. In the limit for stationary cracks, i.e. for crack-growth
speed ¢ — 0, these coefficients all tend to unity.

equdl to the summation of (3 48) and (4 26) f01 and Jy and of (3 54 and (4 31) for
Jo. We also observe that identical results are obtained, when we substitute the stress-
intensity factors Kg(z) and K4(z) for K; and Ky in the expressions (3.48) and (3.54)
and integrate over the thicknes% of the plate. This means that the stress-intensity
factors Kg(z) and K4(z) for the symmetrically and anti-symmetrically applied loads
are suitable parameters ioz the description of the fracture process under conditions
combined tension and bending.
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4.6 Effects of crack closure

Up till now it has been assumed that the plate is loaded by in-plane tensile forces and
out-of-plane bending moments in such a fashion that the crack surfaces do not come
into contact. This means that the crack-opening displacement of mode I must exceed
the crack-closing displacement associated with the rotations of the normal-bending
mode 1. If this is not the case, crack closure occurs and the theories in their present
form will predict penetration of opposite crack faces. Since this is evidently physically
incorrect, it is necessary to incorporate an extra contact force such that penetration is
excluded. This was performed by Young and Sun [97] for pure bending of plates using
classical plate theory. The present analysis is aimed at combined tension and bending
and utilises both Reissner’s and the classical plate theories. We restrict ourselves to
stationary cracks {crack-growth speed ¢ = 0).

4.6.1 Analysis in Reissner’s plate theory

Consider a thin Hat plate of thickness h containing a central crack of length 2a¢ and
being symmetrically loaded on its outer boundary by a bending moment M and a
tensile force N per unit length. Within the scope of Reissner’s theory, the singular
stress (:r;fy in the direction ahead of the crack and the displacements ug of the crack
surfaces are given by {4.90) and (4.93), viz.

\ , (4.96)

ny(r, 0,z) =

o o 2Ks() for

A [z (4.97
ty Eh V= (4.97)

where r is the distance to the right crack tip and z is the coordinate perpendicular to
the plate. The stress-intensity factor Kg(z) is given by (4.91) with [24, 84, 99]

Ky = 2¥I0 (4.98)

h
. 6M/ma
K, = —X—.

o (4.99)

From these expressions it is clear that the distance between the crack surfaces (also
called the crack-opening displacement and equal to u;f( T, z) —ug(r, —1, z)) is negative
in the lower plane (z = —h/2) of the plate when

M o» , (4.100)

This would imply penetration of opposite crack surfaces; see Fig. 4.2(a). To avoid
penetration, contact forces P are introduced in the lower plane (z = —h/2) of the
plate, where the crack surfaces come into contact; see Fig. 4.2(b). The contact force
not only introduces an extra force P in the same direction as N, but also an extra
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bending moment of magnitude Ph/2 and opposite to the original moment M. As a
result, the total stress-intensity factor after addition of the extra force and bending
moment is equal to

Pyra 6z Pv/ma
L S

2z 1 /e ) .
(N+P)+ 1—h2— (M ~ 5Ph) } s (4.101)

K(z) = Kg(z)

I

i

The expressions (4.96)-{4.97) for the stress a;fy and the displacement ug remain valid,
but the stress-intensity factor Kg{z) must be replaced by K{(z) of {4.101).

TZ
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Figure 4.2: Cross-sectional view of crack closure (a) with penetration of
the crack surfaces, (b} with extra contact forces.

The contact force P required to avoid penetration is related to the applied tensile
force N and bending moment M. Its value is determined by the condition that the
crack-opening displacement at z = —h/2 must be precisely zero. As argued above,
this displacement should not be negative, but a positive value is also excluded because
in that casec the crack surfaces are not in contact with each other. Thus, we require
K{—h/2) = 0, whereupon it follows from (4.101) that the contact force equals

3M N

P = —_ .
2h 4

(4.102)
The physical condition that the force PP must be positive to have contacting crack
surfaces, is in agreement with relation {4.100). Substitution of (4.102) into (4.101)
finally vields the total stress-intensity factor

o 3yTma R h) ,
Kz = 2 (M+2Ah) (1+ =5 (4.103)
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Then, the total stress-intensity factor in the upper plane (z = h/2) of the plate equals

1 3 1. ,
K(§h) = 51{11 + 51!11? (4.104)
with K; and K, given by (4.98)-(4.99). This result differs from the sum K; + Ky, as

would follow from (4.91), where crack-closure effects are not taken into account.

4.6.2 Analysis in classical plate theory

The same analysis as in the preceding subsection can be performed with the use of
classical plate theory. Consider a thin flat plate of thickness A containing a central
crack of length 2a and being symmetrically loaded on its outer boundary by a bending
moment M and a tensile force N per unit length, which is a generalisation of the work
of Young and Sun [97]. We assume that crack closure occurs and we introduce the
contact force P in the lower plane (z = —h/2) of the plate to avoid penetration of
opposite crack surfaces; see Fig. 4.2. As a result of this extra force, the stress-intensity
factor K; of the crack-opening mode and the factor &y of the normal-bending mode
are given by [24, 84, 99|

K = (N1P)Y? (4.105)

h
Vra

!
ky = <M—§Ph) - (4.106)

The total singular stress ogy in the direction ahead of the crack is now derived from
a combination of (3.3), (2.29) and (4.40), which yields the same expression as (4.96)
with the total stress-intensity factor given by (4.101). The total displacements u; of
the crack surfaces are derived from a combination of (3.10}, (2.35) and (4.39), which

vields

2v2ar |, . 122(1 + v) 1
Tirdr ) = u° + N+P .‘—(M——P ) (4107
w, (1,27, 2) = 7 { Y+ 3+ ) 5 h {4.107)

The contact force P is determined by the condition that no penetration of the crack
surfaces may occur, i.e., the crack-opening displacement u) (v, 7, z) —u] (r, —7, 2) must
be zero in the lower plane 2z = —h/2. This results in
31+ M B+uvIN
(3+200h  2B+20)

(4.108)

It is noted that the expression (4.102) is recovered by letting v — oo. This agrees
with prior observations that the results of the classical plate theory with an infinite
value assigned to Poisson’s ratio resemble those of Reissner’s theory; see Section 4.3.
The total stress-intensity factor is obtained from (4.101) after substitution of (4.108).
We find

K(z) = (4.109)

33+ v)(M+ iNh) ¢%<1+u+2j>
(3 + 20)h? 3+v k)’
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plate is then equal to

32+4v) 24

e 4.110)
3420 M 3420 ( )

1
K{ §h) =
where Ky and &, are the stress-intensity factors for the situation without crack closure,
which are given by (4.105)-(4.106) with P = 0. This result agrees with [97] but it
deviates from (4.104) because of the dependence on Poisson’s ratio. Putting v = oo
makes the results coincide. Since Reissner’s theory is more accurate, the expression
(4.104) is preferred to (4.110).

4.7 Effects of dynamic crack propagation

The dynamic effects of crack propagation have been treated in Section 3.5 for the three
traditional fracture modes 1, 11, and 111. It was shown there that the elastodynamic
stregs-intensity factor equals the factor for the static equilibrium state multiplied by
a universal function of crack speed; see (3.66)—(3.69). In the present section, the
influence of crack propagation on the bending stress-intensity factors is discussed
within the scope of Reissner’s theory.

An exact analysis for bending fracture, similar to the work of Freund [28] for planar
deformation, is extremely difficult to achieve. The problem is to determine a relation-
ship between the dynamic stress-intensity factor for a propagating crack and the static
stress-intensity factor for the equilibrium situation. This relationship is derived from
the fundamental solution for a plate containing a semi-infinite straight crack along
the z-axis, loaded by a pair of concentrated bending moments applied at fixed and
opposite positions on the crack flanks, while the crack propagates at constant speed.
The corresponding problem for a pair of concentrated forces in planar deformation
has been solved in |28, Ch. 6] with the use of integral transforms (one-sided Laplace
transformation on time ¢ and two-sided Laplace transformation on the coordinate z)
and the Wiener-Hopf technique. For details on these methods we refer to Carrier,
Krook and Pearson [13], de Hoop [35], and Noble [69].

The bending problem in Reissner’s theory is governed by the equations {2.38)—(2.42).
Elimination of the bending moments and the perpendicular shear forces yields three
differential equations for the deflection w and the rotations ©; (i = z,y). With the
notation f = ©,, — 0,, for the curl and g = ©,, + ©,, for the divergence of the
rotations, we find

1 10
Af - C?f = = (4.111)
1 h .
Ag — =5 = 2w, (4.112)
c; Dy
1 \
Aw — w0 = g, {4.113)
Ck
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where Af = f,; is the Laplace operator and ¢; and ¢, are the dilatational and shear
wave speeds given by (2.33)—(2.34). The modified shear-wave speed ¢;, = ¢, \/57/6 has
been introduced previously in Subsection 4.1.3. Substitution of (4.113) into (4.112)
produces the fourth-order differential equation (see also Mindlin [59]):

AAw — (%Jrlrz) A + 212 v + —w =0, (4.114)

¢ < ¢ Ch Dy
where w" denotes the fourth-order time derivative. Putting ¢;, = oo (L.e. Dy = o00)
in (4.114), we see that this equation reduces to (4.51) in the classical plate theory.
The principal difficulty in obtaining the fundamental solution to the bending problem
lies in the fact that the equations (4.111)-(4.113) are not proper wave equations
because of the non-zero right-hand sides. Since these equations involve derivatives
of different orders, the solution procedure by integral transforms and by the Wiener-
Hopf technique does not apply and the inverse transforms cannot be obtained by the
method of de Hoop [35].

Because we have not been able to establish the exact relation between the dynamic
and the equilibrium stress-intensity factors for the plate bending problem, we shall
postulate this relationship. From the results of Sections 3.3 and 4.1.4 it is observed
that the dependence of the energy release rate G on the crack-growth speed is similar
for planar and bending deformations. The velocity-dependent coeflicients in the ex-
pressions (3.48) and (4.26) for G are the same. Moreover, the near-tip behaviour of
the in-plane stresses (3.21) resembles that of the singular bending moments (4.13).
This leads us to the assumption that the relation for the dynamic bending stress-
intensity factor is similar to the relation (3.66) of Section 3.5. The elastodynamic
stress-intensity factor for bending in mode 1 is denoted by Ky = K (m, a,c) where m
represents the applied moments, a the crack length, and ¢ = a the crack speed. Tt is
postulated that, analogous to (3.66)

Ki(m,a,c) = ki(c) Ki(m,a,0), (4.115)

where kj(c) is the universal function of crack speed (3.67) for the crack-opening mode
(mode T). K)(m,a,0) is the stress-intensity factor for the corresponding equilibrium
state of a stationary crack of the same a and loaded by the same instantaneous
moments m as for the dynamic situation. Similar postulates can be made for the
other bending modes.

The energy release rate for bending fracture under mode 1 conditions is now derived
in a straightforward manner analogous to (3.70). From a combination of (4.26) and
(4.115) it is found that the energy release rate G(m, a, ¢) for a crack of length a, subject
to external moments m, and propagating at speed ¢ = a, is given by the expression
h . .

ﬁ AI(C) k’%(C) Kf(WLv a, O) = gl(c) g(m> a, O) y (4116)
where gy(c) is the universal function of crack speed (3.71) and G(m,a,0) is the
energy release rate as calculated for the equilibrium situation. Similar relations can
be obtained for the other bending modes.

G(m,a,c) =
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It is emphasised that we have no rigorous proof for the expressions presented in
this section. The postulates are based on the hypothesis that the description by
Reissner’s theory of dynamic fracture in plate bending does not differ from that in
planar deformation. This is a reasonable assumption as has been argued above.

4.8 Conclusions

Thin flat plates undergoing bending deformation have been examined on the basis
of the classical theory of Kirchhoff and the more refined theory of Reissner. The
singular bending moments near the crack tip have been determined and normalised
by stress-intensity factors. In addition, the deflection of the plate, the rotations of the
middle plane, and the singular shear forces near the crack tip have been calculated for
both stationary and dynamically propagating cracks. We have also investigated the
influence of crack closure. The correspondences and differences between the near-tip
solutions for the two plate bending theories have been discussed and are summarised
as follows.

1. The singular bending moments in Reissner’s theory and the singular stresses in
planar deformation have the same angular variations. Consequently, the corres-
ponding stress-intensity factors can be added to yield effective stress-intensity
factors for general symmetric and anti-symmetric loading due to combined
tension and bending; see (4.91)-(4.92).

2. The singular bending moments in the classical theory have different angular
variations which depend on Poisson’s ratio v». The angular variations become
equal to those in Reissner’s theory when we put v = co. In the case of dynamic
fracture we must also assign an infinite value to the shear-wave speed ¢, in the
results by Reissner’s theory. These effects are due to the infinite shear stiffness
in the classical plate theory.

3. Contrary to the Reissner solution, the shear forces in classical plate theory have
an essential singularity of order O(r~3/2) as the distance r to the crack tip tends
to zero {r — 0). The essential singularity vanishes in the limit for ¥ — oo. This
is another effect of the infinite shear stiffness.

4. The deflection of the plate in Reissner’s theory has a term of order O(r!/?)
related to mode 3 fracture and a term of order O(r*/?) related to modes 1 and
2. The former term resembles the displacement in mode III fracture and is not
present in the solution by classical theory. The latter term has the same angular
variation as the corresponding term of the deflection in classical theory (in the
case of a stationary crack), but it differs by a multiplicative factor (1+v)/(3+v).
The rotations of the middle plane have different angular variations in the two
theories.
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The expressions for the energy release rate in Reissner’s theory and in the
classical plate theory deviate by a multiplicative factor (1 + v)/(3 4 v} in the
case of stationary cracks. For dynamically propagating cracks, the results by
the two plate theories become equal after putting both v = oo and ¢; = co.

On the basis of identical energy release rates, we have established relations
between the stress-intensity factors ki of the classical plate theory and K of
Reissner’s theory {see (4.84)) and between the stress-intensity factors kg, K3 and
Ky (see (4.87)). Thesc relations can be useful, when the stress-intensity factors
of the classical theory are known and we want to determine those in Reissner’s
theory.

A simple relation between the stress-intensity factors of modes 3 and III has
been derived, namely K3 = %KH; (see (4.88)}). These factors cannot be used
simultaneously, because they assume a different behaviour for the shear stresses
across the thickness of the structure at hand. The appropriate stress-intensity
factor for fracture of thick solids is Ky, whereas the factor K3 is more suitable
for thin plate-like geometries. It is believed that a more complicated connection
between K, K3 and K;y; may exist, but such a relation has not been established.

The effects of crack closure in situations of combined tension and bending can
be easily incorporated in the expression for the stress-intensity factor. An extra
contact force is introduced to avoid penetration of opposite crack surfaces in the
lower plane of the plate. This leads to a change in the effective stress-intensity
factor in the upper plane of the plate.

. The dependence of the elastodynamic bending stress-intensity factors on the

crack-growth speed is not supported by an exact analysis. We have postulated
that the relationship with the stress-intensity factors for static equilibrium in
plate bending is governed by the same universal functions of crack speed as the
relationship between the stress-intensity factors for the dynamic and equilibrium
sitnations in planar deformation.

It is concluded that fracture of arbitrary structures under general loading con-
ditions can be analysed with five independent stress-intensity factors: Ky and
Ky for the crack-opening and sliding modes, K; and K for the normal-bending
and twisting modes, and either Ky for the tearing mode or Kj for the shear
mode. When the bending deformation is studied with the use of classical plate
theory, we may also use K; and Kj; for modes I and 11 of planar deformation,
ky and ks for modes 1 and 2 of bending deformation, and Kjy; for mode III of
anti-plane shear.



Chapter 5

Curvilinear cracks

In general situations of mixed-mode fracture, cracks will not be rectilinear due to
influences of asymmetric loading. Even initially straight eracks may extend in other
directions. Consequently, the analysis of continued crack propagation necessitates the
study of curvilinear cracks and it proves indispensable to obtain expressions for the
stress-intensity factors in terms of the crack shape.

The stress-intensity factors Ky and Ky for fracture by modes I and II of an elastic
body containing a slightly curved crack have been calculated by Cotterell and Rice [19)]
and the factor Ky for fracture by mode III in [94]. The bending stress-intensity
factors &, and kg for thin flat plates containing a curvilinear through crack have been
determined in [93] on the basis of the classical plate theory. The present chapter
contains the papers [93, 94] with some textual modifications.

The analysis is based on the description of mechanics problems in terms of complex
holomorphic functions; see Muskhelishvili [63] and Savin [80]. Special attention is
given to the conditions for single-valuedness of the displacements, because the domain
occupied by the elastic body is multiply connected due to the presence of the crack.
The boundary conditions at the crack surfaces {the crack flanks) give rise to Hilbert
problems for the complex functions. The actual crack is replaced by a straight cut
in the complex plane and a linearisation with respect to the crack-shape function is
performed. The stress-intensity factors depend on the crack shape, the stresses and
bending moments exerted on the crack flanks, and the uniform stresses and bending
moments applied at large distance from the crack.

5.1 Planar deformation

Consider a thin flat plate of thickness A, consisting of homogeneous, isotropic, linearly
elagtic material, containing a through crack of arbitrary curved shape, and being
otherwise unbounded. The in-plane Cartesian coordinates are denoted by = and y, and
the perpendicular coordinate by z where —h/2 < z < +h/2. The crack is described

7
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by the shape function y = A{z) with ~a < z < +a and is assumed to be uniform
over the plate thickness. The coordinate system is chosen such that the two crack
tips are on the z-axis, L.e. A(La) = 0; see Fig. 5.1. The upper and lower crack flanks
are denoted by L™ and L™ and the internal contour (the erack) by L = L™ U L™,

kv o]
Oyy
o0

px)

~—J[‘ 1) —— + o
: o

/] A

(=]
ny
6% + q{x) _Jr.

Figure 5.1: Plate with curvilinear crack in plane stress.

The normal and tangential vectors to the crack flanks (see Fig. 5.2} are given by
n =sinfe, —cosfe, and 8 = cosfe, + sinfe,, where § = 6 is the angle between
the tangent and the positive z-direction. We have 0 € [—7/2, +7/2] for the upper
crack flank L and 6~ € [n/2, 37 /2| for the lower crack flank Z~. This angle depends
on the slope of the crack by tan# = X {(x). The inclination angle at the right crack
tip is denoted by & = 6%{(a) and is shown in Fig. 5.1.

The present section focuses on plane-stress situations which are described by the

that there are no tractions on the upper and lower planes z = £h/2 of the plate,
and that the crack surfaces are subjected to prescribed stresses in the normal and
tangential directions; see Fig. 5.1. The stresses in the point {z,y) = (£, A(t)) arve

Onpn = ‘pi(t) = ‘P(t)) (
Ons = () = +q(t), (

ot o

1
2

)
)
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for —a < ¢ < +a, which are equal for the upper and lower crack flanks. (For straight
cracks with A(t) = 0, the simplifications o, = o,y and 0,,, = —0,, hold true.) Zero
stresses are applied at infinity. The solution to this problem is derived in [19] with the
use of complex functions and a linearisation with respect to the crack-shape function.
The stress-intensity factors are thus correct up to first order in A(t). Integration by
parts of the results in [19, Eqns. (18)-(19)] produces

= g [ o ()] ()"

1+ aA(t)at) 5
. - dt 3
/—a (a+t)i(a—t) (53)

o = g o= (0= o] (20

_ 1 +a aA(t)p({)
V@ J-a (a+ )i (a—1): - (5.4)

In [19] the results have been compared with the exact solution for a circular-arc crack
and good agreement has been observed over a wide range of arc angles. So, these
expressions can be useful for curved cracks with large deviation from a straight line.

Figure 5.2: Normal and tangential vectors (a) on upper crack flank and
{b) on lower crack flank.

The stress-intensity factors for uniform stresses ofF at infinity can be derived from

i
{5.3)(5.4); see [93]. The loading configuration is equivalent to that with stresses of
opposite sign, oy; = —of}, being applied to the crack surfaces. With the linearised

normal and tangential vectors n* = (N (¢) e, —e,) and s* = +(e, + N(t)e,) on L*
up to first order in N (¢}, the stresses on the crack surfaces are obtained as

- ‘ . "2 n?
Opn = — p(f) = Ugg n’): + 2 Omy T ’3’2»3} + Uyl/ ny

= —og +2X(t) a5y, {5.

(o]
o
o
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Tpg = + q(t) = gy Mg Sz + Uwy(nz Sy T Ty 81) T Tyy Ty Sy
= oy, +N{t) oy, —o5) - (5.6)

ry

The stress-intensity factors are now readily derived by substitution of {5.5)~(5.6) into
(5.3)~(5.4), which leads to

Ky = (O’;; - ga O’Z) Ta, {(5.7)
Ky = (U;; + %a‘ gy + Alogy — a;’;)) Vra, (5.8)
where the dimensionless crack-shape parameter A is defined by
A=+ [ vy ("i_t) dt. (5.9)
Ta J-a a—1

The results {5.7)~(5.8) for uniform stresses at infinity are to be added to {5.3)-(5.4)
to produce new expressions for the stress-intensity factors in general loading con-
figurations. In conjunction with the previcus load case, it is interesting to study
the situation where uniformly distributed stresses are applied to the crack surfaces.
Substitution of p(t) = p and g(t) = ¢ into (5.3)~(5.4} yields

K, = (p~‘r(2¢4—%a)q)\,f’?é, (5.10)
1 ,
K = (q+§ap)\/%’&l. (5.11)

Comparison of these results with (5.7)—(5.8} reveals some remarkable similarities.
Identification of p and ¢ with o7 and o7 shows that the terms of order zero coincide.
This is obvious because the two loading configurations are equivalent for straight
cracks. Concerning the terms of first order, the dependence on the inclination angle
« is exactly the same, whereas the parameter A appears differently in the respective
expressions. The differences are equal to

AKp = —2A03 Vra, (5.12)
AK’U = A (O’;Z - U:;) VT, (513)

which correspond to the occurrence of A'(t) in (5.5)~(5.6). Thus, we may say that the
parameter A is a meagure for the amount by which the curved crack deviates from a
straight line, and for the influence thereof on the stress-intensity factors.

5.2 Anti-plane deformation

5.2.1 Problem specification

Consider a thick, linearly elastic solid, containing an internal crack of finite size and
arbitrary curved shape, and being otherwise unbounded. The geometry is uniform
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with respect to the z-axis, which is in the thickness direction parallel to the crack
fronts. The in-plane coordinates z and y and the crack-shape function A(z) are defined
as in the previous section. This configuration is loaded under conditions of anti-plane
shear, such that fracture occurs in the tearing mode (mode III). The analysis of this
fracture problem is presented in [94].

® 5 Y

Figure 5.3: Plate with curvilinear crack in anti-plane shear.

The deformation problem is described by the real equations {2.21)~(2.22) or, equi-

and its derivative ®(z) = ¢'(z) with complex coordinate z = @ +¢y. The stresses are
singular at the end points z = Fa of the crack and, as usual in fracture-mechanics
problems, are proportional to the inverse square root of the distance to the crack tip.
As a result, the complex functions have a similar singular behaviour. Since the order
of the singularity is not known a priori, the following general condition is imposed to
ensure the integrability of the elastic energy density in the vicinity of the crack tips.
For z — *a, we have

$(z) = O((z:,Ca.)_é) , (5.14)

where 6 1s some constant with 0 < § « 1.

Boundary conditions on crack surfaces
We impose that the upper and lower crack surfaces are subjected to shear stresses

pE(#) in the perpendicular direction with parameter ¢ € [—a, +aj; see Fig. 5.3. The
normal to the crack surfaces is given by n, +in, = —ie" as in Fig. 5.2. Using (2.24)
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and (2.26) and denoting by ®*(2) the limit of ®(z) for = — ¢ + i A{t) on LF, we can
express the boundary conditions as

T = Re[(mz = i) (ne +iny)]
= Elerment e ] - [ O eIy
2 ‘ ; —p (t) on L™, \

where j = (7 is the shear modulus of the material,

The resulting force P on the crack surfaces is calculated by integration of the shear
stress over the confour L. With s being the arc length and ds/dt = £/1 + [V(1)]?
on L*, this force is given by

-
|

+a —
. - L 47 ot o 1748 fe
P~L Tz d.s_‘/_u [p {ty—p (Vt)J 1+ [N de . {5.16)

Conditions at infinity

Since the elastic body is taken as unbounded, extra conditions at infinity are required.
It is assumed that the transverse shear stresses attain finite values at infinite distance
from the crack. In the limit for |z| = /2% — 9% — o0, it is imposed that

Tez = Tog ., Tyz — Toe - (5.17)
This condition and the expression (5.16} are transformed into conditions for the
complex functions at infinity. Firstly, it is noted that on the basis of (5.15) and
with the property dz/ds = ¢, the force P can be represented as

P =1Im {fL pd(z) dz} = % [qﬁ(z) _@]L ) (5.18)

with [];, indicating the increment in the enclosed expression when the contour L is
encircled in clockwise direction. Secondly, since the shear stresses and the displace-
ment are single-valued in the domain occupied by the elastic body, the equations
{2.25)-{2.26) imply that the function ®{z) and the real part of ¢(z} are single-valued
in C\L. Consequently, we can write the function ¢(z) as

Glz)=A-log(z—a) + &"(z2), (5.19)

where ¢(2) is single-valued in C\ L and the real constant A is related to the increment
in the imaginary part of ¢(z). For a proper definition of the logarithm, the complex
plane is cut from z = +¢ to z = —a along the crack L and from 7 = —a to infinity
along the negative z-axis. The representation (5.19) ensures the single-valuedness of
the displacement «, and, consequently, no additional conditions are required. From a
combination of (5.18) and (5.19) we deduce that A = —P/2xnp.

The behaviour of the complex functions at infinity is now obtained by expanding the
single-valued function ¢*(2) in a Laurent series. In accordance with (5.17), we find

P 1

Mz) = Tz — — logz + ¢ - 2

Az) r T og z ¢ + 0(2) , {5.20)
P 1

B(z) = T — .14 o(—_>7 (5.21)
2rp z 22
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for & — oo, where the constant ¢ may be put equal to zero without loss of generality
) Y

and where the complex constant T is given by
T — e .
N = 2= .82 (5.22)

n

Stress-intensity factor

Due to the crack, stress singularities arise at the two crack tips. In the standard
situation of a semi-infinite straight crack positioned along the negative z-axis (see
Fig. 5.4{a}}, the limiting behaviour of the displacement and the shear stresses in the
vicinity of the crack tip is well-known; see (3.38)-(3.41). The stress-intensity factor
Ky is the normalising constant for the singular shear stresses in the direction § =0
ahead of the crack. This parameter can be calculated from the singular behaviour of
the complex functions; see Cherepanov [18, Sec. 3-5] and Sih [83]. From ({2.26) and

(3.37) and with z = Z = r — 0, it follows for the straight crack that
K = lir;é V2mr 7. (r,0) = ,f;_z l’ir% V2rz ((I)(z) @(z)) (5.23)

The stress-intensity factor for a curved crack is expressed in terms of the angle « at
the tip and of the shear stress 7, in the direction 8 = « ahead of the crack; see Fig.
5.4(b). In that direction the complex variable is equal to z == @ +re'® with r > 0. In
a manner analogous to (5.15) we obtain the stress-intensity factor:

Ky = lm vixr Tas(r, @) = ? lim v 277 (@(t)em—®(2)e”°‘). (5.24)

@, Al
QR  x N N

(a) (b)

Figure 5.4: Crack-tip geometry (a) for straight crack and (b) for curved crack.

5.2.2 Linearisation for slightly curved cracks

The problem of anti-plane shear as formulated above can only be solved in exact form
for rectilinear and circular-arc cracks; see Chao and Huang [17] and Sih [83]. The
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solution procedure is based on the method of Muskhelishvili [62, 63] and starts with
the introduction of the conjugate function

0z) = ®(z) : (5.25)

for a straight crack and

S —
Q{z) = z_2 ®(R?/z) {5.26)
for a crack along a circular arc of radius R.

In the case of arbitrary curvilinear cracks, however, it is not possible to define an ap-
propriate conjugate function 2(z). Therefore, we must rely on perturbation methods
and perform a linearisation with respect to the crack-shape function. Although the
linearised problem provides approximate solutions for curved cracks which deviate
from a straight line only by a small amount, the results can be useful to investigate
crack propagation due to of non-symmetric loading, especially the initial stages of
fracture.

The linearisation process is similar to that in [19]. The crack is assumed to have a
smooth shape resembling a straight cut. Mathematically, this condition is expressed
in the norm of the crack-shape function

A=A = ( 1 /” A dt ) . (5.27)
2a J-a

It is imposed that this norm is much smaller than the crack size {A/a < 1), and that
the norm ||| of the derivative is much smaller than unity and of the same order
as A/a. In the linearisation process only the terms of order zero {corresponding to
a straight crack) and the terms of first order in A/a and/or ||V} are retained. In
addition, it is assamed that the function ®(z) can be continued analytically over the
crack up to the straight line connecting the two crack tips. The analytically continued
function is denoted by F(z) and is holomorphic in the complex plane with a straight
cut [—a, +a}. The function F(z) is expauded with respect to the crack-shape function
A{t) and written as

B(z) ~ F(z) = Folz) + Fi(z) + O(A), (5.28)

where Fy(2) and F)(z) are the functions of zeroth and first order. These functions are
holomorphic in C\[—a, +a] and satisfy condition (5.14) at the crack tips. At infinity,
the function Fy(z) has limiting behaviour as in (5.21) with I' given by (5.22) and P
by (5.16) with the square root replaced by unity. The behaviour of F(z) at infinity
is similar, but now I' = 0 and P = 0 must be substituted.

Since the linearised crack resembles a straight line, it is advantageous to introduce

in (5.25). The limiting values of ®(z) on the crack flanks L=, i.e. for z — t + i A(f),
can now be expressed in terms of the boundary values of Fy(z) and Fi{z) on either
gside of the cut {—a, +a]. With —a <t < +a we have

®=(z) = FF(t) +i 8 FE@E) + FE@) + 0(AY), (5.29)

SIG) = GI(1) —iADGFD + GT() + O(AY). (5.30)
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The angle 8= of crack inclination appears in linearised form as " = +(1+7M{{)) on
L*. The boundary conditions (5.15) are linearised with the use of these properties.
Omitting terms of second and higher order, we obtain

) = LR - GE0 + FE0 - 670 + (MO0 R0 + 6T 0]) |- 631

After the solution for the complex functions has been derived, the stress-intensity
factor Ky is caleulated. The linearised form of (5.24) for slightly curved cracks is

[{III = % lim \f% {Fg(& -+ ?") - GQ((Z -+ '?':1 -+ .Fl (0& -+ ‘:") e Gl(a + ?“}

"

+ (iar [Fola +7)+ Gola + 7)) )! } . (5.32)

From their limiting behaviour as 2 — a, it can be deduced that the functions F£,(z) and
(ip(z) have opposite contributions to the stress-intensity factor [18, 83]. As a result,
the final term of (5.32) vanishes and a simplified expression'for K7 is obtained. In
the next subsection it is proved that the contributions of Fy(z) and Go(z) are indeed
opposite.

5.2.3 Solution for straight cracks

In the next step of the solution procedure, the linearised boundary conditions {5.31)
are split into boundary conditions for the zero-order and for the first-order functions.
Addition and subtraction of the boundary values lead to the Hilbert problems below
for the functions of order zero. For —a <t < 4a we have

(= Gol () + (= Go) () = =[5 (01 +3 (8] . (5.33)
(%+%ﬁ@—(&+%¥@::%hﬂaﬂﬂﬂ. (5.34)

The theory of singular integral equations and Hilbert problems and its application in
mechanics have been treated extensively by Muskhelishvili [62, 63]. For details of the
analysis we refer to these monographs.

The solution to the Hilbert problems utilises the Plemelj function X(z) = v/2° — a?.
This function is holomorphic in the domain C\[—a,+a| and attains limiting values
X*(t) = +iv/a? — 12 on either side of the cut, while X(z) = z 4+ O(1/z) at infinity.

. , 1 te XT@O) [pt () +p7 ()] Py(z) -
J.I'Q(Z) - CT()(Z) o ){(z) Y P dt + mz}“ 5 {533)
mmmwwzﬁﬁjﬂ%%ﬂm+%@= (5.36)
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where Fy(z) and Qq{z) are polynomials. From the condition (5.21) at infinity it is
deduced that

2z T

Py(z) = —-m,”z, (5.37)
Qo) = 2% (5.38)

The stress-intensity factor for the straight crack is now easily derived from the formula
{5.32) and the solution (5.35). We obtain

zjﬁ _:a. EMOETX0] (-Z—i—i)z de, (5.39)

which is in agreement with the result of Sih [83] for symmetric loading {(p™(¢) = p~(1)).

K = T;: Va4

Under the assumption that the functions p*(t) are finite at the end point ¢t = q, it
immediately follows from the solution (5.36) and [62, 63] that

lim +/27(z —a) { Fo(2) + Go(z) ) = 0. (5.40)

2@t

This proves the statements that the contributions of the functions Fy(2) and Gg(z) to
the stress-intensity factor Ky are opposite, and that the last term in (5.32) vanishes.

5.2.4 Solution for slightly curved cracks

The stress-intensity factor for a curved crack consists of two parts. Firstly, there is
the contribution of the terms of order zero, which coincides with the result {5.39) for
a straight crack. Secondly, there is the contribution of the first-order terms in (5.32),

which is denoted by K}},i This second part is determined in the present subsection
and is calculated from

ng, = %E im v27r (Fl(a«I»T') —G’l(a—kr))., (5.41)

r—0
where it has been used that the last term in (5.32) vanishes in view of (5.40).
The functions Fy(z) and G,(z) of first order are derived from Hilbert problems on
the straight cut [—a,+al. Addition and subtraction of the first-order terms in the
boundary conditions (5.31) yield
(Fi=G)™(t) + (-G (1) = bt
(Fl + G1)+(t) - (F] + Gl)—(t) = Q(t

= [~ixOhO],  (542)
= [—iMOb(D],  (5.43)

o
— N

for —a <t < 4a, where the functions b3(t) and by(t) are given by

bs(t) = (Fo+Go)"(t) + (Fo+ Go) (1), (5.44)
by(t) = (Fo— Go)™(t) — (Fo — Go)™(t) . (5.45)
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The solution to the Hilbert problems (5.42)-(5.43) is derived in a standard manner
[62, 63]. For z € C\[~a, +a] the first-order functions are given by

R 1 +a X+(2L) b](f) Pl(Z) .

Fl(Z)—Gl(/.,) == m/a _—t—z dt + _X(Z) (546)
o by(t

RE 4G = o [Py g, (5.47)

where Py(z) and Q(z) are polynomials. Tt follows from their behaviour at infinity
that these polynomials vanish.

Since only the difference Fi(z) ~ G(z) is relevant to the stress-intensity factor, the
solution procedure is restricted to the first Hilbert problem. To this end, the function
b3(t) is elaborated further. With the use of (5.36) it is found that
47 2 tapt(sy—p (s \
bo(t) = —le2 4 2 p(s) —p(s) ds | (5.48)
’ 1 T J-a s—1
where the symbol { denotes the Cauchy principal value of the integral. Substitution
of {5.46) into (5.41) now produces the first-order part of the stress-intensity factor.
The following result is obtained from (5.42) and (5.48) and integration by parts:

i e 43
g b () (‘” )gdt

d/ma J-a t
a)&(i)bg t)
— 5 dt
4\/”%5/ (a+1)2 (a—t)
= —A7r¥
() pi(s) —p(s)
N 27\/7??;/.(1 o (a_f) f_u S dsat, (5.49)

where it was used that A(Za) = 0. The dimensionless crack-shape parameter A
is defined by (5.9). The last part of (5.49) contains a double integral; it is proved
in Appendix B.1 that the order of integration may be interchanged. Thus, a new
expression is obtained in which the functions p*(t) are multiplied by a principal value
integral involving the crack-shape function A(2); see (5.50).

Finally, the first-order contribution (5.49) is added to the result (5.39) for a straight
crack. This yields the linearised expression for the stress-intensity factor of a curved
crack loaded under mode 11T conditions:

Kip = (yz—v‘fl’fx,»;)\/”;*'—fi
a-+t
+ 2\/?5/ +p(i;}<_g) dt
a A(s)

o + o
* gy L o= o) £ g

dsdt. (5.50)

Loading configurations with symmetry properties result in simplified expressions for
the stress-intensity factor. In the case of opposite stresses on the crack flanks, we have
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7 = —7,, and thus p7™(t) = p~(¢) = p(¢). A symmetric anti-plane shear situation is
obtained, for which the stress-intensity factor is given by

+a ( t
f{;}_{ == (Tg: "-AT;;) Ta /”T—a, / ) <a+ ) dt . (551)

Another simplification is obtained in the case of a concentrated load on the upper
crack flank, ie., for p7 () = P §(t — ty) and p~(¢) = 0, where 4(t) is the Dirac delta
function. The expression (5.50) for the stress-intensity factor Kz reduces to

K=

P (a—u@)% P +a aA(t)

p— 5.52
2/ma \a -ty 2ry/ma Ja (a4 )3 (a—t)F (ty — 1) (5:52)

5.2.5 Examples

We shall now present specific solutions for the mode 1T stress-intensity factor for some
particular shear-stress distributions and particular crack geometries. The accuracy
and the applicability of the linearised result (5.50) for Ky;; are also investigated.

Uniform stresses at infinity

The first example concerns a fractured elastic solid loaded by uniform shear stresses
applied at large distance from the erack, while the crack surfaces remain stress-free.
The result is directly derived from (5.50), viz.

Knr = (78— A ) vra . (5.53)

This loading configuration is equivalent to the situation where no stresses are applied
at infinity, but where the crack surfaces are loaded by shear stresses of opposite sign,
Le, Tpy = Taxllg + Ty Ny With 75, = — 7% and 7, = —Tyer The linearised normal
vector on L* is given by n* = £(N(t)e, — e,) with —a < ¢ < +a. As a result, the
stresses on the crack surfaces are equal to

pr(t) =p (1) = 72 - N() 72 (5.54)

Substitution of these shear stresses into {5.50} indeed produces the same result for
the stress-intensity factor as in (5.53).

Uniform stresses on crack surfaces

A slightly different solution is obtained, when the crack surfaces are loaded by uniform
shear stresses, Le., p*(t) = p~(t) = p with p being constant, while no stresses are
applied at infinity. Tt is found from (5.51) that

f(]U = p\/ﬁ. (5.55)

Identification of p with 7.7 reveals that the difference between (5.53) and (5.55) is
limited to the first-order term containing the constant 4. The occurrence of this
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crack-shape parameter corresponds exactly to the presence of X'(1) in (5.54). Similar
to Section 5.1, we conclude that the parameter A4 is a measure for the amount by
which the curved crack deviates from a straight line, and for the influence thereof on
the stress-intensity factor.

& 5 &

Figure 5.5: Elastic solid with crack along circular arc.

Crack along circular arc 2

As a third example, the circular-arc crack is considered. This geometry provides an
appropriate exercise to examine the range of validity of the linearised solution. The
crack is located along a circle of radius R and has an opening angle 2a; see Fig. 5.5.
The exact solution for this crack geometry is determined by Chao and Huang {17} and
Sih [83]. The mode III stress-intensity factor equals

1 1
K = (’r“ cos( ~ar) — 728 sin(§oa)> V7R sina

Yz

sin(1(a + 6))

" [p* (R sind) +p(Rsin6)] (sm(l(a - 9))) e
2

1 rbcx
2V7R sinaw j—a ‘

Siﬁ(%&) +ex + . . ) o
ovVrRsna R sin@) —p (R sind) | Rdf . 5 54
27 R sina J-a [3’ (R sinfl) —p (R sin )] (5.56)

This result is compared with the present perturbation solution. The exact crack-shape
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function Az} can be approximated by a quadratic function:

y = Na) = VEE—@ - VR -2 ~ =0 (5.57)

for —e < x < +a with a = R sin. This function represents a curve of parabolic shape
and is acceptable for small values of a/B. The linearised stress-intensity factor Ky
is derived by substitution of the approximate crack-shape function {5.57) into (5.50).
The inclination angle o at the right crack tip is approximated by tana = N{a) = /R
and the crack-shape parameter (5.9) is calculated as A =~ o/(2R). In addition, we have
a = R sin« &~ R o, while the integration variable can be written as t = R sinf =~ R0,
We find that

. a N
[{]1} = (T;:-—TOC}]\/TFCL

2R
+ i [0l ()
1 a,’ te )
AT /_ [p7(t) —p (®)] dt, (5.58)

which agrees with (5.56) up to the terms of first order in o or a/R.

The linearised result is also compared with the exact solution for uniform loading at
infinity. The crack surfaces remain stress-free. To this end, the crack-shape parameter
A is calculated more precisely. Substitution of the exact crack-shape function (5.57)
for the circular arc into (5.9) yields

A = (K(‘ﬁ) - E(%)) N (K{_sin o) — E(sin a}) . (5.59)

R 7 sinq

where ¢ = R sino. The functions K and E are the complete elliptic integrals of the
first and second kind; see Gradshteyn and Ryzhik [30, Sec. 811]. This result for A4 is
substituted into (5.53) to obtain the linearised stress-intensity factor. Following the
notation of Sih [83], we express the shear stresses at infinity in terms of the applied
load 7% and the loading angle v by

T ity = T e, {5.60)

while we normalise the numerical values of Ky from (5.53) and {5.56) with respect
to the standard stress-intensity factor Ky = 7% \/7a.

The results are presented graphically in Fig. 5.6 as function of . From these results
we observe that the linearised solution is accurate with a relative error of at most
5% up to arc-opening angles o < 30°. Thus, we conclude that the linearised solution
provides acceptable approximations over a rather wide range of arc-opening angles.
It is expected that this conclusion equally applies to general curvilinear cracks for a
broad class of crack-shape variations.
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Figure 5.6: Exact and linearised stress-intensity factors of mode Il for a
crack along a circular are, subject to uniform shear stress at infinity with
loading angle (a) v = #/2, or (b) v = 0, or (¢} v = w/4.

5.3 Plate bending

5.3.1 Problem specification

Consider a thin flat plate of thickness h, consisting of homogeneous, isotropic, linearly
elastic material, containing a through crack of arbitrary curved shape, and being
otherwise unbounded. The crack is described by the shape function y = A(x), with
—a < & < +a, in the same manner as in Section 5.1. The plate is loaded by uniform
bending moments at large distance from the crack, while distributed bending moments
and generalised torques are applied at the upper and lower crack surfaces; see Fig. 5.7.
This problem has been investigated in [93].

The bending of the plate is described in the classical plate theory by the equations
(2.49)-(2.51) or, equivalently, by the equations (2.56)~(2.64) in terms of the complex
holomorphic functions ¢(z), 1(z), w(z) and their derivatives ®(z) = ¢'(z), ¥(z) =
Y'(z), Qz) = W'(z) with complex coordinate z = = + iy. Because of the stress
singularities at the crack tips, the complex functions are singular at these points. To
ensure the integrability of the elastic energy density, we require that for z — +a

®(z), ¥(z), Qz) = O((z¥a)"), (5.61)

where 4 is some constant with 0 < 8 < 1.
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Figure 5.7: Plate with curvilinear crack subjected to bending moments.

Boundary conditions on crack surfaces

We impose that the upper and lower crack surfaces are subjected to normal bending
moments and generalised torques; see (2.65) and Fig. 5.7. The normal and tangential
vectors to the crack surfaces are defined in Fig. 5.2. The boundary conditions in
z=1t+iA(t) on L™, with —a <t < +a, are given by

ME = —m*(t), (5.62)
n ity . .
M = M, + / Qnds = fE(8), (5.63)

where s = s(t) is the arc length along L and @, = Q,n, + @Q,n,. Using (2.70) and
dz/ds =i (n, +in,) = € and denoting by ®*(z) the limit of ®(z) for z — t+i A(t)
on L*, we can express the boundary conditions as

ME i ME4+iC = ~(m—i ) +iC

hE

where € is a real but yet unknown integration constant which is determined from
conditions at infinity. The parameter « depends on Poisson’s ratio, but differs from
the usual values for planar deformation. In the case of bending, & is given by (2.71).
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The resulting force P in the z-direction acting on the crack is determined with the
use of {2.69}. Because of overall equilibrium of the plate, it is necessary that this force
be equal to zero. Integration of {J, vields

P - /LQnds = 2iD[®(z) - 8(z)], = 0. (5.65)

The resulting moments M, and A, about the z- and y-axes acting on the crack are
calculated by integration over the internal contour L. After integration of @, by parts
and with the use of (2.62), (2.69), (2.70), (5.64}, and (5.65), it is found that

M, +iM, = j{—Mwﬂsw,m-ycgn-m@n}ds
L

L i (g + i11y) (Mo + 1 Myy) — i 2Qn ] ds

oA

_ /[A»[,m+iMns+i/sQnds+é6‘] z—[z’z/ands}
JL J 50 J 80 L

= D[(1=v) (ré(=) + 28 +9(z)) + 22 (2(2) - 3(2)) |,

“ [(m — 1 fy ) — (m— ’éf)f(t)} (%) dt, (5.66)

where the constant C gives no contribution since L is a closed contour; see Savin [80].
The notation |5 indicates the increment in the enclosed expression when the contour
L is encircled in clockwise direction, such that the material is at the left-hand side of
the contour. In the case of symmetrically applied moments on the upper and lower
crack surfaces, it is obvious that these resulting moments vanish.

Conditions at infinity

Since the elastic body is taken as unbounded, extra conditions at infinity are required.
We assume that the moments tend to finite values at infinite distance from the crack.
For |z| = /2% + y¥ — oo and with indices ¢, j = z,y, we impose that

My — M. , (5.67)

In the next subsection, these conditions are combined with additional requirements for
the single-valuedness of the bending moments and the displacements. These require-
ments are necessary, since the elastic body comprises a multiply connected domain
because of the presence of the crack.

Stress-intensity factors

The bending moments are singular at both crack tips and their limiting behaviow
near the tip of a semi-infinite straight crack along the negative z-axis is well-known;
see {4.40)—(4.46). The bending stress-intensity factors k; and &y are the normalising
constants for the singular normal bending moment and the singular generalised torque
in the direction 8 = 0 ahead of the crack. With z = 2 = r — 0, we deduce from (2.70)
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and (4.35)-(4.36) that for rectilinear cracks

by —iky — % lim VErr ( My (r,0) — i M; (r,0))
D
= ﬁﬁl_haz)__ lim v2rz (£ ®(2) +0(2) ). (5.68)

The bending stress-intensity factors for a curvilinear crack are expressed in terms of
the inclination angle « at the tip and of the normal bending moment and generalised
torque My, — ¢ M7, in the direction 8 = « ahead of the crack, where the complex
coordinate equals z = ¢ + re** with r > 0. With the use of (2.70) we obtain

6
ki—iky = 2 lim V2T (Maalr,a) =i M3, (r,0) )
1 — -

= %_1/_)2 lim /277 [N(I)(z)%—@(z)

+e Q)1 (et —e V() -0(F) )] (569)

5.3.2 Conditions for single-valued displacements

The bending problem of the cracked plate has been expressed in terms of the complex
functions ®(z) and W(z) or, equivalently, in terms of ®(z) and Q(z). These functions
must satisfy additional requirements in order that all physical quantities {such as
bending moments, shear forces, and displacements) are single-valued in the domain
occupied by the elastic body.

From the relations (2.58)-(2.60) it is deduced that the functions ®'(z) and ¥(z} and
the real part of ®(z) must be single-valued. When the plate contains multiple holes,
the imaginary part of ®(z) may still have a jump when an internal hole is encircled.
This jump can be identified with the resulting perpendicular force acting on that hole,
as in (5.65). The forces acting on each of the holes must add up to zero to meet the
equilibrium of the entire plate. In the present situation of a plate with one hole (the
crack), the force P must vanish and, as a result, the complex functions ¢(z) and ¥(2)
are both single-valued in the domain C\L. Subsequent integration of these functions
produces:

B(z) = 7 log(z—a) + ¢"(2), (5.70)
6 = ¥ log(z—a) + ¥°(2), (5.71)
x(z) = A" log(z—a) + ¥ zlog(z—a) + x*(2), (5.72)

where the functions ¢*(z), ¢¥*{z) and x*(z) are holomorphic and single-valued in C\ L.
For a proper definition of the logarithm, the complex plane is cut from 2 = +a to
z = —a along the contour L and from z = —a to infinity along the negative z-axis.

The complex constants v, ¥ and " are derived from the resulting moments acting on
the crack contour and from additional requirements for the single-valuedness of the
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displacements. Substitution of (5.70)-(5.72) into (5.66)* yields
M, +iM, = 2ri(1-=v)D (¥ — k7). (5.73)
The single-valuedness of the in-plane displacements (see (2.57)) imposes the condition
[6() +28 (R + 0G|, = 2mi (¥ —v) = 0. (5.74)
From a combination of (2.71) and (5.73)~(5.74), it is deduced that

M, +i M,

;o= bl 5.75

! 8D (5.75)
M, —i M,

) = o 2T My 5.76

K 8mi D (570

The constant " is partly determined by the requirement for single-valuedness of the
deflection of the plate; see {2.56). With the use of (5.70), (5.72) and (5.74), we find

[w], = Im{27+"} = 0. (5.77)

This condition is elaborated further, such that we can determine the real constant ¢
which has been introduced in (5.64) as an integration constant.

The behaviour of the complex functions at infinity is now obtained by expanding the
single-valued functions ¢*(z) and ¥*(z) in Laurent series. In accordance with (5.67),
we find

M, +14 f\/fy 1 3 ( 1 )

- oD 2~ = — 5.78
B(2) r + S D 2 g + O ) (5.78)

_ y M, —1 A’Iy 1 ”/" 1 _
We) = T - S - o vo(g), 6

’ R — M, +iM, 1 B — 1 A

= I X x y L / } (_) .

Q(z) +T+ st T T T Ol ) (5.80)

for z — oo, where 3 is an unknown complex constant. The complex constants T' and
I are given by

Mg + Mg

r o= — 2w 5.81
dixomp T (5:81)

M — M + 20 M ,
I'\? — vy zrr Ty .,' 2
21— )D (5.82)

where 4 may be put equal to zero without loss of generality, so that ' is real.

Finally, it is observed from (5.77)-(5.80) that the coeflicient of the term of order
0(1/z?) in the expansion of ©{z) — ®(z) must have zero imaginary part. From this
condition we shall determine the real constant C. The condition is expressed in Q(z)
and ®(z) for convenience, since the mathematical problem is formulated in terms of
these two functions.
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5.3.3 Linearisation for slightly curved cracks

In analogy with Subsection 5.2.2, a linearisation with respect to A{t) is performed. The
crack shape is assumed to be smooth and approximately a straight line. Furthermore,
we assume that the functions ®(z) and (2}, which are analytic in the complex
plane with a cut along the crack L, can be continued analytically over the upper
and lower crack surfaces to the straight line connecting the two crack tips. The
analytically continued functions are denoted by F(z) and W (Zz), where the functions
F(z) and W(z) are holomorphic in the complex plane with a straight cut [—a, +a].
The linearisation process continues by writing these two new functions in the form of
(5.28) with functions Fy(z) and Wy(z) of zeroth order and functions Fi(z) and Wy(z)
of first order in A = || \||. The four latter functions are also holomorphic in C\[—a, +a]
and have singularities at the two crack tips z = zta as in (5.61). The limiting values
of ®(z) and (%) on the crack flanks L*, i.e. for z — £+ 1 A(t), can now be expressed
in terms of the boundary values of Fy(z), Fi(z} and Wy(z), Wi{%) on either side of
the straight cut. With —a < ¢ < +a we have

dE(z) = FE() +i\t) FE@) + FEE) +0(A%),  (5.83)
()] = OF(E) = WFO —i O WIH+WTt) +0(AY .  (5.84)

The angle 6% of crack inclination appears in linearised form as e=2#% = 1—2; ¥ () on
L*. The boundary conditions (5.64) are linearised with the use of these properties.
Omitting terms of second and higher order, we obtain

—(m—if)* ) +iC = 1—v)D { kG (8) + Wi () + k Fy () + Wi (1)

+iXE [REE@) + WE®)] + (2000 (FE® - wir®))] } L (5.85)

where the constant € must be decomposed as C =  + ;. These constants are
determined from requirements that the coefficients of the terms of order O(1/2%) in
the expansions of Wy (z)— Fy(z) and Wi(z)- Fi(z) at infinity must have zero imaginary
parts.

The resulting moments (5.66) acting on the crack contour are split into two parts of
zeroth and first order:

b

- [(m—i Yty — (m—if)~ ()] dt, (5.86)

et £3

-+
MM = — f [(m—i [y () = m—ify ()| N(© e, (587)

gl -

MO +i M

after substitution of dz/dt = 1 + ¢ X (t). Consequently, the limiting behaviour at
infinity of the functions Fy(z) and Wy(z) is given by (5.78) and (5.80) with M, +i M,
replaced by MY + i M , while the behaviour of the functions Fi(z) and Wi(z) is
obtained by putting I' = I" = 0 and replacing M, + i M, by M} +4 M.

The stress-intensity factors are derived from (5.69). The functions ®(z) and () are
replaced by expansions in terms of Fy(z), Fi(z) and of Wy(z), Wi(z). We use that
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the functions /7 Fy(a +r) and —27%2 Fj(a + r) have equal limits for r — 0. We use
a similar property for Wy(a + r). Thus, we obtain the linearised expression for the
stress-intensity factors of a curvilinear crack:
. 8(1 —v)D . i |
ky —iky = (_hg—)— ]11’% vV 2rr [(l - 7) k Fola+r) +ia Fola+ 1)
g

+ (1 - 3%) Wolo +7)+ s Fila+7r)+Wila+ r')} . {5.88)

In the next subsection, it will be proved that x Fy(2) and Wy(z) provide equal contri-
butions, so that a simplified expression for the stress-intensity factors resuits.

5.3.4 Solution for straight cracks

The linearised boundary conditions (5.85) are separated into contributions of zeroth
and first order. Upon addition and subtraction of the boundary values on either side
of the cut, two Hilbert problems are obtained. For —a <1 < +a we have

(k Fy + Wo)T(t) + (k Fo+Wo) (1) = 2S(t)+2iCy, (5.89)

(
(K Fo— Wo)t(t) — (kFo— Wo) (1) = 2U(1), (5.90)

where Cy = Cy/(1 — v)D and the functions S(t) and U/ (t) are defined by

St = é(—li—ly)—D[(??z—z‘f)*(t) +im—if) ()], (5.91)
U0 = sroop M= - m-if@] G

We again introduce the Plemelj function X(z) = +/2% — ¢?, which is holomorphic
in C\[—a,-+a]. This function equals X*(¢) = +iva? — 2 on cither side of the cut,
while we have X(2) = z + O(1/z) at infinity. The solution to the Hilbert problems
(5.89)—(5.90) is now given by

e L XSO, BG) a ( 2)
K Fy(z) + Wolz) = T X(2) /a romps di -+ X(2) + 4iCy (1 X(z)) , (5.93)
kFp(z) — Wy(z) = —1~ U dt + Qolz), (5.94)

Tt Joa T—2Z

where the functions Py(2) and Qy(z) are polynomials. The conditions (5.78)-(5.80)
at infinity imply that

(1+v) (M2 +iMD)
4ri(l—v)D 7
Qolz) = (k—1)I -T7. (5.96)

Pyz) = ((&+1)F+ﬁ>z—
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The constant Cy is determined from the requirement that the term of order O(1/2%)
in the Laurent expansion of Wy(2) — Fy(z) at infinity must have a coefficient with zero
imaginary part. We find

Co = —MZ+ 12:; / :a(m*"(t)—m“(t)) ¢ dt
-;2—2 ':;ﬂ(f*( W) V@2 (5.97)

Under the assumption that the applied bending moments m™(#) and generalised
torques fE(¢) (and thus the function U(#} in (5.92)) are finite at the end point ¢ = a,
it immediately follows from the solution (5.94) and [62, 63] that

lim +/27(z - a) (:“&F@(Zﬁ) - Wdz}) = 0. (5.98)

Zz—a

This proves the statement that « Fy4{z) and Wy(z) provide equal contributions to the
stress-intensity factors k; and ky. Therefore, the last term in (5.32) vanishes.

The zero-order part of the bending stress-intensity factors (5.68) is calculated by
multiplying (5.93) with {/27(z — a) and taking the limit for z — a. We find

[m' () +m~(t) ] (gf—t)z dt

ky = W;;’ﬁﬁﬁ— vvvvvvv -

h2 Vra

- %\%}% h UF“ VVVV f]di, (5.99)
ky = h?jﬁ ]_:a [f‘*‘(t)+f"(t)] (21‘ a) (ng- & |
* g}%% h [m*(t) = m~ (1), <2t:a) dt. (5.100)

Note that the expression for the stress-intensity factor ko is not influenced by the
uniform torsional moment A2 at infinity. This agrees with the results of Merkulov
[58], but is in contrast with (5.8) where the stress-intensity factor K;; does depend
on the shear stress o2y applied at infinity.

When concentrated moments are applied on the crack, another result of Merkulov [58]
is obtained. When m™(¢) = Mg 6(t —1g), f1{t) = HpS{t ~tg), and m ™~ (#) = f~{({) =0
is inserted, where 8(t) is the Dirac delta function, it is found that

3Me [a-+to\* 3Hp (1 +v) -
i h*\/Ta (&—to) 2h% /ra (5.101)
SH{) (Qto - (1) (l’} -+ fg)% 31‘/{@ {1 + 1/)(21‘0 + a) .
k - - . 5.1
2 h2a+/ma a—ty 2h%a (5.102)

In the case of symmetric loading, the distributions of the applied moments on the lower
and upper crack flanks are equal: m*(t) = m(t) and f=(¢) = f(t). The expressions
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(5.99)—(5.100) attain the simpler form

o= oM mad o [ m() (a—t-f)%dt (5.103)
hQ / ] 3

)(aH)% dt. (5.104)

a—t

6 +a F e
b = e fm( a

5.3.5 Solution for slightly curved cracks

In this section the first-order terms of the stress-intensity factors for curvilinear cracks
are calculated. For the sake of simplicity, the applied bending and torsional moments
are restricted to symmetric distributions, i.e. m*(#) = m(t) and f*(t) = f(t). As
a result, the expressions (5.103)~(5.104) for the stress-intensity factors of order zero
may be used. The Hilbert problem for the functions Fy{z) and Wy(z) of first order is
derived from the boundary conditions (5.85). Restriction to first-order terms yields

KEEO+ W) = iC—id0) [s B + Wi @]
—[2iA) (FF@®) - wi )], (5.105)

where the constant Cy equals C; /(1 — v)D. Addition and subtraction of (5.105) leads
to the Hilbert problems

(kP +WHT O+ (kFL+W) (1) = (), (5.106)
(R Fr =W () — (kL = W)~ (t) = bao(t), (5.107)
where the functions by(t) and by(t) denote the sum and the difference of the right-

hand sides of (5.105), respectively. The precise form of these functions is given in
Appendix B.2. The solution to the Hilbert problems {5.106)-(5.107) is given by

1 = X bi(t) Pi(z)

Kk Fi(z) + Wi(z) = i X(D) ek s X0 (5.108)
K Fu() = Wilz) = 5% / fg_(tz dt + Qi) (5.109)

where the functions Py{z) and Q,(z) are polynomials. The conditions at infinity imply
that these polynomials vanish.

The contribution of the functions Fi(z) and Wi(z) to the stress-intensity factors is
obtained from (5.88) by taking the following limit in (5.108). We find

6—(1%/-)2 l&%{ V2rr [k Fi{a+7) +W’1(a—}—r}]}
- 3(1—11)1) e a4t 1
T R ra Jea bi(t) (Q_J dt. (5.110)
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A detailed elaboration of this solution and the determination of C are presented in
the Appendix B.2. The expression (5.110) is worked out in (B.12).

The contribution of the functions Fo(z) and Wy(2) to the stress-intensity factors for
a curved crack is obtained from (5.88) with (5.98). Let the factors (5.103)-(5.104} be
denoted by k7 and k§. Then, this contribution is given by

6{(1 —v)D ——
—g—hfi— nn{\/ 2& 1—za)1‘0(a+?”)+@a170(a+?°) }
2 1 2k —
=(k?——%—'ak§>—i(k§+—%—akf). (5.111)

The stress-intensity factors for a thin flat plate containing a curved crack and loaded
by bending and torsional moments are now obtained by summation of the results
(5.110) and (5.111). With the use of (B.12) we derive the final result:

6 v/7a e +1
ky = h;r (Mg —24AMZ) + h2_::/-- au(t) (Q_J dt
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3] +a I3
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where the integrand functions g,(t) and ¢,(¢) are defined by

aft) = m() + (Vo) - “tlay ("““A— 2"‘”2:1 o) (2*5 ) s, 119)

) = (Mt B0 v (22 o + (P2 s, 19

2K Ka
The last term in (5.113) contains a double integral in which the inner, singular integral
+ is calculated by taking the Cauchy principal value. It is proved in Appendix B.1
that interchanging the order of integration is allowed. The dimensionless crack-shape
parameter B is defined by

1 gpte /2%~
B=— [ XN@® ( ~~~~~~ ) (ﬁf) at, (5.116)
T J—a a a1 '
analogous to the definition (5.9) of the parameter A. It follows that
2 e fA(E
A-B = = / NV —#dt = / A g (5.117)
mTa*s Je—g —a _ia’ 4

We note that the parameters A and B are equal for svmmetric cracks with even shape
functions, i.e. with A\(t) = A(~¢) for —a <t < +a.
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5.3.6 Examples

The expressions derived for the bending stress-intensity factors are illustrated with
a few examples. Simplified expressions for ky and kg are obtained by substitution of
special distributions of the bending moments and specific crack-shape functions.

Uniform moments af infinity

As a first example, a thin flat plate loaded by bending moments (5.67) at infinity
is considered. The surfaces of the curved crack are stress-free. The stress-intensity
factors for this bending problem immediately follow from (5.112)—(5.113)}, viz.

6@ no e 1 oo i x
o= =y (M- 2403, (5.118)
6+/7a o ppe) L (EFL %=1 N\ 1 .
ky = h—2{8< MES Mm) (= - 0+ = Q) uw} (5.119)

The same expressions are obtained for an equivalent loading configuration, where no
bending moments are applied at inﬁnitx but where the crack surfaces are loaded by

roments of opposite sign, Le., Mj; = —MF and (J; = 0. The bending moment and the
generalised torque on the crack surfaces a,rc determined with the use of the linearised
tangential and normal vectors s* = +(e, + \'(t) e,) and n* = +(N(t) e, —e,) on L*.

Omitting second and higher-order ferms we find

My, = —m(t) = Mgn2+2Myn,n,+ Wyy n’

= =My +2N(t) My, (5.120)
M;j =+ f{t) = Myng s, + Myy(ng sy +nys.) + My,ny,s,

= M+ N{t) (Mpe — M2) . (5.121)

Substitution of these loading distributions into {5.112)~(5.113) indeed produces the
same results for the stress-intensity factors as in (5.118)-(5.119).

Uniform moments on crack surfaces
As a second example we examine the situation whele the Craék surfaces are loaded by

moments are applied at mﬁmty. The stress- 111tem1ty factors for thlS conﬁgum’non are
derived from (5.112)~(5.115) as

e : /
P 6?’“&;”‘} (5.122)
m \/Ta 1, 1—k - 261
by = 6mqﬁ&(&+ (B—A)+ " B4+ a). (5.123)
h? I K 2K

We note that there is no contribution of the generalised torque f. These results
resemble those of the first example. Identification of m and f with M;> and Mg
n (5.118)(5.119) shows that the terms of order zero are identical. This is obvi IOUS

because the two examples are equivalent in the case of straight cracks. The first-order
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terrs, however, are different. The crack-tip angle o appears equally in formulae
(5.118)-(5.119) and (5.122)~(5.123); the differences are confined to the terms with
the crack-shape parameters A and B. Subtraction of the results yields

6 /7a o .

Ak = S (—2A M), (5.124)
6 \/?T—a o0 g0

Aky = 5= B(My - M3). (5.125)

These differences precisely correspond to the occurrence of A{t) in the expressions
{(5.120)—(5.121) for the bending moments on the crack flanks. Multiplication of this
derivative with appropriate factors and integration over the interval [—a, +a] produces
A and B; see (5.9) and (5.116). Therefore, these parameters are measures for the
amount by which the crack deviates from a straight line, and for the influence thereof
on the stress-intensity factors k; and ks, respectively.

Crack along circulor arc

For the third example, a crack along a circular arc of radius R is chosen, having an
opening angle 2¢; see Fig. 5.5. The crack-shape function A(z) is given by (5.57). The
parameters A and B for this crack geometry are equal (see (5.117)) and are given by
(5.59). The plate is subjected to pure bending by M7} = MY = M and to uniform
torsion by M> = H at infinity. The crack surfaces remain stress-free. The linearised
stress-intensity factors are derived from (5.118)-(5.119) and are equal to

6/7a /.

o= (M —2AH ) (5.126)
6 7a /(1 1 ‘

T e — —_— QU — "\ i r‘ v

ko ¥ ((/{ 1)A+(1 2&) a) M (5.127)

The exact solution has been calculated by Merkulov [58] and is given by

6 vrRsina ( K cos{a)

h? # -+ sin®(La)

1 1 -
ky = M - 3 sin(§a) (1+3cosa) H) . {5.128)

6VrRsina { wksin(3e) 3 1
ky = 3 ( r+om(la) M — 3 sm(ﬁaf) sina H | . (5.129)

The numerical values of k; and k; from (5.126)—(5.127) and from (5.128)—-(5.129) are
normalised with respect to the standard stress-intensity factors kg = 6 M \/ma/h? and
6H+\/ma/h? with a = Rsina. The results are presented graphically in Fig. 5.8 as

ky for uniform torsion has been omitted from the figure, because the linearised result
(5.127) vanishes and the exact solution (5.129) is of second order in «.

We observe that the relative error in the results for pure bending is at most 5% for
arc-opening angles o < 40° concerning k; and for angles « < 25° concerning ky. The
linearised stress-intensity factor k; for uniform torston is only accurate within 10% up
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to angles o < 20°, Thus, we conclude that rather acceptable approximations for the
bending stress-intensity factors for cracks along circular arcs are obtained. On the
basis of these results, we expect that the formulae {5.112)—(5.113) can also be used
to derive the stress-intensity factors ky and ks for arbitrary, slightly curved cracks.

(a) k1
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Figure 5.8: Exact and linearised bending stress-intensity factors of modes
1 and 2 for a crack along a circular arc, subject to {a) pure bending and
(b) uniform torsion.

5.4 Comparison of stress-intensity factors

The stress-intensity factors &; and ky of plate bending show several similarities with
the factors K; and K of planar deformation, but there exist some differences. Firstly,
the solutions (5.103)—(5.104) are compared with the expressions (5.3)~(5.4) and (5.7)—
{5.8) for a straight crack. We observe that the sfress-intensity factor ks does not
depend on the torsional moment M7 applied at infinity. This is in contrast with the
shear stress o7 which does appear in the expression for K. Another dissimilarity
between the respective stress-intensity factors concerns the factor (2t — a}/a in the
integrand functions. This factor is typical for the bending problem, since it does not
occur in the expressions for Ky and Ky of the plane-stress problem.

Secondly, the expressions (5.3)-(5.4) and (5.7)~(5.8) are compared with the solutions
(5.112)-(5.113) for a curvilinear crack. A common feature of these solutions is that
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the stress-intensity factors of modes I and 1 have zero-order terms which depend on
gy and plt) and on Mg, and m(t), respectively, and first-order terms which depend
on oy and g(t) and on My and f(t), respectively, multiplied by suitable expressions
involving the crack-shape function A{t). Regarding the factors of modes I and 2,
the dependence of their zeroth and first-order terms on the loading components is
precisely the other way around.

Furthermore, we notice that the expressions (5.112)~(5.113) for plate bending are
much more comphcated than the expressions (5.3)- (5.4) for planar deformation. This
relates to the presence of the parameter « in the boundary conditions (5.64) and (5.85)
on the crack surfaces. As a consequence, this parameter also appears in the Hilbert
problems for the complex functions and, thus, in the solution for the stress-intensity
factors. On the other hand, in the case of planar deformation, the expressions for the
stress components do not contain a constant «, but only those for the displacements
do [63, Sec. 32]. In addition, the integration constant C in (5.64) gives an essential
contribution to the bending stress-intensity factors. This constant should not be set
equal to zero, since it is related to the conditions for single-valued displacements.

It is instru(tiwe to compare the stress intens,ity factors (5.112)- ( 5.113) of the plate

lem, when we put K 1 and dlSIeng‘d the extra multlphcatwe factor (225 - a) /a in
the integrand functions (5.114)—(5.115). Putting x = 1 means in fact that Poisson’s
ratio is taken equal to infinity because of (2.71). This corresponds to the observa-
tions in Chapter 4, where putting v = oo resulted in equal near-tip singular bending
moments for Reissner’s theory and the classical plate theory. Ignoring the typical
factor (2t — a) /e firstly implies that the crack-shape parameters A and B become the
same. Secondly, the term (2/a) A(¥) m(t) can be omitted from the integrand function
g2(t), because it stems from differentiation of the multiphcative factor; see (B.14).
When the factor (2t — a)/a is disregarded in this way and with & = 1, the expressions
{5.112)~(5.113) reduce to

ko= W(M;;—QAMES)

h2
.___6 e ’ 3 , a-t 3
+ qu&ya[mﬁ)+(A®y—§a)ﬂﬂ}(ﬁ_J &
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Although these simplified stress-intensity factors have no physical meaning, they show
remarkable similarities with K7 and Kj; as given by (5.3)~(5.4} and (5.7)—(5.8). The
remaining differences concern the double integral in the expression for k, and the
influence of the shear stress o7 and of the torsional moment M7 applied at infinity.

We shall now discuss the stress-intensity factor Ky;; and start with a comparison of
the results for straight cracks (the terms of order zero). From Sections 5.2 and 5.3 it
is clear that the dependence of the stress-intensity factor Kj;; on the shear stresses
7oy and p(t) in (5.51) is identical to the dependence of K on the stresses 020 and p(t)
in (5.3) and (5.7), and to the dependence of Ky on the stresses o7y and g(f) in (5.4)
and (5.8). This correspondence also applies to the dependence of the stress-intensity
factor k; on the bending moments My and m(t) in (5.103), but not to the dependence
of k2 on the torsional moment M7 and the generalised torque f(¢) in (5.104). The

latter is due to the factor (2t — a)/a which is typical for bending problems.

Next, we compare the results for slightly curved cracks {the terms of first arder).
Regarding the uniform loads applied at infinity, there is only little correspondence
between the expressions for Ky and K7, ky; see (5.7), (5.50), and (5.112). Indeed,
the first-order terms depend on 777, o7y, and MZ, respectively, but the coeflicients
of these stresses and moments are different. We observe even less similarity with
the expressions for K7 and ky; see (5.8) and (5.113). Regarding the stresses and
moments applied to the crack surfaces, we already noticed some common features of
the stress-intensity factors K, Ky and &y, k2 at the beginning of this section. These
features are related to the fact that two independent fracture modes exist in each
of the cases of planar deformation and of plate bending. In the case of anti-plane
shear, however, there exists only one fracture mode. This explains why we only find
a non-zero contribution to Ky of first order in A(¢) for asymmetric loading with
pt(t) # p~(t) as in (5.50), and not for symmetric loading as in {5.51).

The reasons for these dissimilarities are twofold. The differences are not only caused by
a combination of fracture modes as discussed above, but the direction of the applied
forces also influences the results. The stress-intensity factors K, Kj; and %y, &
are expressed in terms of stresses and moments acting in the directions normal and
tangential to the crack surfaces. These directions are related to the derivative A'(¢)
of the crack-shape function. The factor Kj;7, on the contrary, is expressed in terms
of shear stresses acting in the z-direction which is constant along the crack, Thus,
Ky depends on the derivative M (¢} to a lesser extent than the other stress-intensity
factors. This also forms an alternative explanation for the different dependences of
the stress-intensity factors on the uniform stresses and moments at infinity.

5.5 Conclusions

We have studied elastic bodies containing curvilinear cracks and subjected to in-plane
stresses, out-of-plane shear stresses, and to bending and torsional moments. The
stress-intensity factors K; and K for planar deformation have been determined, and
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also the factor Ky for thick elastic solids loaded in'anti-plane shear. In addition, the
stress-intensity factors ki and ks of the classical plate theory have been calculated for
the bending of thin flat plates. The solutions depend on the stresses and moments
applied to the crack surfaces, on the uniform loads at infinity, and on the crack-shape
function A(t). A comparison of the results leads to the following conclusions:

1. The dependence of the stress-intensity factors k; and k; on the bending moments
is similar to the dependence of the factors K; and Ky on the in-plane stresses.
The straight-crack solutions (the terms of order zero in A{f)) for & and K
relate to the loads in the direction normal to the crack surfaces, and those for
ko and K to the loads in the tangential direction. This is in accordance with
their definitions. The first-order terms of k; and K typically depend on the
loads in the tangential direction and on the crack-shape function, and those of
ks and Ky on the loads in the normal direction; see (5.3)-(5.4), (5.7)-(5.8) and
(5.112)—(5.113).

2. The differences between k; and ky on the one hand and K; and K;; on the
other hand, mainly concern the parameter x related to Poisson’s ratio and the
multiplicative factor (2¢ — a}/a in the integrand functions in the expressions
for ky and ky. Putting x = 1 (or v = oo) and disregarding the multiplicative
factor in (5.112)-(5.113) reveals remarkable similarities with the stress-intensity
factors Ky and Ky, although the resulting factors ky and k; in (5.130)-(5.131)
have no immediate physical meaning. In addition, the stress-intensity factor ks
does not depend on the torsional moment M7y, whereas Kj; does depend on

the shear stress o7, applied at infinity.

3. Less similarity is observed between Kjyy and the other stress-intensity factors;
see (5.50). This is caused by the fact that only one fracture mode exists in the
case of anti-plane shear, whereas two independent fracture modes exist in the
case of planar deformation or plate bending. Moreover, the stresses in anti-plane
shear are applied in the direction perpendicular to the plane of symmetry and
parallel to the crack fronts; this direction is constant along the crack.

4. All stress-intensity factors Ky, Ky, Ky and ki, ks have been calculated for
a crack along a circular arc and compared with the exact solutions from the
literature. Good agreement has been obtained, which indicates that the derived
expressions can be used for a wide variety of cracks with slight curvature.

Summarising we conclude that useful expressions for the stress-intensity factors have
been derived, which enables the analysis of prolonged crack propagation along curvi-
linear paths under general loading conditions. The incorporation of the crack shape is
necessary to produce the correct values of the stress-intensity factors and to calculate
the direction of further crack propagation accurately.



Chapter 6

Uncoupled fracture approach

So far, we have investigated general properties of brittle fracture and dynamic crack
propagation {Chapter 3), the consequences of bending deformation plus the effects of
crack closure (Chapter 4}, and the stress-intensity factors for curved cracks subject
to tensile, tearing and bending actions (Chapter 5). In the present chapter we uuite
these results into the uncoupled dynamic fracture approach. :

The method has been described briefly in Section 1.3 and will now be explained in
more detail. The elastodynamic effects in a time-dependent deformation problem
concern stress waves and crack propagation. There exists a certain interaction: the
{dynamic) stresses determine the crack propagation, while rapid fracture initiates
new stress waves. This connection is partly uncoupled in the present approach. The
stresses are calculated first for the undamaged geometry without crack growth and,
next, possible crack patterns are derived.

Although the main area of application is the impact safety test on television picture
tubes, the uncoupled approach is also suitable for the analysis of fracture problems
involving rapid crack propagation and/or dynamic loading conditions. In fact, this
method can even be used to examine quasi-static crack propagation in structures under
constant loads. (A deformation problem is called quasi-static when the dynamic effects
can be neglected.) There is one restriction: this approach applies to thin, slightly
curved, plate-like structures and is less suitable to analyse general crack propagation
in thick three-dimensional solids.

6.1 Description of the method

The first step in the uncoupled analysis of fracture phenomena is the determination
of the dynamic stresses in the elastic body as function of time. This can be performed
analytically (if possible) or numerically, e.g. by means of a finite-element computation.
For a thorough introduction into the finite-element method we refer to the textbooks
by Hughes [37] and Zienkiewicz [100]. A short summary is contained in Chapter 7

107
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as o prelininary to the hybrid fracture/damage approach. In order to pertormn a
dynamic analysis, it is necessary that the initial equilibrium situation be caleulated
first. With regards to the application to television pieture tubes. the initial state for
the impact safety test is the glass bulb (sereen, cone and neck) loaded by the internal
vacuvm, [ addition to the vacuum load, the glass bully can be subjected to extra
forces induced by application of the metal rimband. Other geometries (for exaple
test spechmens) may nitially be i a stregs-free state or i a simmple stress situation.
The clastodynamic caleulation continues with the addition of ihe impact load (or any
other time-dependent external foree) and the computation of the stresses for several
time inerements. Evidently, a guasi-static analysis can be carried out hy taking the
stresses constant in tine aud equal to the initial stress distribution.

Until this moment, the analysis is performed for the intact, unfractured geometry.
The initiation of a crack is the sccond step in the unconpled fracture approach. The
precise location of erack initiation can be chosen freely, in combination with the initial
length and direction of the crack, For television tubwes, this location can for mstance
be at the point of iimpact, at one of the prescribed scratches in the case of the missile
test, or even at the cone or the neck of the tube. Regarding the crack propagation,
we inpose some restrictions on the shape of the crack surfaces. The projection of the
crack onto the middle plane of the glass screen inay attain an arbitrarily curved shape.
This type of eracks has been ipvestigated in Chapter 5 and a restriction to the in-plane
curvature is that linearisation of the ¢rack shape is admitted, so that the linearised
expressions for the stress-intensity factors can he used. We impose that the crack
front is always a straight line and that the crack surfaces are always perpendiculkar to
the middle plane of the screen. As a result, it is not possible to incorporate variations
of the crack front over the thickness of the sereen nor the amount of crack rotarion.
These effects may ocenr when the erack propagates at cdifferent speeds in the inner
and outer surfaces of the screen or in different directions. In these cases, the crack
front is no longer a straight line perpendicular to the middle plane of the screen,
but it will rotate and attain a skew orientation with respect to the sereen normal.
Observations on fractured television picture tubes, however, indicate that cracks are
alimost perpendicular (o the sereen surfaces in many cases.

The third step in the nucoupled fracture approach is the determination of the crack
path. After the initiation of the crack and at any intermediate stage of the fracture
simulation, both the speed and the direction of further crack propagation must be
caleulated. Although the screcn of a television tube is 1ot entirely flat and does not
have constaut thickness, it can be regarded as o thin flat plate becanse the thickness
wriations and the curvature are relatively small. So, we may use the expressions for
the stress-intensity factors for curvilinear cracks in plates as derived in Chapter 5. The
crack path is a plece-wise linear curve with the sequential positions of the crack tip
as 1t vertices and with the crack increments as the connecting lines. The crack-shape
function y = Alx) for each vertex is determined by measurement of the distance
to the line connecting the end poiuts of the crack path; see Fig. 6.1 and compare
with Figs. 5.1, 0.3, awd 5.7, The stress distributions along the crack surfaces are
derived from the clastodynamic stresses which have been caleulated at step one, while
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the stresses on opposite crack surfaces are taken equal. Substitution of these data
into the expressions (5.3) and (5.4) produces the stress-intensity factors K, and Ay,
while Ky is derived from (5.51). The bending stress-intensity factors k; and ky of
the classical plate theory are calculated from the formulae (5.112) and (5.113) and
are converted into the bending stress-intensity factors K and &, of Reissner’s theory
with the use of the expression (4.84).

Figure 6.1: Piece-wise linear crack path and measurement of crack-shape
function. The dot e is the impact point and the other crack end is the
propagating crack tip.

Now that all stress-intensity factors have been determined, we turn to the calculation
of the crack-growth direction and speed. To this end, we use the fracture criteria
discussed in Section 3.4. The two criteria have been implemented in the uncoupled
approach. Although no essential differences have been observed in the obtained crack
patterns, we shall consider the details of both implementations below. Regarding the
circumferential stress criterion, the crack-propagation angie 8, is determined by (3.60)
and the maximum stress-intensity factor Kgg(#,) by (3.61). In these expressions, A
and K, are replaced with their “effective” values K; + |K;| and Ky + sign{A}} -
K5 in the outer or inner side of the screen where the tensile stress is maximum,
which is in agreement with (4.91)-(4.92). The crack-growth speed ¢ is then calculated
from the expression (3.74) for the dynamic energy release rate with the substitution
G(o,a,0) = K&(0,)/E. Regarding the J-integral criterion, the crack-propagation
angle 8, is determined by (3.65) with the parameters J; and Ja defined by (4.94)
(4.95) with ¢ = 0. The crack-growth speed c¢ is again calculated from (3.74) but this
time with the substitution G{o,a,0) = (J? + JQZ)%. For either fracture criterion, we
determine the new position of the crack tip by

Xiiprew — Xitipold + C- Atr s (61)

where At, is the time step for the crack increment and ¢ is a vector in the plane tangent
to the screen with length equal to the crack speed ¢ and with its direction determined
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by the crack-propagation angle #,. It is emphasised that the time step Af. for the
fracture simulation may be larger than the time step used for the computation of the
elastodynamic stresses. The former time step cannot be chosen too large, because
otherwise the condition for stability of the time-step algorithm will be violated.

After the determination of the new crack-tip position, the third step in the uncoupled
fracture approach is repeated and the stress-intensity factors for the new, extended
crack are calculated. As long as the value of G(o,a,0) exceeds the critical energy
release rate G., the dynamic crack propagation will continue. But when G(o,a,0)
decreases and becomes less than G., the crack-propagation speed ¢ becomes zero and
crack arrest occurs.

6.2 Superposition principle

The uncoupled fracture approach uses (dynamic) stress data of the unfractured geo-
metry to predict crack patterns. This may sound contradictory, but it can be explained
by the following argument for quasi-static fracture, i.e., for an instantaneous geometry
containing a crack. In the first step of the analysis, we compute the elastodynamic
stress distributions for an intact structure under the assumption that fracture does
not occur. In the next steps, we assume the existence of a crack at a certain position
and at a given moment of time. This crack, however, is a virtual crack in the sense
that it does not exist in reality. The stresses in these positions are considered to act
on the crack surfaces, opening the crack and creating a stress intensity at its tip. This
leads to a paradox, since there are no stress singularities in the computed stress data.
On the other hand, the surfaces of a real crack would have been stress-free. This
paradox is explained with the superposition principle; see Broek [11, Sec. 3.5].

Counsider the original intact elastic body loaded by external forces and with the given
distribution of internal stresses, i.e., the elastodynamic solution as calculated at step
one of the uncoupled fracture approach. Also consider three related configurations
which are illustrated in Fig. 6.2 and which concern the fractured geometry under
different loading conditions. Firstly, the body (a) contains a crack with stress-free
crack surfaces and is subjected to the same external loads as the original body. Due to
the presence of the crack, stress relief occurs resulting in crack opening. Secondly, the
body (b} which has the same geometry as (a) is loaded by extra stresses o, = p(x)
being applied to the crack surfaces in the direction n normal to the crack. These
stresses tend to close the crack and the function p(z) is chosen such that complete
crack closure occurs and that the stress singularities at the crack tips vanish. Because
of the disappearing stress singularities, the situation (b) coincides with the original
intact geometry. The difference between {a) and (b) is obtained by subtraction. This
results in configuration {¢) where no externally applied forces are present; only the
crack surfaces are subjected to stresses oy, = —p{z) having opposite sign with respect
to body (b). These stresses tend to open the crack and create stress singularities at the
crack tips. Because of the superposition principle, the stress intensities for (a) and (¢)
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are identical. The stress distribution p(z) is derived from the solution of problem (b)
or, equivalently, from the solution for the original intact elastic body. The obtained
stress distribution is then used for the calculation of the stress-intensity factors. This
argument shows that the influence of the stress situation on the stress-intensity factors
is correctly incorporated in the uncoupled fracture approach.

P1t P1d

Figure 6.2: Principle of superposition: configuration {a) with external load
and stress-free crack surfaces is equivalent to {b) with extra stresses closing
the crack as if no crack were present plus (¢} with opposite stresses applied
to the crack surfaces but without external load.

This argumentation alsc reveals some limitations of the uncoupled fracture approach,
regarding the dynamic effects. As described in Section 1.1, the stresses and the crack
propagation are linked. Firstly, the fracture mechanism is based on the actual stress
situation. This equally applies to dynamic and static fracture processes. Secondly,
rapid crack propagation induces stress waves emanating from the moving crack tip
and the continuous changes in the geometry lead to different relations between the
stresses and the external loads. The latter effects, i.e. the disturbing infinence of
the propagating crack on the stress field, are neglected in the uncoupled fracture
approach. The dynamic interaction is only incorporated in the universal functions of
crack speed, k;(c) and g7{c), which relate the elastodynamic stress-intensity factor and
energy release rate to their static equivalents; see Section 3.5. Because of the partial
incorporation of the dynamic effects, the uncoupled approach can only produce reliable
results for the initial stages of crack propagation but not over the full range of the
fracture process. This is not considered as an obstructing problem, since the first and
second phases of crack propagation are most important.
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Finally, it is emphasised that the uncoupled fracture approach admits the analysis
of only one crack at a time. It is possible to analyse multiple cracks by separate
applications of the procedure described in Section 6.1. Every crack prediction starts
with the initiation of a new crack, which may be chosen at a different position and with
different length and/or direction. The ease-of-use of this method becomes apparent
when we consider the great numerical effort involved in the dynamic finite-element
computation compared to the relatively small amount of post-processing for uncoupled
fracture simulations. The elaborate dynamic stress calculation for the intact geometry
requires several hours of computing time, but this calculation is always performed since
it is the simplest manner of gaining insight into the internal stress distributions. (To
be more precise: it is the second-simplest manner after a static stress analysis for the
vacuum load). The time needed to determine a crack path ranges from a few minutes
to at most one hour, depending on the length of crack extension. The advantages are
obvious: the elastodynamic stress data are already available and can be used again for
each of the uncoupled fracture simulations, resulting in a large saving on computing
time.

6.3 Application to standard tests

The uncoupled fracture approach has been embedded in the finite-element toolbox
which has been developed in the MATLAB programming environment [57]. For the
division of the geometries into finite elements we have utilised the mesh-generation
program SEPMESH of the SEPRAN package [82]. The implementation of this toolbox
has been performed in cooperation with J. Horsten.

Several tests have been carried out to investigate the accuracy and reliability of the
uncoupled fracture approach. The first test concerns the possible dependences of
the calculated crack patterns on the finite-element division. To this end, we study a
square plate of size | X I and thickness h = /20, being loaded by uniform tensile forces
or uniform bending moments on two opposite sides; see Fig. 6.3. The plate is divided
into n X n elements with one element over the thickness. We choosen = 10 and n = 16
and select the elements of Wilson and Taylor (see Section 7.5). These elements have
eight degrees of freedom {eight corner nodes) and additional interpolation functions
to ensure the correct bending stiffness, The elements have a slanted orientation such
that the maximum slope of the element lines is equal to 0.10 or 0.20. This corresponds
to inclination angles of 5.7° and 11.3°, respectively.

After the stress calculation a crack is initiated at the middle of one of the non-loaded
sides. The initial crack length is equal to 2, with I, = [/n being the element width.
The crack increments are chosen equal to éle. The fracture toughness is set equal to
a small value to enforce crack growth. In Fig. 6.3 we show the crack patterns in the
plate loaded by tensile forces for the various element divisions. Subsequent positions
of the crack tip are marked by open circles. The prospective end point of the crack is
at the middle of the other non-loaded side and is indicated by x.



6.3. APPLICATION TO STANDARD TESTS 113
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Figure 6.3: Crack patterns for a square plate loaded by uniform tensile
forces, derived with the uncoupled fracture approach for various element
divisions. Subsequent positions of crack tip are shown by o and prospective
end point of crack by x.

Because of the simple loading geometry, the fracture process can be described by the
stress-intensity factor K for the tension problem and K for the bending problem.
A trivial solution is obtained with a uniform uniaxial stress state and with a straight
crack path, despite the slanted element orientation. Similar results are obtained for the
plate loaded by bending moments, while anti-clastic bending behaviour {90, Sec. 11]
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is observed in the displacement solution due to the applied moment. Refinement of
the element division and selection of other inclination angles of the mesh also produce
straight crack patterns for both loading situations.

(a) initial crack length 15 mm
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Figure 6.4: Crack patterns for a single-edge notched beam loaded under
shear conditions, derived with the uncoupled fracture approach for different
initial crack lengths. Subsequent positions of crack tip are shown by o.

Another test concerns curvilinear crack propagation under shear loads. A suitable
test for the examination of shear effects was proposed by Iosipescu [39], namely a
beam with a single-edge notch loaded by compressive forces applied at four different
points; see Fig. 6.4. We shall adopt the dimensions of Feenstra [27, Sec. 5.1] and
Schlangen [81, Sec. 3.3] and study a beam of length 440 mm, height 100 mm, and
thickness 10 mm. The forces F are applied at a distance of 20 mm from the plane
of symmetry and the forces Fs at a distance of 200 mm. Because of equilibrium, we
have Fy = 10 F,. The beam is divided into a total of 264 elements with one element
over the thickness and with refinement in the shear zone, where the elements are of
size 10 x 10 x 10 mm®. The Wilson-Taylor elements are used for a proper description
of the in-plane bending behaviour.
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A crack is initiated at the middle of the longest edge of the beam, in the plane of
symmetry, with an nitial length of (a) 15 mm or (b) 25 mm. The deformation of
the beam is essentially two-dimensional and the fracture process can be described by
a combination of the stress-intensity factors Ky and Kj;. Due to the shear stresses,
crack propagation will occur along a curved path with its end point on the opposite
edge to the right of the point where the force Fy is applied [81, Sec. 4.1]. The crack
paths obtained with the uncoupled fracture approach as shown in Fig. 6.4 satisfy this
requirement, although deviations occur near the points of crack arrest. The latter is
caused by the compressive stresses near the position where the force F) is applied.
Because of the limitations of the uncoupled approach, the crack path in this region
has limited validity, but the first part is reliable.

The crack patterns of Fig. 6.4 agree with both the experimental and the numerical
results of Schlangen [81, Secs. 4.1, 6.2]. The present results are better than those
of Feenstra [27, Sec. 5.1}, who obtained a straight crack path inclined at an angle
of approximately 45° with respect to the edge. Single-edge notched beams of other
dimensions have been studied by Lubliner, Oliver, Oller and Orfiate [54] with the
use of a plastic-damage model and by Rots [79] with smeared and discrete crack
representations. It has been mentioned in [79] that the smeared rotating crack concept
suffers from stress locking and only produces an agreeable crack path for the early
stage of fracture, and that this path has been used as a predefined discrete crack in
a subsequent fracture analysis resulting in the correct stress distributions. The crack
patterns obtained in [27, 54, 79] satisfy the requirement for the end point of the crack
path (to right of the point where F} is applied) and no particular differences with the
present results or with those in [81] are observed.
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Figure 6.5: Crack patterns for a pipe loaded by torsional moments, derived
with the uncoupled fracture approach. Initial crack is at middle of side
view and at top of cross-sectional view. Subsequent positions of crack tip
{(into two directions) are shown by o.
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A three-dimensional test problem with curvilinear crack propagation is the torsion of
a hollow cylindrical pipe. The thickness of the pipe is 10 mm and the inner and outer
radii are 30 and 40 mm. The pipe has a length of 400 mm and is loaded by torsional
moments at both end surfaces. We choose a finite-element division with 25 elements
in the axial direction, 16 elements in the circular cross section, and one element over
the thickness. Again, we employ the elements of Wilson and Taylor with incompatible
modes. Because of the torsional loading, a stress state with pure shear is obtained.

A crack is initiated in the middle cross section of the pipe and through the thickness.
The initial crack length is 3/4 of the element size in the circumferential direction
(approx. 10.3 mm) and the crack increments are 2/3 of the element size {approx. 9.1
mm). The early stage of fracture is dominated by mode II, but the crack deflects in
such a fashion that the stress-intensity factor K; gradually becomes more dominant
while K decreases. Crack propagation is determined in two (symmetric) directions
and the pipe with the ealeulated crack pattern is shown in Fig. 6.5. The calculation
terminates when the expressions for the stress-intensity factors of Chapter 5 cannot
be used anymore due to the curvature of the pipe surface. The results agree with
the crack-path predictions based on the experimental work of Richard [78] and the
theoretical work of Lakshminarayana and Murthy [48].

6.4 Application to television picture tubes

Consider the 36WS television picture tube with a screen of aspect ratio 16:9 {wide
screen) and a diagonal of 914 mm (36 inches). One quadrant of the screen is shown
in Figs. 6.6 and 6.7. We choose a Cartesian coordinate system with its origin in
the center of the screen and the z- and y-directions along the major and minor axes
of symmetry. The semi-length of these axes is 410 and 250 mm, respectively. The
coordinates of the upper-right corner are z = 400 mun and y = 225 mm, from which
we derive the aspect ratio 400/225 = 16/9. The z-axis is along the central line of
the tube running from the electron gun to the screen center over a distance of 521
mm. The material parameters for the screen and cone glasses are: Young's modulus
E =67-10° N mm 2, Poisson’s ratio v = 0.265, and density p = 2.7- 10~% kg mm™3.
In practice, the screen and the cone are made of different glasses. The differences in
material parameters are so small, that it is expected that our choice of equal glasses
will have no noticeable effect on the calculation of crack patterns,

The tube is subjected to a ball-drop impact. A steel ball with mass m = 0.54 kg and
radius 25 mm is dropped onto the screen with a velocity v = 5 m s ! such that the
impact energy equals muv? = 6.78 Joule (5 ft.Ib). We investigate the elastodynamic
response of the television picture tube for two different impact positions, namely the
so-called D-point and F-point, with coordinates zp = 149 mm, yp = 80 mm and
zp = 333 mm, yp = 169 mm, respectively.

The entire tube, including cone and neck (see Fig. 1.1}, is analysed with the use of
the finite-element method. The screen is divided into 824 elements, the cone into 600
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elements, and the neck into 44 elements, resulting in a total of 1468 volume elements
and 2894 nodes. We again use the eight-node Wilson-Taylor elements (see Section 7.5)
which have correct stiffness for bending and torsional deformation. In addition, 1468
four-node linear surface elements are used to apply the atmospheric pressure on the
external boundary of the tube, while the internal tube boundary remains stress-free
due to the vacuum. The extra forces on the outer edge of the screen introduced by
the metal rimband, are modelled by 16 additional surface elements at each of the four
corners of the screen. Four nodes and four extremely stiff elements are added for the
modelling of the suspension of the tube at the screen corners. One node and three
extra elements are used to describe the position of the steel ball, the Hertzian contact
force [43, 51 during impact, and the indentation of the screen. It is emphasised that
all four gquadrants of the tube are analysed, although only the upper-right quadrant
of the screen is shown in the figures.

The elastodynainic response of the television picture tube to the ball-drop impact is
determined with an explicit time-integration based on the central-difference method;
see Section 8.4 and Hughes [37, Sec. 9.1]. The investigated time interval reaches from
the moment of impact until 2 ms thereafter and a time step Af == 0.141 us is used
for numerical stability. The crack patterns are calculated with a different, larger time
step, namely Af, = 2 us. This is permitted because the velocity of crack propagation
is much less than the velocity of the stress waves. The crack-initiation locations are
chosen in the nodal point which is nearest to the impact position (D- or F-point).
The initial crack length is chosen equal to 30 mm and eight different initial crack
directions are examined. The critical energy release rate is set to a small value such
that crack propagation will occur as long as the stress-intensity factors Ky and K,
of the crack-opening modes give rise to tensile stresses at the crack tip. The results
for impact at the D-point are shown in Fig. 6.6 and those for impact at the F-point
in Fig. 6.7. Tt is obvious that application of the metal rimband has an enormous
effect on the safety of the picture tubes. High compressive stresses are found in the
regions arocund the impact positions. As a result, the stress-intensity factor K has
a large negative value and this fact prevents any crack from extending further. On
the other hand, television picture tubes without the metal rimband admit large-scale
crack propagation and, therefore, cannot be regarded as safe tubes,

It is remarked that, due to the uncoupled approach, the crack patterns are only
reliable for the early stage of fracture. Therefore, the examination of crack paths
in the three other quadrants of the screen is not relevant. It is observed that a few
cracks in Fig. 6.6(b) do not extend over larger distances. This can be explained by
the stress state near the impact position: the preferred direction of crack extension is
perpendicular to the direction of the largest principal stress. As a result, the cracks
parallel to the direction of the largest principal stress do not propagate. Sometimes,
a kink or a sharp curve is observed in an otherwise smooth crack path. This is
often caused by a sudden change in the stress-intensity factors and may indicate
a possible point of crack arrest. The curves in the crack paths near the edge of the
screen, especially in Fig. 6.6(b), are due to the plane drawing of the three-dimensional
geometry.
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{a) television tube with rimband

Kgf

(b) television tube without rimband

Figure 6.6: Crack patterns formed by impact on the D-point, derived with
the uncoupled fracture approach, (a) with the rimband being applied and
(b} without the rimband. Subsequent positions of crack tip are shown by o,
initial crack length is 30 mm, and time step is 2 pus.
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{a) television tube with rimband

(b} television tube without rimband
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Figure 6.7: Crack patterns formed by impact on the F-point, derived with
the uncoupled fracture approach, (a) with the rimband being applied and
{b) without the rimband. Subsequent positions of crack tip are shown by o,
initial crack length is 30 mm, and time step is 2 us.
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6.5 Conclusions

Application of the unecoupled fracture approach to simple test problems shows that
this method is not susceptible to variations in the finite-element division. This mesh
independence concerns both the clement size and the element orientation. In addition.
application to Tosipescu’s shear beam and to the torsion of a hollow pipe shows that
correct crack-growth directions arve derived for mixed-mode fracture. Based on these
considerations, it is concluded that the uncoupled approach produces trustworthy
results and that extension to more complicated problems is allowed. Because of the
partial uncoupling between crack propagation and dynamic effects, the results are not
fully reliable for prolonged crack propagation, especially near the point of crack arrest
or final collapse. Nevertheless, good crack-path predictions are obtained for the carly
stage of fracture.

Concerning the impact tests for television picture tubes, good and uscful results have
heen obtalned with rather Hmited effort. Ball-drop tests with inpact positions at the
D- and F-points have been investigated for the 36WS tube with and without the metal
rimband being applied to the screen edge. Tt is obvious from Figures 6.6 and 6.7 that
application of the rimband is essential for the safety of the tube design. Television
tubes with the rimband show no or little crack propagation, whercas large-scale erack
propagation is observed in tubes without the rimband. Thus, we conclude that the
safety of television picture tubes is significantly improved when the metal riimband is
added to the tube construction.

This conclusion is confirmed by experimental knowledge. The ball-drop tests, which
are performed by manufacturers of television picture tubes {or cathode-ray tubes)
and by TV-set makers according to the international standards [12, 26, 64], reveal
the following results for unsafe tubes. In the case of an impact at the D-point (in the
central region of the screen), we mostly observe crack propagation fromw the impact
position to the four screen corners. An lmpact at the F-point {near the upper-right
corner of the screen) usually leads to crack propagation along the screen boundary
or along the diagonal. No or little crack propagation occurs for safe tubes. These
observations agree with the caleulated crack patterns shown in Figs. 6.6 and 6.7.
Because of the good agrecment between the results of the tests and those of the
simulations, we conclude that, despite its limitations, the uncoupled dynamic fracture
approach is a powerful tool for the analysis of erack propagation in dynamically loaded
structures.
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Chapter 7

The finite-element method

This part of the thesis discusses the hybrid fracture/damage approach which combines
the benefits of fracture and damage mechanics in finite-element calculations. In order
to understand the background and particular features, it is necessary to study several
general aspects of finite-element techniques first. The present chapter deals with the
basic concepts and indicates references for more detailed information. The books by
Hughes [37], MacNeal [56], and Zienkiewicz [100] give an extensive explanation and
are mentioned here with emphasis. The next chapter concentrates on the design of
the hybrid fracture/damage approach and on its applications.

7.1 Concepts of the finite-element method

Consider a deformable body of linearly elastic material subjected to prescribed forces
and displacements, as described by (2.1)-(2.5). For the application of finite elements
a weak formulation must be derived. To this end, so-called test functions v; are
introduced, which are arbitrary, sufficiently smooth functions of the coordinates z, y,
z and time ¢, satisfying the homogeneous boundary condition v; = 0 on the part S,
of the boundary dV where the displacements are prescribed. The equation of motion
(2.3) is multiplied by v; and integrated over the domain V occupied by the elastic
body. Application of the Gauss divergence theorem and the boundary condition (2.5)
results in the problem below.

Weak formulation: determine displacements u;, strains &;;, and stresses oy; as
sufficiently smooth functions of z, y, z and t, satisfying the equations (2.1),
(2.2), the boundary condition (2.4), and the equation (with summation over
indices t,j = x,y,2)

/(pum—%—o?]v” dv /fvde+/ v, dS (7.1)

for all test functions v; with the property v; =0 on S,.

123
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It is noted that the relation (2.3) and the condition (2.5) on S, are automatically
satisfied for the solution to the weak problem (7.1).

The next step towards a solution of the deformation problem is a discretisation of the
elastic body and an approximation of the integrals in the weak formulation. Basically,
this pracedure consists of (i) dividing the domain occupied by the elastic body into
small subdomains (the finite elements) and defining a set of interpolation points (the
nodes), (i} calenlating the contribution of each element to the entire counfiguration
and assembling these element contributions into large (global) matrices and vectors,
and {iii} solving the matrix-vector equation by numerical techniques.

The interpolation of the displacements is based on the nodal displacements. Consider
a finite element with m nodes, where node j (1 < j < m) with coordinate vector
xj = (z;,%;, 2;) undergoes a displacement u; = (u],u), ). We introduce the inter-
polation or shape functions N,(x) associated with node j, having the property that
Ny{(x;) = by;. Some examples of finite elements and their shape functions are contained
in the next sections. The displacements are interpolated and represented as

. N, 00
ux) = > Ni(x)u; = |-« 0 N; 0 |---] -u° = A%x)-u’, (7.2)

= 0 0 N
where the element displacement vector is defined by u® = [+ 4] ) u]|---|" with

the superscript 1" denoting the transpose. The test functions are interpolated in an
analogous manuner.

The strain and stress components are arranged into vectors of length 6. They are
related to the nodal displacements according to the following equations:

Faz Niz 0 0 |
Eyy 0 N, O
e Erz o 0 0 f\fj:z e er .
e® = o SR NN el eu® = Bf(x)-u®, (7.3
P Ni. 0 Ny
L 25%& 1}\/73'33; j\;}:x 0
T -
08 = | O Oy O | Oy Oz Oy | = Doe” = D-B(x)-u® (7.4)

The elasticity matrix D for isotropic materials is related to the shear modulus G and
Poisson’s ratio . This matrix has size 6 x 6 and is equal to

1—-v v v 0 0 0
v l—v v 0 0 0
2G v v 1-v 0 0 0 -
b 1—2v 0 0 0 |3(1-2v) 0 0 (7.3)
0 0 0 0 3(1—2v) 0
0 0 0 0 0 (1 —-2v)

After the discretisation, the displacements of all nodes in the finite-element mesh are
arranged into one large vector U, the global displacement vector. The integrals in
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{7.1) are computed per element and the element contributions are assembled into large
matrices and vectors on the global level; see Hughes [37, Chs. 2, 7]. We obtain

M-U+K-U=F, (7.6)

where M is the global mass matrix, K the global stiffness matrix, and F the global
right-hand side vector of the prescribed forces. The superposed dot indicates the
time derivative. The global vector of the test functions is defined analogously to the
global displacement vector and has been eliminated from the equation (7.6). With the
symbol A denoting the assembly process, the relations between the global quantities
and the separate element contributions are

U = A, (7.7)
S e e __ enT ;o1 exT

F = A[F, F _Lﬁ(m e\ ,/Sg(A] pds, (7.8)
M= A} M= [ p(aTatay, (7.9)

K = A{K¢, K* = fv,{Be)TDBe av. (7.10)

In these equations M° is the element mass matrix and K¢ is the element stiffness
matrix. Furthermore, V¢ is the volume of the element and .S, is the intersection of
the element boundary with the part S, of the outer boundary of the body where the
tractions p = [p, B, P,|" are prescribed. The vector £ = [f, f, f.]" represents the
body forces per unit volume.

The integration is not performed analytically but by a numerical integration rule {for
example a Gaussian quadrature rule) depending on the specific choice of element.
The integrand is evaluated on a finite set of points (the integration points or Gauss
points) and the resulting values are summed with an appropriate set of weights. The
quadrature rules are designed in such a fashion that the integration is carried out
exactly for a certain class of polynomials. This class includes the combinations of
the shape functions in {7.9) and (7.10). Evidently, the accuracy of the results can
be increased by a refinement of the element division. We may also use higher-order
interpolation by creating elements with more nodes and, thus, with higher-order shape
functions.

Summarising, we see that the basic ingredients in the definition of a finite element
are: the nodes, the shape functions, the elasticity matrix, and the integration points.
In the subsequent sections we shall discuss the standard elements and derive special
elements by variations in the four basic ingredients.

7.2 Standard finite elements

The description of the finite-element method above applies to any type of element. At
this point it becomes necessary to go into more detail and give specific definitions of
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the elements to be used. A common three-dimensional element is the solid brick with
eight nodes at the corners (m = 8); see Fig. 7.1(a). The local coordinates £, n, and
¢ are in the interval [—1, +1] and the physical coordinates x = (z,y, z) are related to
the dimensionless local coordinates by

we

x = x(€) = 3. N)x,, (7.11)

j=1

where € = (£,7,{). Since the coordinate interpolation is completely analogous to
the displacement interpolation (7.2}, the element is called isoparametric. The local
coordinates attain the values =1 at the cormers such that (§,m,G) = (-1, -1, -1},
{&,m2,C) = {+1,—1,=1), ..., {£5,95,(5) = (—1,~1,+1), etc. The shape functions
for this element are linear in each of the coordinates and are given by

1 ;
Ni(Em0) = g(1+€6) (1+mm) (1 +¢4), (7.12)
for 3 == 1,...,8 without automatic summation over 7.
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Figure 7.1: Standard brick elements in three dimensions with (a) linear
and (b) quadratic shape functions,

The accuracy of approximation can be improved by the use of higher-order elements,
for instance the twenty-node brick of Fig. 7.1(b), which has twelve additional nodes on
each of the sides. The node-numbering sequence of Hughes [37] has been adopted. The
local coordinates (£;,7;,(;) of the side nodes are equal to (0,41, £1), (£1,0,£1), or
{(#1,:1,0). The interpolations of the displacements and the position are given by the
relations (7.2) and (7.11) with m = 20. The shape functions are quadratic functions
of the local coordinates and those of the corner nodes (j = 1,...,8) are given by

1
N; = g(l + &) (1 +nm;) (14 C¢) (885 +nm; + (¢ — 2), (7.13)
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while those of the side nodes are

r 1 y N lrd
Nj = 1(1—52)(]+77‘Uj)(1+5§j)7 for j =9,11,13,15, (7.14)
N; = Z(1 —P (L +£&)(1+ ¢y, forj =10,12,14,16, (7.15)
1 ; , ‘ .
N, = Z(1 — )L+ (L +mmy),  for j=17,18,19,20. (7.16)

When the physical positions of nodes 7 = 9,...,20 are in the middles of the sides,
the coordinate interpolation of the quadratic element coincides with that of the linear
element. This can be seen from substitution of the shape functions (7.13)-(7.16) into
the equation (7.11) with the use of xg = %(xl + Xp), X109 = %{xz + X3), etc. Other
positions of the side nodes are discussed in the next section.

For increased accuracy we may add six extra nodes in the middles of the side planes
and one extra node in the center of the cube. These nodes are indicated by open
circles in Fig. 7.1{b) but are not numbered. A variable-node element with a total
number of nodes between & and 27 has also been implemented. The definition of the
shape functions becomes more complicated and can be found in the work of Hughes
[37, Sec. 3.7]. Such finite elements are used in the hybrid approach, since they are of
particular importance to form a transition between linear and quadratic elements.

The integrals (7.8)—(7.10) are calculated with the use of a numerical integration rule.
This is performed by selection of a finite set of points &7 in which the integrand is
evaluated plus a set of corresponding weights w9, with 1 < ¢ < n and n being the
number of integration points. The Gaussian quadrature rule for the linear elements
has n = 2 x 2 X 2 points with £7 = (i\/l_/—?;, 44/1/3, :i:\/l_/g) and weights w9 = 1. For
the quadratic and variable-node elements we have n = 3 x 3 x 3 points, where the local
coordinates £9, 59, and (9 are equal to 0 or j:\/:iﬁ with “uni-directional” weights 8/9
and 5/9, respectively. The weights w9 of the points £9 = (£9,79,(9) are obtained
by multiplication of the three uni-directional weights of each local coordinate; see
[37, 56]. The integrals for the linear 8-node element can also be computed with the
use of a special non-Gaussian 6-point rule and those for the quadratic 20-node brick
with a non-Gaussian 14-point quadrature rule; see Irons [40]. The latter is utilised
in the hybrid approach for reasons of efficiency, because the assembly time is roughly
reduced by a factor 14/27.

7.3 Singular elements for fracture

For fracture-mechanics applications it is necessary that the contributions of the ele-
ments at the crack front (containing the stress singularity} are calculated correctly.
This can be achieved by the design of special triangular finite elements, such that
the derivatives of the shape functions contain the inverse square-root behaviour of
the singular stresses; see Stern and Becker [86, 87]. Another and more appropriate
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possibility is to adapt the quadratic elements in such a manner that an equal result
is obtained; see Barsoum (3]. This technique is explained below.

5,6, 13 o0 8
14
15
17,18 & 7 20
2 19
1,2,9 * 4
10 g
3

Figure 7.2: Collapsed singular element in three dimensions.

Consider a three-dimensional fracture problem which is analysed with the use of the
quadratic twenty-node elements. The elements at the crack front are adapted as
follows. Firstly, the corner nodes 1 and 2 and the side node 9 are chosen in the
same physical position; and so are the nodes 5, 6, and 13; and the nodes 17 and
18. Secondly, the nodes 10, 12, 14, and 16 are shifted to the quarter points, while
the nodes 11, 15, 19, and 20 remain mid-side nodes. Thus, one of the side planes
collapses into a line (the crack front) and a triangular prismatic element is obtained;
see Fig. 7.2. The physical coordinates of the nodes are given by

X1 = X9 = Xg, (717)

X5 = Xg == X13, X7 = Xi1s, (7~18)
1 1 o

Xig = E(3X2+X3}: X3p = 5(‘X3+X4>; (7.19)
1 i 1 .

X = :;1“(3X]+X4)7 X135 = §(X7+X8}> (?20)
1 1. N N

X4 = :1(3X6+X7), X9 = §(x3+xv)a (7.21)
1 1 .

Xig = 5(3X5+X8)~, X = ‘2‘(X4+X«8}~ (7.22)

The local coordinates (&;,7;,¢;) of the nodes remain unaltered, i.e., (£1,4£1,41) for
the corner nodes and (0,1, £1), ete., for all side nodes. Substitution of {7.17)—(7.22)
into {7.11) with shape functions {7.13)—(7.16) yields for the coordinate interpolation
in the lower plane ¢ = —1 of the element:

) 1 .
+Ox+50-6x).  (1.23)

(&) = (1—51%7)2) X1+ }l(lwy)z(%
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We may consider p = 1(1+7)? as the dimensionless distance to the crack front. As a
result, the parameter 147 equals 2 /5 and the shape functions (7.13)-({7.16) for the
displacement interpolation depend on the square root of the (dimensionless) distance
to the crack front. This precisely produces the desired inverse square-root behaviour
for the near-tip stresses in fracture problems. The finite-element analysis proceeds in
an identical manner as for the standard elements, with the same shape functions and
the 14-point numerical integration rule.

7.4 Softening elements for damage

In damage-mechanics applications the stresses remain bounded, but a reduction of the
material stiffness is imposed. The internal damage is represented as a change in the
modulus of elasticity. Physically, this is interpreted as the formation of micracracks
(see Figs. 1.3 and 7.3) and is accounted for in the constitutive relations between the
stresses and the strains, like in (1.2). As a result, the finite elements as described
in Section 7.2 can still be used; only the elasticity matrix D needs adjustment. The
positions of the nodes, the shape functions, and the integration rules are not altered.

undamaged damaged

Figure 7.3: Orthotropic material damage.

There are two options. Firstly, the material damage may appear isotropically with
an equal reduction of the elagticity modulus in all directions. This corresponds with
a random distribution of microcracks as illustrated in Fig. 1.3. The new Young's
modulus then equals £y = (1 — D)E with E being the original value and D the
darnage parameter. Similarly, the shear modulus of the damaged material equals
G4 = (1 — D)G, assuming the same Poisson ratio v4 = v. The elasticity matrix D is
still given by (7.5} with E, G, and v replaced by their reduced values Ey, Gq, and vy.
The parameter D is derived from the damage-evolution law (1.3) or any other relation
or postulate for the damage increase. Strictly speaking, it is possible for Poisson’s
ratio to depend on the damage parameter. This is investigated in the Appendix C.2
on the basis of thermodynamics. We have chosen to let v unchanged in the hybrid
fracture/damage approach.
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Secondly, anisotropic damage may occur with a preferred orientation of the micro-
cracks; see Fig. 7.3. This requires a more detailed study of the damage effects, since
the elasticity matrix (7.5) for isotropic material behaviour no longer applies. Namely,
the stiffness in the direction perpendicular to the crack is reduced, while the stiffness
parallel to the crack retains the original value of the undamaged material. The con-
stitutive properties in this case can be described by an orthotropic material model; see
Zienkiewicz [100]. General anisotropy implies that all six stress components depend
on all six strain components. As a result, the D-matrix is a full symmetric matrix for
which 21 elasticity constants are required. Orthotropy is a weaker form of anisotropy
in the sense that the normal stresses do not depend on the shear strains and vice versa,
such that the two blocks of zeros in (7.5) are retained. The orthotropic stress-strain
relations are

rE I/Ex —yafﬁ;/gg “""V:cz;/-gz Oz

ey | = | —ta/Es VE, —vg/E. || ow |, (7.24)
Ezz —L’sz}Ea: _sz/Ey l/’Ez Ozz

for the normal strains and stresses, while for the shear strains and stresses we have

2ey, 1/Gy, 0 0 Oyz
259::: = 0 1,/(31;3 0 . Ty . (725)
26,y 0 0 1/G,, Tay

The relation o = D - & is derived by inversion. The moduli of elagticity {F-moduli)
represent the tensile stiffness in the three coordinate directions, while the G-moduli
are related to shear deformation in the three coordinate planes. The parameter v,
is the contraction ratio in the z-direction when the material is subjected to tension
along the y-axis, whereas 1, is defined reversely; see Fig. 7.4. The twelve elasticity
parameters are not independent, because the matrix in (7.24) must be symmetric
{symmetry of the stress-strain relations). The six contraction ratios are related to
the F-moduli via three equations, but the shear moduli do not depend on the other
constants. Thus, nine independent parameters remain. The conditions for symmetry
are

Bovey = E, vy, (7.26)
B vy = E,uvsy, (7.27)
Ezyz:c = E;x*’ﬁ:z» (728)

The presence of a crack implies a local reduction of the stiffness in only one direction.
Let us assume the crack surfaces are in the zy-plane, such that material softening
occurs along the z-axis and the stiffness in the two other directions remains unaltered.
Using this convention, we have F, = E, = E and E, = (1 — D)E, where D is the
damage parameter and E the Young’s modulus of the undamaged material. The
contraction ratios are determined by the relations (7.26)-(7.28) and extra conditions
for thermodynamic admissibility. From a generalisation of the results of Appendix C.3,
we obtain v,y = vy, = v, = vy = v and v, = 1y, = (1 — D)v with v being the
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Poisson’s ratio of the undamaged material. Since there is no preference between
the z- and y-directions, the shear modulus G,, is given by G = E/2(1 4+ v), as
for isotropic materials. The other two shear moduli G,, and G, are equal and are
in principle independent of the other parameters. We may for example take the
arithmetic, geometric, or harmonic mean of the values G, and E./2(1 + vy,). Itis
shown in Appendix C.3 by a thermodynamic analysis that either choice is acceptable.
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Figure 7.4: Contraction of orthotropic material.

7.5 Improved elements for bending and torsion

The standard linear elements of Section 7.2 have certain complications which do not
occur for the quadratic elements. The resistance against bending and torsion appears
to be too large for the linear elements. This over-stiffness is often referred to as
“locking” and can be alleviated by an adaptation of the numerical integration rules
or by the introduction of extra shape functions; see Hughes [37, Ch. 4] and MacNeal
[56]. These options are explained below.

7.5.1 Elements with under-integration

The standard linear element exhibits an over-stiff behaviour in situations of bending
or torsional deformation. The excessive rigidity can be relieved by application of a
1-point quadrature rule in the center of the element, namely &9 = (0,0,0) and w9 = 8
with ¢ = n = 1. Since the element stiffness matrix becomes rank deficient owing to
this under-integration rule, extra deformation modes or so-called spurious modes may
occur. In Fig. 7.5 we illustrate the two spurious modes of planar deformation. The
spurious mode of type (a) is characterised by

u = Afn, v =0, (7.29)
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while the one of type (b) is characterised by
u = 0, v = Bén. (7.30)

When the under-integration rule is applied to the linear element in three dimensions,
the rank deficiency of the stiffness matrix will give rise to twelve spurious modes; see
Kosloff and Frazier [47]. These modes correspond to bending and torsion and are
characterised by linear combinations of the following functions

u, v, w = {&n, n¢, ¢, &nC }. (7.31)

(@) (b)

Figure 7.5: Spurious modes in planar deformation.

Because of the 1-point central integration rule, the elastic energy associated with
the spurious modes (7.29)—(7.31) cannot be perceived. Therefore, these modes are
sometimes referred to as zero-energy modes. In other words, the element has become
too weak instead of over-stiff. This problem can be solved by adding extra stiffness
terms to the under-integrated element in order to suppress undesired bending; see
[37, 47, 56] and Belytschko, Ong, Liu and Kennedy [7]. This procedure works well
for the four-node linear element in two dimensions and has the extra advantage of a
mass matrix with small band width, such that the lumping method [37, Sec. 7.3.2] can
be applied. In addition, there is the benefit that the assembly process is shortened
roughly by a factor four, since one instead of four integration points is used.

It was argued in [47] that all spurious modes of the three-dimensional element could
also be suppressed by adding extra stiffness. However, this appeared impossible to
achieve, especially in the case of perpendicular loading of plates; see Subsection 7.5.3.
All attempts to add extra stiffness against spurious torsion modes resulted in over-stiff
behaviour. It remains unclear whether correct suppression of all spurious modes is
possible for the three-dimensional element with complete under-integration.

An alternative approach to circumvent the occurrence of spurious modes is to apply
selective under-integration; see MacNeal [56, Ch. 7]. This method consists of (i) an
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evaluation of the normal strains £,,, €,,, and €., on the usual 2 x 2 x 2 Gauss points,
which provides appropriate stiffness to suppress possible spurious modes, and (ii) an
under-integration rule for the shear strains e,,, £,,, and £,,, which eliminates the
over-stiff bending behaviour. There exist two possibilities. Either all shear strains are
evaluated on one Gauss point in the center of the element or each of the shear strains
is evaluated on a different set of axial Gauss points, namely two points on the r-axis
for &,., two points on the y-axis for ¢,,, and two points on the z-axis for 4.

This description applies to rectangular brick elements with the element sides parallel
to the global coordinate axes. Since the element stiffness matrix must be invariant
to global coordinate transformations, it is necessary to express the strain components
in a local Cartesian coordinate system with its axes approximately parallel to the
element sides for elements with arbitrary orientation and shape. For two-dimensional
elements, for example, we may take the bisectors of the angles between the element
diagonals as the local coordinate directions; see MacNeal [55]. In this procedure, it is
favourable that the shape of the element resembles a rectangular brick.

The element stiffness matrix is still rank deficient for both selective under-integration
rules, but the degree of deficiency is less than for complete under-integration. So, a
smaller number of spurigus modes can be present. Suppression of these modes is not
always applied, but when no disturbances are observed, the element with selective
under-integration can be used safely.

7.5.2 Elements with incompatible modes

A third method to tackle the locking problems of the standard linear element is the
incorporation of bending modes in the element description. Taylor, Beresford and
Wilson [89] and Wilson, Taylor, Doherty and Ghaboussi [96] suggested the intro-
duction of extra shape functions which correspond: to the bending modes; see also
Hughes [37, Sec. 4.7] and MacNeal [56, Ch. 8]. Since bending deformation involves
linear stresses in the element, the displacements necessarily have quadratic variations.
This behaviour cannot be produced by the usual shape functions (7.12) and, thus, the
additional shape functions are chosen as

1

Pg) = 5(1_52)» (7.32)
RE) = L0-7). (7.39)
PE) = S(1-C). (7.34)

Because of the quadratic behaviour, the continuity of the displacements over the
element boundaries cannot be guaranteed. For this reason, the bending modes are
also called incompatible modes. Two of such modes are shown in Fig. 7.6. The
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displacement interpolation becomes different from (7.2) and now reads

8 3
u(x) = 3 N;Xu; + > Fx)g = A(x)-u® + Q(x)-q, (7.35)
=1 =
where u® contains the nodal displacements and g° = -+ {¢] ¢} ¢/ |---]" the bending

parameters ; = (g}, q},q]) with j = 1,2,3. The matrix Q¢ with the extra shape
functions is defined analogously to the matrix A®in (7.2), namely by

P, 0 0
Q(x) = 0 P 0 (7.36)
00 B

(@ (b)

Figure 7.6: Incompatible modes corresponding to in-plane bending.

The bending parameters q° are eliminated at the element level by means of static
condensation [37, 47, 56]. This procedure is explained with the calculation of the ele-
ment stiffness matrix. We proceed in the usual manner and differentiate the matrices
A€ and (Q°, which vields B of (7.3) and the new gradient matrix

SN (7.37)

The element stiffness matrix is calculated in a manner similar to (7.10)? by Gaussian
integration on the usual 2 x 2 x 2 points. The matrix is partioned into four parts

Koy = /V (B)"DB" 4V, Koy = / (BT DGE aV |
JVe Ve

Ky = /w((;e)TDBe av, K, = fv (G'DGe V. (1.38)
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It is noted that the submatrix K, coincides with the original stiffness matrix K¢,
that K, is symmetric and stems entirely from the extra shape functions, and that
the “mixed” submatrices satisfy K,, = K.

Next, we calculate the vector H® of the internal forces associated with the nodal
displacements u°, while we assume that the internal forces associated with the bending
parameters q° vanish. Therefore, we must solve the following equation for a single

element
Ko Kug uw | | H° -
[Kqu qu}.[qe] - {0 ] (7.39)

Solving the second part for q° and substituting the result into the first part, we obtain
an expression for the internal-force vector, namely

HY = K°u = (Kuu — KiK' K ) u®. (7.40)

The new element stiffness matrix K* must be substituted for K in the relation (7.10)*.
Since there is no rank deficiency, no spurious modes will occur. The resulting element
(in three dimensions) is an eight-node element with correct stiffness for bending and
torsion and an eight-point integration rule. The assembly process, however, requires
a little more time than for the standard linear element. It was shown by Kosloff
and Frazier [47] that the incompatible-modes element of Wilson and Taylor [89, 96]
is equivalent to the under-integrated element with additional stiffness for rectangular
element geometries.

7.5.3 Comparison of improved elements

Various solutions have been suggested to improve the behaviour of the standard linear
elements for bending and torsional deformation. We shall now examine the improved
three-dimensional eight-node elements and apply them to the deformation of a thin
flat plate subject to a perpendicular load. This is a suitable test problem, because the
deformation involves bending in two directions, while the elements which are not on
the axes of symmetry also undergo torsional deformation. A comparison is made with
the results for quadratic 20-node elements, which serve as a benchmark because of
the high accuracy of the deflection and the correct behaviour of the bending stresses
over the plate thickness.

Consider a flat plate of length 2a, width 2b and thickness b with a/b = 1.40 and
h/b = 0.10. The plate consists of a linearly elastic material with Young’s modulus E
and Poisson’s ratio v = 0.30. The Cartesian coordinates are chosen along the axes
of symmetry such that —a < z < a, =b < y < b, and —-h/2 < z < h/2. The
plate is clamped (built-in) at the edges and loaded by a uniformly distributed load
hf.(z,y) = —¢ per unit area. The load and the deflection of the plate are directed
vertically downwards. Because of the symmetry, only one quarter of the plate is
analysed. A division in 10 x 7 elements is used with one element over the thickness.
Typical results for the deflection of the plate are shown in Fig. 7.7. Similar results
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are obtained from investigations of plates having other dimensions. The deflection is
scaled with respect to the theoretical value in the center of the plate, which is derived
from Timoshenko and Woinowsky-Krieger [90, Sec. 44], viz.

qb4 4
wy = w(0,0) = 0362 4o . , (7.41)

The results in Fig. 7.7 clearly show the over-stiffness of the standard linear element:
the deflection is too small in comparison with the solution with the standard quadratic
element. The element with complete under-integration also fails to produce the correct
deflection. Since numerical investigations with this element of uni-directional bending
of beams and plates did exhibit correct bending behaviour, we conclude that the
locking must be caused by torsion and by bending in two directions. Therefore,
the completely under-integrated element as proposed by Kosloff and Frazier [47] is
not suitable for three-dimensional problems of combined bending and torsion. The
elements with selective under-integration and the elements with incompatible modes
produce acceptable results for the deflection. The deflection for the elements with
selective central under-integration seems to be less accurate than for the elements
with selective axial under-integration, but results for other plate dimensions do not
confirm this assertion.

For a full appreciation of the various elements, we also compare the bending stresses
which are evaluated at nodal points instead of integration points. The results of
the quadratic 20-node element are again used as a benchmark. In Fig. 7.8 we show
the stress gy, along the y-axis and in the lower plane of the plate, which is tensile
(positive) in the center of the plate and compressive (negative) near the edges. The
stresses are scaled with the theoretical maximum value, which occurs at the center of
the longest edge (y = b) in the upper plane of the plate [90, Sec. 44]. This maximum

value equals
q0? ‘

Tt is observed that the incompatible-modes element vields more accurate stress results
than the elements with selective under-integration. Similar results are obtained from
investigations of plates having other dimensions. For these reasons, the element with
incompatible bending modes as proposed by Wilson and Taylor [89, 96] is chosen for
further use. This element has the advantage over quadratic elements that only eight
integration points are used instead of 14 or 27, which leads to a considerable reduction
in computing time for the assembly process. In addition, the mass matrix has smaller
band width than for the quadratic element, which is advantageous in time-dependent
problems; see Section 8.4.
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Chapter 8

Hybrid fracture/damage approach

Both fracture mechanics and continuum damage mechanics possess specific advantages
and disadvantages in finite-element applications. Whereas numerical methods based
on fracture mechanics require frequent adaptations of the finite-element mesh and use
moving-element techniques (see Nishioka, Murakami and Takemoto [68]), methods
based on damage mechanics suffer from sensitivity with respect to the element divigion
and from damage localisation. These features have been mentioned briefly in Section
1.3 and are discussed more thoroughly in Section 8.1 below.

Because of these complications, a combination of fracture and damage mechanics
within the context of the finite-element method is investigated, which leads to the
so-called hybrid fracture/damage approach [36]. The various elements of Chapter 7
are joined together in such a manner that it can be expected that the disadvantages
of both theories are eliminated, while their specific benefits are retained. It is noted
that the hybrid fracture/damage approach, similar to the uncoupled dynamic fracture
approach of Chapter 6, only applies to thin plate-like structures with slight carvature.

The work contained in the present chapter has been carried out in cooperation with
J. Horsten. Our joint study of theoretical aspects (fracture, damage, dynamics) and
of numerical methods (finite elements, time-step algorithms) has resulted in this new
approach towards crack-growth simulation.

8.1 Discussion of continuum damage mechanics

In order to avoid continuous mesh adaptation in finite-element analyses of dynamic
fracture, we study the possibilities of using continuum damage mechanics. Only one
fixed finite-element division is sufficient, because failure is represented by material
degradation (Softening) instead of by discrete cracks. In addition to the displacements,
strains, and stresses, which are used to describe the deformation, we introduce an extra
parameter D to represent the internal material damage; see Chaboche [14, 15, 16],
Kachanov [44] and Lemaitre [50]. This parameter must satisfy a damage-evolution
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equation, e.g. (1.3), which relates the damage increase to the stress state and the actual
damage level. It is possible to introduce a set of damage parameters (for example D,
Dy, D.), when the material damage occurs in some anisotropic fashion. For the topic
of damage tensors and principal damage directions, we refer to Chaboche [14] and
Murakami [61]. We restrict ourselves in this section to isotropic damage represented
by one parameter D.

Consider a deformable body consisting of an isotropic, softening material and subjec-
ted to uniaxial loading. The Young’s modulus pertaining to the original, undamaged
material is denoted by E. The constitutive relation between the stress ¢ and the
strain ¢ is given by the equation (1.2) in a simple one-dimensional form, namely
o = (1 — D)Ee. A characteristic feature of the stress-strain relation is that the
stress can decrease with increasing strain (softening behaviour). This behaviour is
illustrated in Fig. 8.1(a) for ductile failure. A sudden decrease of the stress occurs
for brittle failure; see Fig. 8.1(b). Generally, the damage parameter D on time ¢ will
depend on the history of the strain. For a certain class of materials (including glass),
the maximum strain level in time serves as a threshold for the damage increase and
we may write D = D(e4,) With epmee = max{e(t))|t; < t}; see Chaboche [16]
and Paas [72]. The relation between D and €,,4, is usually postulated on the basis
of experimental results. For situations where both the strain and the damage are
increasing, we may write D = D(z=) because €,,,, = £(t).

We distinguish several moduli of elasticity, depending on the loading situation; see
Fig. 8.1(a). Firstly, when the body is loaded or unloaded and damage does not occur
(D = 0), we use the original Young’s modulus F and we have the stress-strain relation
o = Fe. Secondly, when the body is being loaded and the damage increases (¢ > 0
and D > 0), we use the tangent modulus E;, = do/de. In this case, we employ
the stress-strain relation in incremental form: & = FE; £, where the superposed dot
indicates the time derivative. The tangent modulus is derived from (1.2) as

B - % _ (1-D)-D()e) E, (8.1)

de
where the prime ' indicates differentiation with respect to £. Thirdly, when damage
has occurred and the body is being unloaded (¢ < 0), we use the effective modulus
Eq = (1 — D)E of the damaged material. The stress-strain relation in this case is
given by o = Fze. This relation is also valid for renewed loading as long as damage

increase does not oceur (£(t) < €,40)-

From Fig. 8.1(a) and the equation (8.1) it is clear, that when the damage D and the
damage increase D’(e) are too large, the tangent modulus becomes negative. Note
that 0 <D < 1, so that a large value for D only cannot lead to F; < 0. A negative
tangent modulus has a severe implication for the one-dimensional dilatational wave
speed, which is defined in analogy with (2.10) and (2.19) by

3 = E : (8.2)

p

where p is the density of the material. When the tangent modulus F: is negative,
this wave speed becomes imaginary. The corresponding wave equation (2.8) in one
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dimension changes from hyperbolic to elliptic and the mathematical problem becomes
ill-posed. The ill-posedness leads to several peculiar phenomena, which have been

described by many authors (see e.g. de Borst, Sluys, Mithlhaus and Pamin [10], Lasty
and Belytschko [49], and Sluys [85]).

These phenomena are usually referred to as “localisation”. For example, the energy
dissipation associated with the damage increase takes place in an infinitesimally small
band (which can be compared to a discrete crack). The strain in this band attains an
infinite value, while the strain in the surrounding material decreases (unloading). This
localisation effect becomes more apparent in finite-element applications, where the
amount of dissipated energy becomes dependent on the size of the softening elements;
see Crisfield [20] and Hegen [33, Sec. 6.2]. Furthermore, a strong dependence on
element size is observed in the global material response and in the peak value of the
strain after localisation; see Sluys [85, Sec. 3.5].

() (b)

Figure 8.1: Stress-strain relations with softening material behaviour for
{a} ductile failure and (b) brittle failure.

An overview of localisation problems is given in [10, 49, 85] and also in the work of
Bazant and Cedolin [4, Ch. 13] on the basis of stability theory. Various solutions have
been suggested by many authors. These suggestions include:

1. localisation limiters based on kinematic relations like (2.1), where the strains
also depend on higher-order derivatives of the displacements [49];

2. rate-dependent constitutive behaviour, where the stresses not only depend on
the strain but also on the strain rate (see [85, Ch. 4] and Needleman [65]);

3. non-local constitutive behaviour, where the stresses depend on strain values
averaged over a small neighbourhood (see Pijaudier-Cabot and Bazant [73] and
Vosbeek [91]); which suggestion includes gradient-dependent. behaviour, where
the stresses depend on the strain and the Laplacian of the strain (see [10] and
85, Ch. 5]);

4. finite elements with embedded localisation zones (see Belytschko, Fish and
Engelmann [5] and Ortiz, Leroy and Needleman [71]), which zones correspond
to the small bands mentioned above, where the energy dissipation takes place;



142 CHAPTER 8. HYBRID FRACTURE/DAMAGE APPROACH

5. element-free Galerkin methods, where the displacements are interpolated on a
set of nodes with the use of special weight functions instead of finite elements
(see Belytschko, Lu and Gu [6, 53]). The latter two suggestions have been
critically reviewed by Hegen [33].

8.2 Description of the hybrid approach

The hybrid fracture/damage approach is based on the finite-element method plus a
time-stepping algorithm and utilises the various elements introduced in Chapter 7.
The positive features of fracture mechanics {accuracy) and of continuum damage
mechanics (flexibility) are combined in a manner described below; see also Horsten
and van Vroonhoven [36]. For the sake of simplicity, we start with two-dimensional
problems. The extension to three dimensions is discussed in the next section.
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Figure 8.2: Configuration of the super-element and surrounding elements.
The crack is shown as a thick solid line and anisotropic damage is displayed
by dashed lines. Subsequent positions of the crack tip are marked as x,
while original nodes are indicated by e and extra nodes by o.

As in any finite-element analysis, we start with the division of the elastic body into
subdomains. We choose the improved four-node Wilson-Taylor elements of Section
7.5, because of their adjusted stiffness and the correct in-plane bending behaviour.
These elements give a far better performance than the standard linear elements of
Section 7.2. The singular elements for fracture-mechanics applications (see Section
7.3) are used at the crack tip by replacing the original quadrangular element with four
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collapsed (triangular) elements. This is shown in Fig. 8.2. One crack-tip node, twelve
mid-side nodes, and four quarter-point nodes are added, which are marked by o in the
figure. This ensures the accurate calculation of the singular stresses in the vicinity
of the crack tip. Since the displacements in the singular elements are interpolated
by quadratic shape functions on the sides opposite to the crack tip, it is necessary to
apply variable-node elements (see Section 7.2 and Hughes [37, Sec. 3.7]) as a transition
from the singular elements to the linear four-node elements. The combination of the
four crack-tip elements and the eight surrounding transitional elements is called the
“super-element”. The positions of the four corner nodes of the quadrangular element
which is replaced with the singular elements, are adjusted in such a manner that
the four triangular elements have approximately the same size. The super-element
translates with the crack tip and its structure is similar to the mesh patterns which
are used in moving-element procedures based on fracture mechanics [68].

The extra nodes are also called “slave” nodes as opposed to the original “master”
nodes of the elements. The slave nodes are eliminated at the super-element level by
means of static condensation in a manner similar to (7.39)—(7.40). It is noted that
the (four) corner nodes of the singular crack-tip elements are also eliminated and
must be regarded as slave nodes too. We proceed with the calculation of the internal
force vector H,, associated with the displacements u,, of the twelve master nodes of
the super-element. Since the twenty-one slave nodes lie in the interior of the super-
element, we assume that they do not convey nodal forces to the surrounding elements.
Denoting the displacements of the slave nodes by u,, we obtain the following system

of equations
Ko Kn n H,,
el u ] = : (8:3)
Ko K u, 0
where the contributions of the twelve elements in the super-element to the stiffness
matrix have been partitioned with respect to the master and slave nodes. We solve

the second part of (8.3) for u, and substitute the result into the first part. This yields
an expression for the “condensed” stiffness matrix K*¢ of the super-element:

H, = K*“-u,, = (Kmm — K K Ksm) ,, . (8.4)

A smaller type of super-element has also been considered. This super-element has two
basic configurations. When the crack tip is in the middle of an element, that element
is split into four triangular crack-tip elements as in Fig. 8.2. When the crack tip is near
a corner, four elements are split into eight triangles. Quarter-point nodes are added
to incorporate the singular stress behaviour, but the extra mid-side nodes are not
included. As a result, the triangular elements resemble the element of Fig. 7.2(a) but
without node number 7, and the displacements on the sides opposite to the crack tip
show linear behaviour. This smaller super-element did not provide sufficient accuracy
near the crack tip and has therefore been rejected. On the other hand, super-elements
of larger size were regarded as too expensive because of the increase in computational
effort and in assembly time.

The position of the crack tip is marked as x in Fig. 8.2 and is calculated at every
time step by a procedure explained below. Although the crack path is determined
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in a precise manner, it is not approximated by a piece-wise linear curve as described
in Section 6.1 for the uncoupled dynamic fracture approach. Instead, we employ
the idea of a “smeared” crack but in a different form than developed by Rots [79].
The smeared-crack concept provides extra flexibility in comparison with fracture-
mechanics procedures, which require element splitting or nodal-release techniques.
The softening elements for damage applications (see Section 7.4) are used for the
“tail” of the crack. The damage parameter is chosen equal to D = 0.999, resulting
in a reduction of Young’s modulus by a factor 1000. When an orthotropic damage
model is applied, only the elasticity modulus in the direction perpendicular to the
crack path is reduced.

In the construction of the super-element it is assumed that a crack is present. At
an intermediate stage of the fracture simulation, we take the crack from the previous
time step, which is extended with the calculated crack increment by {6.1). At the
beginning of the computation, we must initiate a crack. The precise location, length,
and direction of the initial crack may be chosen arbitrarily. There is one restriction:
the element containing the crack tip must be surrounded by eight elements, so that
we can create a super-element as in Fig. 8.2. For television tubes, it is customary
to initiate the crack at the impact position, but this is also possible at the cone, the
neck, or at the extra scratches in the case of a missile test. We emphasise that only
one crack can be analysed at a time. For multiple cracks the hybrid approach must
be applied repeatedly.

We now turn to the selection of a crack-propagation criterion. Because of the softening
zone, the influence of the crack is smeared out over a band of finite width. The global
behaviour of the damaged zone resembles the response of a physical discrete crack.
At the more detailed local level, however, there will occur deviations between discrete
and smeared cracks. For example, the distributions of the stresses and the strains near
the crack path will be less accurate in the case of a smeared crack. As a result, we
cannot calculate the stress-intensity factors directly from the stresses in the material
by using the integral expressions of Chapter 5.

It is more suitable to employ a criterion which focuses at the crack-tip region where
fracture mechanics is applied, such as the fracture criterion based on the J-integrals;
see Section 3.4. The contour for evaluation of the integrals J, (k = 1,2) is chosen
inside the super-element around the crack tip as illustrated in Fig. 8.3 by a thick solid
line. Five Gaussian integration points are used for each segment of the contour, which
assures sufficient accuracy. The contour passes through the elements which surround
the four singular elements, but the contour does not intersect with the damaged
element. Namely, the J-integrals must be evaluated for contours around the crack
tip from one crack flank to the other and the crack in the hybrid fracture/damage
approach is represented by a damage zone. Thus, the integration is performed from
one side of the damaged element through the undamaged material to the other side.
Excluding the line segment through the damaged element can also be justified by an
argument from damage mechanics. We have the relation o = {1 — D)Fe, in which
the damage D increases and the stress o remains constant due to equilibrium. As a
result, there is a large augmentation of the strain £ in the damaged element and the
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corresponding line segment would yield an unrealistic, large disturbing contribution
to the J-integrals.

The J-integrals are used to determine the crack-growth speed and direction. The
caleulated values J; and J; are interpreted as components of the vector J = J, e
with the unit vectors e; and e; being tangential and perpendicular to the crack path,
respectively. The direction of crack growth is given by (3.65), so that we may say that
the vector J starts at the crack tip and points into the direction of crack growth. The
crack-growth speed is derived from the dynamic fracture criterion (3.74) rather than
from the static fracture criterion (3.64). We substitute (J? + Jg)% for G{0,a,0) in
(3.74) and calculate the crack-growth speed ¢ with the use of (3.71), assuming that the
critical energy release rate G, is known. The crack increment is caleulated according
to the relation (6.1}, where the time step At is subject to some restrictions which are
discussed in the sequel.

Figure 8.3: Contour inside super-element for calculation of J-integrals.

Alternatively, the direction of crack propagation can be decided on the basis of an
engineering criterion: in the direction perpendicular to the largest principal stress. To
this end, the stresses are calculated in all integration points of the three undamaged
singular elements in the super-element. The stress components are projected onto
the crack tip and averaged. The direction perpendicular to the largest principal
stress in that point is taken as the crack-growth direction. The crack-growth speed
¢ is set equal to the Rayleigh wave speed cp. This rough estimate is acceptable,
because we mostly observe large values for the energy release rate in cases of dynamic
fracture. Thus, the precise crack-growth speed will not differ much from cp (see
{3.71) and (3.74)). When the largest principal stress is negative, we put ¢ = 0 and
crack arrest occurs. The accuracy is increased when the stresses are also evaluated in
the five undamaged quadrangular elements adjacent to the three undamaged singular
elements. The elements at the left-hand side of the super-element in Fig. 8.2 are thus
excluded. We shall also use this refined stress criterion and compare the results with
those of the J-integral criterion. Although this procedure has no profound basis in
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fracture mechanics, it appears to work rather well with reasonably accurate results
for the crack patterns.

8.3 Extension to three dimensions

Since here the main area of application of the hybrid fracture/damage approach is the
analysis of television tubes, we focus our attention on thin plate-like structures. The
division into finite elements is chosen to have only one element over the thickness of the
plate, i.e. the glass screen or cone. The curvature of the surfaces and the variations in
the thickness are thus incorporated, while the computing time for the assemnbly process
is limited. Using more elements over the thickness would increase the assembly time
proportionally. Moreover, because of the expected dominance of bending moments,
the internal stresses will vary approximately linearly over the plate thickness such
that a further mesh refinement in the thickness direction is not necessary.

A restriction of this choice is that the crack front must be taken as a straight line
perpendicular to the middle plane of the plate (screen). In practice, the precise shape
of the crack front may attain a general form in the cross section of the plate, due to
different crack-growth speeds in the upper and lower planes of the plate. These effects
are not incorporated and can only be calculated by tedious and time-consuming com-
putations with more than one element over the thickness. Concerning the geometry,
we may certainly speak of a three-dimensional analysis, but regarding the fracture
behaviour we employ the simplification of a crack which is uniform over the thickness
with a straight crack front, similar to the crack model described in Section 6.1.

The two-dimensional super-element has been described in the preceding section and
its extension to three dimensions is straightforward. We choose the eight-node brick
elements of Wilson and Taylor with improved bending behaviour (see Section 7.5)
to divide the tube geometry into subdomains. The element mesh in the crack-tip
region is adapted in such a manner that the upper and lower planes of the plate have
similar geometries as in Fig. 8.2, Five extra mid-side nodes are added in the middle
plane of the plate on the lines connecting the corner nodes in the lower and upper
planes of the singular elements, including an extra node on the crack front. Thus, the
crack-tip elements resemble the element of Fig. 7.2(b) and the surrounding elements
have a variable number of nodes. The crack is represented by damaged elements with
reduced stiffness.

The crack-propagation criteria are applied analogously in three dimensions. The J-
integrals which are needed for the energy criterion, are evaluated by integration over
a cylinder surrounding the crack tip. The cross sections of the cylinder in the upper
and lower planes of the plate coincide with the contour depicted in Fig. 8.3. Because
of the integration over the plate thickness, the influences of both tension and bending
are incorporated in the crack-propagation criterion. We define the vector J = Jy ey
{with summation over k& = 1,2), where the unit vectors e; and e, are tangential
and perpendicular to the crack and es = e; X e, is perpendicular to the plate. The
vector J is in the tangent plane of the plate and determines the direction of crack
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propagation by (3.65). If the vector J has a non-zero component normal to the plate
due to numerical round-off errors, we use its projection onto the tangent plane. The
crack-growth speed is determined in the same manner as in Section 8.2,

The alternative criterion based on the largest principal stress is also applied. The
stresses are calculated in the Gaussian integration points of eight elements of the
super-element, analogous to the two-dimensional stress criterion. This automatically
includes the thickness effects and the bending moments. After projection to the
crack front and subsequent averaging of the stresses, the direction of crack growth is
determined as perpendicular to the largest resulting principal stress and in the tangent
plane.

8.4 Time-step algorithm

8.4.1 Explicit method

The discretisation of the elastic body into subdomains (finite elements) has led to
the matrix-vector equation (7.6) for the vector U = U(t) of nodal displacements,
which contains a second-order derivative U with respect to time #. For the numerical
solution of this differential equation, we discretise the time interval in finite steps of
size At and calculate the approximate solution on times ¢, = n At (for n = 0, 1,
2, ...}. We choose an explicit method based on central differences. The first-order
and second-order derivatives U and U of the global displacement vector are then
approximated by

U(tn+].) - U(tn)
v At 0 ’ '
Ult,et) = Ult_1)  Ultnyy) — 2U(t) + Uty )

U(t,) = e = R . (8.86)

(8.5)

The truncation errors in these approximations are of the order O((A¢)?) for time steps
At — 0, so that the central-difference method is second-order accurate; see Hughes
137, Sec. 9.1]. Substitution of (8.5)-(8.6) into the equation (7.6) produces the following
time-step algorithm. Firstly, the acceleration vector is calculated:

M-Ut,) = F(t,) — K-Ult,). (8.7)
Secondly, the velocity and displacement vectors are updated:

U(tar) = Uta) + At U(t,,1). (8.9)

1
z

The initial values of the displacements and the velocities are assumed to be known:

U(to) = U() and U(to_%) = Uo.
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Since the truncation errors in (8.5)—(8.6) vanish in the limit as A¢ — 0, the time-step
algorithm (8.7)—(8.9) is consistent with the differential equation (7.6). Convergence
of the solution is now assured when the algorithm satisfies the stability condition, i.e.,
when small numerical errors are not amplified by taking one time step [37, Sec. 8.2].
The central-difference method is conditionally stable, which means that the time step
must be sufficiently small. We have the following restriction (see [37, Sec. 9.1]):

At < Alpey = =, (8.10)
Wh
where wy, is the maximum natural frequency of vibration of the system represented by
the equation (7.6). This frequency depends on the element size h and the dilatational
wave speed ¢4 and is proportional to ¢q/h. The proportionality constant is related to
the element type. From the relation {8.10) with wy ~ ¢q/h, it is clear that the time
step Af is restricted by the smallest element in the entire mesh.

We can make an estimate of the maximum allowed time step in the hybrid approach.
Let us denote the maximum allowed time step for a four-node quadrangular element
of size hy X hy by Aty This time step is calculated from an eigenvalue analysis of the
element mass and stiffness matrices. The critical time step in the hybrid approach is
determined by the smallest side of the singular crack-tip elements, which has length
hs = hy/v/2. Hughes [37, Sec. 9.2] has derived estimates of the critical time step
for several elements, e.g., Apare = h/ecy for the two-node linear rod element, and
Atpazz = b/ V6 ¢4 for the three-node quadratic rod element. These estimates are
extended to the two-dimensional elements in the following manner. We regard the one-
dimensional estimate Af,q.0 with b = A, as a relative measure for the quadrangular
elements and Afpues with A = h, as a relative measure for the singular elements.
Next, we assume that the maximum allowed time step in the hybrid approach is
equal to the critical time step Af, of the quadrangular elements, multiplied by the
ratio Aters/Amase. Thus, we obtain
hs At At

At < - 2N = 0.989 At . 811
AN 23 ¢ (8-11)

Since this is a rough estimate, we shall adopt At = 0.25 At, to assure the stability of
the time-step algorithm. We note that this time step is of the same order as the time
step for elastodynamic stress calculations (without fracture), but is much smaller than
the time step Af, in (6.1} for the crack-path calculations in the uncoupled approach.
As a result, the hybrid fracture/damage approach will require more time steps than
the uncoupled approach.

The solution for the acceleration vector U(t,) in (8.7) is immediately obtained, when
the mass matrix M is a diagonal matrix. Since this is generally not the case, we apply
a so-called “lumping” technique [37, Sec. 7.3.2]. The original mass matrix is replaced
with the lumped matrix M, which is defined by placing the row sums on the diagonal:

o) e My, ifi=, -
My = { 0, otherwise. (8.12)
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The errors introduced by the lumping of the mass matrix cancel the errors from the
time discretisation [37, Sec. 9.1.4]. Since M is a diagonal matrix, the solution of the
equation (8.7) does not require the inversion of a matrix. Thus, the combination
of the central-difference method and the lumping technique provides an accurate and
efficient time-step algorithm. The disadvantage of conditional stability is not regarded
as a major drawback, because the time step should not be too large in view of the
truncation errors involved in (8.5)-(8.6) and thus also in (8.8) -(8.9).

8.4.2 TImplicit method

The number of time steps can be decreased by the use of an implicit method for
the time-step algorithm, because such methods are mostly unconditionally stable and
do not impose a restriction on the time step. We choose the implicit a-method of
Hilber, Hughes and Taylor [34], which is also described by Hughes [37, Sec. 9.3]. When
the displacements, the velocities, and the accelerations at time t, are known, these
quantities at time f,,,; are calculated from the equations

M-Ultyn) + 0+ a)K-Ulty) — aK-Ut,) = Flt, +adl),  (8.13)

Ultasr) = Ulty) + AtU(,) + %{m)? [(1=28)Ulta) + 28 Ultny)] , (8.14)

Ultyir) = Ulta) + At [(1—5) Ulta) +7 Tltan)]. (8.15)

The a-method is unconditionally stable and second-order accurate when o € [—1/3,0],
B = (1~ q)?/4, and v = (1 — 2a)/2. It is assumed that the initial values of the
displacements and the velocities, U(ty) = Uy and U(tg) = Uy, are known. The initial
acceleration U(tg) may be determined from (8.13) with o = 0 and n = —1.

The disadvantage of implicit methods is that a system of equations needs to he solved
at every time step. The acceleration vector I“J(’tn.*, 1) is calculated, for example, by
substitution of (8.14) into (8.13) and by solution of the matrix-vector equation with
the use of direct or iterative techniques; see Golub and Van Loan [29]. This requires
extra computing time and diminishes the gain of fewer time steps. Moreover, the mass
matrix M and the stiffness matrix &K depend on the time step because of the crack
propagation and of the moving super-element. Consequently, the system of equations
to be solved in the case of an implicit method is different at every time step. For these
reasons, the implicit a-method can be less suitable for systems with a large number
of degrees of freedom and with crack propagation.

8.5 Application to standard tests

The hybrid fracture/damage approach has been implemented in the MATLAB pro-
gramming environment [57}. The generation of finite-element meshes has been done
with the use of the program SEPMESH of the SEPRAN package [82]. Several tests
have been performed to investigate the accuracy and reliability of this approach and
to compare the results obtained with the two crack-propagation criteria based on the

J-integrals and on the largest principal stress. The tests are the same as in Section 6.3.
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(a) slope 0.10 10x10 elements {b) slope 0.10 16x16 elements

{c} slope 0.20 10x10 elements (d) slope 0.20 16x16 elements

Figure 8.4: Crack patterns for a square plate loaded by uniform tensile
forces, derived with the hybrid fracture/damage approach for various
element divisions. Subsequent positions of crack tip are shown by o and
prospective end peint of crack by <. Crack-propagation criterion is baged
on largest principal stress.

The first test concerns the possible dependences of the calculated crack patterns on
the finite-element division. We study a square plate of size { x [ and thickness h = [/4,
which is loaded by uniform tensile forces or uniform bending moments on two opposite
sides. The crack patterns are shown in the original element meshes for clarity.
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(a) slope 0.10 10x10 elements {b) slope 0.10 16x16 elements

Figure 8.5: Crack patterns for a square plate loaded by uniform tensile
forces, derived with the hybrid fracture/damage approach for various
element divisions. Subsequent positions of crack tip are shown by ¢ and
prospective end point of crack by x. Crack-propagation criterion is based
on J-integrals.

The thickness of the plate is larger than in Section 6.3, because otherwise the critical
time step is too small and impractical. The plate is divided into 10 x 10 or 16 x 16
elements with one element over the thickness. The Wilson-Taylor elcments of Section
7.5 are used. The slanted orientation of the element lines is at most 0.10 or 0.20,
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which corresponds to inclination angles of 5.7° and 11.3°, respectively. The results
are shown in Figs. 8.4 and 8.5.

A crack is initiated at the middle of one of the non-loaded sides, having initial length
% l. with [, being the element width. We employ the explicit central-difference method
as time-step algorithm and we assign a small value to the fracture toughness to enforce
crack growth. As a result, the crack speed is approximately equal to the Rayleigh wave
speed cp and the crack increment to cp At & 1, /10. The crack patterns in the plate
loaded by tensile forces are shown in Figs. 8.4 and 8.5 for the principal-stress criterion
and for the J-integral criterion, respectively. The crack patterns in the plate loaded
by bending moments are similar to these results. The crack propagation should cccur
along straight lines, because the uniform tensile forces lead to a situation in which
only the crack-opening mode (mode I} exists. Similarly, the uniform bending moments
lead to a situation with only the normal-bending mode {(mode 1). The computation
terminates, when the crack path reaches the element on the opposite non-loaded side
at the boundary of the plate and the construction of a super-element is not possible
anymore.

Regarding the crack patterns in Figs. 8.4 and 85, we observe that the end points
of the crack paths are always within one element from the prospective end points
{marked by x}, which is considered as sufficiently accurate. We also observe that the
results for the J-integral criterion are more sensitive to the skewed orientation of the
element mesh than those for the principal-stress criterion. This can be explained by
the following argument.

The contour for the computation of the J-integrals consists of seven segments {see
Fig. 8.3), where five Gaussian integration points are used per segment in the circum-
ferential direction and five in the thickness direction of the plate. This sums up
to a total of 175 points where the stresses are evaluated. The criterion based on
the largest principal stress uses the average of the stress tensors evaluated in all
Gaussian integration points of eight elements, which yields a total of 8 % 27 = 216
points. This higher number of points for stress evaluation may explain the better
performance of the principal-stress criterion. The accuracy of the J-integral can be
improved by taking a contour at larger distance from the crack tip, but in that case
the algorithm needs more computing time and becomes less efficient. Nevertheless,
the results obtained with the J-integral criterion are quite acceptable. Although the
crack-propagation criterion based on the (averaged) largest principal stress has no
solid foundation in fracture mechanics, we conclude that this criterion produces the
best results for the crack patterns.

The second test is losipescu’s shear beam [39] with a single-edge notch, which is
suitable for a study of curvilinear crack propagation under shear loads. We adopt
the same specimen dimensions as in Section 6.3, viz. a length of 440 mm, a height
of 100 mm, and a thickness of 10 mm. The forces F; are applied at a distance of 20
mm from the plane of symmetry and the forces F, = F;/10 at a distance of 200 mm.
The element division is a little more refined (274 elements), such that the crack is not
initiated at the boundary between two elements but in the interior of an element. The
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initial crack has a length of (a) 15 mm or (b) 25 mm and is located at the middle of
the longest edge of the beam. The shear deformation leads to a situation where the
crack-opening mode and the sliding mode are combined (modes I and 1I). We employ
the implicit e-method with o« = —0.3 and use the crack-propagation criterion based
on the largest principal stress.

(a) initial crack length 15 mm
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Figure 8.6: Crack patterus for a single-edge notched beam loaded under
shear conditions, derived with the hybrid fracture/damage approach for
different initial crack lengths. Subsequent positions of crack tip are shown
by o.

The obtained crack paths are shown in Fig. 8.6 and satisfy the requirement that the
end points are on the opposite edge of the beam to the right of the point where the
force Fy is applied. Similar results are found for various different time steps. The
crack paths are not identical to the paths shown in the figure, but they lie in a small
band around these paths and they always satisfy the requirement for the end point.
The crack patterns agree with the results of Feenstra [27], Lubliner, Oliver, Oller and
Ogate [54], Rots [79], and Schlangen [81]. We did not obtain acceptable results with
the use of the crack-propagation eriterion based on the J-integrals, which is due to the
dominance of mode 11 in the early stage of fracture. This problem with the J-integral
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criterion has been mentioned before in Section 3.4, where we have discussed several
fracture criteria.

The third test concerns three-dimensional crack propagation in a hollow cylindrical
pipe which is loaded by torsional moments at its ends. The geometry is the same as
in Section 6.3, i.e., the pipe length is 400 mm and the inner and outer radii are 30 and
40 mm. The division into finite elements contains 25 elements in the axial direction,
32 in the circumferential direction, and one over the thickness. This refinement (com-
pared to the finite-element division for the uncoupled approach) is necessary for the
construction of the super-element. Otherwise, for coarser divisions, the added “slave”
nodes of the super-element can lie outside the domain occupied by the pipe due to
the interpolation between the “master” nodes and due to the curvature of the element
and of the pipe surfaces.

il

Figure 8.7: Crack patterns for a pipe loaded by torsional moments, derived
with the hybrid fracture/damage approach. Initial crack is at middle of
side view and at top of cross-sectional view. Subsequent positions of crack
tip (into two directions) are shown by o.

A crack is initiated in the middle cross section of the pipe with initial length equal
to 3/4 of the element size in the circumferential direction (approx. 4.58 mm). We use
the explicit time-step algorithm in combination with the crack-propagation criterion
based on the largest principal stress, since the fracture process begins in mode II.
Because of the restricted time step, the crack increments are approximately equal to
0.37 mm. We calculate the crack paths in two symmetric directions and terminate
the calculation after 200 time steps. The results are shown in Fig. 8.7 for every tenth
time step.

We observe some deviations in the crack pattern near the upper and lower boundaries
in the side view of the pipe. These deviations are related to the plane drawing of the
three-dimensional geometry and to the fact that the crack starts to propagate in the
direction perpendicular to the axis of the pipe. At that moment, one half of the cross
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section has fractured and the pipe reaches the point of final collapse. Globally, the
obtained crack paths agree with those of the uncoupled approach (see Fig. 6.5) and
with the predictions based on the experiments of Richard [78] and on the analyses of
Lakshminarayana and Murthy [48].

8.6 Application to television picture tubes

We have obtained trustworthy results from application of the hybrid fracture/damage
approach to two-dimensional and simple three-dimensional problems. We shall now
apply the hybrid approach to the ball-drop test on a 36WS television picture tube.
The tube geometry, the test conditions, and the finite-element division have heen
discussed in detail in Section 6.4.

We study a ball impact at the F-point and use the implicit a-method with o = —0.3
and At = 1 ps, in combination with the crack-propagation criterion based on the
largest principal stress. We calculate the crack propagation in eight different directions
and choose initial crack lengths of 30 mm. This requires eight separate calculations,
which need several hours of computing time each. The calculations terminate when
the cracks reach the edge of the screen and the construction of the super-element is
not possible anymore.

The results for the crack patterns are shown in Fig. 8.8 for the tubes (a) with and
(b) without the metal rimband around the screen edge. A significant influence of the
metal rimband on the tube safety is observed, but the differences between figures (a)
and (b) are less distinctive than in Figs. 6.6(a)-(b) and 6.7(a)-(b), which have been
obtained from calculations by the uncoupled dynamic fracture approach. When the
metal rimband is applied to the tube construction, only little crack propagation is
calculated, followed by crack arrest. In the case that the rimband is not applied, we
notice that the preferred direction of crack propagation is along the diagonal of the
screen. These results agree with practical experience; see Section 6.5. Observations on
the ball-drop test with impact position at the F-point reveal that crack propagation
mostly occurs along the screen diagonal or the screen boundary.



CHAPTER 8 HYBRID FRACTURE/DAMAGE APPROACH

{a) television tube with rimband
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(b) television tube without rimband
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Figure 8.8: Crack patterns formed by impact on the F-point, derived with
the hybrid fracture/damage approach, (a) with the rimband being applied
and (b} without the rimband. Subsequent positions of crack tip are shown
by o, initial crack length is 30 mm, and time step is 1 ps.
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8.7 Conclusions

A hybrid fracture/damage approach is proposed. Several implementations of this
approach have been discussed. There are two options for the time-step algorithm: the
explicit central-difference method and the implicit &-method. The crack-propagation
criterion is based either on the J-integrals or on the largest principal stress at the
crack tip. The former criterion has a profound basis in fracture mechanics and the
latter is a practical engineering rule.

These variants of the hybrid approach have been applied to various test problems,
such as a square plate loaded by tensile forces or bending moments, Tosipesci’s shear
beam, and a hollow cylindrical pipe subjected to torsion. The results show that all
variants produce acceptable crack patterns, which are always accurate within one
element from the theoretical crack paths. This concerns both single-mode and mixed-
mode fracture. Since the interaction between crack propagation and stress waves is
incorporated in the method, the crack paths are reliable over their full range from
the point of initiation to the point of crack arrest or final collapse. Moreover, we
observe that the hybrid approach is hardly susceptible to variations in the element
size and in the element orientation, although the results obtained with the principal-
stress criterion tend to be less sensitive to such variations than those obtained with
the J-integral criterion. We also note that both the explicit and the implicit time-step
algorithm produce acceptable results for the crack patterns.

Concerning the impact tests for television picture tubes, we must admit that we have
obtained only moderate results with enormous computational effort. This is due to
the very small time step required for an explicit time-step algorithm on the one hand
and to the very large systems of equations to be solved in the case of an implicit
algorithm on the other hand. We draw the same conclusion from the calculated crack
patterns as for the uncoupled approach, namely that the safety of television picture
tubes is clearly increased by application of the metal rimband.
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Chapter 9

Conclusion

In this thesis we have investigated dynamic crack propagation in brittle materials and,
in particular, the safety tests for television picture tubes (cathode-ray tubes). The
aim of the present research has been formulated in Chapter 1: the development of
analvtical and numerical methods for the calculation of the dynamic response of a
television tube to a mechanical impact and for the determination of the glass safety
of a given tube design. We have proposed two new methods for the analysis of
crack propagation: (i) the uncoupled dynamic fracture approach and (ii) the hybrid
fracture/damage approach (see Section 1.3). General remarks on these methods and
conclusions from applications to television picture tubes are presented below.

9.1 The uncoupled dynamic fracture approach

The interaction between crack propagation and stress waves in dynamic fracture
processes has been partly uncoupled in this approach (see Chapter 6). The crack
propagation is determined on the basis of the elastodynamic stresses calculated for
the intact, unfractured geometry. The uncoupled approach does not incorporate the
stress waves initiated by a moving crack tip. The analysis utilises stress-intensity
factors for thin flat plates containing a crack of slightly curved shape, which are loaded
by a combination of in-plane tensile forces, out-of-plane bending moments, and per-
pendicular shear forces. This analysis does not only necessitate a study of fracture
mechanics (see Chapter 3), but also of plate bending and of carvilinear cracks.

in Chapter 4 we have studied the classical theory and Reissner’s theory of plate
bending for both stationary cracks and dynamically propagating cracks. The singular
bending moments for the two theories have been compared, and also the deflections
of the plate, the rotations of the middle plane, the perpendicular shear forces, and
the energy release rates. Relations between the stress-intensity factors of the classical
theory and those of Reissner’s theory have been derived. We have concluded that five
stress-intensity factors are sufficient for the fracture analysis of arbitrary plate-like
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geometries: two factors for the in-plane tensile forces and the in-plane shear forces,
two factors for the normal bending moments and the torsional moments, and one
factor for the shear forces in the direction perpendicular to the plate.

Expressions for the stress-intensity factors for plates containing a curvilinear crack
have been calculated in Chapter 5 with the use of complex holomorphic functions.
A linearization with respect to the shape of the crack has been performed, so that the
resulting expressions are valid for slightly curved cracks. From a comparison of the
linearised results with the exact stress-intensity factors for a circular-are crack, we
have concluded that the linearised expressions are sufficiently accurate even for large
arc-opening angles and, thus, for a wide variety of curvilinear eracks.

Application of the uncoupled approach to several test problems has shown that reliable
predictions of crack patterns are obtained. The reliability decreases with increasing
crack length due to the partial uncoupling of the dynamic effects and the crack growth.
Although the uncoupled dynamic fracture approach cannot determine the moment of
crack arrest or final collapse with utmost precision, we conclude that this method
is well capable of predicting the direction of crack propagation in the early stages
of fracture. Since the elastodynamic stress data can be used repeatedly for multiple
crack-path computations, an efficient and low-cost method for the calculation of crack
patterns has been established.

9.2 The hybrid fracture/damage approach

The hybrid fracture/damage approach combines the advantages of fracture mechanics
and damage mechanics within a dynamic finite-element method (see Chapter 8). This
hybrid approach incorporates all dynamic effects, such as the interaction between
stress waves and crack propagation, and creates new possibilities for the analysis of
failure phenomena. The idea of a hybrid approach has arisen from a study of finite
elements for fracture applications and of the concepts of continuum damage mechanics.
From this study we have concluded that the single use of either fracture mechanies or
continnum damage mechanics is not a proper strategy for a finite-element analysis of
the impact safety tests for television picture tubes.

The hybrid approach may form a good alternative. In Chapter 7 we have examined
various finite elements, which have been united in Chapter 8 in the following manner.
We use the elements of Wilson and Taylor with incompatible modes to divide the
configuration into subdomains. This ensures a correct description of bending and
torsional deformation. In the vicinity of the crack tip fracture elements are emploved
for accuracy of the method; these elements incorporate the singular stress behaviour.
For the rest of the crack path damage elements are employed for flexibility of the
method; these elements have a reduced modulus of elasticity {softening behaviour).
Thus, we have established a new method for failure analysis, which is accurate in the
crack-tip region as well as flexible regarding the representation of the crack path.
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Application of the hybrid fracture/damage approach to several test problems has
shown that reliable predictions of crack patterns are obtained. Dependences on the
finite-element division, which are known to occur in applications of standard theories
of damage mechanics, have not been observed. Regarding the results for the test
problems, we conclude that the hybrid approach produces correct predictions for
crack propagation in two-dimensional and in simple three-dimensional geometries.

9.3 Analysis of television picture tubes

Investigations of the strength and the failure behaviour of television picture tubes
start with a static finite-element calculation of the stresses in the tube due to the
internal vacuum and possibly the applied metal rimband. The investigations continue
with an elastodynamic finite-element calculation of the response of the intact tube to a
ball-drop impact, where it is assumed that crack initiation does not occur. These cal-
culations provide a first insight into the stress and displacement distributions. Further
insight is provided by application of the two new methods for failure analysis.

We utilise the results of an elastodynamic calculation as input data in the uncoupled
approach and we determine possible crack patterns with the use of a dynamic fracture
criterion. Since the uncoupled approach is always applied in combination with an
elastodynamic finite-element calculation, this approach constitutes a method which
is easy to use and which yields useful results with relatively little computational
effort. The hybrid fracture/damage approach, on the contrary, constitutes a method
on its own and is employed separately from the static and elastodynamic calculations.
Since the hybrid approach unfortunately requires too much computing time for large
geometries, this approach cannot be applied to the impact safety tests for television
picture tubes in an efficient manner.

Guided by these considerations, we conclude that the investigation of the safety of
television-tube designs is preferably carried out in three steps, namely: (i) a static
stress calculation, (ii) an elastodynamic stress calenlation, and (iii) an uncoupled
dynamic crack-path calenlation. The hybrid fracture/damage approach is a useful
tool for a failure analysis of specific details of the television picture tube.

We have applied the uncoupled dynamic {racture approach to the ball-drop safety
test performed on a 36WS television picture tube (see Section 6.4). The tube has
been subjected to the vacuum load and to a ball impact on either the D-point or
the F-point. We have studied the effect of the metal rimband on the tube safety.
The calculations indicate that practically no crack propagation is expected in tubes
with this rimband, and that considerable crack propagation will take place in tubes
without this rimband. We have also applied the hybrid fracture/damage approach to
the ball-drop test on the same 36WS tube (see Section 8.6). The results concerning
the crack patterns and the tube safety, however, are less clear than those obtained by
the uncoupled approach, because the crack patterns obtained by the hybrid approach
for tubes with or without the metal rimband are less distinctive.
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The main conclusion is that the safety of television picture tubes is significantly
improved by application of the metal rimband around the outer edge of the screen.
This conclusion agrees with practical experience; namely, the rimband has especially
been developed to diminish crack propagation in the glass screen. Moreover, there
exists good correspondence between the calculated crack patterns and those observed
in the television tubes when the ball-drop test is performed; the directions of crack
growth are globally the same. So, we conclude that the dynamic crack propagation
in television picture tubes due to a ball impact can be predicted with reasonable
accuracy by simulations with the uncoupled dynamic fracture approach.



Chapter 10

Perspective

The present research has resulted in two new methods for the analysis of dynamic crack
propagation in brittle materials. Although these methods have produced trustworthy
results, there are still questions that have remained unanswered. These questions and
other open ends of this thesis are addressed in the following two sections, together
with suggestions for further research. '

10.1 On fracture and damage mechanics

We start with some issues in theoretical fracture mechanics. In Chapters 3 to 5 we
have investigated cracks in thin flat plates under various loading conditions. Television
picture tubes, however, have a slightly curved screen of variable thickness, in particular
near the screen boundary. The calculation of stress-intensity factors for curved plates
and shells will enable a more accurate analysis of crack propagation near the boundary
of the TV screen. A first step has been provided by Lakshminarayana and Murthy [48]
and Richard [78], who derived stress-intensity factors for cracked cylindrical pipes.

In addition, we suggest the calculation of stress-intensity factors for thick Hat plates
with the use of Reissner’s theory for plate bending in a manner similar as in Chapter 5.
The problem for a thick plate containing a straight crack, which is loaded by a uniform
bending moment on its outer boundary, has been analysed in Reissner’s theory by
Hartranft and Sih [32] and Knowles and Wang [46, 95]. The problem for a thick
plate containing a curved crack, which is loaded by distributed moments on the crack
surfaces, is more complicated and poses a mathematical challenge.

Regarding fracture in bending deformation, we have postulated in Section 4.7 that
the relationship between the elastodynamic stress-intensity factor for a propagating
crack and the corresponding equilibrium stress-intensity factor for a stationary crack
is governed by the same universal function of crack speed ag for fracture in planar
deformation (mode 1). The precise relationship between the bending stress-intensity
factors can be obtained from a solution of the differential equations (4.111)-(4.113)
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for a semi-infinite crack propagating at constant speed, with appropriate boundary
conditions on the crack surfaces. Since the solution procedure by integral transforms
as in Freund [28, Ch. 6] cannot be used, the derivation of the precise relationship
poses another difficult but challenging problem in mathematics.

An issue in practical fracture mechanics concerns a fracture criterion for situations
of general mixed-mode loading. We have discussed fracture criteria for situations of
planar deformation in Section 3.4 and we have considered cracked plates loaded by a
combination of tensile and shear forces (modes I and II) and of bending and torsional
moments {modes 1 and 2) in Section 4.5. Further research is required on fracture
criteria in cases where the four modes mentioned above are present simultaneously,
possibly in combination with mode IIT or mode 3. This research should particularly
concentrate on the influence of the stress-intensity factor Ky of the twisting mode
on the direction of crack propagation. Algo, the possible relationship of Ky with
the stress-intensity factors K3 and K7 (see Section 4.4) needs further investigation,
where experimental work will play a key role.

We shall now discuss some issues in continuum damage mechanics, in relation to the
hybrid fracture/damage approach. We have chosen to represent crack propagation by
a sudden increase of the damage parameter D from 0 to 0.999, resulting in a sudden
decrease of Young’s modulus E to the value E; = E/1000 (see Section 8.2). The
energy dissipation associated with the damage increase is related to the area beneath
the curves in Fig. 8.1, in which two stress-strain relations for ductile and brittle failure
behaviour are shown. Since the amount of energy dissipation in damage formulations
does not always agree with the energy release rate from fracture mechanics, it is
necessary to get a better understanding of the energy concepts in damage mechanics.
In addition, it may be advantageous to incorporate a gradual damage increase in the
hybrid approach. This will require a further study of the damage-evolution equation
{such as (1.3}) for brittle failure.

It is worthwhile to investigate other possible combinations of fracture mechanics and
continuum damage mechanics than in the hybrid fracture/damage approach. For
example, de Borst [9] has suggested to represent a crack by a discontinuity (as usnal
in fracture mechanics) and to employ damage mechanics in the crack-tip region. This
representation is particularly relevant to the study of structures made of concrete,
where large areas of material damage may surround the crack tip. From [9] and
the results of Chapter 8, it is evident that the combination of fracture and damage
mechanics leads to new possibilities for failure research.

10.2 On finite-element technology

The hybrid fracture/damage approach is based on the finite-elemnent method and has
been developed in the MATLAB programming environment [57]. Therefore, we shall
address some possibilities for further research into finite-element technology. The
disadvantage of the hybrid approach is the large amount of computing time needed
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for the calculation of crack propagation in complex three-dimensional structures. The
computing time can be reduced when the program is translated into machine code
with a MATLAB compiler; this compiler is not yet available but has already been
announced. Another possibility is a translation of the program to a compiler-based
computer language, preferably Fortran 90 (see Ellis, Philips and Lahey [21}).

One reason for the large computing time in the application of the hybrid approach
to television picture tubes is the severe restriction on the time step when an explicit
time-step algorithm is used. Although implicit algorithms take larger {(and thus fewer)
steps, they require more computational effort per time step due to the large number
of degrees of freedom and are therefore less efficient than explicit algorithms. The
restriction on the time step is determined by the smallest element in the finite-element
division; see Section 8.4. Since the crack propagation takes place in the middle of the
screen where the elements are larger, a possible strategy to increase the time step is
to avoid the smaller elements at the neck of the television tube and at the edges of
the screen. Another strategy is to employ an implicit/explicit time-step algorithm;
see Hughes [37, Sec. 9.4]. The element mesh is then partitioned into two groups: an
implicit method with a relatively large time step is used for the smaller elements and
an explicit method with a smaller time step {which is still larger than the original
time step in the entirely explicit algorithm) is used for the larger elements.

An important aspect of the hybrid fracture/damage approach is the construction of
the super-element. Since this construction may fail for strongly curved surfaces, we
recommend to investigate the use of plate elements or shell elements for the glass
screen. An introduction to plate and shell elements is given by Hughes [37, Chs. 5-6].
In addition, the application of plate or shell elements may lead to an increase of the
accuracy of the hybrid approach and/or to a decrease of the computing time.

The accuracy of the hybrid approach can also be improved by application of more
than one element over the thickness of the glass screen. Unfortunately, this leads
to a considerable increase in computing time: about a factor two for the assembly
process and at least a factor four for the solution of the matrix-vector equations. It is
worthwhile to investigate the alternative of having more elements over the thickness
in the vicinity of the crack front only. This will improve the accuracy of the method,
while the increase in computing time remains limited. Moreover, this enables a more
precise calculation of the crack front over the thickness of the glass screen, whereas the
hybrid approach in its present form assumes a straight crack front which is uniform
over the thickness and perpendicular to the middle plane of the screen.

Finally, we recommend the further development of fracture-mechanics techniques
within the finite-element method. Since procedures with moving finite elements
mostly assume straight crack paths (see Nishioka, Murakami and Takemoto [68]),
these procedures have yet only limited applicability. It will be a great advance when
such moving-element procedures become available for the calculation of crack growth
along arbitrarily curved paths. Furthermore, when a speed-up of the remeshing and
assembly processes can be established, an important step forward is made towards a
fully-coupled dynamic fracture analysis.
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Appendix A

On path-independent integrals

A.1 Various integration contours

The elastodynamic integrals J, are defined by (3.52); see also [2, 28, 66, 67, 76].
For the sake of simplicity, the integration over the plate thickness is omitted in this
appendix. The definition applies to a circular contour centered at the crack tip with
its end points on the lower and upper crack Hanks {crack surfaces) and lying inside
the region of K-deminance. Let this contour be denoted by C, with radius & — 0,
while the interior of C. bounded by the crack flanks is denoted by A,.

Figure A.l: Remote contour for the J-integrals.

For practical applications such as finite-element analyses, it is convenient to obtain
an expression for J, which involves an integral along a remote contour, so that the
far-field solutions for the stresses and the displacements can be used. Let C be an
arbitrary contour starting on the lower crack flank, surrounding the crack tip, and
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ending on the upper crack flank; see Fig. A 1. The components of the outward normal
to C are denoted by n;. The curves Cg = Cg UC{ are the two paths along the crack
flanks, which connect the end points of C to those of C.. The domain A is the interior
of €' bounded by the crack flanks, such that A — A, is the domain bounded by the
closed contour C + Cq — C,. Recall that W = %aijsij and T = %{)ﬂi&i are the elastic
and kinetic energy densities, respectively. Using the Gauss divergence theorem and
the equations (2.14)—(2.16), we see that (3.52} transforms into

J. = & {/ W+ T)ng — o0y ) d
¢ &5 .(7+(;S({\ + L)y Uﬂljujk) s

&40

-+ / ( p UL Uige ™ P Uq ui,k ) dA } . {\Alj
A-A, '

In the limit for ¢ — 0, the domain A, shrinks to zero and the curves Cg extend to
the crack tip. Since no restrictions have been imposed on the remote contour C, the
expression {A.1} is independent of the choice of C. For this reason, the integrals Jj,
are often referred to as path-independent integrals [2, 28, 66, 67, 76]. As shown below,
this terminology is not correct for J; in the case of dynamic fracture.

The definition (3.52) can be extended to other than circular contours shrinking onto
the crack tip. It is then necessary to examine the dependence of J, on the shape of
the contour C.. Consider two different contours Cyy and C., around the crack tip,
having the same end points on the lower and upper crack flanks, and lying inside the
region of K-dominance. Subtraction of the integrals along C.; and C,5 produces

(W +Thny, — ayynyuig)ds = / G g e — piis s ) dA
/Oﬂ_cgg \( Ik ALy %,k) »ASLB(p i Uik puzu%k)

= / Pt (wig ipe — Uip tigs) dA,  (A2)
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where A.q2 is the domain enclosed by C.; and C.o. In the latter transition it was used
that the contours are inside the region of K-dominance, so that the time derivatives
may be replaced by derivatives with respect to Z multiplied by the crack-growth speed
¢; see (3.15) and also (4.2)-(4.3).

It is obvious that the difference (A.2) vanishes for J;, corresponding to k = 1 or k = 4.
This conclusion also applies to contours C,; and C,, having different end points, in
which case an extra integral along the crack flanks must be incorporated in {A.2). This
integral vanishes when the condition of stress-free crack flanks is imposed. Thus, .J;
is a truly path-independent integral. The relation between J; and the stress-intensity
factors is given in (3.48) and (3.53).

For k = 2 or k = ¢, however, a non-zero value is obtained in (A.2). This means
that the integral J, does depend on the shape of the shrinking contour. Only for
stationary cracks (¢ = 0) does the difference in {A.2) vanish for J; and both integrals
Je (k = 1,2} are independent of the integration path. The relation between Jy and
the stress-intensity factors is studied in Section A.2.
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A.2 Calculation for planar deformation

In the preceding section it was shown that the integral J; depends on the shape of
the shrinking contour C_ in the case of dynamic fracture. In the present section we
summarise results for J, when two different integration paths are used; see Fig. A.2.
The expression {3.52) with k& = 2 has been evaluated for a circular contour with radins
¢ — 0 by Nishioka and Atluri [67]. The result contains the product K; Ky according
to (3.54) with the coefficient Apy (¢} given by

(14 )au—a,)(1—a?)

AS(e) = 72
9 + o) daga, 242 N 7
( +&d+&){ QgQx +(l+as}]_2(1+a;) ; (ﬁkg)
2\; {14 agd(l+ o)
where the superscript C refers to the circular contour.
y
n
CS
] X
2¢
(a) Circular contour, (b) Rectangular contour.

Figure A.2: Contours for the J-integrals.

In [92] a rectangular contour with height 26 and width 2¢ as in Fig. A.2(b) has been
chosen for the calculation of J;. The limit for ¢ — 0 has been taken first, followed by
the Hmit for § — 0. In this procedure there is no contribution to the integral from the
parts of the contour parallel to the 2-axis, while the term (W + T)n; vanishes along
the parts parallel to the y-axis since n, = 0 there. The result for J; is of the form
(3.54) with the velocity-dependent coefficient equal to

(14 v)(aq — 0,)(1 = a2)
R? '
(Oi'd -+ 053)[405(1055‘ -+ (1 -+ CLG%)?‘]
2./ Qg

where the superscript R refers to the rectangular contour.

AR(e) =

—2(1+ ai)) , (A.4)
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Obviously, the expressions (A.3) and (A.4) are different. This finding is at variance
with the conclusion of Nishioka [66] who claimed on the basis of numerical calculations
that the elastodynamic integrals would be independent of the shape of the contour C,
inside the region of K-dominance. The deviation between (A.3) and (A.4), however, is
not more than 1-5% for crack-growth speeds between 0.65 ¢, and 0.80 ¢, and even less
for slower crack propagation. Consequently, the two expressions for Ap(c) are equi-
valent and may be used interchangeably for crack growth at moderate speed. When
the crack-growth speed approaches the Rayleigh wave speed, the difference becomes
increasingly significant. Since only crack speeds up to 0.60 ¢, have been investigated
by Nishioka, the numerical errors in the computed values in [66] are probably in the
same range as the small deviations mentioned above. These observations may explain
why the dependence of Ary(c) on the shape of the contour was not detected in [66].
Nishioka’s conclusion that the integral J; is independent of the integration path, is
therefore incorrect; see also [92].

A.3 Calculation for classical plate theory

The analysis for plate bending in the classical theory does not differ very much from
the analysis for planar deformation. The integrals Jy are given by (4.77). The integral
J1 is independent of the shape of the contour C and coincides with the energy release
rate G. Evaluation for a shrinking circular or rectangular contour yields the expression

The integral J, depends on the shape of the shrinking contour C; inside the region
of K-dominance. The expression (4.77) with k = 2 has been evaluated for a circular
contour as in Fig. A.2(a) with radius ¢ — 0 by Boersma [8]. The result is expressed
in &y kg according to (4.78) with the velocity-dependent coefficient a4{c) given by

(1 — )3+ )2 (1 + ag)(1 — ay)? .
452
( (3+ aa)[(1 — v)2aq + (a — v)?)
(1 =) /201 + ag)

where the superscript C refers to the circular contour.
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Evaluation of (4.77) with & = 2 for a shrinking rectangular contour as in Fig. A.2(b},
with the limit for ¢ — 0 taken first, yields a similar result for J, with coefficient

(1-v)(3+v)? {1+ ag)(l — aq)? )

ag(c) e
(1+ad)[(1 - vVag+ (0} —v)?]
( (1-v)yaq ‘ = 2(ag — w) : (A6)

where the superscript R refers to the rectangular contour.



Appendix B

On double integrals

B.1 Formula of Poincaré-Bertrand

The expressions (5.49) and (5.113), and also the expression (B.11) below, contain
double integrals in which the applied loads and the crack-shape function A(t) occur.
It will be shown that interchanging the order of integration is allowed. This is not
evident, because we must take Cauchy principal values of the inner, singular integrals.
Details of the analysis can be found in the work of Muskhelishvili {62, 63] and in the
papers [93, 94].

We start with the transformation formula of Poincaré-Bertrand.
Theorem 1. Let L be a smooth arc or contour and let ¢(t, s) be a function of t

and s on L, satisfying the condition of Holder continuity |62, Ch. 1] for both its
arguments. For a fized point tg on L, we have

dt (,D(?L,S) _ j[ @(t 3
]{Lt—z&@ L s —1 ds = #(to, to) + ds][ =i s—t) dt. (B.1)

" Proof. See Muskhelishvili 62, Sec. 23].

Next, we take for L the line segment [—a, +a] and we make a specific choice for the
function ¢(t, s) by a separation of the variables ¢ and s.

Theorem, 2. Let f(t) and g(s) be functions of t and s on [—a,+a], satisfying the

condition of Holder continuity. We have

f: £t f f(_s) dsdt = /f g(s) + Sf( dtds.  (B2)
Proof. Substitute ¢(¢, s) = (¢t — to) f(t) g(s) into (B.1).

oy o
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We can now prove that interchanging the order of integration in (5.49) is allowed, by
putting f(t) = ai(t)/{a + t)%(a — )7 and g(s) = p*(s) — p~(s). Note that A(t) is of
the order O(t = a) for t — =a, so that the integrals of f(t) exist. See also [94].

The proof that interchanging the order of integration in (5.113) and (B.11) is allowed,
is completed by putting f(t) = Mt)/va? — 2 and g(s) = m(s)v/a? — s%. See also [93].

B.2 Solution for plate bending

The solution in Subsection 5.3.5 for slightly curved cracks in plate bending contains
complicated integral expressions. We shall successively elaborate the functions ;(¢)
and bo(t) in {5.106)—(5.107), the functions F1({z}) and Wi(2) in (5.108}-(5.109) and
their limiting behaviour at infinity, the constant Cy in (5.105), and the contribution
(5.110) to the stress-intensity factors.

The functions by (t) and by(t) with —a <1 < +a are expressed in terms of the boundary

values Fg () and Wi (#) in (5.105). We take m™*(t) = m(t) and f*(t) = f(t). With

the use of (5.89)—(5.97) we derive

2AN(E) (m—1 fY(t)
(1—v)D

bat) = —(2LA(t) balt)), (B4)

bt) = 20Ci+ — (2t bs(t) ), (B.3)

where the functions bs(t) and b4(¢t) are defined by
balt) = R () +Fy (1) = W' (1) = Wi (1)
KM — Mpo+ 2 My (6 — 1)mit) — ik + 1) f()

(1 -v)sD {1 ~v)&D
+ et D /M f(s) va? — s ds, (B.5)
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ba(t) = Fy(6) = Fy (1) + W (8) = Wy (2)
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These expressions are substituted into (5.108)—(5.109) to produce the solutions for
Fi(z) and Wy(2). The limiting behaviour of these functions for z — oo is then found
to be given by

KR (2) 4 Wh(z) = - / " X‘“(t)m(a‘)dt+0(%)7 (B.7)

2wy 22
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It is noted that the term of order O{1/z) in the latter expression vanishes. Namely,
1

with the use of (B.4) and the properties A(t) = O{tFa) and by(t) = O((t Fa) 2) for
t — *a, we find

— [Thwa = = hows] = o (B.9)

2miz

The constant C; = /(1 — v)D in (B.3) is determined from the condition (5.77) of
Subsection 5.3.2 for single-valued displacements. We impose that the coeflicient of
the term of order O(1/2%) in the expansion of W;(z) — Fy(z) has zero imaginary part.
From (B.7)—(B.8) we obtain the condition

Re{ (1- &) /_VV;QX'*'(t) bi(t)dt + (1+ k) /mbz(tr)tdt} = 0. (B.10)

had 43

The solution to this equation for Cy is derived by substitution of (B.3)-(B.6). After
some algebra we find

o KF2Z
G = (A-B) (M- )

2 +o

|

— [V ((1 — RN m(t) + A(B) m’(‘é)) dt

2(k+1) 7o A tem(s) va? — 52

&(ma)? Jea Va2 - Joa §—t
where the parameters A and B depend on the crack-shape function and are defined

by (5.9) and (5.116), respectively. The order of integration in the double integral may
be interchanged; see Appendix B.1.

ds dt, (B.11)

Substitution of (B.3), (B.5), and (B.11) into (5.110) produces the contribution to the
stress-intensity factors, which is calculated as

3(1 _;/)D +a a+t %
TR N balt) (a — t) d
_ bvma (~2AM B + (“HA—- KHB) i3 )

h? K s

e, (E0 50+ o o) (757 a

— wf“ f(t)w/a2—t2dt

kh?a/ma J-a

hziiﬁ [ (v eme + o mo) (1) (Z%) <

wh? (7!‘(},)% /;1 m(t) Va2 — 2 f_a M(t—s) dsdt. (B.12)

_\L
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The derivatives f'(t) and m’'(¢) are eliminated via integration by parts. We have

[neosor (S e - - [ A e

[ ovemier () (525)

_ __f*a (2t —a)Mmll) 4, Qf_a A(é)m(t}(a+i>%dt (B.14)

o (a+1)2 3 (a - f)2 a

Combining the results (B.12)~(B.14) with {5.111) finally produces the stress-intensity
factors (5.112)-(5.113) for a thin flat plate containing a curvilinear crack and being
loaded by bending and torsional moments.



Appendix C

On damage and thermodynamics

The damage-evolution law, which relates the rate of damage increase to the stresses
and the damage in the actual situation, e.g. (1.3}, is subject to several restrictions.
The energy release during crack propagation or damage accumulation must satisfy
the basic laws of thermodynamics, such as the Clausius-Duhem inequality. This
is investigated in the first section. We continue with applications to isotropic and
anisotropic {(orthotropic) damage in planar deformation.

The fundamentals of thermodynamics are extensively treated in the textbooks by
Eringen [25, Chs. 4, 5] and Miiller [60, Sec. 5.4]. Inclusion of damage parameters in
the balance laws of continuum mechanics has been studied by Chaboche [15, 16] and
Lemaitre [50]. A summary is presented in the thesis of Paas [72, Ch. 2].

C.1 Clausius-Duhem inequality

Consider a continuous, elastic, deformable body with reference configuration By and
deformed configuration B(¢) at time ¢. The position of a material point is denoted by
Xg in the reference configuration and by x = x(xg,#) in the deformed configuration.
The mass density of the material equals py and p for By and B, respectively. The
deformation of the body is described by the deformation gradient F, the Lagrange
strain tensor £, and the symmetric rate of deformation tensor £, which are defined
by [25, 60, 72]

gx

F = 8_}(@’ (Cl)
1 ':{‘ A

£ = é.(f F-T), (C.2)
| NS . \T

L= 5(}‘? + (F77) ) (C.3)

where T is the unit tensor, 77 denotes the transpose of F, and the superposed dot
indicates the time derivative. We have & = FTLF.
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We introduce the Cauchy stress tensor o and the second Piola-Kirchhoff tensor 7,
which represent the internal stresses in the body with respect to the deformed and
undeformed configurations, respectively. We also introduce the specific internal energy
e, the vector h of heat flow, the absolute temperature , the temperature gradient

go = 06/9xg, the entropy 7, and the free energy v = e — 87n. These quantities
must satisfy the balance laws for mass, momentum, angular momentum and energy
[25, 60, 72]. These laws read as follows:

o

J = detF = o (C4)
p¥% = divel + pb, (C.5)
o = ol (C.6)
pé = o:L+ pr —divh, {(C.7)

where b and 7 are the specific load and heat supply per unit mass, respectively, which
are assumed to be known functions. The equation {C.5) is equivalent to {2.3).

The balance laws do not completely determine the deformation of the body. Extra
constitutive relations are required. We impose that the principles of objectivity and
of local action [25, 60] are satisfied. Generally, the constitutive quantities are charac-
terised by the strain, the strain rate, the temperature, and the temperature gradient,
and also by a set of internal damage parameters D. The constitutive relations are
then given by [72]

o = J1F.T(EE,6,g,D)-F, C.8)
h = J'F hy&&,6,g.D), ' ( 9)
v o= Y(EE,0,8,D), (C.10)
n = n(€,£6,8,D), (C.11)

where hg is the material counterpart of the heat-flow vector h. In addition, we need a
relation for the increase of the damage parameters D: the so-called damage-evolution
equation [16, 50, 72]. This equation can be expressed in the general form

D = D(E,E,0,80.D), D >0. (C.12)

Because of {C.8), this relation includes damage-evolution equations which express the
rate of damage increase in terms of the stress o and the stress rate &.

After the specification of the constitutive relations, the deformation behaviour of the
body can be determined. The functions 7, hy, ¥, and 7 must satisfy the second
law of thermodynamics or the Clausius-Duhem inequality (25, 60, 72|, which states
that the local entropy production must be non-negative. In a material (or Lagrange)
formulation, this law is expressed as

. . . 1
—po(?¢5+97])+T:€—5ho-gg > 0. (C.13)

We now use the constitutive relation (C.10) and write the time derivative ¥ in (C.13)
as a derivative with respect to the basic variables (€, &, 6, g¢ and D) multiplied by
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time derivatives of these basic variables. This vields

i . o . O .
(T*po%) :g_,p()—(ﬁ:g— (n*-.?f)f}of?

o€ 96 |
oY . oy 1
- Py = - — D — - hy- > . 314
Po 9o &o — fo oD D 0 hoy-go > 0O (C.14)

Since the variables £, #, and g, can be chosen at random, the terms which are linear
in these variables must vanish in order that the inequality is satisfied. As a result, we
have the following conditions [25, 60, 72

Y oy o
VVVVVVVVVV T 0 R 4 I e , e N (‘;1’
: n 5 Das 0, (C.15)

be chosen at random and may still depend on all other variables (see {C.12)), it is

not necessary that the remaining terms vanish separately. Since we are interested in

nominally elastic materials, we require that the stresses are independent of the strain
rate and we adopt the usnal constitutive relation for elastic materials, viz. [72]
oY )

T = pp—= . (C.16

Po 5% { )

Counsequently, by virtue of {(C.15), we also have T = T (&, 6, D). When the constitutive

relations are chosen according fo the conditions (C.15)-(C.16), the Clansius-Duhem

inequality reduces to [72]

_ Opo
oD

D—%hogo 20 (CI7)

The second term of (C.17} may be omitted for isothermal situations, The remaining
inequality is a condition for the relation between the elastic energy density W = pgtb
and the damage parameters D, where the dependence occurs through a decrease of
the elasticity parameters. Therefore, we focus on the condition [15, 50, 72

oW .
——D > 0. .
%) D=0 {C.18)

Remark 1: In the case of small deformations, linearised theory can be employed,
in which no distinetion is made between the actual deformed configuration and the
original reference configuration. Consequently, the densities p and pg may be equated
and the differences between the Cauchy stress tensor ¢ and the second Piola-Kirchhoff
tensor 7 are negligible.

inequality {C.18). We shall focus on this inequality for the elastic energy density W
and the damage parameters D.
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C.2 TIsotropic damage

Consider a two-dimensional deformable body consisting of originally undamaged, iso-
tropic, elastic material loaded under plane-stress conditions. The original material is
characterised by Young’s modulus £ and Peisson’s ratio ». During the deformation,
damage occurs in an isotropic fashion. The stress-strain relations are given by (C.16)
or, in linearised form, by (2.15). The elastic energy density is equal to

W o= ilij—v?) [sim + uzy + 2ve,8, + 2(1-v) &ﬁyj (C.19)
The isotropic material damage is represented by one (dimensionless) scalar parameter
D with values between 0 and 1. The damage is interpreted as a random distribution
of microcracks (see Fig. 1.3) with D reflecting the reduction in the effective area of a
cross section of the damaged body [15, 50]. When damage has occurred, the original
Young’s modulus and Poisson’s ratio are replaced with their values for the damaged
material:

E;, = (1-D)E, (C.20)
vi = f(D), (C.21)
where the function f = f{D) is yet unknown. This is the natural manner of defining
the damage parameter [15, 50]. Other damage relations can be rewritten in the form

{C.20) by redefinition and rescaling of the damage parameter. We shall propose several
options for the function f below,

Substitution of (C.20)--(C.21) into {C.19) yields the energy density as a function of
the damage parameter. Application of the inequality (C.18) produces

. OW DE { -
-Dos = m{(1-szz—2<1—D)u2ff)(s§x+5§y)
(L= A~ (L= D)L+ ) a2y |
DE . "
+ m[l*{*b’f"{*(l—p)uf}ciy Z 0, (022)

where the prime " indicates differentiation with respect to D. Since the damage cannot
decrease, we have D > 0 and the inequality (C.22) is only satisfied when the quadratic
form with ;. and £, and the coefficient of €2, are non-negative definite. According
to Section C.4, these conditions are met when

1 — " fA(D) — 2(1 - D)v? f(D) f(D)
14+ vf(D)+ (1-D)v f(D)
We divide these expressions by (1 — D)? and integrate from D = 0 to the actual

damage value D. For D = 0 we have the original undamaged material and, thus, we
have f(0) = 1. The integration vields

(C.23)

> 0,
> 0. (C.24)

1—12

- p <y < <1+ f D)E} (C.25)

v

1

12



C.3. ORTHOTROPIC DAMAGE 183

where 0 < v < 0.5 has been assumed for the original Poisson’s ratio in the derivation
of the lower bound. It is emphasised that if the function f{D) satisfies (C.23)-(C.24),
then the property (C.25) holds true. The reverse statement is generally not true.
When (C.25) is fulfilled, i.e., the function f(D) is between the indicated boundaries,
it is still possible that this function has such an oscillating behaviour between the
two limits that the conditions (C.23)-(C.24) are violated. For sufficiently smooth
functions, however, this problem may not occur.

We shall now present four possible solutions for the function f(D), which satisfy the
conditions (C.23)-(C.24}. Firstly, an appropriate choice is

Dy =1, Vg = V. (C.26)

Since Poisson’s ratio does not change with an increase of damage, the shear modulus
G4 and the elastic energy density W are proportional to (1 — D), because they scale
linearly with Young’s modulus.

Secondly, another appropriate choice is that Poisson’s ratio decreases proportionally
with the damage increase, i.e.,

(D) =1-D, vg = (1-D)v. (C.27)

This means that when the body is loaded by uni-directional tension, the contraction
in the perpendicular direction is smaller for damaged material.

A third possibility, which has globally the same property for the contraction as the
previous choice, is based on the lower bound in (C.25) and is given by

14 v

Dy =1- D, 14y, = 1-D)(1+v). (C.28)
This damage function has the special property that the shear modulus, which equals
Ga = E4/2(1 + vy), does not change with damage increase. Tt is noted that v, attains
a negative value for D > v/{1 + v), but we still have —1 <y, < 0.5.

A fourth possibility, which has the property that the contraction is larger for damaged
material, is based on the upper bound in (C.25) and is given by

12

(D) = (1+ 1'”21?)5: 1—v2 = (1-D)(1-1v7). (C.29)

This damage function has the special property that the combination E;/(1—v2), which
often occurs in expressions for plane stress, does not change with damage increase.
Since we must have 4 < 0.5, we have the restriction D < (1 — 402)/4(1 — v?).

C.3 Orthotropic damage

Consider a two-dimensional deformable body consisting of originally undamaged, iso-
tropic, elastic material loaded under plane-stress conditions. The original material is
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characterised by Young's modulus E and Poisson’s ratic v. During the deformation,
damage may occur in an anisotropic fashion with a preferred direction for the micro-
cracks as shown in Fig. 7.3. The material behaviour is described by an orthotropic
model; see Section 7.4 and Zienkiewicz [100]. The elastic energy density is derived
from (7.24)~{7.25) with symmetry condition (7.26) as

1

_ 2 2 e 2 ;
W = ) [Bec2, + Byel, + (Buvay + Byy)esaeyy| + 2Goy 62, (C.30)

‘We characterise the orthotropic material damage by two scalar parameters D, and
D, representing the reduction in the effective area of a cross section of the damaged
body in two perpendicular directions. These parameters can also be interpreted as
the principal values of a damage tensor with orthogonal principal directions along the
z- and y-axes; see Murakami [61]. Together with F and v of the original material, we
have four parameters to describe the orthotropic material behaviour. The relations
with the elasticity constants can be written as

E, = (1-D,)E, (C.31)
Ey, = (-Dy)E, (C.32)
voy = (1=Dy) f(D:,Dy) v, (C.33)
vy = (1=D) f(Dn, D) v, (C.34)
Gy = 490Dy G, (C.35)

where ¢ = E/2(1 + v) is the shear modulus of the undamaged material. Clearly, the
symmetry condition (7.26) for v, and vy, is satisfied, The functions f = f(D,,D,)
and g = g(D,, D,) are yet unknown and we shall propose several options for these
functions below.

Substitution of (C.31)-(C.35) into (C.BO)"yields the energy density as a function of the
damage parameters. Since D, > 0 and D, > 0 are independent variables, application
of the inequality (C.18) produces two conditions:

oW ow

- >
oD, ~ 0,

- —— > (),
5B, >0 (C.36)

We shall focus on the first condition. Denoting differentiation with respect to D, by
the prime ’, we obtain
oW E ' 2 2/ N L2
0D, 21— vyyiye)? [(1 =220 =D =D)ff) e,
+ VPA=DP (- 21-D.)ff) 2,
+ W=D (f = (1= Do)f = v*(1 = Do) (1= DY) f*S") cau £y |
- 2G ¢ Ef"w > 0. - (C.37)

This inequality is only satisfied, when the coefficient of €2, is non-negative and the

quadratic form in &g, and sy, is non-negative definite. Consequently, the function
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g must be non-increasing in both its arguments and, according to Section C.A4, the
function f must satisfy

14+ 021D, 2 =202 (1 = D)1 = D)2~ D — D) f f

> (C.38)
— 1A (1= D)L= D) [1 = A1 = D)1 — D)1 (f)* =

0,
0. (C.39)
As a result of (C.39), the derivative 8f/8D, must vanish and, by a similar argument
for the second inequality of (C.36), the derivative 0f /0D, too. This implies that the
function f is necessarily constant. In that case, the condition (C.38) is also satisfied
and the quadratic form in ., and ¢, is indeed non-negative definite.

The conditions for thermodynamic admisSibility can be summarised as

A g Jg )

DD, = 1, — < 0, e <0 C.40
The contraction ratios 1, and 1, in (C.33) and (C.34) are now similar to the choice
(C.27) for isotropic damage behaviour. There exist several possibilities for the function
g of the shear modulus. Some choices which satisfy the conditions (C.40) are

1+ 14, \
G,y = ( L = ) , (C.41)
v E, E,
1/2
Gy = L. __L , (C.42)
201 + ) 21+ vgy)
1 E, E,
y = e - . 043
Gy 2 (2(1«%1/‘1@) + 201 + I/my)) ( )

In the case of isotropic damage, i.e., when D, = D, = D, the two Young’s moduli are
equal and two contraction ratios coincide. The relations {C.41)-(C.43) reduce to the
same equation
(1-D)YE

201+ (1 =-Dw)
Thus, the shear modulus G, satisfies the additional requirement that, in the case of
isotropically oriented damage, the orthotropic material must behave in an isotropic
sense, namely G, = G4 = Eq/2(1 + vy).

Goy = (C.44)

C.4 Positive definite functions

Consider the quadratic form in two real variables
Flz,y) = az? +2bzy + cy*. (C.45)

This function can also be cast in the matrix-vector form

) — T 4 3 - X o @ b
Fix) = x' Ax with X = L}}, A= [b c]' (C.46)
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The function is called positive definite when it attains positive values for all points
(z,y) # (0,0); see Golub and Van Loan [29, Ch. 1]. The definition for non-negative
definite (or positive semi-definite) functions is analogous. When the function attains
both positive and negative values, it is called indefinite.

Since the matrix A is symmetric, it has two real eigenvalues A; and Ay [29, Ch. 8].
The function F is positive definite if and only if both eigenvalues of A are positive.
This condition can be expressed as

AM+Ar = a+c > 0, (047)
M = ac—b > 0. (C.48)

Instead of (C.47), we may also impose a > 0 and ¢ > 0. For non-negative definiteness
the > signs must be replaced by > signs.
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. Door het combineren van breukmechanica en schademechanica ontstaan

nieuwe mogelijkheden voor het onderzoeken van het bezwijkgedrag van
materialen en constructies.

Dit proefschrift, hoofdstukken 1 en 8-10.

Het invoeren van een gegeneraliseerd torsiemoment in de klassieke plaat-
theorie is zinvol voor het berekenen van scheurgroei in dunne platen die
belast worden door buigende momenten.

Dit proefschrift, hoofdstukken 2, 4 en 5.

Substitutie van een oneindig grote waarde voor de dwarscontractie-
coéfliciént in oplossingen voor breukproblemen volgens de klassieke plaat-
theorie leidt in veel gevallen tot overeenkomstige oplossingen volgens de
plaattheorie van Reissner.

Dit proefschrift, hoofdstukken 4 en 5.

. De op numerieke resultaten gebaseerde conclusie van Nishioka, dat de

elastodynamische Jg-integraal onafhankelijk zou zijn van de keuze van
de integratiecontour, wordt weerlegd door analytische berekening van
deze integraal voor twee verschillende contouren.
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Dit proefschrift, appendix A.

. Zij a(y) het aantal absolute punten van de polariteit ¢ gedefinieerd op

de symmetrische partiéle meetkunde pg(s, s, o).

a. Voor oneven o geldt a(p) > 1+ s2/a; voorts is a(yp) = 1 + 5°/a dan
en slechts dan als iedere lijn één absoluut punt bevat.

b. Voor even « geldt a(y) = 0 of a(p) > s+1; voorts is a(p) = s+1 dan
en slechts dan als ledere niet-absolute lijn 0 of 2 absolute punten bevat
en ieder tweetal absolute punten door een lijn verbonden is.

P.R.J.M. Smits and J.C.W. van Vroonhoven,
Geometrige Dedicata 21 (1986) 51-54.
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De vervaardiging van optische golfgeleiders kan worden geformuleerd als
een ionenuitwisselingsprobleem tussen een gedeeltelijk afgedekt substraat
en een zoutbad, onder invloed van een electrisch veld. Dit probleem
wordt door Forrest, Pagano en Viehmann op incorrecte wijze opgelost.

K. Forrest, S.J. Pagano and W. Viehmann, IEFE/OSA Journal
of Lightwave Technology LT-4 (1986) 140-150.
J.C.W. van Vroonhoven, Stageverslag, TU Eindhoven (1986).

De vrije rand in stromingsproblemen voor lineair viskeuze (Newtonse)
vloeistoffen, zoals bijvoorbeeld bij extrusie- en spuitgietprocessen, kan
worden berekend met behulp van de theorie van complexe functies en
conforme afbeeldingen.

J.C.W. van Vroonhoven, A.J.M. Sipers and W.J.J. Kuijpers,
Journal of Engineering Mathematics 24 (1990) 151-165, 167-178.

In navolging van advertenties voor tabaksartikelen dienen reclamebood-
schappen voor technologisch hoogwaardige produkten afkomstig uit het
Verre Oosten vergezeld te gaan van de waarschuwing: ,,Het kopen van dit
produkt brengt ernstige schade toe aan de Europese c.q. de Nederlandse
economie. Het kan werkloosheid en recessies veroorzaken.”

Gezien het overeenkomstig belang als persoonlijk vervoermiddel van het
paard ten tijde van het wilde Westen en van de fiets in de huidige tijd,
dient voor diefstal van deze vervoermiddelen ook een overeenkomstige
strafmaat gehanteerd te worden.

Het grote aantal oppervlakkige, inhoudsloze televisieprogramma’s staat
een snelle ontwikkeling van de vlakke, platte beeldbuis niet in de weg.

Het proeven van bier en het brouwen van bier zijn twee verschillende
zaken; toch is kennis van het één noodzakelijk voor de kunde van het
ander.



