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Abstract: We propose and demonstrate an optical flat datacenter network 
based on scalable optical switch system with optical flow control. Modular 
structure with distributed control results in port-count independent optical 
switch reconfiguration time. RF tone in-band labeling technique allowing 
parallel processing of the label bits ensures the low latency operation 
regardless of the switch port-count. Hardware flow control is conducted at 
optical level by re-using the label wavelength without occupying extra 
bandwidth, space, and network resources which further improves the 
performance of latency within a simple structure. Dynamic switching 
including multicasting operation is validated for a 4x4 system. Error free 
operation of 40 Gb/s data packets has been achieved with only 1 dB 
penalty. The system could handle an input load up to 0.5 providing a packet 
loss lower that 10−5 and an average latency less that 500ns when a buffer 
size of 16 packets is employed. Investigation on scalability also indicates 
that the proposed system could potentially scale up to large port count with 
limited power penalty. 

©2014 Optical Society of America 

OCIS codes: (060.4259) Networks, packet-switched; (060.6719) Switching, packet; (200.4650) 
Optical interconnects. 

References and links 
1. S. Sakr, A. Liu, D. Batista, and M. Alomari, “A survey on large scale data management approaches in cloud 

environments,” IEEE Commun. Surv. Tutorials 13(3), 311–336 (2011). 
2. M. Meeker and L. Wu, “2013 internet trends,” Kleiner Perkins Caufield & Byers, Technical Report (2013). 
3. G. Astfalk, “Why optical data communications and why now?” Appl. Phys. A Mater. Sci. Process. 95(4), 933–

940 (2009). 
4. S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The nature of data center traffic: 

measurements and analysis,” in Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement 
(ACM, New York, 2009), pp. 202–208. 

5. J. Oltsik, B. Laliberte, and B. Lundell, “Research report: Data center networking trend,” Enterprise Strategy 
Group (2006). 

6. L. A. Barroso and U. Hölze, The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale 
Machines (Morgan and Claypool, 2009). 

7. P. Gill, N. Jain, and N. Nagappan, “Understanding network failures in data centers: measurement, analysis, and 
implications,” in Proceedings of the ACM SIGCOMM 2011 Conference (ACM, New York, 2011), pp. 350–361. 

8. C. Kachris, K. Bergman, and I. Tomkos, Optical Interconnects for Future Data Center Networks (Springer, 
2013), Chap. 1. 

9. A. Benner, “Optical interconnect opportunities in supercomputers and high end computing,” in Optical Fiber 
Communication Conference, Technical Digest (CD) (Optical Society of America, 2012), paper OTu2B.4. 

10. C. Kachris and I. Tomkos, “A survey on optical interconnects for data centers,” IEEE Commun. Surv. Tutorials 
14(4), 1021–1036 (2012). 

11. O. Liboiron-Ladouceur, A. Shacham, B. A. Small, B. G. Lee, H. Wang, C. P. Lai, A. Biberman, and K. 
Bergman, “The data vortex optical packet switched interconnection network,” J. Lightwave Technol. 26(13), 
1777–1789 (2008). 

12. X. Ye, Y. Yin, S. J. B. Yoo, P. Mejia, R. Proietti, and V. Akella, “DOS: a scalable optical switch for 
datacenters,” in Proceedings of the 6th ACM/IEEE Symposium on Architectures for Networking and 
Communications Systems (ACM, New York, 2010), pp. 1–12. 

#200765 - $15.00 USD Received 7 Nov 2013; revised 23 Dec 2013; accepted 23 Dec 2013; published 29 Jan 2014
(C) 2014 OSA 10 February 2014 | Vol. 22,  No. 3 | DOI:10.1364/OE.22.002465 | OPTICS EXPRESS  2465



13. J. Gripp, J. E. Simsarian, J. D. LeGrange, P. Bernasconi, and D. T. Neilson, “Photonic terabit routers: The IRIS 
project,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 
2010), paper OThP3. 

14. J. Luo, H. J. S. Dorren, and N. Calabretta, “Optical RF tone in-band labeling for large-scale and low-latency 
optical packet switches,” J. Lightwave Technol. 30(16), 2637–2645 (2012). 

15. W. Miao, S. Di Lucente, J. Luo, H. Dorren, and N. Calabretta, “Low latency and efficient optical flow control for 
intra data center networks,” in European Conference and Exhibition on Optical Communication (Optical Society 
of America, 2013), paper Th.1.A.2. 

16. J. Luo, S. Di Lucente, J. Ramirez, H. J. S. Dorren, and N. Calabretta, “Low latency and large port count optical 
packet switch with highly distributed control,” in Optical Fiber Communication Conference, Technical Digest 
(CD) (Optical Society of America, 2012), paper OW3J.2. 

17. T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding data center traffic characteristics,” ACM 
SIGCOMM Comput. Commun. Rev. 40(1), 92–99 (2010). 

1. Introduction 

Emerging services such as cloud computing and social networks are steadily boosting the 
Internet traffic [1,2]. The huge volumes of packetized data travelling to and from the data 
centers (DCs) are generated to satisfy users requests which present only a small fraction of the 
total traffic handled by these systems [3], putting a tremendous pressure on the DC networks 
(DCNs). In large DCs with 10.000’s of servers, merchant silicon top-of-the rack (TOR) 
switches are used to interconnect servers in a group of 40 per rack with 1 Gb/s link (10 Gb/s 
expected soon). To interconnect the 100’s of TORs, with 10/40 Gb/s aggregated traffic 
(100Gb/s is expected soon) per TOR, current DCN is built up on multiple switches, each with 
limited port count and speed, organized in fat-tree architecture [4,5]. This multi-layer 
topology has intrinsic scalability issues in terms of bandwidth, latency, costs and power 
consumption (large number of high speed links) [6,7] and they are becoming critically 
limiting figures of merit in the design of future DCNs. 

To improve the performance and lower the operation costs, flattened DCN is currently 
being widely investigated. To this aim, large port count switches with high speed operation, 
low latency and power consumption are the basic blocks to realize a flat DCN [8]. Photonic 
interconnect-based technologies have the potential of efficiently exploiting the space, time, 
and wavelength domains, which leads to significant improvements over traditional electronic 
network architecture for scaling up the port count while switching high speed data at 
nanoseconds time scale with low energy per switched bit and small footprint photonic 
integrated devices [8,9]. Despite the several optical switch architectures presented so far  
[10–13], no one has been proved a large number of ports while providing a port-count 
independent reconfiguration time for low latency operation. Moreover, the lack of a practical 
optical buffer demands complicated and unfeasible system control for store-and-forward 
operation and contention resolution. 

In this work, we propose and experimentally investigate a novel flat DCN architecture for 
TOR interconnect based on a scalable optical switch system with hardware flow control for 
low latency operation. Experimental evaluation of a 4x4 optical switch system with highly 
distributed control has been carried out. The hardware flow control at the optical level allows 
fast retransmission control of the electrically buffered packets at the edge nodes preventing 
the need of optical buffers. Moreover, this makes a dedicated flow control network redundant, 
which effectively reduces system complexity and power consumption. Experiment results 
demonstrate dynamic switching operation including multicasting and only 1dB power penalty 
has been observed for 40Gb/s payload. A buffer size of 16 packets sufficiently guarantees 
<10−5 packet loss for 0.5 input load and less than 500ns average end-to-end latency could be 
achieved within 25m distance. Scalability investigation also indicates that the optical switch 
can potentially scale up to more than 64 × 64 ports with less than 1.5dB penalty while the 
same latency is retained. 

2. System operation 

The proposed flat DCN based on N × M highly distributed controlled optical packet switching 
(OPS) architecture is shown in Fig. 1. Each cluster groups M TORs and an aggregation 
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controller is used for balancing the traffic load and aggregating the input data coming from 
different TORs. Packetized data will be assigned with different wavelength λ1, λ2 …, λM and 
transmitted to OPS node. Switching is performed based on the in-band label information 
carried by each packet [14]. After the packet being sent out, aggregation controller will store 
the copy in a FIFO until receiving a positive acknowledgment that the packet has been 
transported to proper destination. 

OPS node consists of N identical modules and each of them handles the packets from the 
corresponding cluster. Label extractor separates the optical label from the optical payload by 
using a fiber Bragg grating (FBG). The optical payload is then fed into the SOA based 
broadcast and select 1xN switch while the extracted label is split into two parts. One of them 
is detected and processed by the label processor (LP) after optical-to-electrical conversion 
(O/E). The switch controller retrieves the label bits, checks possible contentions and 
configures the 1xN switch to block the contended packets with low priority and to forward 
packets with high priority. Moreover, the switch controller generates the acknowledgment 
(ACK) used to inform the aggregation controller on the reception or re-transmission of the 
packets. The other part of label power is re-modulated in an RSOA driven with the base band 
ACK signal generated by the switch controller and sent back to cluster side within the same 
optical link [15]. This fulfills the efficient optical flow control in hardware which minimizes 
the latency and buffer size. Baseband ACK signal is easily extracted at the edge node by using 
a 50 MHz low pass filter, to remove the label information at RF frequencies. The adopted 
modular structure allows highly distributed control which makes the reconfiguration time of 
the overall switch port-count independent. In addition, the M channels of each cluster could 
be processed in parallel, greatly minimizing processing time and thus the latency [16]. 

 

Fig. 1. Proposed flat DCN architecture based on OPS with flow control. 

3. Experimental setup and results 

For the validation of the DCN, we experimentally investigate the full dynamic operation 
including flow control of a 4 × 4 system with 25m transmission link. Packetized 40Gb/s NRZ-
OOK payloads are generated with 540ns duration and 60ns guard time. The operation of OPS 
node is actually independent of packet length that shorter or longer duration are both 
supported. An FPGA acts as aggregation controller that generates for each packet the label 
according to the port destination, and simultaneously provides a gate signal to enable the 
transmission of the payload with a certain load. Buffer manager inside FPGA stores the label 
information in a FIFO queue with a size of 16 packets and removes the label from the queue 
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in response to a positive ACK. Otherwise the label and payload are retransmitted after re-
signaling the input optical gates, implementing the packets retransmission. 

RF tone in-band labeling technique and bi-directional optical system are deployed to 
efficiently transmit the label and ACK in a single fiber. Such labeling technique allows the 
parallel processing of the label bits which will greatly reduce the OPS processing time [14]. 
Here we use two RF tones (f1 = 284.2MHz, f2 = 647.1MHz) for coding the 2-bit binary label 
information. Payload wavelengths are placed at λP11 = λP21 = 1544.9nm and λP12 = λP22 = 
1548.0nm. The label wavelengths, each carrying two RF tones, are centered at  
λL1 = 1545.1nm and λL2 = 1548.2nm. The average optical power of the payload and the label 
at the OPS input is 2.5dBm and −2dBm, respectively. Pass band of FBG is centered at label 
wavelength and has a −3dB bandwidth of 6 GHz. This narrow bandwidth could avoid spectral 
distortion of the payload. Optical spectra of the packets before and after label extractor for 
Cluster1 are shown in Figs. 2(a) and 2(b). A small portion as low as 1% of the label power 
will be re-used by modulating the ACK signal on the available base-band bandwidth avoiding 
the potential crosstalk with the RF tones that are transmitted at frequencies > 100 MHz [15]. 
The generated flow control signal could reach the transmitter side and trigger retransmission 
without any additional and complicated label eraser or the need of extra lasers and the 
corresponding wavelength registration circuitries. Considering the overall contributions to the 
energy consumption given by low speed O/E converter (540mW × 4), label processor 
(210mW × 4), switch controller (1W × 2), SOA based switch (80mW × 8) and ACK Re-
modulator (80mW × 4), the total energy consumption for the 4 × 4 system is 37.25 pJ/bit. 

 

Fig. 2. Optical spectrum before and after label extractor for (a) Client1 and (b) Client2. 

3.1 Dynamic operation 

To investigate the dynamic operation of the flow control and the payload switching of the 
system, optical packets are generated with a typical DC traffic load of 0.5 at the clusters side 
[17]. Figure 3 shows the dynamic generation/retransmission of the label and the payload from 
both clusters (each color represents one client). The time traces of the label detected by the 
switch controller and the ACK feed-back detected by the aggregation controller at the 
transmitter side are reported at the top of Fig. 3. 2-bit label brings up 3 possibilities of 
switching since “00” represents no packet. “01” stands for output1, “10” for output2, and “11” 
for multicasting the payload to both ports. To clearly show the contention and switching 
mechanism, fixed priority has been adopted in our contention resolution algorithm. If two 
packets from different clients have the same destination, packet from Client 1 will be 
forwarded at the output while the packet from Client 2 will be blocked and a negative ACK 
will be sent back requesting packet retransmission. If Client1 is multicast, any data in Client2 
will be blocked. Multicasting for Client2 will only be approved if Client1 is not transmitting 
any packet. 
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Fig. 3. Dynamic operation of labels and payloads from (a) Cluster1 and (b) Cluster2. 

One or both of the SOAs will be switched on to forward the packets to the right 
destination. The waveforms of the transmitted packets (including retransmitted packets for 
Client 2) and the switch outputs are shown at bottom of Fig. 3. Flag “M” stands for the 
packets to be multicast, which should be forwarded to both output ports. If Client 2 contends 
with Client 1 the packets will be blocked (shown with unmarked packets in Fig. 3). In this 
case, a negative ACK is generated to inform the buffer manager of the transmitter that the 
packets have to be retransmitted. Figure 3 clearly shows the successful optical flow control 
and multicasting operation. The minimum end-to-end latency (no retransmission) is 300ns 
including 250ns propagation delay provided by 2 × 25m link. 

At switch output, a bit-error-rate (BER) analyzer is used to evaluate the quality of the 
detected 40Gb/s payload. Figure 4 shows the BER curves and eye diagrams for packets from 
4 different clients. Test results for back-to-back (B2B) as well as the signal after the 
transmission gate are also reported as reference. It is clear that the transmission gate used to 
set the traffic load does not cause any deterioration of the signal quality. Error free operation 
has been obtained with only 1dB penalty after switch which is mainly due to the in-band 
filtering caused by label extractor and noise introduced by SOA switch. It proves that high 
data-rate operation is supported by our system and no distortion has been introduced by the 
bi-directional transmission of label and flow control signal. 

 

Fig. 4. BER curves and eye diagrams for 40 Gb/s payload. 
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3.2 Packet loss and latency 

To further investigate the performance of the 4 × 4 system with the flow control mechanism, 
the packet loss and the average latency are tested. As discussed in the previous section, the 
label that represents the packet’s final destination is generated by the aggregation controller 
and stored in the finite-size FIFO queue. It will be released from the FIFO once the packet has 
been successfully forwarded. In this case the aggregation controller will receive a positive 
flow control signal. Otherwise, the packet will be retransmitted. However, if the FIFO is 
already fully occupied and there is a new packet to be served at the next time slot, this packet 
will be instantly dropped and considered lost due to buffer overflowing. The packet loss is 
then calculated as the ratio of the number of lost packets to total number of generated packets. 

For the 4 × 4 system, at each time slot, the aggregation controller will generate a packet 
for each different client with the same average traffic load. The destinations decided by the 
label pattern are chosen randomly between the two possible outputs according to a uniform 
distribution. Based on the label information, the switch controller forwards the packets to the 
right output and if a contention occurs, only the packet with higher priority will be properly 
delivered. Instead of using a fixed priority for the contention resolution algorithm, a round 
robin scheme is employed as priority policy to efficiently balance the utilization of the buffer 
and the latency between the two clients. This means that the priority will be assigned slot by 
slot. As a result, a packet in the FIFO will be definitely sent to the proper destination within 
two time slots, and the respective buffer cell will be released. 

Figure 5(a) shows the packet loss for different input loads and buffer sizes. The total 
amount of time considered is 2 × 1010 time slots. As expected the packet loss increases with 
the input load. Larger buffer size could improve the packet loss performance for input loads 
smaller than 0.7. Larger buffer capacity does not bring significant improvement when the load 
≥0.7 because the buffer is always full and overflowing causing high packet loss. Figure 5(b) 
presents the buffer occupancies when traffic load equals to 0.5, 0.6, 0.7 and 1, respectively. 
For the first 200 time slots, it is clear that for load = 1, the 16-packet buffer is rapidly filled up 
and for load = 0.7 the buffer is fully occupied most of the time which will cause the buffer 
overflowing. 

 

Fig. 5. (a) Packet loss vs. load with different buffer size. (b) Buffer queue occupancy for 
different input load. (c) Average latency with buffer size of 16 packets. (d) Retransmission rate 
with buffer size of 16 packets. 
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Average end-to-end latency for the system with a buffer size of 16 packets is reported in 
Fig. 5(c). The number of packets that has been successfully forwarded without retransmission 
and the one that has been retransmitted once are recorded and employed to calculate the 
average latency. The lost packets are not considered in the latency calculation. Similarly to 
the packet loss curves, the average latency increases approximately linearly for input loads up 
to 0.7. As the traffic becomes heavier, the possibilities of contention also increase which 
results in more retransmissions, and thus larger latencies. However, when the load is higher 
than 0.7, the buffer is always full but the average latency remains constant since the round 
robin policy and the lost packets are not considered in the latency calculation. Indeed, due to 
round robin policy, every packet having entered in the buffer queue will finally win the 
contention within two time slots. This explains the saturation of the latency curve at 645ns 
which includes 250ns off-set latency caused by the 25m transmission link. Figure 5(d) shows 
the average retransmission rate which represents the contention probability as a function of 
the input load. It is calculated as the ratio of retransmissions to the total number of transmitted 
packets. The retransmission rate curve keeps the same shape as the latency one and saturates 
when the input traffic load exceeds 0.7 in which case the actual traffic inside the switch is 
reaching the maximum due to the retransmissions. From Fig. 5 it can be concluded that the 
system could handle an input load up to 0.5 providing a packet loss lower than 10−5 and an 
average end-to-end latency lower than 500ns. 

3.3 Scalability 

In this section we investigate the system scalability in order to support a large port count. The 
total number of ports supported by the OPS is given by N × M because of the presence of N 
modules and M clients in each module. The performance of the overall system could be 
translated into the performance of 1 × N optical switch due to the identical structure of N 
modules. In this scenario, the main limiting factor for scaling the OPS is the splitting loss 
experienced by the payload caused by the 1 × N broadcast and select stage. Therefore we 
employed a variable optical attenuator (VOA) to emulate the splitting losses, as schematically 
reported in Fig. 6(a). At the output of the SOA switch, the BER and the OSNR are measured 
to evaluate the payload quality. 

 

Fig. 6. (a) Set-up for scalability investigation. (b) Gain characteristic with bias current of the 
SOA switch (c) Penalty and OSNR vs. scale of 1 × N switch. 

The input optical power of the 1 × N optical switch is 0dBm and the attenuation caused by 
the VOA is set to be 3dB × log2N. The SOA will be switched on to forward the packet, and at 
the meantime to amplify the signal. Figure 6(b) gives the gain characteristic versus bias 
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current of the SOA from which we could see that the SOA operates transparently at 30mA 
and 18dB amplification could be supplied when biased at 70mA. Considering the splitting 
loss, the SOA could compensate the 18dB loss caused by the 1 × 64 broadcast stage resulting 
in a lossless 1 × 64 optical switch. Figure 6(c) shows the power penalty (measured at  
BER = 1E-9), and the OSNR of the switched output as a function of N for different SOA bias 
currents. A penalty of < 1.5 dB for N up to 64 is measured regardless of the bias current of the 
SOA. For N > 64 the penalty increases mainly caused by the deterioration of OSNR as a 
result of splitting loss. The BER performance gets worse when biasing at a higher current due 
to noise that becomes more prominent. The results clearly shows that when N < 64, less than 
1.5 dB penalty is obtained for different driving current which indicates that the OPS under 
investigation could be potentially scaled up to a large number of ports at the expense of 
limited extra penalty. In addition, a lossless system without extra amplification could be 
achieved with the bias current of 70mA. 

4. Conclusion 

We experimentally demonstrate a fully operational 4x4 OPS system for the implementation of 
a flat DCN. Exploiting the highly distributed control architecture, the RF tone in-band 
labeling technique and the efficient optical flow control, we report 300ns minimum end-to-
end latency (including 250ns offset introduced by the 25m transmission link) for 40 Gb/s 
packets. Dynamic switching results including multicasting prove the successful flow control 
operation. Error free operation with only 1 dB penalty shows that no distortion has been 
caused by the bi-directional transmission of the in-band label and flow control signal on the 
same optical link. 

Packet loss and average latency are tested under different input load. By employing the 
round robin algorithm for contention resolution, a packet loss lower than 10−5 and an average 
end-to-end latency less than 500ns could be achieved under relatively high traffic load of 0.5 
and limited buffer capacities of 16 packets. Increasing the buffer size could improve the 
performance in terms of packet loss for load values smaller than 0.7. Investigation on the 
switch scalability indicates that scaling up to 64 × 64 ports is possible at the expense of  
1.5 dB extra power penalty while maintaining the same latency performance. The 
amplification introduced by SOA switch could compensate the splitting loss of the broadcast 
stage resulting in a lossless optical switch system. 

Acknowledgment 

This work has been supported by the FP7 European Project LIGHTNESS (FP7-318606). 

 

#200765 - $15.00 USD Received 7 Nov 2013; revised 23 Dec 2013; accepted 23 Dec 2013; published 29 Jan 2014
(C) 2014 OSA 10 February 2014 | Vol. 22,  No. 3 | DOI:10.1364/OE.22.002465 | OPTICS EXPRESS  2472




