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Samenvatting 

.'iieuwe typen televisiebeeldbuizen moeten voldoen aan strenge eisen betreffende de 
veiligheid van de glasballon, voordat de nieuwe buizen op de markt geïntroduceerd 
mogen worden. Voor het testen van de veiligheid zijn internationale standaards zoals 
de "hall-drop test" ontwikkeld. Eén van de eisen bij deze test is dat er geen implosie 
van de beeldbuis optreedt, wanneer het glazen scherm wordt onderworpen aan een 
inslag van een stalen bal met voorgeschreven en valhoogte. Beperkte 
scheurgroei is toegestaan. Het doel van het in dit beschreven onderzoek 
is het ontwikkelen van analytische en numerieke methoden voor het berekenen van 
scheurgroei tijdens de bali-drop test en voor het van de glasveiligheid van 
nieuwe beeldbuisontwerpen. Het onderzoek heeft tot twee nieuwe methoden 
voor de analyse van dynamische scheurgroei in brosse materialen: (i) de outkoppelde 
dynamische breukaanpak en (ii) de hybride breuk/schade-aanpak. 

De ontkoppelde dynamische breukaanpak is gebaseerd op de breukmechanica en op een 
(gedeeltelijke) ontkoppeling van spanningsgolven en Enerzijds wordt de 
scheurgroei bepaald door de spanningen in het materiaal. Anderzijds leidt scheurgroei 
tot een verandering van de geometrie en aldus tot een van de spannings-
verdeling. Dit laatste effect wordt in de ontkoppelde buiten beschouwing 
gelaten. De methode bestaat uit twee delen. Eerst worden de dynamische spanningen 
als gevolg van de bal-inslag berekend met behulp van de eindige-elementenrnethode, 
waarbij wordt aangenomen dat er geen optreedt. Vervolgens worden 
mogelijke scheurpatronen berekend op basis van deze Door toe-
passing van de ontkoppelde aanpak op eenvoudige voorbeelden en op televisiebeeld-
buizen zijn betrouwbare resultaten voor de verkregen. Vanwege de 
relatief korte rekentijden is de ontkoppelde breukaanpak een efficiënte 
methode voor het analyseren van dynamische 

De hybride breuk/schade-aanpak is op een combinatie van breukmechanica 
en schademechanica in de context van de Bij de punt van 
de scheur wordt breukmechanica spanningsgedrag wordt 
beschreven met speciale elementen en de scheurgroei wordt berekend met behulp van 
bekende breukcriteria. De "staart" van de scheur wordt uitgesmeerd over een gebied 
met eindige breedte, waar schademechanica wordt en elementen met een 
verminderde elasticiteitsmodulus gebruikt worden. De interactie tussen spannings
golven en scheurgroei wordt in deze aanpak in rekening gebracht. Aangezien 
de resultaten van analyses met schademechanica vaak van de element
breedte en van de elementenoriëntatie, zijn er diverse berekeningen uitgevoerd om 
de betrouwbaarheid van de hybride aanpak te onderzoeken. De resultaten laten zien, 
dat de berekende scheurpatronen niet van de elementenverdeling en steeds 
maximaal één element verwijderd zijn van de exacte scheurpatronen die volgen uit 
experimenten of theoretische beschouwingen. Deze resultaten worden beoordeeld als 
voldoende nauwkeurig. Ondanks de grote rekentijden blijkt de hybride breuk/schade
aanpak een bruikbare methode te zijn voor het berekenen van dynamische scheurgroei 
in twee-dimensionale en in eenvoudige drie-dimensionale structuren. 



Summary 

N ew designs of television tubes or cathode-ray tubes must satisfy strict require-
ments regarding the of the bulb, before the new tubes are allowed to 
be introduced into the market. To test the international standards like the 
"ball-drop test" have been This test demands that no implosion of the 
tube shotlid occur, when the screen is subjeeteel to an impact by a steel ball 
of prescribed size, weight, and energy. Limited crack propagation is permitted. The 
aim of the research presenteel in this thesis is to develop analytica! and numerical 
rnethods for the calculation of crack propagation during the ball-elrop test and for 
the determination of the of new tube designs. Two new met ho els for 
the analysis of dynamic crack in brittie matcrials are proposerl: (i) the 
uncoupled dynamic fracture approach and (ii) the hybrid fracture/damage approach. 

The uncoupled dynamic fracture approach is based on fracture mec:hanic;; and on a 
(partial) unconpling of stre;;s waves and crack propagation. On the one hand, the 
crack propagation is determined by the stresses in the materiaL On the other hand, 
crack propagation leads to a in the geometry and, thus, to a disturbance of 
the stress distribution. The latter effect is in the uncoupled approach. 
The methad consists of two the dynamic stresses due to the bal! impact 
are calculated with the use of t.he finite-element where it is assumed that no 

the uncoupled approach to 
of the relatively short 

crack are calculated from these stres;; 
have been obtained from applications of 

v~~«Hkr"'vu and to television picture tubes. Becanse 
the uncoupled dynamic fracture approach 

of dynamic crack propagation. 

The hybrid fracture/ damage is basedon a combination of fracture mechanics 
and continuurn mechanics within the context of the finite-element method. 
At the crack tip, fracture mechanics is employed. The singular stress behaviour is 
described by special elements and the crack propagation is calculated with the use 
of well-established fraeture criteria. The "tail" of the crack is smeared out over a 
region of finit.e width, where mechanics is employed and elements with a 
reduced modulus of elasticity are used. The interaction between stress waves and crack 
propagation is fully in corporateel in this approach. Si nee t he results of analyses with 
contimmm damage mechanics often on the element width and the element 
orientation, several calculations have been performeel to investigate the reliability 
of the hybrid approach. The results reveal t.hat. the calClllated crack paths do not 
depend on the element elivision and are at most one element away from the 
exact crack paths that follow from or theoretical considerations. These 
results are regarcled as sufficiently accurate. the computing times, the 
hybrid fracture/damage approach appears to be a useful method for the calculation 
of dynamic crack propagation in two-dimensional and in simple three-dimensional 
structures. 
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Chapter 1 

Introduetion 

Since the beginning of the twentieth century the theories of fracture and damage 
have evolved from ad-hoc simple moelels for specific mechanica! problems to mature 
sciences in their own right. The pioneering workof Griffith [31] provided a first step 
towards the understanding of material failure. It was not until the destructive period 
of \Vorld War IL however, that the importance of examining fracture phenomena was 
fully perceived. From that time on, the interest in fracture mechanics has steadily 
increased. Investigations of Irwin [41, 42] and Orowan [70] have led to the evolution 
of energy of fracture and the inclusion of plasticity effects. Contributions of 
various authors on the fundamentals of fracture are gathercel in the series edited by 
Liebowitz [52:. 

A new approach to failure was proposed by Kachanov [44] and developed further 
in recent years among others by Chaboche [14, 15, 16] and Lemaitre [50]. Failure 
of a construction was not as rupture of the material but as deterioration 
(softe:ning) due to internal damage. Contrary to fracture mechanics where crack 
growth is synonymous to geometrical changes, these moelels assume a continuous, 
deformable body where failure is interpreteel as a change in material structure. This 
new field of science is therefore named continuurn damage mechanics. 

Both theories, fracture and damage, are considered in this thesis and are applied to 
dynamic crack propagation in brittie materials. The dynamic effects are incorporated 
in the analyses; these effects include the crack-growth accelerations, and wave 
propagation. We restriet ourselves to brittie matcrials without microstructure, like 

The area of application is the safety tests for television pieture tubes or 
cathode-ray tubes. The background of this research is explained below. Because 
of the partienlar problems encountered in the study of dynamic brittie fracture, two 
new approaches are presented: (i) an lUlcoupled dynamic fracture approach in which 
the interaction between stress waves and crack propagation is only partially incor
porated, and (ii) a hybrid fracture/damage approach in which the two theories are 
combined. 

3 



4 CHA.PTER 1. INTRODUCTION 

1.1 Safety tests for television picture tubes 

u."''"F'.''"' of television picture tubes must special requirements regarding 
of the glass bulb. During operation, unintended mechanica! hazards may 

occur. For example, the glass front screen may be hit a sharp or hard object. 
\:Yhen such a mechanica! hazard occurs, the glass will fract ure and crack patterns are 
formed in the screen. One cmmot expect that the television set remains undamaged 
in such situations, because the strength of is limited. The TV will evidently 
have reached the end of its life, but it is undesirable that the impact leads to an 
implosion of the television tube. Since aceidents cammt be avoided, special 
tests have been developed. Allnew of television tubes must satisfy very strict 
test requirements, befare they are allowed to be introduced into the market. 

neck 

internal magnetic shield 

rimband 

Figure 1.1: Cross section of television picture tube. 

We start with a description of the TV -tube geometry and an explanation of frequently 
used terms. A cross section of a television picture tube is schematically shown in 
Fig. 1.1. The screen, the cone, and the neck are glass components which are sealed 
tagether melting ar with the use of frit. The combination of screen, cone and neck 
is called the glass bulb. The electron gun is located in the neck and contains the 
cathode which emits an electron beam. The electrous are defl.ected by a magnet.ic 
field generated by a set of defl.ection coils. The electrous pass the shadow mask, a 
perforated thin metalsheet which also serves as anode, and arrive at a (red, green or 
blue) phosphor dot. To from external fields which may distart the 
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deflection of the electron an internat shield is added. The bulb with the 
shadow the internal shield, the deflection coils, and the electron gun 

tube or a television (picture) tube. \Vhen the tube is built 
with loudspeakers and additional it is 

Insiele the relevision tube there is vacuurn, which is required for 
functioning of the electron gun. The internat vacuum introduces 
and tensile stresses in the In order to alleviate these high tensile 
metal rimband is added to the construction armmei the outer of the 
The rimband is applied by heating and subsequent cooling. As a it shrinks 
around the screen bounclar-y ancl incluc:es extra cornpressive stresses, which partially 
cornpensate the tensile stress introclncecl by the internal vacuum of the tube. Practical 
experience reveals that the rimbancl pressure has a strong negative effect on possible 
crack ancl thus a positive effec.:t on the safety of the 

vVe now turn to thc impact safety tests. \Ve clistinguish between the "ball-clrop 
t<~st" and the "missile test" vvhic:h are described in the documents of the Netherlands 
Norm and Standarel NEN EN 60065 [26, 64] and of the Canadian Standarel 
Association and Underwriters Laboratory UL 1418 121. The first test, 
the demands that no implo;;ion of the tnbe should occur when a steel 
bal! of hits the screen. The impact and impact energy 
are also according to the international test stanclarcls. The secoud test is 
the so-callecl missile test in which a steel is used in order to enforce 
an of the television tube. In scratches have been applied to the 
screeu at critica! positions. Cracks may initiate at these scratches and also at the 
point of impact. Both tests impose severe restrietions to the deposition. The 
maximum allmved weight of all glass that are blown away further than a 
critica! elistance from the TV set is limited to only a few grams. 

The response of the television tube to the ball-drop and missile tests is essentially a 
dynarnic process. In this proceRs fonr different are distinguishecL dependent on 
the time elapsecl since the moment of impact: 

1. Impact of the steel bal!. Because of the contact between ball ancl screen, a 
Hertzian cone crack is createcl. This is a cone-simpeel crack which starts near the 
boundary of the contact area between ball and screen and propagates through 
the thickness of the glass. As a consequence, a hole is punched out of the glass 
screen. This stage also involves the initiation of cracks originating from the hole 
and the initiation of stress waves in the (For a discussion of Hertzian 
cone cracks we refer to Li and Hills [51] and for an extensive treatise of contact 
mechanics to J ohnson . ) 

r; Dynamic fracture The stress waves which are 
initiateel by the through the screen. This 
dynamic stress state which wil! indnce crack growth. Since the zone is 
embrittlecl by the of the hole, there are many small cracks. Only 
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few of these cracks will extend and propaga.te over larger distances. Of course, 
this is influenced by the stress state. On the other hand, the propagating cracks 
will disturb the dynamic stresses. So, there exists an interaction between the 
fracture process and the stress waves. 

3. Crack arrest or collapse. The requirement of the baU-drop test is that the tube 
does not implode. This means that all propagating cracks must Crack 
growth requires energy. Therefore, crack arrest will occur when the ~unount of 
available energy is not sufReient to create new crack surfaces. lf this is not the 
case or if the impact energy is too in the missile the tube will 
implode. 

4. Glass deposition. When the tube collapses, the screen is fractured into 
smaller and larger The devacuation of the tube ( ending the internal 
vacuum) involves an in-flow of air, resulting in the glass partieles being blown 
away from the TV set. 

The ana.lysis of the dynarnic and fracture phenomena in all these stages becomes 
increasingly cornplicated in course of time. The impact is well defined and the 
initiation of cracks and waves can be described with reasonably simple methods. The 
next of dynamic fracture heemnes more difficult, but despite its complexity it is 
a challenging problem to tackle. This second of the fracture process is decisive 
for the next two depending on the direction of crack propagation and the final 
length of the either crack arrest will occur or the tube will collapse. This also 
depends on the thickness which increases from the central region to the screen 
boundary and on the local stresses in the glass. the fourth and last stage 
of the impact tests invalving the deposition of the it is almost impossible to 
dctermine the final posit.ion of each glass partiele after collapse. 

The research in this thesis is focused on the bali-drop test. The rnain 
objective is the development of analytica! and numerical methods for the calculation 
of the dynarnic response of a television tube to a mechanica! impact and for the 
determination of the glass safety of a given tube These methods can be used 
as tools for the optirnisation of the product itself and of the manufacturing 
processes. The formation of crack patterns plays a central role in the safety tests. 
Namely, the direction of crack propagation is of major importance in determining 
whether an implosion may occur and thus whether a tube design is safe or not. Since 
the crack propagation is inftuenced the dynarnic strcsscs in the glass, the analysis 
IS based on the research disciplines dynamics, fracture mechanics, and continuurn 
ua1HCLJ"s mcchanics. 

1.2 Fracture and damage mechanics 

The of fracture phenomena in brittie materials focuses on stress concentra
tions in the vicinity of crack tips. A crack introduces a discontinuity in the elastic 
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and, within the scope of linear the crack tip becomes a singular 
point where the stresses attain infinite values. The singular behaviour of the stress 
eomponents is proportional to the inverse square root of the distance to the crack 
tip and the singularity is normalised by factors. This relationship is 
illustrated in Fig, 1.2 and can be in the simplified form 

J( 
(J (1 

where a denotes the stress and r is the distance to the crack tip. The parameter J( 

is a stress-intensity factor related to the external forces and the boundary conditions. 
A common fracture criterion for brittie matcrials is that crack extension will oceur 
when the stress-intensity factor reaches a critica1 va1ue, the fracture toughness, which 
is a material constant; see Broek [11] and Cherepanov . As long as J( is below 
this upper bound, the crack remains 

r 

Figure 1.2: Stress singularity at crack tip. 

From (Ll) it is clear that the yield stress will be exceeded at positions sufficiently close 
to the tip of the crack, introducing local plasticity and causing the material to flow. 
For ductile materials this behaviour is essential in the fracture ana1ysis. For 
brittie materials, however, there exists only limited plasticity or smali-scale 
which is confined to a very small around the crack see .u"o"'·H'" 
[221 and Rice [76, 77]. The principle of factorscan thus be used for 
wide class of brittie fracture 

The theory of contimmm mechanies follmvs a different approach. Instead 
of a material discontinuity, the crack is modelled in a continuous, smeared way and 
internal parameters are introduced to represent material darnage. The physical crack 
is replaced by a small zone where the material stifl:'ness (the modulus of elasticity) is 
reduced. The interpretation is straightforward: the material strength deercases due 
to the presence of microscopie flaws or clue to failure of molecular bonds; see 1.3. 
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This methad works quite well for const.ructions where the damage stretches out over 
a.reas, such as matcrials with ductile or viscoplastic behaviour. It is believed 

that we eau also obtain reliable results for brittie materials. The introduetion of 
internal damage parameters affects the constitutive stress-strain relations. Basically, 
this is charact.erised by 

a = (1 D) E , (1 

where a and denote the stress and the E is the Young's modulus of the 
original undamaged material, and D a damage parameter. \Vith the definition of the 
effective elasticity modulus = (1 - D)E, the usual relationship a EdE rec:urs. 
Adopting distinc:t relations (1.2) in different directions, we may obtain anisotropic: 
behaviour of the damaged materiaL 

undamaged damaged 

Figure 1.3: Mat.erial damage caused by mic:roc:rac:ks. 

The introduetion of parameters implies that extra relations are needed to 
describe the rate of increase V as a func:tion of the stresses or strains and 
of the ac:tual damage itself. This damage-evolution equation is usually c:hosen as an 
exponential relation. Chaboche [16] and Kac:hanov . suggest for for creep 

V = A a" (1 (1.3) 

where the sealing constant ancl the exponents are material-dependent constauts to be 
determined experimentally. Although this extra equation prevents the mathematica! 
fonnulation of the problem from being incomplete, other peculiarities of continuurn 
ua,uw:,;c: rnechanics will occur in practical applications. 

1.3 Analysis and approach 

to be an efficient rneans for the salution of 
tJH'-'u''""' mechanica] invalving non-linear constitutive behaviour and/or 

large see Rughes [37], MacNeal [56] and Zienkie\'.ricz [100]. Standard 
elernents have linear or quadratic interpolation of the displacements ancl, consequently, 
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thc internal stresses are constant or linear. In fracture-mechanics applications it is 
necessary to clescribe the singular stresses (1.1) correctly. It is evident that standard 
finite elements cannot be used. To overcome this difficulty, special crack-tip elements 
have been cleveloped, which include the stress singularity either by interpolation of 
the displacements with the use of square-root functions (Stern and Becker [86, 87]) or 
by application of quarter-point nodes on the element sides adjacent to the crack tip 
(Barsoum [3]). 

The major aclvantage of fracture-mechanics methods is that they have been stuclied 
extensively such that a broad range of applicability has been found, and that these 
methods possess a high degree of accuracy. A strong disadvantage, however, occurs 
when the finite-element method is applied to problems of dynamic crack propagation. 
Because of the material rupture and the creation of new crack surfaces, the geometry 
of the elastic body changes continuously. This necessitates a continuons adaptation 
of the element mesh, a shift of the singular crack-tip elements to the new position 
of the crack tip, and an interpolation of the mechanica! quantities from the old to 
the new element division. An overview of computational studies on dynamic crack 
propagation, inclucling moving-finite-element techniques, is presenteel by Nishioka, 
Murakami and Takemoto [68]. In such procedures, the crack path is often assumed to 
be straight or otherwise to be known beforehand. \Vhen the crack propagates along 
an arbitrary curved path, many elements must be adapted. Sirree the assembly of all 
element contributions into one global stiffness matrix requires much computing time, 
a full-scale dynamic fracture analysis will be very time-consuming and is therefore 
considered inappropriate for the present impact problem. Two alternative methods 
for failure analysis are proposed. 

1.3.1 Uncoupled dynamic fracture approach 

An uncoupled fracture approach is proposed, based on dynamic stress calculations 
for the undarnaged configuration. The dynamic response of the television tube to the 
impact is cleterminecl first with the use of the finite-element method and standard 
finite elements. It is assumed that the glass screen remains linearly elastic and that 
fracture does not occur. Afterwarcls, as a farm of post-processing, predictions of crack 
patterns are derived from the dynamic stress data. The interaction between the crack 
propagation and the stress waves (as described at point 2 in Section 1.1) has only 
partially been accounted for in this uncoupled analysis, because the disturbing effect 
of the crack growth on the stress situation is neglected. Also, the mutual infiuence 
of multiple cracks is not incorporated. Of course, it cannot be expected that this 
uncouplecl approach will produce highly accurate results for the entire fracture process, 
especially near the moment of collapse or implosion. Nevertheless, it is possible to 
analyse the first and second stages of crack growth with reasonable accuracy. 

The great benefit of the uncoupled approach is that a fixed finite-element elivision is 
sufReient and that mesh adaption is not necessary. In addition, several independent 
crack patterns can be determined from one dynamic stress calculation, which implies a 
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considerable rednetion of computing time in with a fully-coupled fracture 
Since the initia! stages of fracture are of crucial for the overall 

of the television tube, it is suftkient to the first and second stages of 
tests. This corresponds precisely to the range of of the uncoupled 

fracture Therefore, it is expected that the uncoupled approach will produce 
useful results with rather limited effort. 

1.3.2 Hybrid fracture/ damage approach 

In order to include the interaction between dynamic stresses and crack growth in a 
coupled failure approach, the possible applications of continuurn mechanic:i 
are investigated. finite-element implementations, there is advantage 
of methods over fracture-rnechanics methods. 
mesh adaptation has become superfluous, because changes in the geon1et:ry 
occur. Instead, the parameters are adapted. There also exist some com
plications, however. The local damage-evolution law (1.3) for instanee can be chosen 
rather arbitrarily, as long as it agrees with the global material response. 
severe material may lead to softerring behaviour: the internal stresses 
decrease with strain. As a result, the mathematica! formulation of the 
problem becomes In such cases, it is often seen that the increase 
is highly to small variations in the local stress values and in the finite-
element division, to pathological me:sh dependences. On the one these 
dependences concern the width of the damaged zone: refinement of the element mesh 
generally leads to higher valnes of the damage parameters in a region of smaller width. 
This effect is referred to as "localisation" and has been stuclied by various authors 
[4, 5, 49, 7L 85:. These papers are discus:secl in Section 8.1. On the other hand, the 
orientation of the finite elements plays an important role: it is often seen that ~~u•c'A'~ 
accumulation appears along element boundaries and not in the required direction as 
derived from a fracture-mechanics analysis. This problem even occurs for geo
metries. These drawbacks restriet the applicability of continuurn damage mechanics 
in its original form. 

Because of the partienlar of both fracture and damage ap-
plication of either method to of dynamic crack propagation was considered 
as not appropriate. Focusing on the aspects of the two Horsten and 
van Vroonhoven [36] developed the idea of a hybrid fracture/damage This 
approach consists of the following details. Subsequent positions of the crack tip are 
calculated, such that the crack is known at every moment of the fracture process. 
Since the local stresses in the vicinity of the crack must he known with highest possible 
accuracy, fracture mechanics is employed and the elements with singular stress 
behaviour are used at the crack tip. In order to avoid large-scale mesh adaptations, 
continuurn damage mechanics is utilised to describe the "tail" of the crack. At these 
positions the modulus of elasticity is reduced in the direction perpendicular to the 
surfaces of the crack. In fact, we should not of a crack in the strict sense but 
of a damaged zone, since there is no geometrical discontinuity in the materiaL 
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This hybrid approach combines the accuracy of the singular elements in 
fracture mechanics and the of crack representation in mechanics, 
such that the necessary mesh a.lterations during uack growth are avoided. Thus, we 
have developed an effective means for the analysis of crack propagation in combination 
with the finite-element rnethod. \Ve î:ihall investigate the possible mesh dependences 
which often occur in applicat.ions. These must be 
excluded to ensure the correct.ness of the hybrid 

1.4 Outline of the thesis 

Part I: General 

The thesis is divided into four whic:h successively focus on a introduction, 
the uncoupled dynamic fracture approach, the hybrid fracture/damage approach, and 
a discussion of the results. The first part is concluded by 2 in which the 
basic equations of mechanics are summarised for later referenee. The problems of 

stress and anti-plane shear and two theories for plate are presenteel for 
general dynamic loading conditions. In addition, forrnulations in terms of complex 
holomorphic functions are for situations of static deformation. 

Part II: Fracture Mechanics 

This part focuses on the uncoupled dynamic fracture approach and starts with an 
overview of well-known fracture concepts in Chapter 3. This includes a discussion of: 
the principle of brittie stress-intensity factors, the three distinct modes of 
fracture, the energy release and fracture criteria. The near-tip distributions of the 
stresses and displacements are for both stationar-y and propagat.ing 
cracks. Furtherrnore, the effect of rapid crack propagation on the elastodynamic 
stress-intensity factors is considered. 

Chapter 4 is devoted to the fract.ure of thin plates by bending moments. This study 
is required in view of the perpendicular impact loading which involves considerable 
bending deformation. Two bending theories based on different assumptions are 
employed: the classica! theory of Kirchhoff and the refined of Reissner. The 
near-tip bending moments, shear forces, rot.ations, and defiections are exarnined and 
expressed in terrus of new bending stress-intensity factors. The correspondences and 
differences between both theories are investigated and a with anti-plane 
deformation is made. In addition, the effects of crack dosure and the combination of 
tension and bending are 

Since crack propagation does not necessarily occur along lines, a study of 
stress-intensity factors for curvilinear cracks is performeel in Chapter 5. This concerns 
planar deformation, deformation, as well as out-of-plane bending. The 



12 CHAPTER 1. INTRODUCTION 

analysis is bao;ed on the theory of complex functions. The resulting are 
utilised in the uncoupled dynarnic fracture approach in Chapter 6. Applications to 
several test problems and to television picture tubes are presented. 

Part III: Damage lVIechanics 

In the third part we explain the hybrid fracture/damage approach. The theoretica! 
and numerical aspec:ts necessary for a successful combination of fracture and uaH"'h" 

mechanics are workeel out in more detail. In Chapter 7 we discuss the essentials of the 
finite-element method, including the crack-tip elements for fracture 
tions and the elements for applications. Since bending defonnation 
is important to the television problern, extra attention is given to the bending 
behaviour of the finite elernents. 

8 starts \Vith a critica! review of continuurn damage mechanics and continnes 
with the implementation of the hybrid fracture/damage in a finite-element 
method. The elementsof Chapter 7 are utilised in a specific combinat ion, sneb that the 
dynamic fracture behaviour of brittie matcrials is described in a numerically effective 
manner. The hybrid approach is applied to fracture simulations of test specimens and 
television picture tubes. 

Part IV: Condusion and Perspective 

Finally, in 9, vve review the results of the theoretica! studies on fracture 
in plate bending and on curvilinear cracks. vVe compare the results of the various 
numerical calculations performeel with the use of the uncoupled dynamic fracture 
approach and the hybrid fracture/damage approach. The results of applicatîons on 
television pictme tubes are summarised. Open ends of the present research and some 
options for future research are put into perspective in Chapter 10. 



Chapter 2 

Basic equations of mechanics 

In this ehapter we present an overview of the equations that form the basis of the 
mathematieal analysis of meebanles problems. Since these basic equations will be used 
frequently thrm1ghout this a summary is presenteel here for later reference. 
Derivations are not but ean be found in the literature as indicated. We restriet 
ourselves to the theary of small deformations ar linear elastieity theory. 

The first section deals with the loading of general three-dimensional configurations. 
The next sections focus on specific geometries and deformation situations, such as 
plane strain, (genera.lised) plane stress, and anti-plane shear. The equations far the 
bending of thin fiat plates are also presented. vVe shall adopt classica! plate theory 
and Reissner'ö theory. The analysis is restricted to isothermal situations; temperature 
effects are thus not included. 

2.1 Deformation of linearly elastic boclies 

Consicier a deformable body consisting of a homogeneous, isotropic, linearly elastic 
materiaL The body camprises a domain V R 3 and is subjeeteel to prescribed 
displacernents and (time-dependent.) farces on its outer boundary 811. In addition, 
volume farces may exist. The material behaviour is characterised by the Young's 
modulus of elasticity the Poisson contraction ratio v, and the shear modulus G 
E/2(1 +u), while the density of the material equals p. 

The deformation of the body is expressed in terms of displacements U;, strains , 
and stresses er ij, with respect toa Cartesian coorclinate syst.em ey, ez}, and with 
indices i, j y, . The notation ,i is adopted for differentiation with to the 
coardinate i, while a superposed dot is used far the derivative with respect to time t. 
In addition, the Kronecker delta is introduced, whieh equals 1 for i = j and 0 for 
i i- j, and the Einstein convention of sumrnation over repeated indices is ernployed. 

The deformation problem is described by kinematie relations, constitutive relations, 

13 
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the of motion, and suitable boundary conditions; sec Eringen [25, Sec. 6.5]. 
The prescribed displacements and the externally applied forces on the boundary 8V 
are by u; and ]5;, respectively, while the components of the ontward normal to 
8V are denoted by n;. The volume forces are equal to ],. The dynamic problem for 
cicformation of a three-dimensionallinearly elastic body is then farmuiateel as follows. 
The static problem is obtained by putting p Ü; = 0. 

Pr-oblem. of elast·ic deformation: delermine displacem.ents 11.;, 

stresses u;i as sufficiently sm.ooth functions of x, y, z and t, 
tions (with indices i,j, k :r, y, 

1 
2 ( V•i,j + Uj,i ) , 

( 

Ll 
2 G E;j + 2 Ekk 1 - l/ 

), 
U;j,j + pÜ; 1 

strains E;j, and 
the equa-

(2.1) 

(2.2) 

in the donwin V occupied by the elastic body and subject to the conditions 

on Su , 

on 

(2.4) 

(2.5) 

on the boundary av s" u SP with Su and SP being disjoint. 

For the dynamic problem additional initia] conditions for the displacements u; and 
their time derivatives Ü; are required. In most applications the volume forces will 
be disregarded. Because of the linearity of the equations, the superposition principle 
applies. This rneans that probierus for loading situations can be scparateel 
into several simpler problems which are analysed independently. After the separate 
analyses, the tot al deformation of the linearly elastic body is obtained by summation 
of all individual responses. 

Elimination of the strains and the stresses from the relations 1 )-(2.3) produces 

1 
"U +---"U· .. 

·z,JJ 1 21! J,.F (2.6) 

which are known as the I\avier differential equations for the displacements. It has 
been shown by Sternberg [88] that the salution to these equations can be written 
as the sum of the gradient of a scalar potential 4> = y, z, t) and the curl of a 
divergence-free vector potentîal 1./J y, z, t) ei, which is the Helmholtz addîtive 
decomposition. In vector notation this reaels as 

u 'ïl·1/J = 0, 7) 

where bolcl-faeed letters are used to indicate vectors. The potential functions satisfy 
a.ppropriate wave equations 

1 .. 
(2.8) ó 0, 

1 
(2.9) c; 0, 
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where the dilatational and shear wave speeds for general three-dimensional problems 
are defined by 

cd (2.10) 

c~ ,G 
(2.11) Cs VP 

lt is noted that Cs cd. The completenessof the representation (2.7)~(2.9) for the 
solutions to (2.6) has been proven in and it is ernphasised that the potential 
functions can be time-dependent, even in the case of static elasticity problerns. This 
is explained as follows. When the potential functions are independent of time, the 
displacements satisfy the Laplace equation because of (2.8)~(2.9). Since this class of 
displacements is too much restricted in comparison with the general salution to the 
equation (2.6) with üi 0, the completeness of the representation (2.7) would be 
violated. 

2.2 Planar deformation 

The three-dimensional deformation problem in its general form is difficult to solve. 
However, several simplifications can be made when the elastic body has a certain 
degree of symmetry. For example, suppose the body has large thickness and let the 
z-axis coincide with the thickness direction. Assume that the deformation only occurs 
in the :r-and y-directions and is independent of z. This is the situation of plane strain, 
because the displacement Uz and the strain components Eiz (i '= :r, y, z) vanish. As a 
result, the shear stress components axz and ayz are equal to zero, while the normal 
stress in the z-direction is derived frorn 

(2.12) 

The problem of plane strain is similar to (2.1)-(2.5) but is reducible to two dimensions. 
All quantities are independent of the variabie z and the indices are restricted to x, y. 
The elastic body may be taken as two-dimensional, occupying the domain V in the 
xy-plane with the boundary o\l being a curve. 

Another example of planar defonnation concerns thin plate-like structures. Let the 
z-axis be perpendicular to the plate, while the x- and y-axes are in the plane of 
the plate. Now, it is assumed that the normal and shear stresses in the z-direction 
are zero, i.e., aiz = 0 for i = x, y, z. Thus, a situation of plane stress is obtained. 
Consequently, the shear strain components E.xz and Eyz are zero, while the strain in 
the z-direction is determined by 

.:..:-zz 
_1/-( 
l-IJ + ) . (2.13) 

In many practical cases the stresses aiz only vanish after integration over the thickness 
of the plate. Obviously, the averaged quantities do not depend on the perpendicular 
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z-coordinate. This procedure results in the following problem which is usually referred 
to as generalised plane stress. 

Problem of plane stress: determine displacements u;, strains and stresses 
(]"ij as sufficiently srnooth of ::r, y and t, satisfying the eqv.ations (with 
indices i, j, k x, 

1 
u; 1·-+-u 1 i), 

2 ' ·' . 

(]"ij 
E 

~1 v2 ( (1 v) 

püi) 

in the donwin V océ:v.vzea by the plate and 

u· ' 'il; on Su 

(J";j n 1 -·- P; on 

on the boundary DV cc~ 

to the conddions 

) 

disjoint. 

(2.14) 

(2. 

(2.16) 

(2.17) 

(2.18) 

Since E/(1 v 2
) equals 2G/(1 the problems ofplane strain and of (generalised) 

plane stress are identical when the Poisson's ratio v of plane strain is replaced by 
the quotient + v). The shear modulus Gis equal for bath problems, while the 
Young's modulus E for plane stress corresponds to E/(1 v 2

) for plane strain. 

The displacement solutions to the problems of plane strain and of (generalised) plane 
stress admit the representation (2.7) in termsof potential functions. Because of the 
geometrical sirnplifications, the scalar potential rjJ y, t) is independent of z, 
whereas the vector potenhal has the form 'ljJ y, t) ez. These functions satisfy 
the respective wave equations (2.8)~(2.9), where the summation over the repeated 
indices is now restricted to two dirnensions (i,j = x,y). In the case of plane stress, 
the Poisson ratio must. be adapted as described above, so that the veloeities of the 
dilatational and shear waves become 

2.3 Anti-plane deformation 

~- E -

y-p(-1 . v2) ' (2.19) 

(2.20) 

Suppose that the thickness of the elastic body is large and let the z-axis again be in 
the thickness direction. Assume that the defonnation occurs only in this direction 
and is independent of z. Thus, the displacements Ux and v.y vanish and the only nou
zero strains and stresses are the xz- and yz-components. It is customary to denote 
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the shear stresses by Tiz with L = .r, y. Since the displacement is perpendicular to 
the :ry-plane, this type of deformation is called anti-plane shear. The elastic body 
may be taken as two-dimensional, occupying the domain V in the xy-plane with the 
boundary àV a curve. From (2.1)-(2.5) the following problem is deduced. 

Problern 

2G 

p 

uz, strains and shear 
y and t.. satisfying the PmwFum 

Guz,i, (2.21) 

(2.22) 

in the two-dirnensional dorna·in 1/ occ:uv2ea by the elastic body and 
conditions 

to the 

on the boundat2J à\/ = 

on Su, 

on SP, 

with Su. and SP being 

(2.23) 

(2.24) 

For the static problem with p 0, the displacement satisfies the equation 
0. Consequently, the normal displacement can be written as the real 

part of a complex holomorphic function of the complex variabie = x+ i y: see 
Cherepanov [18]. The function and its derivative <I>(z) are holomorphic 
( or analytic) in the plane occupied by the ela..<;tic body with possible cuts 
frorn internal holes to the outer boundary. Because of the two-dimensional geometry, 
no confusion with the perpendicular coordinate z can arise. If necessary, the latter 
coordinate will be denot.ed by :r3 . The displacement and the two stress components 
are now written in the form 

The holomorphic function 
additional conditions at 

2.4 Plate bending 

Re q!(z) , 
G <I>(z). 

(2.2.5) 

(2.26) 

is fully determined by the boundary conditions and 
points such as crack 

Another simplification of the general three-dimensional deforrnation problem arises 
for elastic boclies with small thickness, such as thin flat plates. Whereas 
the plane stress problem was concerned with loading of these this 
section deals with by out-of-plane bending moments. 

Two different theories have been developed for the analysis of plate bending: the 
classica! theory of Kirchhoff (see Timoshenko and Woinowsky-Krieger [90]) and the 
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more refined theory of Reissner [7 4, 751. In both theories it is assumed that there is no 
deformation in the middle plane of the plate and that the normal stress in the direction 
perpendicular to the plate can be neglected. The differences concern among others the 
in-pla.ne displacements and the rotations in the middle plane. Historically, the classica! 
theory was developed prior to Reissner's theory, butfora better understanding of plate 
bending problems the latter will he discussed first. 

2.4.1 Reissner's plate theory 

Let the z-axis be in the direction perpendicular to the plate, with z = 0 along the 
middle plane and z = ±h/2 along the upper and lower of the plate, where h 
is the plate thickness. The in-plane coordinates are denoted by x and y. Bending 
problems are usually formulated in terms of moment and stress resultants. These 
cross-sectionat quantities are obtained by integration of the stresses over the thickness 
of the plate Mindlin [59] and Reissner [75]): 

(2.27) 

(2.28) 

where 'i, j = x, y. On the basis of these representations the and transverse 
stresses are approximated by linear and quadratic functions in respectively. 
CTij = 0 for 0 and criz 0 for z = ±h/2, with i, j = x, y, we may write 

6 2z 
(2.29) CT ij h ' 

- 1 3Q; ( 
2h 

(2.30) 

while the stress component CTzz is assumed to vanish [74, 

The moment and stress resultants are coupled with the displacements constitutive 
relations and elasticity constants. Instead of the Young's modulus E and the shear 
modulus G, new parameters are introduced for the analysis of plate bending. The 
bending Db and the shear stiffness are defined by 

Eh3 

12 (1 - v 2 ) ' 

kGh. 

(2.31) 

(2.32) 

where the constant k is the shear-correction factor. Strictly speaking, one must take 
k = 1 which corresponds with the exact three-dimensional theory. Reissner [7 4, 75] 
has shown by a variational method based on the ela.stic strain energy that k = 5/6 
yields better results, although an inconsistency occurs. lVIindlin has adopted 
the value k = in his study of inertia and shear corrections in the wave 
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equations for plate bending. 'vVe shall adhere to Reissner's choice. With these bending 
constants the wave (2.19)-(2.20) can be \vritten as 

c2 12Db 
(2.33) d p 

2 6D& v) 6Ds 
(2.34) Cs --

p óph 

In Reissner's plate theory, it is assumed that infinitesimal fibers which are initially 
straight and perpendicular to the middle plane of the plate remain straight during 
deformation but may rotate over smal! 8x and Gy in the .x;z- and yz-planes. 
These augles are independent of the out-of-pla.ne displacement ( defiection) of the 
plate. The in-plane displacements are then given by [59, 74] 

(2.35) 

with i = x, y, while the out-of-plane displacement is assumed independent of z and 
written as 'Uz = y). The function w is called the deftection of the plate. In his later 
work [75], Reissner showed that this function can be regarcled as a weighted average 
of the out-of-plane displacement ·uz over the plate thickness. A similar statement was 
made about the rotations. The expressions (2.35) and the relation U 2 = w are only 
approximations, which is due to the inconsistency appearing any plate theory. The 
rotation augles and the deftection are defined in [75] as 

(2.36) 

w (2.37) 

Analogous to the strains E;j in planar deformation, curvatures are introduced as 
derivatives of the rotation angles. The equilibrium equations are integrated over 
the plate thickness in a manner similar to (2.27) (2.28). The boundary of the plate 
can be subjected to prescribed rotations and deftections and to prescribed bending 
moments and shear forces. The equations for plate bending due to dynamic loading are 
now given below; see also [59, 74, The corresponding statie problem is obtained 
by putting ~ph3 ê, 0 and ph w = 0. 

Problem of pl0_te bending in Reissnf:T_'s theory: deterrnine defiection w, rotations 
8;, curvatures K;j, bending moments Mij, and shear farces Q; as s·ufficiently 
smooth functions of x, y and t, satisfying the eq·uations (with indices i,j, k 
:r, y) 

"-ij 
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Ds ( W,i 

1 

12 
Qi,i ph ÜJ' 

) ' (2.40) 

(2.41) 

in the plane dornain 11 occv.pied the plate and s·abject to the conditions 

El; on 50 , (2.43) 

n· .1 on (2.44) 

on the boundary av U Srn with and Sm and 

'W w on (2.45) 

Qin; Q on (2.46) 

on the bo·undary a\l = u with and Sq being 

2.4.2 Classica! plate theory 

The classica} theory of plate bending is based on the idea that infinitesimal fibers 
which are initially straight and perpendieular to the middle plane of the plate rernain 

and perpendicular to the middle plane during deformation; see Tirnoshenko 
and \Voinowsky-Krieger [90]. In other worcls, the shear strains and Eyz vanish. 
This is a stronger assurnption than in Reissner's theory. One also say that the 
shear stiffness D., of the plate has an infinite value. Consequently, the relation (2.:10) 
no longer applies and the rotations are equal to the gradient of the deflection: 

8· 
' W,i· (2.47) 

The in-plane displacements are then determined by the relations 

-z w,;, (2.48) 

for index i x, y, while the curvatures are the second derivatives of the deflection, 
K.;1 w,ij· It is customary to substitute this relation into (2.39)-(2.41) and omit the 
kinematic relations (2.38). 

Because of the conneetion , the boundary couditions (2.43) and (2.45) are no 
Jonger independent. The rotation es W,s in the tangential direction is completely 
determined by the bonndary's deflection, but the rotation w,n in the normal 
direction can still be prescribed as an independent condition. Similarly, the normal 
bending moment lVInn of (2.44) can be prescribed independently, while the torsicmal 
moment Mns and the perpendicular shear force Q" of are related. The condi
tions for 111ns and Qn are combineet into one boundary condition for the generalised 
shear force Qn + Jti"s,s· Thus, it is sufficient to prescribe two independent boundary 
conditions on the boundary av instead of three. This fact was first by 
Kirchhoff. For fluther details we refer to [90]. The classica! problem of 
is now given below. 
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Problern of plate bending in the cla~i;ical theory: determine ""''P''''u'""' w, bend
ing moments A1;J, and shear farces (J1 as sufficiently srnooth of x, y 

and t, satisfying the equations indices i,j, k x, 

lv1ii,i - (Ji 

CJi,i 

( (1 IJ) W,ij + U W,kk ) , 

1 
ph3 

12 
phw, 

(2.49) 

(2.50) 

(2.51) 

in the donwin V occnpied by the plate and subject to the conditions 

w ,n 

DV =SoU with 

w 

on the DV = Sw u Sq with 

w 

(J 

and 

on Se I 

on Sm, 

on Sw, 

on Sq 1 

bcing 

(2.52) 

(2.53) 

(2.54) 

(2.55) 

In the case of a statie analysis, one must put = 0 and phû! 0 in (2.50) 
and (2.51). Doing so, we abserve that the defieetion satisfies the hiharmonic equation 
D..D..v' = w,iiJJ 0. As a result, the salution to the static plate-bending problem 
can be represented in termsof complex holomorphic fnnctions; see Savin [80, Ch. VI]. 
These are similar to those of Muskhelishvili [63] for problems of planar 
deformation. We introduce the complex coordinate z = x +i y and denote the per
pendienlar coordinate by :r:l to avoid confusion. Now, there exist functions 
ó(z), with derivatives <I>(z) = l w(z) 1/J'(z), and primitive function x(z) 
with x'(z) , which are holomorphic analytic) in the plane dornain occupied 
by the plate with possible cuts frorn internal holes to the outer such that 
the displacernents, the bending moments and the shear forces can be as 

w 

1\!fxx + A1yy 

lvlyy + 2i li1xy 

(J, -i (Jy 

Re { + x(z)} , 

l +:::ó'(z)+l/'(z)] 

+ IJ)D [ <I>(z) + <I>(z) J , 

2(1 LJ )D [ z <r>'(z) + W(z) J 

-4D !.)'J'(z), 

(2.56) 

(2.57) 

(2.58) 

(2.59) 

(2.60) 

lt proves convenient to eliminate the fundions and \!! ( z) by the introduetion of 
two ne>v functions 

w( z) 

w' ( z) 
+ 
+ 

(2.61) 

(2.62) 
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which have the property that the conjugates w(z) and D(z) are holomorphic in the 
occupied by the plate. In termsof these functions, the relations (2.56), 

and (2.60) remain unaltered, while the relations (2.57) and (2.59) change into 

-.ra r w(z) + (z- z) 

Mxx lvfyy 2i lvfxy -2(1- v)D [ D(z) ]. 
The holomorphic functions are cornpletely determined by the boundary conditions, by 
additional conditions at singular points such as crack tips, and extra conditions for 
the single-valuedness of the displacementsin the case of multiply conneeteel dornains. 

As mentioned above, the torsional moment and the perpendicular shear force on the 
boundary cannot be described independently and are cornbined into the "~-'''PI'.>~.r 

shear force (2.55). One may also express the boundary condition in termsof 
the generalised torque. vVith Xo being an arbitrary but fixed point in the domain V, 
this quantity is defined for any x in V by 

The parameter s is the are length and the normal and tangential vectors, n and s, 
are chosen such that n x s = e3 . In the case of multiply conneeteel we 
must cuts from internal holes to the outer boundary. The generalised torque is 
determined up to an additional constant due to the arbitrariness of x 0 . The definition 

is also unique because of local equilibrium. Namely, for any closed contour L 
with interior A c V such that 8A = L, we have 

0. (2.66) 

Thus, the definition of the generalised torque is independent of the choke of the are 
from x0 to x. The representation of the generalised torque with toa Cartesian 
coordinate system is not symmetrie. The quantities 1VI;Y and 1H;x are different and 
are given by 

A1;Y Afxy + { Qxdy, (2.67) 
· Yo 

Af;x lvfy,, + jx Qydx. 
xo 

According to Savin [80, Ch. VI], the perpendicular shear force 
are AB with normal and tangential veetors 

IB A Qnds = Re{ LB (Qx i Qy) ds} 
2iD [ <P(z) 

B 
A 

(2.69) 
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Mnn + i Mr:s + i C Mnn + i M.ns + i {' Qn. ds + i C lso 
= (1 v)D [ K: + (n(z) + (z- z) 1>'(z) -1>(z)) (nx- inyf], (2.70) 

where C is an arbitrary real integration constant. The parameter K: differs from the 
usual values for deformation; for bending problems it is given by 

1-v 
(2.71) 
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Chapter 3 

Fracture mechanics concepts 

The basic principles of fracture mechanics have been surmnarised briefiy in Beetion 1.2 
of the introductory chapter and will be discussed here in more detail. The description 
of stress concentrations in the vic:inity of cracks in brittie matcrials is based on stress
intensity factors I< which are normalising constauts for the singular stresses near the 
crack tip as demonstrateel by the relation ( 1.1). Brittie fracture is characterised 
the occurrence of small-scale yielding England and Rice 77]) as opposed 
to ductile fracture where larger areas of pla:sticity are present. The yielding is confined 
to a small area, the fracture-process zone. This zone is hnmediately surrounded by a 
region, where the material remains linearly elastic and the singular stress field applies, 
which is therefore called the region of K-dominance. 

j 
Mode I 

opening mode 
Mode II 

sliding mode 
Mode lil 

tearing mode 

3.1: Three modes of fracture. 

27 
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The concepts of linear elastic fracture mechanics are illustrated on the basis of the 
problerns of planar deforrna.tion a.nd of anti-pla.ne shear. Three distinct modes of 
fracture may occur, depending on the orientation of the applied loads with respect to 
the see 3.1. A crack is an internal boundary of theelastic body where the 
material is discontinuous. This boundary consists of two parts: the crack 
also called crack flanks. The line joining the crack surfaces is the crack front (in two 
dimensions: the crack tip). Each mode is associated with a different stress-intensity 
factor. The crack-opening mode (mode I) occurs when the elastic body is loaded 
by tensile farces acting perpendicular to the crack surfaces. Shear fm·ces parallel to 
the crack fianks and perpendicnlar to the crack front result in fra.cture the sliding 
mode (mode while shear farces parallel to the crack front rise to fracture by 
the tearing mode (mode III). In general situations a combination of these modes will 
be present and crack extension will take place in a direction different from the initia] 
orîentation of the crack. 

In this chapter we summarize the results for the near-tip stresses of the various fracture 
modes and we distinguish between geometries with stationar-y cracks and those with 
dynamic crack propagation. In addition, severa.l fracture criteria are discussed, bascel 
on the critical values of the stress-intensity factors, the local near-tip and on 
the arnount of energy which is a.vailable for crack growth. Conditions for the onset 
of fracture and expressions for the determination of the crack-growth direction are 
presented. Prior to a study of the fracture criteria, it is necessary to investigate the 
stresses in the vicinity of the crack tip. 

3.1 F'racture In planar deformation 

3.1.1 Static salution 

Consider a linearly elastic body containing a crack of arbitrary shape and being loaded 
under planar conditions a.s described in Section 2.2. vVe shall focus on situations of 
plane stress. Firstly, we consider the static problem, such that we may put p ü., :::-cc 0 
in the equations (2.14)-(2.16). Since our attention is focused on the crack tip, it is 
allowed to employ a standard interior asymptotic expansion a.nd to replace the crack 
by a semi-infinite slit; see Achenbach and Bazant [1] and Freund [28, Secs. 2.1, 
In order to obtain the near-tip stress solutions, the of the Cartesian coordinate 
system ey} is located at the crack tip and the crack is positioned along the 
negative x-axis: see Fig. 3.2. 

It is assumed that the crack surfaces are st.ress-free, such that Pi 0 may be put in 
the boundary conditions 18) with SP equal to the crack surfaces. The conditions 
at large elistance from the crack are disregarded, because we focus on the crack-üp 

The solution to the static plane-stress problem is in several textbooks, 
e.g., Broek '11, Sec. , Cherepanov Sec. , Freund Sec. , Irwin [42]. 
Stress-intensity factors K 1 and Ku are introduced as normalising constauts for the 
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symmetrie and anti-symmetrie parts of the local crack-tip stress fields. These factors 
are the fracture parameters of the conesponding modes I and II and are expressed in 
units MP a Jill or N m -J/2

. With the use of local po lar coordinates r and e f:lpecified 
by x = r cos e, y = r sine with r > 0, -Jï --::: e --::: 7ï, the stress-intensity factors are 
defined by 

lim ~ O"yy(r, 0), 
7'--+Ü 

lim ~ O"xy(r, 0). 
7'--+Ü 

y 

x 

Figure 3.2: Local crack-tip coordinates. 

The salution for the stress components can be expressed as [11, 18, 28, 42] 

KI I Kn IJ o ( r:.) O"ij(r, 8) = r.>= jij(8) + r.>= f,j (8) + O"ij + 0 V r , 
V 27ïr V 27ïT 

(3.1) 

(3.2) 

(3.3) 

for distance r ---+ 0 and indices i, j = x, y. The term O"?J indicates the finite stresses 
at the crack tip. The angular variations for modes I and II are well-known functions 
and are illustrated in Fig. 3.3. For the crack-opening mode we have 

j ·I (8) COS ~g ( 1 - sin ~g sin ~g) (3.4) 
:rx 2 2 2 ' 

f:y(e) cos ~e ( 1 +sin ~e sin ~e) , (3.5) 

1 1 3 
!~y(e) sin2e cos 2e cos 2e' (3.6) 

while the functions for the sliding mode are given by 

1 ( 1 3 ) -sin 2e 2 +cos 2e cos 2e ' 
1 1 3 

sin 2e cos 2e cos 2e ' 

cos ~e ( 1 -sin ~e sin ~e) . 

(3.7) 

(3.8) 

(3.9) 
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(a) mode I (b) mode 11 

M ~ 00 1~ 1~ 100 
angle theta (degrees) 

M ~ 00 1~ 1~ 100 
angle theta (degrees) 

Figure 3.3: variations of the singular stresses (0) and fiY (0) of 
modes I and II for indices i,j = x,y. 

We note that the stress behaviour is also valiel for (non-propagating) 
cracks under dynamic loading condit.ions such as transient forces. In those situations, 
the same angular variat-ions and t.he same inverse square-root singularity are found, 
but the stress-intensity factors become time-dependent Sec. 2.1.]. 

2 
(a) mode I 

M ~ 00 1~ 1~ 100-~ 
angle theta (degrees) 

(b) mode 11 

x 

y 

M ~ 00 1~ 1~ 100 
angle theta (degrees) 

Figure 3.4: Angular variations of the displacements 
modes I and 11 for index i x, y and Poisson's ratio v 

and ·u [I ( 0) of 
0.25. 

The corresponding nea.r the crack tip are by [18, 

u·(r, Oî = ' .. Kn (T n(O) + O(·r) ' -cT V 21r ui 
(3.10) 
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for elistance r---+ 0 and index ·i cc, y, where u? are the crack-tip displacements. The 
angular functions are shown in Fig. 3.4 and are given by 

cos-{} -- + sin2
( -{}) , 

1 (1-v . 1 ) 
2 1+v 2 ·. 

(3.11) 

sin-{} -- - -{}) 1 ( 2 l ) 
2 1 +V 2 

(3.12) 

l ( 2 . 
sin -B -- + ) 

2 } +V ' 
(3.13) 

1. ( I - I/ . 2( 1 . ) cos -e --- + sm -{}) . 
2 1 +V 2 

( 3.14) 

3.1.2 Dynamic salution 

Next, the problem for a crack is considered. It was shown by Achenbach 
and Bazant 1] and Freund 4 · that effects of crack rotation and acceleration 
do not play a role in the singular stress field. these effects are not 
taken into account in the investigation. The crack is taken as a semi-infinite 
slit withits tip at x l(t), y = 0 at timet. The velocity of crack growth 
equals c = i(t) in the :1;-direction and is restricted to the range 0 c < c8 • A rnaving 
Cartesian coordinate is introduced with its origin attached to the crack tip, 
similar as in Fig. 3.2, with coordinates 

:J: -l(t), y. (3.15) 

Also, loc:al polar c:oordinates ('r, e) are introduc:ed suc:h that i: 
r > 0 and -JT S () S 7T. Because of the rnaving frame of it is c:onvenient 
to express the singular stresses in terms of distorled polar coordinates (rd, ()d) and 

Bs) associated with the dilatational and shear wave cd and Cs as given in 
(2.19)~(2.20). The radii rd and rs are defined by 

T s 

(3.16) 

(3.17) 

while the polar augles Od and 08 are in the same quadrant as () and are defined by 

ad tan (), 

a, tan (), 

(l:d( c) 

r.x,(c) 

In addition, we introduce the Rayleigh func:tion 

(3.18) 

(3.19) 

(3.20) 

The equation R(c) 0 has a double root c = 0 and two single roots c = ±eR with 
0 < CR < c,. The root CR defines the Rayleigh of surface waves, which depends 
on Poisson's ratio. For 0 S v S 0.50, we find that the ratio varies from 0.8740 
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to 0.9325 in the case of plane stress, and from 0.8740 to 0.9553 in the case of plane 
strain. The Rayleigh wave speed is the physical upper bound of the crack-growth 

for cracks in planar deformation. This relates to the energy dissipation during 
crack growth. \Vhen the crack-growth speed exceeds the Rayleigh wave speed, the 
function R( c) becornes negative and energy is radiated from the advancing crack 
tip: see Cherepanov [18, Sec. 5-~1] and Freund [28, Sec. . Since this is physically 
impossible, it is required that 0 S c < eR. 

The solution to the elastodynamic equations 16) satisfying homogeneons 
(stress-free) boundary conditions (2.18) along the crack surfaces was derived in [1] 
and [28, Sec. The stress components in the vicinity of a crack tip moving at 
instantaneous speed c are given by 

(3.21) 

for elistance T 0 and indices i, j = x, y. The dynamic stress-intensity factors are 
defined in the same manner as in and may depend on the crack-growth 
speed. The angular variations for modes I and II are well known [1, 28] and are 
displayed in Fig. 3.5 for several crack-growth speeds. The functions FMO, c) for the 
crack-opening mode can be expressed as 

(O,c) (3.22) 

(3.2.3) 

c) (3.24) 

while the functions c) for the sliding mode are given by 

pii c') 
XX (3.25) 

(3.27) 

It is noted that the functions Fij(B,c) and F';~1 (8,c) are for c =CR and 
their sign for c > eR, becauBe of the factor R( c) in the denominator. This 

demonstratea that the Rayleigh wave speed is the upper hounel for the crack-growth 
speed. 
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(a) mode I (d) mode 11 

30 60 90 120 30 60 90 120 150 180 
angle theta (degrees) angle theta (degrees) 

(b) mode I (e) mode 11 

30 60 90 120 150 180 W 00 00 1~ 1W 100 
angle theta (degrees) angle theta (degrees) 

(c} mode I (f) mode 11 

30 60 90 120 150 180 w 00 00 1~ 100 100 
angle theta (degrees) angle theta (degrees} 

3.5: Angular variations of the dynamic singular stresses Fi~(O, c) 
and FiY (fJ, c) of modes I and Il for indices ·i, j = x, y and Poisson's ratio 
v 0.25 in plane stress and for crack-growth speeds 0 (marked 
by o), 0.4 (x), 0.6 (+), and 0.8 (EB). 
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The conesponding displacements for dynarnic fracture are [28, Sec. 4.3] 

O;c) = n? 
K1 rr 
cV 2r. 

K11 rr;-
c) + ,.f-

G V 211 
c) + O(r), (3.28) 

for elistance r 0 and index i x, y, where are the crack-tip displacements. The 
angular functions are given by 

c) 2( R (1+ 
1 

cos 2od 2cxdct" l î COS -08 , 

2 ) 
(3.29) 

u: (0, c) ~( +- cx;)cxd 
' 1 1 ), (3.30) sm -ed + sin 

2 2 

u:1 (B, c) 2 ( 1 
(1 + 

l ), (3.31) -- 2a sin sin 
2 R ' 2 

c) ~ ( 2CXJGs 
1 

(1 + o:;) 
1 \ 

(3.32) cos -od cos 2(),) . 
R \ 2 

These results for the near-tip fields during dynamic crack propagation depend only 
on the instantancons crack-growth speed. Consequently, the near-tip stresses and 
displacements for nonuniform motion (é =/: 0) and for steady-state crack propagation 
(è = 0) are identicaJ In the limit of no crack propagation, i.e., for c -: 0, the 
angular variations tend to the conesponding valnes (3.4)-(3.9) and (3.11)-(3.14) for 
stationary cracks, 

lim F/
1 

( (), c) 
c~O 

lim F/
1
1 

( 0, c) 
c-----+0 

E~6 u[ (B, c) 

lim uF (o, c) 
C->Ü 

- f~(B), 

Jg (0) l 

3.2 Fracture in anti-plane shear 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

Consicier a linearly elastic body containing a crack of arbitrary shapc and subjectcel 
to anti-plane deformation as described in Beetion 2.:3, such that the crack is loaded 
under mode III conditions. Local crack-tip coordinates as in 3.2 are introduced 
with the z-axis perpendicular to the along the crack front. Again, the crack 
fianks are assumed stress-free and conditions at large elistance from the crack are 
disregarded. The solution to the static problem of anti-plane shear is presented by 
Broek [11, Sec. Cherepanov [18, Sec. , Freund Sec. 2.1], and Irwin 
The singular shear stress components are normalised the stress-intensity factor 

which is defined by 

Kur 0). (3.37) 
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The shear-stress components in the vicinity of the crack tip, i.e. for distance r __, 0, 
are given by [11, 18, 28, 42] 

'0) 0 ( ~) + T12 + 0 y'r , (3.38) 

with index x, y and Ti~ being a finite shear stress at the crack tip. The angular 
variations are well-known functions, viz. 

(0) 

0) 

. 10 
-SUl 2 · 1 

1 
cos 20. 

]{ III {2:;: 1 . 
,/~ sin-0 + O(r), 

G V rr 2 · . 

(3.39) 

(3.40) 

(3.41) 

for r 0 and with the crack-tip displacement. Similar to Subseetion 3.1.1, 
the near-tip salution (3.38)-(3.41) is also valid for dynamic loading of 
cracks. Only the stress-intensity factor (3.37) will vary with time. 

The sol u ti on for a propagating crack with instantaneous velocity c c( t) and loaded 
in anti-plane shear is expressed in the same moving frame of reference as defined in 
(3.15). The singular shear stresses are obtained as '28, Sec. 4.2] 

]{III .JII(O ) . o , O( r::.) 
. ~ f';z 1 C + Tiz i V T ' 
v 2rrr ' 

(3.42) 

for distanee r 0 and index i x, y. The elastodynamie stress-intensity factor 
is defined by (3.37) and may depend on the erack-growth speed. Expressed in terms 
of n., and Os (see and (3.19)), the angular variations are given 

(0, c) 

(3.44) 

Thc displacement for dynamic fracture is equal to [28, Sec. 4.2] 

llz (r, (}; c) = 

with being the crack-tip displacernent. 

These results apply to both steady-state and nonuniform crack propagation [1, 28]. 
In the limit for c--> 0, the angular variations tend to the eonesponding values (3.39) 
( 3.41) for stationary cracks. we have ( with index i x, y) 

lirn pil I ( (}, c) = 
c~o u . 

( 0) . (3.46) 
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3.3 Energy release rate 

Because of the stress singularity, a concentration of energy occurs in the neighbour
hood of the crack tip. Fracture will take place when the available energy exceeds a 
cri ticalleveL This is expressed in terms of the energy release rate which is defined as 
the arnount of energy required to separate the materialand dissipated per unit area of 
crack extension. For thin plate-like structures it is cornmon to multiply this arnount 

the plate thickness ( or to integrate over the thickness of the and to expreHS 
this rate as energy dissipated per unit length of crack extension. The dissipated energy 
equals the work performeel when the newly created crack is closedover an infinitesimal 
distance ê>.a. This work is calculated from the stresses cr;y(r, 0) in the direction ahead 
of the crack and frorn the crack-flank displacements u;(ê>.a r, 11;(6a- r, 
with 0 < r < ê>.a. The dependences on c and possibly on have been suppressed for 
clarity. The energy release rate is then determined by 

g . 1 
hm 

.::>a-·0 2ê>.a 
0) -r, u;(ê>.a r, --r.)] dr (3.47) 

with summation over the index ·i y, z. This methad of the crack-ciosure integral 
was developed by lrwin [41, 42]; see also [11, or Young and Sun 99]. 

The conneetion with the stress-intensity factors is derived by substitution ofthe near
tip solutions. Thus, the energy release rate for dynamic fracture at crack speed c in 
a plate of thickness h loaded under plane-stress or anti-plane conditions is calculated 
as 

(3.48) 

where the velocity-dependent coefficients are given by Freund Ch. 5j and also by 
Nishioka. and Atluri . vVith the use of the definitions (3.18)~(:3.19) of ad and a 8 

and the definitions (2.19)~(2.20) of cd and C8 , we find 

(3.49) 

An(c) (3.50) 

(3.51) 

In the limit of a stationary crack, for c -+ 0, these coefficients tend to unity and 
the energy release rate (iJ.48) reduces to the well-known results of [lL 18, 67]. On the 
other hand, the coefficients A1 (c) and An(c) b~:come infinite of the order cR)- 1] 
when the Rayleigh wave speed is approached, while the coefficient A.1n(c) is of the 
order O[(c- c8 )-

1
] when the crack tends to the shear-wave speecl. 

An alternative methad for the calculation of the energy release rate has been de
veloped by Rice [76] and is based on path-independent contour integrals or so-called 
J-integrals. This technique has been elaborated further by Atluri for a wide class 
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of matcrials having properties as fini te strains, rate and elasto-
viscoplastic behaviour. Freund [28, Ch. 5] and Nishioka and Atluri applied these 
integrals to dynamic fracture of linearly elastic boclies infinitesimalelastic 
deformation, which is also assumed in this thesis. 

Consider a circular contour C in the :ry-plane with center at the crack tip and lying 
entirely insidc the region of K-dominance. The end of the contour are on 
the lower and upper crack surfaces and the components of the ontward normal are 
denoted by n;: sec Fig. 3.6. For indices i,j x,y,z and k x,y (or 1, 2), wedefine 
the integrals [2, 28, 67, 76] 

Jk = lim j"+h/
2 

l ( (vV + T) n., 
c~o -h/2 Je O";j nj 1L;,k) els dz, (3.52) 

with Hl and T = ~püiiti being the elastic and kinet-ie energy densities, 
respectively. The limit C -+ ~ 0 is to be unclerstood as the limit for a contour C 

onto the crack tip. The integrals Jk form a vector J Jk ek in the xy
plane. An interpretation of this vector is given in the next section where fracture 
criteria are cliscussed. 

y 

Figure 3.6: Integration path for the J-integrals. 

The J-integrals can also be calculatecl for other than circular contours, shrinking onto 
the crack tip. In Appendix A it is shown that J 1 is independent of the shape of the 
contour C ( the integration path) when the crack surfaces are stress-free. Therefore, 
the integral J 1 is often called path-independent. This property also holels true for h 
but only for stationary cracks and not for fracture. In practical calc:ulations, 
e.g. based on the finite-element method, it is more convenient to use an integration 
path which iR not located in the proximity of the crack tip but at some remote position. 
Expressions for Jk which involve an a contour outsiele the region of 
K-domina.nce, are presented in Appendix A and These expressions contain 
extra contributions due to integration paths the crack flanks and, in the case of 
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dynamie lon.dinp;. ;m cxtrn sndan' or volunw intC'p;ral t.o incorpmate the Plastod:nwmi,· 
dic·cts. 

Atluri [:2] hns prm'i'd t.lt;d tlw inlegral .J1 <:oincicll's wit.h t.lw ('!H'rgy rdcacc ratc· Ç. 
This cnn nlsll Iw sltown hy cva.hmtion of .!1 fora .shrinking circnlar [G7] or n•ctanp;nlm 
[28. Ch. G] contcmr vict snl"tit.ntion of t.hc clast.oclynamic llf'ctr-tip soluticms. So. we 

ltavr· 

Evahmtion of t.h<• intcgnil .!2 fora sbrinkin?, circula.r contour yiclds 

(TG-t) 

wlwrc• tlw codlkieut Al\ (c) is giwn in [G7] and b~· (A.:3) of Appendix A. \.Vil<'ll the 

cnwk-growt.h S]W<'d appWCldH" ;,pro. t.his <·oeffkient tcwls to nllity alld t.he <'Xpression 
(3.G4) rednces to thc n•snlt.s of [18. Ch. 5]. The coceffici<'nt is oft.lw ordN 0[(,·-cn)- 2

] 

for cra.ck-?,rowth spc·ccb ;rpproachin~S t.he Rrrvlcig;h wa'·" 'Jl"''rl. It. is emplmsised I ]mt 
.12 dqwnds on the ,.,bapi' of tlw shrinking cont.onr (for dvnamic fradutr unlY). Fm 

non-eireu hu colll<lllrs s~'mmdric wit.h n•spect to t he• .r-a.xi,s, expwssions for ] 2 si ruilar 

t.o (3.G4) are obtaiucd wit iJ diff'erPut codticicnts A 11 (c) For <'Xample. t.hc n•sult for cl 

shrinking rect.angnlm cont.onr is p;iwu in (A.4) of App<·udix A. \.Yhcn thP cul!tom is 

not. symmetrie wit.\r rcsjwct to t.hc :r-ctxis, t.he expression fur h may coutain additimml 

li'nns with l\f. J\f1 nilll Kf 11 (!3oNsrmr [8]). Tlw vPlocity-cl<•p<·wlmt. coefficic'nls of 
thesp tl'l'ms depend on thc• shap'' of t.hc shrinkiug col!tour ;mcl vanish fm zno nack 
]ll'O]JILgatiou (c = 0). 

3.4 .Fracture criteria 

In frad.nre medmuics we dist.inguish bet.we<'n (i) na.ck initint.ion. which is t he sncl<li>n 
ruptmc of initiallv nndamaged mal.<•rial, and (i i) cmck ext.cnsioll, which is t.lw gwwt lr 
of pre-exist.ing cracks. T\w mrchanism of crack initiation can he <'xplaÎlH'rl h)' <1 mino
nwdranic;ü approach. vVlren t.be ]ocal stressps ai a certrün positiur1 Pxr·eecl cl nitical 

valuc, molt>cular bmHls wil! fail. For grauular matnials such as connt'tr· ur mek. but 
also for filwr-rcinforccd <·omposii.cs. t.he matrix mat.eriall)('twecn tlw grains or Jilll'l'S 

will fradnrcè. As soUlL ru; a sufficicnt numbcr of mimrscr!lr• flaws has origirmterl on t lw 

microscopie level, intcrlinkag<'' of the microcracks lllH)' D(T\lr. Finally, t.he strengtil 

of t.he matt•ri<Ü hac; clecn•a"'d so htr that t lu• n'nmining ho mb canuot withOitand tlw 
increasecl lension aml f;ril t.oo. This lwconws apparent on the m<tnoc;copic· l<·vp] in tlw 

form of nack initi,ltion. 

In this t.hcsi:i W<è rest riet. oursdws to tlw ?,rowth of pre-Pxist.ing cracks. Rep;arding t.hc• 

n.rea of applicat.ion, il is reasmmblP t.o assunw that (Tack initiiüion has occurrcd aud 

t.lmt <tt lenst om• crack is pn•st•Ht in t.he matcrial. Th(• dPforrnation of a.n chstic body 
i,s /SOVemcd b.v the r·qu;ü.ions <uH! bmmdary couditions (2.1) (2.5). ThPsre cquntions 

an' not sutfici<'nt for thc >Ul>Llvsis of cracks. Au additiemal postulale on the fract.nn• 
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behaviour must bc supplied: a so~called frac.ture eriterion; see Broek [lL Ch. 2]. 
ChNepanov [18. Ch. 1] and Freund [28, Sec. 7.4], who elaborated further tlw ideas of 
Griffith [31]. Irwin [42] and Orowan [70]. We shall discuss two fracture criteria that 
can be ernployed to deçide whether an existing crack wil! extcnd, and if so, in wltich 
direetion. Although the ideas underlying these crit<:>ria are different, their preclict.ions 
are in goocl agreement with each other and with experimmtal data. 

\Ve start with a statiomtry crack (c = 0) located along a semi-infinite slit and loaded 
uncler mode I conditions. Because of the symmetrie loading, the crack extends in 
thc direction (! = 0 ahead of the crack. The first fracture criterion is basecl on t he 
stress-intensity factor; see [11, Ch. 1] and [18, Sec. 4-1]. It is postuiateel that nack 
growth will occur when the stress-intensity factor exceecls tbr critica! limit !\Ie. tlJP 
fracture toughness of thc material, that is 

(3.55) 

Thf' secoud fradure criterion is based on the energy release rate; se<' Broek [11. 
Sec. 1.7], Cherepanov [18, Secs. 4-2, 5-1] and also Irwin [42] It is postulatPd that 
crack extemiion wil! take plaee when the energy stored in the imrnediate surrounclings 
of the crack tip is sufReient to break the material and to induce fracture. This energy 
is released during crack extension. The critica] level for the energy release rate is 
denoted by 9c ancl the fractnre criterion is 

(3.56) 

The two fracturr criteria are equivalent, since the stress-intensity factor ]\-I nnd the 
energy release ra te Ç are eonneeteel by ( 3.48). By putting c = 0 in (3.48), a relationship 
between the fracture touglmess and the critica! energy release rate is derivecl. munPl~· 

(3.57) 

Next, we consider a stationary crack located along a semi-infinite slit and toadeel by 
a combination of moeles I and II. We assume KI > 0, which corresponcls to crack 
opening insteacl of crack dosure, while Kn can be positive or negative. The nitical 
stress and the direction of crack extension are to be clet<'rrnined. As a generalisRtion of 
(3.55), we cliscuss a criterion basecl on the circumferential tensile stress in the vicinity 
of the crack tip. This stress component is calculated frorn the singular stress field 
(3 3)-(3.9) anclis given by 

crea(dl) 

(3.58) 

Experimental research has led to the following hypotheses; see e.g. [11, Sec. 1-!.SJ and 
[18, Sec. 4-3] and also Erclogan and Sih [23] Fracture occurs when t.he maximurn 
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of the effective stress-intensity factor Kee reaches the critical value . The crack 
extends in the direction 0 OP for which Keo is maximum. The critical stress-întensity 
factor and the angle OP of crack growth are thus detennined by 

Kee(Op) Kic, 
dKee 

0, 
d2Kee 

0. (3.59) = = < dO :ep d02 
iep 

The salution for OP is given by 

ers) 
I' 

2 arctan ), (3.60) 

where the superscript S refers to the circumferential stress criterion. Substitution of 
this result into the equation (3.59) 1 yields the condition for crack extension 

(3.61) 

The crack-growth angle e~s) is plotted as a function of the ratio Kn I K 1 in Fig. 3.7 

and approaches 2arctan(~!J2) ~ 70.5°, when K 1 vanishes while Kn remains non
zero. In the case that the fract ure process is dominated by mode L which occurs very 
often for brittie materials, the expressions (3.60)-(3.61) can be approximated the 
first two terms of their Taylor for Kn I K 1 0, viz. 

(3.62) 

(3.63) 

The secoud fracture criterion is generalised with the use of the J -integrals of 
Section 3.3, which are considered as componentsof the vector J = Jk ek. Since the 
integrals Jk have the dimension of energy per unit or also the dimension of 
force, the vector J can be regarcled as the energy flux into the crack tip [18] or as the 
crack-extension force [11, 41, 42]. The fracture criterion states that crack extension 
will occur when the length of the vector J reaches the critical energy release rate 9c· 
while the crack extends in the direction 0 =OP of J; see Ch. 5]. vVith the use of 
(3.48) and (3.5:3)~(3.54) with c 0, the fracture criterion can be expressedas 

(3.64) 

while the crack-growth angle is determined by 

(1\ ( Jz) ep·; = arctau Jl = arctau (3.65) 
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>vhere the superscript J refers to the criterion. The angle B~·J) is also plotted 
in Fig. 3.7. vVhen the fracture process is dominated by mode I, a Taylor expansion 
of (3.64)-(3.65) for small values of the ratio Ku I K 1 can be employed. The 1c;auu''1S 

terms of the expansions are the sarne as in the approximations (3.62)-(3.63) 
pertaining to the circumferential stress criterion. Differences only occur in the terms 
of higher order in Ku I KI. 
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Figure 3. 7: Crack-growth augles of circumferential stress criterion 
as functions of the ratio KI 1 I KI. and (---)of J-integral 

Interchanging the stress-intensity factors K 1 and Ku in (3.64) and in (3.65) does 
not alter the results. In addition, it is noted that the absolute value of ()~J) is at 
most 1T I 4 radians or 45°. This reveals that the expresslons (3.64) and (3.6.5) are 
not suitable in the case when the fracture process is dominated by mode II, i.e., 
when IKul > K 1 . In these cases it is more appropriate to use the expresslons (3.60) 
and (3.61) of the circumferential stress criterion. This is particularly relevant to the 
beginning of fracture of pre-existing since these cracks are often subjected 
to non-symmetrie loads where fracture by mode II is dominant. During continued 
fracture and without sudden changes in the applied forces, however, smooth 
crack surfaces are observed. The crack extends in such a way that a certain degree 
of in loading is preserved with to the plane to the crack 
surfaces at the crack tip. As a result, fracture occurs mainly in mode I and the stress-

factor Ku becomes negligible Sec. , so that the two fracture criteria 
are equivalent. 

Another difference between the fracture criteria to material characteristics. 
Stress-intensity factors are defined as normalising constauts of the singular stresses 
under the assumption of smali-scale yielding. As a they only apply to materials 
with a relatively small zone of plasticity around the crack tip. This class of materials is 
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called brittle or quasi-brittle ancl camprises materials as glass, ceramics ancl concrete. 
Materials for which the plastic zone surrounding the crack tip is significant to the 
fracture process are called cluctile. Metals for example belong to this category, because 
the yielcl stress is at a low level and is reachecl rather quickly, while the ultimate 
failure stress is larger by several orders of magnitude. Even glass may behave in a 
cluctile manner when it is loaclecl uncler compression, for instanee during indenter 
tests. Obviously, the concept of stress-intensity factors does not apply to cluctile 
material behaviour because of the large amount of plasticity involvecl. For this type 
of materials the fracture criterion basecl on the energy release rate is more suitable. 

3.5 Effects of dynamic crack propagation 

In the prececling section we have cliscussecl fracture criteria for stationary cracks. In 
this section we shall deal with propagating cracks. The behaviour of the singular 
stresses ancl the conesponding clisplacements near the crack tip is fixecl to a large 
extent. The singularity by the inverse square root of the elistance to the crack tip is a 
characteristic feature of the near-tip stresses, while the variations with the polar angle 
are pre-cleterminecl. The only remairring "clegrees of freeclom" are the stress-intensity 
factors which are relatecl to the externally appliecl forces, the bounclary conclitions, 
ancl the geometry of the elastic body inclucling crack size ancl crack speed. Generally, 
these dependences of the elastoclynamic stress-intensity factor can be clenotecl by 
KI= KI(a, a, c), where a represents the appliecl forces, a the crack length, ancl c =a 
the crack speed. The dependenee on other geometrical parameters has been omittecl 
for darity. When a ancl a are known, the fracture criterion (3.55) or (3.56) provides 
an equation for the crack-growth speed c. The dependences of KI ancl Ç on c are 
cliscussecl below. 

The monograph of Freuncl [28] provides an extensive treatment of various aspects 
of clynamic fracture mechanics. It is shown in [28, Ch. 6] that thc dynamic stress
intensity factor KI (a, a, c) fora propagating crack is equal to the stress-intensity factor 
KI(a, a, 0) for the static equilibrium state of a stationary crack of the same size a ancl 
subjeeteel to the same external forces a, multiplied by a univers al function of the crack 
speed c. This important result can be expressecl as 

(3.66) 

where ki(c) is the (climensionless) universal function of crack speed for mode I with 
0 'S c 'S CR ancl is plotteel in Fig. 3.8. This representation holels true for cracks 
propagating at constant speed as wel! as for arbitrary crack-tip motion clue to transient 
loacling conclitions [28, Ch. 7]. 

Similar representations are clerivecl for the stress-intensity factors of moeles II ancl III, 
but the universa] function of crack speed attains a different form for each of these 
modes. Useful approximations to the universal functions for moeles I ancl II are given 
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by [28, Sec. 6..4] 

(3.67) 

where 0 ::; c ::; eR- The universa! function of crack speed for mode 111 is defined for 
0 ::; c ::; C8 and is represented by the exact formula Sec. 6.4] 

r---
kw(c) = yl c/cs. (3.69) 

The universa! functions have the common property that they deercase rnonotonically 
frorn unity to zero for crack speeds increasing from zero to the Rayleigh wave speed 
(for mode IIT: the shear-wave speed). This behaviour is illustrated in Fig. 3.8. The 
monotonicity is explained by the physical argument that higher stress levels lead to 
higher crack-growth speeds. Because of the linearity of the deformation problern, an 
increase in a produces a higher equilibrium stress-intensity factor. Since the dynamic 
stress-intensity factor equals K 1c, the universa! function of crack speed must deercase 
for higher stresses and thus for higher crack speeds. 

0.2 0.4 0.6 0.8 1 1.2 
crack-growth speed c I eR 

Figure 3.8: Universa! functions k1(c), k11 (c) and kw(c) as functions of 
the dimensionless crack-growth c/cR for Poisson's ratio v = 0.25. 
A straight dasbed line is added for comparison. 

Because of the relation between the energy release rate and the stress-intensity 
factors, we can derive a representation similar to (3.66) for the energy release rate 
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Ç(a, a, c) for a crack of length a, subject to external farces a, and propagating at 
speed c. Substituting (3.66) into (3.48), we obtain for mode I fracture that 

Ç(a, a, c) = ~ A1(c) J(j(a,a,O) 9I(c) Ç(a,a,O). (3. 70) 

Thus, the energy release rate for a propagating crack is equal to its value for the 
corresponding equilibrium situation \Vith a stationary crack, multiplied by a universa! 
function of crack Similar expressions are obtained for the other fracture modes. 
The universa! fundions of crack speed are kl(c) with index II, III 
and are plotted in Fig. 3.9. The coefficients Ai(c) are given (3.49)-(3.51) and the 
functions (3.67)-(3.69). The functions arealso monotonically decreasing 
with increasing crack speed; see 3.9. Acceptable approximations to the universa! 
functions for modes I and II are 

91 

gu(c) 

(1 

1 c/cR, 

(3.71) 

(3.72) 

where 0 <::: c cR. The universa! function for mode III is given for 0 c ::; c" by the 
exact formula 
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1.2 

Figure 3.9: Universa! functions , gn(c) and g111(c) as functions of 
the dimensionless crack-growth speed cj cR for Poisson's ratio v 0.25. 
A straight dashed line is added for comparison. 

'vVe can now formulate a fracture criterion for dynamic problems with propagating 
which enables us to determine the crack-growth speed. Consicier an elastic 
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body with a crack propagating at unknown) speed c under mode I conditions. 
The equilibrium energy release rate Q(u, a, 0) is determined by the externally applied 
forces and the boundary conditions, and can be calculated for example by means of 
the finite-element method. the crack-growth speed can be obtained from the 
fracture criterion (3.56) with equality and where Ç is interpreted as the 
energy release rate. With the use of relation (3.70) we find 

a,O) = Yc, 

which is to be considered as an for the crack-grovvth speed c. 
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Chapter 4 

Fracture in plate bending 

In addition to the three traditional modes of fracture considered in Chapter 3, one 
can also define three fracture modes for the bending of thin plates; see Fig. 4.1. 
The bending modes are indicated arabic instead of roman numerals to distinguish 
thern from the previous modes. The normal-bending mode (mode 1) corresponds to 
the crack-opening mode of planar deformation and is induced by bending moments 
symmetrie with respect to the crack flanks. The twisting mode (mode 2) is similar to 
mode II of in-plane loading and is induced by torsional or twisting moments which are 
anti-symmetrie with respect to the crack flanks. When the plate is loaded by shear 
forces in the direction perpendicular to the plate, bending fracture may occur in the 
shearing mode (mode 3). There exists great similarity between the latter bending 
mode and the tearing mode (mode III). 

Mode I 
normal-bending mode 

0 
Mode 2 

twisting mode 
Mode 3 

shearing mode 

Figure 4.1: Three modes of fracture in plate bending. 

47 
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In this chapter we present expressions for the singular bending moments in the vicinity 
of the crack tip, the conesponding shear forces, the deflection of the plate, and for t.he 
rotations of t.he middle plane. The analyses have been carried out in both Reissner's 
plate theory and the classica! plate bending theory of Kirchhoff. The result.s for 
dynamically propagating cracks are new, whereas the results for stationary cracks have 
been derived previously by Hui and Zehnder [38]. The near-tip stress distributions 
for the t.wo plate theories are compared with each other and also with the near-tip 
stress fields of planar deformation and anti-plane shear. 

lt is assumed that the bending loads are applied in combination with in-plane tensile 
forces, such that crack ciosure does not occur. If the crack surfaces do come into 
contact, the compressive stresses can be incorporated by adding extra terms to t.he 
stress-intensity factors; see Young and Sun [97;. Because of the principle of super
position, the problem of plate bending is analysed independently from the problem of 
plane stress. Stress-intensity factors for situations of combined tension and bending 
are introduced and some results on the energy release rate are derived. 

4.1 Bending fracture in Reissner's plate theory 

Consider a flat plate of thickness h consisting of a linearly elastic material, containing 
a crack of arbitrary shape, and being subjeeteel to bending moments as described 
in Subseet.ion 2.4.1. The analyses of static and dynamic fracture ean be carried 
out sirnultaneously. So, the coordinates x and f) of (3.15) and also the local polar 
coordinates T and e with the origin attaehed to the moving crack t.ip are used. The 
instantaneous crack-growth speed at timet is denoted by c c(t). 

Fbr the analysis of the singular behaviour of the bending moments and shear forces, 
the mechanica! quantities are expanded into series in powers of the elistance T to 
the crack tip. In this procedure it turns out that a separation into two independent 
problerns is allowed. Firstly, we obtain a problern of the singular bending moments, 
the curvatures and the rotations, which is similar to the problem of planar deformation 
(modes I and II). Secondly, we obtain a problern of the singular shear forces and the 
deflection, which is sirnilar to the problern of anti-plane shear (mode III). 

The series expansions must sat.isfy the following conditions. Firstly, it follows from the 
analysis of the boundary conditions [1, 28, 67] that the series can only contain terms 
with powers for integer val u es of p. Secondly, the displacernents ( deflection and 
rotations) attain fini te valnes at the crack tip. Thirdly, the elastic energy density is an 
integrable function of the spatial coordinates. These conditions impose restrictions on 
the exponents in the series expansion, such that the bending mornents and the shear 
forces are of the order O(r-~) for r -t 0. Consequently, the series expansions of the 
mechanica] quantities in loca] polar coordinates T and 0 are of the form [67] 

00 00 

w 2:: (-r, (), t) = L 
p=l p=l 
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00 00 

L e(p\r e t) L 1 - ( ) r'iP E)P ((} t) 
' ' J ' ' ' p=l p=l 

00 00 

L (J' t) L (O,t), 
p=l 1) 00 

L lvii1)(r, e, t) r~P-1 (O,t), 
p=l 

00 

r~p-l Q/p)(e, t). L Q}"1(r, e, t) 
p=l p=l 

It is noted that the deReetion w(o) and the rotations 6)0l of the crack tip (r = 0) 
have been omitted, since they are constant and t.herefore not relevant to the near-tip 
solutions. The bending moments and the shear forces Q~ 1 ), which are of the 

order O(r-~) for r 0. are called the tcrms. 

These expansions are substituted into the equations (2.38)-(2.42) and the boundary 
conditions (2.43)-(2.46). Because of the moving frame of we must transform 
the total time derivativcs to spatial derivatives according to the following rules. For 
any function g , fj, t) we have 

.ÎJ 
dg 8g 8g 

( 4.2) 
dt at c 8' ) ::r 

g 
d2g . 8g 

(t1.3) 2c - c- + 
dt2 atax ax 

Substituting the series expansions (4.1) into ( 4.2)-( 4.3), we observe that differentiation 
with respect to x or f) lowers the exponents of r by one, while (partial) differentiation 
with respect to time Iets the exponents unchanged. Equating the terms with equal ex
ponents of r resttlts in separate systerns of equations for the singular bending moments 
and the singular shear forces; see below. Because of , the dependenee on 
time t in the two problems of the terms can be interpreted as a dependenee 
on the coordinate . Therefore, we shall omit the argument t from the leading terms 
in the series expansions ( 4.1). 

4.1.1 Problems of singular bending moments and shear forces 

For index p 1, the following problem of the singular momentsis obtained. 
According to ( 4.3) the total time derivative ëP1 is equal to c2 e;,~x plus other 
which are since they are of higher order in r. For stationary cracks (c 0) 
these derivatives vanish. 

bl d . . e(l) Pro .em moments: etermzne rota.twns -i , curvatures 
----~~~---~~-----

and bending momerds as s·ufficiently smooth functions of x, f) a.nd t, satis-
fying the equations (with i, j x, f)) 
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in the plane dorrwin V occupied by the 

on the boundary öV = Se U with Se and 

( 4.5) 

(4.6) 

on Se, (4.7) 

on (4.8) 

being 

In addition, the problem of the singular shear farces is deduced, where the time 
derivative 1ii(I) of the deflection is equated to c2 . In static fracture situations, 
these terms are identically zero. 

i,f)} 

on the boundary àV = Sw U 

on 

on Sq , 

with 5 11; and Sq being d·isjoint. 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

It is clear from the problems defined in this subsection that the singular bending 
moments and the singular shear forces are independent. The conneetion between the 
bending moments, curvatures and rotations on one hand and the shear farces and 
deflection on the other hand, as reflected in the relations (2.40) and appears 
only in the terms of higher order in r·, i.e., the terms with indices p > l. 

4.1.2 Singular bending moments 

The equations (4.4 )-( 4.8) for the problem of the singular bending moments show 
great similarity with the equations 14)-(2.18) for the problem of plane stress. It 

ÎS possible to COmpare the rotations 8~1) WÎth the În-plane displacements U; and the 
singular bending moments AJg) with the stress cornponents cri i of modes I and II 

J x, y). The plate thickness h is incorporated such that conesponding quantities 
have the same dimensions. In Table 4.1 we present the correspondence between the 
bending and plane-stress quant.ities. The density p and Poisson's ratio v for bending 
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bending plane stress units 

8(1) 2 ui 

' h 

-2Eij 

h 
rn- 1 

h2 u UI . CJij 
.1 I ·iJ 

6 

Db 

Table 4.1: Correspondence between bending and plane-stress quantities. 

are equal to their values for plane 
(2.31 ). 

while the bending rigidity Db is defined by 

As a result of this correspondence, the expressions for the near-tip bending moment.s 
and rotations in mode 1 and 2 fracture are derived immediately from the 
singular stress and displacement fields for modes I and II as given in the preceding 
chapter. F'or dynamic crack growth at instantaneous speed c, the bending 
moments are obtained from the solution (3.21) for the stress components and the 
rotations are obtained from the expression (.3.28) for the displacements. In terms of 
the local polar coordinates the result is expressed as 

U1 (B c)· 
27T ' ' 

rr 
V2:; 

( 4.13) 

(B, c), (4.14) 

with the functions given by (3.22)-(3.27) and (3.29)-(3.32), respectively. The 
constants K 1 and K 2 are the stress-intensity factors for plate bending in modes 1 and 
2; see Fig. 4.1. They have the same elimension as and Kn and may depend on 
the crack-growth speed. The bending stress-intensity factors are defined by 

Kr lim 
Gvz;TT 

(4.15) 
r~o 

h2 Myy(r, 0; c), 

Kz lim 
6 V21TT 

(4.16) 
r-.,0 

h
2 

lvfxy(r, 0; c) . 

Because of the factor 6/h2
, the stress-intensity factors K 1 and K 2 arealso normalising 

constants for the in-plane stresses (2.29) intheupper plane (z = h/2) ofthe plate. In 
the case of stationary cracks (c 0), the near-tip solutions for the bending moments 
and the rotations reduce to their static limits, which coincide with the formulae given 
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by Hui and Zehnder [38]. It is remarkatle that the angular variations of the singular 
bending moments in Reissner's theory coincide with those of the singular stresses for 
planar deformation. This was shown in [38j for static fracture, but it has been proved 
here that this statement a]so holds true for elastodynamic crack propagation. 

4.1.3 Singular shear forces 

Analogously, there exists a similarity between the equations ( 4.9)-( 4.12) for the prob
lem of the singular shear forces and the equations (2.21 )-(2.24) far the problem of 
anti-plane shear. This means that we can compare tl:ie deflection of the plate 
with the displacement Uz in anti-plane shear and the singular shear farces Q) 1l with 
the shear stresses T;z of mode III fracture ('i= :r,y). This comparison is not trivial 
for two reasons. 

Firstly, Reissner's theory of plate bending involves the shear-correction factor k = 5/6, 
which appears in the definition (2.32) of the shear stiffness Ds. Therefore, we compare 
k with the displacement U 2 . Secondly, the shear stresses Tiz of anti-plane shear 
are independent of z, \Vhile the shear stresses in the cross section of the plate are 
quadratic functions of accarding to (2.30). Integration of the latter shear stresses 

over the plate thickness produces the shear farces Q?). As a result, we rnay cornpare 

the singular shear forces Q~1) of mode :3 bending fracture with h T; 2 of fracture in anti
plane shear. The correspondences between all quantities are surnmarised in Table 4.2. 
The shear stiffness Ds is defined by (2.32), while the density pand Poisson's ratio 1/ 

for mode 3 bending fracture are equal to their values for mode III fracture. 

Table 4.2: Correspondence between bending and anti-plane shear quantities. 

Despite the correspondences, there exists a dissirnilarity between the two problerns 
due to the shear-correction factor k This becomes apparent for situations of 
dynamic fracture. Elimination of the shear stresses T;z from (2.21 )-(2.22) produces a 

wave equation far the displacement "Uz and elimination of the shear farces QP) from 
(4.9)-(4.10) produces a wave equation for the deflection of the plate. We find 
respeetively 

p 
0, 

0. 

( 4.17) 

(4.18) 
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Clearly, two different characteristic wave speeds occur: the usual shear-wave 
as in (2.20) or (2.34), and a modified ck Cs .Jk. Consequently, the 

solutions are the same only for k 1 and different otherwise. Since the angular 
functions Fi~II ( 0) c) in on the crack-growth speed through the 
ratio , we must replace for mode 3 bending and use the ratio 
instead. Alternatively, the same result is obtained when the crack-growth speed c is 
replaced with the modified crack-growth ê cj .Jk, which is defined such that 

The salution for the shear farces in the case of dynamic fracture 
is now deri,·ed from (3.42) as 

(4.19) 

with the ungular functions as in (3.4:1) (3.44), where we must use the parameters 
and e, itS defined by (3.17) and (3.19) WÎth the Crack-growth Speed C rep}aced by 

the modifie,l crack-growth speed ê. 

The panunt·Ler K 3 is the stress-intensity factor, which is chosen such that it is the 
normalising constant for the maximurn shear stress in the middle plane (z 0) 
of the plate: see (2.30) and also Hui and Zehnder and Young and Sun [98]. The 
stress-intensity factor K;3 has the same elimension as Kur, may still depend on the 
crack-growth speed c, and is defined 

K 3 = lirn ~ 
r~o 

0; c) ( 4.20) 

The defl.ection of the plateis derived from Table 4.2 and the solution (3.4.5) for mode 
III fracture as 

(1'. . 4 
w Jir 0· c) = 

' ' ' .S G 
( 4.21) 

where the factor 4/5 sterns from the quotient of the factor 2/3 in (4.19) and the 
shear-correction factor .S/6. Thus, we see that conesponding angular variations are 
obtained for fracture in modes 3 and liL In the limit of zero crack growth, i.e. for 
c 0, the dynarnic results above reduce to their static equivalents 

2h 

with the angular functions fEn ( 0) given 
the higher-order term wi3) of the expansion 
on Poisson's ratio and the stress-intensity factors 
relates to rigid-body rnotions and is of less 
obtain from [38] that 

h2 T3/2 { ( 1 
0) K 1 -(7+v)cos 

6Db(1- v 2)V2T. 3 

(4.22) 

(4.23) 

For later use we also give 
UC,.WA'C"'JH) which term depends 

The linear term uPl 

(1 l/) cos ~0) 

K (
1 (" 3 ' . 30 - 2 3 o v) sm 2 (1 v)sin~o)}· (4.24) 
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4.1.4 Energy release rate 

The energy release rat.e due to bending momcnts ancl shear farces is calculated from 
thc expression (3.47). The expressions (2.29) (2.30) for the stress components in 
the cross section of thc plate are substitutecl, while the in-plane displacements are 
given by (2.35) and the defiection is assumed to be independent of z. Carrying out 
the integration with respect to z in (3.47) ancl suppressing the dependenee on t.he 
crack-growth speed c, we obtain the follmving expression for the energy release ratc: 

Q = { 
1 1·6a 

lim -- Q9 (r, 0) [w(6.a- r, 1r)- w(6.a- r, -1r)] dr 
6a~O 2 6.a o 

1 /'6a } -
2 

6.a Jo M,y(r, 0) [8;(6.a- r. 1r)- 8i(6.a- r, -1r)] dr . (4.25) 

With the use of the near-tip solutions of the preceding subsecbons the encrgy release 
rate for dynamic bending fracture in Reissner's theory is determined. It is found that 

( 4.26) 

where the velocity-dependent coefficients are given by (3.49)-(3.51). For stationary 
cracks these coefficients are equal to nnity and the conesponding energy release rate 
coincides with results of Hui and Zehnder [38] and Young and Sun [98, 99]. 

The integrals Jk (k = 1, 2) can also be expressed in terms of the bending moments 
and shear farces. The contour C in (3.52) is again taken as a circle insiele the region of 
K-dominancc with thc ontward normal having compon<mts ni with nz = 0. In view of 
the behavionr (2.29)-(2.30) and (2.35) of the stresses and displacementsin the cross 
section of the plate, the dastic and kinetic energy densit.ies transform into 

1 ( . . ) T = - p z2 8 E-) + v? 2 ' 1. 

1 2(2 2) =-pc z 8·8·+w· 2 Z:X Z:X ,.T l 
( 4.28) 

with i,j = x,y. while the stress-work term becorncs 

12 z2 
3 Q; ni w.k ( 1 _ (2

11
z.") 2

) . ai;' n;· Ui k = --.,-Mi] n}· eik+ . '. hv · . . 2 h ( 4.29) 

Substitution into (3.52) and subsequent integration over the thiclmess of thc plate 
yields the expression for the J-integrals in plate bending. As a generalisation of the 
static formulac" [38] we find (with indices i, j, k =x, y or 1, 2) 

lun --M"'··+-8/8· n,+JVI·n·8·k els . {i.[( 1 phY. ·) ] 
C--->0 . C 2 1.) 'J 24 1 ' "· 'J J z, 

j. [(C.JiQi 1 2) ] } + c 2 Ds + 2ph1iJ nk- QiniW,k els . ( 4.30) 



4.2. BENDING FR.ACTURE IN CLASSICA.L PLA.TE THEORY 5:) 

the limit for tlw eontom C shrinking onto the crack tip, vve rnay replace 
all in the of (4.30) with the conesponding leading terms of the 
series 1). The first integral in ( 4.30) corresponds to the bending modes 
1 and 2 and is sirnilar to the (3.G2) for modes I ancl II; see also Table 4. L 
This a multiplicative factor 1/3 from the results 
and in ( 4 .. '30) conespouds to the shear mode 3 and is 

for mode III: sec Table 4.2. This second integral 
factor 1.5 from the resnlts (3.48) and (3.S4). which is clue 

of t he slwar stresses ancl to the shear-correction factor. In 
we must replace the crack-grmYth speed c with the modified craek-growth 

c in the case of mode .3 fracture. Combining the two integrals in 
, we obtain the relations between tlw J-integrals and the bending st.ress-intensity 

factors. 

\Ve find that the ] 1 is cqnal to the energy release rate (4.26), viz. ] 1 = Ç. 
indepenJent of the shape of the contour C aml is thcrefore called 

For the intcgral .12 we find tlw.t 

'2h ; y r 

]2 = - '"E AIF\C) l'>jl\.2 . . ) / 

where the coefficient ( c) is a func:tion of t.he crack-growth speed, which depends 
of the contour C; see Scction 3.3 and Appendix A. Evaluation of J2 

contours produces different for the 
. which are in formnlae (A.3) and (AA). \Vhen the contour 

C is not with respect to the x-axis, the expression ( 4.31) may contain 
additiemal tcrms with and 

4. 2 Bending fracture in classical plate theory 

elastic. thin fiat plate of thickness h containing an arbitrary crack 
moments as described in Subsection 2.4.2. This con

resembles the one of the preccding Sf,ction with the elifierenee that the 
rotations must now the rdations This implies that the shear stiffness 

defined in aml the shcar-wavc velocity Cs of (2.34) attain infinitc values. 
In addition. the conditiom for the torsionalmoment aud the perpendicular 
shcar force must be combined. 

4.2.1 Static solution 

the solution for cracks (c 0) is investigatecl. Cartesian coordinates 
:r and y and coordinatc8 r and 8 with the origin at the crack tip are introduced: 
see 3.2. The is su bjectcd to rcmote londing by beuding and torsional 
rnoments in combination with perpcndicular shear for·ces, while thc crack surfaces are 
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not loaded and remain stress-free. The deformation of the plate is governed given 
by the equations (2.49)-(2.51) with zero accelerations, i.e., with fiph3 w,i = 0 and 
ph w = 0. Elimination of the bending moments Mij and the shear forces Qi from 
these equations produces the biharmonic equation 

b.b.w = 0, ( 4.32) 

where b.w = w,ii is the Laplace operator. Sirree the crack fianks are stress-free, 
we impose homogeneaus boundary conditions (2.53) and (2.55). Expressing these 
conditions in terms of the defiection w leads to the relations 

W,yy + VW,xx 

W,yyy + (2 - V) W,xxy 

0, 

0, 

valid on the crack fianks where X < 0, y = ±0 or T > 0, e = ±7r. 

(4.33) 

(4.34) 

Since our interest lies in the near-tip stress and displacement fields, we employ series 
expansions in powers of the distance r to the crack tip similar to the expansions ( 4.1). 
The series expansions for classical plate theory must satisfy the same conditions as 
those for Reissner's theory; see the beginning of Section 4.1. These conditions imply 
that the bending moments are of the order O(r-112 ) for r ---+ 0, and that the term w{l) 

of the series representation of the defiection vanishes. The singular bending moments 
MH) are normalised by stress-intensity factors, which are denoted by smallletters to 
distinguish them from those for Reissner's theory. The stress-intensity factor k1 is 
the normalising constant for the symmetrie bending moment Myy and the factor k2 

for the generalised torque M;x, which is defined in (2.65) and (2.68), in the direction 
e = 0 ahead of the crack. In agreement with Erdogan, Tuncel and Paris [24], Hui and 
Zehnder [38], and Sih, Paris and Erdogan [84], wedefine 

kl lim 
r-->0 

6~ 
h 2 Myy(r, 0), ( 4.35) 

k2 lim 6~ * ( 4.36) = h2 Myx(r, 0). 
r-->0 

It is noted that in [98] the stress-intensity factor k2 was defined in relation to Mxy 

and consequently difl'ers by a factor (1 + v)/(3 + v); see below. 

Now, we calculate the solution to the biharmonic equation ( 4.32) subject to the 
boundary conditions ( 4.33)-( 4.34 ). Sirree the term w(l) of the series expansion of 
the defiection varrishes and the term w(2) relates to rigid-body motions, we focus on 
the term w( 3) which is of interest to the near-tip fields. The result is taken from [38]: 

w(3l(r, e) = h2 r3/2 { ( 7 + v 3 1 ) k1 cos -e - cos -e 
6Db(3 + v)0 3(1- v) 2 2 

( 
5 + 3v 3 1 ) } 

-k2 
3

(1 -v)sin 2e-sin 2e . ( 4.37) 
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The corresponding terros 8~ 1 ) = in the series expansions of the rotations are 
obtained by differentiation (see (2.47)) 

( l). h
2 

/'f { 1 ( 1 + V . 2 1 ) ex (r, B) = v1 - kl cos -0 --+Sin ( -B) 
3Db(3+v) 2r. 2 1-v ·2 

+ k2 sin~(} ( -
2 

+ cos2
( ~B))}, (4.38) 

2 1 I/ 2 

(r,B) { 
' 1 ( -2 2( 1 ) k1 sm -B - - cos -B) 

2 1 1/ 2 

1 ( 1+v 2 1 )} + k2 cos -B ---+sin ( -0) . 
2 1-IJ 2 

(4.39) 

The conesponding singular bending rnornents A!f·fl are obtained by differentiation of 
the rotations or from secor1d-order derivatives of the deflection; see (2.49). Contrary 
to the results (4.13) by Reissner's theory, the bending moments for classica! plate 
theory depend on Poisson's ratio v also 38, 84]), 

~1 ,(1) 
lVj "l (B, v) , ( 4.40) 

where the angular variations gb(B, for the normal-bending mode are equal to 

-- cos -a 1 sin -a sin -a v-1 1 ( 1 3) 
v+3 2 2 2 ' 

( 4.41) 

z; 1 1 (v+3 1 3 ) cos -B +sin -a sin -a , 
u+3 2 v-1 2 2 

-- sin -a --+cos -B cos -a . v1 1(2 1 3) 
v+3 2 1 v 2 2 · 

(4.43) 

while the angular variations g{j (a, v) for the twisting mode are 

g;~(a, u) sin -a cos -a cos --B , v 1 1 ( +v) 1 3 ) 
u+3 2 l-IJ 2 2 

(4.44) 

V - 1 . 1 1 3 
-- sm -e cos -a cos -e 
v+3 2 2 2 ' 

cos -a -sin -B sin -B . IJ 1 1 (v+1 1 3) 
v+3 2 u-1 2 2 

(4.46) 

The shear forces Qi are derived by differentiation of the bending moments .'Avfij accord
ing to the equation (2.50) with :f:iph3 w,i 0. These shear forces have an essential 
singularity of order O(r-312 ) for r -t 0, which is a typical effect of the classica! plate 
theory [38]. As a result, we must adapt the series representation ( 4.1) for the shear 
forces and let the summation index start at p = -1. The leading terms Q~- 1 ) are 
found to be 

( 4.47) 

Q(-1)( (}) 
Y r, 
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It is rww possible to calculate the leading terms of the generaliscel torqucs which are 
by the (2.67) and vVe the shear forces Q~-tl and 

the integration constant. Combiuing thc results \Vith the for 

(r, B) 1/- 1 { k 
1/ 3 1 

sin -.
1
· e ( _ _2_ CO:-l ~e co:; ~e )' 
2 l-IJ 2 2 

cos~{} ( 1 sin ~e sin ~{})} , 
3 

cos -e 
2 

. ·' k-, cos ~ {} ( IJ + 3 
~ 2 IJ- 1 

sin -0 sin -e . 1 3 ) } 
2 2 

(4.49) 

From the latter property of the bending stmss-intensity 
factor k2 becornes clear; Namelv. we have "H*(ll(r. 0) = h2 in • . yx . . 

the direction ahead of the crack. 

4.2.2 Dynamic solution 

The dynamic problem (2.49)-(2.51) of bending in the classic al can be 
reduced to one equation for the defiection only. Elimination of the bending moments 
and the shear forces results in a partial differential equation of fourth order 

h 
·w 0. 

where D.w = w,u. is tlre Laplac:e operator and ?D is the secoud derivative with r""""'''T. 
to time. Furthermore, \'l'e have the property that 12 D 6/ ph' d by (2.33). 

\Ve use the Cartesi<m coordinates [;) and the po lar coorclinates (r. B) with the 
origin attaehecl to the crack tip, whic:h moves at speed : see . The solution 

is ielentkal to that for tlw static problem. The defiection is represented by 
a series expansion as in 1) wit.h the term to zero a nel the term 
uPl conesponding to rigid-body motions. The series expansion for tlre shear forces 
start.s with the term Qj -l) The bending moments and the rotatimu,; have 

representations similar to those in ( 4.1) with leading tenns and 8)1
;' respectively. 

Transformation of ( 4.51) to the moving frame of reference the use of yields 
the following clifferential cquation for the term , viz. 

or equivalently, expressed in the distorteel 
and (3.18), 

EP 1 a 
r fJr 

= 0, 

coordinatüs ed) defined in ( 3.16) 

0. 
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It is customary [59, 90] to mnit the middle term in (4.51), beeause it is of order 
O(h2 

/ L 2
) in comparison with the tbird term, with h beiug the thickness and L 

some (large) in-plane measure. In the present situation, the in-plane 
length mcasure is srnalL lJecause we focus on the crack-I ip region and on the dynamic 
corack-grmvth effects. Omission of the middle term in ( 4.51) woulel imply that the term 

of the series expan!:lion of the deflection satisfies the biharmonic equation. because 
the second term in \vould be absent. Consequently, the m~ar-tip dynamic solu
tion would be equal to the static ::;olutiou and a study of the dynamic effects 
is not postüble. Moreover Mindlin [59] has shown that the equation (4.51) can be 
inferred from higher-order neglecting the transverse shear defonnation 
and retaining the inertia terms. For these reasons. we shall retain the middle 
term in ( 4.51 ). Pursuing thi!:> fradure problem in classical plate theory is 
especially usefuL bccause it enables us to investigate the validity of this theory in the 
neighbourhood of cracks. The lirnited validity near bonndarles is well-known feature 
of the classica! plate theory and is dne to the combined conclitions for 
the torsional moment and thc perpendicular shear force. 

The term vPJ of the series of the deflection is of order and gives 

rise to singular bending moments Ivi2) of order O(r- 1i 2) and to shear farces Q) l) 

having an essential singularity of order 0( r-312
) at the crack tip. These cross-sectional 

quantities are related to the deflection by the equations (2.49) . For situations 
of dyna.mic fra.cture, the relations between the leading terms of the respective series 
t:xpansions can be written j, k =x, y) 

IJW(3) ) 
,kk l 

QH.) 
i = -Db ( 

where ad is clefined by (3.18). The equation (2.51) reduces to 
perfect agreement with the difl:'erential equation ( 4. 52). 

) 

The boundary conditions for the clynamic fracture problern differ from 
for the static fracture From the relations (2.53), and 
the bounclary valnes of the normal hending moment and the 
are derived. On the crack flanks where r > 0 and () = we have 

Q(-l) + 
11 

( 
( 

V ) = 0, 

(1-V-'- ) 

The salution to the differential eqnation ( 4.53) to the 
conclitions ( 4.56)-( 4.57) is derived in a straightforward manner. 
thc series expansim1 of the deflection depends on the local 
crack-growth speed c, and Poisson·s ratio v. \Ve cicfine the 

0. 

(4.54) 

(4.55) 

0. This is in 

(4.56) 

(4.57) 

stress-intensity factors k1 and k2 for classica! plate theory in the same manner as in 
(4.35)-(4.36). These may depend on the The term 
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wl3) is now by 

(r, 0; c) cos ~_o) 
2 

- 11) sin ~ 0) } , 
where rfd is defined by (3.16) and the function s 11) in the denominator by 

11) = (1-

'1'h d' o(l) e correspon mg terms o; · w?) in the series expansions of the rotations are 
obtained by differentiation (2.47)) 

{kt (-(a~-
+ kz (4.60) 

( 4.61) 

The corresponding singular bending moments are obtained by differentiation 
according to (4.-54). The dependenee on the crack-growth speed c and Poisson's ratio 
u is explicitly incorporated in the argurnents of the angular variations. vVe find 

(O;c,u) ( 4.62) 

with the variations G{i(O; u) for the normal-bending mode by 

~((1 JJo~)(o~-u)td cos~Od-(1- cos~o), (4.63) 

1 ( ( 2 ? . 1 o . )z 1 o) S -.od-ut~rd cos 2 ä+(1-u odcos 2 _, 
1 ( . _l 1 ( 2 1 ) S (1 IJ)od~fd 2 sin 1 z;) ad sin;_/ , (4.6-5) 

while the angular variations cg ( 0; c, l/) for the twisting mode are 

1 (~ s l1 u)(uo:~- 1) id sin ~Od + (1- u) u) sin ~0) , 
( 4.67) 

1 (· s (1 (4.68) 
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the shear forces Qi for a propagating crack have 
for ·r 0. The leading terrus Q~-l) of the 
We obtain 

(4.69) 

(4.70) 

Next, the torques and (2.68) are determined for dynamic crack 

growth. The shear forces Q) are and cornbinecl with the expression for 
ivll!l. It is found that the leading terrns of the series expansions are given by 

"·1' x(l) = 
1t xy 

Jk1x(l) 
" yx 

In analogy with the static problem, we observe the 
dynamic bending stress-intensity factors. Namely, we have and 

M
1
;à1l = h2 k2 /6V2KT in the direction B = 0 ahead of the in with 

the definitions (4.35)-(4.36). Finally, we remark that the dynamic solutions rednee 
to the static solutions of Subsectien 4.2.1 in the limit for zero crack growth (c 0). 

4.2.3 Energy release rate 

The energy release rate 9 in the classica! plate theory is calculated from an 
ted version of ( 4.25), beeause the first integral in tha.t formula eliverges due to the 
essential singularity of the perpendicular shear forces. The term with the produet 
Qy w is integrated by parts and the integration constant is neglected. In the resulting 

we reeognise the generalised torque 111;,, defined in (2.68), sueh that we 
finally obtain 

9 { 
2 
~a 1t:.a l'viyy(r, 0; c) [w,y(L>.a- r, Tt; c)- w,y{L>.u r, -1f; c)] dr 

1 
{t:.a , 0; c) [w,x(Ll,a- T, 1f: c) - W,x(Ll.a- r, -7T; c)] dr} ( 4.73) 

2 L>.a lo 

with Young and Sun [98, 99]. With the use of the near-tip solutions of 
IJH;'""'J.H1F', subsections we derive that the energy release rate for dynamic bending 
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fracture in the classical theory is equal to 

whcre the coefficients a 1 ( c) and a2 ( c) depend on the c:rack-growth speed c by 

(1- u)(3 + u)(1- a~)ad 
2S 

(1- u)(3 + u)(1- a~) 

2S 

(4.74) 

(4.75) 

(4.76) 

The parameters ad and S = S(c, u) are defined in (3.18) and (4.59), respectively. 
A third coefficient a3 ( c) does not exist due to the coupling between the torsion and 
perpendicular shear effects. For ntationary cracks (c = 0) the coefficients are cqual to 
unity and the expression ( 4. 7 4) becomes equal to the renults of [38, 98, 99]. 

The 1-integrals in the classical theory are derived frorn the expression ( 4.30) in 
Reisnner'n theory. The shear stiffness Ds munt he taken equal to infinity and the 
relations (2.4 7) must be substitutecl for the rotations. In the next step, the term 
Qi n; w,k in integratecl by parts ancl the expression (2.68) for the generaliscel torque 
IVI;x is used. Th is proceel ure leads to ( wi th i, j, k = x, y or 1, 2) 

. j' [ ( 1 ph:J . . 1 . 2) ] 
Jk = hm --Mi1 w iJ+ -w (IL'.i + -phw nk + Nii1 n1·w.ik- Qin.;w k els 

c~o. c 2 ' · 24 ' · 2 · · 

= lim ;· [(-~MiyWi 1· + ph
3

1i'.(Wi + ~phw2) nk + lVInnWnk + 11.1,:sw sk] d.s. (4.77) 
c~o c 2 '· 24 · ' 2 ' ' 

Since the limit for the contour C shrinking onto the crack tip is appliecl, all quantities 
in the integrand of ( 4. 77) may be replaced with the conesponding leacling terms of 
the series expansions. It is then observecl that the contribution of the term ~phw2 

vanishes. 

Evaluation of ( 4. 77) yields expresnions for 11 and 12 in terms of the stress-intensity 
factors. Again, we find that the integral 11 is equal to the energy release rate Q ancl 
is independent of the shape of the contour C. The integral 12 is given by 

(4.78) 

where the coefficient a4 ( c:) cl epenels on the crack-growth npeed c ancl on the shape of the 
contour C. This cocfficient has been calculated for circular and rectangular shrinking 
contours and the results are given in (A.5) and (A.6) of Appendix A.3, respectively. 
In the limit of zero crack propagation, i.e., for c --+ 0, the coefficient a4 (c) tenels to 
unity. When the contour C is not symmetrie with respect to the x-axis, additional 
terms with kî and k~ may be present in the expression (4.78). 
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4.3 Cornparison of plate bending theories 

Thf; rlifferences between the theoriet-i of Kirchhoff and of Reissner concern the 
shear dcfonnation in the transverse directiou. In Kirchhoff's dassieal plate theory 
it Î!i nssumecl that perpendicular line elemcnts remaiu pcrpendicular to the middle 

cluring bending deformation, while in Reissner·s such line elements may 
rota te nnd a fini te shear stîffness D s is iutroduced. Au immedia te con";equence of 
the~c assumptîous is that the deftection aml the rotatious are independent variables 
iu Rcüisner's theory. whereas the conneetion (2.47) exists in the classica! theory. Bath 
]Jlate theorics have been to bending fracture of eontaining a crack. 
This sectiou discusses the differenees between t.he two theories, regarding the 
solutions in the vicinity of the crack tip for the bending modes 1 nnd 2 in both cases 
of dynamic fracturc and of (quasi- )statie fracture. (A deformation problem which is 
not static in thc strict sense. for example clue to time-dependent external fm-c:es. is 
called quasi-static wheu t he~ dynamic: effects such as accelerations can bc ncglected.) 
The solutions for the shear mode 3 and thc relatecl tearing mode III are discussed 
in t he next sectio u, tagether with the cornbinecl shear and torsion effect::; in dassical 

theory. 

4.3.1 Static near-tip solutions 

Because of the relative simplicity of the near-tip fielcls. the solutions for stationary 
craeks ( c = 0) are considered first. Vie start with a comparison of the singular bend-

m omeuts M/]1 which are by ('1.13) with angular variation::: for 
Reissner's theory and by ( 4.40) with angular variations for the classica! 

theory. It is remarkable that the angular variabons 1.1) and g.{j(O,v) in 
the classica.! theory are on Poisson's ratio v, while fundions jfJ(O) and 

(0) for Reissner's theory are not. An important observation that these functions 
become cqual i u thc limit for 11 x. That for i, .i = y, 

(0) lim I '0 ' 9ij\ , l.l)' 

(0) lim fJ '0 ' 9ij I, : l/) · 

(4.79) 

(4.80) 

In the generalised torques and 111;à1l attain the same limit as the 
torsimml momellt. JJgl in classica] plate theory; sec (4.43). and 

This is a strange phenomenon bccause usually 0 < v < 0 .. 5 in applications. 
this limit has no dcar physieal interpretation and must be as 

a forma! mathematieal substitution. A explanation can be as follows. In 
classical plate theory the shcar stiffncss D 8 has an infinite value, while in Reis::>ner's 

it is relatecl to the bending Db, Poisson's ratio 1.1. and the plate thickness 
(2.31)-(2.:32) with k and the relation E = 2G(1 + 11), we have 

Ds h~ 

5 (1- 1.1) 
(4.81) 
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The reslllts of the classica! theory ean only resembie those of Reissner's theory, when 
the infinite shear stiffness Ds is "compensated" in sorne way. Since the bending rigidity 
Db and the plate thickness h are finit.e, there is the alternative of putting u = oo in 
order that the equation ( 4.81) is "satisfied". Although this reasoning is somewhat 
vague, no other explanation seems suitable. 

the perpendieular shear farces Qi are examined. It is noted that they are of 
different orders: Q1 = O('r-112 ) in Reissner's by ( 4.22) and Q1 = O(r-312 ) in 
the classica! theory by (4.47)-(4.48) an essential singularit.y. This results from 
the fact that the number of boundary conditions in classica! plate theory is restrieted 
to two, while in Reissner's theory it is still possible to preseribe three independent 
boundary conditions, as usual in mechanics problems. Consequently, a true compar
ison of the shear forces is not possible. In with the singular bending moments, 
we put u oo in the salution for the shear for·ces in classica! plate theory. Since a 
factor 3 +u appears in the denominator of the ( 4.4 7)-( 4.48), it is observed 
that the leading terms Q~ l) of the shear fm·ces vanish in the limit as u --+ oo. Thus, 
the essenrial singularities are eliminated. 

Great similarity is observed between the terms vPl of the deflection of the plate for 
the t.wo theories; see (4.24) and (4.37). The dependences on the polar angle () coincide 
and the terms only differ by a multiplicative factor (1 + 7/)/(3 +u). The rotations in 
Reissner's theory are given by ( 4.14) with variations ( 3.11)-(3.14), while those 
in the classica] theory are given by (4.38)-(4.39). Although several similarities exist, 
the angular variations are not identical. Application of the limit u --+ oo, however, 
yields equal results for the runctions ( 1 u) eFJ in bath plate theories. 

\Ve also compare t.he energy rele~':le rates and the .J-integrals for crack-growth speed 
c = 0. vVe confine ourselves to fracture modes 1 and 2. vVhile the bending moments 
in the classical theory show great on Poisson's ratio, the influence of u 
on the energy release rate Ç and the .Jk is rather limited. The results ( 4.26) 
and (4.74) for Ç = .J1 in the two theories differ by a factor (1 + u)/(3 +u) and 
the results (4.31) and (4.78) for by a factor (1 u2)/(3+u)2

. These factors tend 
to unity in the limit for u --+ oo. 

Finally, we seek a cmnparison between the bending stress-intensity factors k1 and of 
t.he classica! plate theory on the one hand and the bending stress-intensity factors K 1 

and K 2 of Reissner's theory on the other hand. Of course, the two plate theories are 
different and a true cornparison is not Nevertheless, it is useful toseek such a 
cornparison, because that would enable us to derive the stress-int.ensit.y factors of the 
more complicated Reissner's when k1 and k2 are known from an analysis in the 
classica! theory. The comparison between the stress-intensity factors can be derived 
on the basis of the similarities between the respective bending moments, '-'"l'"""' 
or energy release rates. These three options are elaborated below. 

1. The first possibility is to that (the singular terms of) the normal bending 
moments Afyy for both theories are equal and that the t.orsionalmoment A1xy of 
Reissner's theory and the torque M;x of the classica! plate theory are 
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equal, in the direction 8 0 ahead of the crack. This is a reasonable assumption, 
since the singular bending moments were normalised in the same marmer; see 
definitions (4.1.5)~(4.16) and (4.3.5)~(4.36). As a eonsequence of this imposition 
wc find that 

1. (4.82) 

2. The second possibility is to impose that the terms w(3
) of order O(r3i 2

) of the 
defiection for the classica! theory and for Reissner's theory coincide. This is also 
a reasomtbie assumption, because the terms have equal dependenee on the 
polar angle 8, a,<: discussed above. This imposition leadsus to 

3+v 

1+v 
( 4.83) 

3. The third possibility is to impose that the energy release rates 9 for the two 
plate theories are equal. This assumption is based on the physical consideration 
that the energy dissipation during crack growth must be the same in the two 
different approaches. From this imposition we draw the same condusion as 
Young and Sun [99], namely 

1 
2 

(4.84) 

Since the energy release rate is an important physical quantity for the analysis of 
fraeture processes, the third relation ( 4.84) between the stress-intensity factors of the 
two plate bending theories seems most acceptable. In addition, this relation is sort of 
"average" between the relations and ( 4.83). 

4.3.2 Dynamic near-tip solutions 

Let us again start with an exarnination of the singular bending rnornents. The results 
of Reissner's are given by with angular variations (3.22)~(3.27). These 
angular functions consist of two separate parts: one conesponding to dilatational 
waves with speed cd and expressed in terrns of the distorteel polar angle Od, and 
the other conesponding to shear waves with speed C5 and in terrns of the 
distorteel polar angle 0,. The results of elassieal plate theory are given by 
with angular variations ( 4.63) ( 4.68). It is seen that these angular functions only 
depend on the dilatational-wave parameters cd and ()d and on the undistorted pola.r 

0, but not on the shear-wa.ve parameters Cs and This effect is caused by the 
diflerential equation ( 4.52), whieh is a combination of a ( dilatational) wave equation 
a.nd a Laplace equation. The fact that there is no contribution of shear waves is due 
to the infinite shear stiflness D 8 in the classica! plate theory. Other consequences of 
D 8 = oo are that the shear-wave speed es also attains an infinite value according to 
(2.34), whereupon the parameters as and rs become equal to and the polar 

08 and 8 coincide according to (3.17) and (3. . Sirnila.r to the static solution, 
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the 
ratio v. 

m~ar-tip bending moments in the classica! depend on Poisson's 

As we have for stationary taking the limit for v ___, oo in the salution by 
dassical plate theory resnlts that match thc solution by Reis1mcr's . sce 

On the other hand, Reissner's theory resembles the classica] Kirc:hhoff 
theory when the shear stiffness D., is assigned an intiuite value. This implies that 
C5 oo, n 3 = 1, 1, and Os 0. Applying these snbstitntions, we observe that 
the angular varia ti ons and ( 4.63 )~( 4.68) have the properties 

lim (0, c) lim 
v---'>CXJ 

G{i ( B; c, u) l 

lim pil 0 ) lim c, 1/) ( 4.86) IJ ( . C 
u-oo ' 

with indices i . . i 
K1 k1 and K2 

, y. Hence, the singular bending moments become Pqual whcu 
is assmned. 

The shear fo~ces Q)~t) in the dassical plate theory. as by 70), have an 

essen ti al singularity of order 0( r~3i'2 ), while the shear forces Q)IJ in Reisomer's theory, 
as given by 19). are of order . \Vhen we let u ___, oo in the former 
the essential singularity va.nishes because the function I/) defined in in 
the denominator is approximated by (ad - 1) , while the numerators are only linear 
in 1/. As a consequence, the generali:oed torques and become to the 

torsional moment Af~;l in the classica! theory after the same formallimit transitions; 
see ( 4. 71 )~(4. 

A comparison of the leading terms of the deflections is not 
because these tenns are of different orders and O(r312 ). On the other hand, 
tlw rotations of Reisrmer's can very wel! be eompared with the rotations 

(4.61) of classica! plate theory. \Vhen the same limits as for the bending 
monw11ts are appliecl, i.e. I/ oo in the Kirchhoff results and c3 ___, oo in the Reissner 
results, it is concluded that thc produds (1-u) Eli show perfect correspondence. This 
co11clusion can also be drawn for the energy release rates (4.26) and 74), \vhen only 
the contrilmtions of modes 1 and 2 are considerecl. 

4.4 Comparison with anti-plane shear 

In this section, we discuss bending fracturf' in thc shear mode (mode 3) aml restriet 
ourselves to stationary cracks ( c 0). The she<:lr mode m-ises in the loading of 
by perpendicular shear forces and is characterised by the stress-intensity factor Ka 
in Reissner's Since the torsional moments and the perpendieular shear forces 
are eombined in the classica] platc their effects are jointly represented by t.he 
stress-intensity factor Therdore, it is likely that a conneetion between K 2 and 
on the one hand and on the other hand will exist. This conneetion is derived from 
the energy release rates (4.26) and 74) with c 0. Regarding t.he normal-bending 
mode (mode we obtain for the stress-intensity factors k1 of the classica! 
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theory and K 1 of Reissner's theory. Regarding the combination of modes 2 aml 3, we 
obtain, as a supplement to the relation (4.84) for the stress-intensity factors k2 and 
K 2 , that 

( 4.87) 

which agrccs with the conclusions drawn hy Hui and Zehnder [38] ancl Knops [45]. 

The stress-intensity factor K:J has been introducedas the norrnalising constant for the 
singular shear farces Q; 1

) in Reissner's theory; see (4.20) and (4.22). Sincc the shear 

farces Q)-ll in the classical theory have an essential singularity, it is neither possible 
nor relevant to campare the results of single mode 3 fracture for the two plate theories. 
It is more appropriate to seek a cornparison between the stress-intensity factors K 3 

and K 1u, because the problem (4.9) -(4.12) for the shear mode 3 of plate bending 
corresponds to the problem (2.21)-(2.24) for the tearing mode 111 of anti-plane shear. 

The definitions (3.37) and ( 4.20) of the stress-intensity factors Ku1 and K 3 in terms 
of the shear stresses O"yz and Tyz are similar. According to Table 4.2, we must campare 

lniz of mode 111 with Q)l) of mode 3. From (3.38) and (4.22) wededuce the following 
equivalence rclation between thc stress-intcnsity factors, namely [94] 

(4.88) 

The sarne relation is obtainecl from a comparison of the displacement 'Uz (see (3.41)) 
with the defiection w(ll (see (4.23)), where the shear-correction factor k = 5/6 must 
be accountcel for by Table 4.2. The latter is dne to the fact that the defiection is an 
averaged value of the out-of-plane displacement for plate bending; see (2.37). 

Next, we cxamine the contributions of fracturc modes 3 and 111 to the energy release 
rates in (3.48) and (4.26). Equating these contributions for stationary cracks. 1.e., 
with crack-growth speeds c = 0 and c = 0, Knops [45] arrivee! at 

(4.89) 

We believe, however. that this inference is incorrect, since the shear-correction factor 
has not been taken into account. Multiplying the mode 3 contri bution in ( 4.26) by 
5/6 and equating the result tothemode 111 contribution in (3.48) yields the correct 
expression (4.88). 

Strictly speaking, a relation between Ku1 and K 3 cannot be derived, because these 
parameters refer to different geometries. The stress-intensity factor Kur relates to 
problems of anti-plane shear and corresponds to geometries with large tlückness, where 
the shear stresses are assumed to be constant in the direction parallel to the crack 
front. Thc factor l(J, on the contrary, relates to thin plate-like structures, for which 
the transverse shear stresses are quadratic functions of z over thc cross section of 
the plate. So. depending on thc type of geometry, it becomes apparent which stress
intensity factor, K 3 or KJlJ, should he uscd in a spccific problem. 
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Hui and Zehnder [38] suggested on the basis of equation ( 4.87) that the 
factors K 2 and K 3 cannot be when k2 is determined from the external 
loading conditions, a relation between and and Poisson's ratio v is obtained. 
In the light of the analysis it seems more likely that a relation between 
and Kn1 exists [94]. Unfortunately, such relation has not been obtained, neither in 

nor in the present investigation. 

These considerations indicate that situations of mixed-mode fracture of ar-
bitrary geometries can adequately be described by five independent stress-inteusity 
factors [94], namely K1 and Kn for the crack-opening and sliding modes, K 1 and K 2 

for the normal-bending and twisting modes, and either Ku1 for the tearing mode or 
K:1 for the shear mode. 

4.5 Combined tension and bending 

\Vhen a thin flat plate containing a crack is loaded a combination of in-plane 
tensile forces and out-of-plane bending mornents, the fracture behaviour of the plate 
can be described by the stress-intensity factors K 11 for modes I and II of planar 
deformation and by the factors K 1 , K 2 for modes 1 and 2 of bending deformation. 
These factors may depend on the crack-growth c in the case of dynamic fracture. 
Concerning the bending modes we apply Reissner's plate theory, which yields similar 

variations of the near-tip stress distributions as a plane-stress analysis does. 

The problems of planar deformation and plate bending have been studied separately 
in Sections 3.1 and 4.1. The solutions for the in-plane stresses aiJ are given by (3.21) 
for modes I and II and by (2.29) and ( 4.13) for modes 1 and 2. These solutions 
are added to obtain the solution to the problem of combined tension and bending. 
With the superscript T indicating the total response due to the tensile forces and the 
bending moments, t.he singular stress components are 

O,z;c) = O;c) 

(4.90) 

where i, j x, y and z is the coordinate in the direction perpendicular to the plate 
with ~h/2 ::::; z ::::; +h/2. The angular variations E:~(O, c) and (0, c) are given 

(3.22)~(3.27). The stress-intensity factors I<s(z) and correspond to the 
loads that are symmetrically and anti-symmetrically applied with respect to the crack 

they are defined by [93] 

Ks(z) KI + 2::: y 
h \.1 ' ( 4.91) 

KA(z) Kil + 2z K 
I 2 . 
l 

( 4.92) 
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The fracture behaviour can then be described with these new factors. Assuming 
K 1 > 0, it is observed that the factor K 5 (z) becomes la.rgest in the 
upper plane of the plate. When the crack-opening and normal-bending modes are 
dominant over the sliding and twisting the maximum factor 
Ks(h/2) KI K 1 will be determinative in the fracture process. 

The solutions for the displacements u, are given by (3.28) for modes I and II and 
by (2.35) and for modes 1 and 2. Adding these solutions, we obtain the total 
displacements for the combined tension-bending problem: 

e, c) ui(r, e: c) - z 

0 . Ks(z) 
ui-:- -a 

, B; c) 

U[(B ) + KA(z) rr un(e ) 
2 ' ,c G V') ' ,c ' K · -K 

(4.9.3) 

where i x, y and v? are the crack-tip displacements. The angular variations U/(B, c) 
and U[I(e,c) are given by (3.29)-(3.32). 

\Ve now turn to the calculation of the energy release rate Ç and of the J-integrals. 
The representations (4.90) and (4.93) of the near-tip stress and displacement fields 
are substituted into the expressions and (3.52). Carrying out the integration 
over the thickness of the plate first reveals that t.he integrals split into three parts: 
two parts to the tension and to the bending effects, which are even in z, and 
one part rela.ting w the mixed effects, which is odd in zand vanishes after integra.tion. 
Carrying out the integration over the interval [0, in (3.47) a.nd over the contour C 
in (3.52) first yields integral expressions similar to the results (3.48) for Ç and J 1 a.nd 
(3.54) for J 2 . either method, we obta.in as genera.lisation of the ncsults in :38, 93] 
that 

g (c) K,~(z)) dz 

h ( , r2 . 2) 
3

E Ar(c) !1.. 1 - An(c) K2 , (4.94) 

2·-l+h/2 . Aiv(c:)/(s{z) 
E . -h/2 

dz 

2h . 2h 
E Aiv(c) Kr Ku ( 4.95) 

v,rhere the eoefficients A 1(c) a.nd Au(c) are in (3.49) and and in 
(A.3) or (A.4) of Appendix A. In the limit for stationary cracks, i.e. for craek-growth 
speed c--+ 0, these eoefficients all tend to 

Since the mixed terms with I<1K2 or KnK1 vanish, the results (4.94) (4.95) are 
equal to the summation of (3.48) a.nd (4.26) for Ç and .hand of (:3.54) and (4.31) for 
J 2 . \Ve also observe that identica.l results are obtained, when we substitute the stress-
intensity factors Ks(z) a.nd KA(z) for K1 and in the expressions (3.48) and (3.54) 
and integrate over the thickness of the Tlüs rneans that the stress-intensity 
factors K 5 ( z) and KA ( z) for the symmetrica.lly a.nd anti-symmetrica.lly applied loads 
are suitable for the deseription of the fracture process under conditions 
combined tension a.nd bending. 
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4.6 Effects of crack ciosure 

Up till now it has been assumed that the plateis loaded by in-plane tensile forces and 
out-of-plane bending moments in such a fashion that the crack surfaces do not come 
into contact. This means that the crack-opening displacement of mode I must exceed 
the crack-closing displacement associated with the rotations of the normal-bending 
mode 1. If this is not the case, crack dosure occurs and the theories in their nrr'"'"''n 

form will preeliet penetration of opposite crack faces. Since this is evidently 
incorrect, it is neeessary to incorporate an extra contact force such that penetration is 
excluded. This was performeel by Young and Sun [97] for pure bending of 
classica! plate theory. The present analysis is aimed at combined tension and 
and utilises both Reissner's and the classica! plate theories. \Ve restriet ourselves to 

cracks (crack-growth speed c = 0). 

4.6.1 Analysis in Reissner's plate theory 

Consider a thin flat plate of thickness h containing a central crack of 2a and 
being symmetrically loaded on its outer boundary a bending moment M and a 
tensile force N per unit length. \Vithin the scope of Reissner's the 
stress in the direction ahead of t.he crack and the displacements of the crack 
surfaces are given by (4.90) and (4.93), viz. 

Ks(z) 
·~·, 

(4.97) 

where r is the distanc:e to the right crack tip anel z is the coordinate perpendicular to 
the plate. The stress-intensity factor K 5 (z) is given by (4.91) with 99] 

KI 
N,fiiQ 

(4.98) 
h 

Kr 
6MVJi(i 

(4.99) 
h2 

From these expressions it is c:lear that the distance between the crack surfaces (also 
called the crack-opening displacement a.nd equa.l to u~ ( r, 1r, z) -7r, z)) is negative 
in the lower plane (z = -h/2) of the plate when 

Ivf > Nh 
6 

(4.100) 

This would imply penetra.tion of opposite crack 4.2(a.). To avoid 
penetration, contact forces P are introduced in the lower (z -h/2) of the 
plate, where the crack surfaces co me into contact; see 4.2(b). Tbc contact force 
not only introduces an extra force P in the same directîon as N, but also an extra 
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bending moment of 
result, the total 
moment is equal to 

K(z) 

Ph/2 and opposite to the original moment lvf. As a 
factor after addition of the extra force and bending 

+ h 

6zP,.fi{i 
h2 

+ -·"' M 1? -· ( ~Ph~] yTta. 
2 ) h 

(4.101) 

The expressions for the stress and the displacement uT renmin valid. y . 

but the stress- intensity factor K must be replaced by K ( z) of ( 4.101). 

z 

\\ I h 

J ~ 
(a) 

Figure 4.2: Cross-sectional view of crack dosure (a) with penetration of 
the crack surfaces, (b) with extra contact forces. 

The contact force P required to avoid is related to the applied tensile 
force N and bending moment ]1;[, lts value is determinecl by the condition that the 
crack-opening displacement at must be precisely zero. As argned 
this displacement shonld not be but a positive value is also excluded because 
in that case the crack surfaces are not in contact with each other. Thus, we require 
K( -h/2) = 0, whereupon it follows from (4.101) that the contact force equals 

p 31\!I 

2h 

IV 

4 
(4.102) 

The physical condition that the force P must be positive to have contacting crack 
surfaces, is in agreement with relation (4.100). Substitution of (4.102) into (4.101) 
finally yields the total stress-intensity factor 

')-·) ~"-' 

h ' ( 4. 103) 
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Then, the total stress-intensity factor intheupper plane h/2) of the plate 

1 3 1 
K(2h) = 7.K1 + 2K1, 

with and K 1 given by ( 4.98)~( 4.99). This result differs from the sum K 1 + as 
would follow from (4.91), where crack-dosure effects arenottaken into account. 

4.6.2 Analysis in classica! plate theory 

The same analysis as in the preceding subsection can be performed with the use of 
classica] plate theory. Consicier a thin flat plate of thickness h containing a central 
crack of length 2a and being symmetrica.lly loaded on its outer boundary by a bending 
moment A;J and a tensile force N per unit length, which is a generalisation of the work 
of Young and Sun [97]. \:Ve assume that crack dosure occurs and we introduce the 
contact force P in the lower plane (z = -h/2) of the plate to avoid penetration of 
opposite crack surfaces; see Fig. 4.2. As aresult of this extra force, the stress-intensity 
factor of the crack-opening mode and the factor k1 of the normal-bending mode 
are given by [24, 84, 99] 

(N+P)Viffi, 
h 

(4.105) 

M-~Ph -. ( 
1 ) V7ffi 
2 h2 

(4.106) 

The total singular stress CJ~Y in the direction ahead of the crack is now derived from 
a combination of (3.3), (2.29) and (4.40), which yields the same expression as (4.96) 
with the total stress-intensity factor given by ( 4.101 ). The total displacements u~' of 
the crack surfaces are derived from a combination of (3.10), (2.35) and (4.39), which 

z) ± 2 V2i./.T [(V+ P) 12z(1 + v) (M _~Ph)] . 
Eh " + h2 (3 + v) 2 

( 4.107) 

The contact force P is detennined by the condition that no penetration of the crack 
surfaces may oecur, i.e., the crack-opening displacement ur(r, 1T, z) -ur(r, -11", must 
be zero in the lower plane z This results in 

p 3(1 + v)M 
(3 + 2v)h 

(3 + v)N 
2(3+2v)· 

(4.108) 

It is not.ed that the expression ( 4.102) is recovered by letting v --'> oo. This agrees 
with prior observations that the results of the classica] plate theory with an infinite 
value t.o Poisson's ratio resembie t.hose of Reissner's theory; see Section 4.3. 
The total factor is obtained from (4.101) after substitution of (4.108). 
We find 

( 4.109) 
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with ::; +h/2. The total stress-intensity factor in the upper plane of the 
plate is then equal to 

K(~h) ~ 3(2+v) K 2+v k 
· 2 - 3 + 2v 1 + 3 + 2v 1 

' 
(4.110) 

where and k1 are the stress-intensity factors for the situation without crack closure, 
which are by (4.105)-(4.106) with P 0. This result agrees with [97] but it 
deviates from (4.104) because of the dependenee on Poiss(m's ratio. Putting v =oe 
makes the results coincide. Since Reissner's theory is more accurate, the expression 
(4.104) is preierred to (4.110). 

4. 7 Effects of dynamic crack propagation 

The effects of crack propagation have been treated in Sec ti on 3.5 for the three 
traditional fracture modes I, 11, and liL It wa..<: shown there that the elastodynamic 

factor equals the factor for the static equilibrium state multiplied by 
a universa] function of crack speed; see (3.66)-(3.69). In the section, the 
influence of crack propagation on the bending factors is discussed 
within the scope of Reissner's theory. 

An exact analysis for bending fracture, similar to the work of F'reund [28] for planar 
deforrnation, is extremely difficult to achieve. The problem is to determine a relation
ship between the dynarnic stress-intensity factorfora crack and the static 

factor for the equilibrium situation. This relationship is derived frorn 
the fundamental salution for a plate containing a serni-infinite straight crack along 
the loaded by a pair of concentrateel bending moments applied at fixed and 
opposite positions on the crack flanks, while the crack at constant speed. 
The conesponding problem fm a pair of concentrated forces in planar deformation 
has been solved in Ch. 6] with the use of integral transfarms ( one-sided Laplace 
transformation on time t and two-sided Laplace transformation on the coordinate x) 
and the Wiener-Hopf technique. F'or details on these rnethods we refer to Carrier, 
Krook ancl Pearson [13], de Hoop [35], and Noble 

The problem in Reissner's theory is governed by the equations (2.38)-(2.42). 
Elimination of the bending moments and the perpenclicular shear forces yielcls three 
clifferential equations for the deflection w ancl t.he rotations ei (i = x, y). With the 
notation f 8y,x for the curl ancl g = ex,x + ey,y for the divergenc:e of the 
rotations, we find 

b.f 
1 .. 10 

(4.111) ?,f h2 f' 
Cs 

b.g 
1 ph 

û) ' (4.112) --"g -

C;:j Db 

b.v.J -
1 

113) -w g, 
c~ 
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where !::,.f = J,ii is the Laplace operator and cd and C8 are the dilatational and shear 

wave speeds given by (2.33)-(2.34). The modified shear-wave speed ck =Cs j5f6 has 
been introduced previously i11 Subsection 4.1.3. Substitution of ( 4.113) into ( 4.112) 
produces the fourth-order differential equation (see also Mindlin [59]): 

( 
1 1 ) .. 1 IV p h .. 

/::,.!::,.w - 2 + 2 /::,.w + 22 w + - w = 0, 
cd ck cd ck Db 

(4.114) 

where w'v denotes the fourth-order time derivative. Putting ck = = (i.e. Ds = =) 
in (4.114), we see that this equation reduces to (4.51) in the classical plate theory. 
The principal difficulty in obtaining the fundamental solution to the bending problem 
lies in the fact that the equations (4.111)-(4.113) are not proper wave equations 
because of the non-zero right-hand sides. Since these equations involve derivatives 
of different orders, the solution procedure by integral transfarms and by the \Viener
Hopf technique does not apply and the inverse transfarms cannot be obtained by the 
method of de Hoop [35]. 

Because we have not been able to establish the exact relation between the dynamic 
and the equilibrium stress-intensity factors for the plate bending problem, we shall 
postulate this relationship. From the results of Sections 3.3 and 4.1.4 it is observed 
that the dependenee of the energy release rate Ç on the crack-growth speed is similar 
for planar and bending deformations. The velocity-dependent coefficients in the ex
pressions (3.48) and ( 4.26) for Ç are the same. Moreover, the near-tip behaviour of 
the in-plane stresses (3.21) resembles that of the singular bending moments (4.13). 
This leads us to the assumption that the relation for the dynamic bending stress
intensity factor is similar to the relation (3.66) of Section 3.5. The elastodynamic 
stress-intensity factor for bending in mode 1 is denoted by K 1 = K 1(m,a,c) where m 
represents the applied moments, a the crack length, and c = a the crack speed. It is 
postulated that, analogous to (3.66), 

(4.115) 

where k1 (c) is the universal function of crack speed (3.67) for the crack-opening mode 
(mode I). K 1 (m, a, 0) is the stress-intensity factor for the conesponding equilibrium 
state of a stationary crack of the same a and loaded by the same instantaneous 
moments m as for the dynamic situation. Similar postulates can be made for the 
other bending modes. 

The energy release rate for bending fracture under mode 1 conditions is now derived 
in a straightforward manner analogous to (3.70). From a combination of (4.26) and 
(4.115) it is found that the energy release rate Ç(m, a, c) fora crack oflength a, subject 
to external moments m, and propagating at speed c = a, is given by the expression 

Ç(m, a, c) = :E A1(c) ky(c) Kf(m, a, 0) = g1(c) Q(m, a, 0), (4.116) 

where g1 (c) is the universal function of crack speed (3.71) and Ç(m, a, 0) is the 
energy release rate as calculated for thc equilibrium situation. Similar relations can 
be obtained for the other bending modes. 
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It is emphasised that we have no rigarous proof for the expressions presented in 
this section. The postulates are based on the hypothesis that the description by 
Reissner's theory of dynamic fracture in plate bending does nat differ from that in 
planar deformation. This is a reasonable assumption as has been argued above. 

4.8 Conclusions 

Thin flat plates undergoing bending deformation have been examined on the basis 
of the classical theory of Kirchhoff and the more refined theory of Reissner. The 
singular bending moments near the crack tip have been determined and normalised 
by stress-intensity factors. In addition, the deflection of the plate, the rotations of the 
middle plane, and the singular shear farces near the crack tip have been calculated for 
bath stationary and dynamically propagating cracks. We have also investigated the 
influence of crack closure. The conespondences and differences between the near-tip 
solutions for the two plate bending theories have been discussed and are summarised 
as follows. 

1. The singular bending moments in Reissner's theory and the singular stresses in 
planar deformation have the same angular variations. Consequently, the cones
ponding stress-intensity factors can be added to yield effective stress-intensity 
factors for general symmetrie and anti-symmetrie loading due to combined 
tension and bending; see (4.91)-(4.92). 

2. The singular bending moments in the classical theory have different angular 
variations which depend on Poisson's ratio v. The angular variations become 
equal to those in Reissner's theory when we put v = oo. In the case of dynamic 
fracture we must also assign an infinite value to the shear-wave speed Cs in the 
results by Reissner's theory. These effects are due to the infinite shear stiffness 
in the classical plate theory. 

3. Contrary to the Reissner solution, the shear farces in classical plate theory have 
an essential singularity of order O(r-312

) as the distance r to the crack tip tends 
to zero (r--+ 0). The essential singularity vanishes in the limit for v--+ oo. This 
is another effect of the infinite shear stiffness. 

4. The deflection of the plate in Reissner's theory has a term of order O(r112
) 

related to mode 3 fracture and a term of order O(r312
) related to modes 1 and 

2. The farmer term resembles the displacement in mode III fracture and is nat 
present in the salution by classical theory. The latter term has the same angular 
variation as the conesponding term of the defiection in classical theory (in the 
case of a stationary crack), but it differs by a multiplicative factor (1 +v)/(3+v). 
The rotations of the middle plane have different angular variations in the two 
theories. 
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5. The for the energy release rate in Reissner's theory and in the 
claösical theory deviate hy a multiplicative factor (1 v)/(3 + v) in the 
case of stationary cracks. For dynamically propagating cracks, the results hy 
the two plate theories hecome equal after putting both v oo and Cs = oo. 

6. On the basis of identical energy release we have established relations 
factors k1 of the classica! plate theory and K 1 of 

( 4.84)) and between the factors k2 , and 
These relations can be when the stress-intensity factors 

of the classica! theory are known and we want to determine those in Reissner's 
theory. 

7. A simple relation between the stress-intensity factors of modes 3 and lil has 
been derived, K3 = ~Kn1 (see These factors cannot be used 
simultaneously, because they assume a different behaviour for the shear stresses 
across the thickness of the structure at hand. The appropriate stress-intensity 
factor for frac:ture of thick solids is Kn 1 , whereas the factor K 3 is more suitable 
for thin geometries. It is believed that a more complicated conneetion 

and Ku1 may exist, but such a relatlon has notbeen established. 

8. The effects of crack dosure in situatlons of combined tension and bending can 
be easily in the expression for the factor. An extra 
contact force is introduced to avoid penett·ation of opposite crack surfaces in the 
lower of the This leads to a change in the effective stress-intensity 
factor in the upper plane of the plate. 

9. The of the elastodynamic bending stress-intensity factors on the 
crack-growth is not supported by an exact analysis. \Ve have postulated 
that the relationship with the stress-intensity factors for static equilibrium in 
plate bending is goverrwd hy the same universa! functions of crack speed as the 
relationship between the stress-intensity factors for the dynarnic and equilibrium 
situations in deforrnation. 

10. It is concluded that fracture of arbitrary structures under general loading con-
ditlans can be with five independent factors: K 1 and 
Kil for the and sliding modes, K 1 and 

and either Km for the mode or K 3 for the shear 
>J~'·'~'H"' cicformation is stuclied with the use of classica! plate 

theory, we may also use K 1 and Kn for modes I and II of planar deformation, 
k1 and k2 for modes 1 and 2 of bending deformation, and Kn1 for mode III of 
anti-plane shear. 



Chapter 5 

Curvilinear cracks 

In general situations of mixed-mode fracture, cracks will not be rectilinear due to 
influences of asymmetrie loading. Even initially straight cracks may extend in other 
directions. Consequently, the armlysis of continued crack propagation necessitates the 
study of curvilinear cracks and it proves indispensable to obtain expressions for the 
stress-intensity factors in terms of the crack 

The stress-intensity factors K 1 and Ku for fracture modes I and II of an elastic 
body containing a curved crack have been calculated by Cotterell and Rice [19] 
and the factor Ku1 for fracture by mode lil in [94]. The bending stress-intensity 
factors k1 and k2 for thin flat plates containing a curvilinear through crack have been 
determined in [93] on the basis of the classica! plate theory. The present chapter 
contains the papers [93, 94] wlth some textual modifications. 

The analysis is based on the description of mechanics problems in tenns of complex 
holomorphic functions; Muskhelishvili [63] and. Savin [80]. Special attention is 
given to the conditions for single-valuedness of the d.isplacements, because the domain 
occupied by the elastic body is rnultiply connected due to the presence of the crack. 
The boundary conditions at the crack surfaces (the crack flanks) rise to Hilbert 
problerns for the complex functions. The actual crack is replaced by a straight cut 
in the complex plane and a linearisation with respect to the crack-shape function is 
performed.. The stress-intensity factors depend on the crack shape, the stresses and 
bending moments exerted. on the crack flanks, and the uniform stresses and bending 
moments applied at large d.istance from the crack. 

5.1 Planar deformation 

Consider a thin flat plate of thickness h, consisting of hornogeneous, isotropic, linearly 
elastic material, containing a through crack of arbitrary curved. shape, and 
otherwise unboundcd. The in-plane Cartesian coordinates are denoted by x and y, and. 
the perpendicular coordinate by where -h/2 ::; +h/2. The crack is described 

77 
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by the shape function y with -a =::; x =::; +a and is assumecl to be uniform 
over the plate thickness. The coordinate system is chosen such that the two crack 
tips are on the x-axis, i.e. >..(±a.)= 0; see Fig. 5.1. The upper and lower crack fianks 
are denoted by L ~ and L and the intern al contour ( the crack) by L L+ U L-. 

+ 00 
Clxy 

y 

+ 
p+(x) 

q+(x)+ +()~ 

x~•41 
00 

\a 
Clxy 

x 

I+ 00 
Cl x x 

p-(x) 

Figure 5.1: Plate with curvilinear crack in plane stress. 

The normal and tangential veetors to the crack flanks (see Fig. 5.2) are by 
n sine ex cos e ey and s := cos e ex+ sine ey, where e = is the between 
the tangent and the positive x-direction. vVe have e+ E +1r /2] for the upper 
crack flank L+ and e- E [rr /2, 31f /2] for the lower crack flank L-. This angle clepends 
on the slope of the crack by tan 8 >..' (x). The indination angle at the right crack 
tip is denoted by o: e+(a) and is shown in Fig. 5.1. 

The present section focuses on plane-stress situations which are described by the 
equations (2.14){2.18). Following the analysis of Cotterell and Rice [19], we assume 
that there are no tractions on the upper and lower planes z = ±h/2 of the plate, 
and that the crack surfaces are subjeeteel to prescribed stresses in the normal and 
tangenbal directions; see Fig .. 5.1. The stresses in the point (x, y) (t, >..(t)) are 

(jnn 

<Jns 

(t) 

(t) +q(t)) 

(5.1) 

(5.2) 
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for -a :S; t ::;; +a, which are equal for t.he upper and lower crack flanks. (For straight 
cracks with /\(t) = 0, the simplifications u 11n Uyy and Uns = -u3 y hold true.) Zero 
stresses are applied at infinity. The solution to this problem is derived in [19] with the 
use of complex functions and a linearisation with respect to the crack-shape function. 
The stress-intensity factors are thus correct up to first order in /\(t). Integration by 

of the results in [19, Eqns. (18)~(19)] produces 

1 !+a [ p(t;) + ( >..'(t) ~a) q(t)] 

1 

J(I = (~r dt 
-a \ a-t 

1 l+a dt, -a 
-Jk .r:a 

1 
2 

Kn dt 

1 .r:a dt . 

In [19] the results have been compared with the exact salution for a circular-arc crack 
and good agreement has been observed over a wide range of are angles. So, these 
expressionscan be useful for curved cracks with large deviation from a straight line. 

Figure 5.2: ~ormal and tangential veetors (a) on upper crack flank and 
(b) on lower crack flank. 

The stress-intensity factors for uniform stresses uij at infinity eau be derived from 
(5.3)~(5.4): see [93]. The loading contiguration is equivalent to that with stresses of 
opposite Uij = , being applied to the crack surfaces. \:Vith the linearised 
normal and tangential veetors n"' ±(N(t) ex ey) and ±(ex+ N(t) ey) on 
up to first order in X(t), the stresses on the crack surfaces are obtained as 

ann p(t) 

(5.5) 
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-r q( t) (Jxx nx 8x 1-

+ >.'(t) (5.6) 

The stress-intensity factors are now readily derived by substitution of (5.5)~(5.6) into 
(5.3)~(5.4), which leads to 

( 

00 3 oe) (Jyy- (Jxy 

Kn ( 

00 • l 
Jxy -r-a 

2 
+ A(J~ (5.8) 

where the dimensionless crack-shape parameter A is defined by 

A .2_ J+a À1(t)(<:•+t)l dt. 
1ra -a a-t 

(5.9) 

The results (5. 7)~(5.8) for uniform stresses at infinity are to be added to (5.3)~(5.4) 
to produce new expressions for the stress-intensity factors in loading con
figurations. In conjunction with the previous load case, it is interesting to study 
the situation where uniformly distributed stresses are applied to the crack surfaces. 
Substitution of p(t) pand q(t) = q into (.5.3)~(5.4) yields 

( 
3 ) ~ pt-(2A- 2a)q -j1ra, (5.10) 

(q+~ap) (5.11) 

Gomparisou of these results with (5.7)~(5.8) reveals some remarkable similarities. 
Identification of p and q with J~ and J~ shows that the tenns of order zero coincide. 
This is obvious because the two loading configurations are equivalent for straight 
cracks. Concerning the terms of first order, the dependenee on the inchnation angle 
a is exactly the same, whereas the parameter A appears differently in the respective 
expressions. The differences are equal to 

(.5.12) 

(.5.13) 

which correspond to the occurrence of X(t) in (.5.5)~(.5.6). Thus, we may say that the 
parameter A is a measure for the amount by which the curved crack deviates from a 
straight line, and for the influence thereof on the stress-intensity factors. 

5.2 Anti-plane deformation 

5.2.1 Problem specification 

Consicier a thick, linearly elastic solid, containing an internal crack of finite size and 
arbitrary curved shape, and being otherwise unbounded. The geometry is uniform 
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with respect to the which is in the thickness direction parallel to the crack 
fronts. The in-plane coordinates x and y and the crack-shape function À( x) are defined 
as in the previous section. This configuration is loaded under conditions of anti-plane 
shear, such that fra.cture occurs in the mode (mode III). The analysis of this 
fracture problem is presented in [94]. 

0 00 
'tyz 0 

y 

+ + 
'tnz =P (x) 0 

ie' \J 

00 
a 00 

'txz x 'txz 
x= -a 

=-P (x) 0 

5.3: Plate with curvîlinear crack in anti-plane shear. 

The deformation problem is described by the real equations (2.21)-(2.22) or, 
valently, by the complex equations (2.25} (2.26) for the holomorphic function 
and its derivative <l>(z) = q/ (z) with complex coordinate z x+ i y. The stresses are 
singular at the end points z = ±a of the crack and, as usual in fracture-mechanics 
problems, are proportional to the inverse square root of the distance to the crack tip. 
As a result, thc complex functions have a similar singular behaviour. Since the order 
of the singularity is not known a priori, the following general condition is imposed to 
ensure the integrability of the elastic energy density in the vicinity of the crack 
For z ____, ±a, we have 

<P(z) 0( (z =f a)-5
), 

where 8 is some constant with 0 ::; fj < 1. 

Boundar'y conditions on crack su·rfaces 
We impose that the upper and lower crack surfaces are subjected to shear stresses 
p±(t) in the perpendicular direction with parameter t E ; see Fig .. 5.3. The 
normal to the crack surfaces is given by nx +i ny = -i 5.2. Using (2.24) 
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and and denoting by <t>± the limit of <I> ( z) for z -> t i A ( t) on 
express the boundary conditions as 

Re[ 

fJ. [ 
2i 

where fJ· G is the shear modulus of the materiaL 

on L..,., 
on L-, 

, we can 

15) 

The resulting force P on the crack surfaces is calculated by integration of the shear 

stress over the contour L. With .s being the are length and d.s I dt 
on L±, this force is given by 

p = ( Tnz d.s = ra [p+(t)-JL .J_a ] y1-+- [N(t)]2 dt. 16) 

Conditions at 
Since theelastic body is taken as unbounded, extra conditions at infinity are required. 
It is assumed that the transverse shear stresses attain finite valnes at infinite elistance 
from the crack. In the limit for lzl -> oo, it is imposed that 

(5.17) 

This condition and the expression (5.16) are transformeel into conditions for the 
complex functions at infinity. Firstly. it is noted that on the basis of (5.15) and 
with the property dz I els é 1, the force P can be represented as 

P Im [ 1 p. dz J ~[ L ' 
( 5.18) 

with [·]L indicating the increment in the enclosed expression when the contour L is 
encircled in clockwise direction. Secondly, since the shear stresses and the displace
ment are single-valued in the domain occupied by the elastic body, the equations 
(2.25)--(2.26) imply that the function and the real part of are single-valued 
in C\L. Consequently, we can write the function as 

A · log ( z - a) -t- ( z) , (5.19) 

where is single-valued in C\L and the real constant A is related to the increment 
in the imaginary part of For a proper definition of the logarithm, the complex 
plane is cut from z = -'-a to z = -a thc crack L and from z --a to infinity 
along the negative x-axis. The representation (5.19) ensures the single-valuedness of 
the displacement Uz and, consequently, no additional conditions are rcquired. From a 
combination of (5. and (5.19) wededuce that A= -PI21Tf.t. 

Thc behaviour of thc complex functions at infinity is now obtained by expanding the 
single-valued function in a Laurent series. In accordance with (5.17), we fine! 

z) rz p 
log z oG), (5.20) 

271'J1 + 

<P(z) r p 1 o(:2 ) (5.21) 
2Tt/1 + 
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for z ---.. oo, where the constant c may be put equal to zero without loss of generality 
and where the complex constant r is given by 

r = (5.22) 

Stress-intensity factor 
Due to the crack, stress singularities arise at the two crack tips. In the standard 
situation of a semi-infinite straight crack positioned the negative x-a.xis 
Fig. 5.4(a)), the limiting behaviour of the displacement and the Ahear stresses in the 
vicinity of the crack tip is well-known; see (3.38)~(3.41). The stress-intensity factor 

is the normalising constant for the singular shear stresses in the direction e 0 
ahead of the crack. This parameter ean be calculated from the singular behaviour of 
the complex functions; see Cherepanov [18, Sec.. and Sih [83]. From (2.26) and 
(3.37) and with ;:: = z r 0, it follows for the straight crack that 

Kni = lirn 
r~o 

jJZ 
,0) = - lim 2 z~o 

( ~(:::) ~(z)). (5.23) 

The stress-intensity factor for a c.urved crack is in terms of the angle u at 
the tip and of the shear stress Taz in the direction 0 u ahead of the crack; see 
5.4(b). In that direction the complex variabie is equal to a-rre'<> with r > 0. In 
a manner analogous to 15) we obtain the factor: 

Km = lim 
r-;0 

y 

r 

(a) 

(!) 'tyz 

Jlz lim 
2 r->0 

x 

y 

(b) 

x 

Figure 5.4: Crack-tip geometry (a) for stra.ight crack and (b) for curved crack. 

5.2.2 Linearisation for slightly curved cracks 

The problern of anti-plane shear as formulated above can only be solveel in exact forrn 
for rectilinear and circular-arc cracks: see Chao and Huang [17] and Sih The 
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salution proceelure is based on the methocl of Muskhelishvili [62, 63] and starts with 
the introduetion of the conjugate function 

n(z) = <I>(z) (5.25) 

for a straight crack and 

(5.26) 

for a crack along a circular are of radius R. 

In the case of arbitrary curvilinear cracks, however, it is not possible t.o define an ap
propriate conjugate function n( z). Therefore, we must rely on perturbation methocls 
and perform a linearisation with respect to the crack-shape function. Although the 
linearised problem provides approximate solutions for curved cracks which deviate 
from a straight line only by a small amount, the results can be useful to investigate 
crack propagation due to of non-symmetrie loading, espeeially the initia! stages of 
fracture. 

The linearisation process is similar to that in [19]. The crack is assumed to have a 
smooth shape resembling a straight cut. Mathematically, this condition is <>v,•r"'"""'rt 
in the norm of the crack-shape function 

A= 11,\11 
1 

( _2_ j+a 1,\(tW dt )
2 

· 
2a -a 

It is imposed that this norm is much smaller than the crack size (A/a« 1), and that 
the norm IIXII of the derivative is much smaller than unity and of the same order 
as A/a. In the linearisation process only the terms of order zero (corresponding to 
a straight crack) and the tenns of first order in A/a and/or IIXI 1 are retained. In 
addition, it is assumed that the function <I>(z) can be continueel analytically over the 
crack up to the straight line cmmecting the two crack tips. The analytically continueel 
function is denoted by F(z) and is holomorphic in the complex plane with a 
cut [-a, . The function is expanded with respect to the crack-shape function 
,\( t) and written as 

F(z) (5.28) 

where F0 (z) and F 1 are the functions of zeroth and first order. These functions are 
holornorphic in C\[-a, +a] and satisfy condition (5.14) at the crack tips. At infinity, 
the tunetion has limiting behaviour as in (5.21) with r by (5.22) and p 
by (5.16) with the square root replaced by unity. The behaviour of F1 ( z) at infinity 
is but now r 0 and P = 0 must be substituted. 

Since the linearised crack resembles a straight line, it is advantageous to introduce 
the functions and G1 (z) = F1(z), analogous to the conjugate function 
in (.5.25). The limiting valnes of <I>(z) on the crack tlanks , i.e. for z--+ t +i ,\(t), 
can now be expressed in terrns of the boundary val u es of F0 ( z) and F1 ( z) on either 
si de of the cut [-a, With -a ~ t ~ +a we have 

F(f(t) +i,\(t) F~±(t) + + O(i\ 2
), 

Gó(t) i ,\(t) G~+(t) + G'f(t) + O(A2
). 

(5.29) 

(5.30) 
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The angle e= of craek inelination appears in linearised form as = ±(1 +i N(t)) on 
. The boundary eonditions (5.15) are linearised with the use of these properties. 

Omitting terms of seeond and higher order, we obtain 

After the solution for the complex functions has been derived, the stress-intensity 
factor Ku1 is eakulated. The linearised form of (5.24) for slightly eurved eracks is 

2 
[ Fo( a+ r) ·· G0 ( a+ r) + FJ. (a+ r) - G 1 (a+ r) 

+ (iar [F0 (a+r) G0(a+r)J)']. 

From their lirniting behaviour as z-> a, it can be deduced that the funetions F0 (z) and 
Go( z) have opposite contributions to the stress-intensity factor [18, 83]. As a result, 
the final term of vanishes and a simplified for Ku1 is obtained. In 
the next subseetion it is proved that the contributions of F0 ( z) and G0 ( z) are in deed 
opposite. 

5.2.3 Salution for straight cracks 

In the next step of the solution procedure, the linearised boundary conditions (.5.31) 
are split into boundary conditions for the zero-order and for the first-order functions. 
Addition and subtradion of the boundaTy valnes lead to the Hilbert problems below 
for the fundions of order zero. For -a S t S +a we have 

(Fa + (Ft - G ) ... (t l . 0 0 . 

(Fa+ (Fo + G0 ) (t) 

The theory of singular integral equations and Hilbert problems and its applieation in 
meehanics have been treated extensively by Muskhelishvili [62, 63]. For details of the 
analysis we refer to these monographs. 

The salution to the Hilbert problems utilises the Plemelj function X ( z) = 
This fundion is holomorphic in the domain +a] and attains limiting values 
x±(t) = on either side of the cut, while X(z) = z + 0(1/z) at infinity. 
The solution to the Hilbert problems (5.33) (5.34) is given by 

Fà(z)-
1 L:a dt 

1f'J.LX(z) 
+ 

F0 (z) + G0 (z) 1 j±a 
dt Qo(z), (5.36) + 

1fj.l ~a 
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where P0 (z) and Q0 (z) are polynomials. From the condition (5.21) at infinity it is 
deduced that 

Po(z) (5.3ï) 

Qo(z) (5.38) 

The stress-intensity factor for the straight crack is now easily derived from the formula 
(5.32) and the salution (5.35). We obtain 

+ 2~ r:a [P+(t)+p-(t)j (:~!)~ dt, (5.39) 

which is in agreement with the result of Sih for symmetrie loading 

Under the assumption that the functions are finite at the end point t = a, it 
immediately follows from the salution (5.36) and [62, 63] that 

p_~ ~/'br(z- a) ( F0(z) + G0(z)) = 0. (5.40) 

This proves the statements that the contributions of the functions and G0 ( z) to 
the stress-intensity factor Kn1 are opposite, and that the last term in (5.32) vanishes. 

5.2.4 Solution for slightly curved cracks 

The stress-intensity factor for a curved crack consists of two parts. Firstly, there is 
the contri bution of the terms of order zero, which coincides with the result ( 5.39) for 
a straight crack. Secondly, there is the contribution of the first-order terms in (5.32), 
which is derwted by J(g~. This second part is determined in the subsection 
and is calculated from 

/((1) 
III lim ~(Ft +r) G1(a+r)), 

2 r->0 

where it has been used that the last term in (5.32) vanishes in view of (5.40). 

(5.41) 

The functions F1 ( z) and G 1 of first order are derived from Hilbert problems on 
the straight cut [-a, +a]. Addition and subtraction of the first-order terms in the 
boundary conditions (5.:H) yield 

(F1- GI)+(t) + (F1- G1)~(t) 

(F1 + G1f;-(t) (Ft+ Gl)-(t) 

[-i ..\(t) b3(t) ]' , 
[ -i..\(t)b4(t)]', 

for-a::; t::; +a, where the functions b3 (t) and b4(t) are given by 

(Fo + Go)+(t) + + Go)-(t), 

(Fo- Go)+(t) (Fo Go)-(t). 

(5.42) 

(5.43) 

(5.44) 

(5.45) 
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The solution to the Hilbert probierus (5.42)-(5.43) is derived in a standard manner 
[62, 63]. For zE C\[-a, the first-order functions are given by 

F1(z) G1 
1 j+a x+(t) b] 

dt 
P1(z) 

(5.46) + X(z) ' -a t- Z 

F1(z) + G1(z) 2~i 1:a t-z 
dt + Q1(z), (5.47) 

where P 1(z) and Q1(z) are polynomials. It follows from their behaviour at infinity 
that these polynomials vanish. 

Sirree only the difference G1 is relevant to the stress-intensity factor, the 
solution procedure is restricted to the first Hilbert problem. To this end, the function 
b3 (t) is elaborated further. With the use of (5.36) it is found that 

4 2 f_+a p+(s)- p-(s) + · ds, 
1f'J1 -a S-t 

(.5.48) 

where the symbol f denotes the principal value of the integral. Substitution 
of (.5.46) into now the first-order part of the stress-intensity factor. 
The following result is obtained from and and integration by parts: 

(1) -Krn -

-A 
1 · a +a ( S) - p ( S) 

+ 2Jr i~ (a+ t~ f_a -~=T __ . ds dt' (5.49) 

where it was used that .\(±a) 0. The dimensionless crack-shape parameter A 
is defined by (5.9). The last part of (5.49) contains a double integral; it is proved 
in Appendix B.1 that the order of integration may be interchanged. Thus, a new 
expression is obtained in which the functions (t) are multiplied by a principal value 
integral involving the function .\(t), see (5.50). 

Finally, the first-order contribution (5.49) is added to the result (.5.39) for a straight 
crack. This yields the linearised for the stress-intensity factor of a curved 
crack loaded under mode III conditions: 

Kin ( A ) 
1 

1 
j~a ] 2 

+ (t) + dt 
-a 

1 i: a ] f_+a + ds dt. (5.50) 
21f' a (a+s) (t- s) 

Loading configurations with properties result in simplified expressions for 
the stress-intensity factor. In the case of opposite stresses on the crack flanks, we have 
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T;:z = - T;:z and thus 
obtained, for which the 

p(t). A symmetrie anti-plane shear situation is 
factor is given by 

KnJ ( A 1 !+a . ) JT.ä + ;::;;:;; p ( t) 
v 7Ta ~a 

1 
2 

di. (5.51) 

Another simplification is obtained in the case of a concentrated load on the upper 
crack flank, i.e., for P b(t t0 ) and p~(t) = 0, where b(t) is the Dirac delta 
function. The for the stress-intensity factor reduces to 

5.2.5 Examples 

1 
2 

dt. 
t) 

(5.52) 

vVe shall now present solutions for the mode III factor for some 
partienlar shear-stress distributions and partienlar crack The accuracy 
and the applicability of the linearised result (5.50) for K 1u are also investigated. 

Uniform stresses at infinity 
The first example concerns a fractured elastic solid loaded by uniform shear stresses 
applied at large distance from the crack while the crack surfaces remain stress-free. 
The result is directly derived from (.5.50), viz. 

K - ( Too - A ~oo ) III - yz 'xz (5.53) 

This loading configuration is equivalent to the situation where no stresses are applied 
at infinity, but where the crack surfaces are loaded by shear st.resses of opposite sign, 
i.e., Tnz = T.u nx + Tyz ny with Tx2 = - r:;:_ and Tyz The linearised normal 
vector on L± is given by ±(N(t) e" - ey) with -a +a. As a result, the 
stresses on the crack surfaces are equal to 

() 00 )./') p- t. = Tyz - {t 

Substitution of these shear stresses into (5.50) indeed 
the stress-intensity factor as in (5.53). 

Un~form stresses on crack s'Urfaces 

(5.54) 

the same result for 

A slightly different salution is obtained, when the crack surfaces are loaded by uniform 
shear stresses, i.e., p+(t) p-(t) = p with p being constant, while no stresses are 
applied at infinity. It is found from (5.51) that 

K III = p J"if{i (5.55) 

Identification of p with reveals that the difference between (5.53) and (5.55) is 
limited to the first-order term containing the constant A. The occurrence of this 
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crack-shape parameter corresponds exactly to the presence of J\'(t) in (5.54). Similar 
to Section 5.1, we conclude that the parameter A is a mea.sure for the amount by 
which the curved crack deviates from a straight line, and for the infiuence thereof on 
the stress-intensity factor. 

x= -a 

co 
'tyz 

2a 

Figure 5.5: Elastic solid with crack along circular are. 

Crack along ciTcular aTc 
As a third example, the circular-arc crack is considered. This geometry provides an 
appropriate exercise to examine the range of validity of the linearised solution. The 
crack is located along a circle of radius R and has an opening angle 2a; see 5.5. 
The exact solution for this crack geornetry is determined by Chao and Huang [17] and 
Sih The mode III stress-intensity factor equals 

Kul ( 

+ 

+ (5.56) 

This result is cornpared with the present perturbation solution. The exact crack-shape 
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function À( x) can he approximated by a quadratic function: 

y = 
2 2 

vR2 z ~ x -a - -x ~ 2R (5.57) 

for -a :::; x :S +a with a = R sin a. This function represents a curve of parabalie shape 
and is acceptable for small values of af R. The lineariscel stress-intensity factor Kn1 

is derived by substitution of the approximate crack-shape function (5.57) into (5.50). 
The inclination angle a at the right crack tip is approximated by tan a = N (a) >:::: af R 
and the crack-shape parameter (5.9) is calculated as A>:::: af(2R). In addition, we have 
a R sin a>:::: Ra, while the integration variabie can he written ast = R sin (:1 >:::: R 0. 
We find that 

) 
' 1 

L:a [P+(t) + p-(t)] (: ~ !) 2 

elt + 

a l+a [ ] · -R p+(t) p (t) elt, 
2 -a 

(5.58) 
1 

+ 

which agrees with (5.56) up to the terms of first order in a or af R. 

The linearised result is also compareel with the exact salution for uniform loading at 
infinity. The crack surfaces remain stress-free. To this end, the crack-shape parameter 
A is calcnlated more precisely. Substitution of the exact crack-shape function ( 5.57) 
for the circular are into yields 

A ~13_ (K(~)- E(~)J = ~ (K(sino:)- E(sina)), 
1ra R R 1r sm a 

(5.59) 

where a R sin a. The functions K and E are the complete elliptic integrals of the 
first and second kind; see Gradshteyn and Ryzhik [30, Sec. 8.11]. This result forA is 
substituted into (5.53) to obtain the linearised stress-intensity factor. Following the 
notation of Sih [83], we express the shear stresses at infinity in t.errns of the applied 
load T

00 and the loading angle 1 

+i (5.60) 

while we normalise the numerical valnes of Ku1 from (5.53) and (5.56) with respect 
to the standarel stress-intensity factor K 0 = T 00 .Ji.(i. 

The results are presenteel graphically in Fig. 5.6 as function of a. From these results 
we observe that the lineariscel salution is accurate with a relative error of at most 

up to arc-opening angles a < 30°. Thus, we conclude that the lineariscel solution 
provides acceptable approximations over a rather wide range of arc-opening 
lt is expected that this condusion equally applies to general curvilinear cracks for a 
braad class of crack-shape variations. 
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0 
':t:.l 

~I exact solution 

linearised 

20 30 40 
alpha (degrees) 

(a) 

50 60 

5.6: Exact and linearised stress-intensity factors of mode III for a 
crack along a circular are, subject to uniform shear stress at with 
loading angle (a) Î = 1rj2, or (b) ~~ 0, or (c) ~~ = Jr/4. 

5.3 Plate bending 

5.3.1 Problem specification 

91 

Consider a thin flat plate of thickness h, consîsting of homogeneous, isotropic, linearly 
elastic material, containing a through crack of arbitrary curved shape, and being 
otherwîse unbounded. The crack is described by the shape function y ,\(x), with 
-a :::; x :::; +a, in the same maimer as in Section 5.1. The plateis loaded by uniform 
uvJ.Jv.Ju;o:, moments at large distance from the crack, while distributed bending moments 
and generalised torques are applied at the upper and lower crack see Fig. 5.7. 
This problem has been in f93]. 

The bending of the plate is described in the classical plate theory by the equations 
(2.49)-(2.51) or, equivalently, by the equations (2.56)-(2.64) in termsof the complex 
holomorphic functions qy(z), 1/J(z), w(z) and their derivatives <f>(z) d>'(z), w(z) = 
1/J'(z), rl(z) = w'(z) with complex coordinate z = x+ i y. Because of the stress 
singularities at the crack the complex functions are singular at these points. To 
ensure the integrability of the elastic energy density, we that for z ---> ±a 

, rl(z) = o( (z =F ), (5.61) 

where 15 is some conshmt with 0 $ 8 < L 
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BoundaTy conditions on cmck suTjaces 
We that the upper and lower crack surfaces are subjected to normal bending 
moments and generalised torques; see (2.65) and Fig. 5. 7. The normal and tangential 
veetors to the crack surfaces are defined in Fig. 5.2. The boundary conditions in 
z t +i .:\(t) on L=, with-a::; t::; +a, are given by 

j
•s(t) 

-+- Qn ds 
so 

(5.62) 

(5.63) 

where s s(t) is the are length L and Qn = Qx nx + Qy ny. Using (2.70) and 
dz j ds i +i ny) = e8 and denoting by <t>±( z) the limit of <I>(/::) for z -+ t + t.:\( t) 
on L±, we can express the boundary conditions as 

+iC=~(m-i 

+ + + (z ~ )] '(5.64) 

where C is a real but yet unknown constant which is determined from 
condition;,; at infinity. The parameter ""' depends on Poisson's ratio, but cliffers from 
the usu al val u es for planar deforrnation. In the case of ben ding, ""' is by (2. 71). 
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The resulting force P in the z-direction acting on the crack is determined with the 
use of (2.69). Because of overall equilibrium of the plate, it is necessary that this force 
be equal to zero. Integration of Qn yields 

p 2i D [ 
L 

0. (5.65) 

The resulting moments Afx and 1\!Lv about the x- and y-axes acting on the crack are 
calculated by integration over the internal contour L. After integration of Qn by parts 
and with the use of (2.62), (2.69), (2.70), (5.64), and (5.65), it is found that 

frr 
h [i (nx 

.l [ lvfnn +i 

D[(l-v)(K 

L:a [ -l 

+iAfns) izQn] ds 

~i r Qnds ie] dz [i rs Qnds] 
.fso .lso L 

+ 1/J(z)) + 2z ( <I>(z)- <P(z)) t 
_ (m i n-(t) J ( ~;) dt, (5.66) 

where the constant C gives no contribution sinceL is a closed contour; see Savin [80]. 
The not.ation [·]L indicates the increment in the enclosed expression when the contour 
L is encircled in clockwise direction, such that the material is at the left-hand side of 
the contour. In the case of symmetrically applied moments on the upper and lower 
crack surfaces, it is obvious that these resulting moments vanish. 

Conditions at infinity 
Since theelastic body is taken as unbounded, extra conditions at infinity are required. 
We assume that the moments tend to finite valnes at infinite distance from the crack. 
For izi --+ oo and withindices i,j x, y, we impose that 

(5.67) 

In the next subsection, these conditions are combined with additional requirements for 
the single-valuedness of the bending mornents and the displacements. These require
ments are necessary, since the elastic body cornprises a rnultiply connected domain 
because of the presence of the crack. 

Stress-intensity factors 
The bending moments are singular at both crack tips and their limiting behaviour 
near the tip of a semi-infinite straight crack along the negative x-axis is well-known; 
see ( 4.40)-( 4.46). The bending stress-intensity factors k1 and k2 are the norrnalising 
constauts for the sîngular normal bending moment and the singular generalised torque 
in the direction e 0 ahead of the crack. With z z = r --+ 0, wededuce frorn 70) 
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and ( 4.35)~( 4.36) that for rectilinear cracks 

lim 
Z--+Û 

( 1'\;<P(z) + Sl(z)). (5.68) 

The bending stress-intensity factors for a curvilinear crack are expressed in terms of 
the inchnation angle a at the tip and of the normal bending moment and generalised 
torque J\;/0.0. i ivf~r in the direction e a ahead of the crack, where the complex 
coordinate equals a+ r è• with r > 0. With the use of (2.70) we obtain 

6 . 
bm 
r--+0 

6(1-v)D lim ~ l-!'i;<P(z)+ 
h2 r->0 

+ (n(z)+r(è" e-ia) 

5.3.2 Conditions for single-valued displacements 

) ] . (5.69) 

The bending problem of the cracked plate has been expressed in terms of the complex 
functions <IJ( z) and W (z) or, equivalently, in terms of <P( z) and Sl( z). These functions 
must satisfy additional requirements in order that all physical quantities (such as 
bending moments, shear forces, and displacements) are single-valued in the domain 
occupied by the elastic body. 

From the relations (2.58)-(2.60) it is deduced that the functions <P'(z) and w(z) and 
the real part of <P(z) must be single-valued. When the plate contains multiple holes, 
the imaginary part of <P(z) may still have a jump when an internal hole is encircled. 
This jump can be identified with the resulting perpendicular force acting on that. hole, 
as in (5.65). The forces acting on each of the holes must add up to zero to meet the 
equilibrium of the entire plate. In the present situation of a plate with one hole ( the 
crack), the force P must vanish and, as a result, the complex functions <P(z) and W(z) 
are both single-valued in the domain C\L. Subsequent integration of these functions 
produces: 

4;(z) 

x(z) 

1 log (z a) + 
~/ log a) + 
;" log ( z - a) + ~/ z log ( z - a) + x* ( z) ' 

(5.70) 

(5.71) 

(5. 72) 

where the functions 4;*(z), and x*(z) are holomorphic and single-valued in C\L. 
For a proper definition of the logarithm, the complex plane is cut from z = +a to 
z -a along the contour L and from z = -a to infinity along the negative x-axis. 

The complex constant.s ~f, ;' and ; 11 are derived from the resulting rnornents acting on 
the crack contour and from additional requirements for the single-valuedness of the 
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displacements. Substitution of (5.70)-(5.72) into (5.66) 4 yields 

27fi ( 1 v) D ( - te r ) . (5.73) 

The single-valuedness of the in-plane displacements (2.57)) imposes the condition 

L 
= 27fi h' Î ) = 0 . 

From a combination of (2.71) and (5.73)-(5.74), it is deduced that 

r' 

(5.74) 

(5.75) 

(5. 76) 

The constant 1" is partly determined by the requirement for single-valuedness of the 
deflection of the plate; see (2.56). \Vith the use of (5.70), (5.72) and (5.74), we find 

[ w h = Im { 21r 1" } = o . (5. 77) 

This condition is elabm·ated further, such that we can determine the real constant C 
which has been introduced in (5.64) as an integration constant. 

The behaviour of the complex functions at infinity is now obtained by expanding the 
single-valued functions tj!*(z) and w*(z) in Laurent series. In accordance with (5.67), 
we find 

<I>(z) r Mx+i 1 (J o(:3 ), (5. 78) + 81ri D ~2 + z "" 
w(z) r' 

1 ~( ocl,)' (5.79) + 

Sl(z) f+f' + 
Mx + i Jvfy . ~ 

+ + o(:3 ), (5.80) 
81ri D z 

for ----. oo, where (3 is an unknown complex constant. The complex constants r and 
f' are given 

r 

r' 

+ 1'vt;;;; 
4(1+v)D +iA, 

where A may be put equal to zero without loss of generality, so that r is real. 

(5.81) 

(5.82) 

Finally, it is observed from (5.77)-(5.80) that the coefficient of the term of order 
0(1/z2 ) in the expansion of st(z) <I>(z) must have zero imaginary part. From this 
condition we shall determine the real constant C. The condition is expressed in Sl(z) 
and <I>(z) for convenience, since the mathematica! problem is fonnulated in termsof 
these two functions. 
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5.3.3 Linearisation for slightly curved cracks 

In a.nalogy with Subsection 5.2.2, a linearisation with respect to À(t) is performed. 'l'he 
crack shape is assumed to be smooth and approximately a straight line. Furthermore, 
we assume that the functions <P(z) and D(z), which are analytic in the complex 
plane with a cut along the crack L, can be continued analytieally over the upper 
and lower crack surfaces to the straight line connecting the two crack tips. The 
analytically continued functions are denoted by F( z) and W (z), where the functions 
F(z) and W(z) are holornorphic in the complex plane with a straight cut [-a, 
The linearisation process continnes by writing these two new functions in the form of 
(5.28) with fundions F0(z) and W0 (z) of zerothorder and functions F1 and Ml1(z) 
offirst order in A 11),.11- The four latter functions arealso holornorphic in C\[-a, 
and have singularities at the two crack z =±a as in (5.61). The lirniting values 
of <P(z) and n(z) on the crack flanks , i.e. for z-+ t + d(t), can now be expressed 
in terrus of the boundary values of .F0(z), F1(z) and W0 (z), W1(z) on either side of 
the straight cut. With -a :::; t :::; +a we have 

[rl(z) 

<P±(z) 

(z) 
r"o±(t) + d(t) F~=(t) + F1±(t) + 0(11.2

), 

Wo"'(t)- i >-(t) w~:r (t) + W1+(t) + O(A2
). 

(5.83) 

(5.84) 

The angle of crack inclination appears in linearised form as 1 - 2i X ( t) on 
L±. The boundary conditions (5.64,) are linearised with the use of these properties. 
Omitting termsof second and higher order, we obtain 

+iC (1 v)D{KFt(t)+W0:o::(t)+td'~±(t)+lV1=F(t) 

+i J-(t) [ KFt'i=(t) + WJ'(t) ]' + [ 2i J-(t) ( F0 (t) W0'i'(t)) ]'}, (5.85) 

where the constant C must be deeomposed as C C0 + C\. These constants are 
determined from requirements that the eoeffieients of t.he termsof order 0(1/z2

) in 
the expansions of W0(z)-F0 (z) and W1 (z) 1'1(z) at infinity must have zero imaginary 
parts. 

The resulting moments (5.66) acting on the crack contour are split into two parts of 
zeroth and first order: 

lvi~ +i lvf~ l+a 
- -a [ (rn --i (t) (rn if)-(t)]dt, (5.86) 

M;, + ilvf: 1+a -i -a [ (m i J)T(t)- -i f) (t)] À
1(t) clt' (5.87) 

after substitution of clz/dt 1 +i X(t). Consequently, t.he limiting behaviour at 
infinity ofthe functions F0(z) ancl W0 (z) is given by (5.78) and (5.80) with A1:c+iMy 
replaced by Af~ + i 1ug , while the behaviour of the functions F1 (z) and W1 is 
obtained by putting r f' 0 and replacing lv!J + i by lvll, + i M;. 

The stress-intensity factors are derived from (5.69). The functions <P(z) ancl rl(z) are 
replaced by expansions in termsof F'o(z), F1(z) and of l%(z), W1(z). We use that 
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the functions F(1(a + r) a,nd -2 r312 F~(a + r-) have equallimits forT 0. We use 
a similar property for W0 (a + r'). Thus, we obtain the linearised expression for the 
stress-intensity factors of a curvilinear crack: 

In the next subsection, it will be proved that K F0(z) and W0(z) provide equal contri
butions, so that a simplified expression for the stress-intensity factors results. 

5.3.4 Solution for straight cracks 

The linearised boundary conditions (5.85) are separated into contributions of zeroth 
and first order. Upon addition and subtraction of the boundary valnes on either side 
of the cut, two Hilbert problems are obtained. For -a ::; t ::; +a we have 

(KFo+Wo)+(t) + (K.Fo+VVo)-(t) 
(KFo Wo)+(t) (KFo Wo)-(t) 

2S(t)+2iC0 , 

2 U(t), 

(5.89) 

(5.90) 

where C0 = - v)D and the functiom; and U ( t) are defined by 

S(t) 
2 

-i n+(t) + (m ( t) J ' (5.91) 

U(t) (5.92) 

We again introduce the Plemelj function X(z) which is holomorphic 
in C\ +a]. This function equals x+(t) = on either side of the 
while we have X(z) z + 0(1/z) at infinity. The solution to the Hilbert problems 
(5.89)-(5.90) is now given by 

Kro(z) + X~z)) , (5.93) 

(5.94) 

where the functions P0 (z) and Q0(z) are polynornials. The conditions (5.78)-(5.80) 
at infinity imply that 

Po(z) 

Qo(z) 

( 1 \ (1 + v) (M.~ +i lVf~J 
+1)f+r 1z-- . 

I 41fi (1 1/ )D 
(5.95) 

1)r- (5.96) 
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The constant C0 is determined from the requirement that the term of order 0(1/ z2 ) 

in the Laurent expansion of VV0 (z) F0 (z) at infinity must have a coefficient with zero 
imaginary part. We find 

Co - Ivt:;~ + 1 + V L:a ( m + ( t) m- ( t) ) t dt 

7f~2 L:a ( r(t) + r(t)) dL (5.97) 

Under the assumption that the applied bending moments m±(t) and generalised 
torques f±(t) (and thus the function in (5.92)) arefiniteat the end point t a, 
it immediately follows from the solution (5.94) and [62, 63] that 

lim 
z-+a 

( ~Fo(z)- Wo(z)) = 0. (5.98) 

This proves the statement that ~ F0 ( z) and VV0 ( z) provide equal contributions to the 
stress-intensity factors k1 and k2• Therefore, the last term in (5.32) vanishes. 

The zero-order part of the bending stress-intensity factors 

multiplying (5.93) with ~-a) and taking the limit for z 

is calculated 

a. We find 

6 . 00 3 J+a [ + _ " (a+ t) ~ 
h2 1\11111 vfi.l1 + ·h·--.2 r:;;-;; m (t) + m (t) j - dt 

y r.a -a a t 

3(1+v). J+a [Jt-(t) (t)] dt, 
2h2 VJW -a ' 

(5.99) 

I 

J+a [r(t) + "j (2t- a) (_Cl_±_!)2 dt 
-:-h2=--= -a a a t 

3 

+ ~(;+v) j+a[m+(t) m-(t) ( 2t+a) dt. 
2h Fa -a J a 

(5.100) 

Note that the expression for the stress-intensity factor k2 is not infiuenced by the 
uniform torsional moment Af~ at infinity. This agrees with the results of Merkulov 
[58], but is in contrast with (5.8) where the stress-intensity factor does depend 
on the shear stress a~ applied at infinity. 

vVhen concentrated mmnents are applied on the crack, another result of Merkulov [58] 
is obtained. When m+(t) = 8(t r(t) H0 8(t t0 ), and m-(t) f-(t) 0 
is inserted, where 8(t) is the Dirac delta function, it is found that 

(5.101) 

(5.102) 

In the case of symmetrie loading, the distributions of the applied moments on the lower 
and upper crack fianks are equal: m±(t) m(t) and f±(t) f(t). The expressions 
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(5.99)~(5.100) attain the sirnpler forrn 

+ 6 j+a m(t) (a+ t) ~ dt' 
a a t 

6 
lvf;: (5.103) 

---,:----:6 = j+a f(t) (~) (a+ t) ~ dt. 
-a a a t 

(5.104) 

5.3.5 Solution for slightly curved cracks 

In this section the first-order terrns of the stress-intensity factors for curvilinear cracks 
are cakulated. For the sake of simplicity, the applied bending and torsional rnornents 
are restricted to symmetrie distributions, i.e. m+(t) = m(t) and f+(t) = f(t). As 
a result, the expressions (5.103)~(5.104) for the stress-intensity factors of order zero 
rnay he used. The Rilhert problem for the functions F 1 (z) and H/1 ( z) of first order is 
derived from the houndary conditions Restrietion to first-order terrns yields 

i cl - i).,(t) [ K Fo+(t) + 1Vl(t) ]' 

[ 2L\(t) ( Fl(t) Wl(t) )]', (5.105) 

where the constant equals CI/(1- v)D. Addition and subtraction of (5.105) leads 
to the Rilhert prohlems 

(KF1 + wi)+(t) + (KF1 + wt)-(t) 
(r; Fi - wi)+ (t) (K F1 - wi)- (t) 

(5.106) 

(5.107) 

where the functions b1(t) and b2 (t) deiwte the surn and the difference of the right
hand sides of (5.105), respectively. The precise forrn of these functions is given in 
Appendix B.2. The sohition to the Rilhert problerns (5.106)-(5.107) is given hy 

(5.108) 

1 !+a b2(t) d Q ( ) -.-. -- t+ ]Z, 
21ft ·a t- Z 

(5.109) 

where the functions P1(z) and Q1(z) are polynornials. The conditions at infinity irnply 
that these polynornials vanish. 

The contrihution of the functions and vV1 (z) to the stress-intensity factors is 
ohtained frorn (5.88) by taking the following limit in (5.108). We find 

6(1- v)D 
h2 ~Î!_,~ { ~ [ K + T) + Wl (a + T)] } 

3(1 v)D j+-a bl(t) (a+ t) ~ dt. 
h2 y0rä -a a t 

(5.110) 
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A detailed elaboration of this solution and the determination of C1 are presenteel in 
the Appendix B.2. The expression 10) is worked out in (B.12). 

The contribution of the functions F0 (z) and W0 (z) to the stress-intensity factors for 
a curved crack is obtained from (5.88) with (5.98). Let the factors (5.103)-(5.104) be 
denoted by kf and k~. Then, this contribution is given by 

6(1 
lim { 
r-+0 

[ 2..-;; (1- io:) F0(a + r) + io: } 

( ko 2..-;; + 1 ko) . (ka 2..-;;- 1 ko) 
1 - -- o: 2 - z '2 + o: 1 · 

2..-;; 2..-;; 
(5.111) 

The stress-intensity factors for a thin flat plate containing a curved crack and loaded 
by bending and torsior1al moments are now obtained by summation of the results 
(5.110) and 111). With the use of (B.l2) we derive the final result: 

2AAl~)+-h2 6:-/+a gl(l)(a~t) dt 
yna. ·a a t 

+ 

12 + !+a , + m(t) 
,.;;h2 (na) .-a 

A)+ 2K- 1 0: )' 

2K 

where the integrand functions g1(t) and are defined 

91 (t) m(t) + ( >.'(t) ..-;;+lA+ ..-;;+lA ~~+1 o:) (~)) 
,.;; ,.;; 2..-;; a 

g2(t) cK-1 ---o: 
2K. 

2 /\( t) ct -a)) ct -a) X(t) -a- m(t) + -;;- f(t). 
..-;;a 

(.5.112) 

} 

(5.113) 

' (5.114) 

(5.115) 

The last term in (5.113) contains a double integral in which the inner, singular integral 
f is calculated by taking the Cauchy principal value. It is proved in Appendix B.l 
that interchanging the order of integration is allowed. The dimensionless crack-shape 
parameter B is defined 

1 

B = 1 /+a >.'(t) (~Ct) (a +i)' 2 
dt, 116) 

na. -a a a t 

analogous to the definition (5.9) of the parameter A. It follows that 

2 !+a 2 !+a t ..\(.t)····- dt. A B 
2 

X(t) -/~2 - t2 dt = 
na .-a .-a ..)a2 -t2 

(5.117) 

vVe note that the parameters A and B are equal for symmetrie cracks with even shape 
functions, i.e. with ..\(t) = for -a.::; t +a. 
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5.3.6 Examples 

The expressions derived for the bending stress-intensity factors are illustrated with 
a few examples. Simplified expressions for k1 and are obtained by substitution of 
special distributions of the bending moments ancl crack-shape functions. 

Uniform moments at 
As a first example, a thin fiat plate loaded by moments (5.67) at infinity 
is considerecl. The surfaces of the curved crack are stress-free. The stress-intensity 
factors for this bending problem immediately follow from 112)~(5.113). viz. 

2K- 1 ) 00 } A) + --:;;;:-a 1Ui;y . (5.119) 

The same expressions are obtained for an equivalent loading configuration, where no 
bending moments are applied at infinity, but where the crack surfaces are loaded by 
momentsof opposite = -l'vf{j and Qi 0. The bending moment and the 
generalised torque on the crack surfaces are determined with the use of the linearised 
tangential and normal veetors = ±(ex+ N(t) ey) and n± = ±(N(t) e" - ey) on 
Omitting secoud and terms we find 

Af,::"_ = m(t) Jvfxx• n; + 21'v1xy nx ny + Jvfyy n~ 
-M;; + 2 >..'(t) M':;;, 120) 

lvf*± = + f(t) ns Afxx nx Sx + lvfxy(nx Sy + ny sx) + Myy ny Sy 

Af::_ + X ( t) ( M
1
"; (5.121) 

Substitution of these loading distributions into 
same results for the stress-intensity factors as in 

112)~(5.113) iudeed produces the 
119). 

Uniform moments on cmck s·urfaces 
As a secoud example, we examine the situation where the crack surfaces are loaded by 
uniform bending moments m(t) = m and generalised torques f(t) = f. No bending 
moments are applied at infinity. The stress-intensity factors for this configuration are 
derived from (5.1 15) as 

(5.122) 

A)+ 1 KB+ 2K- 1 a) . 
K 2K 

(5.123) 

vVe note that there is no contribution of the torque f. These results 
resembie those of the first example. Identification of m and f with lvf;; and 
in (5.118)~(5.119) shows that the termsof order zero are identical. This is obvious 
because the two examples are equivalent in the case of straight cracks. The fi.rst-order 
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terms, 
(5.118)~(5.11 9) 
the 
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are different. The crack-tip a appears equally in formulae 
and (5.122)-(5.123); the differences are con:fined to the terms with 
parameters A and B. Subtraction of the results yields 

/::,.kl 6y0fä:( 
h2 ) ' (5.124) 

/::,.k2 6 y0rä: B ( 
h2 ) . (5.125) 

These differences precisely corresp011d to the occurrence of X ( t) in the expressions 
120)-(5.121) for the bending moments on the crack flanks. Multiplication of this 

derivative with appropriate factors and integration over the interval [-a, +a] produces 
A and B; see (5.9) and (5.116). Therefore, these parameters are measures for the 
amount by which the crack deviates from a line, and for the influence thereof 
on the factors k1 and k2 , respectively. 

Crack a.long árc11.lar are 
For the third example, a crack along a circular are of radius R is chosen, having an 
opening see Fig .. 5.5. The crack-shape function .\(:z:) is given by ( 5.57). The 
parameters A and B for this crack geometry are equal ( 5.117)) and are given by 
(5.59). The plate is subjected topure bending by = M and to uniform 
torsion by H at infinity. The crack surfaces remain stress~free. The linearised 
stress~intensity factors are derived from and are equal to 

(5.126) 

(5.127) 

The exact salution has been calculated by Merkulov [58] and is given by 

kl 
6 ( K cosGa) Af 1 

(1 +3cosa)H), (5.128) = 
K + sin2 (~a) 

k2 
6 ( K sinGa) , 3 .. 1 . . ) (5.129) = . 2e Ivf- sm(-a) sma H . 

K + Slll 2a) 2 2 

The numerical valnes of k1 and k2 from (5.126)-(5.127) and from (5.128)-(5.129) are 
normalised with to the standard stress-intensity factors k0 6lvf Fa/h2 and 
6H Fa/h2 with a R sin a. The results are presented graphically in Fig. 5.8 as 
function of a, for Poisson's ratio v = 0.25 or K -13/3. The stress-intensity factor 
k2 for uniform torsion has been omitted from the :figure, because the linearised result 
(5.127) vanishes and the exact salution (5.129) is of secoud order in a. 

We abserve that the relative error in the results for pure is at most 5% for 
a < 40° concerning k1 and for augles a < 25° concerning k2 . The 

factor k1 for uniform torsion is only accurate within 10% up 
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to angles a < 20°. Thus, we coneinde that rather acceptable approximations for the 
bending stress-intensity factors for cracks along circular arcs are obtained. On the 
basis of these results, we expect that the forrnulae (5.112)-(5.11;)) can also be used 
to derive the stress-intensity factors k1 and k2 for arbitrary, slightly curved cracks. 

10 20 30 
alpha (degrees) 

(a) k1 

Figure 5.8: Exact and lineariscel bending stress-intensity factors of modes 
1 and 2 for a crack along a circular are, subject to (a) pure bending and 
(b) uniform torsion. 

5.4 Comparison of stress-intensity factors 

The stress-intensity factors k1 and k2 of plate bending show several sirnilarities with 
the factors K 1 and Kn of planar deformation, but therc exist some differences. Firstly, 
the solutions (5.103)-(5.104) are compared with the expressions (5.3)-(5.4) and (5.7)
(5.8) for a straight crack. We observe that the stress-intensity factor k2 does not 
depend on the torsional moment A1~ applied at infinity. This is in contrast with the 
shear stress IJ~ which does appear in the expression for Ka. Another dissimilarity 
between the respective stress-intensity factors concerns the factor (2t a)fa in the 
integrand functions. This factor is typical for the bending problern, since it does not 
occur in the expressions for K 1 and Ku of the plane-stress problem. 

Secondly, the expressions (5.3)-(5.4) and (5.7)-(5.8) are cornpared with the solutions 
(5.112)-(5.113) for a curvilinear crack. A cornrnon feature of these solutions is that 



104 CHAPTER 5. CURVILJNEAR CRACKS 

the stress-intensity factors of modes I and 1 have zero-order terrns which depend on 
and p(t) and on M;:;; and m(t), respectively, and first-order terms which depend 

on 0'~ and q(t) and on M;J and f(t), respectively, multiplied by suitable expressions 
involving the crack-shape function >-(t). Regarding the factors of modes II and 2, 
the dependenee of their zeroth and first-order terms on the loading components is 
precisely the other way around. 

Furthermore, we notice that the expressions (5.112)~(5.113) for plate bending are 
much more complicated than the expressions (5.3)-(5.4) for planar deformation. This 
relates to the presence of the parameter 1'1. in the boundary conditions (5.64) and (.5.85) 
on the crack surfaces. As a consequence, this parameter also appears in the Hilbert 
problems for the complex functions and, thus, in the solution for the stress-intensity 
factors. On the other hand, in the case of planar deformation, the expressions for the 
stress components do not contain a constant K., but only those for the displacements 
do [63, Sec. 32]. In addition, the integration constant C in (5.64) gives an essenhal 
contribution to the bending stress-intensity factors. This constant should not be set 
equal to zero, since it is related to the conditions for single-valued displacernents. 

It is instructive to compare the stress-intensity factors (5.112)-·(5.113) of the plate 
bending problem with the factors (5.3) (5.4) and (5. 7)~(5.8) of the plane-stress prob
lem, when we put K. 1 and disregard the extra multiplicative factor (2t- a)la in 
the integrand functions (5.114)~(5.115). Putting K. 1 means in fact that Poisson's 
ratio is taken equal to infinity because of (2.71). This corresponds to the observa
tions in Chapter 4, where putting v = oe resulted in equal near-tip singular bending 
moments for Reissner's theory and the classica! plate theory. lgnoring the typical 
factor (2t- a) I a firstly implies that the crack-shape parameters A and B become the 
same. Secondly, the term (2la) >-(t) m(t) can be omitted from the integrand function 
g2 (t), because it stems from differentiation of the multiplicative factor; see (B.14). 
Wh en the factor (2t- a) I a is disregarded in this way and with t;; L the expressions 
(5.112)~(5.113) reduce to 

kl ( M;;- 2.A 

6 !+a [ m(t) + ( N(t) ~a)f(t)] (a+ t) ~ + -- dt 
h2 Vifa ~a (L t 

6 !+a 
(a 

dt, (5.130) 
~a 

k2 { ~a M;; +A ( M;; - M:) } 
6 !+a ~a) m(t) J 

1 

[ J(t) - ( >-'(t) 
2 

+ h2 VJra ~n 
dt 

6 L:a dt 

24 !+a i+a + -a m(t) V a2 - t2 ~a ds dt. (5.131) 
h2 (1ra) (t- s) 
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Although these simplified stress-intensity factors have no physical meaning, they show 
remarkable similarities with and Kn as by (5.3)-(5.4) and (5.7)-(5.8). The 
remaining differences concern the double integral in the expression for k2 and the 
influence of the shear stress 0'':/; and of the torsional moment M~ applied at infinity. 

'vVe shall now discuss the stress-intensity factor Kn l and start with a comparison of 
the results for straight cracks ( the terms of order zero). From Sections 5.2 and 5.3 it 
is clear that the dependenee of the stress-intensity factor Kn1 on the shear stresses 

and p(t) in (5.51) is identical to the dependenee of K 1 on the stresses 0'~ and p(t) 
in (5.3) and (5.7), and to the dependenee of Kn on the stresses and q(t) in (5.4) 
and (5.8). This correspondence also applies to the dependenee of stress-intensity 
factor kt on the bending moments and m(t) in (5.103), but not to the dependenee 
of k2 on the torsimml moment Af: and the generalised torque f(t) in (5.104). The 
latter is due tothefactor (2t a)/a which is typical for bending problems. 

Next, we compare the results for slightly curved cracks (the terms of first order). 
Regarcling the uniform loads applied at infinity, there is only little correspondence 
between the expressions for Km and K 1 , k1 ; see (5.7), (5.50), and (5.112). Indeed, 
the first-order terms depend on , 0':, and Af:, respectively, but the coefficients 
of these stresses and moments are different. \Ve observe even less sirnilarity with 
the expressions for Ku and see (5.8) and 113). Regarding the stresses and 
moments applied to the crack surfaces, we noticed some common features of 
the stress-intensity factors KL Kn and k2 at the beginning of this section. These 
features are related to the fact that two independent fracture modes exist in each 
of the cases of planar deformation and of plate bending. In the case of anti-plane 
shear, however, there exists only one fracture mode. This explains why we only find 
a non-zero contribution to Kn1 of first order in .>..(t) for asymmetrie loading with 
p+(t) =1- p-(t) as in (5.50), and not for symmetrie loading as in (5.51). 

The reasons for these dissimilarities are twofold. The differences are not only caused by 
a combination of fracture modes as discussed above, but the direction of the applied 
forces also influences the results. The stress-intensity factors K1, Kn and kt, k2 

are expressed in terms of stresses and moments acting in the directions normal and 
tangential to the crack surfaces. These directions are related to the derivative .>..'(t) 
of the crack-shape function. The factor Ku1 , on the contrary, is expressed in terms 
of shear stresses in the z-clirection which is constant along the crack. Thus, 
Kn1 depends on the derivative X(t) toa lesser extent than the other stress-intensity 
factors. This also forms an alternative explanation for the different dependences of 
the stress-intensity factors on the uniform stresses and moments at infinity. 

5.5 Conclusions 

'vVe have stuclied elastic boclies containing curvilinear cracks and subjected to in-plane 
stresses, out-of-plane shear and to bending and torsicmal moments. The 
stress-intensity factors K 1 and Ku for planar deformation have been determined, and 
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also the factor Kn1 for thick elastic solicis loaded in anti-plane shear. In addition, the 
stress-intensity factors k1 and k2 of the classica! plate theory have been calculated for 
the bending of thin flat The solutions depend on the stresses and moments 
applied to the crack surfaces, on the uniform loa.ds at infinity, and on the crack-shape 
function À(t). A comparison of the results leads to the follmving conclusions: 

1. The dependenee of the factors k1 and k2 on the bending moments 
is similar to the dependenee of the factors and Kn on the in-plane stresses. 
The straight-crack solutions (the terms of order zero in À(t)) for k1 and KI 
relate to the loads in the direction normal to the crack surfaces, and those for 
k2 and K n to the loads in the tangential direction. This is in accordance with 
their definitions. The first-order terms of k1 and K 1 typically depend on the 
loads in the tangential direction and on the crack-shape function, and those of 
k2 and Kn on the loads in the normal direction; see (5.3)~(5.4), (5.7)~(.5.8) and 
( 5.112)~( 5.113 ). 

2. The differences between k1 and on the one hand and K 1 and Kn on the 
other hand, mainly concern the parameter K. related to Poisson's ratio and the 
multiplicative factor (2t in the integrand functions in the expressions 
for k1 and k2 . Putting K. 1 ( or v CXJ) and disregarding the multiplicative 
factor in (5.112)~(5.113) reveals remarkable similarities with the stress-intensity 
factors KI and Ku, although the resulting factors k1 and k2 in (5.130)~(5.131) 
have no immediate physical In addition, the stress-intensity factor k2 

does not depend on the torsional moment l'vt;;, whereas Kn does depend on 
the shear stress applied at 

3. Less similarity is observed between and the other stress-intensity factors; 
see (5.50). This is caused by the fact that only one fracture mode exists in the 
case of anti-plane shear, whereas two independent fracture modes exist in the 
case of planar deformation or plate bending. Moreover, the stresses in anti-plane 
shear are applied in the direction perpendicular to the plane of symmetry and 
parallel to the crack this direction is constant along the crack. 

4. All stress-intensity factors Kn1 and k1, k2 have been calculated for 
a crack along circular are and compared with the exact solutions from the 
literature. Good ha.s been obtained, which indicat.es that. the derived 
expressions can be used for a wide of cracks with slight curvature. 

Summarising we conclude that useful for the stress-intensity factors have 
been derived, which enables the of prolonged crack propagation along curvi-
linear paths under generalloading conditions. The incorporation of t.hE; crack shape is 
necessary to produce the correct values of the stress-intensity factors and to calculat.e 
the direction of further crack propagation accurately. 



Chapter 6 

U ncoupled fracture approach 

So far, we have investigated general properties of brittie fracture and dynamic crack 
propagation (Chapter 3), the consequences of bending deformation plus the effects of 
crack dosure (Chapter and the stress-intensity factors for curved cracks subject 
to tensile, tearing and bending actions (Chapter 5). In the present chapter we unite 
these results into the uncoupled dynamic fracture approach. 

The metbod has been described briefty in Section 1.3 and will now be explained in 
more detail. The elastodynamic effects in a time-dependent deformation problem 
concern stress waves and crack propagation. There exists a certain interaction: the 
( dynamic) stresses determine the crack propagation, while rapid fracture initiates 
new stress waves. This conneetion is partly uncoupled in the approach. The 
stresses are calculated first for the undamaged geometry without crack growth and, 
next, possible crack patterns are derived. 

Although the main area of application is the impact safety test on television picture 
tubes, the uncoupled approach is also suitable for the analysis of fracture probieros 
invalving rapid crack propagation and/or dynamic loading conditions. In this 
method can even be used to examine quasi-static crack propagation in structures under 
constant loads. deformation problem is called quasi-static when the dynamic effects 
can be neglected.) Th ere is one restriction: this approach applies to thin, slightly 
cnrved, plate-like structures and is less suitable to analyse general crack propagation 
in thick three-dimensional solids. 

6.1 Description of the method 

The first step in the uncoupled analysis of fracture phenomena is the determination 
of the dynamic stresses in the elastic body as function of time. This can be performed 
analytically (if possible) or numerically, e.g. by means of a finite-element cornputation. 
For a thorough introduetion into the finite-element method we refer to the textbooks 
by Rughes [37] and Zienkiewicz [100]. A short summary is contained in Chapter 7 

107 
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the stresses on opposite crack surfaces are taken equaL Substitution of these data 
into the expressions (5.3) and (5.4) produces the stress-intensity factors K 1 and I\11 , 

while Kw is derived from (5.51). The bending stress-intensity factors kt and k2 of 
the classica! plate theory are calculated from the formulae (5.112) and (S.ll3) and 
are converteel into the bending stress-intensity factors Kt and Kz of Reissner's theory 
with the use of the expression (4.84). 

~c '~~' ' ' \~k P"ili 

x:::+a , 

Figure 6.1: Piece-wise linear crackpathand measurement of crack-shape 
function. The dot • is the impact point and the other crack end is the 
propagating crack tip. 

Now that all stress-intensity factors have been deterrnined, we turn to the calculation 
of the crack-growth direction and speed. To this end, we use the fracture criteria 
discussed in Section 3.4. The two criteria have been implementod in the uncoupled 
approach. Although no essential differences have been observed in the obtained crack 
patterns, we shall consider the details of both implementations below. Regarding t.he 

circumferential stress criterion, the crack-propagation angle er is determined by (3.60) 
and the maximum stress-intensity factor K 08 (8p) by (3.61). In these expressions, K 1 

and Ku are replaced with their "effective" valnes K1 + IKtl and Ku + sign(J\'1 ) · 

K 2 in the outer or inner side of the screen where the tensile stress is maximum, 
which is in agreement with (4.91)-(4.92). The crack-growth speedcis then calculated 
from the expression (3.74) for the dynamic energy release rate with the substitution 
Ç(cr, a, 0) = KJ0(8r)/ E. Regarding the J-integral criterion, the crack-propagation 
angle ep is determined by (3.65) with the parameters lt and J2 defined by (4.94) 
(4.95) with c = 0. The crack-growth speedcis again calculated from (3.74) but this 
time with the substitution Ç(cr, a, 0) = (J{ + JJ)'>. For either fracture criterion, we 
determine the new posit.ion of the crack tip by 

Xtip,new = Xtip,old + C · C::.tc , (6.1) 

where t::.t, is the time step for the crack increment and cis a vector in the plane tangent 
to the screen with length equal to the crack speed c and with its direction determined 
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by the crack-propagation angle It is emphasised that the time t::.tc for the 
fracture simulation may be than the time step used for the computation of the 
elastodynamic stresses. The former time step cmmot be chosen too large, because 
otherwise the condition for stability of the time-step algorithm will be violateeL 

After the determination of the new crack-tip position, the third step in the uncoupled 
fracture approach is repeated and the stress-intensity factors for the new, extended 
crack are calculated. As long as the value of Q(cr, a, 0) exceeds the critica! energy 
release rate Qc, the dynamic crack propagation wil! continue. But when Q( er, a, 0) 
decreases and becomes less than Qc, the crack-propagation speed c becomes zero and 
crack arrest occurs. 

6.2 Superposition principle 

The uncoupled fracture approach uses ( dynamic) stress data of the unfraetured geo
metry to predict crack patterns. This may sound contradictory, but it can be explained 
by the following argument for quasi-statie fracture, i.e., for an instantancons geometry 
containing a crack. In the first step of the analysis, we compute the elastodynamic 
stress distributions for an intact structure under the assumption that fracture does 
not occur. In the next we a.ssume the existence of a crack at a certain posit.ion 
and at a moment of time. This crack, however, is a virtual crack in the sense 
that it does not exist in reality. The stresses in these positions are considered to act 
on the crack surfaces, opening the crack and creating a stress intensity at its tip. This 
leads to a paradox, since there are no stress singularities in the computed stress data. 
On the other hand, the surfaces of a real crack would have been stress-free. This 
paradox is explained with the superposition principle; see Broek [11, Sec. 3.5]. 

Consider the original intact elastic body loaded by external forces and with the given 
distribution of internal stresses, the elastodynamic solution as calculated at 
one of the uncoupled fracture approach. Also consider three related configurations 
whic:h are illustrated in Fig. 6.2 and which concern the fractured geometry under 
different loading conditions. Firstly, the body (a) contains a crack with stress-free 
crack surfaces and is subjected to the sarne externalloads as the original body. Due to 
the presence of the crack, stress relief occurs resulting in crack opening. Secondly, the 
body (b) w hich has the same geometry as (a) is loaded by extra stresses CTnn = p( x) 
being applied to the crack surfaces in the direction n normal to the crack. These 
stresses tend to close the crack and the function p( x) is chosen such that complete 
crack ciosure occurs and that the stress singularities at the crack tips vanish. Because 
of the disappearing stress singularities, the situation (b) coincides with the original 
intact geometry. The difference between (a) and (b) is obtained by subtraction. This 
results in configuration ( c) where no externally applied forces are present; only the 
crack surfaces are subjeeteel to stresses CTnn having opposite with 
to body (b). Thesestressesten cl to open the crack and create stress singularities at the 
crack tips. Because ofthe superposition principle, the stress intensities for (a) and (c) 



6.2. SUPERPOSITION PRINCIPLE 111 

are identical. The stress distri bution is derived from the salution of problem (b) 
or, equivalently, from the salution for the original intact elastic body. The obtained 
stress distribution is then used for the calculation of the stress-intensity factors. This 
argument shows that the influence of the stress situation on the stress-intensity factors 
is correctly incorporated in the uncoupled fracture approach. 

+ 

Figure 6.2: Principle of superposition: contiguration with externalload 
and stress-free crack surfaces is equivalent to (b) with extra stresses closing 
the crack as if no crack we re present plus ( c) with opposite stresses applied 
to the crack surfaces but without external load. 

This argumentation also reveals some limitations of the uncoupled fracture approach, 
regarding the dynamic effects. As described inSection 1.1, the stresses and the crack 
propagation are linked. Firstly, the fracture mechanism is bascel on the actual stress 
situation. This equally applies to dynamic and static fracture processes. Secondly, 
rapiel crack propagatîon înduces stress waves emanating from the moving crack tip 
and the continuons changes in the geometry lead to different relations between the 
stresses and the external loads. The latter effects, i.e. the disturbing influence of 
the propagatîng crack on the stress field, are negleeteel in the uncoupled fracture 
approach. The dynamic interaction is only incorporated in the universal functions of 
crack kr ( c) and which relate the elastodynamic stress-intensity factor and 
energy release rate to their static equivalents; see Section 3.5. Because of the partial 
incorporation of the dynamic effects, the uncoupled approach can only produce reliable 
results for the initia] stages of crack propagation but not over the full range of the 
fracture process. This is not considered as au obstructing problem, since the first and 
secoud phases of crack propagation are most important. 
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Finally, it is emphasised that the uncoupled fracture approach admits the analysis 
of only one crack at a time. It is possible to analyse multiple cracks by separate 
applications of the procedure described inSection 6.1. Every crack prediction starts 
with the initiation of a new crack, which may be chosenat a different position and with 
different length and(or direction. The ease-of-use of this method becomes apparent 
when we consider the numerical effort involved in the dynamic finite-element 
computation compared to the relatively small amount of post-processing for uncoupled 
fracture simulations. The elaborate dynamic stress calculation for the intact geometry 
requires several hours of computing time, but this calculation is always performed since 
it is the simplest manner of gaining insight into the internal stress distributions. (To 
be more precise: it is the second-simplest manner after a static stress analysis for the 
vacuum load). The time needed todetermine a crack path ranges from a few minutes 
to at most one hour, depending on the lengthof crack extension. The advantages are 
obvious: the elastodynamic stress data are already available and can be used again for 
each of the uncoupled fracture simulations, resulting in a large sa.ving on computing 
time. 

6.3 Application to standard tests 

The uncoupled fracture approach has been embedded in the finite-element tooibox 
which has been developed in the MATLAB programmingenvironment [57]. For the 
division of the geometries into finite elements we have utilised the mesh-generation 
program SEPMESH of the SEPRAN package [82]. The implementation of this tooibox 
has been performed in cooperation with J. Horsten. 

Several tests have been carried out to investigate the accuracy and reliability of the 
uncoupled fracture approach. The first test concerns the possible dependences of 
the calculated crack patterns on the finite-element division. To this end, we study a 
square plate of size l x l and thickness h l /20, being loaded by uniform tensile forces 
or uniform bending moments on two opposite sides; see Fig. 6.3. The plate is divided 
into n x n elements with one element over the thickness. vVe choose n = 10 and n = 16 
and select the elementsof vVilson and Taylor Section 7.5). These elements have 

degrees of freedom ( eight corner nocles) and additional interpolation functi(ms 
to ensure the correct bending stiffness. The elements have a slanted orientation such 
that the maximum slope of the element lines is equal to 0.10 or 0.20. This corresponds 
to inclination augles of 5. 7° and 11.3°, respectively. 

After the stress cakulation a crack is initiated at the middle of one of the non-loaded 
sides. The initia! crack length is equal to ~Ie with le l/n being the element width. 
The crack increments are chosen equal to ~le. The fracture touglmess is set equal to 
a small value to enforee craek growth. In Fig. 6.:3 we show the crack patterns in the 
plate loaded by tensile forces for the various element divisions. Subsequent positions 
of the crack tip are marked by open circles. The prospective end point of the crack is 
at the middle of the other non-loaded si de and is indicated by x. 
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(a) slope 0.10 10x10 elements (b) slope 0.10 16x16 elements 
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(c) slope 0.20 1 Ox1 0 elements (d) slope 0.20 16x16 elements 
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Figure 6.3: Crack patterns for a square plate loaded by uniform tensile 
forces, derived with the uncoupled fracture approach for various element 
divisions. Suhsequent positions of crack tip are shown by o and prospective 
end point of crack by x. 

Because of the simple loading geometry, the fracture process can be described by the 
stress-intensity factor K 1 for the tension problem and K 1 for the bending problem. 
A trivial salution is obtained with a uniform uniaxial stress state and with a straight 
crack path, despite the slanted element orientation. Similar results are obtained for the 
plate loaded by bending moments, while anti-dastic bending behaviour [90, Sec. 11] 
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is observed in the displacement salution due to the applied moment. Refinement of 
the element elivision and selection of other inclination augles of the rnesh also produce 
straight crack patterns for both loading situations. 

(a) initia! crack length 15 mm 

F1 

F1 

(b) initia! crack length 25 mm 

F1 

Figure 6.4: Crack patterns for a single-edge notched beam loaded under 
shear conditions, derived with the uncoupled fracture approach for different 
initial crack lengths. Subsequent positions of crack tip are shown by o. 

Another test concerns curvilinear crack propagation uneler shear loads. A suitable 
test for the examination of shear effects wa-s proposcel by Iosipescu [39], namely a 
beam with a single-eelge notch loaeled by compressive farces applieel at four different 
points; see Fig. 6.4. We shall adopt the dirnensions of Feenstra [27, Sec. 5.1] anel 
Schlangen [81, Sec. 3.3] anel stuely a beam of length 440 rnrn, height 100 rnm, anel 
thickness 10 mm. The forces F1 are applieel at a elistance of 20 rnm frorn the plane 
of symmetry and the forces F2 at a elistance of 200 mm. Because of equilibrium, we 
have fî = 10 The beam is elivielcel into a total of 264 elements with one element 
over the thickness and with refinement in the shear zone, where the elements are of 
size 10 x 10 x 10 mm3 . The \Vilson-Taylor elements are used for a proper elescription 
of the in-plane bending behaviour. 
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A crack is initiateel at the middle of the longest edge of the beam, in the plane of 
symrnetry, with an initia! length of (a) 15 mm or (b) 25 rnm. The deforrnation of 
the bearn is essentially two-dimensional and the fracture process can be described by 
a combination of the stress-intensity factors K 1 and K 11 . Due to the shear stresses, 
crack propagation will occur along a curvecl path with its end point on the opposite 
edge to the right of the point where the force F} is appliecl [81, Sec. The crack 
paths obtained with the uncoupled fracture approach as shown in Fig. 6.4 satisfy this 
requirement, although deviations occur near the points of crack arrest. The latter is 
caused by the compressive stresses near the position where the force F1 is appliecl. 
Because of the limitations of the uncoupled approach, the crack path in this 
has lirnited validity, but the first part is reliable. 

The crack patterns of Fig. 6.4 agree with both the experimental and the numerical 
results of Schlangen [81, Secs. 4.1, 6.2]. The present results are better than those 
of Feenstra , Sec. 5.1], who obtained a straight crack path inclined at an angle 
of approximately 45° with respect to the eclge. Single-eclge notched beams of other 
dimensions have been stuclied by Lubliner, Oliver, Oller and Oiîate [54] with the 
use of a plastic-damage model and by Rots [79] with smeared and discrete crack 
representations. It bas been mentioned in [79] that the smeared rotating crack concept 
suffers from stress locking and only produces an agreeable crack path for the early 
stage of fracture, and that tlüs path has been used as a predefined discrete crack in 
a snbsequent fractnre analysis resulting in the correct stress distribntions. The crack 
patterns obtained in [27, 54, 79] the requirement for the end point of the crack 
path ( to right of the point where is applied) and no partienlar ditierences with the 
present resnlts or with those in [81] are observed. 

Fignre 6.5: Crack patterns for a pipe loacled by torsional moments, derived 
with the uncoupled fracture approach. Initial crack is at mielelie of side 
view and at top of cross-sectional view. Snbsequent positions of crack tip 
( into two directions) are shown by o. 
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A three-dimensional test problem with curvilinear crack propagation is the torsion of 
a hollow cylindrical pipe. The thickness of the pipeis 10 mm and the inner and outer 
radii are 30 and 40 mm. The pipe has a length of 400 mm and is loaded by torsional 
moments at both end sm·faces. \Ve choose a finite-element division with 25 elements 
in the axial direction, 16 elements in the circular cross section, and one element over 
the thickness. Again, we employ the elementsof Wilson and Taylor with incompatible 
modes. Because of the torsionalloading, a stress state with pure shear is obtained. 

A crack is initiated in the middle cross section of the pipe and through the thickness. 
The initia! crack length is 3/4 of the element size in the eircumferential direction 
(approx. 10.3 mm) and the crack inerements are 2/3 of the element size (approx. 9.1 
mm). The early of fracture is dominateel by mode II, but the crack defiects in 
such a fashion that the stress-intensity factor gradually becomes more dominant 
while }(11 decreases. Crack propagation is determined in two (symmetrie) directions 
and the pipe with the calculated crack pattem is shown in 6.5. The caleulation 
terminates when the expressions for the stress-intensity faetors of Chapter 5 cannot 
be used anymore due to the curvature of the pipe surface. The results agree with 
the cra.ck-path predietions based on the experimental work of R.ichard [78] and the 
theoretica] workof Lakshminarayana and Murthy [48]. 

6.4 Application to television picture tubes 

Consicier the 36\VS television picture tube with a screen of aspect ratio 16:9 (wide 
screen) and a diagonal of 914 mm (36 inches). One quadrant of the screen is shown 
in Figs. 6.6 and 6.7. \Ve choose a Cartesian coordinate system with its origin in 
the center of the screen and the x- and y-directions along the major and minor axes 
of symmetry. The semi-length of these axes is 410 and 250 mm, respectively. The 
coordinates of the upper-right corner are x = 400 mm and y = 225 mm, from which 
we derive the aspeet ratio 400/22Ei 16/9. The z-axis is the central line of 
the tube running from the electron gun to the screen center over a elistance of 521 
mrn. The material parameters for the screen and eone are: Young's modulus 
E = 67 ·103 N mm- 2 , Poisson's ratio z; 0.265, and density p = 2.7 ·10-6 kg mm-3 . 

In practice, the screen and the cone are made of different glasses. The differences in 
material parameters are so small, that it is expected that our choice of equal 
will have no noticeable effect on the calculation of crack patterns. 

The tube is subjected to a ball-drop impact. A steel hall with rnass m = 0.54 kg and 
radius 25 mm is droppeel onto the screen with a velocity v 5 m s-1 such that the 
impact energy equals ~mv2 6.78 Joule (5 ft.lb). \Ve investigate the elastodynamic 
response of the television picture tube for two different impact positions, namely the 
so-called D-point and F-point, with coordinates x 0 = 149 rnm, y0 = 80 rnm and 
XF 333 mm, YF 169 mm, respectively. 

The entire tube, in cl u ding cone and neck Fig. 1.1), is analysed with the use of 
the finite-element method. The screen is divided into 824 elements, the cone into 600 
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v"v~uc~u"'"' and the neck into 44 elements, resulting in a total of 1468 volume elements 
and 2894 nodes. \iVe again use the eight-node Wilson-Taylor elements Section 
which have correct stiffness for bending and torsi(mal deformation. In addition, 1468 
four-node linear surface elements are used to apply the atmospheric pressnre on the 
external boundary of the tube, while the internal tube boundary remains stress-free 
due to the vacuum. The extra forces on the outer edge of the screen introduced by 
the metal rimband, are modelled by 16 additional surface elements at each of the four 
corners of the screen. Four nocles and four extremely stiff elements are added for the 
.cu<Ju<.cu•ur:. of the suspension of the tube at the screen corners. One node and three 
extra elements are used to describe the position of the steel ball, the Hertzian contact 
force [43, during impact, and the indentation of the screen. It is that 
all four quadrants of the tube are analysed, although only the upper-right quadrant 
of the screen is shown in the figures. 

The elastodynamic response of the television picture tube to the ball-eirop is 
determined with an explicit time-integration based on the centraJ-difference method; 
see Section 8.4 and Bughes [37, Sec. 9.1]. The investigated time interval reaches from 
the moment of impact nntil 2 ms thereafter and a time step .t:.t : 0.141 11s is used 
for numerical The crack patterns are calculated with a time 
step, 2 iJB-' This is permitteel because the of crack 
is much less than the velocity of the stress waves. The crack-initiation locations are 
chosen in the noclal point which is neaJ·est to the impact posit.ion or F -point). 
The initia! crack length is chosen equal to 30 mm and eight different initia] crack 
directions are examined. The critica! energy release rate is set to a small value such 
that crack propagation will occur as long as the factors and 
of the crack-opening modes give rise to tensile stresses at the crack The results 
for impact at the D-point are shown in Fig. 6.6 and those for at the 
in Fig. 6.7. It is obvious that application of the rnetal rimband has an enormons 
effect on the safety of the picture tubes. High compressive stresses are found in the 

armmd the impact positions. As a result, the factor K1 has 
a large negative va.lue and this fact prevents any crack from further. On 
the other hand, television picture tubes without the metal rimband admit 
crack propagation and, therefore, cmmot be regarded as safe tubes. 

It is remarked that, due to the uncoupled approach, the crack are only 
reliable for the early stage of fracture. Therefore, t.he exa.mination of crack paths 
in the three other quadrauts of the screen is not relevant. It is observed that a few 
cracks in Fig. 6.6(b) do not extend over larger distances. This can be explained by 
the stress state near the impact position: the preferred direction of crack extension is 
perpendicular to the direction of the largest principal stress. As a result, the cracks 
parallel to the direction of the largest principal stress do not Sometimes, 
a kink or a sharp curve is observed in an otherwise srnooth crack path. This is 
often caused by a sudden change in the stress-intensity factors and rnay indicate 
a possible point of crack arrest. The curves in the crack near the of the 
screen, especially in Fig. 6.6(b), are due to the plane of the three-dimensional 
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(a) television tube with rimband 
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(b) television tube without rimband 

Figure 6.6: Crack patterns formed by impact on the D-point, derived with 
the uncoupled fracture approach, (a) with the rimband being applied and 
(b) without the rimband. Subsequent positions of crack tip are shown by o, 
initial crack length is 30 mm, and time step is 2 JlS. 
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(a) Ielevision tube with rimband 

(b) Ielevision tube without rimband 

Figure 6.7: Crack patterns formeel by impact ontheF-point, derived with 
the uncoupled fracture approach, (a) with the rimband applied and 
(b) without the rimband. Subsequent positions of crack tip are shown by o, 
initial crack length is 30 mm, and time step is 2 JLS. 
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6.5 Conclusions 

Application of the 1mconpled fractmc approé!ch t.o simpk tr~st prob!C'm;, shows that 
this methocl is not snsceptilJ!c: to variation~ in the linitc:-dc·mc!Jt diYi.c;ion. This 1m•sh 
inclependence concerns both thc clement sit:c and thc element oricntation. In adclitiou. 
application to Iosipescn\ shear beam and to the torsion of a holluw pipe show.s that 
cornel't crack-growth clircctions are cleriYecl fm nüxc'd-llwcle fractnrc. Bascel un t heN' 
consiclerations. it i.'i condmlcd that tlw unconplPd approach produces trust worth~
rc;,ults alld that extension to more complicatccl prohlcms is allowc:cl. Bccaww of tlw 
partial nllcoupling between crack propa~~;ation <1.nd dvnamic cffcct.s, tlw resnlts ar<' not 
fully reliable for prolonp;ed crack propagation, espt'( ially rwar the point. of cnH'k <1l'H\st 
or final collapse. Nevcrtlwlcss, ~~;oocl nack-path prPdict.ions are obtailll'd for t.lrc t'arly 
stage of fracture. 

Conceruing tbe impact tf•sts for telf•vision picture tu\ws. goOll and mdul resnlts havc
bf'en obtairwd with mt her limitcel dfort. Ball-elrop t.ests wit h impnrt positiolls at tlw 
D- ancl F-points have been inve,tigatNl for thc 36\VS tubewithand witbont thl' lllPtal 
rimband bcing appli(•d to the sncen eclgl' It is obvious from Figures 6.fi and G. 7 th;ü 
application of the rimbancl is esscntial for the s;rfC'tv of tlw tnbc design. Television 
tnlws with tbe rimband show no or litt.le crack propagatiou, whewns larg('-sc<ek crack 
propagation is obsnvecl in tube'" without (he rirnlmmL Thus. we coudud<' tha.t thc• 
safety of telcYi~ion pict.mc tnbf'S is sip;llificantly improvcd wlwn thc nwtal rimhand is 
achled to the tube constmction. 

This condusion is confirmed by experirnental knowledge. The baU-drop test.s, which 
are performeel by rnamtfacturers of teleYi.oion picture tubes (or cathodc-nw tnlws) 
and by TV-set rnakers according to thP international ötandarcls [12. 26, 64], rcveal 
the following results for unsafe tubes. In thc <·asc of m1 impact at the 0-point (in tlw 
central region of thc screen), wc mostly observe crack propagation frmn ilw impac·t 
position to the four .~CTf'en corners. An impact at tlH• F-point (rw;rr tlH' uppPr-right 
corner of the screen) usnally leads to crack pwpagation along thP screen houndary 
or ;Üong tht• cliagnnaL No or little crack propagation occnrs for safe tubes. These 
ohsPrva.tions agree with thc calculated crack pattcrns shown in Figs. 6.G aml 6.7. 
Bt'causc of the goocl agreement between the resnlts of the tests ;md thos<' of t.lw 
simnlations, we coneinde that, despite its limitations, the uncoupled clynamic fractme 
approach is a powerful tooi for thc analysi' of cn1ck propag;a.t.ion in d~'mlmically lomled 
strnctnres. 







Chapter 7 

The finite-element method 

This part of the thesis discusses the hybrid fracture/damage approach which combines 
the benefits of fracture and damage mechanics in finite-element calculations. In order 
to understand the background and particular features, it is necessary to study several 
general aspects of finite-element techniques first. The present chapter deals with the 
basic concepts and indicates references for more detailed information. The hooks by 
Hughes [37], MacNeal [56], and Zienkiewicz [100] give an extensive explanation and 
are mentioned here with The next chapter concentrates on the design of 
the hybrid fracture/damage approach and on its applications. 

7.1 Concepts of the finite-element method 

Consicier a deformable body of linearly elastic material subjeeteel to prescribed farces 
and displacements, as described by (2.1 )-(2.5). For the application of fini te elements 
a weak formulation must be derived. To this end, so-called test functions v; are 
introduced, which are arbitrary, sufficiently smooth functions of the coordinates x, y, 

and time t, satisfying the homogeneous boundary condition V; 0 on the part Su 
of the boundary 8V where the displacements are prescribed. The equation of motion 
(2.3) is multiplied by v; and integrated over the domain V occupied by the elastic 
body. Application of the Gauss divergence theorem and the boundary condition (2.5) 
results in the problem below. 

Weak formzdation: determine displacements u;, strains and stresses U;j as 
sztfficiently smooth functions of x, y, z and t, satisfying the equations {2.1}, 
{2.2), the boundary condition {2.4), and the equation {with summation over 
indices i,j = x,y,z) 

(7.1) 

for all test V; with the property V; = 0 on Su . 
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It is noted that the relation (2.3) and the condition (2.5) on SP are automatically 
satisfied for the salution to the weak problem (7.1). 

The next step tovvards a salution of the deformation prohlem is a discretisation of the 
elastic body and an approxima.tion of the in the weak formulation. Basically, 
this procedure consists of (i) the domain by the elastic body into 
small subdomains ( the fini te and defining a set of interpolation points 
nocles), ( ii) calculating the contribut ion of each element to the entire contiguration 
and assernbling these element contributions into (global) matrices and 
and (iii) solving the matrix-vector numerical techniques. 

The interpolation of the is based on the noclal displacements. Consicier 
a finite element with m. where node j (1 ::; j ::; m) with coordinate vector 
Xj = (xj, yj, Uj ut, . vVe introduce the inter-
polation or shape functions (x) associated with node j, ha ving the property that 
N1 (xi) ={Jij· Some exarnples offinite elements and their shape functions are contained 
in the next sections. The are interpolated and represented as 

m 

u(x) = L Nj(x) Uj 

j=l 

(7.2) 

where the element displacement vector is defined by ue = [ · · · 1 u~ ut u~ I · · · jY with 
the superscript T denoting the The test functions are interpolated in an 
analogous manner. 

The strain and stress components are into veetors of length 6. They are 
related to the noclal displacements ac(;ordiitll to the following equations: 

Ex x 0 0 
E:yy 

E:e E:zz 

2E:yz 
(7.3) 

2E:xy 

(Te = [ !Jxx !Jyy !Jzz I !Jyz !Jxz D. E:e D. Be(x). ue. (7.4) 

The elasticity matrix D for isotropie materialsis related to the shear modulus G and 
Poisson's ratio v. This matrix has size 6 x 6 and is equal to 

1-v u V 0 0 0 
IJ 1-v V 0 0 0 

2G IJ IJ 1 
D {7.5) 

1- 2u 0 0 
0 0 0 H] 0 
0 0 0 0 1(1 

2 2u) 

After the discretisation, the displacements of all nocles in the finite-element mesh are 
arranged into one large vector U, the global vector. The integrals in 
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(7. 1) are computed per element and the element contributions are assembied into large 
matrices and veetors on the global level; see Bughes [37, Chs. 2, 7]. We obtain 

Af·Ü -i- K·U = F, 

where Af is the global mass matrix, K the global stiffness matrix, and F the global 
right-hand side vector of the prescribed forces. The superposed dot indicates the 
time derivative. The global vector of the test functions is defined analogously to the 
global displacement vector and has been eliminated from the equation (7 vVith the 
symbol A denoting the assembly process, the relations between the global quantities 
and the separate element contributions are 

u 
F 

lv! 

K 

A{ue}, 

A{Fe}, 

A{Ar}, 

A{Ke}, 

Fe= ie (Ae)Tf dV + L. (Aef p dS' 
p 

Afe [ p (AefN dV, 
lve 

Ke [ (Be)T DBe dV. 
}ve 

(7.7) 

(7.9) 

(7.10) 

In these equations Nfe is the element mass matrix and Ke is the element stiffness 
matrix. Furthermore, ve is the volume of the element and is the intersecbon of 
the element boundary with the part of the outer boundary of the body where the 
tractions p = Pz F' are prescribed. The vector f [Jx ]y JT reprèsents the 
body farces per volume. 

The integration is not performed analytically but by a numerical integration rule (for 
example a Gaussian quadrature rule) depending on the specific choice of element. 
The integrand is evaluated on a fini te set of points ( the integration points or Gauss 
points) and the resulting valnes are summed with an appropriate set of weights. The 
quadrature rules are designed in such a fashion that the integration is carried out 
exactly for a certain class of polynomials. This class includes the combinations of 
the shape functions in (7.9) and (7.10). Evidently, the accuracy of the results can 
be inCTeased by a refinement of the element division. We may also use higher-order 
interpolation by creating elements with morenodes and, thus, with higher-order shape 
functions. 

Summarising, we see that the basic ingredients in the definition of a finite element 
are: the nodes, the shape funetions, the elasticity matrix, and the integration points. 
In the subsequent sections we shall discuss the standard elements and derive 
elements by variations in the four basic ingredients. 

7.2 Standard fini te elements 

The description of the finite-element method above applies to any type of element. At 
this point it becomes necessary to go into more detail and give specific definitions of 
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the elements to be used. A common three-dimensional element is the solid brick with 
eight nodes at the corners (m 8); sec 7.1(a). The local coordinates Ç, T}, and 
( are in the interval [ -1, + 1 J and the physical coordinates x = (x, y, are related to 
the dimensionless local coordinates by 

m 

x x(.;) (7.11) 
j=l 

where .; (Ç, T}, (). Since the coordinate interpolation is completely analogous to 
the displacement interpolation (7.2), the element is called isoparametric. The local 
coordinates attain the values ±1 at the corners such that (Ç1,r/I,(I) = (-1, ~1), 

112 ,(2 ) = -1, , ... , r75 ,(5 ) 1,-1, . etc. The shape functions 
for this element are linear in each of the coordinates and are by 

for j 1, ... , 8 without automatic summation over j. 

8 ç 

3 

2 1 
(a) 

9 
(b) 

2 

Figure 7.1: Standard brick elements in three dimensions with 
and (b) quadratic shape functions. 

(7.12) 

linear 

The accuracy of approximation can be improved by the use of higher-order elements, 
for instanee the twenty-node brick of Fig. 7.1(b ), which has twelve addîtional nodes on 
each of the sides. The node-nurnbering sequence of Rughes [37] has been adopted. The 
local coordinates , T/j, (j) of the si de nodes are equal to ( 0, ± 1, , ( ± 1, 0, 1), or 
(±1, ±1, 0). The interpolations of the displacements and the position are given by the 
relations (7.2) and (7.11) with m 20. The shape functions are quadratic functions 
of the local coordinates and those of the corner nodes (j = 1, ... , 8) are given by 

1 
-(1 + 
8 

(ÇÇj + 1/1/j + ((j 2)' (7.13) 
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while those of the side nodes are 

Ni 
1 

- ÇZ) (1 + TJTIJ) (1 + ((j), for j = 9, 11, 13, 15, .14) 
4 
1 

ry
2

) (1 + ÇÇj) (1 + ((j)' (7.15) i\f -(1 for j 10, 12, 16, 1 j 
4 

NJ ~(1 - ( 2
) (1 + 

4 (1 + '7'7J)' for j = 17, 18, 19, 20. (7.16) 

\rVhen the physical positions of nodes j = 9, ... , 20 are in the middles of the sides, 
the coordinate interpolation of the quadratic element coincides with that of the linear 
element. This can beseen from substitution of the shape functions (7.13)-(7.16) into 
the equation (7.11) with the use of x 9 :ccc ~(x1 + x 2), x 10 }(x2 + x 3), etc. Other 
positions of the side nodes are discussed in the next section. 

For increased accuracy we may add six extra nodes in the middles of the side planes 
and one extra node in the center of the cube. These nodes are indicated by open 
cireles in Fig. 7.1(b) but are not numbered. A variabie-node element with a total 
number of nodes between 8 and 27 has also been implemented. The definition of the 
shape functions becomes more complicated and can be found in the work of Rughes 
[37, Sec. 3. 7]. Such finite elements are used in the hybrid approach, since they are of 
partienlar importance to form a transition between linear and quadratic elements. 

The integrals (7.8)-(7.10) are calculated with the use of a numerical integration rule. 
This is performed by selection of a finite set of points t,Y in which the integrand is 
evaluated plus a set of corresponding weights u>g, with 1 ::; g :S: n and n being the 
number of integration points. The Gaussian quadrature rule for the linear elements 

has n = 2 x 2 x 2 points with t,Y = (±fl]3, ±jlfi, ±yl/3) and weights w9 1. For 
the quadratic and variabie-node elements we haven = 3 x 3 x 3 points, where the local 

coordinates ry9, and are equal to 0 or ±j3i5 with "uni-directional" weights 8/9 
and 5/9, respectively. The weights w9 of the points !;, 9 (Ç9, (9) are obtained 
by multiplication of the three uni-directional weights of each local coordinate; see 
[37, 56]. The integrals for the linear 8-node element can also be computed with the 
use of a special non-Gaussian 6-point rule and those for the quadratic 20-node brick 
with a non-Gaussian 14-point quadrature rule; see Irons [40]. The latter is utilised 
in the hybrid approach for reasons of efficiency, because the assembly time is roughly 
reduced by a factor 14/27. 

7.3 Singular elements for fracture 

For fracture-mechanics applications it is necessary that the contributions of the ele
ments at the crack front (containing the stress singularity) are calculated correctly. 
This can be achieved by the design of special triangular finite elements, such that 
the derivatives of the shape functions contain the inverse square-root behaviour of 
the singular stresses; see Stern and Becker [86, 87]. Another and more appropriate 
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possibility is to adapt the quadratic elements in such a manner that an equal result 
is obtained; see Barsoum This technique is explained below. 

17, 18 7 20 

19 

3 

Figure 7.2: Collapsed singular element in three dimensions. 

Consicier a three-dimensional fracture problem which is analysed with the use of the 
quadratic twenty-node elements. The elements at the crack front are adapted as 
follows. Firstly, the corner nocles 1 and 2 and the side node 9 are chosen in the 
same physical position; and so are the nodes 5, 6, and 13; and the nocles 17 and 
18. Secondly, the nocles 10, 14, and 16 are shifted to the quarter points, while 
the nodes 11, 15, 19, and 20 remain mid-side nodes. Thus, one of the side planes 
collapses into a line ( the crack front) and a triangular prismatic element is obtained; 
see Fig. 7.2. The physical coordinates of the nodes are given by 

XI X2 Xg' (7.17) 

xs X(; X1J, X17 X18, (7.18) 
1 1. 

(7.19) xw 4(3x2 + x3), xn 
2 

(x3 + x4), 

1 . 1 
(7.20) X12 (3xl + X4), X15 2(x7 + xs), 

4 
1 1 

+x7), (7.21) X14 -(3x6 + x7), X]g -
4 2 
1 1 

(7.22) X16 4(3x5 + xs), X zo 
2

(x4 + 

The loeal eoordinates , 7lj, (j) of the nodes remain unaltered, i.e., , ±1, for 
the eorner nocles and (0, ±1, ±1), etc., for all side nodes. Substitution of (7.17)-(7.22) 
into (7.11) with shape funetions (7.13)-(7.16) yields for the eoordinate interpolation 
in the lower plane ( -1 of the element: 

1 2) 1 -(1 + 77) x1 + -(1 + 
4 4 

(7.23) 
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\Ve may consider p = Hl+ ·ry) 2 as the dimensionless distance to the crack front. As a 
result, the parameter 1 + 7) equals 2 fo and the shape functions (7.13)-(7.16) for the 
displacement interpolation depend on the square root of the ( dimensionless) distance 
to the crack front. This precisely produces the desired inverse square-root behaviour 
for the near-tip stresses in fracture problems. The finite-element proceeds in 
an identical rnanner as for the standard elements, with the same shape functions and 
the 14-point numerical integration rule. 

7.4 Softening elements for damage 

In damage-mechanics applications the stresses rema,in bounded, but a rednetion of the 
material stiffness is imposed. The internal damage is represented as a change in the 
modulus of elasticity. Physically, this is interpreted as the formation of microcracks 

Figs. 1.3 and 7.3) and is accounted for in the constitutive relations between the 
stresses and the strains, like in (1.2). As a the finite elements as described 
in Section 7.2 can still be only the elasticity matrix D needs adjustment. The 
positions of t.he nodes, the shape funetions, and the integration rules are not altered. 

undamaged damaged 

Figure 7.3: Orthotropie material damage. 

There are two options. the material damage may appear isotropieally with 
an equal rednetion of the modulus in all directions. This corresponds with 
a randorn distribut.ion of microcracks as illustrated in Fig. 1.3. The new Young's 
modulus then equals Ed = (1 'D)E with E being the original value and D the 
damage parameter. Similarly, the shear modulus of the damaged material equals 

= (1 - D)G, the same Poisson ratio vd = v. The elasticity matrix D is 
still given by (7.5) with G, and v replaced by their reduced valnes Gd, and vd. 
The parameterDis derived from the damage-evolutionlaw (1.3) or any other relation 
or postulate for the damage inerease. Strictly speaking, it is possible for Poisson's 
ratio to depend on the damage parameter. This is investigated in the Appendix C.2 
on the basis of thermodynamies. \Ve have ehosen to let z; unchanged in the hybrid 
fracture/damage approach. 
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Secondly, anisotropic damage may oceur with a preferred orientation of the micro-
sec Fig. 7.3. This requires a more detailed study of the effects, sinee 

the elasticity matrix (7.5) for isotropie material behaviour no applies. Namely, 
the stiffness in the direction perpendicular to the crack is reduc:ed, while the stiffness 
parallel to the crack retains the original value of the undamaged materiaL The con
stitutive properties in this case can be described an orthotropic material model; see 
Zienkiewicz [100]. General anisotropy implies that all si.x stress components depend 
on all six strain components. As a result, the D-matrix is a full symmetrie matrix for 
whic:h 21 elastieity constauts are required. Orthotropy is a weaker form of anisotropy 
in the sense that the normal stresses do not depend on the shear strains and vice versa, 
such that the two blocks of zeros in (7.5) are retained. The orthotropic stress-strain 
relations are 

[ 

~XX l 
~yy (7.24) 

for the normal strains and stresses, while for the shear strains and stresses we have 

[ 

1/Gyz 0 
0 1/Gxz 

0 0 

0 
0 l [ ~:: l (7.25) 

The relation rr = D · e is derived by inversion. The moduli of elasticity (E-moduli) 
represent the tensile stiffness in the three c:oordinate direc:tions, while the G-moduli 
are related to shear deformation in the three coordinate planes. The parameter vxy 

is the contraction ratio in the x-direction when the material is subjected to tension 
along the :y-axis, whereas Vyx is defined reversely; see Fig. 7.4. The twelve elasticity 
parameters are not independent, because the matrix in (7.24) must be symmetrie 

of the stress-strain relations). The six contraction ratios are related to 
the E-moduli via three but the shear moduli do not depend on the other 
constants. Thus, nine independent parameters remain. The conditions for symmetry 
are 

V.ry Ey Vyx, (7.26) 

Vyz Ez Vzy' .27) 

Vzx Ex (7.28) 

The presence of a crack a local reduction of the stiffness in only one direc:tion. 
Let us assume the crack surfaces are in the x:y-plane, suc:h that material softerring 
occurs along the z-axis and the stiffness in the two other directions remains unaltered. 
Using this convention, we have = Ey = E and (1- V)E, where V is the 
damage parameter and E the YOlmg's modulus of the undamaged materiaL The 
contraction ratios are determined by the relations .26)-(7.28) and extra conditions 
for thermadynamie admissibility. From a generalisation of the results of Appendix C.3, 
we obtain Vxy = Vyx Vzx Vzy v and Vxz Vyz (1 - V)v with v being the 
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Poisson's ratio of the undamaged materiaL Sirree there is no preferenee between 
the x- and y-directions, the shear modulus Gxy is given by G = E/2(1 + v), as 
for isotropie materials. The other two shear moduli Gxz and Gyz are equal and are 
in principle independent of the other parameters. We may for example take the 
arithmetic, geometrie, or harmonie mean of the values Gxy and Ez/2(1 + vxz). It is 
shown in Appendix C.3 by a thermadynamie analysis that either choice is acceptable. 

Ex 
I 

Ey 

Figure 7.4: Contraction of orthotropic materiaL 

7.5 lmproved elements for bending and torsion 

The standard linear elements of Section 7.2 have certain complications which do not 
occur for the quadratic elements. The resistance against bending and torsion appears 
to be too large for the linear elements. This over-stiffness is often referred to as 
"locking" and can be alleviated by an adaptation of the numerical integration rules 
or by the introduetion of extra shape functions; see Rughes [37, Ch. 4] and MacNeal 
[56]. These options are explained below. 

7.5.1 Elements with under-integration 

The standard linear element exhibits an over-stiff behaviour in situations of bending 
or torsional deformation. The excessive rigidity can be relieved by application of a 
1-point quadrature rule in the center of the element, namely 1;,9 = (0, 0, 0) and Wg = 8 
with g = n = 1. Sirree the element stiffness matrix becomes rank deficient owing to 
this under-integration rule, extra deformation modes or so-called spurious modes may 
occur. In Fig. 7.5 we illustrate the two spurious modes of planar deformation. The 
spurious mode of type (a) is characterised by 

u= AÇ7], V 0, (7.29) 
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while the one of type (b) is characterised by 

v. = 0, V = B f,rt. (7.30) 

When the under-integration rule is applied to the linear element in three dimensions, 
the rank deficiency of the stiffness matrix will give rise to twelve spurious modes; see 
Kosloff and Frazier [ 4 7]. These modes correspond to bending and torsion and are 
characterised by linear combinations of the following functions 

v., v, w = { f,rt, 7)(, (Ç, f,7)(}. (7.31) 

(a) (b) 

Figure 7.5: Spurious modes in planar deformation. 

Because of the 1-point central integration rule, the elastic energy associated with 
the spurious modes (7.29)-(7.31) cannot be perceived. Therefore, these modes are 
sametimes referred to as zero-energy modes. In other words, the element has become 
too weak instead of over-stiff. This problem can be solved by adding extra stiffness 
terms to the under-integrated element in order to suppress undesired bending; see 
[37, 47, 56] and Belytschko, Ong, Liu and Kennedy [7]. This procedure works well 
for the four-node linear element in two dimensions and has the extra advantage of a 
mass matrix with small band width, such that the lumping methad [37, Sec. 7.3.2] can 
be applied. In addition, there is the benefit that the assembly process is shortened 
roughly by a factor four, since one instead of four integration points is used. 

It was argued in [47] that all spurious modes of the three-dimensional element could 
also be suppressed by ad ding extra stiffness. However, this appeared impossible to 
achieve, especially in the case of perpendicular loading of plates; see Subsection 7.5.3. 
All attempts to add extra stiffness against spurious torsion modes resulted in over-stiff 
behaviour. It remains unclear whether correct suppression of all spurious modes is 
possible for the three-dimensional element with complete under-integration. 

An alternative approach to circumvent the occurrence of spurious modes is to apply 
selective under-integration; see MacNeal [56, Ch. 7]. This methad consists of (i) an 
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evaluation of the normal strains Eyy, and Ezz on the usual 2 2 x 2 Gauss points, 
which provides appropriate stiffness to suppress possible modes, and (ii) an 
under-integration rule for the shear strains Eyz, Ez.r, and t~xy, which eliminates the 
over-stiff bending behaviour. There exist two possibilities. Either all shear strains are 
evaluated on one Gauss point in the center of the element or each of the shear strains 
is evaluated on a different set of axiaJ Gauss points, namely two points on the x-a..xis 
for , two points on the y-axis for and two points on the z-axis for Exy· 

This description applies to brick elements with the element sides parallel 
to the global coordinate axes. Since the element stiffness matrix must be invariant 
to global coordinate transformations, it is necessary to express the strain components 
in a local Cartesian coordinate with its a.xes approximately parallel to the 
element sicles for elements with orientation and shape. For two-dimensional 
elements, for example, we may take the biseetars of the between the element 

as the local coordinate directions; see MacNeal [55]. In this procedure, it is 
favourable that the shape of the element resembles a brick. 

The element stiffness matrix is still rank deficient for bath selective under-integration 
rules, but the degree of deficiency is less than for complete under-integration. So, a 
smaller number of spuriqus modes can be present. Suppression of these modes is not 

a.pplied, but when no disturbances are observed, the element with selective 
can be used 

7.5.2 Elements with incompatible modes 

A third methad to tackle the locking problems of the standard linear element is the 
incorporation of bending modes in the element description. Beresford and 
~Wilson and vVilson, Taylor, Doherty and Ghaboussi the intro-
duetion of extra shape functions which correspond to the see also 
Bughes Sec. 4. 7] and MacNeal Ch. Since bending deformation involves 
linear stresses in the element, the necessarily have quadratic variations. 
This behaviour cannot be produced the usual shape functions (7.12) and, thus, the 
additional shape functions are chosen as 

Pr (t;;) ~ (1- e), (7.32) 

P2(e) 
1 

(7.33) 

P3(e) (7.34) 

Because of the quadratic behaviour, the continuity of the displacements over the 
element boundaries carmot be guara.nteed. For this reason, the bending modes are 
also called incompatible modes. Two of such modes are shown in 7.6. The 
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displacement interpolation becomes different from (7.2) and now reads 

8 3 

u( x) = I; N1(x) u1 + I; P1(x) qj (7.35) 
j=l j=l 

where ue contains the nodal displacements and qe [···I q~ q~ q11· · · f the bending 
parameters % (q~, qi, q~) with j = 1, 2, 3. The matrix Qe with the extra shape 
functions is defined analogously to the matrix Ae in (7.2), namely by 

(a) 

[ 

Fj 
Qe(x) = .. · 0 

0 

0 

0 

TJ 

(b) 

Figure 7.6: Incompatible modes corresponding to in-plane bending. 

(7.36) 

The bending parameters qe are eliminated at the element level by means of static 
condensation [37, 56]. This procedure is explained with the calculation of the ele
ment stiffness matrix. We proceed in the usual manner and differentiate the matrices 
Ae and Qe, which yields Be of (7.3) and the new gradient matrix 

0 0 

I 

0 PJ,y 0 

Ge(x) I 0 0 Pj,z 
(7.37) = ... 

0 Pj,z PJ,y 
0 Pj,x 

Fj,x 0 

The element stiffness matrix is calculated in a manner similar to (7.10)2 by Gaussian 
integration on the usual 2 x 2 x 2 points. The matrix is partioned into four parts 

.fve (Bef DBe dV, 

.fvJGe)TDBe dV, 

( (Bef DGe dV, Jve 
f (Ge)T DGe dV . 

}ve (7.38) 
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It is noted that the submatrix Kuu coincides with the original stiffness matrix Ke, 
that is symmetrie and sterns entirely from the extra shape functions, and that 
th ., . d.. b . t• f K KT e · mtxe " su matnces sa lS y uq = qu. 

Next, we calculate the vector He of the internal forces associated with the noclal 
displacements ue, while we assume that the internal forces associated with the bending 
parameters qe vanish. Therefore, we must solve the following equation for a single 
element 

(7.39) 

Solving the second part for qe and substituting the result into the first part, we obtain 
an for the internal-force vector, namely 

H e K-Te e (K" K" = ·U = uu - uq (7.40) 

The new element st,îffness matrix f(e must be substituted for Ke in the relation (7.10) 1
. 

Since there is no rank deficiency, no spurious modes will occur. The resulting element 
(in three dimensions) is an eight-node element with correct stiffness for bending and 
torsion and an eight-point integration rule. The process, however, requires 
a little more time than 'for the standard linear element. It was shown by Kosloff 
and Frazier [47] that the incompatible-modes element of Wilsou and Taylor [89, 96] 
is equivalent to the under-integrated element with additional stiffness for rectangular 
element ~<.'='<JH'""' 

7.5.3 Comparison of improved elements 

Various solutions have been suggested to improve the behaviour of the standard linear 
elements for bending and torsional deformation. \Ve shall now examine the improved 
three-dimensional eight-node elements and apply them to the defonnation of a thin 
flat plate to a perpendicular load. This is a suitable test problem, because the 
deformation involves bending in two directions, while the elements which are not on 
the axes of symmetry also undergo torsional deformation. A comparison is made with 
the results for quadratic 20-node elements, which serve as a benchmark because of 
the accuracy of the deflection and the correct behaviour of the bending stresses 
over the plate thickness. 

Consicier a flat plate of length 2a, width 2b and thickness h with ajb = 1.40 and 
hjb 0.10. The plate consistsof a linearly elastic material with Young's modulus E 
and Poisson's ratio v 0.30. The Cartesian coordinates are chosen along the axes 
of symmetry such that -a :::; x :::; a, -b :::; y :::; b, and -h/2 z h/2. The 
plate is clamped (built-in) at the edges and loaded by a uniformly distributed load 
hfz(x,y) -q per unit area. The laad and the eleflection of the are elireeteel 
vertically downwards. Because of the symmetry, only one of the plate is 
analysed. A elivision in 10 x 7 elements is used with one element over the thickness. 
Typical results for the deflection of the plate are shown in Fig. 7. 7. Similar results 
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are obtained from investigations of plates having other dimensions. The deflection is 
scaled with respect to the theoretica! value in the center of the plate, which is derived 
from Timoshenko and \Voinowsky-Krieger [90, Sec. , viz. 

wo = w(O, 0) -0.362 (7.41) 

The results in Fig. 7. 7 clearly show the over-stiffness of the standard linear element: 
the deflection is too small in comparison with the solution with the standani quadratic 
element. The element with complete under-integration also fails to produce the correct 
deflection. Since numerical investigations with this element of uni-directional bending 
of beams and plat es did exhibit correct bending behaviour, we conclude that the 
locking must be caused by torsion and by bending in two directions. Therefore, 
the completely under-integrated element as proposed by Kosloff and Frazier [47! is 
not suitable for three-dimensional problems of combined bending and torsion. The 
elements with selective under-integration and the elements with incompatible modes 
produce acceptable results for the deflection. The deflection for the elements with 
selective central under-integration seems to be less accurate than for the elements 
with selective axial under-integration, but results for other plate dimensions do not 
confirm this assertion. 

For a full appredation of the various elements, we also compare the bending stresses 
which are evaluated at nodal points instead of integration points. The results of 
the quadratic 20-node element are again used as a benchmark. In Fig. 7.8 we show 
the stress ayy along the y-axis and in the lower plane of the plate, which is tensile 
(positive) in the center of the plate and compressive (negative) near the edges. The 
stresses are scaled with the theoretica! maximum value, which occurs at the center of 
the longest (y = b) in the up per plane of the plate [90, Sec. 44]. This maximum 
value equals 

1.74 
q b2 

a 0 = ayy(O, b, h/2) = (7.42) 

It is observed that the incompatible-modes element yields more accurate stress results 
than the elements with selective under-integration. Similar results are obtained from 
investigations of plates having other dimensions. For these reasons, the element with 
incompatible bending modes as proposed by Wilson and Taylor [89, 96] is chosen for 
further use. This element has the advantage over quadratic elements that only eight 
integration points are used insteadof 14 or which leadstoa considerable rednetion 
in computing time for the assembly process. In addition, the mass matrix has smaller 
band width than for the quadratic element, which is advantageous in time-dependent 
problems; see Section 8.4. 
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7.7: Defiection of the plate along x-axis. 
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Figure 7.8: Stress in lower plane of the plate along y-axis. 

standard quadratic elements, 
standard linear elements, 

--*- elements with complete under-integration, 
elements with selective central under-integration, 
elements with selective axial under-integration, 
elements with incompatible modes. 
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Chapter 8 

Hybrid fracture/damage approach 

Both fradure mechanics and contilmum damage mechanics possess advantages 
and disadvantages in finite-element applications. Whereas numerical methods based 
on fracture medmnics require frequent adaptations of the finite-element mesh and use 
moving-element techniques Nishioka, Murakami and Takemoto [68]), methods 
basedon damage mechanics suffer from sensitivity with respect to the element di vision 
and from damage localisation. These features have been mentioned briefly in Section 
1.3 and are discussed more thoroughly in Section 8.1 below. 

Because of these complieations, a eombination of fracture and mechanies 
within the eontext of the finite-element method is investigated, which leads to the 
so-ealled hybrid fraeture/damage approaeh [36]. The various elementsof Chapter 7 
are joined together in such a manner that it can be expected that the disadvantages 
of both theories are eliminated, while their speeific benefits are retained. lt is noted 
that the hybrid fraeture/damage approach, similar to the uncoupled fraeture 
approach of Chapter 6, only applies to thin plate-like structures with 

The work contained in the present ehapter has been carried out in cooperation with 
J. Horsten. Our joint study of theoretieal aspects (fracture, darnage, dynamics) and 
of numerical methods (fini te time-step algorithms) has resulted in this new 
approach towards craek-growth simulation. 

8.1 Discussion of continuurn damage mechanics 

In order to avoid continuons mesh adaptation in finite-element of dynamie 
fraeture, we study the of using continuurn damage mechanics. Only one 
fixed finite-element division is sufficient, because failure is represented by material 
degradation ( softening) instead of by discrete eracks. In ad dition tot he displacements, 
strains, and stresses, which are used to describe the deformation, we introduce an extra 
parameter V to represent the internal material damage; see Chaboche [14, 15, 16], 
Kachanov [44] and Lemaitre [50]. This parameter must satisfy a damage-evolution 
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equation, e.g. (1.3), which relates the damage increase to the stress state and the actual 
damage level. It is possible to introduce a set of damage parameters (for example Dx, 
Dy, Dz), when the material damage occurs insome anisatrapie fashion. For the topic 
of damage tensors and principal damage directions, we refer to Chaboche [14] and 
Murakami [61]. We restriet ourselves in this section to isotropie damage represented 
by one parameter D. 

Consicier a deformable body consisting of an isotropic, softening material and subjee
teel to uniaxialloading. The Young's modulus pertaining to the original, undamaged 
material is denoted by E. The c:onstitutive relation between the stress e5 and the 
strain c is given by the equation (1.2) in a simple one-dimensional farm, namely 
e5 = (1 - D)E c. A c:harac:teristic: feature of the stress-strain relation is that the 
stress can dec:rease with inc:reasing strain (softening behaviour). This behaviour is 
illustrated in Fig. 8.1(a) for cluc:tile failure. A sudden dec:rease of the stress oc:c:urs 
for brittle failure; see Fig. 8.1(b). Generally, the darnage parameterDon timet will 
depend on the history of the strain. For a certain c:lass of materials (inc:luding glass), 
the maximum strain level in time serves as a threshold for the damage inc:rease and 
we may write D = D(cmax) with cmax = max{c(t1 ) lt 1 ::; t}; see Chaboc:he [16] 
and Paas [72]. The relation between D and cmax is usually postulated on the basis 
of experimental results. For situations where bath the strain and the damage are 
inc:reasing, we may write D = D( c) bec:ause cmax = c( t). 

We distinguish several moduli of elastic:ity, depending on the loading situation; see 
Fig. 8.1(a). Firstly, when the body is loaded or unloaded and damage does not oc:c:ur 
(D = 0), we use the original Young's modulus E and we have the stress-strain relation 
e5 = E c. Secondly, when the body is being loaded and the damage inc:reases (i > 0 
and D > 0), we use the tangent modulus Et = de5/dc. In this case, we employ 
the stress-strain relation in inc:remental farm: (; = E1 i, where the superposed dot 
indic:ates the time derivative. The tangent modulus is derived from (1.2) as 

Et = ~: = ( (1 - D) - D' ( c) c ) E , (8.1) 

where the prime ' indic:ates differentiation with respect to c. Thirdly, when damage 
has oc:curred and the body is being unloaded (i < 0), we use the effec:tive modulus 
Ed = (1 - D)E of the damaged materiaL The stress-strain relation in this case is 
given by e5 = Ed c. This relation is also valiel for renewed loading as long as damage 
inc:rease does not oc:c:ur (c(t) < cmax). 

From Fig. 8.1(a) and the equation (8.1) it is c:lear, that when the damage D and the 
damage inc:rease D' ( c) are too large, the tangent modulus bec:omes negative. N ote 
that 0 ::; D ::; 1, so that a large value forD only c:annot lead to Et < 0. A negative 
tangent modulus has a severe impheation for the one-dimensional dilatational wave 
speed, which is defined in analogy with (2.10) and (2.19) by 

(8.2) 

where p is the density of the materiaL When the tangent modulus Et is negative, 
this wave speed bec:omes imaginary. The conesponding wave equation (2.8) in one 
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elimension changes from hyperbalie to elliptic and the mathematica! problem beeomes 
ill-posed. The ill-posedness leads to several peeuliar phenomena, which have been 
described by many authors e.g. de Mühlhaus and Pamin [10], 
and Belytschko [49], and Sluys 

These phenomena are usually referred to "localisation". For example, the energy 
dissipation asöociated with the increase takes place in an infinitesimally srnall 
band (which can be compared toa discrete . The strain in this band attains an 
infinite value, while the strain in the material decreases (unloading). This 
localisation effect becomes more apparent in finite-element applications, where the 
amount of dissipated energy heemnes on the size of the softening elements; 
see Crisfield [20] and Hegen [33, Sec. . Furthermore, a strong dependenee on 
element size is observed in the global material response and in the peak value of the 
strain after localisation: see Sluys [85, Sec. 

cr 

(a) 

Figure 8.1: Stress-strain relations with 
ductile failure and (b) brittie failure. 

(b) 

material behaviour for 

An overview of localisation problems is in [10, 49, 85] and also in the work of 
Bazant and Cedolin [4, Ch. 13] on the basis of stability theory. Various solutions have 
been suggested by many authors. These include: 

1. localisation limiters based on kinematic relations like (2.1), where the strains 
also depend on higher-order derivatives of the displacernents [49]: 

2. rate-dependent constitutive behaviour, where the stresses not only depend on 
the strain but also on the strain rate Ch. 1] and Needieman [65]); 

3. non-local constitutive behaviour, where the stresses depend on strain values 
averaged over a small neighbourhood Pijaudier-Cabot and Bazant [73] and 
Vosbeek [91]); which suggestion includes gradient-dependent behaviour, where 
the stresses depend on the struin and the of the strain (see [10] and 
[85, Ch. 5]); 

4. finite elements with embedded localisation zones Belytschko, Fish and 
Engelmann [5] and Ortiz, Leroy and Needieman which zones correspond 
to the srnall bands mentioned where the energy dissipation takes place; 
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o. element-free Galerkin methods, where the displacements are interpolat.ed on a 
set of nocles with the use of special functions instead of finit.e elements 
(see Belytschko, Lu and Gu [6, 53]). The latter two suggestions have been 
critically reviewed by Regen [33]. 

8.2 Description of the hybrid approach 

The hybrid fracturejdamage approach is based on the finite-element method plus a 
time-stepping algorithm and utilises the various elements introduced in Chapter 7. 
The positive features of fracture mechanics (accuracy) and of contilmum damage 
mechanics (flexibility) are combined in a ma1mer described below; see also Horsten 
and van Vroonhoven [36]. For the sake of simplicity, we start with two-dimensional 
problems. The extension to three dimensions is discussed in the next section. 

Figure 8.2: Configurat.ion of the super-element and surrounding elements. 
The crack is shown as a thick solid line and anisotropic damage is displayed 
by dashed lines. Subsequent positions of the crack tip are marked as x, 
while original nocles are indicated by • and extra nocles by o. 

As in any finite-element analysis, we start with the division of the elastic body into 
subdomains. We choose the improved four-node \iVilson-Taylor elements of Section 
7.5, because of their adjusted stiffness and the correct in-plane bending behaviour. 
These elements give a far better than the standard linear elements of 
Section 7.2. The singular elements for fracture-mechanics applications (see Sectiou 
7.3) are used at the crack tip by replacing the quadrangular element with four 
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collapsed ( triangular) elements. This is shown in Fig. 8.2. One crack-tip node, twelve 
mid-side nodes, and four quarter-point nocles are added, which are marked by o in the 
figure. This ensures the accurate calculation of the singular stresses in the vicinity 
of the crack tip. Since the displacements in the singular elements are interpolated 
by quadratic shape functions on the sicles opposite to the crack tip, it is necessary to 
apply variable-node elements (see Section 7.2 and Rughes [37, Sec. 3.7]) as a transition 
from the singular elements to the linear four-node elements. The combination of the 
four crack-tip elements and the eight surrounding transitional elements is called the 
"super-element". The positions of the four corner nocles of the quadrangular element 
which is replaced with the singular elements, are adjusted in such a manner that 
the four triangular elements have approximately the same size. The super-element 
translates with the crack tip and its structure is similar to the mesh patterns which 
are used in moving-element procedures based on fracture mechanics [68]. 

The extra nocles are also called "slave" nocles as opposed to the original "master" 
nocles of the elements. The slave nocles are eliminated at the super-element level by 
means of static condensation in a manner similar to (7.39)-(7.40). It is noted that 
the (four) corner nocles of the singular crack-tip elements are also eliminated and 
must be regarcled as slave nocles too. We praeeed with the calculation of the internal 
force vector Hm associated with the displacements Um of the twelve master nocles of 
the super-element. Since the twenty-one slave nocles lie in the interim of the super
element, we assume that they do not convey noclal farces to the surrounding elements. 
Denoting the displacementsof the slave nocles by U 8 , we obtain the following system 
of equations 

(8.3) 

where the contributions of the twelve elements in the super-element to the stiffness 
matrix have been partitioned with respect to the master and slave nodes. We solve 
the second part of (8.3) for U 8 and substitute the result into the first part. This yields 
an expression for the "condensed" stiffness matrix Kse of the super-element: 

(8.4) 

A smaller type of super-element has also been considered. This super-element has two 
basic configurations. When the crack tip is in the middle of an element, that element 
is split into four triangular crack-tipelementsas in Fig. 8.2. When the crack tip is near 
a corner, four elements are split into eight triangles. Quarter-point nocles are added 
to incorporate the singular stress behaviour, but the extra mid-side nocles are not 
included. As a result, the triangular elements resemble theelementof Fig. 7.2(a) but 
without node number 7, and the displacements on the sicles opposite to the crack tip 
show linear behaviour. This smaller super-element did notprovide sufficient accuracy 
near the crack tip and has therefore been rejected. On the other hand, super-elements 
of larger size were regarcled as too expensive because of the increase in computational 
effort and in assembly time. 

The position of the crack tip is marked as x in Fig. 8.2 and is calculated at every 
time step by a procedure explained below. Although the crack path is determined 
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in a precise manner, it is not approximated by a linear curve as described 
in Section 6.1 for the uncoupled dynamic fracture approach. Instead, we employ 
the idea of a "smeared" crack but in a different form than developed by Rots [79]. 
The smeared-crack concept provides extra flexibility in comparison with fracture-
mechanics procedures, which element splitting or nodal-release techniques. 
The softening elements for applications (see Seetion 7.4) are used for the 
"ta.il" of the crack. The parameter is chosen equal to 'D = 0.999, resulting 
in a rednetion of Young's modulus by a factor 1000. \Vhen an orthotropic damage 
model is applied, only the modulus in the direetion perpendicular to the 
crack path is reduced. 

In the construction of the super-element it is assumed that a crack is present. At 
an intermediate stage of the fracture simulation, we take the crack from t.he previous 
time step, whieh is extended with the caleulated crack increment by (6.1). At the 
beginning of the computation, we must initiatea crack. The location, length, 
and direction of the initial crack may be chosen arbitrarily. There is one restriction: 
the element containing the crack tip must be surrounded by elements, so that 
we can creat.e a super-element as in Fig. 8.2. For television tubes, it is customary 
to initiate the crack at the impact position, but this is also possible at the cone, the 
neck, or at the extra scratches in the case of a missile test. We emphasise that only 
one crack can be analysed at a time. For multiple cracks the hybrid approach must 
be applied repeatedly. 

\Ve now turn to the selection of a crack-propagation criterion. Because of the softening 
zone, the influence of the crack is smeared out over a band of finite width. The global 
behaviour of the damaged zone resembles the response of a physical discrete crack. 
At the more detailed locallevel, however, there will occur deviations between discrete 
and smeared cracks. For example, the distributions of the stresses and the strains near 
the crack path will be less accurate in the case of a smeared crack. As a result, we 
cannot calculate the stress-intensity factors directly from the stresses in the material 

using the integral expressions of Chapter 5. 

It is more suitable to employ a criterion which focuses at the crack-tip region where 
fracture mechanics is applied, such as the fracture criterion ba.sed on the J-integrals; 
see Section 3.4. The contour for evaluation of the integrals Jk (k 1, 2) is chosen 
inside the super-element armmd the crack tip as illustrated in 8.3 a thick solid 
line. Five Gaussian integration are used for each segment of the contour, which 
assures sufficient accuracy. The contour passes through the elements which surround 
the four singular elements, but the contour does not interseet with the damaged 
element. Namely, the J-integrals must be evaluated for contours around the crack 
tip from one crack flank to the other and the crack in the hybrid fracture/damage 
approach is represented by a damage zone. Thus, the integration is performed from 
one side of the darnaged element through the undamaged material to the other side. 
Excluding the line segment through the damaged element can also be justified by an 
argument from damage mechanics. \Ve have the relation (J' (1 'D)Ec, in which 
the damage D increases and the stress (J' rernains constant due to equilibrium. As a 

there is a large of the strain E. in the element and the 
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corresponding line segment would yield an unrealistic, large disturbing contribution 
to the J-integrals. 

The J-integrals are used to determine the crack-growth speed and direction. The 
calculated values 11 and J2 are interpreted as components of the vector J Jk ek 
with the unit veetors e 1 and e2 being tangential and perpendicular to the crack path, 
respectively. The direction of crack growth is given by (3.6.5), so that we may say that 
the vector J starts at the crack tip and points into the direction of crack The 
crack-growth speed is derived from the dynamic fracture criterion (3.74) rather than 
from the static fracture criterion (3.64). We substitute (Jf + Ji)~ for Q(a, a, 0) in 
( 3. 7 4) and calculate the crack-growth speed c with the use of ( 3. 71), assuming that the 
critica] energy release rate is known. The crack increment is calculated according 
to the relation (6.1), where the time step !:::.t is subjecttosome restrictions which are 
discussed in the sequel. 

Figure 8.3: Contour inside super-element for calculation of J-integrals. 

Alternatively, the direction of crack propagation eau be decided on the basis of a.n 
engineering criterion: in the direction perpendicula.r to the largest principal stress. To 
this end, the stresses are calculated in all integration points of the three undamaged 
singular elements in the super-element. The stress components are projected onto 
the crack tip and averaged. The direction perpendicular to the largest principal 
stress in that point is taken as the cra.ck-growth direction. The crack-growth speed 
c is set equal to the Ra.yleigh wave speed CR· This rough estirnate is acceptable, 
because we mostly observe large valnes for the energy release rate in cases of dynamic 
fracture. Thus, the precise crack-growth speed will not differ much from CR 

(3.71) and (:3.74)). When the largest principa.l stress is negative, we put c 0 and 
crack arrest occurs. The accuracy is increased when the stresses arealso evaluated in 
the five unda.rnaged quadrangular elernents adjacent to the three undamaged singular 
elements. The elements at the left-hand side of the super-element in Fig. 8.2 are thus 
excluded. We shall also use this refined stress criterion and compare the results with 
those of the J-integral criterion. Although this procedure has no profound basis in 
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fracture mechanics, it appears to work rather well with reasonably accurate results 
for the crack patterns. 

8.3 Extension to three dimensions 

Since here the main area of application of the hybrid fracture/damage approach is the 
analysis of television tubes, we focus our attention on thin plate-like structures. The 
division into fini te elements is chosen to have only one element over the thickness of the 
plate, i.e. the glass screen or cone. The curvature of the surfaces and the variations in 
the thickness are thus incorporated, while the computing time for the assembly process 
is limited. Using more elements over the thickness would increase the assembly time 
proportionally. Moreover, because of the expected dominanee of bending moments, 
the internal stresses will vary approximately linearly over the plate thickness such 
that a further mesh refinement in the thickness direction is not necessary. 

A restrietion of this choice is that the crack front must be taken as a straight line 
perpendicular to the middle plane of the plate (screen). In the precise 
of the crack front may attain a general form in the cross section of the plate, due to 
different crack-growth speeds intheupper and lower planes of the plate. These effects 
are not incorporated and can only be calculated by tedious and time-consuming com
putations with more than one element over the thickness. Concerning the geometry, 
we may certainly speak of a three-dimensional analysis, but regarding the fracture 
behaviour we employ the simplification of a crack which is uniform over the thickness 
with a straight crack front, similar to the crack model described in Section 6.1. 

The two-dimensional super-element has been described in the preceding section and 
its extension to three dimensions is straightforward. We choose the eight-node brick 
elements of vVilson and Taylor with improved bending behaviour Section 7.5) 
to divide the tube geometry into subdomains. The element mesh in the crack-tip 

is adapted in such a manner that the upper and lower planes of the plate have 
similar geometries as in Fig. 8.2. Five extra mid-side nodes are added in the middle 
plane of the plate on the lines connecting the corner nodes in the lower and upper 
planes of the singular elements, including an extra node on the crack front. Thus, the 
crack-tip elements resembie theelementof Fig. 7.2(b) and the surrounding elements 
have a variabie number of nodes. The crack is represented by damaged elements with 
reduced stiffness. 

The crack-propagation criteria are applied analogously in three dimensions. The J
integrals which are needed for the energy criterion, are evaluated by over 
a cylinder surrounding the crack tip. The cross sections of the cylinder in the upper 
and lower planes of the plate coincide with the contour depicted in 8.3. Because 
of the integration over the plate thickness, the influences of both tension and bending 
are incorporated in the crack-propagation criterion. vVe define the vector J Jk ek 
(with summation over k = 1, 2), where the unit veetors e 1 and e 2 are tangential 
and perpendicular to the crack and e 3 e 1 x e 2 is perpendicular to the plate. The 
vector J is in the tangent plane of the plate and determines the direction of crack 
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propagation by (3.65). If the vector J has a non-zero component normalto the plate 
due to numerical round-off errors, we use its projection onto the tangent plane. The 
crack-growth speed is determined in the same manner as in Section 8.2. 

The alternative criterion based on the principal stress is also applied. The 
stresses are calculated in the Gaussian integration points of eight elements of the 
super-element, analogous to the two-dimensional stress criterion. This automatically 
includes the thickness effects and the bending moments. After projection to the 
crack front and subsequent of the the direction of crack growth is 
determined as perpendicular to the resulting principal stress and in the "u.J.J'F.'"·J." 

plane. 

8.4 Time-step algorithm 

8.4.1 Explicit method 

The discretisation of the elastic body into subdomains (fini te elements) has led to 
the matrix-vector equation (7.6) for the vector U = U(t) of nodal displacements, 
which contains a secoud-order derivative Ü with respect to time t. For the numerical 
solution of this differential equation, we discretise the time interval in fi.nite of 
size l::it and calculate the solution on times tn = n l::it (for n 0, 1, 
2, ... ) . \Ve choose an explicit metbod based on central differences. The fi.rst-order 
and secoud-order derivatives Û a:nd Ü of the global displacement vector are the:n 
approximated by 

U(tn+l)- 2U(tn) + U(ln~l) 
(I::it)2 

(8.5) 

(8.6) 

The truncation errors in these approximations are of the order 0( ( l::it) 2 ) for time steps 
l::it -> 0, so that the ce:ntral-difference method is secoud-order accurate; see 

Sec. 9.1]. Substitution of (8.5)~(8.6) i:nto the equation (7.6) produces the following 
time-step algorithm. Firstly, the acceleration vector is calculated: 

Secondly, the velocity and displacement veetors are updated: 

Û(t71 _,_~) 
V(tn-1) 

Û(tn~!) + /::it Ü(tn), 
2 

V(tn) + !"::it Û(tn+!). 
2 

(8.7) 

(8.8) 

(8.9) 

The initial values of the displacements and the veloeities are assumed to be known: 
U(to) = Uo and Û(to~!) = Ûo. 

2 
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Since the truncation errors in vanish in the limit as f.}.t 0, the time-step 
algorit,hm (8.7)-(8.9) is consistent with the differential equation . Convergence 
of the solution is now assured when the algorithm satisfies the stability condition, i.e., 
when smallnumerical errors are not amplified by taking one time step ·37, Sec. 8.2]. 
The central-difference method is conditionally stable, which means that the time step 
must be sufficiently small. We have the following restrietion [37, Sec. 9.1]): 

2 
/.}.t ::; /.}.tmax = -

Wh 
(8.10) 

where wh is the maximum natura! frequency of vibration of the represented by 
the equation (7.6). This depends on the element size hand the dilatational 
wave speed cd and is proportional to cd/ h. The proportionality constant is related to 
the element type. From thc relation (8.10) with wh cv it is clear that the time 

f.}.t is restrietcel by the smallest element in the entire rnesh. 

vVe can make an estimate of the maximum allowed time in the hybrid approach. 
Let us denote the maximum allowed time step for a four-node quadrangular element 
of size hq x hq by f.}.tq. This time step is calculated from an armlysis of the 
element mass and stiffness matrices. The critica] time step in the hybrid approach is 
determined by the smallest side of the singular crack-tip which has length 
h8 = hqJJ2. Bughes [37, Sec. 9.2] has derived estimates of the critical time step 
for several elements, e.g., h/cd for the two-node linear rod element, and 
f.}.tmax3 = hj,/6 cd for the three-node quadratic rod element. These estimates are 
extended to the two-dimensional elementsin the following manner. \Ve regard the one
dimensional estimate with h = as a relative mea.::mre for the quadrangular 
elements and f.}.tmax3 with h as a relative measure for the singular elements. 

wc assume that the maximum allowed time step in the hybrid approach is 
cqual to the critica] time f.}.tq of the quadrangular multiplied by the 
ratio 6tmax3/ f.}.tmax2· Thus, we obtain 

f.}.t (8.11) 

Since this is a rough estimate, we shall adopt 6t = 0.25 f.}.tq to assure the stability of 
the time-step algorithrn. \Ve note that this time step is of the same order as the time 

for elastodynamic stress calculations (without fracture), but is much smaller than 
the time step f.}.f.c in 1) for the craek-path calculations in the unconpled approach. 
As a result, the hybrid fracture/damage approach will more time steps than 
the uncoupled approach. 

The solution for the acceleration vector Ü(t,J in (8.7) is immediately obtained, when 
t.he mass matrix 1\1 is a dîagonal matrix. Since this is generally not the case, we apply 
a scHalled "lumping" technique [37, Sec. 7.3.2]. The original mass matrix is replaced 
with the lumped matrix Af, which is defined by placing the row sums on the diagonal: 

{ 
M;~<, if i = j, 

0 , otherwise. 
(8.12) 
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The errors introduced by the Jumping of the mass matrix cancel the errors from the 
time discretisation [37, Sec. 9.1.4]. Since is a diagonal matrix, the solution of the 
equation 7) does not require the inversion of a matrix. Thus, the combination 
of the central-difference method and the Jumping technique provides an accurate and 
efficient time-step algorithm. The disadvantage of conditional stability is not regarcled 
as a drawback, because the time should not be too large in view of the 
truncation errors involved in and thus also in (8.8) -(8.9). 

8.4.2 Implicit method 

The number of time can be decreased the use of an implicit metbod for 
the time-step algorithm, because such methods are mostly uneonditiona.lly stable and 
do not impose a restrietion on the time We choose the implieit o-method of 
Hilber, Rughes and Taylor [34], which is also described Rughes [37, Sec. 9.31. When 
the displacements, the velocities, and the accelerations at time tn are known, these 
quantities at time tn+l are calculated from the equations 

lvf · Ü(tn+I) (1 + o) K · ) - oK· V(tn) = F(tn+I + o Ll.t) , (8.13) 

U(tn+l) V(tn) j- Ll.t Û(tn) + ~(Ll.t) 2 [(1- 28) Ü(tn) + 2;3Ü(tn+lJ] 1 (8.14) 

U(tn+l) Û(tn) + Ll.t [(1-7)Ü(tn) +1'Ü(tn+IJ]. 

The o-method is unconditionally stabie and second-order accurate when o E 0], 
f3 = (1 o) 2 /4, and = (1 It is ass1.m1ed that the initia] valnes of the 
displacements and the velocities, U(t0 ) = U 0 and Û(t0 ) == Û 0 , are known. The initia] 
acceleration Ü(t0 ) may be determined from (8.13) with o 0 and n 1. 

The disadvantage of impheit rnethods is that a of equations neeels to be solveel 
at every time step. The aceeleration vector Ü(t11 n) is calculated, for example, by 
substitution of (8.14) into (8.13) and by salution of thematrix-vector equation with 
the use of direct or iterative techniques; see Golub and Van Loan This requires 
extra computing time and diminishes the of fewer time steps. :\1oreover, the mass 
matrix NI and the stiffness matrix K depend on the time step because of the crack 
propagation and of the moving super-element. Consequently, the system of equations 
to be solveel in the case of an irnplicit method is different at every time step. For these 
reasons, the implieit LY-method ean be less suitable for systems with a nurnber 
of of freedom and with crack propagation. 

8.5 Application to standard tests 

The hybrid fracturejdamage approach has been implementeel in the MATLAB pro
gramming environment [57]. The generation of finite-element meshes has been clone 
with the use of the program SEPMESH of the SEPRAN paekage f82]. Several tests 
have been performeel to investigate the accuracy and reliability of this approach and 
to eornpare the results obtained with the two erack-propagation eriteria based on the 
J-integrals and on the principal stress. The tests are the sameasin Section 6.3. 
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Figure 8.4: Crack patterns for a square plate loaded by uniform tensile 
farces, derived with the hybrid fracturejdamage approach for various 
element divisions. Subsequent positions of crack tip are shown by o and 
prospective end point of crack by x. Crack-propagation criterion is based 
on largest principal stress. 

The first test concerns the possible dependences of the calculated crack patterns on 
the finite-element division. We study a square plate of size l x land thickness h l/4, 
which is loaded byuniform tensile farces or uniform bending moments on two opposite 
sides. The crack patterns are shown in the original element meshes for clarity. 
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Figure 8.5: Crack patterns for a square plate loaded by uniform tensile 
forces, derived with the hybrid fracture/ damage approach for various 
element divisions. Subsequent positions of crack tip are shown by o and 
prospective end point of crack by x. Crack-propagation criterion is based 
on J-integrals. 

The thickness of the plate is than in Section 6.3, because otherwise the critica! 
time step is too small and impractical The plate is divided into 10 x 10 or 16 x 16 
elements with one element over the thickness. The \Vilson-Taylor elcments of Section 
7.5 are used. The slanted orientation of the element lines is at most 0.10 or 0.20, 
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which corresponds to inchnation angles of 5. 7° and 11.3°, respectively. The results 
are shown in Figs. 8.4 and 8.5. 

A crack is initiated at the middle of one of the non-loaded sides, having initiallength 
~ Ie with le being the element width. We employ the central-difference method 
as time-step algorithm and we assign a small value to the fracture toughness toenforce 
crack growth. As a the crack speed is approxirnately equal to the Rayleigh wave 
speed en and the crack incrernent to en !:::.t ;:::j le/10. The crack patterns in the plate 
loaded by tensile forces are shown in Figs. 8.4 and 8.5 for the principal-stress criterion 
and for the J-integral respectively. The crack patterns in the plate loaded 
by bending mornents are similar to these results. The crack propagation should oecur 
along straight lines, because the uniform tensile forces lead to a situation in which 
only the crack-opening mode (mode I) exists. Sirnilarly, the uniform bending mommits 
lead to a situation with only the normal-bending mode (mode 1). The computation 
terminates, when the crack path reaches the element on the opposite non-loaded side 
at the boundary of the plate and the construction of a super-element is not possible 
a.nymore. 

Regarding the crack patterns in Figs. 8.4 and we observe that the end points 
of the crack paths are always within one element from the prospective end points 
(rnarked by x), which is considered as sufficiently accurate. vVe also observe that the 
results for the criterion are more sensitive to the skewed orientation of the 
element mesh than those for the principal-stress criterion. This can be explained 
the following 

The contour for the computation of the J-integrals consists of seven segments 
Fig. 8.3), where five Gaussian integration points are used per segment in the circum
ferential direction and five in the thickness direction of the plate. This sums up 
to a total of 175 points where the stresses are evaluated. The criterion based on 
the largest principal stress uses the average of the stress tensors evaluated in all 
Gaussian integration points of eight elements, which yields a total of 8 x 27 216 
points. This number of points for stress evaluation may explain the better 
performance of the principal-stress criterion. The accuracy of the J-integral ca.n be 
improved by taking a contour at larger distance from the crack tip, but in that case 
the algorithm neecis more computing time and becomes less efficient. Nevertheless, 
the results obtained with the J-integral criterion are quite a.cceptable. Although the 
crack-propagation criterion based on the (averaged) largest principal stress has no 
solid foundation in fracture mechanics, '''e coneinde that this criterion produces the 
best results for the crack patterns. 

The secoud test is Iosipescu's shear beam [39] with a single-edge notch, which is 
suitable for a study of curvilinear crack propagation under shear lm1ds. We adopt 
the same specimen dirnensions as in Section 6.3, viz. a length of 440 mrn, a height 
of 100 mm, and a thickness of 10 mm. The forces F1 are applied at a elistance of 20 
mm frorn the of symmetry and the forces = FI/10 at a elistance of 200 mrn. 
The element division is a little more refined such that the crack is not 
initiateel at the boundary between two elements but in the interior of an element. The 
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initia] crack has a lengthof (a) 15 mm or (b) 25 mm and is located at the middle of 
the edge of the beam. The shear deformation leads to a situation where the 
crack-opening mode and the sliding mode are combined (modes I and II). vVe c11J.LJ1CJV 

the implic:it a-method with a = -0.3 and use the crack-propagation criterion based 
on the principal stress. 

(a) initial crack length 15 mm 

(b) initial crack length 25 mm 

Figure 8.6: Crack patterns for a single-edge notched beam loaded under 
shear conditions, derived with the hybrid approach for 
different initia] crack lengths. Subsequent positions of crack are shown 
by 0. 

The obtained crack paths are shown in Fig. 8.6 and satisfy the requirement that the 
end points are on the opposite edge of the beam to the right of the point where the 
force F 1 is applied. Similar results are found for wuions different time steps. The 
crack paths are not identica.l to the paths shown in the but they !ie in a smal! 
band arotmd these paths and they always satisfy the for the end point. 
The crack paÜerns agree with the results of Hoenstra , Lubliner, Oliver, Oller and 
Oiiate [54], Rots [79], and Schlangen [81]. vVe did not obtain acceptable results with 
the use of the crack-propagation criterion basedon the which is due to the 
dominanee of mode II in the early stage of fracture. This problem with the J-integral 
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criterion has been mentioned before in Section 3.4, where we have discussed several 
fracture criteria. 

The third test concerns three-dimensional crack propagation in a hollow cylindrical 
pipe which is loaded by torsional moments at its ends. The geometry is the same as 
inSection 6.3, i.e., the pipe length is 400 mm and the inner and outer radii are 30 and 
40 mm. The division into finite elements contains 25 elements in the axial direction, 
32 in the circumferential direction, and one over the thickness. This refinement ( com
pared to the finite-element division for the uncoupled approach) is necessary for the 
construction of the super-element. Otherwise, for coarser divisions, the added "slave" 
nocles of the super-element can lie outside the domain occupied by the pipe due to 
the interpolation between the "master" nocles and due to the curvature of the element 
and of the pipe surfaces. 

~ 

Figure 8. 7: Crack patterns for a pipe loaded by torsional moments, derived 
with the hybrid fracture/damage approach. Initial crack is at middle of 
side view and at top of cross-sectional view. Subsequent positions of crack 
tip (into two directions) are shown by o. 

A crack is initiated in the middle cross section of the pipe with initial length equal 
to 3/4 of the element size in the circumferential direction (approx. 4.58 mm). We use 
the explicit time-step algorithm in combination with the crack-propagation criterion 
based on the largest principal stress, sirree the fracture process begins in mode II. 
Because of the restricted time step, the crack increments are approximately equal to 
0.37 mm. We calculate the crack paths in two symmetrie directions and terminate 
the calculation after 200 time steps. The results are shown in Fig. 8. 7 for every tenth 
time step. 

We abserve some deviations in the crack pattem near the upper and lower boundaries 
in the side view of the pipe. These deviations are related to the plane drawing of the 
three-dimensional geometry and to the fact that the crack starts to propagate in the 
direction perpendicular to the axis of the pipe. At that moment, one half of the cross 
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section has fractured and the pipe reacl1es the point of final collapse. Globally, the 
obtained crack paths agree with those of the uncoupled approach (see Fig. 6.5) and 
with the predictions based on the experiments of Richard [78] and on the analyses of 
Lakshminarayana and Murthy [48]. 

8.6 Application to television picture tubes 

\Ve have obtained trustworthy results from application of the hybrid fracture/damage 
approach to two-dimensional and simple three-dimensional problerns. We shall now 
apply the hybrid approach to the bali-drop test on a 36WS television picture tube. 
The tube the test conditions, and the finite-element division have been 
discussed in detail in Section 6.4. 

We study a hall impact at the F-point and use the implicit a-method with a -0.3 
and !:lt 1 IJ-S, in combination with the crack-propagation criterion based on the 
largest principal stress. We calculate the crack propagation in eight different directions 
and choose initia! crack lengths of 30 mm. This requires separate calculations, 
which need several hours of computing time each. The calculations terminate when 
the cracks reach the edge of the screen and the construction of the super-element is 
not possible anymore. 

The results for the crack patterns are shown in Fig. 8.8 for the tubes (a) with and 
(b) without the metal rimband around the screen edge. A significant infiuence of the 
metal rimband on the tube safety is observed, but the differences between (a) 
and (b) are less distinctive than in 6.6(a)-(b) and 6.7(a.)-(b), which have been 
obtained from ca.lcula.tions by the uncoupled dynamic fra.cture approach. When the 
metal rimband is applied to the tube construction, only little crack propaga.tion is 
calculated, foliowed by crack arrest. In the ca.'>e that the rimband is not applied, we 
notice that the preferred direction of crack propagation is along the diagonal of the 
screen. These results agree with practical experience; see Section 6.5. Observations on 
the bali-drop test with impact position at the F-point reveal that crack propagation 
mostly occttrs along the screen diagonal or the screen boundary. 
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(a) television tube with rimband 

(b) telavision tube without rimband 

Figure 8.8: Crack formed by impact ontheF-point, derived with 
the hybrid fracturejdamage approach, (a) with the rimband being applied 
and (b) without the rimband. Subsequent of crack tip are shown 

o, initial crack is :30 mm, and time is 1 JlB. 
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8. 7 Conclusions 

A hybrid fracture/darnage approach is proposed. Several irnplernentations of this 
approach have been discussed. There are two options for the time-step algorithm: the 
explicit central-difference metbod and the irnplicit a-method. The crack-propagation 
criterion is based either on the J-integrals or on the largest principal stress at the 
crack tip. The former criterion has a profound basis in fracture mechanics and the 
latter is a engineering rule. 

These variants of the hybrid approach have been applied to various test problerns, 
such as a square plate loaded by tensile forces or bending moments, Iosipescu's shear 
beam, and a hollow cylindrical pipe subjected to torsion. The results show that all 
variauts produce acceptable crack patterns, which are always accurate within one 
element from the theoretica! crack This concerns both single-mode and rni.xed
rnode fracture. Since the interaction between crack propagation and stress waves is 
incorporated in the method, the crack paths are reliable over their full range from 
the point of initiation to the point of crack arrest or final collapse. Moreover, we 
observe that the hybrid approach is hardly susceptible to variations in the element 
size and in the element orientation, although the results obtained with the principal
stress criterion tend to be Iess sensitive to such variations than those obtained with 
the J-integral criterion. We also note that both the explicit and the implicit time-step 
algorithm produce acceptable results for the crack patterns. 

Concerning the impact tests for television picture tubes, we must admit that we have 
obtained moderate resldts with enormons computat.ional effort. This is due to 
the very small time step required for an explicit algorithm on the one hand 
and to the very systems of to be solved in the case of an implicit 
algorithm on the other hand. 'We draw the same condusion from the calculated crack 
patterns as for the uneoupled approach, namely that the safety of television picture 
tubes is clearly increased by application of the rnetal rimband. 
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Chapter 9 

Conclusion 

In this thesis we have dynamic crack propagation in brittie matcrials and, 
in particular, the safety tests for television picture tubes (cathode-ray tubes). The 
aim of the present research has been formulated in Chapter 1: the development of 
analytica] and numerical methods for the calculation of the dynamic response of a 
television tube to a mechanica] impact and for the determination of the glass safety 
of a given tube We have proposed two new rnethods for the analysis of 
crack propagation: (i) the uncoupled dynamic fracture approach and (ii) the hybrid 
fracture/damage approach Section 1.3). General remarks on these methods and 
conclusions from applications to television picture tubes are presented below. 

9.1 The uncoupled dynamic fracture approach 

The interaction between crack propagation and stress waves in dynamic fracture 
processes has been uncoupled in this approach Chapter 6). The crack 
propagation is determined on the basis of the elastodynamic stresses calculated for 
the intact, unfractured The uncoupled approach does not incorporate the 
stress waves initiated by a moving crack tip. The utilises stress-intensity 
factors for thin flat containing a crack of slightly curved shape, which are loaded 
by a combination of tensile forces, out-of-plane bending moments, and per-
pendienlar shear forces. This analysis does not only necessitate a study of fracture 
mechanics (see Chapter 3), but also of plate bending and of curvilinear cracks. 

In Chapter 4 we have stuclied the classica! theory and Reissner's theory of plate 
bending for both cracks and dynamically propagating cracks. The singular 
bending moments for the two theories have been cornpared, and also the deflections 
of the plate, the rotations of the middle plane, the perpendicular shear forces, and 
the energy release rates. Relations between the factors of the cla.ssical 
theory and those of Reissner's theory have been derived. We have concluded that five 
stress-intensity factors are sufficient for the fracture analysis of arbitrary plate-like 
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geometries: two factors for the in-plane tensile forces and the in-plane shear forces, 
two factors for the normal bending moments and the torsional mornents, and one 
factor for the shear forces in the direction perpendicular to the plate. 

Expressions for the stress-intensity factors for plates containing a curvilinear crack 
have been calculated in Chapter 5 with the use of complex holornorphic functions. 
A linearisation with respect to the shape of the crack has been performed, so that the 
resulting expressions are valid for slightly curved cracks. From a cornparison of the 
linearised results with the exact stress-intensity factors for a circular-arc crack, we 
have concluded that the linearised expressions are sufficiently accurate even for 
arc-opening augles and, thus, for a wide variety of curvilinear cracks. 

Application of the uncoupled approach to several test problems has shown that reliable 
predictions of crack pattcrns are obtained. The reliability deercases with increasing 
crack length due to the partial uncoupling of the dynamic effects and the crack growth. 
Although the uncoupled dynamic fracture approach cannot cictermine the moment of 
crack arrest or final collapse with utmost precision, we conclude that this method 
is well capable of predicting the direction of crack propagation in the early 
of fracture. Since the elastodynamic stress data can be used repeatedly for multiple 
crack-path computations, an efficient and low-cost methad for the calculation of crack 
patterns has been established. 

9.2 The hybrid fracture/damage approach 

The hybrid fracturefdamage approach combines the a.dvantages of fra.cture mechanics 
a.nd damage mecha.nics within a dynamic finite-element method Chapter 8). This 
hybrid approach incorporates all dynamic such as the interaction between 
stress waves a.nd crack propagation, and creates new possibilities for the ana.lysis of 
failure phenornena. The idea of a hybrid approach has a.risen from a study of finite 
elernents for fracture a.pplications and of the conceptsof continuum da.mage mechanics. 
From this study we have concluded that the single use of either fracture mechanics or 
continuum darnage mechanics is not a proper for a finite-element analysis of 
the impact safety tests for television picture tubes. 

The hybrid approach may form a good alterna.tive. In Cha.pter 7 we have examined 
various finite elements, which have been united in Chapter 8 in the following manner. 
\Ve use the elements of vVilson and Taylor with incompatible modes to divide the 
configuration into subdomains. This ensures a correct description of bending and 
torsional deforma.tion. In the vicinity of the crack tip fracture elements are employed 
for accuracy of the method; these elements incorporate the singular stress behaviour. 
For the rest of the crack pa.th damage elements are employed for flexibility of the 
method; these elements have a reduced modulus of elasticity (softening behaviour). 
Thus, we have established a new rnethod for failure analysis, which is accurate in the 
crack-tip region as well as flexible regarding the representa.tion of the crack path. 
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Application of the hybrid fracturefdamage approach to several test problems has 
shown that reliable predictions of crack patterns are obtained. Dependences on the 
finite-element division, which are known to occur in applications of standard theories 
of damage mechanics, have not been observcd. Regarding the results for the test 
problems, we conclude that the hybrid approach produces correct predictions for 
crack propagation in two-dimensional and in simple three-dimensional geometries. 

9.3 Analysis of television picture tubes 

Investigations of the and the failure behaviour of television picture tubes 
start with a static finite-element calculation of the stresses in the tube due to the 
internal vacuum and possibly the applied metal rimband. The investigations continue 
with an elastodynamic finite-element calculation of the response of the intact tubetoa 
ball-drop impact, where it is assumed that crack initiation does not occur. These cal
culations provide a first insight into the stress and displacement distributions. Further 
insight is provided by application of the two new methods for failure analysis. 

We utilise the results of an elastodynamic calculation as input data in the uncoupled 
approach and wedetermine possible crack patterns with the use of a dynamic fracture 
criterion. Since the uncoupled approach is always applied in combination with an 
elastodynamic finite-element calculation, this approach constitutes a metbod which 
is easy to use and which yields useful results with relatively little computational 
effort. The hybrid fracture/damage approach, on the contrary, constitutes a method 
on its own and is employed separately from the static and elastodynamic calculations. 
Sirree the hybrid approach unfortunately requires too much computing time for 
geometries, this approach cannot be applied to the impact safety tests for television 
picture tubes in an efficient manner. / 

Guided by these considerations, we conclude that the investigation of the safety of 
television-tube designs is preferably carried out in three steps, namely: (i) a static 
stress calculation, (ii) an elastodynamic stress calculation, and (iii) an uncoupled 
dynamic crack-path calculation. The hybrid fracture/darnage approach is a useful 
tool for a failure analysis of specific details of the ielevision picture tube. 

We have applied the uncoupled dynarnic fracture approach to the hall-drop 
test performed on a 36WS television picture tube Section 6.4). The tube has 
been subjected to the vacuum load and to a ball impact on either the D-point or 
the F-poinL We have stuclied the effect of the metal rimband on the tube 
The calculations indicate that practically no crack propagation is expected in tubes 
with this rimband, and that considerable crack propagation will take place in tubes 
without this rimband. We have also applied the hybrid fracturefdamage approach to 
the bali-drop test on the same 36WS tube (see Section 8.6). The results coneerning 
the crack patterns and the tube safety, however, are less clear than those obtained by 
the uncoupled approach, because the crack patterns obtained by the hybrid approach 
for tubes with or without the metal rimband are less distinctive. 
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The main condusion is that the safety of television picture tubes is significantly 
improved by application of the metal rimband around the outer edge of the screen. 
This condusion agrees with practical experiencc; namely, the rirnband has especially 
been developed to dirninish crack propagation in the glass screen. Moreover, there 
exists good correspondence between the calculated crack patterns and those observed 
in the television tubes when the bali-drop test is perforrned; the directions of crack 
growth are globally the sarne. So, we conclude that the dynarnic crack propagation 
in television picture tubes due to a hall impact can be predicted with reasanabie 
accuracy sirnulations with the uncoupled dynamic fracture approach. 



Chapter 10 

Perspective 

The present research has resulted in two new methods for the of dynamic crack 
propagation in brittie materials. Although these methods have produced trustworthy 
results, there are still that have remained unanswered. These questions and 
other open ends of this thesis are addressed in the following two sections, tagether 
with suggestions for further research. 

10.1 On fracture and damage mechanics 

\Ve start with some issues in theoretica! fracture mechanics. In 3 to 5 we 
have investigat.ed cracks in tbin flat plates under various loading conditions. Television 
picture tubes, however, have a curved screen ofvariable in partienlar 
near the screen boundary. The calculation of stress-intensity factors for curved plates 
and shells will enable a more accurate analysis of crack propagation near the boundary 
of tbe TV screen. A first bas been provided by Lakshminarayana and Murthy [48] 
and Richard [78], who derived stress-intensity factors for cracked cylindrical pipes. 

In addition, we suggest the calculation of stress-intensity factors for thiek flat plates 
with the use of Reissner's theory for plate bending in a manner similar as in Chapter 5. 
The problem fora thick plate containing a straight crack, which is loaded by a uniform 
bending moment on its outer boundary, has been analysed in Reissner's theory by 
Hartranft and Sih [32] and Knowies and Wang [46, 95]. The problem for a thick 
plate containing a curved whieh is loaded by distributed moments on the crack 
surfaces, is more complicated and poses a mathematica! ~u·rHL'""'"-"'· 

Regarding fracture in deformation, we have postulated in Section 4. 7 that 
the relationship between the e]a.<;todynamic stress-intensity factor for a propagating 
crack and the conesponding equilibrium stress-intensity factor for a stationary crack 
is governed by the same universal function of crack speed as for fracture in planar 
deformation (mode I). The relationship between the stress-intensity 
factors can be ohtained from a salution of the differential equations 11)-( 4.113) 
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for a semi-infinite crack propagating at constant speed, with appropriate boundary 
conditions on the crack surfaces. Since the solution procedure by integral transfarms 
as in Freund Ch. 6] cannot be the derivation of the precise relationship 
poses another di:fficult but challenging problem in mathematics. 

An issue in practical fracture mechanics concerns a fracture criterion for situations 
of general mixed-mode loading. We have discussed fracture criteria for situations of 
planar deformation in Section 3.4 and we have considered cracked plates loaded by a 
combination of tensile and shear forces (modes I and 11) and of bending and torsional 
moment.s (modes 1 and 2) in Section 4.5. Further research is required on fracture 
criteria in cases where the four modes mentioned above are simultaneously, 
possibly in combination with mode III or mode 3. This research should particularly 
concentrate on the influence of the stress-intensity factor K2 of the twisting mode 
on the direction of crack propagation. Also, the possible relationship of K2 with 
the stress-intensity factors K 3 and Kru Section 4.4) needs further investigation, 
where experimental work will play a key role. 

We shall now discuss some issues in continuum damage mechanics, in relation to the 
hybrid fracture/damage approach. We have chosen to represent crack propagation by 
a sudden increase of the damage parameter V from 0 to 0.999, resulting in a sudden 
decrease of Young's modulus E to the value Ed = E/1000 Section 8.2). The 
energy dissipation associated with the damage increa:se is related to the area beneath 
the curves in 8.1, in which two stress-strain relations for ductile and brittie failure 
behaviour are shown. Since the amount of energy dissipation in damage formulations 
does not always agree with the energy release rate from fracture mechanics, it is 
necessary to a better understanding of the energy conceptsin damage mechanics. 
In addition, it may be advantageous to incorporate a gradual damage increase in the 
hybrid approach. This will require a further study of the damage-evolution equation 
(such as for brittie failure. 

It is worthwhile to investigate other possible combinations of fracture mechanics and 
continuum mechanics than in the hybrid fracture/damage approach. For 
example, de Borst [9] has suggested to represent a crack by a discontinuity (as usual 
in fracture mechanics) and to employ mechanics in the crack-tip region. This 
representation is particularly relevant to the study of structures made of concrete, 
where large areas of material damage may surround the crack tip. From [9] and 
the results of Chapter 8, it is evident that the combination of fracture and damage 
mechanics leads to new possibilities for failure research. 

10.2 On finite-element technology 

The hybrid frac:ture/damage approach is basedon the finite-element method and has 
been developed in the MATLAB programming environment [57]. Therefore, we shaJl 
address some possibilities for further research into finite-element technology. The 
disadvantage of the hybrid approach is the large amount of computing time needed 
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for the calculation of crack propagation in complex three-dimensional structures. The 
computing time can he redm:ed when the program is translated into machine code 
with a MATLAB compiler; this compiler is not yet available but has already been 
announced. Another possibility is a translation of the program to a compiler-based 
computer language, preferably Fortran 90 Philips and Lahey [21]). 

One reasou for the large computing time in the application of the hybrid approach 
to television picture tubes is the severe restrietion on the time step when an explicit 
time-step algorithm is used. Although implicit algorithms take larger ( and thus fewer) 
steps, they require more computational effort per time step due to the large number 
of degrees of freedom and are therefore less efficient than explicit algorithms. The 
restrietion on the time step is determined by the smallest element in the finite-element 
division; see Section 8.4. Since the crack propagation takes place in the middle of the 
screen where the elements are larger, a possible strategy to increase the time step is 
to avoid the smaller elements at the neck of the television tube and at the edges of 
the screen. A nother strategy is to employ an implicit/ explicit time-step algorithm; 
see Rughes [37, Sec. 9.4]. The element mesh is then partitioned into two groups: an 
implicit metbod with a time step is used for the smaller elements and 
an explicit metbod with a smaller time ( which is still larger than the original 
time step in the entirely •explicit is used for the larger elements. 

An important aspect of the hybrid approach is the construction of 
the super-element. Since this construction may fail for strongly curved surfaces, we 
recommend to investigate the use of elements or shell elements for the glass 
screen. An introduetion toplate and shell elementsis given by Rughes [37, Chs. 5-6]. 
In addition, the application of or shell elements may lead to an increase of the 
accuracy of the hybrid approach and/or to a decrease of the computing time. 

The accuracy of the hybrid approach can a1so be improved by application of more 
than one element over the thickness of the screen. U nfortunately, this leads 
to a considerable increase in computing time: about a factor two for the assernbly 
process and at least a factor four for the solution of thematrix-vector equations. It is 
worthwhile to investigate the alternative of having more elements over the thickness 
in the vicinity of the crack front only. This will improve the accuracy of the method, 
while the increase in computing time remains limited. Moreover, this enables a more 
precise calculation of the crack front over the thickness of the glass screen, whereas the 
hybrid approach in its present forrn assumes a straight crack front which is uniform 
over the thickness and perpendicular to the middle plane of the screen. 

Finally, we recommend the further development of fracture-mechanics techniques 
within the finite-element method. Since procedures with moving finite elernents 
mostly assume straight crack paths Nishioka, Murakami and Takemoto [68]), 
these procedures have only limited applicability. lt will be a great advance when 
such moving-element procedures become available for the calculation of crack growth 
along arbitrarily curved Furthermore, when a speed-up of the remeshing and 
assembly processes can be an important step forward is made towards a 
fully-coupled dynamic fracture analysis. 
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Appendix A 

On path-independent integrals 

A.l Various integration contours 

The elastodynamic integrals Jk are defined by (3.52); see also [2, 28, 66, 67, 76]. 
For the sake of simplicity, the integration over the plate thickness is omitted in this 
appendix. The definition applies to a circular contour centered at the crack tip with 
its end points on the lower and up per crack flanks (crack surfaces) and inside 
the region of K-dominance. Let this contour be denoted by with radius 0, 
while the interim of C5 bounded by the crack flanks is denoted by Ae. 

y 

x 

Figure A.l: Remote contour for the J-integrals. 

For practical applications such as finite-element analyses, it is convenient to obtain 
an expression for Jk which involves an integral along a remote contour, so that the 
far-field solutions for the stresses and the displacernents can be used. Let C be an 
arbitrary contour starting on the lower crack flank, surrounding the crack tip, and 
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on the upper crack flank; see Fig. A.l. The componentsof the ontward normal 
to C are denoted by n;. The curves Cs = U are the t\VO paths along the crack 

which conneet the end points of C to those of C,. The domain A is the interior 
of C bounded by the crack flanks, such that A is the domain bounded by the 
closed contour C +Cs Reeall that TV and T = are the elastic 
and kinetic energy densities, respectively. Using the Gauss divergence theorem and 
the equations (2.14)-(2. we see that transfarms into 

{ ( ( (lV + T) nk 
Jc+Cs 

+ r ( pÜ; u; k 
JA-A, ' ' 

cr;J nJ ui,k) ds 

püi il,,k) dA}. (A. I) 

In the limit for E ___. 0, the domain Ac shrinks to zero and the curves extend to 
the crack tip. Since no restrietions have been on the remote contour C, the 

(A.l) is independent of the choice of C. For this reason, the integrals Jh, 
are often referred to as path-independent 28, 66, 67, 76]. As shown below, 
this terminology is not correct for J2 in the case of dynamic fracture. 

The definition (3.52) can he extended toother than circular contours onto 
the crack tip. lt is then necessary to examine the dependenee of Jk on the shape of 
the contour C,. Consicier two different contours and Cc2 around the crack tip, 

the sameend points on the lower and upper crack flanks, and inside the 
region of K-dominance. Subtradion of the integrals along Co1 and 

r_ ( p Ü; ü,,k - p üi ui,k) dA 
}Ae12 

( Ui,H- Ui,k dA, (A.2) 
}Ac12 

where is the domain enclosed by cd and 
that the contours are inside the region of so that the time derivatives 
may he replaced by derivatives with respect to x multiplied by the crack-growth speed 
c; see (3.15) and also (4.2) (4.3). 

It is obvious that the difference (A.2) vanishes for J1 , corresponding tok 1 or k =;i;. 

This condusion also applies to contours Cd and having different end in 
which case an extra integral the crack flanks must be incorporated in (A.2). This 
integral vanishes when the condition of stress-free crack flanks is imposed. Thus, .]1 

is a path-independent The relation between J 1 and the 
factors is in (3.48) and (3.53). 

For k 2 or k = y, however, a non-zero value is obtained in (A.2). This means 
that the integral J2 does depend on the shape of the shrinking contour. Only for 
stationary cracks (c = 0) does the difference in vanish for J2 and both integrals 
Jk 1, 2) are independent of the integration path. The relation between J2 and 
the stress-intensity factors is stuclied in Section A.2. 
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A.2 Calculation for planar deformation 

In the section it was shown that the integral h depends on the shape of 
the shrinking contour CE in the case of dynamic fracture. In the present ~ection we 
summarise results for J2 when two different integration are used; see A.2. 
The expression (3.52) with k 2 has been evaluated fora circular contour with radius 
c --. 0 by Nishioka and Atluri [67] The result contains the product Kt Ku 
to (3.54) with the coefficient A1v(c) by 

where the superscript C refers to the circular contour. 

y y 

n 
Cc: -

Ac: 28 
x x 

2c: I 
• 

(a) Circular contour. (b) Rectangular contour. 

Figure A.2: Contours for the 

In [92] a rectangular contour with height 26 and width 2E as in Fig. A.2(b) has been 
chosen for the calculation of J 2 . The limit for E --. 0 bas been taken first, foliowed by 
the limit for ó 0. In this procedure there is no contribution to the integral from the 
parts of the contour parallel to the while the term (W + T)nk varrishes 
the parts to the y-axis since ny = 0 there. The result for J2 is of the form 
(3.54) \vith the velocity-dependent coefficient equal to 

(A.4) 
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Obviously, the expressions (A.3) and (A.4) are different. This finding is at varianee 
with the condusion of Nishioka [66] who claimed on the basis of numerical calculations 
that the elastodynamic integrals would be independent of the shape of the contour Ce 
inside the region of K-dominance. The deviation between (A.3) and (A.4), however, is 
notmore than 1~5% for crack-growth speeds between 0.65 Cs and 0.80 C8 and even less 
for slower crack propagation. Consequently, the two expressions for A1v(c) are equi
valent and may be used interchangeably for crack growth at moderate speed. When 
the crack-growth speed approaches the Rayleigh wave speed, the difference becomes 
increasingly significant. Since only crack speeds up to 0.60 Cs have been investigated 
by Nishioka, the numerical errors in the computed valnes in [66] are probably in the 
same range as the small deviations mentioned above. These observations may explain 
why the dependenee of A1v(c) on the shape of the contour was not detected in [66]. 
Nishioka's condusion that the integral ] 2 is independent of the integration path, is 
therefore incorrect; see also [92]. 

A.3 Calculation for classica! plate theory 

The analysis for plate bending in the classica] theory does not differ very much from 
the armlysis for planar deformation. The integrals -h are given by (4. 77). The integral 
11 is independent of the shape of the contour C and coincides with the energy release 
ra te Q. Evaluation for a shrinking circular or rectangular contour yields the expression 

for Q = ] 1 with velocity-dependent coefficients (4.75)(4.76). 

The integral depends on the shape of the shrinking contour Cc; inside the region 
of K-dominance. The expression (4.77) with k 2 has been evaluated for a circular 
contour as in Fig. A.2(a) with radius €--+ 0 by Boersma [8]. The result is expressed 
in k1 k2 according to (4.78) with the velocity-dependent coefficient given by 

af(c) 

2(o:~- v)) , (A.5) 

where the superscript C refers to the circular contour. 

Evaluation of (4. 77) with k 2 for a shrinking rectangular contour as in Fig. A.2(b), 
with the limit for € --+ 0 taken first, yields a similar result for with coefficient 

where the superscript R refers to the rectangular contour. 



Appendix B 

On double integrals 

B.l Formula of Poincaré-Bertrand 

The expressions (5.49) and (5.113), and also the expression (B.ll) below, contain 
double in which the applied loads ancl the crack-shape function À(t) occur. 
lt will be shown that interchanging the order of integration is allowecl. This is not 
evident, because we must take Cauchy principal values of the inner, singular integrals. 
Details of the analysis can be found in the work of Muskhelishvili [62, 63] and in the 
papers [93, 94]. 

We start with the transformation formula of Poincaré-Bertrand. 

Theorem 1. Let L be a 8mooth are or contour and let <f;( t, 8) be a function of t 
and 8 on L, sati8f7Jing the condition of Hölder continuity [62, Ch. 1] for- bathits 
ar-guments. For a fixed point t0 on we have 

1 dt 1 <f;(t, 8) ds 
TL t t0 TL s-t 

· Proof. See Muskhelishvili [62, Sec. 23]. 

Next, we take for L the line segment [-a, and we make a specific choice for the 
function 0~( t, s) by a separation of the variables t and s. 

Let f(t) and g(s) befunctions oft and s on [-a,+a], satisf'IJing the 
condii'ion of Hölder continuity. We have 

(B.2) 

Proof. Substitute <f;(t, s) (t t 0 ) f(t) g(s) im.o (B.l). 
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'We can now prove that interchanging the order of integration in is allowed, by 
putting f(t) aÀ(t) f(a + t)~ (a-t)~ and g(s) = p 1 (s) - p-(s ). Note that À(t) is of 
the order O(t =a) fort ±a, so that the integrals of j(t) exist. See also [94]. 

The proof that interchanging the order of integration in (5.113) and (B. is allowed, 
is completed by putting j(t) À(t)/Va2 - t 2 and g(s) m(s)v'a2 - s2 See also [93]. 

B.2 Solution for plate bending 

The salution in Subsection 5.3.5 for slightly curved cracks in plate bending contains 
complicated integral expressions. \Ve shall successively elaborate the functions b1(t) 
and b2(t) in (5.106)-(5.107), the functions F 1(z) and Hl1 (z) in 108)-(5.109) and 
their limiting behaviour at infinity, the constant cl in (5.105), and the contribution 
(5.110) to the stress-intensity factors. 

The functions b1 (t) and b2(t) with -a s t s +a are expressed in terms ofthe boundary 
valnes Ff(t) and Wf(t) in (5.105). We take m±(t) = m(t) and j±(t) j(t). With 
the use of (5.89)-(5.97) we derive 

.·c' 2d(t)(rn i.f)'(t) 
21 1 + (1- v)D (2iÀ(t)b3(t))'' 

-(2iÀ(t)b4(t))'' 

where the functions b3 (t) and b4 (t) are defined by 

- W0+(t) W0-(t) 

-=-.,.----
23

-::-_+-=----='-"- + ( K - 1) m( t) - i ( K. + 1) .f ( t) 
(1 -- (1- v)KD 

2i(;;; + 1) ra ' 
+ (1 v)r;;D rra2 La .f(s) ds' 

+ wo+(t) wo-(t) 

(/: v)~D~+~t) +(i- ~;:; :~(~) rra2 L:a Ja2- s2 ds 

rri 1 ~.~a(;;; l)·~~s) v;!;+l)j(s). -:~:)ds. 

(B.3) 

(B.4) 

(B.5) 

(B.6) 

These expressions are substituted into (5.108)-(5.109) to produce the solutions for 
F1 (z) and W1 The limiting behaviour of these functions for --+ oo is then found 
to be by 
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It is noted that the term of order 0(1/ z) in the latter vanishes. Namely, 
with the use of (B.4) and the properties >-(t) = O(t +a) and b4 (t) = o( (t +a)~~) for 
t _, ±a, we find 

0. (B.9) 

The constant C1 CJ/(1 v)D in (B.3) is determined from the condition (5.77) of 
Subsection 5.3.2 for single-valued displacements. \Ve impose that the coefficient of 
the term of order 0(1/ z2 ) in the expansion of VV1 has zero imaginary part. 
From (B.7)-(B.8) we obtain the condition 

t dt} = 0. (B.10) 

The salution to this equation for C1 is derived by substitution of (B.3)~(B.6). After 
some algebra we find 

+ (B.ll) 

where the parameters A and B depend on the function and are defined 
by (5.9) and (5.116), respectively. The order of integration in the double integral may 
be interchanged: see Appendix B.l. 

Substitution of (B.3), (B.5), and (B.ll) into (5.110) produces the contribution to the 
stress-intensity which is calculated as 

1 

( a+t)2 dt 
a t 

~§CC . 'B 'f· éX) ( K + 1 A . ~1""' ) 
1Vlx-y ..,... t '" xx + --;;:- K 1.1v yy 

6 1 -=---=!+a (K + 1 
X(t) f(t) + ~À(t) f'(t)) (a+ t) 

2 
dt 

~a K K a t + 

---::-.".-'--=:::'- J:a f(t) Va2 - t2 dt 

( l- K X(t) m(t) + ~>-(t) m'(t)) ( 2
t- a) ((1· + t.) ~ dt 

K K a a-t 

(B.12) 
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The derivatives f'(t) and rn'(t) are eliminated via integration by parts. We have 

f(t)]' 

L~a[:\(t) rn(t)]' 

(B.13) 

(B.14) 

Combining the results (B.12)~(B. with (5.111) finally produces the stress-intensity 
factors (5.112)~(5.113) for a thin flat plate containing a curvilinear crack and being 
loaded by bending and torsional moments. 



Appendix C 

On damage and thermodynamics 

The damage-evolution law, which relates the rate of damage increase to the stresses 
and the damage in the actual situation, e.g. (1.3), is subject to several restrictions. 
The energy release during crack propagation or damage accumulation must satisfy 
the basic laws of thermodynarnics, such as the Clausius-Duhern inequality. This 
is investigated in the first section. \Ve continue with applications to isotropie and 
anisatrapie (orthotropic) darnage in planar deforrnation. 

The fundamentals of thermodynamics are extensively treated in the textbooks 
Eringen [25, Chs. 4, 5] and Müller [60, Sec. luclusion of damage parameters in 
the balance laws of continuurn rnechanics has been stuclied by Chaboche [15, 16] and 
Lemaitre [50]. A summary is in the thesis of Paas [72, Ch. 2]. 

C.l Clausius-Duhem inequality 

Consicier a continuous, elastic, deformable body with reference contiguration and 
deformed contiguration B(t) at timet. The position of a material point is denoted by 
x0 in the reference contiguration and by x = x(x0 , t) in the deformed contiguration. 
The rnass density of the material p0 and p for B0 and B, respectively. The 
deformation of the body is described by the deformation gradient F, the 
strain tensor [, and the symmetrie ra te of deformation tensor L, which are detined 
by [25, 60, 72] 

F 
ox 

(C.l) oxo ) 

[ ~ ( -I)' (C.2) 

L ~ ( j:;:-1 + (j:;:-1)T), 

;vhere I is the unit tensor, denotes the transpose of F, and the superposed dot 
inclicates the time derivative. We have i; :FT LF. 
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vVe introduce the Cauchy stress tensor u and the second Piola-Kirchhoff tensor 
which represent the internal stresses in the body with to the deformed and 
undeformed configurations, respectively. \Ve also introduce the specific internal energy 
e, the vector h of heat flow, the absolute temperature (), the temperature gradient 
go = ae;axo, the TJ, and the free energy 1}; () T). These quantities 
must satisfy the balance laws for mass, momentum, angular momentum, and energy 

60, 72]. These laws read as follows: 

J det:F Po 
p 

(C.4) 

px divuT + pb, 

u T 
u ' (C.6) 

p u : C + p r - div h , (C.7) 

where b and r are the load and heat supply per unit mass, respectively, which 
are assumed to be known functions. The equation is equivalent to (2.3). 

The balance laws do not completely determine the deformation of the body. Extra 
constitutive relations are required. We impose that the principles of objectivity and 
of local action [25, 60] are satisfied. Generally, the constitutive quantities are charac
terised by the strain, the strain rate, the temperature, and the temperature gra.dient, 
and also by a set of internal damage parameters V. The constitutive relations are 
then given by [72] 

u :F · T(E, Ê, e, g0 , V) · (C.8) 

h :F · h 0 (E, Ê, (), g0 , V), (C.9) 

·w Ê, (),go, V), (C.10) 

T) rJ(E,Ê,B,go,V), (C.ll) 

where h 0 is the material counterpart of the heat-flow vector h. In addition, weneed a 
relation for the increase of the da.mage parameters V: the so-called damage-evolution 
equation [16, 50, 72]. This equation can be expressed in the form 

V::;> 0. (C.12) 

Beeause of (C.8), this relation includes damage-evolution which express the 
ra te of damage increase in terms of the stress u and the stress ra te ir. 

After the specification of the constitutive relations, the deformation behaviour of the 
body can be determined. The funetions T, h 0 , and 7] must satisfy the second 
law of thermodynamics or the Clausius-Duhem inequality 60, 72], which states 
that the loc al entropy production must be non-negative. In a material ( or Lagrange) 
formulation, this law is as 

1 
7i ho· go ::;> 0. (C.13) 

vVe now use the eonstitutive relation 10) and write the time derivative ~~in (C.13) 
as a derivative with respect to the basic variables (E, Ê, (), g0 and V) multiplied by 
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time derivatives of these basic variables. This yields 

( T- Po àE) : É 

à! 

aw .. 
Po at : E cl 

'1/) • 
Po -::::;-- : go 

u go Poav=D-
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(C.14) 

Sirree the variables E, fJ, and g0 can be chosenat random, the terms which are linear 
in these variables must vanish in order that the inequality is satisfied. As a result, we 
have the following conditions 60, 

= 0, 0, (C.15) 

so that ·t/J ·!/J(E, e, V) and TJ r;(E, e, D). Since the damage increase iJ cannot 
be chosenat random and may still depend on all other variables (C.l2)), it is 
not necessary that the remaining terms vanish separately. Since we are interesteel in 
nominally dastic we require that the stresses are independent of the strain 
rate and we adopt the usual constitutive relatîon for elastic materials, viz. [72] 

(C.16) 

Consequently, byvirtueof(C.15), wealsohaveT = T(E,O,D). When theconstitutive 
relations are chosen according to the conditions (C.15)~(C.l6), the Clausius-Duhem 
inequality reduces to [72] 

:'D 
av 

(C.17) 

The secoud term of 17) may be omitted for isothermal situations. The remaining 
inequality is a condition for the relation between the elastic energy density W 
and the parameters 'D, where the dependenee occurs through a decrease of 
the elasticity parameters. Therefore, we focus on the condition [15, 50, 

0. (C.l8) 

Remark 1: In the case of small deformations, linearised theory can be employed, 
in which no distinction is made between the actual deformed configuration and the 
original reference configuration. Consequently, the densities p and p0 may be equated 
and the differences between the Cauchy stress tensor er and the secoud Piola-Kirchhoff 
tensor T are negligible. 

Rernqrk 2: The damage-evolution equation (C.l2) must be postulated and the 
inequality \Ve shall focus on this inequality for the elastic energy density TV 
and the ~"""H"·'F.'· parameters 'D. 
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C.2 Isotropie damage 

Consicier a two-dimensional deformable body consisting of originally undamaged, iso
tropie, ela;;;tic materialloadecl under plane-stress conditions. The original material is 
characterisecl by Young's modulus E and Poisson's ratio v. During the cleformation, 
clamage occurs in an isotropie fashion. The stress-strain relations are given by (C.16) 
or, in linearised form, by (2.15). Theelastic energy clensity is equal to 

W= + 2VExxEyy + 2(1- v) (C.19) 

The isotropie material damage is represented by one ( climensionless) scalar parameter 
V with valnes between 0 and 1. The damage is interpreteel as a random distribution 
of microcracks (see 1.3) with V refiecting the rednetion in the effective area of a 
cross section of the ciarnageel body [15, 50]. \Vhen damage has occurred, the original 
Young's modulus ancl Poisson's ratio are replaced with their values for the damaged 
mate rial: 

(1 V) E, 

1(V) v, 

(C.20) 

(C.21) 

where the function 1 1(V) is yet unknown. This is the natmal manner of defining 
the damage parameter 50]. Other clamage relations eau be rewritten in the form 
( C.20) by redefluition and rescaling of the damage parameter. We shall propose several 
options for the function 1 below. 

Substitution of (C.20)--(C.21) into (C.19) yields the energy density as a function of 
the damage parameter. Application of the inequality (C.18) produces 

V E [ ----,- (1 v2 12
- 2(1 V)v2 Jf') (c;x + 

+ 2v((l v2 12 )1- (1 V)(l + v2 12)!') Exx Eyy J 

V E I 2 
+ (1+!!!) 2 [l+v1+(1-V)v1Jcxy 2::0, (C.22) 

where the prime' indicates differentiation with respect to V. Since the damage cannot 
decrease, we have V 2:: 0 and the inequality (C.22) is only satisfied when the quadratic 
form with Exx and Eyy and the coefficient of are non-negative definite. According 
to Section C.4, these conditions are met when 

1 v2 12 (V) 2(1- V) v2 1(V) J'(V) 2:: 0, 

1 + V 1(V) + (1- V) !I J'(V) 2:: 0. 

(C.23) 

(C.24) 

We elivide these expressions by (1 - V)2 and integrate from V 0 to the actual 
damage value V. For V= 0 we have the original undamaged material and, thus, we 
have 1 (0) = 1. The integration yields 

1 (C.25) 
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where 0 < v < 0.5 has been assumed for the original Poisson's ratio in the derivation 
of the lower bound. It is emphasised that ifthe function f(V) satisfies (C.23)-(C.24), 
then the property (C.25) holds true. The reverse statement is generally not true. 
When (C.25) is fulfilled, i.e., the function f(V) is between the indîeated boundaries, 
it is still possible that this function has such an oscillating behavîour between the 
two limits that the conditions (C.23)-(C.24) are violated. For suffi.ciently smooth 
functions, however, this problem may not occur. 

We shall now present four possible solutions for the function f(V), which satîsfy the 
conditions (C.23)-(C.24). Firstly, an appropriate choice is 

f(V) = 1, (C.26) 

Since Poisson's ratio does not change with an increase of damage, the shear modulus 
Gd and theelastic energy density W are proportional to (1 -V), because they scale 
linearly with Young's modulus. 

Secondly, another appropriate choice is that Poisson's ratio decreases proportionally 
with the damage increase, i.e., 

f('D) = 1 V, vd = (1 -V) v. (C.27) 

This means that when the body is loaded by uni-directional tension, the contraction 
in the perpendicular direction is smaller for damaged materiaL 

A third possibility, which hac'l globally the same property for the contraction as the 
previous choice, is basedon the lower bound in (C.25) and is by 

f(V) 1 + 1/ ""' 1- V 

' 1/ 
(1 V)(l+v). (C.28) 

This function has the special property that the shear modulus, which equals 
Gd= Ed/2(1 + vd), doesnotchange with damage increase. It is noted that vd attains 
a value for V> v/(1 + v), but we still have -1 :=:; vd :=:; 0.5. 

A fourth possibility, which has the property that the contraction is larger for damaged 
material, is basedon the upper bound in (C.25) and is given by 

f(D) = ( 1 + 
1 

)

l 
2 

D 1 (C.29) 

This damage function has the special property that the combination Ed/ ( 1-vJ), which 
often occurs in expresslons for plane stress, does not with damage increase. 
Since we must have vd s 0.5, we have the restrietion D 4v2)/4(1- v2). 

C.3 Orthotropic damage 

Consicier a two-dimensional deformable body consisting of originally undamaged, iso
tropie, elastic material loaded under plane-stress conditions. The original material is 
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characterised by Young's modulus E and Poisson's :ratio v. During the deformation, 
damage may occur in an anisatrapie fashion with a prefer:red direction for the micro
cracks as shown in Fig. 7.3. The material behaviour is described by an orthotropic 
model; see Section 7.4 and Zienkiewicz [100]. The elastic energy density is derived 
from (7.24)-(7.25) with symmetry condition (7.26) as 

w (C.30) 

We characterise the orthotropic material damage by two scalar parameters 'Dx and 
'Dy representing the rednetion in the effective area of a cross section of the damaged 
body in two perpendicular directions. These parameters can also be interpreted as 
the principal values of a damage tensor with orthogonal principal directions along the 
x- and y-axes; see ).1urakami [61]. Tagether with E and v of the original material, we 
have four parameters to describe the orthotropic material behaviour. The relations 
with the ela.sticity constauts can be written as 

(1-'Dx)E, 

(1-Vy)E, 

(1 'Dy) f('Dx, 'Dy) V, 

(l 1Jq;) f('Dx, 'Dy) V, 

g('Dx, 'D11 ) G, 

(C.31) 

(C.32) 

(C.33) 

(C.34) 

(C.35) 

where G E/2(1 + v) is the shear modulus of the und6m;;tged materiaL Clearly, the 
symmetry condition (7.26) for Vxy and Vyx is satisfied, The functions f = f('Dx, 'Dy) 
and g g('Dx, 'Dy) are yet unknown and we shall propose several options for these 
functions below. 

Substitution of (C.31 )-( C.35) into ( C.30) yields the energy density as a function of the 
damage parameters. Since Dx :2: 0 and Vy ? 0 are independent variables, application 
of the inequality (C.l8) produces two conditions: 

8W - > 0 8V - . 
y 

(C.36) 

We shall focus on the first condition. Denoting differentiation with respect to 'Px by 
the prime ', we obtain 

~-E-,-,- [ ( 1 - 2v2(1 - 'Dx) 2(1 'Dy)f f') 

+ v2(1- 'Dy)2 (!2 2(1 'Dx)f f') e;Y 
+ 2v(l- 'Dy)(!- (1- 'Dx)f'- v2 (1 

2G g' :2: 0. 
J 

(C.37) 

This inequality is only satisfied, when the coefficient of E.:~Y is non-negative and the 
quadratic form in Exx and Eyy is non-negative definite. Consequently, the function 
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g must be non-increasing in both its arguments and, according to Section C.4, the 
function f must satisfy 

Vy) 2 f 2 2v2(1- Vx)(1 

Dx)2(1- Dy) 2 [1- v2(1 
Vv)ff' > 0, 

Dv)f2]2 (!')2 0. 

(C.38) 

(C.39) 

As aresult of (C.39), the derivative àf jàVx must vanish and, by a similar argument 
for the second inequality of ( C.36), the derivative à f / àVy too. This implies that the 
function f is necessarily constant. In that case, the condition (C.38) is also satisfied 
and the quadratic form in Exx and Eyy is iudeed non-negative definite. 

The conditions for thermodynarnic admissibility can be summarised as 

à g < 0 
àV - ' x 

< 0. 
àVy -

(C.40) 

The contraction ratios l.lxy and Vyx in (C.33) and (C.34) are now similar to the choice 
( C.27) for isotropie damage behaviour. Th ere exist several possibilities for the function 
g of the shear modulus. Some choices which satisfy the conditions (C.40) are 

Gxy 
( ~f Vyx + 

) -1 
(C.41) 

Gxy ( r/2 (C.42) 

Gxy = 1( E 
2 2(1+xvyx) 

(C.43) 

In the case of isotropie damage, i.e., when V x Vy =V, the two Young's moduli are 
equal and two contraction ratios coincide. The relations (C.41)-(C.43) reduce to the 
same equation 

(1 V) E 
(C.44) 

2(1+(1-V)v)· 

Thus, the shear modulus Gxy satisfies the additional requirement that, in the case of 
isotropically oriented damage, the orthotropic material must behave in an isotropie 
sense, namely Gxy =Gd Ed/2(1 + 

C.4 Positive definite functions 

Consider the quadratic form in two real variables 

F(x,y) =a +2bxy + c (C.45) 

This function can also be cast in the matrix-vector form 

F(x) = xr.4.x with A (C.46) 
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The function is called positive definite when it attains positive values for all points 
(x,y) -=1- (0,0); see Golub and Van Loan [29, Ch. 1]. The definition for non-negative 
definite ( or positive semi-defini te) functions is analogous. Wh en the function attains 
both positive and negative values, it is called indefinite. 

Sirree the matrix A is symmetrie, it has two real eigenvalues )q and À 2 [29, Ch. 8]. 
The function F is positive definite if and only if both eigenvalues of A are positive. 
This condition can be expressed as 

a+c > 0, 

ac- b2 > 0. 

(C.47) 

(C.48) 

Insteadof (C.47), we mayalso impose a> 0 and c > 0. For non-negative definiteness 
the > signs must be replaced by ~ signs. 
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1. Door het combineren van breukmechanica en schademechanica ontstaan 
nieuwe mogelijkheden voor het onderzoeken van het bezwijkgedrag van 
materialen en constructies. 

Dit proefschrift, hoofdstukken 1 en 8-10. 

2. Het invoeren van een gegeneraliseerd torsiemoment in de klassieke plaat
theorie is zinvol voor het berekenen van scheurgroei in dunne platen die 
belast worden door buigende momenten. 

Dit proefschrift, hoofdstukken 2, 4 en 5. 

3. Substitutie van een oneindig grote waarde voor de dwarscontractie
coëfficiënt in oplossingen voor breukproblemen de klassieke plaat
theorie leidt in veel gevallen tot overeenkomstige oplossingen volgens de 
plaattheorie van Reissner. 

Dit proefschrift, hoofdstukken 4 en 5. 

4. De op numerieke resultaten gebaseerde conclusie van Nishioka, dat de 
elastodynamische J2-integraal onafhankelijk zou zijn van de keuze van 
de integratiecontour, wordt weerlegd door analytische berekening van 
deze integraal voor twee verschillende contouren. 
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on F'ractu.re ECF-9, Varna, Buigaria (1992) 8815-890. 
Dit proefschrift, appendix A. 

5. Zij a( zp) het aantal absolute punten van de polariteit gedefinieerd op 
de symmetrische partiële meetkunde pg(s, s, n). 
a. Voor oneven n geldt a( p) 2 1 + voorts is a( p) = 1 + dan 
en slechts dan als iedere lijn één absoluut punt bevat. 
b. Voor even a geldt 0 of a(p) 2 s+ 1; voorts is a(p) = s+ 1 dan 
en slechts dan als iedere niet-absolute lijn 0 of 2 absolute punten bevat 
en ieder tweetal absolute punten door een lijn verbonden is. 

P.R.J.M. Smits and J.C.\V. van Vroonhoven, 
Geometriae Dedlca.ta 21 (1986) 51-54. 
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6. De vervaardiging van optische golfgeleiders kan worden geformuleerd als 
een ionenuitwisselingsprobleem tussen een gedeeltelijk afgedekt substraat 
en een zoutbad, onder invloed van een electrisch veld. Dit probleem 
wordt door Forrest, Pagano en Viehmann op incorrecte wijze opgelost. 

K. Forrest, S.J. Pagano and W. Viehma.nn, IEEE/OSA Joumal 
of Lightwave Technology LT-4 (1986) 140-150. 
J.C.W. van Vroonhoven, Stageverslag, TU Eindhoven (1986). 

7. De vrije rand in stromingsproblemen voor lineair viskeuze (Newtonse) 
vloeistoffen, zoals bijvoorbeeld bij extrusie- en spuitgietprocessen, kan 
worden berekend met behulp van de theorie van complexe functies en 
conforme afbeeldingen. 

J.C.W. van Vroonhoven, A.J.M. Sipers and W.J.J. Kuijpers, 
Joumal of Engineering Matkematics 24 (1990) 151-165, 167-178. 

8. In navolging van advertenties voor tabaksartikelen dienen reclamebood
schappen voor technologisch hoogwaardige produkten afkomstig uit het 
Verre Oosten vergezeld te gaan van de waarschuwing: "Het kopen van dit 
produkt brengt ernstige schade toe aan de Europese c.q. de Nederlandse 
economie. Het kan werkloosheid en recessies veroorzaken." 

9. Gezien het overeenkomstig belang als persoonlijk vervoermiddel van het 
paard ten tijde van het wilde Westen en van de fiets in de huidige tijd, 
dient voor diefstal van deze vervoermiddelen ook een overeenkomstige 
strafmaat gehanteerd te worden. 

10. Het grote aantal oppervlakkige, inhoudsloze televisieprogramma's staat 
een snelle ontwikkeling van de vlakke, platte beeldbuis niet in de weg. 

11. Het proeven van bier en het brouwen van bier zijn twee verschillende 
zaken; toch is kennis van het één noodzakelijk voor de kunde van het 
ander. 


