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Chapter 1

Introduction

In order to make use of any computer, we need software to control its operation.
One approach to constructing such software is Model Driven Engineering or
MDE. In MDE, models created using Domain Specific Languages (DSLs) play
a central role. Because they are domain-specific, a large number of DSLs are
needed to cover all use cases. Each of these DSLs has its own definition, and
needs a separate set of tools to implement it. In this thesis, we will investigate
one part of a DSL definition, the type system, and its implementation, the type
checker. Our goal is to identify a specification formalism that can be used define
type systems in an elegant and clear way, and that can support evolution of both
its design and the corresponding tools.

1.1 Software Construction

In many disciplines, computers are used to do tasks that are too large, too
complex or too repetitive for humans to perform efficiently. In order for a
computer to perform a task, it needs a set of instructions that specify what the
task is and how it should be completed. The descriptions of tasks are called
programs, and a group of programs is collectively known as software. The larger
the task, the more software is needed to describe it, and the more complex it
becomes to construct that software. This increasing complexity means software
gets both more expensive and more error-prone. This in turn has led to the
development of tools and methodologies intended to reduce the complexity of
software during design and development.

Model Driven Engineering

One such methodology for software construction is Model Driven Engineering1

or MDE [5,15]. The primary observation of MDE is that the larger the software

1While the definition of MDE does not necessarily exclude disciplines other than software
engineering, that is the primary area where it is used.
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system becomes, the more different areas of expertise, also known as domains,
it involves. If we try to combine all these different domains into one artifact, the
result is, unsurprisingly, large and hard to understand. MDE advocates separat-
ing all domains into their own domain models. By clearly defining models and
their relations, MDE aims to improve communication about software systems,
reuse of components and increase the compatibility of software systems made
by different companies or different development teams.

To achieve this, MDE advocates the use of models in every step of the design
and development of software. Initially, these models mainly consist of concepts
from the domain of the problem that the software is intended to solve. During
development, these models are refined by adding more and more concepts from
the domain of the implementation, where the problem will be actually solved.
In order to do this efficiently, software engineers can create model transfor-
mations. Model transformations are automated operations that construct new
models based on old ones. If we know, for example, how to represent concepts
from a problem domain in an implementation domain, we can create a trans-
formation to convert entire models from one domain to another without human
intervention.

In order to talk about relations between concepts in different domains, we
first need to define those concepts. In particular, if we want to use model trans-
formations, we need to know all concepts that a particular model might contain,
in order to ensure that all the information of the model can be transferred to the
new model. In practice, this means we need to limit the concepts that can be
used in a domain model. A common way to control what concepts can be used in
a domain model is to use a formal language [55]. Formal languages, as opposed
to natural languages, are based on a strict structural definition, called a syntax.
In other words, if something cannot be constructed in accordance to the rules of
the language, it simply does not exist as far as the language is concerned. For
the so-called sentences of the language that can be constructed, we can define
specific meaning by creating semantics for the language. The semantics of a
language can be divided into static semantics [113], the meaning of the sentence
that can be discovered without executing it, and dynamic semantics [113], the
meaning of the sentence when executed. Based on intended use, formal lan-
guages can be divided into general purpose languages [47] and domain specific
languages [34]. Most programming today is done in general purpose languages
or GPLs. These languages are designed to be able to handle a wide variety of
problems. A consequence of this is that the fundamental concepts they use are
not aimed at any particular domain. This can make writing programs harder,
because it is not clear how the operations used in the program relate to the
problem domain. To a certain extent, this can be improved by using libraries
that contain more specific abstractions and vocabulary, but this is still limited
by the constructs the GPL provides.

A more in-depth solution to this problem is to create not just a new vocab-
ulary, but an entire new language that matches the domain more closely [100].
These languages are known as Domain-Specific Languages or DSLs. A well-
known example of a DSL is SQL [61]. SQL is focussed on accessing and ma-
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nipulating data stored in structured databases. The data in these databases is
grouped into so-called tables. Each table consists of columns that describe what
data is in the table, and rows, that contain the actual data. The fundamental
nature of tables is reflected in SQL instructions, where we need to describe what
tables it applies to, and how these tables will be manipulated in each case. If we
want to do something which does not involve tables, this may be impossible or
very difficult to achieve in SQL. In contrast, the limited nature of SQL makes
it much easier for databases to compute the results of the operations efficiently
by using specialized data structures, like indices, or parallelization.

When is a language a Domain Specific Language?

Given that we want to study DSLs, the question arises how we identify DSLs. In
other words, what makes a language a DSL as opposed to a GPL? The term is
often used without explicit definition, but the following definition was proposed
by J. Walton and used in [33]2 and is very similar to the one used in [82]:

Definition 1. A small, usually declarative, language expressive over the dis-
tinguishing characteristics of a set of programs in a particular problem domain.

Looking at this definition, we note two potential criteria. The first refers
to the size of the language, which is defined as small. This size requirement
presumably relates to the size of the language definition. Unfortunately, the
definition of SQL, as cited earlier, consists of several volumes, while there are
several GPLs that have much shorter definitions, e.g. Pascal. Thus, language
size alone is not a sufficient criterion. Thus, the difference must lie in the second
criterion of the definition: the presence or absence of a target domain which
influenced the design of the language. This is not a very clear criterion, because
there is no clear definition of what can be considered an application domain.
We can try to make it more formal by looking at the ability of the language to
express models and computations. This is referred to as its expressive power.
A DSL should be more powerful than a GPL in some areas and, perhaps more
importantly, less powerful in other areas.

Because there are so many different possible computations, and many dif-
ferent ways to describe them, there is no single scale to measure the expressive
power of a language. Instead, a common method of expressing language power is
to use a comparison [69] to the language corresponding to Turing machines [106].
If a language can describe a Turing machine or an equivalent, it is said to be
Turing Complete [16]. Note that the implementation of the Turing machine is
assumed to have access to infinite memory, in the same way that the Turing
machine itself has access to infinite tape. All Turing-complete languages are
considered equally powerful, because they can all express any algorithm that a
Turing machine can execute. Such a language can rightly be considered general
purpose, because it can be used for a wide range of generic problems. This is

2Unfortunately, this definition was originally taken from a web page which no longer exists.
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gives us a possible criterion to classify languages as DSLs, namely, a language
is a DSL only if it is not Turing complete.

In practice, however, there are many languages that are regarded as DSLs
that fail this criterion. The DSL mentioned earlier, SQL, is an example of this.
SQL as originally designed [60] was not Turing complete, but there were many
extensions that changed that. Eventually, this influenced the design of SQL
to the point that the 2008 version of the standard [61] now describes a Turing
complete language even without extensions.

A more precise, but more complex notion of expressive power was defined
by Felleisen [42]. In this paper, he suggests comparing two languages by trans-
forming implementations of algorithms from one to the other. If we can do this
while maintaining the structure of the implementation, the first language is at
least as powerful as the second. If this requires global structural changes to the
program, the target language of the transformation is considered less powerful
than the source language. Felleissen conjectures that translations from “strong”
languages to “weak” languages lead to code duplication, which makes the im-
plementations harder to understand. From the perspective of DSLs, this means
that we can consider a DSL more powerful than a GPL in a given domain if
translating models to the GPL requires global structural changes. In contrast,
we can say that the DSL is weaker than the GPL in other areas if the transfor-
mation requires global changes when translating models to the DSL, for example
by translating generic constructs into domain-specific equivalents. If we apply
this reasoning to SQL, we can see that SQL can represent database operations
more succinctly than GPLs, because SQL statements automatically handle all
rows in a table and collect the results without needing control-flow constructs.
Thus SQL is more powerful than GPLs in that particular area. By making
programs shorter, they become easier to design and maintain, as is empirically
demonstrated in [72,73].

Unfortunately, while this criterion is formal, clear and objective, it is also
labor-intensive to compare languages in this way. Additionally, in our expe-
rience, DSL designers never feel the need to justify their language as domain
specific. These two factors mean that this definition is not suitable for use in
this thesis. Instead, we are forced to use more subjective criteria. In general, we
will instead rely on the judgement of DSL designers to determine if the language
they designed is a DSL. For languages that we explore in greater depth, such
as those that are the subject of one of our case studies, this is supplemented by
our own judgement. In particular, we look for a clear use case where a model
constructed in the DSL is significantly more compact than an equivalent model
in a GPL would be.

1.2 Implementation

Like any computer language, in order to be practically useable, a DSL needs
an implementation [44, 50, 81]. A language implementation consists of one or
more programs that allow users of the language to create and use models that
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conform to the specification. These programs can be dedicated to the language,
or reused from existing language. The latter approach can save cost, but limits
flexibility and is less user friendly [71]. In this thesis, we consider a language
implementation as a process with several distinct steps. As noted in [48, 99],
not all DSL implementations will feature all steps in equal detail, but all im-
plementations will use them in some way. First, the user creates a model in a
textual or graphical form. In case of a textual DSL, the model is then converted
to an internal representation in a process known as parsing. In graphical DSLs,
it is more common for the internal representation to be constructed in parallel
with the model, based on the editing actions of the designer. Depending on
the language we may then want to refine the model before actually using it. By
preprocessing the model in the right way, further steps can be made smaller and
more efficient, speeding up both their implementation and their execution. Two
common, and closely related, refinements are scoping and typing, both based on
the static semantics of the language. Once all refinements have been completed,
we can apply the dynamic semantics. In some languages, this is done directly
by combining the model with any required input values to get the output of the
model. These languages are known as interpreted languages. A disadvantage of
this approach is that parsing, scoping, typing and any other model refinement
that needs to be done, has to be done again and again each time the model
is executed. A way to avoid this is to create a new version of the model that
can be executed more easily. This is known as compilation. Execution of com-
piled programs is more efficient than interpretation, but creating the tool that
performs compilation, commonly known as the compiler, can be complex and
expensive. This creates a trade-off, where the cost of creating more advanced
tools such as compilers and debuggers is weighed against their benefits.

In the next four sections, we discuss the four main steps, namely, model
creation, scoping, typing and execution in more detail. In particular, we discuss
how these steps are defined, and how they relate to type systems, which are the
main focus of this thesis.

Model creation

When a programmer creates a model, it is often represented as a text. How-
ever, not all pieces of text are valid programs or models. Usually, the language
designer creates a grammar that describes which texts can be used to create
valid models. A common way to define a grammar is by using production rules.
A production rule consists of two patterns, called left-hand side and right-hand
side. A pattern can consist of pieces of actual text, known as terminals, and
more abstract non-terminal symbols. The idea behind a production rule is that
in a text, wherever we find an instance of the left-hand side, we can replace it
with the right-hand side. To determine if a given text is consistent with a given
grammar, we start with a given symbol in the grammar, and try to derive the
text by repeated application of production rules. Because texts by definition
only contain terminals, this means all non-terminal symbols must be eliminated
before this goal can be reached. This process is implemented in a parser . If
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an input piece of text fits in the structure defined by the grammar, the parser
constructs a parse tree to demonstrate the combination of production rules that
led to this conclusion. Depending on the algorithm used to create the tree, a
parser can be restricted in the grammars it can handle. A common restric-
tion is that the grammar must be context-free [1]. A context-free grammar is
a grammar in which the left-hand sides of the production rules are limited to
consisting of exactly one single non-terminal symbol. As a result, all production
rules that share a symbol in their left-hand side are interchangeable, in that all
can result in valid texts if applied. In contrast, in a context-sensitive grammar,
whether a given pattern is applicable might depend on the presence or absence
of other patterns elsewhere in the text. A practical consequence of this is that
some common requirements on programs cannot be expressed in context-free
grammars, and thus cannot be checked by most parsers. An example is the
requirement that a certain piece of text, representing an identifier, must match
a piece of text elsewhere. This depends exactly on the context in a way that is
not allowed in context-free grammars. Usually, this context-related information
is added in the next steps instead.

Binding

In programs and models, it is common that entities are referred to in multiple
places. For example, if we create a sufficiently extensive model of a family
tree, one person can occur in multiple places in the tree. In fact, given the
exponential nature of ancestors needed to avoid duplication, and the limited
size of the world population, this must occur in any family tree at some point.
In text, the need to represent that one entity exists in multiple places is resolved
by using so-called identifiers. Identifiers act as names for entities, and multiple
instances of an identifier can all refer to the same entity. Less intuitively, the
same identifier can act as name for multiple entities. Consider, for example, the
number of people who share common first names. Using such an identifier in a
model is ambiguous, because we do not know which of the entities is the intended
target. An obvious solution is to require that all identifiers correspond to one
entity only, but in larger models and programs this is hard and inconvenient to
realize.

A common compromise is to introduce scopes for identifiers. A scope is a
well-defined fragment of a model. We can then use the rule that all instances
of an identifier in a scope refer to the same entity. This way, an identifier
can be reused throughout a program or model, as long as the scopes do not
overlap. The process of identifying the scope an identifier belongs to and what
entity corresponds to the identifier in that scope is called scoping. Note that
scopes are often textually contiguous parts of the program text, but this is not a
requirement. Another complication is the concept of shadowing [49]. Normally,
scopes cannot overlap, because that would lead to ambiguities. If, however,
one scope is contained fully in another, we can avoid the ambiguity by stating
that only the innermost one applies while the outermost scope is shadowed. By
doing this, identifiers can be reused for different entities within the same scope.
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Another complication are qualified identifiers. The idea of qualified identifiers
is based on the observation that a programmer may want to use entities that
have no identifiers in the current scope. By using a different scope, in which the
entity does have an identifier, the desired entity can be identified without adding
it to the current scope. A quantified identifier thus consists of two parts, one
referencing the scope and one referencing the actual entity within that scope.

Another solution to solve ambiguous identifiers is to use extra information, in
addition to the identifier, to decide which entity is referenced by each instance.
The most common source of extra information is the type system. In fact, the
type system is not only a source of disambiguation information, as many ambi-
guities are directly related to the kind of information a type system can provide.
As mentioned before, the type of an expression provides information on the val-
ues it may produce. If the intended target of the identifier uses the results of the
expressions in some way, it can be useful to have multiple versions that apply to
different types. For example, the compiler might be able to construct more effi-
cient implementations for some types than for others, or some types may require
a completely different treatment to achieve the expected result. If the entities in
question are functions for manipulating numbers, implementations that require
non-negative values can be more efficient than implementations that can also
handle negative numbers. If the derived type information allows us to guaran-
tee the function will only be applied to positive values, the compiler can safely
select the first implementation. In contrast to a solution where we give each
version a different identifier, this use of type information removes the burden
of selecting the right version from the programmer. If the compiler uses type
information, however, scoping can no longer be completed without consulting
the type checker. In the classical approach, this is handled by intertwining the
scoping and typing steps, so that each identifier can be resolved when all re-
quired information is available. A disadvantage of this is that the definitions of
scopes and types are combined, while they are, in principle, separate concepts.

Typing

As mentioned before, a type can be seen as a class of values. In most models,
there are many elements that, during execution of the model, manipulate val-
ues. Some, usually called expressions, even produce new values. Common forms
of expressions are literal values, references to variables, collection constructors,
unary and binary operations and function calls. We can often use the struc-
ture of the model to show that the result of an expression will be of a specific
type. A simple example is the expression “2 * 3”. If we interpret the “*” as a
multiplication symbol, and “2” and “3” as numbers, this expression will produce
a positive integer number, namely 6. In this case, we can compute the value
directly, because we have access to all necessary information. If we consider the
example “x + 3”, where x is the name of a variable, we cannot compute a value,
because we do not know the value x will contain when the expression is evalu-
ated. However, if we know, based on another source, that the value contained
in x will be a number, we can still safely predict the multiplication will work
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correctly. Essentially, we interpret the expression in an abstract way, allowing
us to make broad predictions on its results. The process of computing the type
of value that will be produced by each expression in a model is called typing.
During typing, we check if the language elements that receive values can handle
values of the computed type. If, for example, we change the previous example
to “ ‘two’ * 3”, we try to multiply a word by a number. In most languages, there
would be no semantics for such an expression, and trying to execute it would
lead to an error. The process of verifying that the types of all expressions in a
model are valid is called type checking, and the component implementing it is
the type checker.

Whenever a type checker finds an error, the process of typing can usually
not be completed successfully. Instead, an error is reported to the user. In the
simplest case, the type checker stops as soon as it discovers an error. This is
not considered very user-friendly, so most modern type checkers try to continue
until they have attempted to type the whole model. Doing this gives the user
a better overview of the overall correctness of the program. It can, however,
lead to situations where one error triggers another, leading to a cascade of error
messages. Ideally, the type checker should show only the appropriate error
messages to the user, filtering those that will go away if the “real” error is fixed.
This issue is closely related to the problem of determining what error message
to present to the user. For example, suppose the type checker finds an identifier
with an associated entity of an incorrect type. We could choose to report this to
the user with no further information other than the location of the reference. It
might be the case, however, that if the identifier is changed slightly, it becomes
correct, or that an entity with the correct identifier exists, but in a different
scope. In such cases, it may be more helpful to point this out as a potential
solution for the error. It has even been suggested that the type checker should
try to make modifications to the model in an attempt to find a version that
is correct [75]. Based on this, one or more suggestions to fix the model can
be given to the user in addition to the error message. A certain level of care
must be taken with this, because textual similarity of two identifiers does not
necessarily imply that they are intended to refer to the same element. If they
are not, the suggested fix could in fact introduce a new bug into the model.

In modern development environments, typing and type checking are an inte-
gral part of the process of creating programs and models. If the system discovers
an error during the creation of the model, it will immediately give feedback to
the developer, who can then fix the error. From the type checker perspective,
this adds the complication that incomplete models must be type checked. Ad-
ditionally, the type checker should be fast and efficient enough to keep up with
the user without interfering with her ability to edit the model. In this scenario,
it is very useful if the type checker can operate incrementally, i.e. can type check
an incomplete instance of a model, and can reuse those results to type check a
more complete version of the same model quicker. Obviously for this to work
the parser must be able to produce a parse tree based on an incomplete input
text, that additionally can be related to previous and subsequent versions of
the same model. If this is not the case, the type checker can either not create
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partial results to use later, or apply previous results to new models.

Execution

After type checking is finished, and the input text contained no type errors, we
now know we have a consistent model. Depending on what the model represents,
we may now want to compute some results based on it, refine it further, or
create an executable program. To simplify terminology, we will refer to the
implementation of these following steps as execution environments. Due to the
diversity of the potential uses for a model, it is hard to come up with generic
criteria that the model created by the type checker should meet. In general, we
could say the type checker should compute as much information about the model
as possible, because there is more opportunity for reuse if it it is added earlier
in the process rather than later. On the other hand, if too much information
is inserted into the model, it becomes bloated and more difficult to understand
and manipulate properly.

Based on this, it may be more useful to consider the kind of information
the type checker should be able to add to the model in order to satisfy the
needs of the desired execution environments. We assume that a model consists
of model elements with properties. These properties can be references to other
model elements, or basic values. Because a type checker must be able to add
type information to the model, it should be able to create new model elements
that represent those types, and link them to the appropriate elements. In some
DSLs, the elements representing the types are already present even in an un-
typed model, for example as annotations added by the model creator, so the
type checker should also be able to link model elements. In order to add infor-
mation to a model element, it may be necessary to change its structure, so the
type checker should also be able to transform elements. In addition to model
elements, types may also be represented as basic values, so the type checker
should also be able to create and manipulate those.

1.3 Problem statement

The concept of a DSL has been around for some time, but in recent years it has
attracted increased interest in connection with MDE, as discussed in greater
depth in Section 2.2. With this increased interest comes an increased need to
create, maintain and evolve DSLs and their tools. Due to the nature of DSLs, it
is important that people who are not experts in the area of language design and
construction, or even in computer science, can still contribute to the design of
these languages and their tools. To this end, language workbenches [80] and code
generators [68] have been developed that allow language designers to specify
the desired properties of DSLs and generate implementations based on those
specifications. Typically, these so-called metatools focus on constructing a DSL
model based on input from the user in the form of text or graphical elements,
which is then processed further to implement the dynamic semantics of the
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language. We observe however, that most of these tools pay little attention to
the static semantics of the DSL. In our opinion, static analyses like type checking
can detect errors and support development for many domain specific languages
in the same way they do for general purpose languages, but are different enough
from syntax and dynamic semantics to warrant special treatment.

1.4 Research questions
To address the problem stated in Section 1.3, we formulate the central research
question that will be the topic of the thesis as:

RQ. How can DSL type systems be specified in an understandable, formal and
evolvable way?

In the remainder of this section, we will decompose this central research
question into more detailed research questions.

As mentioned before, DSLs originate from a wide variety of fields. As a
consequence, the syntax and semantics of a DSL can differ substantially from
those found in other DSLs or in GPLs. However, it would be impractical to
have a separate specialized type system formalism for each DSL. Fortunately,
experience from the fields of dynamic semantics and syntax suggests that this is
not necessary, because most DSLs consist of variations on several basic features.
However, before we can select a formalism that covers these features, we need
to identify what they are. Thus, the first research question is:

RQ 1. What are common features of DSL type systems?

Another important consideration is that the specification needs to have value
for the stakeholders of the language. If the stakeholders cannot understand the
specification, or if it provides no benefit for them, we cannot expect them to
spend effort on it. Therefore, we need to determine what the views of the
stakeholders are on type systems. In particular, the second research question is:

RQ 2. How can DSL type systems specification help stakeholders reach their
goals?

One aspect of DSLs that is of special interest to us is that of language evo-
lution. Because DSLs are by nature limited in what they can express, they
are more likely than GPLs to require evolution in response to domain changes.
If this results in, for example, new constructs being introduced, the static se-
mantics and its tooling will have to be updated. Obviously, our specification
formalism has to support this evolution. The research question is:

RQ 3. How can DSL type systems specification assist the process of language
evolution?

Once we have determined what common features of DSL type systems are,
we need to find one or more specification formalisms that can express as many of
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these features as possible in a clear and efficient manner. In practice, this means
that for each DSL, a choice must be made between several formalisms that have
their own advantages and disadvantages. We observe, however, there is little
recent work done in this field. In order to address this for as many potential
DSLs as possible, in this thesis, we choose to focus on one specification formalism
that can cover the requirements most commonly found in DSLs. Thus, the
research question is:

RQ 4. What is the specification formalism most suited for describing the type
systems of DSLs?

Once we have chosen a suitable formalism for DSL type system specification,
we need to make sure that common constructs can indeed be expressed in a
concise and flexible way. In order to do this, we have to select a number of
DSLs and define their type systems, so that we can see how the formalism
works in practice. The corresponding research question is:

RQ 5. How can DSL type system features best be expressed in our chosen for-
malism?

1.5 Thesis outline
This thesis is divided into six main chapters. The first two contain this intro-
duction, Chapter 1, and our discussion the general properties of type systems
and type checkers, Chapter 2. The next chapter, Chapter 3 describes our ex-
periments in using MSOS as a type system specification language. We describe
how MSOS can be used to define type systems and how a type checker can be
generated based on the specification. This chapter is based on [21] and [22].

During this research, we discovered MSOS did not meet our requirements as
effectively as we hoped. In order to improve on MSOS, we introduce our own
type system specification language, EMF-TL, in Chapter 4. Next, in Chapter 5,
we describe case studies for four languages we chose based on our SLR: CIF,
WebDSL, mCRL2 and POOSL, where we evaluate the new language.

Finally, the last chapter of this thesis, Chapter 6, contains our overall con-
clusions and vision on future work.
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Chapter 2

Requirements of Type System
Specifications

In order to answer some of the research questions stated in Section 1.4, we found
we need to know more about the properties of DSL type systems and the desired
properties of DSL type system specifications. We address this in this chapter
by performing a systematic literature review (SLR) on published DSLs. For
this SLR, we collected a large number of papers describing DSLs and used this
information to establish which type system properties are common among DSLs.
We also look at the various stakeholders involved with DSL type checkers. Using
the knowledge gained from the SLR and the stakeholder analysis, we formulate
a number of requirements a type system specification should meet.

2.1 Introduction

In our problem statement discussed in Section 1.3, we indicated that we want
to develop a language for the specification of type systems, and in particular for
the type systems of DSLs. We also indicated that we want to use this language
to generate tools, type checkers, that implement the described type systems. In
order to determine what is required to achieve this, we first need to answer RQ
1 and determine the common properties and components of DSL type systems.
To this end, we conducted a systematic literature review, described in Section
2.2. In addition to the type system viewpoint, we also need to determine the
desired properties of the generated type checker, because they may influence
the design of the language as well. We do this by considering the type checker
and its specification from the perspective of several stakeholders (Section 2.3).
In Section 2.4 we summarize our findings by providing a list of requirements a
type system language should fulfill.
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2.2 Systematic Literature Review of Existing DSL
Type Systems

One measure of the quality of a type system specification language is the number
of practical type systems the language can describe. Ideally, we would like
to have sufficient flexibility to define the type system of any possible DSL,
while avoiding type system specification language constructs that would be too
expensive to implement or inhibit potential analysis of the type systems written
in the language. In practice, many DSLs are confidential, poorly documented
or very obscure, which makes it hard to sensibly test whether a type system
formalism can indeed describe any DSL type system. A more achievable goal
is to cover a “typical" DSL, a DSL that uses only type system features that
are common to most DSLs. Unfortunately, it is again unclear what this would
entail. The nature of DSLs makes them hard to compare, and there is no clear
sample set of DSLs that can be used as a basis for the comparison. In order
to get a clear picture of what features are common in DSL type systems, we
conducted a Systematic Literature Review or SLR [67]. As described in [67],
doing an SLR requires a Review Protocol, that defines how this specific review
will be conducted. We discuss the elements of the protocol in the next sections.

Research Questions
The first element of the protocol is the definition of the research questions.
These research questions refine RQ 1 and are the prime factor that determines
what literature will be reviewed, what information we want to gather from each
paper, and how we will use that data to achieve the goal of the review. The
research questions we have defined are:

RQ 1.1. How are DSL type systems described?

RQ 1.1 is related directly to the main purpose of this SLR: to discover how
DSL type systems are currently defined. We address this question by looking
at the sections discussing semantics of the DSL(s) in each paper.

RQ 1.2. How complex are DSL type systems?

RQ 1.2 is connected to the question whether it is necessary to describe the
specific static semantics of the DSL in a formal way. If a DSL is very small, its
static semantics may be too trivial to be worth formalizing.

RQ 1.3. What type systems do DSLs have?

RQ 1.3 is related to the elements common to DSL type systems. We expect
that several common properties originating from GPL type systems can also be
found in the DSL type systems. Because the level of documentation for DSL
type systems can vary greatly, we cannot predict beforehand what properties
will occur often enough to be interesting. However, to provide some structure to
this question, we have defined a number of subquestions, RQ 1.3.1 to 1.3.4 that

14



we certainly want to answer for each DSL. The first subquestion concerns the
position of the type system as either static or dynamic semantics. Static type
systems are applied earlier (e.g. during the compilation process) than dynamic
type systems which are applied during execution. This distinction strongly
affects both the information available to the type system and the actions that
can be taken based on the results.

RQ 1.3.1. Are DSL type systems static?

The second subquestion is about the guarantees that are made for a correctly-
typed model. This property is commonly referred to as the strength of the type
system. An early definition of this concept can be found in [77], which states
that in a strong language “whenever an object is passed from a calling function
to a called function, its type must be compatible with the type declared in the
called function". In contrast, in a weak type system this requirement is not
enforced, or only enforced to a limited extent. It must be noted that a number
of variant definitions exist, primarily inspired by discourse on the relative merits
of programming languages. In this thesis, we decided to use the definition by
Liskov et al. [77], because it is both clear and relevant to all DSLs.

RQ 1.3.2. Are DSL type systems strong?

The third subquestion is related to an important feature of some GPLs,
namely the existence of special types known as objects. In GPLs, this feature is
considered so fundamental that languages that have it are placed in a separate
category, namely object-oriented languages. We would like to know if DSLs are
similarly affected.

RQ 1.3.3. Are DSL type systems object-oriented?

The fourth and final question is concerned with how the type system is rep-
resented in actual DSL models. In most languages, constructs like declarations
require explicit type information, while in others, this is considered unnecessary.
The more type information is implicit, the more type inference has to be done
as part of the type system to fully type a model.

RQ 1.3.4. Do DSL type systems feature explicit declarations?

Search Process
We gathered papers for our SLR in two complementary ways. We observed
that the term DSL has not been in common use for quite as long as domain
specific languages exist. In other words, DSL existed before they were called
such. A number of early DSLs have been recognized and catalogued as such
in [34]. Hence, we also choose this article as the point when the term DSL
was sufficiently widespread to effectively use search engines. For the period
preceding the publication of [34], we include in our SLR the DSLs described
in [34]. For the DSLs published after [34], i.e. from 2000 onwards, we used
search engines provided by three major scientific publishers: ACM, IEEE and
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Springer. While this means not all computer science conferences and journals
are covered, we are confident we can acquire a representative sample is this
manner, which is the goal of this SLR. For ACM, the search engine we used
is called the ACM Digital Library1, and we performed a search on the search
term “Domain Specific Language” among author’s keywords. For IEEE, the
engine is called IEEE Xplore2, and we used the search term “"Domain specific
language"", but on index keywords. For Springer, the search engine is called
SpringerLink3. Because SpringerLink does not support search on keywords, we
instead searched for the phrase “Domain Specific Language”. We also restricted
our search to conference proceedings and journals, to guarantee all materials
found were covered by peer review. In all cases, we restricted our search to
material published between January 1, 2000, the year the annotated bibliog-
raphy was published, and December 31, 2012. The ACM and IEEE searches
were performed in December 2012, the Springer search was performed in May
2013. This means papers presented in 2012 but not yet published may have
been missed. Overall, this will not impact our general results beyond reducing
the number of DSLs in our study. In cases where it is more directly relevant,
the missing data will be discussed explicitly.

Inclusion Criteria

From the results of the search, we then proceeded to select the papers of interest.
We included papers if they met at least one of three criteria:

1. The paper introduces a DSL. An example is [104].

2. The paper introduces a software framework or design method that includes
a DSL. An example is [3].

3. The paper describes a DSL construction method using a DSL as a main
example. An example is [95].

Exclusion Criteria

After the search, we first collected a number of statistics on the complete set of
DSLs. We then performed further analysis on a more limited set of languages,
based on the following exclusion criteria.

No type system Papers describing a DSL that is untyped by design will by
definition not include a description of a type system.

Internal Internal DSLs, also called embedded DSLs [59], share the type system
of their host language. We therefore do not consider type systems of these
languages as prime examples of DSL type systems.

1http://dl.acm.org/
2http://ieeexplore.ieee.org/Xplore/home.jsp
3http://link.springer.com/
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No information If the information available on the DSL is too superficial, we
cannot draw useable conclusions about its type system. Thus, we excluded
all language which we rated as quality none based on the criteria presented
in Section 2.2.

Finally, if a DSL was described in multiple papers, for example because it was
updated during the search period, we combined information from all papers
available, using the most recent information available in case of contradictions.

Quality Assessment

Not all papers introducing DSLs provide a significant amount of detail about
the corresponding type system. In fact, in many cases, the type system is not
discussed at all. To some degree, we can use example programs and models to
uncover implicit information about the type system. Doing this introduces a
judgement factor, and therefore we consider the DSLs where this is necessary
of lesser quality. We rate DSLs on a scale that goes from none, for DSLs that
do not even have an example model, via basic (example programs that allow
some type system estimation) and medium (formal or informal type system
description) to high, for DSLs for which we have both one or more examples
and a description.

Data Collection

From the papers we collected, we extracted several sorts of data. The first
category includes metadata on the papers. We extract this to be able to see
time-related trends in DSL design, for example due to advances in supporting
technology, and the possible differences between DSLs published in different
sources.

Paper The papers we used to collect the data on the DSLs. Note that a
single DSL can be discussed in multiple papers, and one paper can discuss
multiple DSLs.

Authors The authors of the papers.

Years The years in which the papers on the language were published.

Source Was the language described in conference or in journal paper(s)?

Source name The name(s) of the conferences and journals in which the papers
appeared.

The next category describes general language properties. We used this data
in combination with the exclusion criteria to decide which papers we would
analyze further. As such, we refer to Section 2.2 for details on why we choose
these particular properties of the DSLs and papers we found for this purpose.
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Syntax The kind of syntax used by the DSL. Most languages use either textual
or graphical syntax, but some use a combination or allow both.

Internal The degree in which the DSL is connected to a host language.

Typed The presence of a type system in the DSL.

Information The level of information available for the DSL.

The next category describes the various type system properties we are interested
in. They are listed in no particular order.

Binary expressions Binary expressions are one of the most basic forms of
used language constructs, but some languages, usually oriented at struc-
tural rather than behavior description, do lack them. We consider this
to be a simple indicator of the potential complexity of the type system,
with type systems for languages without binary expressions being simpler
than for those that do feature them. We use this category as a metric for
RQ 1.2.

Static [113] An important property of a type system is when it is applied.
Broadly, type systems can be divided into those that are applied before
the model is executed, and those that are applied during execution. The
former are referred to as static type systems, the latter as dynamic type
systems. This category relates directly to RQ 1.3.1.

Strong [77] The strength of a type system refers to its power to stop execution
if it finds type errors. If models can be run despite inconsistencies found
by the type system, the type system is considered weak. If a type system
prevents execution for models it cannot type, it is considered strong. This
category relates directly to RQ 1.3.2

Explicit Most DSLs, especially those with strong type systems, require the pro-
grammer to provide information on the intended types in the model. Most
commonly, this is done in the form of type annotations for declarations,
indicating their intended use. These annotations can provide the type sys-
tem with important information that enables the detection of more errors.
We call a type system explicit if these annotations are required for at least
some forms of declaration. This category relates directly to RQ 1.3.4

Overloading [1] As a convenience for programmers, it can be useful to enable
the type system to use type information to remove potential ambigui-
ties from a model. A common application of this type system feature is
allowing ambiguous calls to functions or procedures, that are separated
based on the types of the arguments and/or results. This is referred to as
overloading. We use this category as a metric for RQ 1.2

Presence of objects With respect to programming and modeling languages,
object orientation refers to a way of organizing definitions of data and
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behavior in models. One of the core concepts of object-orientation as
identified by Pierce [88] is encapsulation. In this SLR, we handle this
trait by looking for constructs that define both data and behavior, which
we refer to as objects. This category directly relates to RQ 1.3.3.

Inheritance [88] In object-oriented languages, definitions of object types can
often be related through a special mechanism called inheritance. This is
another of the features identified in [88] as fundamental to object orienta-
tion. This category directly relates to RQ 1.3.3.

Inference [88] In type systems without inference, annotations are required for
declarations to indicate their intended use. In contrast, type inference is
the ability to deduce the type of expressions without referring to explicit
annotations. By allowing explicit annotations to be dropped, type infer-
ence can reduce the effort required to construct models, at the cost of type
system complexity. We use this category as a metric for RQ 1.2.

Parameterized types For complex types, there often exist a number of vari-
ations that are very similar. For example, a container type can have
variations for different size or different element types. By giving these
types parameters, all versions can be represented without needing a large
number of predefined types. We use this category as a metric for RQ 1.2.

The final category contains details on specific types that DSLs use.

Boolean Some of the most basic values in languages are the boolean true and
false. This column records if the language has an explicit type for boolean
values.

Numerical Next to boolean values, numerical values are very common in lan-
guages. In contrast with booleans however, there are often several kinds
of numbers with different domains. This column records what numerical
types the languages have.

String The final common kind of value is textual. These are commonly referred
to as strings. Some languages also have a type for individual characters.
This column records what textual types the language has.

Other basic types Depending on the domain, the language can have other
basic types that are not Boolean, Numerical or String. Examples include
graph concepts like nodes and edges, flows and time values. This column
records what other basic types the language has.

Collection types Many DSLs have specific constructs to store multiple values
together. These are referred to as collections, and common examples are
lists and arrays.

Objects Not all object-oriented language refer to objects by the name “object”.
This column describes what object types exists in the language, if any.
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Records Some languages allow complex types to be defined consisting of sev-
eral parts, each with their own type. We refer to those types as record
types, and this column describes their presence and name.

Functions If functions are first-class values in the language, we need function
types to describe them. This column records what languages have function
types.

Union Union types are constructed by combining two other types, creating one
type that contains all values from both component types.

Other Any built-in type that does not fit in any of the other categories is listed
here.

Results of the SLR

The full results of the SLR will be available online [79]. Here, we first present
an overview of the data we collected. Because of the diverse nature of DSLs, we
first focus on a number of general properties that can tell us something about
the complexity and maturity of the DSL. Table 2.1 shows the results concerning
the kinds of DSLs we discovered during the SLR. In this table, each column
contains the results for one property we looked at. For each property, we give
the number of languages that have that property, in the TRUE row, the number
of languages that do not have the property, in the FALSE and the number of
languages where we were unsure, in the ? row.
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TRUE 1601 194 16 238 791 318 1563 18
? 24 24 59 5 162 0 34 0
FALSE 178 1585 1728 1560 850 1485 206 1785

Table 2.1: SLR DSL General Properties (N=1803)

One such property is the kind of syntax a DSL uses. As can be seen from
the table, the majority of DSLs use textual syntax, but there are a significant
number of graphical DSLs as well. Some DSLs use models that consist of both
graphical and textual components, and these are listed in the “Combination”
column. In our survey, the language WebSpec [25] is an example of such a lan-
guage. In WebSpec, a graphical language of states and transitions is combined
with a textual language describing the actions associated with the transitions.
Note also that some DSLs have multiple forms of syntax: this is the reason
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the number of graphical languages is larger than the number of languages that
are not textual. An example is the Autosar [86] language, which has a graphi-
cal language primarily intended for model construction, and a textual language
intended for model interchange.

The next column deals with internal versus external languages. Recall that a
language is called internal if it is implemented using the existing infrastructure
of another language, generally a GPL. In contrast, external languages have an
independent set of tools. Making a language internal limits the design of the
language, but greatly simplifies the implementation of the language. Neverthe-
less, we can see that the designers of most DSLs opt to fully implement their
languages themselves, instead of expanding on existing language infrastructure.
A possible reason might be that designers want to avoid the complexity of GPLs,
and an embedded DSL by nature involves a close connection with a GPL. How-
ever, more research in this area would be needed to make more definite claims
on this topic.

The most important DSL property we considered is whether the DSL is
typed. This clearly relates to the topic of this thesis, but is also an indication of
the complexity of the language. If a language only deals with very specific data,
like numeric values, a type system might not be necessary. In fact, we can see
that only just under half of the languages we could classify are typed. In the
rest of this chapter, we will ignore untyped languages unless specifically noted.

The last three columns deal with the information available on the language
and its type system. This is closely related to our definition of quality as given
in Section 2.2. Recall from the exclusion criteria from Section 2.2, the ideal
situation is that the paper(s) discussing the DSLs mention the type system
explicitly. However, for many DSLs, this is not the case. For those cases, we
looked at such examples to get some idea of what features the type system has.
Note that in some papers, it was unclear to what extend examples shown are
true, complete, examples of the DSL, or only fragments or pseudocode. We
marked those as ? to indicate this uncertainty. The information we can get
from examples is more limited, and the uncertainties are greater. Finally, we
looked whether the type system specification is mentioned in the future work
of the papers. We choose to include this column to acknowledge the effort of
authors who choose not to include a description of the type system in their
paper due to space limitations.

Based on Table 2.1, we selected the DSLs we wanted to investigate further.
As mentioned before, untyped languages have no type system that can have
properties, so we did not attempt to collect property data on them. This results
in a set of 791 DSLs. Secondly, we did not consider internal DSLs, because
though these are usually typed, the type system is intertwined closely with the
type system of the host language. These, we do not consider true examples of
DSL type systems. There are 573 external DSLs in our data set. Finally, if the
paper(s) describing the DSL do not feature either an example or a discussion
of the type system, there is simply not enough information to use. In fact, in
such cases, we can often not determine if the language is typed at all. It may
still be possible, for example if the language is explicitly mentioned to be typed,
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or a metamodel is provided that includes type information. This selection of
external languages with type systems with sufficient detail resulted in a set of
528 DSLs.

Table 2.2 shows the type system features for these 528 DSLs we extracted
from the papers describing each language. The first feature deals with the
indicator we choose for the complexity of a language: binary expressions or their
equivalent. The next two columns describe some properties relating to the type
system implementation: the way it is applied (statically or dynamically) and
its strength. For DSLs, we observe that most are both statically and strongly
typed. We must, however, add the caveat to this that both application method
and strength are rarely explicitly mentioned in papers discussing DSLs. Thus,
for 324 DSLs, the information is estimated based on examples. We worked
under the assumption that if a language is compiled and has explicit types, the
compiler would use the types during compilation, making the language statically
and strongly typed, because incorrect types would lead to incorrect compilation.
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TRUE 469 476 480 438 201 240 104 58 92
? 34 31 34 28 41 23 392 34 161
FALSE 25 21 14 62 285 264 30 435 274

Table 2.2: SLR DSL Type System Characteristics (N=528)

The next property we considered is whether the type system requires the
programmer to add explicit type annotations to the model. Because explicit type
annotations tend to simplify the implementation of type systems, we expected
most DSL type systems to use them, and we observe that this is indeed the case.
In this case, however, it should be mentioned that explicit type annotations are
a clear sign a language is typed. In contrast, an untyped language will not
have any type annotations. Therefore, the presence of type annotations directly
influenced our assessment on whether the language was typed, which may have
influenced the ratio between explicit and implicit languages in our results.

The next column concerns parameterized types. By parameterized types,
we refer to properties that can be set by the user that provide more detail on
the kind of values a type represents. For example, a container type may have
parameters that describe the type of elements it can contain or its size. A more
specific example is the Shape type found in the StreamIt [98] language. The
Shape type defines matrices of various sizes and dimensions, like Shape[10],
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Shape[15,10] or Shape[3,3,3]. By using parameterized types, a large variety
of shapes can be defined without a large number of specific types. From our
data, we observe that a majority of DSLs do not have parameterized types, but
a significant number do. This is in contrast with the previous characteristics,
which were implemented by most DSLs. We expect that many DSL designers
felt containers were not needed to represent models in their domain, so they did
not include parameterized types either.

The next column deals with the wider of concept of object-orientation. Since
object-orientation is such a large concept, we expected it would be difficult to
discern if and to what extent a DSL is object-oriented. Instead of deciding
whether the language is object-oriented, we decided to consider two simpler
properties: presence of objects and inheritance. The first of these is the basic
presence of objects. We define objects as types that contain both user-defined
data and behavior. From our SLR results, we observe that most DSLs do not
have such types, and based on that we conclude most DSLs are not object-
oriented. We expect most DSL designers did not find the effort required to
add object-orientation worthwhile, or decided that object-orientation did not
fit their desired domain constructs.

The next property we considered is overloading. Overloading simplifies
model construction, and thus is a useful feature for most DSLs. However, it
is also non-trivial to implement, because it means ambiguity is no longer au-
tomatically erroneous. An additional complication is that it is hard to judge
whether a language supports overloading based purely on examples, which ex-
plains the higher number of “unknowns" in the Overloading column in Table 2.2.
Despite this, we observe that DSLs do use overloading, but this is based on only
a small sample compared to the overall number of languages.

The next property we considered is type inference. Like with some other
properties, it is difficult to tell whether a language supports type inference based
on examples, so we mainly based this column on type system descriptions. We
observe that most languages, roughly 83%, do not use type inference.

The final characteristic is inheritance. This is the second object-orientation
related property, and given the limited popularity of objects in general, it is
unsurprising that inheritance is the least popular characteristic in our survey.
Like with objects, we expect implementation effort is a significant factor here,
as well as the generally limited size of DSLs and their models, which makes the
increased modularity made possible by inheritance less urgent.

In this section, we describe the results of our SLR of type systems of
DSLs. Recall that we collected DSLs by looking at papers published by
three major publishers, and a DSL bibliography. For each DSL we found,
we attempted to determine general language properties based on the infor-
mation in the papers. We collected details of 1803 DSLs, of which 791 were
typed. Based on this we could already conclude that a significant number
of DSLs are typed, meaning there should be a sufficient number of type
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systems to formalize. To get a better idea of what would be required of a
type system formalism, we selected 528 DSLs and collected further infor-
mation on type system properties. Based on this data, we conclude DSL
type systems are often static and strong, while more advanced features like
object-oriented, type inference and parameterized types are less common.

Evolution of DSL Type System Properties

The primary conclusion of our SLR is that a significant number of DSLs are
typed. We illustrate this and various other statistics with a series of figures
starting with Figure 2.1. These figures show how the various characteristics of
DSL type systems change over time. In this context, we should recall that we
collected the SLR data in December 2012, so our data for 2012 is not necessarily
complete. This is indicated in the figure by the underscore under the year 2012.
In the first figure, we observe that the typed languages outnumber the untyped
languages in most years. We also observe that the ratio between typed and
untyped languages does not fundamentally change over time, staying at roughly
50-50 to 60-40 for typed versus untyped, if we discount the unknowns.
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Figure 2.1: Typed DSLs: Roughly half of languages typed. N = 1803.

Given that so many DSLs are untyped, we might ask if this is related to the
effort required to build the necessary tools. Though we have not investigated
the motivations of the DSL designers, we observe that this would be less of an
issue for internal DSLs, because of the support provided by the host language
type system. A survey among DSL designers which would clarify this is con-
sidered as future work. In Figure 2.2, we show the relation of internal versus
external DSLs in our study. We observe most DSLs are external. While our
data shows internal DSLs are growing more popular in absolute terms, rising
from 3 instances found in 2000 to 29 instances in the year 2012, the variation
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Figure 2.2: DSL Implementation: Most languages are not embedded. N = 1803.

in our data is too large to say if this means the fraction of DSLs that is internal
is also rising.

Another factor that could impact the presence of type system is the syntax
of DSLs. In Table 2.3, we show that graphical languages are less likely to be
typed than textual languages. For the purpose of this table, we only considered
external languages. Note that during our data collection, we found 98 languages
that have multiple forms of syntax, but we ignored that for the purpose of
this table and included them in both counts, because they do not significantly
impact the results. From the table, we observe that graphical languages are
considerably less likely to be typed than textual languages. If we apply a chi-
square test to determine if the typed property is independent of syntax, we find
a p-value of less than 0.005, indicating the independence to be very unlikely.
We must be careful, however: because graphical languages use constructs that
make types less explicit those used in textual languages, we must consider the
possibility of a potential bias during the collection of the data, where typed
graphical languages are not recognized as such. In order to see if this is the
case, we also looked at the presence of type system discussion for graphical and
textual languages. Assuming designers of both textual languages and graphical
languages are equally likely to present a discussion of a type system if one is
present, that gives us a separate measure of how many typed languages there
are. In the table, we can see that a quarter of the textual languages have a
type system discussion, but less than a tenth of the graphical languages do.
Again, if we apply a chi-squared test to determine is the presence of discussion
is independent of syntax, we find a p-value of less than 0.005, indicating it is
very unlikely. Based on this, we conclude that graphical languages are indeed
less likely to be typed that textual languages. It would be interesting to see
where in the spectrum languages with combined syntax fall, but unfortunately
we do not have information on enough of those to draw any conclusions.

Given that a significant number of DSLs are typed, our next question is how
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well these type systems are described. In Figure 2.3, we show the fraction of
typed DSLs that have a discussion of their type system in one of the papers
that feature them. Because it makes little sense to expect type system discus-
sions from untyped languages, they are not represented in this figure. Again,
we assign DSLs to the year the first paper about them we found was published.
Note that the category “example only” actually corresponds with the “low” qual-
ity assessment, as described in Section 2.2. The category “Discussion" actually
corresponds quite well with the “high” assessment, because the number of lan-
guages that have a formal or informal description but no example, and would
thus be assessed as “medium" is only 6, and thus negligible. For completeness,
we also note that the number of DSLs assessed as “none” is larger, namely 20 in-
stances, but still small compared to the total number of DSLs in the figure. We
observe that the type system of most DSLs is not discussed in a paper, though
the number of DSLs with type system descriptions is not negligible. The abso-
lute number of languages is increasing, though we do not have enough data to
support any conclusions concerning the evolution of type system descriptions in
a relative sense.
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Figure 2.3: DSL Type System Discussion: Discussion present for a number of
DSLs. N = 528.

Language Discussion
Syntax Typed Untyped Unknown Present Absent
Textual 745 684 100 308 1,221
Graphical 24 138 11 4 169
Combined 0 3 0 0 3

Table 2.3: DSL Type System related to Syntax: Graphical languages less likely
to be typed.
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A possible explanation for the lack of type system descriptions of DSLs is
that size limitations common in conference papers prevent authors from includ-
ing discussion of all aspects on a language. If that is a significant factor, we
would expect that languages published in journal articles to have a type system
descriptions more often. This relation is visualized in Table 2.4. In this table,
we show the number of DSLs that do have type system descriptions, the number
that do not and the percentage that do, split between DSLs with only confer-
ence papers, DSLs with only journal papers, and DSLs with both. Contrary
to our expectation, the fraction of DSLs that have a type system discussion is
not much different between DSLs published in conferences and journals. Note
though that the number of “journal" languages we have is quite low, limiting
the statistical significance of that result. Actually, if we apply a chi-square test
to determine whether the presence of discussion is independent of source type,
we get a p-value of 0.45, which means we cannot reject the hypothesis that
the distributions are equal. The fraction is a little bit higher for DSLs that
are described in both conference and journal papers, but not to a statistically
significant extent.

Source Present Absent Percentage
Both 26 33 44.07

Conference 263 396 39.91
Journal 24 44 35.29
Unknown 2 3 40

Table 2.4: DSL Type System Discussion per Source Type: Not Influenced By
Paper Source.

Another explanation could be that a subsequent conference or journal paper
on the same language should contain sufficient new material. If the type system
was not covered in the first paper, it may be a way to justify the second. In order
to test the hypothesis that type system discussion may be omitted due to space
reasons, we also related the presence of type system discussion to the number of
papers we have collected for each DSL. For this table, we only considered DSLs
for which we are confident they are typed, which is true for 279 languages. If
a language is untyped, or if we could not establish if it was typed or not, it
was left out. In Table 2.5, we can see that the majority of DSLs in this study
is represented by only one paper. More surprisingly, we observe no significant
increase in the percentage of languages that have type system discussion as the
number of papers increases to two. There is a small increase for DSLs with
three or four papers, but the numbers of DSLs in these categories are too low
to draw meaningful conclusions.

Given that type system discussions are relatively uncommon, the question
arises whether it is worth looking for them. To see if the information we have
on type systems with discussions is better than what we have for those without,
we considered the attribute with the largest number of DSLs with classification
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Number of Papers No Discussion Discussion Percentage Total
1 145 102 41.29 247
2 14 10 41.67 24
3 3 3 50 6
4 1 1 50 2

Table 2.5: DSL Type System Discussion by Number of Papers: Not Influenced
By Number Of Papers.

“Unknown”, overloading. In Table 2.6, we show our information on overloading
split by the presence or absence of discussion. We can see that, while there
still a lot of uncertainty, the percentage of unknowns drops from 80% to 50%,
indicating that type system discussion, if present, does add useful information.
In fact, if we apply a chi-squared test to see if the two groups are drawn from
the same distribution, we find a p-value of less than 0.005, indicating it is very
unlikely that the value we found for overloading is independent from the presence
of a type system discussion.

Overloading
Discussion Present Absent Unknown

False 41 11 271
True 63 19 121

Table 2.6: DSL Type System Discussion related to Overloading: Discussion
Adds Information.

If the type system of a language is not described explicitly, we might still
be able to use examples as sources of implicit information. In Figure 2.4, we
show the fraction of DSLs that have examples in at least one of the papers
discussing them. For some papers, it was unclear to if a given piece(s) of code
were examples of the DSL, pseudocode or of a different language. The languages
in these papers are classified as unknown in Figure 2.4. Similarly to Figure 2.3,
we excluded the untyped languages here. Unsurprisingly, we observe that we
have examples for the majority of DSLs. Though these examples can be limited
in size, because they describe directly how a user might perceive the language,
we still consider them valid sources of information.

As described in Section 2.2, in addition to whether DSLs are typed, we also
collected information about what features type systems of typed DSLs have. As
mentioned, we only collected this data for external, typed DSLs where we have
found either a type system discussion or an example model. For many features,
we unfortunately found that our data did not contain interesting patterns, or was
too sparse to draw statistically valid results. One of the features where we did
find interesting information was object orientation. In Figure 2.5, we show the
number of DSLs featuring objects over the years. We observe again that most

28



19
85
19
86
19
87
19
88
19
89
19
90
19
91
19
92
19
93
19
94
19
95
19
96
19
97
19
98
19
99
20
00
20
01
20
02
20
03
20
04
20
05
20
06
20
07
20
08
20
09
20
10
20
11
20
12

0

20

40

60

No example
Unknown

Example present

Figure 2.4: DSL Examples: Most Languages Described Using Examples. N =
528.

DSLs do not feature objects, but also that object-orientation appears not to get
more popular over time, as we initially expected. While the absolute number of
languages with objects increases, this increase is proportionate with the increase
in the total number of languages. If we apply a Pearson Correlation test to the
data, connecting the number of object-oriented languages to the total number
of languages for each year, we get an R value of 0.97, which indicates a strong
correlation, and a significance value of less than .0000001, indicating strong
significance. The corresponding scatter plot is shown in Figure 2.6. The top
plot shows the relation between total languages and object-oriented languages.
The bottom plot shows the deviations from the expected relation.

Continuing our survey of DSL type systems, we look more closely at
how the properties of DSL type systems evolved over time, and how they
are related to each other. Overall, we found no significant shifts in the
prevalence of various properties over the years. We also found no relation
between the source of the papers used, and the level of detail of the DSL
description. We did find that the number of typed, external DSLs continues
to be significant, indicating it will remain a valid group of languages to
target in the future.

Analysis
In addition to data on properties of DSL type systems, we also collected data on
the types present in DSLs. However, due to the limited information available
for many DSL type systems, we are limited in our ability to draw statistical
conclusions based on this data, because we cannot be sure we extracted all
types for all languages. Additionally, we have to be careful in comparing types
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Figure 2.5: DSL with Objects: Most DSLs Do Not Feature Objects. N = 528.

between languages designed for different domains. For example, we could look at
the number of types a language has a measure of its complexity. However, in one
domain, it might make sense to have a wide range of types to represent specific
kinds of numeric values, because the distinction between them is relevant. In
other domains, it may make more sense not to have numeric values at all, and
thus no numeric types. One conclusion we can draw, however, is that many
DSLs use what could be called “common" types, like integer and string, that
are also present in many GPLs, but surprisingly few, at a rough estimate one in
five of our typed, external, documented languages, actually use domain-specific
types. It would be interesting to see how strongly the presence of domain-
specific types relates to the domain of the language, i.e. if some domains just
do not require domain-specific types. Unfortunately, due to constraints on the
time available compared to the time required, we choose not to attempt to
classify the domain-specific languages we studied by domain, which means we
cannot perform that analysis. Another explanation could be that modelers or
language designers are so used to working with types from GPLs that they do
not feel domain-specific types are needed. Again, due to limitations on the
available time, we felt a more thorough investigation into the motivations of
DSL designers fell outside the scope of this thesis. One observation that can be
made is that the most common data types are numeric, and specifically integers.
This suggests that numbers are considered useful in modeling in many domains.

In addition to looking at the properties of the DSLs and type systems de-
scribed in the papers, we also looked at the influence of the venue where the
DSL papers are published on their contents. The main results of this view are
shown in Table 2.8. In order to create this table, we counted the number of
DSLs published in each conference and journal. From the table, we can directly
see that the Model Driven Engineering Languages and Systems (Models) con-
ference is the most popular conference for publishing papers on domain specific
languages, with a total of 102. The second most popular venue is the Soft-
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Figure 2.6: DSL with Objects: Scatter Plot confirms correlation between total
number of languages and object-oriented languages.
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ware & Systems Modeling (SSM) journal, followed by the European Conference
on Modelling Foundations and Applications (ECMFA) conference, the Software
Language Engineering (SLE) workshop and the ReasoningWeb journal. A prob-
lem with this comparison, of course, is that these conferences and journals are
not all equal, or even similar, in size and age. In order to show the relation
between the number of publications and the number of DSLs, we have collected
data on the number of language papers published on average per year in the
top 5 conferences in Table 2.8, namely Models, ECMFA4, SLE, Generative Pro-
gramming and Component Engineering (GPCE) and OOPSLA/SPLASH. The
results are shown in Table 2.9. In this table, we show the conferences, with
their names in abbreviated form for space reasons. Next, we first show the total
number of language papers published in the conferences, then the number of
editions in the studied period, and the average number of language papers per
year we have data on. We assume that the sizes of the conferences are relatively
stable, which means averaging the number of papers over the editions gives us a
fair indication of their relative sizes. From among these, we can see one outlier
in terms of languages published per year. SLE is a relatively new conference,
but already has 65 language papers in its 5 editions. This confirms that, in
contrast with the other, more general conferences, SLE really is a language-
focused conference. We next show the percentage of the languages for each
conference that have documentation, are typed, are external and are interesting
according to our definition in Section 2.2 on 16. In these categories, we see little
difference between the conferences. We do observe that languages published at
ECMFA and GPCE are more likely to be documented and external, but the
difference is only a little more than a standard deviation, meaning the results
is not statistically very meaningful.

Threats to Validity

As for all literature reviews, there are several threats to the validity of the results
of our SLR.

• Our search for DSLs was, due to time constraints, limited to DSLs de-
scribed in papers published by three major scientific publishers, ACM,
IEEE and Springer. Obviously, there are a significant number of DSLs
that are not covered by this, for example because they were constructed by
commercial companies who consider them trade secrets, because they were
described in papers published elsewhere, in particular in non-computer
science conferences and journals, or because they are described not in a
paper, but in a book or a thesis. While we cannot eliminate this threat,
we tried to minimize it by making sure that we covered as many DSLs
as possible, from a variety of disciplines and publication dates. By doing

4Until 2009, this conference was called ECMDA-FA (European Conference on Model Driven
Architecturer: Foundations and Applications), (ECMDA-FA). In this thesis, we will use the
new name when referring to the conference in general.
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Source Languages
Model Driven Engineering Languages and Systems(Models) 102
Software & Systems Modelling(SSM) 79
European Conference on Modelling Foundations and Applica-
tions(ECMFA)

68

Software Language Engineering(SLE) 56
ReasoningWeb 45
Generative Programming and Component Engineering(GPCE) 45
OOPSLA4/SPLASH5 44
Practical Aspects of Declarative Languages(PADL) 41
International Conference on Model Transformation(ICMT) 39
Domain-Specific Languages(DSL) 38
Conference on Advanced Information Systems Engineer-
ing(CAiSE)

33

TOOLS 32
European Conference on Object-Oriented Programming(ECOOP) 31
Generative and Transformational Techniques in Software Engi-
neering(GTTSE)

30

International Conference on Web Engineering(ICWE) 27
Transactions on Aspect-Oriented Software Development(TAOSD) 23
International Conference on Compiler Construction(CC) 23
Automated Software Engineering(ASE) 22
International Conference on Human-Computer Interaction(HCI) 21
Formal Methods for Components and Objects(FMCO) 19
Fundamental Approaches to Software Engineering(FASE) 19
International Conference on Software Reuse(ICSR) 18
International Conference on Software Engineering(ICSE) 18
International School on Formal Methods(SFM) 16
SDL Forum 16
International Conference on Service Oriented Computing(ICSOC) 16
Applications of Graph Transformations with Industrial Rele-
vance(AGTIVE)

16

Implementation and Application of Functional Languages (IFL) 15
International Software Product Line Conference(SPLC) 14
Information Security Solutions Europe(ISSE) 14
International Federation for Information Processing(IFIP) 14
Hawaiian International Computer Science Symposium(HICSS) 14
International Conference on Conceptual Modeling(ER) 14
Algebraic Methodology and Software Technology(AMAST) 14
ADA-Europe 14

4 Object-Oriented Programming, Systems, Languages & Applications
5 Systems, Programming, Languages, and Applications: Software for Humanity

Table 2.8: DSL Publishing Venues: Models most popular.
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this, we increase the chance that if not each individual DSL, at least all
significant trends in DSL design are covered by at least one representative.

• In addition to the limits of our search area, we also have to consider the
limitations of our search engine queries and the search engines themselves.
Recall that for ACM and IEEE, we searched for “Domain specific language”
as a keyword. Because this phrase is commonly accepted in the MDE
community as a label for these languages, we expect that we did not
exclude a significant number of papers by using this search criterion. While
the choice of search phrase means that papers where the authors choose
the shorthand “DSL” over the longer version are excluded, but in our
experience, the shorthand, if it is included, is included in addition to the
longer version, not instead of it. Keywords are required for all ACM and
IEEE papers, so we also expect the search engine will be able to find
all papers with this keyword without problems. In the case of Springer,
because we could not search based on keywords alone, we instead used full-
text search for the same phrase. Because the text of a paper includes any
keywords, this will automatically include all papers that would have been
found if we had been able to search based on keywords. We do assume
that the search engine has access to the correct full text of all papers, but
because all papers were published in the year 2000 or later, we feel we can
assume this is the case.

• In addition to DSLs found in papers discovered using search engines, we
also looked at languages described in [34]. This introduces a threat to
validity, because the languages described in the paper are certainly not
all the DSLs published before the year 2000. Still, because the authors
of the bibliography chose the papers carefully, we feel that we still have
a valid set of DSL representatives, that should allow us to observe any
strong historical tendencies.

• Another significant threat to the validity of the results lies in the sub-
jective judgement involved in the decision if a given DSL has a certain
property or not. In part, this is caused by the diversity of the subject
area, which makes it impossible to devise a uniform test that can be ap-
plied to all languages equally. We tried to minimize this risk by limiting
ourselves to a restricted set of pre-defined concepts. By looking for the
same characteristics for a concept in each language, we reduce the change
for languages to be classified inconsistently.

• Another threat lies in differences between descriptions and reality. We
look only at how DSLs are described in papers, not at actual tools, which
means that we would not notice if a language is described as having an
elaborate type system, which is not actually implemented. On the other
hand, a language may have a type system that is not described in any
paper. We tried to minimize this threat by paying special attention to
examples of actual DSL models. If the description of the type system is
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correct, the features described should be present in the example(s) also.
This still leaves the possibility that while the example contains types, the
actual tools simple ignore them. However, because all languages presented
as useable, we feel we can assume they do not contain superfluous elements.

Conclusions

The primary goal of this survey was to answer RQ 1: What features do DSL type
systems have? Based on our survey, we conclude that most DSL type systems are
static and strong, with more advanced features like object-orientation and type
inference significantly less common. We observe that despite a marked increase
in the number of languages, this has not changed over the period of the SLR.
In our choice which formalisms would be suitable for type system definitions,
these were the features we knew had to be supported. This will be discussed in
greater detail in Chapters 3 and 4. We also selected the languages we used in
the case studies in Chapter 5 based on the results of this survey. We also found
that DSLs are published in a wide variety of venues, both language-oriented and
not language-oriented.

2.3 Stakeholders

In addition to the place the type checker has in the model creation process and
the properties of existing DSLs, it should also be useful to look at the type
checker from the perspective of the people involved in its development and use.
This is expressed in RQ 2. Usually, most of the people who come into contact
with the type checker will be users of the language, who create their models
using the DSL. Other stakeholders include the designers of the DSL and the
implementors of the tool set for the DSL.

Language users

Language users are those that create models in the DSL. Their main interest
is the type checker tool. Language users use the type checker to detect errors
in their programs and models, and to prepare them for further processing. In
order to be usable for this purpose, the type checker needs to be correct and
consistent. If the type checker produces types that are incorrect or different
from run to run, it becomes very hard for users to get the semantics they want.
Additionally, the type checker must balance power with efficiency. A more
powerful type checker can derive more information based on less input from the
user. The more powerful a type checker is, the more computations it needs to
get the desired result, which makes it less efficient. If the type checker becomes
too inefficient, it needs several minutes for even small programs. This point can
actually quite easy to reach, because the number of possible type combinations
that might be valid for a given program can grow exponentially. If the type
checker tests each possibility separately, this becomes computationally costly
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quite quickly. Finally, a good type checker should provide useful feedback
about any errors it finds. If a type checker gives wrong or confusing error mes-
sages, the process of correcting the error is more difficult and time-consuming.

Language designers

Language designers are those that create the syntax and semantics of a lan-
guage. They have to select what constructs the language has, how users can
create instances of those constructs and what meaning these constructs have
in the context of the complete program. In this thesis, we assume that lan-
guage constructs have a textual representation, unless otherwise noted. In that
case, the language designer needs to create a grammar to define how the parser
should handle the model texts. The grammar serves to define the structure of
the input for the scoping and type checking steps. Further on in the process,
the output of the type checker is likely to be input for the implementation of
the dynamic semantics. From the perspective of dynamic semantics, it is useful
if all information relevant to a construct is easily accessible. In a tree struc-
ture, some information, like the relation between identifiers and their targets, is
likely to be implicit, because the constraints that make the tree a tree prevent
the information from being explicit. One solution is to represent the program or
model as a more generic structure, for example an abstract semantic graph [35],
instead of a tree. The removal of the extra requirements placed on trees over
graphs creates room for the type checker to make implicit information explicit.
In order to add information to a model, a language designer may want to add
elements to the model, to change the values contained in an element, to
link two elements or change the structure of an element. Because not ev-
ery element can be handled in the same way, there also needs to be some way to
control how these changes are applied. If the input program or model is incon-
sistent, it may actually be impossible to create an output model that satisfies all
requirements. The language designer may want to define error messages that
are triggered when an inconsistent situation is detected. Additionally, during
the design process and as the language develops, language designers will likely
consider various options for language constructs and their semantics. Thus,
type system specification formalisms should allow rapid implementation, to
make prototyping practical.

Implementation developers

Once there is a sufficiently complete design of a language, language implemen-
tors can start developing an implementation of the language. Note that this
does not mean that the design is final, because insights derived from the im-
plementation can affect the design of the language, resulting in language evo-
lution [4]. In practice, language implementors will not develop every tool and
component from scratch, but use either generators that create specialized com-
ponents based on specifications, or generic components that can be configured
to fulfill the required task. For our type system specification formalism, this
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implies that implementors would like to have an interpreter or a generator
that can be used to implement the specification easily. Additionally, the result-
ing component needs to connect to other parts of the language tool set, so it
should have a flexible interface that can communicate with a variety of other
components.

2.4 Requirements
From our description of the domain and the priorities of the stakeholders, we
compiled the following list of requirements:

Requirement 1: Type checking The specification language should allow the
designer to specify what elements are typed correctly based on conditions.
This relates primarily to the language designers, the primary users of the
specification formalism.

Requirement 2: Type computation The specification language should al-
low designers to create new model elements based on model content. These
elements can be used to store computed type information in the model,
allowing it to be reused later. This again relates primarily to the language
designers, the primary users of the specification formalism.

Requirement 3: Element transformation The specification language should
allow elements of the model to be changed, updated and transformed based
on computed type information. This also relates primarily to the language
designers, the primary users of the specification formalism.

Requirement 4: Prioritization The specification language should support
disambiguation by allowing designers to indicate which types should be
preferred over which others. This is on the one hand related to language
users, who want the type checker to accept as many valid models as pos-
sible, and one the other hand related to designers and implementors, who
want to avoid ambiguities to simplify processing.

Requirement 5: Termination Application of a type system specified in the
specification language to a model should always terminate. This relates
primarily to language users, because they want to be sure that the type
checker will process their models in a reasonable amount of time.

Requirement 6: Flexible input and output The type system definition should
be useable for a variety of different parsers, template engines and model
transformation tools. This primarily relates to engineers that implement
the language, who want to have an unrestricted choice in how they design
the other components of the language tool set.

Requirement 7: Implementation The type system specification should be
easily or even automatically implementable, and the resulting type checker
should be correct and consistent. This relates to both language users,
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who use the type checker the most and language implementors, who are
responsible for creating and maintaining it.

2.5 Conclusions
In this chapter, we have studied the properties of domain specific languages,
and looked at the properties that a type system language would need to be able
to describe their type systems formally and effectively. We did this through
a systematic literature review, where we looked at papers published on DSLs
in journals and conference proceedings published by several major publishers,
and through an analysis of the stakeholders of DSLs and their priorities and
requirements. Based on the combined results of the SLR and primarily the
stakeholder analysis, we formulated a number of requirements in Section 2.4.
In short, we want a type checker to be correct, efficient and consistent, and the
type system language should enable that. In the longer term, the formalism
should support the development of the DSL by allowing easy evolution of the
type system. In the next chapters of this thesis, we will look at actual formalisms
and to what extend they meet these requirements.
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Models 116 12 9.67 120 89% 49% 97% 43%
ECMFA 78 8 9.75 80 98% 54% 99% 53%
SLE 65 5 13 67 87% 55% 93% 43%

GPCE 51 12 4.64 51 96% 63% 86% 51%
OOPSLA 47 13 3.62 47 85% 53% 83% 36%
Average 91% 54.8% 91.6% 45.2%

Std. Deviation 5% 5% 6% 6%

Table 2.9: DSLs related to number of papers: SLE stands out in total number
of languages, but other properties mostly similar. “Interesting” language are
typed and have either an example or a type system discussion in a paper.
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Chapter 3

MSOS as Type System
Definition Language

Evolution of programming languages requires co-evolution of static analysis tools
designed for these languages. Traditional approaches to static analysis, e.g.,
those based on Structural Operational Semantics (SOS), assume, however, that
the syntax and the semantics of the programming language under consideration
are fixed. Language evolution is, therefore, likely to cause redevelopment of the
analysis techniques and tools. Moreover, the redevelopment cost can discourage
the language engineers from improving the language design. To address the
co-evolution problem we suggest to base static analyses on modular structural
operational semantics (MSOS). By using an intrinsically modular formalism,
type rules can be added, removed or modified easily. We illustrate our approach
by developing an MSOS-based type analysis technique for Chi, a domain specific
language for hybrid systems engineering.

3.1 Introduction

Development of a programming language is an ongoing process: new language
constructs are being introduced, superfluous ones are being removed and seman-
tics of the existing ones is being reconsidered [4]. Traditionally, static analyses
are, however, being developed under the assumption that the syntax and the se-
mantics of the programming language under consideration are fixed. Traditional
semantic specification methods such as Structural Operational Semantics (SOS)
encourage this, due to the extensive changes caused by simple additions. Lan-
guage modification is, therefore, likely to cause redevelopment of the analysis
techniques and tools.

As observed in Section 2.3, the semantic analyses’ based on the changing
semantics should, hence, co-evolve together with the language syntax and se-
mantics [65]. Moreover, static semantic analyses should support decision making
by the language designers by providing them with insights on implications of the
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decisions taken on the analyses precision and complexity. To this end different
design alternatives considered by the language designers should rapidly propa-
gate to semantic analyses. To support both the language/analyses co-evolution
and the decision making, we need a flexible formalism for specifying static se-
mantics. Thus, the two research questions that are addressed in this Chapter
are RQ 3 and RQ 4.

It has been suggested by the designers of the modular structured operational
semantics (MSOS) [84,85] that it can be successfully applied to this end. In this
chapter we validate this claim by implementing the form of static analysis that
is the primary subject of this thesis, type analysis, for a challenging domain-
specific language under development (Chi, evolving from Chi 1.0 to Chi 2.0),
and verifying that

(i) the analysis developed is indeed flexible enough to co-evolve with the
changing language, and

(ii) the prototype type checker required by the language designers can be
implemented with a limited development effort, i.e., our type checker can
support the decision making by the designers.

The programming language we consider in this chapter is Chi [10, 57], a
specification language for hybrid systems. From the language perspective, Chi
combines features of traditional procedural programming languages (e.g., loops,
assignments) with domain-specific elements pertaining to continuity and paral-
lelism. In terms of our survey, Chi is a typed, textual language. The Chi type
system is both static and strong, as are most DSLs we found in our survey in
Section 2.2. In terms of more advanced features, Chi is not object oriented and
does not feature type inference, but it does have overloading and type param-
eters. This allows us to look how MSOS handles more complex type system
concepts.
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Chi 2.0 Example

To illustrate Chi 2.01 consider the following fragment:

1 proc ContrivedBuffer〈T : type〉(chan a?, b! : T ) =
2 [[ cont s: real
3 var x : T
4 , xs : [T ] = []
5 :: eqn s = sin(time) + 3
6 ||
7 *( len(xs) < s −→a?x ;
8 xs := xs ++ [x]
9 | len(xs) > 0 −→b!hd(xs) ;
10 xs := tl(xs)
11 )
12 ]]

The fragment above illustrates a Chi 2.0 process definition. Structural lan-
guage elements, e.g., repetition, parallel, alternative or sequential composition
are typeset in the bold face, e.g., *( . . . ), ||, | and ;, respectively. The built-in
functions are typeset in small capitals: len, hd(head), tl(tail) and sin.

Processes are used in Chi 2.0 to group behavior, in such a way that it can
be instantiated and reused multiple times. Process ContrivedBuffer specifies
the behavior of a buffer that receives values of some type T through channel
a and sends them on through channel b. Angular brackets in the process defi-
nition indicate its polymorphic nature: ContrivedBuffer can be instantiated to
manipulate data of any type T .

In lines 2–4 local variables are declared. The maximum size of the buffer
is controlled by the continuous variable s, varying over time. The list variable
xs stores the buffer values and is initially empty, and x stores temporarily a
value just received or to be sent. Lines 5–11 describe the actual behavior of
the process. The behavior consists of two parallel parts, combined by ||. The
equation in line 5 determines the value of the continuous variable s as a function
of a global variable time. The read-only variable time is part of the semantics
of Chi 2.0. It is updated by the simulation environment and provides access
to the current simulation time. The equation should be satisfied at all times
during the process execution.

The lines 7–11 specify the discrete behavior of the process. The behavior
consists of the repeated choice between two conditional alternative steps: receive
(denoted ?) the value x followed by appending x to xs, and send (denoted !)
hd(xs) followed by removing the value hd(xs) from xs. If both alternatives can
be carried out, the process non-deterministically chooses between them.

Chi specifications are usually being developed by mechanical engineers, often
with limited training in formal methods or software development. As such,
the Chi language designers aim at providing the specification developers with

1For the sake of simplicity we opt for the Chi 2.0 notation in the examples.
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as much feedback on potential errors as possible early in the development life
cycle. Chi employs prescriptive typing, i.e., types are provided by the developer
while the type checker verifies whether the types are consistently used. For
instance, expression 2 + “Hello!” should be rejected by a Chi type checker since
addition cannot be applied to a number and a string. Expression 2 + x should
be associated, however, with int as long as x itself is associated with int.

Chi 2.0 Function Call Example

Consider the following Chi 2.0 expression: take([y > z, true] + +xs, size + 1).
Here, the take function takes a list, say l , and a natural number, say n, as
parameters and returns a list of the first n elements of l , or l if len(l) is less
or equal than n. For this expression to be valid in Chi 2.0, the type checker
should derive a type for it. In this example, we discuss how this would be using
a top-down approach.

The top operation of this expression is the invocation of the take function.
The type of the result of take depends on the first parameter, so take has
an implicit template that specifies this relation. In this example, the value for
the list parameter is the result of the concatenation of a list of two booleans,
one the result of a comparison and one a constant, and the variable xs. In Chi
2.0, all elements of a list must be of the same type, hence xs must be a list of
booleans.

The value of the second, numerical, parameter is the result of the addition
of the variable size and the constant 1. However, to “fit” as parameter of take
the result must be natural. This means that the type of size must be natural,
because any addition involving integers or reals cannot have a natural result
type in Chi 2.0.

Based on the types that the typechecker has derived for the parameters,
it has to decide if this invocation of take is valid and if so, determine what
the result type is. The function needs a list and a natural number, and if the
requirements mentioned above are met, the invocation is correct. The take
function has, as mentioned before, an implicit template. More specifically, the
return type is a list with elements of the same type as the list provided as
parameter. In this case, that means that the result type of the expression is list
of booleans.

The remainder of the chapter is organized as follows. After introducing
MSOS and Chi in Section 3.2, we review the evolution of typing schemes in
Chi (Section 3.4) and discuss the formalization of type checking rules in MSOS
in Section 3.5. In particular, we look at the two main requirements defined
in Section 3.1. To address (i), while discussing each language construct we
stress the similarities and the differences of the formalizations corresponding
to different typing schemes implemented or considered during different phases
of the evolution of Chi. To address (ii) we have implemented the approach
in a first prototype using Maude [29]. We discuss the implementation and
lessons learned in Section 3.6. Based on our experiences, we developed a second
prototype using ASF+SDF, described in Section 3.7. After reviewing the related
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work in Section 3.8 we summarize our contributions and sketch future research
directions in Section 3.9.

3.2 Preliminaries

MSOS

In this section we briefly present MSOS, modular structural operational seman-
tics, introduced by Peter Mosses in [84,85] to address the modularity shortcom-
ings of SOS [90]. The modularity shortcomings of SOS are related mostly to
difficulty of modifying the type system environment information: adding a new
component, e.g., a stack, to the type system environment requires modification
of all SOS rules. MSOS resolves this by making the structure of the environ-
ments implicit. Presenting the formal semantics of MSOS we follow [17,18].

(cf. [17]) A specification in modular structural operational seman-
tics (MSOS) is a structure of the following form. M = 〈Ω,Lc,Tr〉
where Ω is the signature, Lc is a label category declaration and Tr
is the set of transition rules.

The signature defines function symbols and constants used in the language
being specified. Transition rules are C

c intuitively read “whenever all the condi-
tions in C hold so does the conclusion c”, where each condition in C is either a
transition, a predicate or a label expression, and the conclusion c is a transition.
Rules with the empty set of premises C are called simple rules: conclusions of
simple rules should always hold.

Transitions are triples that can be interpreted as steps or rewritings. For
example, e1={α}=>e2 is read as: configuration e1 can make a step with the
label α, or can be rewritten, to configuration e2. Label transformers are ways to
modify the labels, while labels in MSOS are morphisms associated with a given
category. A category is a mathematical construction consisting of a class of
objects O; a class of morphisms A between the objects, such that each morphism
a ∈ A has a unique source object pre(a) and target object post(a) in O; an
associative partial composition function ◦ on the pairs of morphisms; and a
function 1 mapping objects to identity morphisms, such that for any a ∈ A,
1pre(a) ◦ a = a = a ◦ 1post(a). Formal syntax of the transition rules and label
transformers can be found in [17].

Example 1. Consider the following rules from [17].

• The rule
n = n1 + n2

n1 + n2={ı}=>n
says that if n is equal to the sum of n1 and n2,

then the term n1 +n2 can be rewritten to n. In this case, the condition is
a predicate and the conclusion is a transition, labeled with a special silent
or unobservable label ı. The label ı satisfies ı ∈ 1, where 1 is the trivial
category consisting of just one object and one morphism.
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• The rule
e1={α}=>e′1

e1 + e2={α}=>e′1 + e2
reads “whenever e1 can be rewritten to e′1

with respect to α, the summation term e1 + e2 can be rewritten to e′1 + e2
with respect to the same label. Both the condition and the conclusion are
transitions.

• Finally,
α′ = set(α, env,get(α, env)[x→ v]) e={α′}=>e′

λx(e)v={α}=>e′
allows us to

introduce x. The first condition is a label expression based on two “built-
in” functions set and get that add and retrieve values from the label re-
spectively. Label α′ is, therefore, obtained from α by updating the value
of env to include the mapping of the variable x to the type v. In general,
get(l, var) retrieves the value of the variable var in the context expressed
by the label l, and set(l, var, val) returns a new label identical to l except
for the value of var being set to val. The second condition and the conclu-
sion are transitions, that represent typing decisions. The second condition
holds if the expression e can be rewritten to typed expression e′ with label
a′. If both conditions hold, the conclusion λx(e)v={α}=>e′, which states
that the expression λx(e) can be rewritten to e′ in environment α, also
holds.

In the rules above, the label category Lc isContextInfo(env,Environment)(1),
where ContextInfo(env,Environment) is a label transformer derived from a set
of environments Environment. Hence, e.g., get(α, env) denotes the environment
corresponding to the label α.

Semantics of MSOS is given by means of a mapping to an arrow labeled
transition system. Details of the mapping can be found in [17]. In particular,
predicates are assumed to be available for use, and not part of the MSOS rules.

Hybrid Specification Language Chi 2.0
In this section we briefly present the syntax of Chi 2.0 [10]. For the sake of
brevity and without loss of generality we slightly simplified the syntax. A Chi
2.0 model is composed of comma separated series of variable, channel and ac-
tion declarations followed by :: followed by a process description. Variables
can be discrete (x and xs in Example 3.1), i.e., their values can change only by
means of explicit assignments; continuous (s in Example 3.1), i.e., their values
are determined by a continuous function of time; and algebraic, i.e., their values
may change according to a discontinuous function of time. The change of con-
tinuous and algebraic variables can be restricted by a special form of process,
called equation, e.g., eqn s = sin(time) + 3. Channels serve for unbuffered,
synchronous communication between the processes that can send (!) data to
channels or receive (?) data from them. Both variables and channels are typed.
The atomic types are bool, nat, int, real, string and enum (enumerations).
Type constructors operate on existing types to create structured types such as
sets, lists, arrays, record tuples, dictionaries, functions, and distributions (for
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stochastic models). The type corresponding to a channel is the type of data
that is communicated via the channel.

Processes can in their turn be atomic or composite. Atomic processes include
performing an action, sending or receiving data, assigning values to variables,
delaying or performing a blocking conditional action: if the condition does not
hold the process will block until the condition becomes true. Furthermore,
equations are considered as atomic processes. As seen in Example 3.1 compos-
ite processes can be obtained from the atomic ones by repetitive application of
parallel, sequential or alternative composition, or by means of a loop. Further-
more, similar to models processes can be defined separately, i.e., processes also
act as subroutines in Chi 2.0. As such the processes can be parameterized by
a sequence of parameters (see line 1 in Example 3.1). Processes can be made
even more flexible by the use of templates (e.g., 〈T : type〉 in Example 3.1).

As we are going to focus on type analysis, we are also interested in built-
in functions, which describe mathematical computations without side effects,
and operators. These include traditional operators on the booleans, numbers
and strings, explicit type conversions, and constructors for composite types,
like lists and sets. Similarly to processes functions can make use of tem-
plates. Explicit templates require the user to supply values for the template
parameters, which are then used to instantiate the function. Similarly to Ex-
ample 3.1 explicit template parameters are listed between angular brackets:
func f〈T : type〉(val a : T ) → T . A common use for function templates is to
allow a function to be applied to multiple types of parameters: f〈nat〉(7). It
should be noted that we write f〈nat〉(7) rather than f〈nat〉(7) to distinguish
between strings representing types in the Chi 2.0 program (“nat”), referred to
as type literals, and actual types (nat).

In addition to explicit templates, Chi 2.0 supports functions with implicit
templates. Implicit templates are instantiated during function invocation. In
contrast to explicit templates, the values for the implicit template parameters
are determined by the type checker, based on the types of the function parame-
ters supplied by the user. Implicit templates are mainly used to allow functions
like hd() to work for lists with any type of element, while still allowing the type
checker to derive a useful return type.

Example 2. In the following function definitions we list the implicit type pa-
rameters between [ and ].

The function len() calculates the length of a list: func len[T : type](val xs :
[T ]) → nat. The type of the elements of the list does not influence the return
type, which is reflected in the function declaration by the fact that T is only
used once.

Next consider hd() defined as func hd[T : type](val xs : [T ]) → T . Ob-
serve that T occurs both in the parameter type and as the return type. The
function hd() returns the first element of a non-empty list, so here the actual
type of the elements of the list does affect the type checking process.

Finally, the definition of sort uses T to describe types of multiple param-
eters func sort[T : type](val xs : [T ], f : (T ,T ) → bool) → [T ]. The first
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parameter of function sort is a list of type T , and the second one is a predicate
f : (T ,T )→ bool imposing a sorting order on the elements of type T . 2

Functions are first-class citizens in Chi 2.0: a function can, e.g., be passed
as a parameter to another expression (function). One construct using functions
as parameters is a fold. Folds have four parameters: 〈f, i ← I, p(i), c(i)〉. I
is the iterator generating values and storing one value at a time in i. Once
a value is generated, predicate p is applied to it, and if p(i) is true, then the
auxiliary value c(i) is computed. Finally, the aggregation function f is applied
to all the auxiliary values computed. Chi 2.0 allows only a restricted number of
aggregation functions such as +, ∗, max, to be used in folds.

Example 3. Let 〈+, i← [1, 2, 3, 4], i > 2, i∗ i〉 be a fold. Then, each value from
the list [1, 2, 3, 4] is in its turn assigned to i, compared with 2, and for those
values larger than 2 the square is computed. Finally, all squares are added.
Hence, the value of 〈+, i← [1, 2, 3, 4], i > 2, i ∗ i〉 is 3 ∗ 3 + 4 ∗ 4, i.e., 25. 2

3.3 MSOS andMSDF: Specifying a Type Checker

Our approach starts from a formal specification of a type checker in MSOS. To
simplify the generation process, we choose to represent the MSOS in a textual
format using a variation of the MSDF [27].

In addition to MSOS rules, MSDF also supports declarations, formulas and
modules. Declarations describe algebraic data types and variables of those
types. In our case, algebraic data types are used to represent the structure
of the input tree, the type values and (possibly) the output tree. Formulas can
then be used to give initial values to the variables or link them to each other. In
a type system definition, formulas can be used to initialize the environment, e.g.,
by introducing default functions. In our Chi 2.0 specification, we have not used
formulas yet, thus we have decided to omit them from the example. Finally,
modules increase readability of the semantic rules by allowing the related rules
to be stored together. Modules can be imported as a whole into other modules.

Example 4. Consider the MSDF specification with rules for the type system
presented in Figure 3.1. This module consists of three main parts, imports,
in Line 1, declarations, in Lines 3–8 and transition rules in Lines 10–33. The
imports are part of the modular structure of MSDF, and allow transition rules
and declarations from other modules to be used in this module. While the
example module could, and in practice should, be split into multiple modules,
here it was not done for the sake of presentation. We import generic definitions
for identifiers Id and basic data types Bool, Int and Real. These modules also
define variables for these types: variables with names consisting of ID (B, I,
R) followed by zero or more digits are considered to be of type Id (Bool, Int,
Real, respectively). Note that the data type definition method in MSDF is not
suited for efficient definitions of the integers and the reals, so Int and Real are
actually defined outside MSDF.
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1 see Bool , Id, Int , Real.
2
3 E:Exp ::= sumfold(Exp ,Exp ,Exp) | less(Exp ,Exp) |
4 dot(Id) | Id | Int | Real.
5 T:Type ::= bool | int | real | func(Type*,Type).
6 D:DType :: cont | disc.
7 SENV : StatEnv = (Id,Type)Map.
8 DENV : DynEnv = (Id,DType)Map.
9
10 I:Exp ===> int.
11
12 R:Exp ===> real.
13
14 lookup(ID,SENV) = T
15 ----------------------------
16 ID:Exp =={ statenv=SENV ,---}=> T .
17
18 lookup(ID,SENV) = real , lookup(ID ,DENV) = cont
19 ----------------------------
20 dot(ID):Exp =={ statenv=SENV , dynenv=DENV ,---}=>

real.
21
22 E1 =={---}=> T1 , E2 =={---}=> T2 ,
23 max(T1,T2) = T3 , max(T3,real) = real
24 ---------------------------
25 less(E1,E2) : Exp =={---}=> bool .
26
27 Exp1 =={---}=> T1 , iscontainer(T1) = true ,
28 element(T1) = T2
29 E2 =={---}=> func(T3,bool), max(T2 ,T3) = T3,
30 E3 =={---}=> func(T4,T5), max(T2 ,T4) = T4,
31 max(T4,real) = real
32 ---------------------------
33 sumfold(E1,E2,E3) =={---}=> T4 .

Figure 3.1: MSDF specification of a type checker for a fragment of Chi.

Lines 3–6 contain declarations for the types Exp, Type and DType and vari-
ables of those types. The first type defines possible expression constructs, in
the form of a list of options separated by the “|” symbols. An expression in the
listing above is, therefore, sumfold applied to three expressions, representing
a fold, as described in Section 3.5, less applied to two expressions, a boolean
predicate comparing two values, dot applied to an identifier, an unary operator
that computes a derivative, an identifier, an integer or a real number. “E:Exp”
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means that variables with names consisting of E followed by zero or more digits
are considered to be of type Exp. In the next line, the type Type defines three
constants representing the basic types: bool for boolean values, int for integer
values, real for real values, and func(Type*,Type) for functions from lists of
values of some type to a single value. As above, variables with names starting
with T and followed by one or more digits are of the type Type. We stress that
while Bool, Int and Real are sets of values, bool, int and real are constants
representing the types of these values. In the last line, the type DType defines
two constants describing continuous and discrete behavior respectively.

Lines 7–8 contain declarations for the types “SENV” and “DENV” and variables
of those types. These declarations refer to the predefined “Map” type, and are
used when referring to components from the environment.

Lines 10–33 contain the transition rules. The first two (Lines 10 and 12
are simple rules, without explicit preconditions. Implicitly, the types of the
variables used restrict their values to integer and real constants, respectively.
Because these rules are not affected by the environment, we do not mention it.
Implicitly, this means the rule does not change the environment. In the case of
the rules at Lines 14–16 and 18–20, the preconditions are based on the built-
in lookup function. The lookup function is used to inspect the environment
components, such as statenv and dynenv. Given a list of key-value pairs and a
key that occurs in the one of the pairs, this function returns the corresponding
value. If the key does not occur in the list of pairs, a special value “none” is
returned. The rule in Lines 14–16 reads, thus, “If ID is known to have type T in
the static type component of the environment, any reference to ID also has type
T”; and the rule in Lines 18–20 “If ID is known to be a continuous real variable,
then application of the dot operator results in a value of type real”. These rules
both reference the environment. They gain access to the relevant information
by extracting components from the label. If there are other components present
in the environment which are inspected or changed by the rule, they remain
unchanged, as indicated by the “–-” marks.

The next transition rule (Lines 22–25) has four preconditions. The first
precondition requires E1 to be of a valid type T1, i.e., transition E1 =={–-}=>
T1 to be possible. Similarly, the second precondition requires E2 to be of a valid
type T2. The remaining preconditions use an auxiliary max function. Based
on a partial order on types, max returns the larger of two types, if they are
comparable. In the example we assume int ≺ real. If the max function returns
a type T3 and that type is real or below it in the type order, we conclude that
T1 and T2 are numerical types, and hence, E1 and E2 can be compared with the
less operator.

The last transition rule (Lines 27–33) is an example of an even more complex
rule, in this case of a fold based on the addition operator. When a fold expression
is evaluated, it iterates over the collection represented by E1. The function
represented by E2 is then applied to each value, and acts as a filter: if the result
is “false” the value is discarded. Next, the function represented by E3 is applied
to each value that passes the filter. The results of this function are combined
into one value using the “addition” function, which is the result of the fold.
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When we look at folds from a typing perspective, this means that E1 needs to
be of a collection type, so the fold can take elements from it. The “collection”
predicate tests for this, while the “element” function retrieves the type of the
elements of the collection. The next two components must have a function
type that can accept the collection elements as parameters. Additionally, the
function serving as a filter must return a boolean value, and the function that
creates values to be combined must returns values that can be combined by, in
this case, the “addition” operator. The type of the fold expression itself is the
same as that type, as long as it is numeric.

3.4 Evolution of numerical types in Chi

In order to illustrate how the type checker expressed in MSOS can co-evolve with
the language itself we focus on a part of Chi static semantics that significantly
evolved between versions: the type system for numerical values. Chi has three
types of numerical values: nat for natural numbers, int for integer numbers and
real for real numbers. Mathematically, there is an obvious relation N ⊂ Z ⊂ R.
This, however, may or may not be reflected in the type system.

Earlier versions of Chi, such as Chi 1.0 [57]2, insisted on a strict separation
of the numerical types, i.e., not performing the type widening at all. This
approach was motivated by the fact that for the specification engineers the
natural numbers usually represent quantities, while the real numbers correspond
to measurable aspects of physical artifacts such as speed, pressure, or frequency.
Moreover, Chi is also used for training system engineering students with no
previous programming experience, and this audience should be made aware of
differences between mathematical sets such as N, Z and R and programming
language types nat, int and real.

Strict separation of types in Chi 1.0 implied, unfortunately, that sin(0) can-
not be computed as the sine is defined as a real → real function. Therefore,
later on the language designers considered applying full widening on numerical
types, i.e., assuming nat ≺ int ≺ real. While Chi 1.0 would disallow 1 + 2.5
as addition is being applied to arguments of two different numerical types, this
version, that we call “Chi 1.5”3, would convert 1 to 1.0 and calculate the result.
In this way, however, the distinction between different numerical types becomes
blurred. From a computer science perspective, this is not really significant, but
from a hybrid systems viewpoint, different numerical types are used for physi-
cally different things, which should not be confused. Therefore, while developing
Chi 2.0 [58] the language designers have chosen to apply type widening solely
to constants explicitly mentioned in the model. In this way the designers felt
that novices will still understand the distinction between mathematical sets and
types in Chi 2.0, without being forced to write 0.0 instead of 0 just to pacify the

2Though the report was finalized in 2008, initial steps in the development of Chi 1.0 were
made in 1995 and the language was in active use from 2005.

3“Chi 1.5” is a name we use for the sake of convenience rather than an officially released
version of Chi.
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type checker. In order to facilitate this, we created two new types, cnat and
cint, for constant numeric values, to allow a separate treatment. This solution
has been reported by the language designers as preferred to both Chi 1.0 and
Chi 1.5.

3.5 Typechecking Chi in MSOS

As explained in Section 3.2, MSOS rules describe transitions between configu-
rations of transition systems. A computation, then, is a sequence of transitions
from an initial to a final configuration. In the case where a type system has
been specified using MSOS, the initial configuration is a program expression to
be typechecked, and the desired final configuration is the type corresponding to
that expression. In this section, we will describe our definition of the Chi 2.0
type system in MSOS.

While specifying the MSOS transition rules we opt for big-step semantics,
i.e., we describe how the overall results of the executions are obtained as opposed
to the small-step semantics, describing how individual steps take place. As
recognized by Mosses in [85] big-step semantics is preferable for specifying type-
checking. As static semantics in this case involves environments not changed
by the type-checking rules in a corresponding MSOS, most labels are identity
morphisms. We omit those labels for the sake of readability.

In the remainder of this section we present MSOS rules for three typing
schemes considered in Section 3.4: no widening (Chi 1.0), full widening (“Chi
1.5”) and widening restricted to constants (Chi 2.0). We stress how the rules
can express changes in the typing schemes.

Basic type rules

The basis of every type system lies in the atomic expressions, such as literal
constants and variable references. To derive types for constants we use simple
rules as typing of these constants does not depend on any precondition. Labels
in small capitals are used for the ease of reference only and should not be
considered as a part of the MSOS syntax:

true ==> bool
(True).

Unfortunately, this approach would require providing a separate transition
rule for each constant. As this is not feasible for numerical types we in-
troduce unary predicates natural_number, integer_number and real_number
that evaluate to true according to the syntax described in [57]. Formally,
natural_number evaluates to true if its argument is a digit zero, or a non-
empty sequence of digits starting with a non-zero digit; integer_number evalu-
ates to true if its first character is + or −, and the remainder is either a digit
zero, or a non-empty sequence of digits starting with a non-zero digit. Finally,
real_number evaluates to true if its argument is composed of two parts divided
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by a point, and each one of the parts is either a digit zero, or a non-empty
sequence of digits starting with a non-zero digit.

Using these predicates for Chi 1.0 and Chi 1.5 we write

natural_number(n)

n ==> nat
(Nat).

integer_number(z)
z ==> int

(Int).
real_number(r)
r ==> real

(Real).

The typing scheme of Chi 2.0, however, requires refining the type system to
include special types for natural (cnat) and integer (cint) constants, and up-
dating the transition rules as follows:

natural_number(n)

n ==> cnat
(Nat).

integer_number(z)
z ==> cint

(Int).

In order to determine the type of a variable one should consult the environ-
ment. Similarly to Example 1 we use the built-in function get to derive the
current environment. Since the environment is a morphism it can be applied to
the variable name to obtain the variable’s type:

get(α, env)(x) = v

x={α}=>v
(Lookup).

If the variable name x is not included in the current environment get(α, env),
the type derivation fails. Otherwise, the lookup function gets the appropriate
type v. Obviously, since Lookup does not mention numerical types explicitly,
this rule is not affected by the different typing schemes.

Overloading
Numerical operators can be often applied to different sets of types of arguments,
e.g., + is used to denote addition of two natural numbers, two integers, etc. This
form of polymorphism is known as overloading. Overloading can be seen either
as different ways to invoke the same operator, or as invocations of different op-
erators with the same name. In the latter case, the choice is made based on
the data types of the parameters passed. The type checker should distinguish
between different ways the same operator is invoked or between different oper-
ators of the same name, and derive an appropriate type for the result of the
operator application.

Considering an overloaded operator as a number of different operators al-
lows to express the typing rules for each one of them separately. For instance,
addition of two integers can be expressed as:

e1 ==> int e2 ==> int
e1 + e2 ==> int

This solution requires, however, a separate rule for each numerical type,
e.g., 3 rules for the no widening typing scheme of Chi 1.0 and 9 rules for the full
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widening scheme of “Chi 1.5”. In general, this solution defeats the type checker
flexibility we aim at: addition of a new numerical type requires adding 2n new
transition rules, where n is the current number of numerical types.

To address this problem we need a more compact way of expressing the
relation between different types. Specifically, for addition we need predicates
“numerical”, restricting the application of + only to numerical types, and “lub”
allowing us to choose the resulting type based on the types of the arguments:

e1 ==> t1 e2 ==> t2
numerical(t1) numerical(t2) lub(t1, t2, t3)

e1 + e2 ==> t3
(Add).

Type widening is explicitly present in the rule for addition in the form of
the “lub” predicate, least upper bound with respect to the � relation on numer-
ical types. In the case of no widening (Chi 1.0), the relation ≺ is empty and
lub(t1, t2, t3) is true if and only if t1, t2 and t3 coincide. For full widening (“Chi
1.5”) � is a linear ordering and t3 is the larger one of t1 and t2. Finally, Chi
2.0 implies cnat ≺ cint,cnat ≺ nat, cint ≺ int, cnat ≺ int, cnat ≺ real and
cint ≺ real. The relation � is a partial ordering and t3 should be the least
upper bound of t1 and t2: lub(nat, cint, int) should evaluate to true.

Type checking user-defined functions

In addition to operators similar to those discussed in Section 3.5 Chi offers a
number of functions, e.g., hd(), tl() and len() from Example 3.1. Moreover,
unlike operators, new function definitions can be introduced by the user. Hence,
it is impossible to have a separate rule for each function, like we have for each
operator, and a more generic solution is sought. This generic solution should
support (1) functions with an arbitrary number of parameters, (2) any combi-
nation of parameter types, as well as (3) explicit and (4) implicit templates as
mentioned in Section 3.2. We will first discuss the functions without templates,
postponing the discussion of explicit and implicit templates until Sections 3.5
and 3.5, respectively.

In addition to function invocation present in traditional programming lan-
guages, Chi supports variables of function type. Expressions can be assigned to
these variables as long as the type of the expression is a function type. More-
over, these expressions, known as function expressions, can be used similarly to
traditional function invocations.

Example 5. Consider the following example (adapted from [57]):
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1 func f(val x : int)→ int=[[ret x ∗ x]]
2 modelM() =
3 [[ var p : (int)→ int
4 , fv, pv : int
5 ::
6 p := f
7 ; fv := f(1)
8 ; pv := p(−1)
9 ]]

Line 7 shows the traditional function invocation: f is applied to 1 to compute
the value to be assigned to fv. In Line 6 f is assigned to p allowing the developer
to use p similarly to f (Line 8). 2

Intuitively, to type check p(−1) correctly in Example 5 we proceed in four
steps. First we need to provide an appropriate typing for p, which in this case
would be int→ int. Then to derive the type for −1, i.e., int (cint). If the full
widening (“Chi 1.5”) or constant widening (Chi 2.0) typing system are used we
might need to widen the argument types before applying the function: types
of the arguments should match the function signature but not necessarily be
identical to it. Finally, we report int as the type of p(−1).

The MSOS rule Function invocation given below formalizes this intu-
ition. Note that ∗ denotes a sequence of objects of the same kind: if t is a type
value, then t∗ is a sequence of type values; if e is an expression value, then e∗ is
a sequence of expression values, etc.

e1 ==> (func(t1
∗ → t2))

ep
∗ ==> tp

∗ widen(tp
∗, t1

∗)

e1(ep
∗) ==> t2

(Function invocation).

The first precondition of Function invocation corresponds to the first
step: e1 has to evaluate to some function type in order for invocation to be
possible. Next, the types of the parameters are determined and widened to
types appearing in the function type of e1. If these preconditions hold, we can
report that the type derived for the function invocation is the one prescribed
by the function type of e1.

Formally, widen applied to two sequences of equal length tp
∗ and t1

∗ is
evaluated to true if each element in tp∗ is not larger with respect to ≺ than the
corresponding element in t1∗.

The type widening is explicitly present in the form of the “widen” predicate.
In the case of no widening (Chi 1.0), this predicate should describe the identity
relation between types, extended point-wise to sequences. In the full widening
and constant widening case, the “widen” predicate has to use the ≺ relation
to decide if a certain combination is a correct match. In effect, “widen” serves
as a generalization of ≺, that accepts sequences as arguments instead of single
elements.
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Explicit templates
Recall that in the Function invocation in Section 3.5, the first step consisted
in evaluating the corresponding function expression. In the majority of the
cases, a function expression is simply a reference to a declared function or a
function variable, but it can also be the instantiation of an explicit template.
An explicit function template has a number of template parameters. During
template instantiation, the values provided for the parameters are applied to
the template, resulting in a new function instance.

e1 ==> func[tte
∗, id∗](tp

∗)→ tr
ev
∗ ==> ttv

∗ widen(ttv
∗, tte

∗) eval(et∗, tv∗)
replace(id∗, tv

∗, tp
∗, tp2

∗) replace(id∗, tv
∗, tr, tr2)

e1〈ev∗, et∗〉 ==> func(tp2
∗)→ tr2

(Explicit template).

Type checking an explicit template instantiation is quite similar to function
invocation. The topmost step of the rule consists in deriving the type of e1
to check that it indeed represents a function template. The next step is to
derive and check the types of the template parameters. In this version of the
rule, we assume that the type parameters are listed last among the template
parameters, and that we can distinguish between the type parameters and non-
type parameters. Non-type parameters have no further influence on the type
derivation, so no further actions are required.

In contrast, the values of the type parameters influence the type derivation.
All expressions used for explicit template parameters are required by the lan-
guage definition to be compile-time constants, so they can be calculated here.
The predicate eval maps strings representing types (“nat”) to actual types (nat).
The predicate replace is applied to get new parameter (tp2∗) and return (tr2)
types, where all occurrences of id∗ have been replaced by the corresponding
value in tv. If that can be done successfully, we can report that the type derived
for the function expression is a function with parameter types tp2∗ and return
type tr2.

Example 6. Recall the example explicit template function type in 3.2:
func f〈T : type〉(val a : T ) → T . In this case, there are no non-type

parameters in the template, so those preconditions are trivially true. In the
example, the actual instantiation is f〈nat〉. The expression nat will evaluate to
nat, which can replace T in (val a : T ) → T with no problem. The resulting
function type is (val a : nat) → nat. The next step is function invocation,
described in Section 3.5.

The type widening present here is similar to the function invocation case.
Here, only a subset of the parameters has to be widened, because the type
parameters are not numerical and cannot be widened. Apart from that, the
widening works exactly the same in each case. Observe that cnat and cint are
not explicitly part of the Chi 2.0 language and do not have a type literal, and,
hence, cannot be provided as a type parameter in Explicit template.
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Implicit templates
In Example 3.1 we have seen several functions applicable to lists of any type
of elements, e.g., hd(), tl() and len(). Chi distinguishes between the lists of
naturals, lists of booleans, lists of strings, etc. and neither can be considered
as a generalization of the other. Hence, if we want the same function to be
applicable to all kinds of lists, we would need a separate rule for each one of
them. Moreover, providing an element type explicitly would incur an unneces-
sary overhead on the specification engineer. As this is obviously undesirable,
implicit templates were added to the language allowing functions to be defined
for variable parameter types without the specification engineer having to name
the types explicitly.

The addition of implicit templates makes the rule for function invocation,
presented below, significantly more complicated. The function type that results
from the function expression can no longer directly be invoked. First we need
to determine which function, represented by metavariable e1, is called: e1 ==
> func[id∗](tf

∗) → tf2. Next we need to compute the types of the actual
parameters ep∗ ==> tp

∗, so we can find the values of the type parameters with
unify(id∗, tf

∗, tp
∗, tt

∗). Finally, we need to replace the type parameters by their
values in the return type of the function to which e1 corresponds.

e1 ==> func[id∗](tf
∗)→ tf2 ep

∗ ==> tp
∗

unify(id∗, tf
∗, tp

∗, tt
∗) replace(id∗, tt

∗, tf2, tr)

e1(ep
∗) ==> tr

(Implicit template).

Predicate unify(id∗, tf
∗, tp2

∗, tt
∗) is true if there exists a widening of tf ∗

unifiable with tp2
∗ and tt

∗ corresponds to id∗ after the unification. Predicate
replace(id∗, tt

∗, tf2, tr) is true if tr can be obtained from tf2 by replacing type
variables from id∗ by the respective types from tt

∗.
This rule is the most affected one by type widening. The majority of the

widening takes place in the “unify” predicate. If there is no widening, “unify”
can match types and set values for type variables directly. If there is widening,
care has to be taken to ensure that the value for the type variables is not chosen
too soon, which could incorrectly fail to derive a type for a correct expression.
In addition, if the restricted widening is in effect, a step has to be added to
prevent the possibility of a function returning a result of type cnat or cint,
even if all parameters are of those types. A possible solution is the introduction
of a “widenConst” predicate:

e1 ==> func[id∗](tf
∗)→ tf2

ep
∗ ==> tp

∗ unify(id∗, tf
∗, tp

∗, tt
∗)

replace(id∗, tt
∗, tf2, tr2) widenConst(tr2, tr3)

e1(ep
∗) ==> tr3

(Implicit template)

The “widenConst” predicate holds if tr2 is equal to tr3, with all instances of cnat
replaced by nat and all instances of cint replaced by int. This guarantees that
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a function always returns the proper type. For example, if we apply the function
hd() to the list [1], we want the type of the result to be nat and not cnat.

Folds
Folds in Chi exist to allow simple, often occurring loops to be expressed in one
straightforward expression or statement. In this section we discuss addition fold
expressions, i.e., folds having + as the aggregation function.

Type checking a fold expression roughly follows the steps of the fold eval-
uation discussed in Section 3.2. A fold expression has three subexpressions,
referred to as e1, e2 and e3. First, the type tid of the generator expression e1
is determined. The result has to be some kind of container, e.g. a list, and
the predicate container expresses the fact that tid is the type of the elements
in the container type t1. The identifier id is then temporarily added to the
environment as a variable with type tid (cf. Example 1). The types of guard e2
and transformer e3 are derived in this new environment. Finally, the results of
applying e3 to each value will have to be added together, so they have to meet
the criteria for addition. In this case, we know the types of all values will be
the same, so the “maximum” predicate is not needed, only “numerical”. Type
widening is not relevant here.

e1 ==> αt1
container(t1, tid) α′ = set(α, env,get(α, env)[id→ tid])

e2 ==> α′bool e3 ==> α′t4 numerical(t4)

〈+, id← e1, e2, e3〉 ==> αt4
(Addition fold).

Example 7. In Example 3 we have introduced the following addition fold:
〈+, i← [1, 2, 3, 4], i > 2, i∗ i〉. Here, the id is i, and the collection e1 is [1, 2, 3, 4],
e2 is i > 2 and e3 is i ∗ i. First, we determine the type t1 of e1 to be a list
of nat. This means that tid is determined to be nat, and the environment
is (temporarily) updated to register that i is a natural number. Though the
specific rules are not detailed in this thesis, it should be obvious that i > 2 and
i ∗ i evaluate in the enhanced environment to bool and nat, respectively. This
means the fold is valid, and the result type t4 can be concluded to be nat. 2

To adapt Addition fold to the Chi 2.0 typing scheme we need to use the
same idea as in Implicit template: widenConst should be applied to the
resulting type.

Evolution: Summary
As mentioned in the introduction Chi is an evolving language and the typing
system of Chi evolves together with the language. In this section we have
reviewed three different typing systems considered by the language designers:
not using type widening at all (Chi 1.0), using full widening (“Chi 1.5”) and
using a restricted from of widening, pertaining solely to explicitly mentioned
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constants (Chi 2.0). We have seen that the only parts of the MSOS transition
rules affected by change of the typing system are related to auxiliary predicates
implementing widening or related notions such as replacement.

3.6 MMT Prototype Implementation

To assess the feasibility of the MSOS-based approach as well as to provide the
language developers with insights in different alternatives considered, we have
developed a prototype implementation. We base our prototype implementation
of the type checker on the MMT [17], an interpreter for MSOS specifications in
Maude [29].

In the notation used by MMT transition e ==> αt is written as E={α}=>T.
Specifically, if α is ı we write E={. . .}=>T. In theory, MMT supports predicates,
but in practice, we often found it easier to rework predicates to transitions. For
example, the rule for function invocation as discussed in Section 3.5 becomes:

(Exp1 ={...}=> (Exp3 , func(Type1*,Type2))) ,
((Exp*) match (Type1*) as (Type2)) ={...}=> Type3
-- -------------------------------------------------------------
(Exp1 calls (Exp*)) : Exp ={...}=>

(((Exp3, func(Type1*,Type2)) calls (Exp*)), Type3) .

In this implementation, the first line corresponds to e1 == > ( func(t1
∗) →

t2) in the original rule Function invocation. A notable difference is that
in the MMT implementation we choose to keep the expression together with
the types, in order to get a clearer view of exactly which steps the system
made to reach its conclusion. The second line corresponds to ep∗ == > tp

∗

and widen(tp
∗, t1

∗). We combined the type derivation step with the predicate
widen into one expression, that rewrites to the return type of the function if the
invocation is valid.

Using the machinery provided by MMT and Maude the type checker for
a representative subset of Chi 2.0 was implemented by the author, with no
previous Maude experience, in less than one month. A representative subset of
Chi 2.0 was chosen jointly with the language designers. It omits some similar
operators, e.g., disjunction and ≤ while conjunction and ≥ have been included.

Developing the prototype type checker implementation allowed us to provide
the language developers with a number of suggestions on how the language can
be further improved. These improvement suggestions have been accepted by the
language developers and will be considered during the design of future iterations
of the language. Some of our improvement suggestions pertained to:

• return types for built-in functions, e.g., max has been redefined to
(nat, int)→ nat instead of (nat, int)→ int, as stated in [58];

• syntax readability, e.g., consistency of naming conventions for built-in
operators;
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• type literals as the first-class citizens, i.e., one can also write var t :
type = nat;

• anonymous functions, i.e., λ, currently being “hidden” inside the fold con-
struct;

• generalization of the fold constructs including user-defined (anonymous)
aggregation functions.

A disadvantage of the Maude implementation is that it is linked closely to
the structure of the input and output trees. In particular, the input tree must be
a Maude term of the correct structure, so the rules can be applied to it correctly.
In the same way, the output is always another Maude term. This means the
other tools in the language tool set must be capable of producing these terms
or reading these terms, which could limit our potential choices. The terms also
contain little structure information, which can make them hard to read.

3.7 ASF+SDF Prototype Implementation

Once we had completed the first prototype, we decided to create a more exten-
sive implementation as a second prototype, to see if the shortcomings of the first
version could be overcome. In the design of this new component, we considered
three general ways: the specification can be implemented by hand, executed
by an interpreter or translated (compiled) to a different language already sup-
ported by an execution mechanism. Note that for the implementation of parsers
all three options are used.

In our case study, we specifically want to experiment with type checker
generation. We acknowledge that intrinsically, there is little reason to prefer
an interpreted type checker over a generated implementation or vice versa. In
order to make our transformation, we first needed to identify our source and
target language, which should both be textual. As our source language we chose
MSDF, as discussed in Section 3.3, because the existing type checker was in that
format. This leaves the target language and the transformation technique to be
determined.

Target language: Pyke

First, we choose our target language. Since the type checker has to be integrated
in the entire suite of the Chi tools, we choose the language that was used for
those tools, i.e., Python to ease integration. In addition to a smooth integration
with other Chi tools, this allows us to benefit from a direct mapping of the
MSOS labels to the concept of Maps native to Python. However, Python does
not natively support the backtracking needed for cases when multiple transition
rules can be applied. Rather than adding this ourselves, we used Pyke [45].

Pyke is a Prolog-inspired inference engine operating on backward-chaining
rules that can interact directly with Python. Backwards-chaining rules are
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uniquely identified by means of labels and consist of the conclusion, indicated
by use, and a (possible empty) set of premises, indicated by when. Identifiers
can be used, e.g., to refer to rules during error reporting. Both the conclusion
and each premise is a term.

During the derivation, the Pyke inference engine maintains a set of goals.
For each goal the engine looks for a rule with the conclusion matching it. If
such a rule is found, the goal is replaced by the set of premises corresponding
to the conclusion. According to the result of the matching, variables appearing
in the goal might be replaced by the actual values.

Transformation

To implement the transformation we opt for ASF+SDF [19]. ASF+SDF is a
term-rewriting language successfully applied to implement program transforma-
tion and code generation in industrial cases [30,109]. Alternative languages that
could have been used are, e.g., Stratego [23] and Tom [8]. A crucial step in the
process of generating the type checker is the ASF transformation that constructs
the actual type checker code based on the MSDF specification. The result of
the transformation is a set of Pyke rules, that, combined with the type-system-
independent supporting Python code that provides support functions, like max,
implement the type system as described in MSDF. The following sections de-
scribe how each of the four main constructs occurring in MSDF specifications
is translated.

Imports Recall that the main differences between MSDF and MSOS pertain
to the introduction of modules and corresponding imports, and declarations. As
a preprocessing step preceding the transformation we eliminate the imports by
collecting all MSDF modules into a single specification. This step reduces the
number of constructs that have to be handled and allows duplicate rules to be
removed or combined before the transformation is carried out.

Formulas One of the features that a Pyke knowledge base can have is an
initialization section, a section of Python code where additional functions and
variables can be declared and initialized. For example, if we wanted to provide
a set of initial constants that can be used in the code, we could define this set in
the type system by using a formula to initialize a variable, called say “init-env”,
with a map of constant names and their types. The transformation would then
generate Python code in the initialization section that sets the variable to the
desired value.

Declarations Recall that declarations describe algebraic data types, and the
main operation involving them is testing whether a given term matches a cer-
tain data type. When transforming MSDF declarations to Pyke we create a
separate backwards-chaining rule for each case in a declaration. Hence, for the
declaration in line 3–4 in Figure 3.1, we create six backwards-chaining rules.
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The rules created are similar and we illustrate only one of them, corresponding
to dot(Id):

1 labela
2 use Exp((dot,$la))
3 when Id($la)

Here, labela in Line 1 is the rule identifier. In Line 2 the keyword use intro-
duces the conclusion of the rule, while in Line 3 the keyword when is followed by
the premises of the rule. In this rule there is only one premise. The rule reads
“(dot,$la) is an expression if $la is an identifier”. The underlying assumptions
are that the AST is represented by means of tuples (in this case the operator
dot and the variable $la) and that $ prefixes a Pyke variable.

Transition rules Finally, we have to create backward-chaining rules that
implement the transition rules of MSDF. Each transition rule is translated to
exactly one backward-chaining rule, where the conclusion of the MSDF transi-
tion rule corresponds to the conclusion of the backward-chaining rule, and the
preconditions of the transition rule correspond to the premises of the backward-
chaining rule. Unlike the preconditions of a transition rule, the premises of a
backward-chaining rule are processed in a fixed order. Hence, in our transfor-
mation we take care that in the backward-chaining rule the input types are
checked first, then the preconditions and finally the label is updated and the
result is constructed. To illustrate the generation consider the MSDF rule for
dot (Lines 18–20 of Figure 3.1). The corresponding backward-chaining rule is

1 labelb
2 use trans((dot,$ID), $LABEL, ’real’)
3 when
4 first
5 Id($ID)
6 $STATENV = $LABEL[’statenv’]
7 ’real’ = $STATENV.get($ID)
8 $DYNENV = $LABEL[’dynenv’]
9 ’cont’ = $DYNENV.get($ID)

Here, labelb in Line 1 is a generated rule identifier. In Line 2 the conclusion is
introduced, in this case a transition from the parse tree (dot,$ID) to the type
real. Starting from the following line the premises are listed. First, we test the
implicit precondition that the argument that is given for the operator must be
valid, i.e., that it is an identifier. This check is delegated to declaration rules like
the one generated earlier. We use the Pyke keyword first here because there
can be multiple proofs that $ID is indeed an identifier, but we need only one.
The keyword first is akin to once/1 as defined in the Prolog standard [32].

The remaining lines consist of two pairs, each implementing one of the ex-
plicit preconditions of the rule. In Lines 6 and 8 we select the relevant environ-
ment component. In Lines 7 and 9 the actual lookup is done, and the result is
compared to the desired value.
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Validation

In the introduction, we stated four challenges in tool development for DSLs.
In this section we review the challenges and discuss how the challenges were
addressed in our two prototypes.

The first challenge required correctness of the tools supporting DSLs to be
clear to the domain experts. We addressed this challenge by (1) separating the
specification of the type checker (type system) from its implementation and (2)
specifying the type checker in a formal language close to the popular SOS, well-
known to the domain experts [11]. As SOS is a popular semantics specification
approach for domain specific languages, e.g. Erlang [28] and GP [91], we believe
that our approach can be applied to other domain specific languages as well.

The second challenge demands the approach to be suited for evolution, and
the third one requires support of decision making by language designers. While
these two challenges are quite different, our approach allows to address both
of them in a uniform way. Recall that the main components of our approach
are type system specification in MSOS and automatic generation of the type
checker. In Chapter 3 we have shown that MSOS specifications are well-suited
both for specification of type checking evolving languages and for decision mak-
ing support. Automatic type checker generation allows to regenerate a type
checker when the type system has evolved. Implementation of the transforma-
tion required merely 235 ASF+SDF transformation rules, amounting to 1174
lines of code. The MSDF grammar used has 115 production rules, and the Pyke
grammar 280, 234 of which are part of an imported Python grammar. Hence
there are only 46 Pyke-specific production rules.

Our final challenge required the generated tool to fit the existing tools avail-
able for the DSL. Since the entire suite of the Chi tools is implemented in
Python, we have opted for generation of Pyke code.

Lessons learned

We have received a very positive feedback from the designers of Chi. The
methodology applied in this chapter has been chosen by them to support type
checking of CIF [9], a new generation hybrid system specification language es-
tablished by the members of the European network of excellence HYCON4.

In addition to providing a component for the Chi 2.0 tool set, the research
effort described above aimed at practical evaluation of generative approach to
type checker development.

• Design of an appropriate type system for Chi 2.0 required an iterative
process. We expect that this is the case during the design for most DSLs.
The choice of MSOS and code generation reduced the time needed to
implement each iteration.

4The HYCON project used to have a website at http://www.ist-hycon.org, but it no
longer exists. The successor of HYCON, HYCON2, can be found at http://www.hycon2.eu/.
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• Because we constructed the transformation that generates the code to
implement the type checker from scratch, we were free to select a target
language that suited our needs. By selecting Pyke, a knowledge engine
based in the same language the other tools are written in, Python, we
could benefit from logic programming capabilities without introducing a
number of new dependencies on external software.

• Pyke is both well-suited for MSOS-based type checker generation due to
the presence of rules, and for integration with other tools, due to closeness
to Python. We expect other rule-based extensions of popular implemen-
tation languages such as, e.g., Jess [46] for Java and CLIPS for C, to be
well-suited for MSOS-based type checker development as well.

However, we also noticed that smooth integration of the generated type
checker with the Chi 2.0 tool set required the type checker to be aware of the
representation of AST and DAST. Adding this knowledge to the transforma-
tion that generated the code was not a difficult problem, but it resulted in a
transformation that cannot be easily reused for other projects and other target
languages.

A second, and bigger, problem to using MSOS is that while the language can
describe a lot of type system concepts in a convenient and clear fashion, it cannot
handle ambiguities very well. Because MSOS is primarily intended for dynamic
semantics, MSOS rules can be seen as describing potential execution paths. If a
MSOS semantics specification is ambiguous, this can be interpreted in a dynamic
setting as a choice between two possible executions, and is quite suitable. In
static semantics, however, it is usually expected that an expression has only one
valid type in a completed type computation. Thus, having multiple possible
type derivations for the same expression is undesirable, especially because MSOS
provides no easy, sure way to even detect that there are choices to be made.
For example, if we add a rule that results in an error if multiple types can
be derived for the same expression, the implementation can simply ignore that
rule and produce an incorrect result. A solution to this is to require that the
MSOS rule for an expression can only ever give that expression one type, thus
preventing ambiguities from forming. This also, however, makes it much harder
or impossible to express some common type system features, like overloading.
The most natural way to implement overloading in a (MSOS) type system is
precisely by using an expression with a different type for each option. Other
rules can then restrict this type based on the types of other expressions and the
semantics of the language.

A possible compromise is to make each MSOS rule link each expression to
a set of types instead of a single type. This way, we can have a single type
derivation, while still allowing for multiple types for each expression. The main
disadvantage of this approach is that a second step is required, after these sets
have been computed, to eliminate them again to get the desired single type
values. Usually, this will only involve extracting the only element from a set,
but when the set is larger, a selection must be made. We feel this cannot be
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expressed efficiently in MSOS, and the formalism essentially fails the implicit
test in RQ 1.

3.8 Related work

Numerous ways of specifying a type system can be found in the literature. For
example, type systems can be described using denotational semantics [24, 96].
Denotational semantics is based on functions that give the meaning or denota-
tion of a program by linking inputs to the appropriate outputs. In this case,
each node of an abstract syntax tree is linked to the appropriate type. Alter-
natively, [88] uses Structural Operational Semantics (SOS) to represent type
systems, which was also suggested in earlier [90,105] and more recently in [43].
Unlike denotational semantics, operational semantics gives a meaning to terms
by defining an abstract machine consisting of states connected by a transition
relation. In SOS, the transition relation is defined by sets of rules allowing a step
from one state to another if the rule’s preconditions are met. When used in type
systems, the initial state is the AST, and the resulting state should be the de-
sired type, or a DAST with type information in some or all nodes. Another form
of operational semantics is evolving algebras. An evolving algebra consists of two
parts, a partial, many-sorted algebra that describes the given program as the ini-
tial state, and a set of transition rules that describe transitions that allow state
changes. Fundamentally similar in approach, evolving algebras mainly differ
from SOS-based formalisms in that they have an imperative-programming style
rather then the more set-theoretical style used by SOS. Industrial implementa-
tions of type systems have usually been based on attribute grammars [1,36,107].
Attribute grammars consist of grammars where attributes have been defined for
some or all nodes, usually in terms of other attributes. During type checking,
attributes are evaluated as needed until the values for the desired attributes, like
the type of an expression, is known. Finally, one can develop a special domain
specific language for type systems [51].

We considered all the specification methods above as a basis for our type
checker generator. Denotational semantics are clean and independent of imple-
mentation, but involve heavy mathematical machinery often surmounted by a
highly specialized syntax [87]. Minor changes in the language might require a
complete rewriting of the specification [83]. Since we target domain specific lan-
guages we need a formalism that would be comprehensible for domain experts
without background in formal modeling. As rapid evolution is not uncom-
mon for domain-specific languages, the rigidity of the denotational semantics
becomes a major problem. Attribute grammars are easier to understand, but
focus on how to calculate type values, instead of on what the type should be.
Moreover, attribute grammars usually require additional effort from the domain
experts: even auxiliary data structures need to be implemented through pro-
duction rules [40]. SOS is closer to natural reasoning, but can be very verbose
and specifications tend to have high levels of coupling between rules. Also, ear-
lier work using SOS assumes the programming language being analyzed to be

65



fixed and do not address the co-evolution issues. Finally, while developing a
separate domain specific language is a valid option for type checker specifica-
tion, the language developed likely cannot be easily reused for other forms of
static semantic analysis, because its constructs are focused on type derivation.
Moreover, application of such language requires a special learning effort from
the domain experts, similarly to the evolving algebras mentioned earlier.

The idea of using a generative approach to construct type checkers can be
found, e.g., in [7,76]. Application of this idea to domain-specific languages, how-
ever, requires addressing the challenges stated in Section 3.1. These challenges
render such approaches as [7, 76] not suited for domain-specific languages as
these approaches were not conceived with the issues of language evolution and
tool integration in mind. In particular, in [76], languages are divided into fea-
tures. If two features are not related in a straightforward manner, extra effort
is required to combine them. If a new feature is to be added to a languages that
already has many features, this is obviously not desirable. TYPOL programs
as described in [7] appear to suffer from the same problem, though the original
paper does not state this explicitly.

3.9 Conclusion
In this chapter we have presented our experiences with a novel approach to
development of formally specified type checkers. We specified the type system
for the specification language Chi 2.0 using MSOS and MSDF and generated
a type checker in Pyke, first using Maude and then using ASF+SDF. MSOS
is formal, well-suited for evolution and close enough to the popular SOS to
be understood by the domain experts with limited programming experience.
ASF+SDF allows us to generate a type checker and to reuse the generation
process when the DSL evolves.

Developing static semantic analyzers for evolving languages requires the
analysis techniques to co-evolve together with the syntax and the semantics
of the language being analyzed. In particular, this means that the analyses
should be flexible enough to accommodate different syntactical and semantical
options contemplated by the language designers. In this chapter we have shown
that modular structural operational semantics provides a possible framework for
developing flexible semantic analyses. This shows MSOS is a possible answer to
RQ 3. To illustrate our approach we have chosen to formalize typing rules for
expressions in Chi, a hybrid system specification language. We have seen that
the analysis developed is indeed:

• flexible enough to co-evolve with the changing language (goal (i) from
Section 3.1 addressed in Section 3.5, as related to RQ 4),

• and that the MSOS transition rules can be implemented with a limited
development effort (goal (ii) from Section 3.1 addressed in Section 3.6).

The MSOS-based approach advocated in this chapter can be extended in a
number of ways. First, the prototype implementation discussed in Section 3.6
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can be further elaborated to provide for error reporting. In case MMT can-
not rewrite an expression according to the MSOS transition rules, no specific
action is taken. Moreover, if desired, the Maude implementation can be used
to generate the type checker code in a programming language chosen by the
Chi 2.0 developers. To continue benefitting from the flexibility of the approach,
automatic transformation techniques, e.g. [74], can be used.

Next, additional semantics-based analyses can be developed for Chi 2.0. One
can, for instance, aim at detecting semantical errors in Chi 2.0 programs. Se-
mantics of Chi 2.0 have been previously formalized using SOS [10], but the
formalization is not well-suited for evolution. For example, it was found that
adding concurrency or references to the functional language ML required a com-
plete reformulation of the language specification [85]. Therefore, we will consider
reformulation of the Chi 2.0 semantics using MSOS in Chapter 3.9. Expressing
both the language semantics and the semantic analysis rules in the same seman-
tic framework should lead to seamless integration of the two. Moreover, these
translated rules can then be used as starting point to define the dynamic se-
mantics in Action Semantics [37]. Such an Action Semantics definition of Chi2.0
allows another way of executing (and checking) the formal semantics of Chi2.0
via the action environment described in [20].

Unfortunately, we also found significant disadvantages to using MSOS as a
type system specification language. The first one is actually related to evolu-
tion, not of the language semantics but of its toolset. In particular, the strong
connection between the type system and AST structure observed in Section 3.7
limits the reusability of type system rules between different implementations of
the same language, especially those is using separate frameworks. In our case,
the successor to Chi 2.0, a new language called CIF [12] is implemented using
the EMF Framework [101] instead of Python. We would like to reuse Chi 2.0
type system rules for CIF, but the different AST structures makes this almost
impossible. This means that MSOS is not as useful in answering RQ 4 as we
had initially hoped. It also means that MSOS is not the answer to RQ 3 we are
looking for. To resolve this issue, we designed our own type system specification
formalism, EMF-TL, which is strongly inspired by MSOS. By integrating the
language into an existing DSL framework from the start, we were able connect
the type system to existing language infrastructure in a much more straightfor-
ward way. We will discus EMF-TL in more detail in Chapter 4.

On the positive side, we found the rule-based definition style of MSOS very
useful in the context of RQ 5. By combining several rules that each cover a
particular case, we can define types for a variety of elements in a modular way.
For a purely theoretical description of a type system, MSOS is a very suitable
choice. However, we would like to use our type system specification in a more
practical way, and MSOS is less suited to that use case. In particular, we
would like to combine the modularity in rule definition with greater modularity
in terms of in- and output format. As mentioned before, we will discuss the
formalism we designed to meet these requirements in Chapter 4.
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Chapter 4

EMF/EMF-TL Introduction

In response to the issues we identified with MSOS as type system specification
formalism, we decided to develop an alternative formalism, EMF-TL. EMF-TL
is a rule-based transformation language linked to the EMF framework. In con-
trast with MSOS, EMF-TL features the use of explicit constraints to guide the
application of rules. In this chapter, we first introduce EMF-TL, using the mod-
eling language SLCO as an example. We then define the formal semantics of
EMF-TL through a three-step process. This process is mirrored in the imple-
mentation of EMF-TL, which is discussed next. We show that, given certain
assumptions, our implementation matches the previously defined semantics.

4.1 Introduction

One of the issues we discovered during our experiments with MSOS was that
the type system definition ended up being too closely linked to the structure
of the provided input and expected output. This means, for example, that if
the language developers decide to change to a different parser, the type system
definition has to be updated to remain consistent with it. Similarly, if the devel-
opers introduce a new execution option for the language, new type information
may be needed. A possible solution would be to introduce a translation that
relates the concepts used in the type checker to those created by the parser or
used during the execution. This translation becomes quite cumbersome, how-
ever, when the language gets more complicated, and makes the type system
specification harder to understand. From what we have seen in relation to RQ
2 in Section 2.3, this is undesirable. Also, the close connection to the imple-
mentation actually inhibits language evolution as intended in RQ 4, while the
potential support for evolution was one of the reasons for selecting MSOS in the
first place.
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4.2 EMF
Therefore, we choose a different solution, where we try to find a data format
that is flexible enough to accommodate both a variety of parsers and a variety of
execution methods. The data format we choose is part of the Eclipse Modeling
Framework, otherwise known as EMF [101]. EMF is based on the concepts
of models and metamodels. The basic unit of EMF is the model. A model
consists of a number of model elements that can have structural features. Note
that this means that all abstract syntax trees can be interpreted as models. We
cannot, however, represent information from any domain in any model by adding
arbitrary features to elements. Every element is based on a class that describes
what features it has and what values they can contain. All elements that are
based on a given class are referred to as its instances. Classes are contained
in metamodels, and each model is associated with exactly one metamodel. If
a given model is actually a abstract syntax tree, the corresponding metamodel
directly reflects the abstract syntax used to construct it.

When a model element is created, we have to select a class from the meta-
model, which determines what features the element has and how they are ini-
tialized1. Each feature is defined with a name, a class or type of elements it
can contain and a multiplicity, that indicates how many elements it can hold.
A feature can be either a property or reference. A property contains a basic
value, that has no further representation in the model. In contrast, a reference
contains a pointer from the source to a specific model element, which we call
the target. Usually, this will be another element in the same model, but it can
also be the same element, or an element in a different model. Some references
are of a special kind, known as containment reference. A containment reference
represents a relation where the target is considered part of the source. One
consequence of this notion is that a model element can be the target of only one
containment reference at a time. Another that if a source element is deleted
from a model, all target elements of containment references in that element are
deleted as well.

SLCO
An example of metamodel is shown in Figure 4.1. The figure was created by
taking a fragment of the metamodel of the Simple Language for Communicating
Objects or SLCO [4]. SLCO was designed as a DSL aimed at systems consist-
ing of several components cooperating to complete a task. An SLCO system
consists of objects connected by channels. Each object is associated with a
class that defines its properties. In particular, a class defines the ports that
allow channels to connect to objects, and state machines that define the actual
behavior of the object. SLCO state machines primarily consist of states and
transitions, but can also feature guards, triggers and effects. Guards prevent
transitions from activating if given conditions are not met. Triggers, in contrast,

1There exists a special value in EMF, called OCLUndefined, for features that have no other
defined value.
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force transitions to be taken if a certain event occurs, like the reception of a mes-
sage. Effects represent the side effects of transitions, like updating variables or
sending messages. In all these constructs, expressions play an important role
in defining when a guard holds, what message can be received or what message
is sent. Because the expressions elements of SLCO also form the foundation of
the largest part of the type system, we choose that fragment of the metamodel
that represents expressions to be discussed in detail here.

The main class of the fragment is the Expression class, shown in the mid-
dle of Figure 4.1. This class has one feature, namely a reference named type
to another object, that has to be of the class Type. This is indicated by a
line with an arrowhead pointing at the Type class. This reference is a con-
tainment reference, and this is indicated by a black diamond at the source
of the reference. This is because a Type element in isolation is not useful, so
once the Expression element is deleted, the corresponding Type element should
be removed as well. The Expression class is abstract, as is indicated by the
italicization of the class name. This means that no actual instances of the
Expression class can be created. Instead, the Expression class has three sub-
classes, ConstantExpression, BinaryExpression and VariableExpression as
indicated by lines with open arrowheads. Any instance of those classes is also
considered an instance of the Expression class, and has all the features de-
fined in it. However, the ConstantExpression class is itself abstract, and has
three subclasses, BooleanConstantExpression, StringConstantExpression
and IntegerConstantExpression. These represent the simplest forms of ex-
pressions in SLCO, namely direct boolean, string and integer values respectively.
In all cases, the actual value is stored as a property called value.

A more complex expression is the only other non-compound expression,
VariableExpression. This class represents references to variables elsewhere
in the model, that are represented by the Variable class. The connection be-
tween these model elements is represented by a reference called variable. Note
that this is not a containment reference, because a variable can be referenced
multiple times, and can exist independently of any references.

The final subclass, BinaryExpression represents the only kind of compound
expression in SLCO. It represents one of several binary operators, that is applied
to the results of two subexpressions. The operator is stored in a property that is
based on the OperatorEnum enumeration. This is an EMF method to describe
properties that should only have one of a small set of values, like the limited set
of SLCO operators. The two subexpressions are represented by references to
Expression objects. This means a subexpression can be a constant, a variable
reference or again a binary expression. Both subexpressions are containment
expressions, because they represent parts of the binary expression.

As mentioned before, the Type class is instantiated to represent type infor-
mation. In EMF, type information of the kind computed here is stored in the
model like any other information, as elements with properties. In the case of
SLCO, each element with a type will contain a Type element with a property
primitiveTypeEnum that contains the specific type. The possible types are de-
fined by the PrimitiveTypeEnum enumeration, in the same way as the possible
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Figure 4.1: Example Metamodel Fragment

operations are defined for binary expressions.

The final class in the metamodel fragment is the Variable, that is used to
represent the actual variables in the model. Noteworthy here is that because
variables are always accessed via references, they do not have a property that
represents an identifier. Instead, the only features of a variable are a contain-
ment reference to a type, that defines the values the variable can store, and a
containment reference to an expression, that determines the initial value of the
variable.

Even though it is in principle independent of programming languages, EMF
is most closely associated with Java. Based on a metamodel, it is possible to
create a set of Java classes that can be used to create and represent models
based on that metamodel. Additionally, we can write models to disk using a
standard component, in either an XML-based or a binary format. More im-
portantly, there are a number of other components that also use these classes
to create and manipulate models. This guarantees compatibility between these
tools. Most interesting to us, these tools include parsers, which can be used
to create input models for the type checkers and model transformation engines,
which can be used both to implement the type checker, and to use its output.
Additionally, there are visualization tools, which can be used to create graphical
representations of models.
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4.3 DSL for type system specification

Based on our experiences with MSOS, described in Chapter 3, and our decision
to use EMF as our framework, we decided to create a new DSL to specify type
systems, called EMF-TL, inspired by MSOS and our previous work with it, our
previous experience with ATL [64] and our experience in creating a specification
for the type system of the Java language. We have implemented EMF-TL in
Java, based on the Eclipse Modeling Framework, and our implementation is
available through a GitHub repository [78].

Like MSOS and ATL, EMF-TL uses rules that are applied to language con-
structs and define under what conditions it is correctly typed. Unlike ATL,
but like MSOS, EMF-TL allows multiple rules to apply to the same element
simultaneously during the typing process. Only at the very end of the typing
process we require that the number of possible solutions is reduced to one. This
way, we enable more use of case distinction in defining type systems, making
the definition of complex typing behavior easier and cleaner. It also removes the
impact of the order of rule application on the computed types, which in turn
removes the burden on the type system designer to consider the order of the
application during rule design.

In order to further reduce the impact of order, we have chosen not to intro-
duce an explicit notion of environment in EMF-TL. Environments are normally
used to allow model elements that are spread through a model, like declara-
tions and references to those declarations, to be linked together. In EMF-TL,
we assume instead that a separate scoping component has connected references
to potential targets, so the environment is encoded in the input model. By
splitting off scoping from typing, we can simplify the type rules because no
environment has to be constructed or manipulated. While this decision could
potentially limit the kinds of DSL type systems our language can describe, we
feel the simplifications it allows are worth it. Overall, this leads to the sequence
of steps shown in Figure 4.2, where a text representation of a model is first
parsed, then scoped, and then typed, which leads to the final model. In that
process, an EMF-TL type system serves as input for a generator that can create
a type checker based on a declarative specification.

Type checking rules

As described in Section 4.2, the EMF framework is based on the concept of
models. As mentioned before, however, EMF-TL is based on the concept of rules
which apply to model elements instead. At this level, in its most basic form,
type checking a model element means determining whether it is consistent with
a type system. A more complex view is that a type system classifies language
elements according to the values they can produce [88] or handle, meaning the
result not only states if the language element is valid, but also gives an indication
about its behavior. The classes assigned to language elements are called types.

A common way to specify this classification is in the form of rules, often
called judgements. A judgement relates a specific form of language element to a
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Figure 4.2: Overview of EMF-TL Process

type, possibly with additional conditions on the types and structures of related
language elements. This means that types are kept separate from the expressions
they describe. In practice, we observe that information computed during type
checking, like the types themselves, may be useful not only during type checking
itself, but for any tool that uses the model. For example, a code generator might
use type information to decide how and where to store intermediate results of
computations.

Thus, we believe the result of type checking of a correct model should be a
copy of the model extended with information computed during type checking.
In this view, a type checker is a model transformation that primarily inserts
new attributes into model elements, but preserves the structure of the model.
It also means that any type we want to represent in the output model needs a
class in the relevant metamodel to represent it, but we feel this is only a minor
limitation.

We choose to base the execution of our model on constraint solving to in-
crease the flexibility of our specifications. Each rule in an EMF-TL specification
defines the transformation of elements that are an instance of one source class
to instances of a target class. Each rule can have a number of conditions at-
tached, that govern where it can be applied, and the properties of the target.
A noteworthy point is EMF-TL does not require that a rule fully specifies the
desired result. A rule can specify, for example, that a value of a certain prop-
erty in the result must be smaller than a given value, but not what the value
actually should be. During transformation, other rule applications can place
additional constraints on the value, which may reduce the number of possible
results. If the number of possible solutions is reduced to 0, the condition no
longer holds. If it is reduced to 1, we have the desired answer. If there are
still multiple possibilities after all rule applications have been handled, EMF-
TL uses a so-called strategy to determine of one of the possible result is “better”
than the rest. What “better” means is defined by the type system designer. If
there is one superior answer, that is the final result. Otherwise, we have a true
ambiguity, that should be reported as such. For example, if we can derive both
a numeric type and a string type for the same expression, in many type systems
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we would not know which to choose. In that case, it is better to produce an
error that present the user with potentially unpredictable results.

Scoping

As mentioned before, a decision we made in the design of EMF-TL is that we
chose to limit the support for scoping. In EMF-TL, rules primarily refer to direct
properties of the element the rule is applied to. There is no separate notion
of environment that is shared between rules. If we want to type a reference
expression, this implies that the intended target of the reference has to be linked
to it before it is typed. These links can be created by the parser, or by a separate
transformation, for example based on the Name Binding Language [70]. If this
is the case, then typing a reference becomes easy, because we can easily access
the target of the reference to get any information we need.

In cases where we need type information to choose between different elements
as potential reference targets, this also becomes much easier if we have direct
access to all candidates. Unfortunately, this type of link cannot directly be
created during parsing. Instead, we use a separate scoping step that creates
reference links between references and potential targets.

Naturally, this suggests that a separate language is needed to describe the
scope system of a language, as a counterpart to the type system. We consider
this an advantage, because scoping and typing have to some extent contradic-
tory properties, which make it hard to combine them into a single language.
In particular, scoping typically involves handling a number of elements that
represent potential targets and scopes and making a choice among them, for
example selecting the target of a variable reference from among all variable dec-
larations in the model. These elements can come from anywhere in the model,
or even from outside the model. In contrast, type inference or checking involves
a limited set of elements that are directly linked, and can to some degree be han-
dled separately. For example, the type of a binary operator expression usually
depends only on its two subexpressions, which are directly contained in it.

EMF-TL structure

In this section, we will discuss the structure of EMF-TL specifications. List-
ing 4.1 shows a fragment of such a type system specification. The full specifica-
tion can be found in Appendix A. For ease of reference, the line numbers used
here match those in the appendix. Each line is numbered as it appears in the
actual source file.

EMF-TL Header

In the imports section the designer of this type system indicates the meta-
models that describe the input and output models. At this point, the prototype
implementation of the language does not enforce one to be the input metamodel
and the other to be the output metamodel. It is up to the type system designer
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to ensure that all created elements are compatible with the desired output meta-
model, otherwise an error will occur. In fact, the order of the import statements
is ignored. In principle, the metamodel for both models can be the same, in
that case, only one import statement is necessary.

The next section is the start section. In this section, the type system
designer should indicate which model element serves as the primary container
of the other model elements. There should be exactly one such element in each
input model.

Listing 4.1: SLCO EMFTL Header
1 imports
2 http://www.emftext.org/language/textualSLCO;
3 http://mdse.tue.nl/slco;
4 start textualSLCO::Model
5
6 typesystem
7 slcotype(type) =

slco::PrimitiveType(primitiveTypeEnum);
8 widening

In the typesystem section, the designer can introduce names for the types
to be used in the type system, and associate the types with their representations
in the models. In Listing 4.1, the type slcotype is introduced and linked to the
metamodel element slco::PrimitiveType. This class can represent a number
of more specific types, like integer and boolean. The parameter type is used
to describe the more specific type, using the primitiveTypeEnum enumeration,
which describes the possible types. It should be noted that in the model trans-
formation view of typing, types are represented by language elements not intrin-
sically different from other language elements. By separating types from their
representations, we reduce the coupling between the type system specification
and the target metamodel, and hence facilitate the co-evolution of metamodels,
as identified in [41], and the corresponding type system specification(s). For
example, if a type is renamed in the metamodel, we only need to update the
association between the type and the element, rather than updating all rules
mentioning that type. Additionally, the type serves as a shorthand, because the
name of the type will usually be much shorter than the fully qualified name of
the corresponding model element. Because types often occur in several rules,
this can help making the type system easier to read and write.

Types declared in the typesystem section can be used in the widening
section to define a subtype relation on types. In SLCO, because the number of
types is limited, there is also no type widening, so there is no widening section
in the header. An example of a type system with widening can be found in
the next chapter, specifically in Section 5.2. The section header widening is
required, even though the section itself is empty. If there was type widening,
the language designer would describe how the types involved are related in this
section.
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A consequence of allowing types to be widened is that there can be situations
where the type system has multiple correct outcomes for some model elements.
This multiplicity can also be caused by multiple rules for the same element with
conditions that are not mutually exclusive. For example, when comparing two
numbers, we might be able to choose to interpret them as integers, reals or
another numeric types, depending on what types exist in the DSL. The type
checker, however, needs to select one “best” type from among all correct types
in order to be able to generate a single output model. In other type inference
approaches [88], the most general or principal type is often considered to be the
most desirable one: all correct types are instances of the principal type that can
be obtained by instantiating type variables present in the principal type. In our
case, we assume types to be elements of the input metamodel, i.e., we cannot
assume that the type system contains type variables and selecting the principal
type may not always be possible. Instead, we have chosen to allow the designer
to express a global preference of one type over another. This is defined in the
strategy section, in the same way as the partial order defined in widening.
When confronted with multiple types for one element, the type checker prefers
the “smallest” type according to the strategy. Again, because SLCO does not
feature type widening, nor rules with conditions that are not mutually exclusive,
there is no need for a defined strategy. More complex type system, like the one
presented in Section 5.2, usually do need strategies. An example of a strategy
can be found in Section 5.2.

EMF-TL Rule Conditions

In order to apply a strategy, we first need to have some actual types to compare.
We get those by applying the rules defined in the rules section of the EMF-TL
specification. Each rule states for a specific metamodel element what conditions
have to hold for it to be correctly typed. Note that due to the many uses of the
word “type”, such as in architecture, biology and typesetting, we cannot assume
that every property with the name “type” represents a type that needs to be or
even can be computed. Thus, for all elements that are not mentioned in any
rule, we assume that they are correctly typed by default and do not need to be
changed. The basic structure of a rule is shown in Figure 4.3. In the from part,
the designers can define what class the rule applies to, and what features they are
interested in. When the type checker tries to apply the rule, the variables of the
from part are initialized with the values of the attributes from the input model.
Additionally, any variables defined in the in section of the rule are initialized to
the closest container of the element that is of the corresponding class, based on
the tree structure that is embedded in the model. For example, if the element
represents a part of a larger structure, like an object, these variables can be
used to access that larger structure. The optional with part introduces local
variables. The to part states how the element will be represented in the output
model, and what properties must be updated with computed values. Finally,
each rule can have a set of preconditions that govern when it can be applied.
Note that multiple rules can be applied to the same class. For instance, a class
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can represent binary expressions, while different preconditions can restrict the
application of the rules to different operators. The rules need not be mutually
exclusive. If multiple rules can be applied to an element, but with different
resulting types, the strategy is used to choose the minimal solution. If that is
not possible, the element is treated as an ambiguity and reported as an error.

from MetaModel1::Class1 in (var : MetaModel::Class)∗
((feature = var)∗)

with var∗

to MetaModel2::Class2
((feature = var)∗)

when cond∗

Figure 4.3: Basic rule structure

exp1 <= exp2
exp1 = exp2
exp1 # exp2
exp1 => exp2
exp1 in exp2
for (var(= val)?)∗ : (cond)∗

Figure 4.4: Conditions

As shown in Figure 4.3, an important part of a rule in EMF-TL are the
conditions that determine when it can be applied. Figure 4.4 shows the six
forms of conditions supported by EMF-TL. The first type of condition are binary
conditions, shown here as the first five rows. A binary condition combines the
values represented by two subexpressions, in a way selected by the operator.
The first four operators listed are comparison operators, that hold if the left-
hand side is smaller than, equal to, not equal to and larger than the right-hand
side respectively. The in operator holds if the left-hand side is an element of
the right-hand side. This implies that the right-hand side expression must be a
list or a set.

The second type of condition is a for-condition, which can be used to state
that a condition must hold for all elements of one or more lists separately. All
lists must be of equal length, and the conditions are applied one element per
list for each iteration. For example, if we want to define a rule for a container
literal, we can use this to apply a condition to each element separately. In
another example, we may want to require that each element of the collection
has the same type. Another possible use of for-conditions is to compare the
types of a list of arguments to the list of parameters expected by a function.
A more extended example of the latter can be seen in Listing 5.5. In the for-
condition, a variable is declared for each list. During the ith iteration of the
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for-condition, this variable represents the ith element of the corresponding list.
We can also declare a loop variable without an associated list. We assume such
variables are intended as a local variable, where the designer is not interested
in the resulting list after the loop is finished. These local variables can be used
to simplify complicated expressions by splitting them into several parts. For
example, the value of an attribute can be stored in a local variable, which can
than be referenced from another condition.

number
"string"
OclUndefined
var
Set{exp∗}
List{exp∗}
exp1 (+| − | ∗ |&) exp2
(length |first | last |flatten |pairs) exp
type((attribute)∗)
MetaModel1::ModelElement1 ((attribute = exp)∗)
exp1.attribute

Figure 4.5: Expressions

EMF-TL Expressions

In conditions, expressions are used to compute the values we need. Figure
4.5 shows the expressions that exist in EMF-TL. The list starts with basic
expressions that are used to represent numbers, string, undefined values and
references to variables, respectively. The following expressions allow sets and
lists of values to be created. This is useful in combination with the in condition
operator, in cases where several different values of a property still have the same
semantics. In the example SLCO type system rules we show in Listing A.1,
we use this to combine rules for binary operators that have the same type of
behavior.

The next type of expressions are binary expressions. There are four binary
expression operators in EMF-TL, addition (+), subtraction (−), multiplication
(∗) and concatenation (&). Note that concatenation is intended for lists and
sets, and does not work on strings. There are also a number of unary operators,
used in the next set of expressions. They are all related to lists, and they can
be used to determine the length of the list (length), the first (first) and last
(last) element, collect the elements of a list of lists into one list (flatten) and
create a lists of pairs of consecutive elements of a list (pairs). The last operator
is intended for situations where elements of a list form a chain, where for example
the output of one expression is the input of the next. By splitting the list into
pairs, we can set conditions for each connection in the chain separately, using
a for-condition. While there are of course many more operations on lists that
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could be included in EMF-TL, we choose these based on our previous experience
with describing type systems.

The next two expressions describe patterns, the first for types, and the sec-
ond for model elements. Patterns can be used to restrict elements to specific
structures, and to extract the values of properties from types and model ele-
ments. One limitation is that model element patterns can only use values from
the input model. Patterns do, however, support inheritance. If the element we
try to match is actually linked to a subclass of the defined class, the match can
still succeed. If we want to access values computed by the type checker, we
have to use the last expression. Using that, we can both extract property values
from arbitrary elements, and access values computed during type checking. A
common use for this is to get access to the types of subexpressions in order to
compute the type of a compound expression.

EMF-TL Specification Example

We now return to the SLCO type system to show examples of actual EMF-TL
rules. The first three rules in the type system specification are shown in Listing
4.2 in lines 12 to 22. These are also the simplest rules one is likely to find in
a type system definition. In each case, the input element contains a constant
basic value that belongs to one specific type. The target element of the rule is
essentially the direct equivalent of the source element in the target model, and
the only thing that needs to be done is to assign the appropriate type to the
corresponding attribute of the target.

Listing 4.2: SLCO EMF-TL Rules
10 rules
11
12 from textualSLCO::StringConstantExpression
13 to slco::StringConstantExpression(type = $t)
14 where $t = slcotype {{type =

slco::PrimitiveTypeEnum::String }}
15
16 from textualSLCO::BooleanConstantExpression
17 to slco::BooleanConstantExpression(type = $t)
18 where $t = slcotype {{type =

slco::PrimitiveTypeEnum::Boolean }}
19
20 from textualSLCO::IntegerConstantExpression
21 to slco::IntegerConstantExpression(type = $t)
22 where $t = slcotype {{type =

slco::PrimitiveTypeEnum::Integer }}

In SLCO, binary expressions are all represented by one class of elements,
textualSLCO::BinaryOperatorExpression, with an attribute, operator that
indicates which operation is used in this expression. Two additional attributes,
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operand1 and operand2, represent the two subexpressions. Because the differ-
ent SLCO operators have different semantics, the binary expression elements
are covered by a group of four rules instead of a single rule. In each rule, one
of the conditions restricts the value of the operation attribute to just those
the rule applies to. As the first two rules demonstrate, this does not mean that
the rule only applies to a single operator, but multiple operators can share a
rule if they happen to share semantics. In the first rule, shown in line 24 to 28,
describing equality operators, the condition on line 27 states that the types of
the two subexpressions are equal. In SLCO, if two values are of different types,
they must be unequal, so it makes no sense to compare them. If the types
are equal, the type of the binary expression is boolean. Note that we use the
shorthand defined in the type system section shown in Listing 4.1. In order to
indicate the shorthand is used, we use double instead of single curly brackets.

The next rule, shown in line 30 to 36, describes the two arithmetic operations,
addition and subtraction. In this case, not only the types of both subexpressions
must be equal, both must be of the integer type. If this holds, the type of the
expression is again integer. The third rule, shown in line 38 to 43, describes
the boolean conjunction operator. It is essentially the same as the previous rule
for arithmetic expressions, but for booleans instead of integers. The fourth rule
describes a numerical comparison operator. This rule is essentially a combina-
tion of the previous two. As with the arithmetic operators, only numbers can
be compared this way. As with the boolean conjunction operator, the result is
a boolean value.

Listing 4.3: SLCO EMF-TL Rules
24 from

textualSLCO::BinaryOperatorExpression(operator
= $o , operand1 = $l , operand2 = $r)

25 to slco::BinaryOperatorExpression(type = $t)
26 where $o in set{textualSLCO::Operator::differs ,

textualSLCO::Operator::equals},
27 $r.type = $l.type ,
28 $t = slcotype {{type =

slco::PrimitiveTypeEnum::Boolean }}
29
30 from

textualSLCO::BinaryOperatorExpression(operator
= $o , operand1 = $l , operand2 = $r)

31 to slco::BinaryOperatorExpression(type = $t)
32 where $o in set{textualSLCO::Operator::add ,
33 textualSLCO::Operator::subtract},
34 $l.type = $t ,
35 $r.type = $t ,
36 $t = slcotype {{type =

slco::PrimitiveTypeEnum::Integer }}
37
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38 from
textualSLCO::BinaryOperatorExpression(operator
= $o , operand1 = $l , operand2 = $r)

39 to slco::BinaryOperatorExpression(type = $t)
40 where $o = textualSLCO::Operator::and ,
41 $l.type = $t ,
42 $r.type = $t ,
43 $t = slcotype {{type =

slco::PrimitiveTypeEnum::Boolean }}
44
45 from

textualSLCO::BinaryOperatorExpression(operator
= $o , operand1 = $l , operand2 = $r)

46 to slco::BinaryOperatorExpression(type = $t)
47 where $o = textualSLCO::Operator::atLeast ,
48 $l.type = slcotype {{type =

slco::PrimitiveTypeEnum::Integer }},
49 $r.type = slcotype {{type =

slco::PrimitiveTypeEnum::Integer }},
50 $t = slcotype {{type =

slco::PrimitiveTypeEnum::Boolean }}

The next rule, shown in line 52 to 55 describes the first reference expression
in the type system. As discussed before, a separate scoping step, executed before
the type checker, finds and stores all potential reference targets in the links
property. The rule has only to select the right Variable from the candidates. In
case of SLCO, as in many languages such as C and Java, this choice is primarily
based on the name of the variable, which must match the name given in the
reference. This check is done in line 55, where the variable declaration element
can only match the given pattern if the value of its name property matches the
value of the $varname variable. From the variable, we can then extract the
declared type, which is also the type of the expression.

Listing 4.4: SLCO EMF-TL Rules
52 from textualSLCO::VariableExpression(links =

$scope , name = $varname)
53 to slco::VariableExpression(type = $t , variable =

$v)
54 where $v in $scope ,
55 $v = textualSLCO::Variable(name = $varname ,

type = $t)

A similar pattern is used in the other rules in the type system. An exam-
ple is the next rule, shown in Listing 4.5 in line 57 to 63, which describes how
textualSLCO::Transition elements should be handled. This element is un-
usual because it contains not one but two references, namely to both the source
and target state. These are both resolved in almost the same way as the vari-
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able and class references described earlier. The only difference is that in the
case of transitions, to ensure the source and target state are not swapped, we
require explicitly that the name of the source state matches the name given in
the element, and the same for the target state. For the type system, the only
other relevant property is the guard. The guard is an expression, and thus it
has a type. Because a guard essentially switches a transition on or off, it has
to result in a boolean value. This requirement is represented by the last line of
the rule.

Listing 4.5: SLCO EMF-TL Rules

57 from textualSLCO::Transition(sourcename =
$source , targetname = $target , guard = $g,
links = $links)

58 to slco::Transition(source = $sourcevertex ,
target = $targetvertex)

59 where $sourcevertex in $links ,
60 $sourcevertex = textualSLCO::Initial(name =

$source),
61 $targetvertex in $links ,
62 $targetvertex = textualSLCO::Initial(name =

$target),
63 $g.type = slcotype {{type =

slco::PrimitiveTypeEnum::Boolean }}

Another example of a reference rule is the rule, shown in line 65 to 70, for
the assignment statement. When executed, an assignment statement updates a
variable to the result of an expression. In order for this to work, the result of the
expression has to be of the same type as the variable. This is directly expressed
in the rule. First, we resolve the reference to determine which variable is being
assigned to. Then, we extract the type of the variable, and compare it to the
computed type of the expression.

Listing 4.6: SLCO EMF-TL Rules

65 from textualSLCO::AssignmentStatement(expression
= $e ,links = $links)

66 with $t
67 to slco::AssignmentStatement(variable = $variable)
68 where $variable in $links ,
69 $variable = textualSLCO::Variable(type =

$t),
70 $e.type = $t

The final set of rules all involve variations on rules introduced earlier. The
first four, shown in line 72 to 92, all handle a single reference, to a class,
an input port, a variable and an output port respectively. Note that ports,
signals and channels are all untyped in SLCO. In other words, any message
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can be sent or received through any port, and any two ports can be con-
nected via a channel. This means a textualSLCO::SendSignalStatement or
a textualSLCO::SignalReception can never be incorrectly typed, as long as
they use an existing port in the right class. The last rule, shown in line 94
to 103, handles elements of type textualSLCO::Channel. Each SLCO channel
connects two objects via one port each. Thus, a channel expression contains
four references, one for each object and one for each port. As one might expect,
the conditions for the rule for channels essentially consist of four copies of the
conditions for simple references.

Listing 4.7: SLCO EMF-TL Rules

72 from textualSLCO::Object(links = $links)
73 to slco::Object(class = $class)
74 where $class in $links ,
75 $class = textualSLCO::Class
76
77 from textualSLCO::SignalReception(links = $links)
78 to slco::SignalReception(port = $port)
79 where $port in $links ,
80 $port = textualSLCO::Port
81
82
83 from textualSLCO::SignalArgumentVariable(links =

$scope)
84 to slco::SignalArgumentVariable(variable = $v)
85 where $v in $scope ,
86 $v = textualSLCO::Variable
87
88
89 from textualSLCO::SendSignalStatement(links =

$links)
90 to slco::SendSignalStatement(port = $port)
91 where $port in $links ,
92 $port = textualSLCO::Port
93
94 from textualSLCO::Channel(links = $links ,

object1name = $object1name , object2name =
$object2name , port1name = $port1name , port2name
= $port2name)

95 to slco::Channel(object1 = $object1 , object2 =
$object2 , port1 = $port1 , port2 = $port2)

96 where $object1 in $links ,
97 $object1 = textualSLCO::Object(name =

$object1name),
98 $object2 in $links ,
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99 $object2 = textualSLCO::Object(name =
$object2name),

100 $port1 in $links ,
101 $port1 = textualSLCO::Port(name =

$port1name),
102 $port2 in $links ,
103 $port2 = textualSLCO::Port(name =

$port2name)

4.4 EMF-TL semantics
EMF-TL is designed to be a flexible language for defining type systems. The
goal of every type system is to find types such that all type system rules are
satisfied. We would like to prove that if such values exist for a given model
and EMF-TL type system, our implementation of EMF-TL will find them and
produce a correct output model. Furthermore, we would like to prove that our
implementation will never produce an output model based on values that do
not fit the constraints that result from the type system. In order to do this, we
need a more formal description of the semantics of EMF-TL.

The first step, the constraint phase, computes how type system rules can be
applied to model elements. As elements are processed, each rule that could be
applied leads to a set of constraints. The constraints encode the conditions of
the rules. If we arrive in a situation where there are no constraints left and each
variable has a value, we have a solution. Once we reach a solution, we know the
model can be typed, and the result of this step is for each model element the
rule that was used to type it, and the values of the variables involved in that
solution. On the other hand, if we arrive at a set of constraints where there
are no valid values for at least one variable, we know that no solution can be
reached, and at least one rule application must be invalid. We will define the
semantics of the constraint phase in Section 4.4.

This leads to the second step, model generation. In this step, each input
model element is considered again. Based on the results of the constraint phase,
a corresponding output model element is created for each input element. If our
assumptions on the relevant metamodels hold, this will result in an output model
that contains all information of the input model, enhanced with type results.
We do not discuss the details of model generation here, but we do discuss the
broad details in Section 4.4.

Constraint semantics
The constraints part of the EMF-TL semantics is defined using a constraint
logic program [62]. A constraint logic program is based on constraint variables.
Constraint variables act like variables in both logic and imperative programming
in that they can represent plain values, but they can also have domains. A
domain is fundamentally a set of values. In this case, the values are either
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EMF elements, types or atomic values, like integers or strings. If a variable
has a domain, it can only represent values from that domain. Domains can
be added to variables or modified by using constraints. In a constraint logic
program, constraint handling rules can be used to define how a constraint affects
the domain of a variable. We use such constraint handling rules to define the
semantics of EMF-TL type rules and conditions. In this section, we first discuss
the global structure of the translation from rules to constraints. Following that,
we will discuss the details of individual constructs.

Global structure

To describe how we relate EMF-TL rules to constraint handling rules, we first
need to describe which constraint variables and constraints we use. We start
with constraint variables, which we divide into two kinds, global and local. Dur-
ing construction of the constraint program, global constraint variables are de-
fined for each model element. These variables are accessible throughout the
program, in contrast to local constraint variables, and used to expose computed
results to other rules. One of the variables for each element concerns the specific
rule that is applied to the element. Recall that only one rule can be applied to
each element in a valid solution. In a complete constraint solution, this variable
should contain the identifier of exactly one EMF-TL rule, which will be used to
create a model element in the output model. As an example, consider an SLCO
StringConstantExpression element. If the element can be correctly typed,
there must be a rule for which all conditions are met, which in this case must
be the first rule shown in Listing 4.2. Thus, the identifier of that rule will be
recorded in the constraint solution to be used later. The other global variables
represent the properties that are computed during constraint solving. Using
these properties, rules can access the results of computations done for other
elements. During the constraint computation, we also use local variables. Local
variables are variables related to specific rules, and are not accessible outside
of that rule. Local variables are added to a separate variable store as rules are
applied.

Once we have constraint variables, we can define constraints. In its most
basic form, a constraint consists of a name and some variables. We write this
down as ”name(V )”, where ”name” represents the name and V represents the
collection of variables. In our system, a constraint has no innate meaning,
and exists purely as an object that can be manipulated by constraint handling
rules. Constraint handling rules remove one or more constraints and implement
the semantics of those constraints by either changing the domains of variables,
introducing different constraints, or both. When the program is started, it is
initialized with a set of constraints that represent the elements to be typed.
By applying a sequence of constraint handling rules, the goal is to arrive in a
state where all constraints have been removed. At that point, all information
about the variables from the constraints is transferred to the domains. If no
domains are empty, this means we can construct valid solutions by assigning
each variable a value from its domain.
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Thus, in short, we want to compute the domains of the constraint variables
such that all values in the domain represent correct type system results. Ob-
viously, the nature of these domains depends on both the input model and the
type system specification. In particular, since we have one rule-recording vari-
able per model element, we also have multiple alternative implementations of
the same rule for different model elements. Each implementation encodes the
relevant information from both rules and model elements in the constraint han-
dling rules. In the resulting constraint program, we have a constraint handling
rule for each combination of model element and type rule that can be applied to
it, based on the source part of the rule. In theory, this can result in a number
of constraint handling rules equal to the number of model elements multiplied
by the number of type system rules. Indeed, if the metamodel of the input
model contains only unique class, this is what will happen, because all type
rules will apply to all model elements. In more practical scenarios, the number
of constraint handling rules is much lower.

Single rule structure

Each of the constraint handling rules in our constraint program has the struc-
ture shown in Example 8. In the example, the rule(V ) construct represents the
constraint this rule handles by translating it into other constraints. Each in-
stance of a rule is parameterized by references to a subset of the global variables,
V , related to one element. I are equations initializing local variables with infor-
mation from the input model, which is globally availably but read-only, and B
are the guards of the rule from the specification. The equation v1 = Rulename
records that this rule is applied, using the global constraint variable v1 taken
from the set V and the rule identifier Rulename. Finally, the constraints in
O relate the results of the conditions to the global constraint variables V rep-
resenting properties of the output element. In the rules, we will use x, y, . . .
as names of variables, φ, ψ, . . . as names of values and attributes, and capitals
of these letters, X,Y,Φ,Ψ, . . . as names for sets of variables and values or at-
tributes respectively.

Example 8. rule(V )⇒ I,B, v1 = Rulename, O

Example 9. Consider, for our first example, the rule for strings in Listing 4.8.
This is one of the simplest possible type system rules. This rule applies to
elements of class textualSLCO::StringConstant and has only one condition,
which states the type of a string constant is always textualSLCO::String. An
example of a model element this rule could apply to is the following:

"text"
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Listing 4.8: SLCO EMF-TL Rules
12 from textualSLCO::StringConstantExpression
13 to slco::StringConstantExpression(type = $t)
14 where $t = slcotype {{type =

slco::PrimitiveTypeEnum::String }}

In order to set the type of this element to the right value, we need to create
a constraint handling rule that implements the type rule for strings mentioned
earlier. Even for a simple model element like this, we need a separate constraint
handling rule for each element representing a string expression in the model. A
typical instance of such a constraint handling rule is shown below. Compared
to Definition 8, this rule has no input variables, so initialization I is empty. The
expression t=slcotype{{type= String}} in the rule represents the body B of the
rule. We next note the global variables, v1 and v2. Variable v1 will eventually
contain the identifier of the rule used to type the string expression element
and has a domain consisting of all possible rule identifiers, and variable v2 will
contain the type of the element the rule has been applied to and has the domain
of all possible types. We assume that type is the only property computed in
this type system, so there are only two global constraint variables per element.
The expression v1 = “StringConstant” corresponds to the v1 = Rulename part.
Finally, the expression v2 = t implements the output part O by copying the
value of t to variable v2. Note that, for the purpose of readability by reducing
the sizes of rules, we drop the metamodel prefixes of the class references, like
textualSLCO:: from textualSLCO::StringConstant, from now on, because
they are not relevant for this example.

rule(v1, v2) ⇒ t = slcotype{{type = String}},
v1 = “StringConstant”,
v2 = t

In the constraint handling rule, these relations are represented by a number
of equalities. The first one essentially sets the value of v1 to the identifier of the
rule used to type this element. Note that, in practice, this identifier is likely to
be generated and has no actual connection to the semantics of the rule, but for
the purpose of this example, we choose a more meaningful name. The second
equality, which corresponds directly to the condition of the type rule, sets the
local variable t to the desired type of the element. The final equality relates the
value of the global variable v2 to the local variable t, indirectly also updating it
to the desired type. This way, if computations on other elements would require
information on the type of this element, the rule being evaluated can acquire
the information it needs by accessing this variable.

Example 10. Consider, for our second example, the rule for the equality and
difference operator of SLCO, as shown in Listing 4.9. These rules were shown
before in Listing 4.2, and reproduced here for readability. In this rule, lines
24 and 25 describe the transformation part of the rule, the source and target
element. When the SLCO EMF-TL specification is applied to a model, this rule
can potentially be used to calculate the type of any BinaryOperatorExpression
in that model. Lines 26 to 28 describe the constraint part of the rule, the
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conditions that need to be satisfied if this rule is indeed the one that will be
used.

Listing 4.9: EMF-TL semantics example

24 from
textualSLCO::BinaryOperatorExpression(operator
= $o , operand1 = $l , operand2 = $r)

25 to slco::BinaryOperatorExpression(type = $t)
26 where $o in set{textualSLCO::Operator::differs ,

textualSLCO::Operator::equals},
27 $r.type = $l.type ,
28 $t = slcotype {{type =

slco::PrimitiveTypeEnum::Boolean }}

In an actual SLCO model, the equality operator could be used like this:

Boolean b3 = "true" == "false"

Here, we use the equality operator to compute an initial value for the boolean
variable b32. While the example is in textual form, a parser will create an
ECORE model that consists of separate model elements, including one of type
BinaryOperatorExpression that represents the equality. This model is shown
in Figure 4.6.

Figure 4.6: Example in model form

We know that the rule can be applied to the BinaryOperatorExpression
element based on the class used to define it, but in order to apply the rule
its conditions must also hold. In order to determine if this is the case for the
example model element, we need to create a constraint handling rule based on
the pattern described in Definition 8. In pseudocode, for the rule in Listing 4.9,
this results in the state shown below.

2Obviously, this is not a particulary efficient way to initialize this variable, but it will serve
as an example.
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rule(v1, v2) ⇒ o = equals,
l = StringLiteral(value = “True”),
r = StringLiteral(value = “False”),
o in {equals,differs},
r.type = l.type,
t = slcotype{{type = Boolean}},
v1 = “Equality”,
v2 = t

In the example, the first thing to note are the global constraint variables v1
and v2, where v1 will eventually hold the identifier of the rule that is applied to
this element, and v2 will eventually hold the type computed for this element.
There are also a number of local variables, o, l, r and t. The first three, o, l
and r, are defined in the source element of the rule, so they are initialized in
the initialization section of the rule. In this example, the subexpressions are
two instances of the StringLiteral class. The next constraint sets v1 to the
identifier of the rule, “Equality”, thus preventing the application of any other
rule to the same element. The next part contains the three conditions of the
rule, in turn. In the final part, the global constraint variable v2 is set to the
value of the variable t.

Constraint handling rule application

Using this kind of rules, we define the operational semantics of the constraint
part of an EMF-TL specification as a transition system. This transition system
models the constraint solver defined by the constraint handling rules created
based on the EMF-TL specification and the input model. A step in the tran-
sition system represents a decision made by the type checker. A state of this
transition system is a tuple of the following form: < Gs, Ds, Ls >. In this
tuple, the relation Ds : V 7→ DVs represents the global variable store, which
is used to store pairs of global variables from the set of variables V and their
computed domains from the set DVs of all possible domains, as the compu-
tation progresses. The global variable store is initialized with a conceptual
domain Du, representing all possible EMF model elements, like for example
textualSLCO::BinaryOperatorExpression, all possible types, like for exam-
ple slcotype, and all possible atomic values, like true or false, for each result
variable. By definition, all EMF models, and thus all sets of EMF elements we
will encounter, are recursive [97], which means membership of these domains is
always decidable in finite time. Because the number of model elements is con-
stant during constraint solving, we know how many global variables are needed
at the start, and variables are not added or removed during computation. Using
the type system from Example 10, the global variable store would consists of two
global variables for each of the three model elements. In contrast, Ls contains
the local variables of the rules that have been applied and the corresponding
domains. Initially, Ls is empty. As more rules are applied and decomposed
into smaller constraints, more variables are added to Ls, renamed as necessary
to avoid conflicts. Gs is called the goal store and contains a conjunction of all
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constraints. Note that the goal store is assumed to be never empty. If there are
no constraints left, we define its value to be simply true. Initially, Gs is filled
with a conjunction of rule constraints, representing the model elements to be
typed.

As each model element is different, there is a separate rule element for each
typeable model element in the model. This will be discussed in more detail
in Example 11 on page 99. As constraint handling rules are applied, the rule
elements are replaced by more specific constraints, according to the following
rule, where Vother represents the variables used in rulei other than v1, and Vlocal
represents the local variables of rulei:

(Gs = rulei(v1, Vother)∧G
′

s)∧
(rulei(v1, Vother)⇒ Ii, Bi, v1 = Rulename, Oi)∧ Ls ∩ Vlocal = ε

< Gs, Ds, Ls > ==>

< Ii ∧Bi ∧ v1 = Rulename∧Oi ∧G
′

s, Ds, Ls ∪ Vlocal >

(Main).

This rule defines a step in the constraint handling process. It can always be
applied, as long as there is a rule element in the goal store left to process, hence
it has no premise. When applied, it removes one goal and creates new goals,
which are instances of EMF-TL language constructs, and creates local variables
where necessary. In this formulation, Vother represent the global variables other
than v1 which are associated with this element, as described on page 86. For ex-
ample, in the rule shown earlier, Vother is instantiated as {v2}. These variables
are used in the output constraints Oi to make computed values available for
other rules. The set Vlocal contains the local variables of this rule, which have
to be added to the constraint store when it is applied, renamed as necessary.
As they are added, their domains are also initialized to the set of all possible
model elements, because we have no information to eliminate any candidate at
this point. We assume that the constraint engine automatically reduces the
conditions to a normal form where no expressions are nested, i.e., if a nested
expression occurs in one of the conditions, the inner expression is replaced by a
fresh variable and an additional condition is created that links the value of the
new variable to the old inner expression. For example, if we consider the expres-
sion r.type = l.type, we can see that two projections are nested in an equality.
We can split this into x = y, x = r.type, y = l.type, with fresh variables x and
y. This normalization greatly reduces the number of constraint forms we have
to consider. We refer to the final result as the decomposition of the original
conditions.
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Constructs: Equality and Comparison

The most fundamental set of rules deals with equality. Because we consider the
constraint process finished when no constraints are left, the equality constraints
have to be eliminated at some point. We do this by essentially shifting the
values from the constraints to the relevant domain store. Because the rules
for local and global variables are so similar, we only show the rules for global
variables. The rules for the local variables are the same, with references to
the global domain store replaced by changes to the local domain store. Recall
that all values involved in type computation are either model elements, types or
atomic values. We define a specific rule for each case. The most basic rule deals
with the atomic values. If we have derived a constraint that equates a variable
to a single value, we can reduce the domain of that variable to only that value,
as shown in rule Equality I. If this reduces the domain of the variable to the
empty set, we know this configuration of constraints has no solutions. Note that
we use the =⇒ symbol to indicate implication.

∀y(y = x =⇒ D
′

s(y) = Ds(y) ∩ {φ})∧
∀y(y 6= x =⇒ D

′

s(y) = Ds(y))

< x = φ∧Gs, Ds, Ls >==> < Gs, D
′

s, Ls >
(Equality I)

The next most basic case deals with storing model elements. This rule,
Equality II, is very similar to rule Equality I, but deals with a more complex
construct. Note that we use Φ here to indicate the set of attributes a model
element can have, and P to indicate the corresponding set of values. As an
extension of that, we use Φ = P to indicate the pairwise relation between a
set of attributes and a set of values. The result of the step is that the domain
of x is reduced to all model elements of type ModelElement1, with attribute
and reference values that fit with the other constraints. We use the notation
{z : z = ModelElement1(Φ = P )} to indicate the set of zero or more possible
elements based on ModelElement1 that fit the current constraints.

∀y(y = x =⇒
(D

′

s(y) = Ds(y) ∩ {z : z = ModelElement1(Φ = P )}))
∧∀y(y 6= x =⇒ D

′

s(y) = Ds(y))

< x = ModelElement1(Φ = P )∧Gs, Ds, Ls > ==>

< Gs, D
′

s, Ls >

(Equality II)

The next rule, Equality III is very similar, but involves types instead of
model elements.
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∀y(y = x =⇒ D
′

s(y) = Ds(y) ∩ {z : z = type(Φ = P )})∧
∀y(y 6= x =⇒ D

′

s(y) = Ds(y))

< x = type(Φ = P )∧Gs, Ds, Ls >==> < Gs, D
′

s, Ls >
(Equality III)

The final equality rule, Equality IV, deals with equality between model
elements. Recall that, as defined in Section 4.2, model elements have are in-
stances of a model class, which defines what attributes they have. In order to
streamline the metamodel definition, one class can be defined to be a subclass
of another, which means it inherits all attributes from the parent class. In
computing possible value, we have to take these inheritance relations between
classes into account. Inheritance relations create situations where we consider
two model elements as being equal, despite the elements belonging to different
classes. In such a case, one class must be a subclass of the other, according to
the metamodel. This is indicated by the C condition. The two objects do have
to match on the attributes of the superclass, Φ. This is represented in the rule
by replacing the initial constraints by constraints on the attribute expressions.
Only if the values of the relevant attributes are equal, the original elements can
be equal. In addition to expressing the comparison, this also creates new equal-
ities which can be used to narrow domains. Note that we use the instanceOf
operator to indicate an element is a member of a given class.

ModelClass1 C ModelClass2∧
{∀z : (z = ModelElement1(Φ = P )) =⇒

(z instanceOf ModelClass1)}∧
{∀z : (z = ModelElement2(Φ = Q)) =⇒

(z instanceOf ModelClass2)}
< x = y ∧x = {z : z = ModelElement1(Φ = P )}

∧ y = {z : z = ModelElement2(Φ = Q)}∧Gs, Ds, Ls >
==> < P = Q∧x = ModelElement1(Φ = P )
∧ y = ModelElement2(Φ = Q)∧Gs, Ds, Ls >

(Equality IV)

As a counterpart to the equality operator, we have the inequality operator.
This operator is used when we want to block a specific value for a variable.
Unlike equalities, a inequality constraint actually provides little information on
its own. In fact, because a inequality can never provide values that need to
be stored, we need less rules to define it than we needed for equality. If the
inequality value φ is not in the current domain of the variable, the inequality
provides no new information at all, so we can remove it directly. If φ is in the
domain, we can update the domain by eliminating that value.

93



∀y(y = x =⇒ D
′

s(y) = Ds(y) \ {φ})∧
∀y(y 6= x =⇒ D

′

s(y) = Ds(y))

< x 6= φ∧Gs, Ds, Ls >==> < Gs, D
′

s, Ls >
(Inequality I)

In the case the inequality involves a model element, we remove all model ele-
ments that are based on the given class from the domain, or any of its subclasses,
to maintain consistency with the equality operator.

ModelElement2 C ModelElement1∧ ∀y(y = x =⇒
D

′

s(y) = Ds(y) \ {z : z = ModelElement1(Φ = P )})∧
∀y(y 6= x =⇒ D

′

s(y) = Ds(y))∧
{∀z : (z = ModelElement1(Φ = P )) =⇒

(z = instanceOf ModelClass1)}
< x = ModelElement1(Φ = P )∧ Gs, Ds, Ls > ==>

< Gs, D
′

s, Ls >

(Inequality II)

Rule Inequality III is very similar, but involves types instead of model
elements.

∀y(y = x =⇒ D
′

s(y) = Ds(y) \ {z : z = type(Φ = P )})∧
∀y(y 6= x =⇒ D

′

s(y) = Ds(y))

< x 6= type(Φ = P )∧Gs, Ds, Ls > ==>

< Gs, D
′

s, Ls >

(Inequality III)

In other cases, equality may be too strong for what we want to express. In
that case, the widening operators < and > can be useful. The constraint han-
dling rules for the widening operator are given below. The basic elimination of
widening operators is implemented in rules Widen I and Widen II. Essentially,
we restrict the domain of the variable by using the widening rules defined in
the type system. Because the widening rules can be defined only for types and
model elements, these rules can never be applied if we try to widen any other
kind of value, which is the desired semantics of the language. This implements
the < operator, the > operator is implemented by the final rule, Widen III.
This operator is implemented by translating it to a < operator by switching the
arguments.
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∀y(y = x =⇒ D
′

s(y) = {z|z ∈ Ds(y)∧
z < φ})∧∀y(y 6= x =⇒ D

′

s(y) = Ds(y))

< x < φ∧Gs, Ds, Ls > ==> < Gs, D
′

s, Ls >
(Widen I)

∀y(y = x =⇒ D
′

s(y) = {z|z ∈ Ds(y)∧
φ < z})∧∀y(y 6= x =⇒ D

′

s(y) = Ds(y))

< φ < x∧Gs, Ds, Ls > ==> < Gs, D
′

s, Ls >
(Widen II)

< x > y ∧Gs, Ds, Ls >==> < y < x∧Gs, Ds, Ls > (Widen III)

The next operator we define is the membership operator. The membership
operator is used to represent that a variable can have one of several values. This
is implemented by creating a new domain from elements that are part of both
the old domain and the set of values.

∀y(y = x =⇒ D
′

s(y) = Ds(y) ∩Ψ)∧
∀y(y 6= x =⇒ D

′

s(y) = Ds(y))

< xεΨ∧Gs, Ds, Ls >==> < Gs, D
′

s, Ls >
(Set Inclusion)

Constructs: Loop constraints

A more complex construct is the loop constraint. Loop constraints are used to
define constraints for a list of values all at once. Lists are constructed using two
operators. The first, [], creates an empty list, and the second, [Y |Z], creates
a new list based on the original list Z by adding the value Y to the front.
Semantics-wise, we use these list constructors to define these sets of constraints
by peeling of values from the list to create the actual instances of the constraints.
In the rule, this is represented by the C[X = Y ] notation, which means that all
instances ofX in C are replaced by Y . Note that the size of Y is equal to the size
of A, which in turn is equal to the size of X, and X only contains fresh variables.
Once the list is empty, the loop constraint represents no constraints anymore
and can be removed. Note however, that the loop constraint also constrains the
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value of the lists that are iterated over. In order to keep this connection, we
add extra constraints to ensure that the list of all values remains part of the
constraint set.

< for(X = A)∗ : C ∧A = [Y |Z]∧Gs, Ds, Ls > ==>
< C[X = Y ]∧A = [Y |Z]∧ for(X = Z)∗ : C ∧Gs, Ds, Ls >

(For loop I)

< for(X = [])∗ : C ∧Gs, Ds, Ls >==> < Gs, Ds, Ls > (For loop II)

Constructs: Other constraints

The next set of rules implements the various kinds of expressions in EMF-TL.
The first four rules, Addition, Subtraction, Multiplication, Division,
define the semantics of mathematical operators and are mainly listed for com-
pleteness. As soon as both arguments of the operation are instantiated, we use
the usual mathematical semantics of these operations to solve the constraints.

ν1 + ν2 = ν3

< x = ν1 + ν2 ∧Gs, Ds, Ls >==> < x = ν3 ∧Gs, Ds, Ls >
(Addition)

ν1 − ν2 = ν3

< x = ν1 − ν2 ∧Gs, Ds, Ls >==> < x = ν3 ∧Gs, Ds, Ls >
(Subtraction)

ν1 ∗ ν2 = ν3

< x = ν1 ∗ ν2 ∧Gs, Ds, Ls >==> < x = ν3 ∧Gs, Ds, Ls >
(Multiplication)

ν1/ν2 = ν3

< x = ν1/ν2 ∧Gs, Ds, Ls >==> < x = ν3 ∧Gs, Ds, Ls >
(Division)
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The next operations all deal with handling lists. These operations are slightly
more complicated in our semantics, because lists are built by list constructors,
specifically the constructor for empty lists, [], and the concatenation operator,
|, and thus by definition involve nested expressions. This means the initial de-
composition of the expressions splits the arguments from the operators. Thus
we have to look at two constraints in one rule to define the semantics. Addition-
ally, for some operations, we use the functions defined in Table 4.4 instead of
specifying the semantics in detail here, to avoid unnecessary complications. An
example of this is the first rule, defining the semantics of length. As one might
expect, this operator is used to get the length of the list, and we use a prede-
fined operator to extract that. The next two operators, flatten and pairs, are
defined similarly. The flatten operator reduces the nesting from lists, until all
elements are part of one top-level list. The pairs operator is used to deal with
constraints on consecutive elements in a list, for example in situations where
the elements represent a sequence of operations where the output of one serves
as input for the next. The pairs operator addresses this by creating a list of
tuples containing an element and its successor, which can then be traversed as
normal.

lengthY = ν

< x = length y ∧ y = Y ∧Gs, Ds, Ls >==> < x = ν ∧Gs, Ds, Ls >
(Length)

flatten y = z

< x = flatten y ∧Gs, Ds, Ls >==> < x = z ∧Gs, Ds, Ls >
(Flatten)

pairs y = z

< x = pairs y ∧Gs, Ds, Ls >==> < x = z ∧Gs, Ds, Ls >
(Pairs)

The other operations, first and last are simpler, and defined here directly.
Because of the way lists are defined here, the first operator is very straightfor-
ward, because the first element of a list is directly available. The last operator
is more difficult, because we have to traverse the list to get to its final element.
Once we have reached a list with only one element, we know it must be the last
element and we have our answer. Note that the patterns listed are intentionally
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length x = casex
[y|z] : 1 + length z
[] : 0
endcase

flatten x = casex
[y|z] : if atom y then([y]‖ flatten z) else(flatten y‖ flatten z) endif
[] : []
endcase

pairs x = casex
[y|[z|v]] : ([(y, z)]‖ pairs[z|v])
[y|[]] : []
[]; []
endcase

Table 4.1: EMF-TL semantics functions

incomplete, because any case where there is no valid first or last element means
the computation cannot continue, and thus there is no need to define a rule.

< x = first y ∧ y = [p|q]∧Gs, Ds, Ls >==>
< x = p∧Gs, Ds, Ls >

(First)

< x = last y ∧ y = [p|q]∧Gs, Ds, Ls >==>
< x = last y ∧ y = q ∧Gs, Ds, Ls >

(Last I)

< x = last y ∧ y = [q]∧Gs, Ds, Ls >==>
< x = q ∧Gs, Ds, Ls >

(Last II)

The last type of expression is the projection. Projections are crucial in EMF-
TL, because they are the way type information from other elements is accessed.
The main rule in that context is Projection I. In that rule, the variables
function is used to find the constraint variable which contains the information
desired in the system. Recall that each model element is represented by a set
of variables, one for each attribute that can be computed. That means that
the combination of an element and an attribute always uniquely correspond
to zero or one constraint variables. The variables function is created during
constraint generation, and returns the constraint variable that corresponds to
a given attribute for an element. If there is no such variable, the function
returns value ε instead. Once we have found the constraint variable containing
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the current value of the attribute, we can merge the domains of the constraint
variable with that of the result variable. Because we know the two variables
must end up with equal values, we can restrict the domain to only the values
that occur in both original domains.

The second projection rule deals with extracting information from model
elements. In contrast with the first projection rule, this rule applies only if
there is no computed information for this attribute. This is represented in the
rule by the condition that there must be no constraint variable corresponding
to this element-attribute combination, or in other words, the result of applying
the variables function to that. Additionally, the model element must have an
attribute with that name. If this is the case, the value of the attribute is
extracted from the element and used as answer for the constraint.

variables(a, φ) = z ∧ ∀y(y = x =⇒ D
′

s(y) = Ds(z))∧
∀y(y 6= x =⇒ D

′

s(y) = Ds(y))

< x = a.φ∧Gs, Ds, Ls >==> < Gs, D
′

s, Ls >
(Projection I)

.

variables(y, φ) = ε

< x = y.φ∧ y = ModelElement1(φ = p,Ψ = Q)∧Gs, Ds, Ls >
==>

< x = p∧ y = ModelElement1(φ = p,Ψ = Q)∧Gs, Ds, Ls >

(Projection II)

.

Example

Example 11. Recall Example 10. In that example, we discussed how con-
straints relate to models. In this example, we will discuss constraint handling
rules are applied to reach solutions. Suppose we have reached the following state
during a constraint computation:

< rule(v1, v2) ∧
rule(v3, v4) ∧
rule(v5, v6),

{v1εDu, v2εDu, v3εDu, v4Du, v5εDu, v6εDu}, {} >

In this state, variables v1 through v6 use Du as the domain of all EMF
elements and the constraints are rule(v1, v2), rule(v3, v4) and rule(v5, v6). There
are no local variables yet, so that set is empty. We can apply the constraint
handling rule defined in Example 10 to the first of these constraints. This
means that we remove a match of the left-hand side of the rule, in this case the
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rule(v1, v2) constraint, and replace it by the constraints in the right-hand side
of the rule. These constraints represent the conditions that have to be met for
this equality expression to be correctly typed. In natural language, the main
condition is that the types of the two subexpressions are equal, which is what
will be tested during the computation.

This results in a new state:

< o = equals ∧
l = StringLiteral(value = “True”) ∧
r = StringLiteral(value = “False”) ∧

v1 = iequality ∧
o in{equals,differs} ∧

x1 = r.type ∧
x2 = l.type ∧
x1 = x2 ∧

t = slcotype{{type = Boolean}} ∧
v2 = t ∧

rule(v3, v4) ∧
rule(v5, v6),

{v1εDu, v2εDu, v3εDu, v4εDu, v5εDu, v6εDu},
{oεDu, lεDu, rεDu, x1εDu, x2εDu, tεDu} >

In particular, note that the rule application creates a number of local vari-
ables, which are added to the corresponding set, while the set of global variables
does not grow. Now we have created a number of new constraints, we can apply
other rules to remove them. For example, we can apply the rule for set inclu-
sion, Set Inclusion, to this state, to eliminate o in{equals,differs}. If we
do this, the variable o gets the domain {equals,differs}. We can continue by
also eliminating the equality o = equals with rule Equality I. This further
restricts the domain, so it now consists of only the value equals. We get the
following state:

< l = StringLiteral(value = “True”) ∧
r = StringLiteral(value = “False”) ∧

v1 = iequality ∧
x1 = r.type ∧
x2 = l.type ∧
x1 = x2 ∧

t = slcotype{{type = Boolean}} ∧
v2 = t∧ rule(v3, v4) ∧

rule(v5, v6)
{v1εDu, v2εDu, v3εDu, v4εDu, v5εDu, v6εDu},

{o ∈ {equals}, lεDu, rεDu, x1εDu, x2εDu, tεDu} >

A possible next step is to eliminate the projection operations, i.e. the ex-
pressions r.type and l.type. To do that, we first need to eliminate the other
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two rule constraints, to discover the constraints on the projected variables.
Because neither the model element in l nor that in r contain information for
the type attribute, it must be computed information, and we need to apply rule
Projection I. In the context of the rule, the variables r and l correspond to y,
and the property type corresponds to φ. The function variables will then iden-
tify the constraint variables that are used to store the computed types for the
two elements. Once more rules have been applied and values for these constraint
variables have been found, we insert those values into the other equations. For
the purpose of this example, we will not discuss that part of the computation
process in detail. Instead, we assume the values of the type attributes of l and
r are both slcotype{{type = String}}, resulting in the following state:

< l = StringLiteral(value = “True”) ∧
r = StringLiteral(value = “False”) ∧

v1 = iequality ∧
x1 = slcotype{{type = String}} ∧
x2 = slcotype{{type = String}} ∧

x1 = x2 ∧
t = slcotype{{type = Boolean}} ∧

v2 = t
{v1εDu, v2εDu, v3ε{“StringLiteral”}, v4ε{slcotype{{type = String}}},

v5ε{“StringLiteral”}, v6ε{slcotype{{type = String}}}},
{o ∈ {equals}, lεDu, rεDu, x1ε{slcotype{{type = String}}},

x2ε{slcotype{{type = String}}}, tεDu} >

Now, we have only equalities left. By substituting and applying the equality
rules, we can eliminate all constraints, until the goal store becomes empty and
true is the only remaining constraint. The corresponding state is:

< true,
{v1ε{iequality}, v2ε{slcotype{{type = Boolean}}},

v3ε{“StringLiteral”}, v4ε{slcotype{{type = String}}},
v5ε{“StringLiteral”}, v6ε{slcotype{{type = String}}}},

{oε{equals}, lε{StringLiteral(value = “True”)},
rε{StringLiteral(value = “False”)}, x1ε{slcotype{{type = String}}},
x2ε{slcotype{{type = String}}}, tε{slcotype{{type = Boolean}}}} >

Because all required constraints have been satisfied, this is a valid final state
of the type checker, representing a successful type computation.

This is the only final state, so those values are the solution of the constraint
program in this example. However, it will not always be the case that the con-
straint program has only one final state. In that case, we want to select a single
final state that represent the best possible type values according to the strategy
defined in the type system. We do this by defining a partial order on solutions,
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as shown below:

V1 < V2 if(∀n : V1[n] ≤ V2[n])∧(∃n : V1[n] < V2[n])

Essentially, we state that one solution, V1 is “smaller" than another, V2 if all
elements of that solution individually are at least as good as the corresponding
elements in the other solution. We use the notation V1[n] to indicate the nth
element of V1, and V2[n] for V2. Additionally, at least one element in V1 has to
be strictly better than its counterpart in V2. How good elements are in relation
to each other is defined by the user in the strategy part of the type system.
In order to simplify this definition, we use a transitive closure to reduce the
number of rules required to create a useable strategy. As an example, consider
a binary expression with two number literals. Assuming the number literals can
be considered members of several numeric types, like natural, integer or real,
there are multiple ways in which this expression can be typed, and thus multiple
results. By comparing the results on all elements, we can find the best solution,
where all expressions are correctly typed with minimal types.

Once we have ordered the solutions, we look at the minimal solution or solu-
tions. If there are multiple minimal solutions, or if there are multiple solutions
and no applicable strategies, we have discovered an ambiguity, and should re-
port that as an error. If there is exactly one minimal solution with respect to
our ordering, we have found the results of the type system for the input model.
These results consist of both the identifiers of the rules that were used, and the
values computed for the features.

Correctness

Now that we have defined how to construct a constraint program and compute
a solution, we return to the computation structure we described in Section 4.4.
Recall that we want to show that the constraint solution exists if and only if
the input model is correctly typed according to the type system. Note that, in
our formalism, a model is correctly typed if, for every element that can have a
rule applied, a rule must be applied in a way that satisfies all conditions. This
is implemented in our semantics by creating an instance of a rule predicate for
each element that can have a rule applied. By construction, if a rule predicate is
successfully eliminated, that means a rule has been applied. This means a state
where all rule predicates have been removed can only be reached if all elements
can have rules applied, which means a correct constraint solution exists only if
the input model is correctly typed.

Type computation starts with a finite number of model elements, because
by definition all EMF models are finite in size. This means we start with a
finite number of constraints. Because each constraint handling rule removes at
least one constraint and introduces a finite number of new, simpler, constraints,
there will always be a finite number of constraints left to consider. In particular,
each rule removes at least one element, and creates a limited number of simpler
elements, depending on the rule applied. Note that this relation is well-founded,
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which means elements can not be replaced by simpler ones indefinitely. Also,
the rules are defined such that, once an element has been removed, it cannot
return. Thus, we know that no rule can be applied infinitely often. This means
all constraint computations will at some point reach a state where no further
rules can be applied. In such a state, if there are any variables that have domains
but are not yet fully instantiated, the solver should insert new equalities based
on the domain, potentially creating new possibilities for rules to be applied. At
some point, a state will be reached where all variables are instantiated, such that
either all constraints have been eliminated, or a number of constraints remain
that cannot be eliminated.

In the first case, where all constraints have been eliminated, this means
a rule has been applied to each model element, and all conditions have been
satisfied. This means the model was correct according to the type system, and
the state represents a candidate solution. We assume an ideal constraint solver,
which implies that the constraint solver explores all possible combinations of
rule applications, and thus it will always find all such states that exist. This
means that if there is a solution to the constraint program, our solver will find it.
It also implies that if the model is correctly typed, our system will find all sets
of values that corresponds to correct type assignments. If the constraint solver
is not ideal, there might be values that are not explored, and the constraint
solver might not find a solution even if one exists, or may not find the optimal
solution. The chance of this depends on how far the constraint solver is from
an ideal one. In practice, we found no case yet where the existing ECLiPSe
implementation found a non-ideal solution.

Overall, we can be sure our constraint program results in one or more type
assignments if and only if the input model is correctly typed. Each of these
assignments represents a way in which we can create a correct output model.
However, we want to create only one output model. One solution is to construct
a general output model that can represent all solutions. However, because our
output model should conform to a specific metamodel, we cannot be sure this is
possible. Instead, we choose to select one solution from the result set based on
the strategy defined in the type system. Recall that in the strategy section of
the type system, the language designer can describe which types are considered
better than others. However, a solution does not just consist of one type value,
but of several. If one of the solutions is better than all others as defined in
Section 4.4, it is the optimal choice and we can use it. If there are multiple
solutions that are both better and worse than each other in some aspects, the
result is ambiguous. In that case, no output model can be generated. In terms
of correctness, this means our system does not find a solution for ambiguous
cases, even though they exist. We find this acceptable, because two output
models that are very similar from a type system perspective, may have very
different semantics from a user perspective. Thus, we consider it better not
to risk creating an erroneous output model than to create a model despite our
uncertainty.

If the end state contains unresolved predicates, this means for this combi-
nation of rules not all conditions can be met. If all end states of a constraint
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program are of this type, that means there is no combination of rule applications
that does not have contradictions with either the model or other rules, which
means the model is incorrectly typed. Similarly, if a model is incorrectly typed,
this means that for every possible combination of rule applications, there is at
least one condition that cannot be satisfied. This condition can be of various
types, but in all cases, the condition will translate to one or more constraints.
Because the model is incorrect, we know that at least one constraint cannot
be eliminated because the preconditions for that are not met. For example, if
there are two equalities that equate the same variables with different values, one
cannot be eliminated because the corresponding position in the variable store is
already filled. Thus, if the model is incorrect, the constraint program will have
no valid end states.

Overview

Now that we have defined the semantics of the constraint part, we have to look
at how it fits in the whole process. We will do this in the form of a proof sketch.
We will try to show that our type systems are decidable, i.e. we can always
consistently determine whether a given model element can have given type and
the type system will always return the same result when repeatedly applied to
the same input model. First, we observe that the semantics of the transfor-
mation depend strongly on the results of the constraint program, because we
need to know which rules were applied to which elements in order to create
correct equivalents in the output model. Fortunately, the constraint part is it-
self independent of the transformation, and the constraint part is guaranteed
to terminate, which means we can safely assume the two parts are executed se-
quentially. In particular, if the constraint solving step finds no solution, we can
be sure that we will not be able to generate a correct output model, so it makes
no sense to apply the transformation semantics. For the following discussion,
we will therefore assume that correct solutions exists.

Like for the constraint part, we know that the input model of the trans-
formation is finite by construction, and so is the number of rules in the type
system. We know that for every element that requires it, we have exactly one
set of corresponding constraint results that uniquely identify of a type system
rule that can be applied to it. Recall that each rule describes a finite number
of elements which must be created in the output model. This means that the
number of elements created in the transformation to apply type system rules
is always finite. For elements that have no relevant rules, the corresponding
element in the output model is by construction uniquely defined. Overall, this
means that the construction of the output model will always terminate. In addi-
tion, because the rules are deterministic and the results of the constraint phase
are consistent, the created model is also consistent.

Overall, we conclude that the semantics of type systems in our language are
decidable, consistent and terminating. Note that this does not mean that all
type systems are sensible. It is certainly possible to write a type system with
no solutions for some or even all models. It does mean that the “errors" in the
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models will be identified consistently in a finite amount of time.

4.5 Implementation of EMF-TL semantics

Once we have type system specifications in EMF-TL, we want to create type
checkers that implement them. Recall that in Section 4.4, we defined the type
checker as a two-phase process. The two phases are the constraint phase and
the model generation phase. The first phase is itself divided into two steps,
constraint generation and constraint solving. In our implementation we fol-
low this structure directly. We have implemented a constraint generator as a
combination of an ATL [64] transformation and an Xtend [38] template. The
transformation is itself generated by a type checker generator, based on the type
system specification, while the template is reused between different type check-
ers. After the constraints program has been generated, we use the ECLiPSe
constraint solver [6] to compute its solutions. The reason for choosing ECLiPSe
rather than other constraint systems is the support for so-called structures, data
types that are similar to records and structs in traditional programming lan-
guages, and have a name and a set of fields. Structures allow us to represent
compound types in a convenient and direct way, making the prototype easier to
debug and simplifying the conversions to and from the constraint solver. While
ECLiPSe is not an ideal constraint solver, meaning that it does not guarantee
all possible values will be explored, as assumed by our semantics, we found it
sufficiently powerful to solve practical instances.

Once the constraint solver finishes, the constraint phase is completed, and we
move on to the model generation process. This phase is implemented as a Java
model transformation, which we refer to as the result merger. If the input model
is correctly typed, it combines the untyped input model and the constraint re-
sults into a typed model. In contrast, if the input model contained type errors, it
will collect and create a list of the errors and output that instead. The reason we
choose different approaches is that the constraint generator transformation has
to create an extensive constraint model, that contains the constraints describing
the relations between model mments and their computed values, while the re-
sult merger mainly inserts elements directly based on the constraints results. In
fact, the result merger needs no knowledge about the metamodel beyond what
is provided in the type system description. Thus, it was possible to build a
generic component rather than a generator for the second transformation, but
not for the first.

The type checker generator, which creates the type-system specific con-
straints generator, is itself based on two ATL transformations. These trans-
formations, inspired by an example by ATLflow tool [114], generalize the ATL
refinement mode. The first transformation takes an EMF metamodel and cre-
ates a model of a generic transformation that creates an explicit copy of each
element occurring in a model described by the metamodel. The second ATL
transformation is then used as a template to create an ATL transformation that
implements the generic transformation. The basic template copies all elements
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from one model to another. Based on the type system specification, the gen-
erated rules are adapted by adding extra target elements to a generated rule.
This means extra model elements are created during the copying process. Those
extra elements are used to represent constraints in the constraint program. This
approach does mean that we get an ATL transformation with a number of rules
equal to the number of concrete classes in the input metamodel, which can be
quite large, but in our experience this does not significantly impact performance.
In our current implementation, we use an EMFtext parser to convert the type
system specification from text into suitable input for the type checker genera-
tor. We then generate the constraint generator and insert it into the the overall
process as the second step. How we implement the various constructs used in
the semantics of EMF-TL in our chosen constraint solver will be discussed in
Section 4.5.

The second transformation of the type checker is the result merger. Its main
function is to copy all elements from the successfully typed model to the final
model, while inserting all computed values produced by the constraint generator
into the appropriate attributes. Note that these two models will likely have
different metamodels, so we cannot simply insert the new elements into the first
model. We assume however, that the two metamodels are closely related, in that
all elements not mentioned in the type system can be copied to a corresponding
element in the new model. The second transformation is implemented using
the Java interface to Ecore [94], the data format used for EMF models. This
interface provides functionality not only to access and create model elements,
but also to access the corresponding metamodel class and its properties. By
using this reflection, we can identify which attributes occur in both source and
target version of the element, and copy them where possible. Additionally, if we
encounter an element that has a constraint variable, we use the results of the
constraint solving step to create a new model element and to assign the proper
values to its attributes. Once this process is complete, the result is a model
based on the target metamodel that contains all defined type information. Note
that the result merger can only do this if there are no type errors in the model. If
there are errors, in general we cannot be sure we can create a consistent model,
because we may miss required information for some elements.

Constraint generation

The constraint generation process works by analyzing each rule for each element
in turn. Remember that each EMF-TL rule is restricted to a specific metaclass
of model elements. If an element fits none of these restrictions, we know the type
system does not cover it and can safely ignore it. If an element does have the
right metaclass for at least one rule, we call it a typed element. We know that,
for a model to be correctly typed, at least one rule must be applied to each typed
element. We represent the application of the rule in the constraint program by
a set of domain-less constraint variables that should contain an identifier of the
rule that was used for this element and the other values that are computed for
it. In contrast with the theoretical semantics, instead of initially assigning a
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universal domain to the variables, we simple use the possibility ECLiPSe offers
not to assign it a domain at all. We specifically do not assign domains to the
variables before type computation, because these domains are often structurally
complex and infinite in size. Due to their complexity, no constraint solver we
know supports them directly, and their infinite size, combined with a non-linear
structure, makes it not possible to map them elegantly to domains that con-
straints solvers do support, like natural numbers or sets thereof. For example,
consider a type representing containers with a set type of elements and a set
size. There is an infinite number of possible container sizes, and, because the
containers can be nested, an infinite number of element types. This means that
it is not possible to map all possible combinations onto separate integers. The
nesting also makes it impossible to encode this type as a set of natural numbers,
because we cannot distinguish between the encoding of the size and the encod-
ing of the element type. A consequence of this is that we cannot apply many
constraint solving techniques to these variables, but must rely on propagation
to discover their values. In practice, we find this causes no problems.

To ensure the identifier in the constraint variables is valid, we add a set
of conditional constraints that each represent the application of a type rule as
described in Section 4.4. A difference with the theoretical semantics is that
for each variable that is not used in a given rule, a domain is used consisting
of only an explicit error value. Other constraints can refer to these variables
to determine if their conditions are compatible with the constraints already in
place.

In summary, we create a set of constraint handling rules for each rule for
each element of the appropriate metaclass. To show these constraint handling
rules implement the applicability of each rule on the corresponding elements
correctly, we have to show that the conditions of the constraint handling rules
are equivalent to the preconditions of the corresponding type rule. The relation
between basic preconditions of rules and constraint conditions is shown in Fig-
ure 4.7. We use the decomposition described in Section 4.4 to implement the
other conditions listed in Figure 4.4 by a combination of the conditions below
and fresh local variables.

In Figure 4.7, the EMF-TL precondition is shown on the left, the corre-
sponding ECLiPSe constraint on the right. For the first kind of condition, we
used the compare predicate. This predicate holds if either the ECLiPSe =,
which implements unification without occurs-check, holds, or if the inheritance
equivalence defined in Section 4.4 holds. Note again that in EMF-TL, a value
is considered equal only to itself. Also, because our goal is to find values for
the variables that fit all constraints, we consider unification a valid implemen-
tation for the EMF-TL equality condition. For the second kind of condition, we
have to show that the predicate widen corresponds to the partial order defined
in the specification. The widen predicate is added to the constraint program
during constraint generation and computes the transitive closure of a predicate
encoding the < relations defined in the widening section of the type system, as
described in Section 4.3. The conditions of the defined widenings are translated
in the same way as rule conditions. If the defined partial order is not circu-
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1 var1 = var2 compare(var1var2 )
2 var1 ⇐ var2 widen(var1,var2 )
3 var1 >= var2 widen(var2,var1 )
4 var1 in var2 member(var1,var2 )
5 var1 = type((attribute = var)∗) var1 = type((attribute = var)∗)
6 var1 = var1 =

MM1::ModelElement1 ModelElement1
((attribute = var)∗) ((attribute = var)∗)

7 var1 = var2.attribute hastype(var2,Iattribute,var1 )
8 for (var = val)∗ : (cond)∗ ((foreach(var, val))∗ do

(constraint)∗)

Figure 4.7: Basic conditions

lar, finiteness of the input ensures termination of widen. The partial order is
not checked for circularity during constraint generation, because that cannot be
conveniently done in ATL, but the widen predicate checks that the same type
is not visited twice, thus preventing infinite loops that would prevent the type
checker from terminating. The third kind of condition is implemented using
the set membership predicate member that is part of the standard library of
ECLiPSe . This predicate holds if var2 is a collection and var1 is an element
of that collection. In particular, this instantiates var1 if it has not been instan-
tiated yet. Note that because we do not use domains, we use a combination
of instantiation and backtracking instead. This is less efficient than the defini-
tion using domains given in the formal semantics, but the resulting solutions
should be identical. The fourth and fifth type of condition unify the value of
a variable with a specific type structure. Again, this is already part of the
standard behavior ECLiPSe uses for =. The sixth kind of condition, referenc-
ing computed attributes for other elements, is implemented using the hastype
predicate. This predicate computes which constraint variable corresponds the
indicated attribute of the given model element. It then uses = to constrain var1
to be unifiable with that constraint variable. The final kind of condition is the
for-condition. This kind of condition was inspired by, and is implemented with,
an ECLiPSe loop construct. This construct applies the constraints in the body
of the loop to each set of variables generated by the generator. We only use one
form of generator here, namely one that iterates over several lists in parallel.
Note that, due to the finite size of input models, we can be sure that the loops
will always terminate.

In order to translate conditions, we also have to translate expressions. In
Figure 4.8, we show EMF-TL expressions on the left, and the corresponding
ECLiPSe expression on the right. The first four lines describe the various basic
expressions. These can and are transferred directly to the constraint program.
The next two lines describe set and list literals. For simplicity, these are both
translated as ECLiPSe list constructs. The next line, line 7, describe the EMF-
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1 number number
2 "string" "string"
3 OclUndefined "oclUndefined"
4 var var
5 Set{exp∗} exp∗
6 List{exp∗} exp∗
7 exp1 (+| − | ∗ |&) exp2 (+| − | ∗ | concat)(exp1,exp2,res)
8 (length |first | last |flatten |pairs) exp (length |first | last |flatten |pairs) exp
9 type((attribute = exp)∗)∗) type(attribute = exp)∗

10 MetaModel1::ModelElement1 MetaModel1::ModelElement1
((attribute = exp)∗) {(attribute : exp)∗}

11 exp1.attribute getconstraint(exp1,attribute)

Figure 4.8: Expressions

TL binary operators and their ECLiPSe equivalent. A peculiarity of ECLiPSe
is that it does not directly feature mathematical operators in an infix style,
but only in prefix form. Line 8 describes the unary operators, which are all
translated to ECLiPSe functions directly. The next two lines describe how
types and model elements are translated into ECLiPSe structures. Finally, the
last line describes how the projection operator is implemented by translating it
into a call to the getconstraint function.

Summarizing the previous discussion, we argue that we have created a set
of constraint variables and corresponding constraints for each rule and model
element, and that the conditions of the rules are correctly implemented in the
constraints. This ensures that the set of (type) assignments that satisfy all
the rules of the type system is equal to the set of solutions of the constraint
program. However, we do not want a set of solutions, we want our preferred
solution according to the defined strategy. In order to find this solution, once the
constraints are constructed, we add two additional predicates to the program:
strategy and cost. The strategy predicate holds if the two parameters are
directly linked by the defined strategy. The cost predicate uses the strategy
predicate to assign a cost to each type. All types that are minimal according
to the strategy, are assigned cost 1. If a type is not minimal, it gets a cost
of 10 times the cost of the type directly below it in the strategy. This way,
we can quantify the quality of a solution by computing the cost of all types
computed for all elements, which in turn makes it possible to apply standard
optimization algorithms. The best solution according to the type order is the
solution with the lowest cost among all solutions. This solution can be found
using the branch-and-bound algorithm provided by ECLiPSe .

We then rely on the third step, constraint solving to actually compute our
solution. The correctness of this step depends on the correctness of the ECLiPSe
constraint solver and the provided predicates. We know that ECLiPSe is not
an ideal constraint solver, but we do believe that it is strong enough to cover
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all practical, or even possible, program instances that are generated by our type
checker. However, because ECLiPSe is such a complex system, we consider the
exact definition of the power required, and the proof that ECLiPSe can provide
it, beyond the scope of this thesis.

Finally, we have to show that the result merger creates correct output models
based on the output of the constraint solver. This transformation is conceptually
not that complicated, but because the implementation is very generic, it is quite
large. Thus, any proof of its correctness is likely to be very large and tedious.
Thus, we choose not to prove this at this point. We will provide the source
code of the result merger for inspection as an on-line appendix [78]. Instead, we
currently use testing as a means to check the correctness of our implementation.
By applying the generated type checker to test cases, we can compare its results
to the expected results.

4.6 Related work

In the previous Chapters 3 and 3.9, we used Modular Structural Operational
Semantics [85] (MSOS) to specify a type system. In that work, we focused
on specification as opposed to implementation. In the current chapter, we use
our own DSL, called EMF-TL, inspired by MSOS, to specify type systems. By
using our own DSL, we are able to extend our specification with direct links to
metamodels and explicit strategy elements, that are not present in basic MSOS.
We focus on using generated transformations and constraint solving to compute
the solutions to a typing problem. Constraints are useful to represent situations
where information is available about what type a given expression is going to
have, but not enough to select the right type assignment immediately. By
defining a constraint, we can represent this knowledge without requiring us to
make a choice before we want to. We will use this to represent, for example, the
specific properties of widening numeric values in the CIF language in Chapter
5.2. This property of constraint-based type checking has hitherto mostly been
studied in the context of complex and mostly implicit type systems, like those
that occur in functional programming languages [2, 92]. Despite the existing
work on generic type checking frameworks [102], we do not know of any type
checker generators based on constraint solving. Most DSLs will not use the
full power that the constraint system offers, but it does allow us to define type
systems with few restrictions. This may come at a price in performance, but
without alternative implementations of the same type systems to compare our
implementations with, this is hard to assess.

One system that does use a limited form of constraints is XTypeS [14].
XTypeS is a system designed to define type systems for validating EMF models
created by XText parsers. A type system in XTypeS is defined using rules,
consisting of a so-called typing judgement and optionally some conditions. The
judgement describes the result of the rule, the knowledge gained when all condi-
tions hold. The rules define relations between elements. Note that, in contrast
to our approach, XTypeS is focused on validation of the correctness of the types,
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not on type inference. This means that the types computed by the type system
are not inserted into the model, but discarded. While this ensures that the model
stays consistent with the same metamodel, any discarded information cannot
be easily used by other tools. Another difference is that there is no specific
notion of ‘type’ in XTypeS. Also, there can be only one rule per element type
for each judgment, unlike our approach, where there can be arbitrarily many
rules for each type of element. That means that there is no difference between
defining one type to be the subtype of another or assigning a type to an ele-
ment, since both are but relations between elements. In particular, the authors
of XTypeS use this to implement unification in the rules, thus allowing simple
constraints. This differs from our approach, where we use an external solver
to handle constraints. Once a type system has been specified using XTypeS, a
Java implementation can be generated that applies the rules to given models. In
order to facilitate validation, the system allows rules that relate elements to the
special element “OK”, indicating a correctly-typed element. If this is done, the
generated code provides functions to check if a given model element is correctly
typed. If there are any errors, the generated type checker throws an exception,
which can be analyzed to pinpoint the source of the error. In comparison with
our approach, XTypeS is more closely integrated with existing editors, but it is
less flexible and less useful as part of a tool chain.

Another, more basic system aimed at providing type checkers for EMF mod-
els that uses a constraints-like approach is XText/TS [112]. This system aims at
expressions in EMF models, and consists of a Java API that provides a number
of templates of type constraints. For example, a type system designer can spec-
ify that for a certain feature of a certain class of elements, only elements with
certain types are allowed. By instantiating these constraints with references to
the metamodel of the model to be typed, a type system can be built up. The
instantiation is done by invoking API functions with appropriate arguments. In
addition to the provided templates, a CustomTypeChecker can be implemented
in Java to provide more customized rules, but this reduces the advantages of
using the API. In particular, the API lacks templates dealing with features that
can contain multiple elements. This alone would mean that implementing the
type system for CIF expressions that have a varying number of subexpressions,
like list constants, in XText/TS would require extensive customization. Addi-
tionally, like XTypeS, XText/TS only validates models and does not insert type
information into the model.

In addition to EMF-based approaches, some other language workbenches
have dedicated mechanisms to define type checkers. An example of this is the
MPS [63] system that is based on JetBrains. Type checkers are implemented
in MPS by using language aspects that implement inference rules using the type
system language. The type system is specified using rules that create constraints
on types when applied to elements that meet their condition. Once a rule is
applied, so-called typeOf expressions can be used to trigger the application of
rules to subelements. Once all constraints have been collected,the type system
engine will then compute types that meet all constraints. In contrast to our
approach, MPS updates the input model with the type information, but it is
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not possible to transform an element based on the type computed. Additionally,
MPS uses a less powerful constraint system then we do, which makes some rules
harder and less elegant to express.

In his book ‘Types and Programming Languages’ [88], Benjamin Pierce se-
lected Structured Operational Semantics [89] (SOS) as the preferred method of
defining semantics, and uses a similar formalism, natural deduction, to specify
type systems. In many ways, this formalism is quite similar to the one we use,
except it directly relates elements to types instead of to typed elements. Com-
pared to our approach, this makes the rules more compact, but removes the
possibility of transforming the element to a different class during the transfor-
mation process. For example, a generic reference element can be specialized into
a specific reference type depending on what is referenced using our system, but
not using the system used in ‘Types and Programming Languages’. Moreover,
like type system specifications that are SOS based, environments are explicit,
even if they are not relevant for the current rule.

During the writing of his book, Pierce together with Michael Levin con-
structed a tool to verify that the type system in the book were correct. This
tool is called TinkerType [76]. In contrast with our tool, which is focussed on
type systems tailored to the needs of a specific DSL, TinkerType is focused on
combining so-called typing features into coherent type systems. This is done
using the TinkerType assembler, a program that takes typing features from two
repositories and creates either a typeset version of the type system or an ML
implementation. One consequence of this is that all typing features appear to
assume the same structure of the language structures to be type checked, in a
kind of implicit metamodel. This greatly reduces the practical usefulness of the
generated type checkers. Additionally, in contrast to our type systems, Tinker-
Type typing features actually contain a significant amount of direct ML code,
making it harder to construct code generators for other languages. Finally,
the website given in the paper is unfortunately no longer directly online, which
suggests to us that TinkerType is no longer developed or supported.

Another well-known practical method to define semantics of languages, and
static semantics like type systems in particular, is attribute grammars. At-
tribute grammars describe type computation by defining it as an attributes
for relevant nodes, together with expressions to compute it based on other at-
tributes. In order to generate a type checker using attribute grammars, we
need an attribute grammar system that creates an implementation based on
the attributes’ specification. Several well-known systems in this area are UU-
AG [103], JastAdd [56] and Silver [108]. As far as we are aware, only JastAdd
can be applied to EMF models, using the work of Bürger et al. [26]. Their ap-
proach is quite complex, requiring several interventions in the normal workflow
of JastAdd to function. Additionally, because their approach is more generic,
it offers no explicit support for more type system specific features, like strate-
gies for disambiguation. There are attribute grammar-based systems specific
for typing, but they offer no support for EMF [7,51].

112



4.7 Conclusions
In this chapter, we have introduced the EMF-TL type system language. In
this language, transformations can be specified that can add type information
to models, converting an untyped version to a typed version. We have defined
the syntax and semantics for this language, and discussed an implementation
and its correctness. The language was created in response to our experiences
with MSOS, aiming to allow more freedom in defining type rules, and to create
an easier interface with other language tools. We addressed the first target by
integrating a number of constraint-solving concepts into our language. These
concepts allow the designer to delay choices and to keep options open as long as
possible. The second target was addressed by using the EMF framework as a
foundation for our language. The EMF framework is based around models, and
specifically around metamodels that model the structure of other models. The
metamodels are used both to create model infrastructure, and to allow tools to
share models easily.

In EMF-TL, this results in a type system specification consisting of a number
of type rules, that each describe for a class of model elements a way to add type
information to it, and when that way is valid. By combining rules for various
classes, and even different rules for the same class, we can cover a wide range
of typing scenarios. In order type type a model, we try to find a consistent set
of rules such that exactly one rule is applied to each element, and all conditions
are met. If we can find such a set, we know the model is correctly typed and
can construct an output model that contains the computed type information.
If not, we can identify the elements where no valid rule can be found and use
that information to report errors to the user.

We created a prototype implementation for EMF-TL, and applied it to the
modeling language SLCO in this chapter for demonstration purposes. In the
next chapter, we will explore how well EMF-TL meets the requirements outlined
in Section 2.4, and how well it serves as an answer to RQ 1.3.
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Chapter 5

Case studies

5.1 Introduction

In this chapter, we will describe a number of more extensive case studies. Based
on our SLR, we selected four languages as subjects of our experiments. A
primary factor in the selection of these languages was the presence of experts
that were available to be consulted on the structure of the language and the
correctness of the defined type system. The four languages also all have pre-
existing type systems, to ensure the design of the type system was not affected by
any limitations in EMF-TL. Instead, we would adapt EMF-TL to accommodate
problematic constructs. All languages we selected are strongly typed, because
we found most statically-typed DSLs are, as described in Section 2.2. In each
case study, we studied the publicly available documentation of the language,
and used that to create a type system specification. We then generated the
corresponding type checker, and applied it to test cases. In the next subsections,
we will first introduce the four languages in more detail, and describe our reasons
for using them in our case studies. We will then describe the general procedure
used to implement the case studies, followed by the case studies themselves.
Each case study ends with an evaluation section, which discusses our results.
Finally, the final section of this chapter contains the overall evaluation, were we
compare the case study results from the different languages and draw our end
conclusions.

CIF

The first language we selected is CIF, the successor to the Chi 2.0 language we
studied in Chapters 3 and 3.9. Like Chi 2.0, CIF is a domain-specific language
describing behavior of hybrid systems, i.e. systems combining state machines
that define discrete behavior and differential equations that define continuous
behavior. Unlike Chi 2.0, CIF was designed from the beginning around EMF.
It was also designed to be an interchange format, containing a wider array
of constructs to ensure that all required semantics could be described in CIF
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models. Like in Chi 2.0, a CIF model consists of combination of discrete and
continuous elements. The continuous elements are modeled using differential
equation systems, and are mostly used to model physical processes occurring in
the modeled system. The discrete elements are modeled using state machines
and are primarily used to represent the controllers used to keep the system
operating within the desired parameters. Together, these controllers form a
model that can be used to examine, for example, how various implementations
affect the overall functioning of a complete system containing both electronic
and mechanical components. This case study can be found in Section 5.2. By
studying CIF, we create an opportunity to compare the MSOS and EMF-TL
specifications of the same type system.

WebDSL

The next language we choose was WebDSL, an object-oriented language for
web design. WebDSL was created in 2007 by Eelco Visser [111]. It is different
from HTML, a major DSL used for constructing web pages out of graphical
elements, in that it explicitly models data and operations that link together
pages in addition to visual representations of those pages. A complete website in
WebDSL is referred to as an application or app. An app can define entities that
define the structure of data, functions that operate on this data and pages that
define how entities are displayed to the user. In terms of our SLR, specifically
Section 2.2, WebDSL is a statically and strongly typed language. It contains
objects with inheritance, type variables and overloading, but not type inference.
We choose to study a object-oriented language because object-orientation is an
influential paradigm in general purpose programming languages, and we believe
it can offer useful abstractions for a number of domains. Object-orientation also
poses specific type system challenges, and we wanted to make sure EMF-TL
can meet those challenges. In fact, this case study led to a change in EMF-
TL, namely the introduction of the in construct, intended to express implicit
references found in this language.

mCRL2

The third language we choose was the mCRL2 language. mCRL2 [52] is a spec-
ification language based on the Algebra of Communicating Processes(ACP) [13]
extended with abstract data types. mCRL2 is based on the earlier µCRL lan-
guage [53] and intended to create system specifications that can serve as a basis
for property verification through model-checking. To that end, a number of
tools exist that can convert system specifications into state space representa-
tions, which can then be analyzed to determine if they posses desired or un-
desired properties. In terms of our SLR from Section 2.2, mCRL2 is statically
and strongly typed. It is not object-oriented, but uses algebraic data types. It
features overloading and type variables, and a limited amount of type inference,
as defined in Section 2.2.

Unlike CIF, mCRL2 is not an EMF based language. Thus, in order to apply
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our generated type checker to real models, we created our own metamodel for
mCRL2, based on the grammar given for mCRL2 in the documentation. For
the sake of convenience, we also created an Xtext parser that can convert tex-
tual example models into instances of the metamodel. Unfortunately, because
the parser produced by Xtext [39] is not as powerful as the one is in the actual
mCRL2 toolset, some constructs cannot be added to the grammar without cre-
ating ambiguities that the parser cannot deal with. In particular, this affects
the bag literal expression and the where clause, which can be used to structure
expressions by giving names to subexpressions that occur multiple times. For-
tunately, the constructs affected are not present in many example models, so
we can still use our parser to access the models easily. Additionally, we feel the
affected constructs are not particularly interesting from a type system perspec-
tive, so there is little lost by not including them. Note that we could have used
other methods of creating models to allow these constructs to be used anyway,
but because we want to use existing mCRL2 models to test our type checker,
we choose to put our focus elsewhere.

POOSL

Finally, Section 5.5 describes our experiences with another specification lan-
guage, this time an object-oriented one called POOSL. POOSL is a domain-
specific language for system modeling developed at the Eindhoven University of
Technology in 1997 and primarily used for performance modeling. POOSL is
part of the Software/Hardware Engineering (SHE) [93] design method for com-
plex reactive systems. POOSL is aimed at large communicating systems, and
it features much stronger layering that the other three case study languages.
It is also an example of a language with a mostly undocumented type system.
Based on our SLR results in Section 2.2, we observe that this is likely the case
for many DSLs, making this an important case to consider.

Case Study Procedure

In all cases, the case studies were carried out by the author of this thesis. This
creates a threat to validity, because the useability of the language by its in-
tended users can obviously not be derived from the experiences of the language
designer alone. However, based on the prototype nature of the available tooling,
it was decided that the increased effort that would be required to a significant
number of other users to the case studies would restrict the number of case
studies that could be conducted in the time available too much. Another threat
to validity is that we could not compare our generated type checkers to existing
implementations directly, because these either did not exist or were not com-
patible with the EMF framework. We felt this issue was not insurmountable,
because an user of the type system will also usually not base his knowledge of
the type system of a language on an analysis of the type checker, but on the
available documentation. Thus, the documentation should provide a complete
and consistent picture of the type system, allowing us to base our type system
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specification on it.

5.2 Case Study: CIF expressions

As mentioned in the case study introduction in Section 5, the basic expression
constructs in CIF are similar to those found in Chi 2.0, and also similar to
those found in many GPLs. There are numerical values, strings and booleans,
with their corresponding types. Unlike Chi 2.0, we do not need the additional
types cnat and cint here, because we implement the behavior they are used
for in a different way. There are also various kinds of containers, including lists,
arrays and two-dimensional matrices, and we have implemented type rules for
all of these. Expressions can be combined using operators or used as arguments
for function calls. As in most programming languages, the user can define
variables and constants of these types, and refer to these as needed. In the
case of variables, the hybrid nature of CIF shows itself in the presence of so-
called continuous and algebraic variables. In contrast with discrete variables, of
which the value only changes when explicitly updated, values of continuous or
algebraic variables can change depending on the passing of time. If, for example,
we want to model the volume of a liquid contained in a storage vessel, we can
use a continuous variable to represent the fact liquid enters or leaves the vessel
as a flow, instead of updating the volume discretely at set intervals.

In addition to variables and constants, users of CIF can also define their own
functions. These functions can then be called, assigned to variables or passed
as arguments to other functions. To keep things simple, however, user-defined
functions cannot be overloaded or generic. Overloading and type variables are
present, but reserved for predefined library functions. Because CIF users are
commonly mechanical engineers with little programming experience, the design-
ers of the language felt that allowing overloading would result in a lot of errors,
for little benefit. By restricting advanced features to predefined libraries, the de-
signers can provide, for example, a generic function that determines the length
of lists with arbitrary types of elements, without exposing this complexity to the
user. Another peculiarity of CIF is that type widening is allowed for constants,
but not allowed for variables, as described in Section 3.4.

CIF Typesystem

The first three parts of the EMF-TL specification of CIF are shown in Listing 5.1.
The imports part specifies that the metamodels of the language in question are
http://ucif.tue.nl/ucif-1.0.0 and http://cif.tue.nl/cif-1.0.0. The
first is the source metamodel (the “u” stands for “untyped”), the second is the
target metamodel. The current implementation does not require this order, but
we find this is a useful convention. The typesystem part defines what types exist
in this fragment of CIF, and how they are represented in the target model. In our
example the type system has fourteen types, representing natural, integer and
real numbers, booleans, strings, matrices, arrays, vectors, lists, sets, functions,
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distributions, dictionaries and tuples. The first five are basic types, with no
further properties, while the latter nine are composite types with parameters.
The type order part of the type specification defines a partial order of these
types. For the base types, nat is defined to be a subtype of int, and int is a
subtype of real. For the composite types, one instance of array is defined to be
a subtype of another instance of array if their dimension parameters match and
the type of the elements of the first is a subtype of the type of elements of the
second. The subtype relation for lists is defined similarly, based on comparison
of the types of the elements. Remember that for the sake of simplicity, the
subtype relation is assumed to be reflexive, so every type is a subtype of itself,
and transitive, so nat is also a subtype of real, etc.

Listing 5.1: CIF type system fragment
1 imports
2
3 http://ucif.tue.nl/ucif -1.0.0;
4 http://cif.tue.nl/cif -2.1.1;
5
6 start
7
8 ucif::Specification
9
10 typesystem
11
12 bool = cif::types::BoolType;
13 real =cif::types::RealType;
14 int = cif::types::IntType;
15 nat = cif::types::NatType;
16 string = cif::types::StringType;
17
18 matrix(x, y, e) = cif::types::MatrixType

(rowDimension ,columnDimension ,elementType);
19 array(d, e) =

cif::types::ArrayType(dimension ,elementType);
20 vector(d, e) =

cif::types::VectorType(dimension ,elementType);
21 list(e) = cif::types::ListType(elementType);
22 cifset(e) = cif::types::SetType(elementType);
23 function(p,r) =

cif::types::FunctionType(parameterTypes ,
returnType);

24 distributiontype(r) =
cif::types::DistributionType(resultType);

25 dictionary(k,v) =
cif::types::DictionaryType(keyType ,valueType);

26 tuple(f) = cif::types::TupleType(fields);
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27
28 widening
29
30 nat < int
31 int < real
32
33 list(e=$e1) < list(e=$e2) if $e1 < $e2
34 array(d=$d1 ,e=$e1) < array(d=$d2 , e=$e2) if $d1 =

$d2 , $e1 < $e2

Listing 5.2: CIF type system strategy
901 strategy
902 nat < int
903 int < real
904 list(e=$e1) < list(e=$e2) if $e1 < $e2
905 array(d=$d1 ,e=$e1) < array(d=$d2 , e=$e2) if $d1 =

$d2 , $e1 < $e2

The fourth part of the type specification, entitled strategy and shown in
Listing 5.2, indicates priorities among different valid type assignments. It is
defined in the same way as the type order, and will usually have a significant
similarity to it. For instance, one can type the constant 1 as either being nat,
int or real. This is an example where a simple and generally applicable rule
leads to ambiguity. In some cases, this ambiguity is an error and should be
reported as such by the type checker. For instance, given two potential types
(nat, int) → int and (nat, int) → nat for the function reference f , the ex-
pression f(1, 2) can be associated with nat or int depending on which function
type is chosen by the type checker. In some cases, however, the type checker
should be capable of selecting one of the solutions as the “most appropriate”
one. For the constant 1 one can expect the type checker to prefer the smallest
possible subtype determined according to type order, i.e., nat. Sometimes,
however, the smallest type according to the type order is not optimal based
on other considerations: for function types we may want to consider int→ nat
as a subtype of nat→ nat, because any function that can be applied to integers
can also be applied to naturals, but still prefer the latter type over the former
when selecting the expression type, for example because it can be implemented
more efficiently. For example, if we know that the type of the parameter is int,
we need to consider negative numbers, but if the type checker has derived the
smaller type nat, we know these will not occur.

Listing 5.3: CIF Number rule
797 from ucif::expressions::Number
798 to cif::expressions::Number(type=$t)
799 where $t < real {{}}
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Listing 5.4: CIF RealNumber rule

806 from ucif::expressions::RealNumber
807 to cif::expressions::RealNumber(type=$t)
808 where $t = real {{}}

Listing 5.5: CIF FunctionCallExpression rule

751 from ucif::expressions::FunctionCallExpression(
function = $function , arguments = $arguments)

752 with $functiontype , $parametertypes
753 to cif::expressions::FunctionCallExpression( type

= $returntype)
754 where $functiontype = $function.type ,
755 $functiontype = function {{p =

$parametertypes , r = $returntype }},
756 for $pt in $parametertypes , $a in

$arguments : $pt = $a.type

The fifth and final part of the specification, called rules, shown in List-
ings 5.3, 5.4 and 5.5, describes how various model elements are typed. The
from clause determines the applicability of the rule. For instance, the rules
in Listings 5.3 and 5.4 are applicable only to ucif::expressions::Number ele-
ments, in case of the first rule, and ucif::expressions::RealNumber elements,
in case of the second rule. These rules constrain the types of the elements to
subtypes of real and only real respectively. Note that any type is considered
a subtype of itself. The with clause lists local variables used in the rule. The to
clause introduces the target model element that will be created when the rule
is applied. Finally, the when clause specifies conditions that should be satisfied
by the model element and its related elements. For instance, the when clause of
the rule in Listing 5.5 requires that the type of the subexpression function is a
function, and that the values of the type attribute of the arguments subexpres-
sions match the types defined for the parameters of the function. Note that we
could also have chosen to require only that the type of the parameters are larger
than the types computed for the attributes, but the designers of CIF prefer the
stricter version shown here. In this formulation, if a ucif::expressions::
Number element is provided as an argument for a function with a parameter of
type real, the ucif::expressions::Number element ends up with type real1.
This is because the value real meets both the constraint imposed by the rule
for ucif::expressions::Number elements, and the constraint imposed by the
rule for ucif::expressions::FunctionCallExpression elements on its argu-
ments. If we would provide a model element that cannot be of type real as
argument, this rule cannot be applied and if there are no other rules that can
be applied, type checking fails.

1For disambiguation purposes, we have to add {{}} to the type name, but this does not
affect the type itself.
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Evaluation

As CIF is the successor language of Chi 2, and in particular the expressions of
CIF are directly based on Chi 2.0 expressions, we can compare the specifications
of the two type systems. One direct conclusion that can be drawn is that,
because EMF-TL rules are more verbose than MSOS rules, the CIF type system
specification is significantly longer than the Chi 2.0 one. This can be easily
seen by comparing the sizes of two example rules, as shown in Figure 5.1 and
Listing 5.6. The MSOS implementation applies only to one operator, while the
EMF-TL implementation applies to several, but this is a result of the different
structure of the parse tree used, and does not significantly affect the comparison.
As can be seen from the examples, it is especially the more detailed descriptions
of the model elements involved, including references to metamodels, that make
the EMF-TL rule larger. The two specifications define similar type systems, but
the EMF-TL specification is more flexible, because it allows additional kinds of
conditions to be used in the specification and because it is tied to a metamodel
instead of a parse tree format, allowing easier interaction with other tools, like
for example visual CIF editors. An example of the additional flexibility can also
be seen in the rules in Figure 5.1 and Listing 5.6. In the MSOS version, we
have to use a maximum operator here, creating the need for separate types to
indicate if widening is or is not possible. In the EMF-TL version, we can use the
equality operator, allowing the decision to widen or not to be made elsewhere,
in a position where more information is available.

The metamodel also allows us to check if all model elements referenced are
used correctly, reducing the number of potential errors in the specification. In
the MSDF specification, any misspelling in references to the input parse tree
can only be detected at run time, while the EMF-TL editor can detect this
statically. In terms of performance, the EMF-TL-based type checker is slightly
slower than the MSOS-based one, taking 50% longer for similar size models, but
we believe there is further room for optimization, especially in the way strategies
are evaluated on various constraint terms. If the expected performance increase
can be achieved, the impact of using EMF-TL instead of MSOS should be
negligible.

Listing 5.6: CIF binary operator rule

157 from ucif::expressions::BinaryExpression(operator
= $o , leftChild=$l, rightChild=$r)

158 with $u
159 to cif::expressions::BinaryExpression(type=$t)
160 where $o in set{

ucif::expressions::BinaryOperators::GreaterEqual ,
ucif::expressions::BinaryOperators::GreaterThan ,
ucif::expressions::BinaryOperators::LessEqual ,
ucif::expressions::BinaryOperators::LessThan},

161 $u = $l.type ,
162 $u = $r.type ,
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163 $u < real {{}},
164 $t = bool {{}}

1 E1 =={---}=> T1, E2 =={---}=> T2,
2 max(T1,T2) = T3, max(T3,real) = real
3 ---------------------------
4 less(E1,E2) : Exp =={---}=> bool .

Figure 5.1: MSDF rule for a binary operator.

5.3 Case Study: WebDSL
As mentioned in the introduction in Section 5, WebDSL is an object-oriented
language, that makes use of constructs called entities. A WebDSL entity is
similar to a class in EMF or in an object-oriented programming language, and
an example definition of a User entity is shown in Listing 5.10. Every entity
has a name, and can have a superentity, properties and functions. A property
in WebDSL is similar to a structural feature in EMF, and can contain a value
or a (containment) reference in the same way as in EMF. In the example, we
can see four value properties: username, password, name and isAdmin. Two of
those have type String, one has type Bool and one has type Secret. Secret as
a type is fundamentally similar to String, but using this type indicates the value
of the property is special and should be protected. The example entity also has
two references, manager and employees, both of which refer to other values of
User type. Note that in contrast to EMF, a WebDSL property does not have
multiplicity. If a property should contain multiple values, this is done by using
a collection, like a set or a bag, as used for the employees property. There are,
however, a number of other annotations that can be added to properties, like
assertions that restrict the values that the property can have, or indicate that
the property can be used as an identifier for an entity.

Listing 5.7: WebDSL entity example
1 entity User {
2 username :: String (id)
3 password :: Secret
4 name :: String
5 manager -> User
6 employees -> Set <User >
7 isAdmin :: Bool
8 }

A WebDSL entity function describes behavior related to a specific entity.
A common use for functions is to test whether an instance of an entity meets
certain criteria. For example, if the entity represents a user, a function might
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test if the user has reached a certain age based on their birth date. Note that
WebDSL functions, despite the name, are not always free of side effects. A good
example is constructor functions. Each entity has an implicit constructor func-
tion, and if these were side-effect free, we would expect that invoking the same
constructor multiple times would return the same object every time. However,
if one of the properties has been defined as an identity, the same identifier will
never be used twice, or in other words, invoking the constructor has the side
effect of removing one identifier from the set of available options. As a main
consequence, all entities created by that constructor will be different from each
other.

In order to display the data in entities to users of the web site, and to allow
entities to be created and edited, we need the other main type of WebDSL con-
struct, the page. An example of a page definition is shown in Listing 5.8. Pages
in WebDSL are in some ways similar to procedures in imperative programming
languages. Each page definition has a name, in the example editUser, and
optionally some parameters, in the example one, namely u, and can be invoked
to create an HTML page based on the actual argument values, which is then
displayed to the user. The structure of a page is defined by using elements that
are similar to HTML tags. Examples of elements are headers, forms and links,
as shown in Listing 5.8. The page in the example actually creates a form that
can be used to edit some fields of an User entity, and a button to save the new
values. There are also some control flow statements that can be used in pages,
for example loops to display all elements of a collection, but they are not used in
the example shown. In order to enhance reuse, we can also define templates that
can be invoked from pages to recreate specific groups of elements, for example a
common footer, for a number of pages. A template consists of the same kind of
elements as a page, but no new page is created when it is invoked. Instead, the
elements are added to an existing page. Unlike pages, templates can be over-
loaded. This is useful to create specialized representations for values of different
types. For example, suppose one wants to display a list with several kinds of
items in it. By using an overloaded template, one can use a simple template
call and still get an appropriate output for each item.

Listing 5.8: WebDSL page example
1 define page editUser (u : User) {
2 title { "Edit User: " output(u.name) }
3 section {
4 header { "Edit User: " output(u.name) }
5 form {
6 par { "Name: " input(u.name) }
7 par { "Password: " input(u.password) }
8 par { action ("Save Changes", saveUser ()) }
9 }
10 action saveUser () {
11 u.persist (); return viewUser(u);
12 }
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13 navigate(home()) { "return to home page" }
14 }
15 }

If entities could only be used to display information, WebDSL would not
add much to pure HTML. However, we can also define actions in WebDSL that
can be linked to submission of forms or other triggers. Using actions, we can
save information to a database, update the information on a page or create new
pages. Actions are defined using imperative statements, including control flow
like loops and switches, but primarily assignments and creation of new entity
instances.

WebDSL Type System

Because our SLCO case study covered most basic expressions, we choose this
next case study based on more advanced type system features. In particular, we
selected WebDSL because it contains both object orientation and overloading,
two characteristics that also featured in our SLR in Section 2.2. Both represent
specific challenges to our type system language, because they involve interaction
between scoping and typing, which are two separate concepts in our approach.
The rule examples in this chapter are all extracts from the actual WebDSL
EMF-TL specification, which can be found in Appendix C. The examples can
be located within the complete specification using the line numbers.

Object-orientation

As the name of the concept “object-orientation” implies, WebDSL, or any other
object-oriented language, is built around the concept of objects. An object is a
compound structure that consists of values and references. What kind of values
and references an object can have is defined by a so-called class. In WebDSL,
classes work similarly to those found in many object-oriented languages, like
for example EMF, with the exception that they are referred to as entities. For
the purpose of this general discussion, we will use the more generically used
name class. To recap the description of WebDSL entities given in Section 5.3,
classes define features, which can contain values, and can also define behavior,
as functions or procedures, that is usually directly tied to the object.2 Classes
are related to each other through a concept called inheritance. Each class can
have one or more parent classes, from which it inherits features and behavior.

In object-oriented languages, objects are created, used, updated and de-
stroyed. In order to do this, we need to resolve references to classes and features
in order to determine what types are involved. For example, if we define a class
representing a car, we may want to refer to specific parts of the car, like its
engine or one of the doors. Usually, we will want to refer to a particular part in
the context of a particular car. To enable this, in addition to plain references,
object-oriented languages use qualified references. Continuing our car example,

2For a more concrete discussion of classes and features, please refer to Section 4.2.
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an instance of a qualified reference in natural language would be the phrase
“The roof of the blue car”. In this phrase, the identifier “roof” is qualified by the
phrase “the blue car”, restricting it from a general concept to a specific reference.
Recall that classes allow programmers to define data with internal structures,
creating the need to refer to specific parts of specific elements. Instead of one
name, a qualified reference essentially nests references to allow the programmer
to define a reference to a component of an entity. In each step, the outer refer-
ence targets an element that defines a scope, and the inner reference targets an
element in that scope. In many ways, this is similar to ordinary references, but
the first complication is that feature names can be reused between classes. In
our example, we could create several classes to represent different kinds of cars,
that all have a feature named engine. This is usually not a problem, because a
feature can only be accessed for a specific object, which has a specific class, and
each class can have only one feature with a given name. This does mean that we
need to know the class that defines the object before we can resolve the feature
reference. A second complication is that due to inheritance, the feature may
not be structurally part of the class that is directly referenced by the object.
Instead, the feature could be one that is inherited from an ancestor class. In
our example, we could make the engine feature part of a general car class, with
several other classes implementing more specific kinds of cars inheriting this fea-
ture from it. This inheritance chain could itself contain type errors, for example
ambiguous superclass references or classes overriding features from ancestors in
an illegal way.

In our two-phase type checking process, as described in Section 4.3, we
resolve qualified references by explicitly using the ability of the scoping phase
to return sets of potential targets instead of single elements, in combination
with the nested nature of qualified references. The result is that we treat the
innermost reference as an ordinary reference, but each nesting checks whether
the choice made in the inner reference is consistent with the choice made in the
outer one. The rule that specifies this is shown in Listing 5.9. As in the rules
for SLCO, lines 133, 134 and 135 define the class the rule applies to and the
class that will be used in the target model. In this case, the class representing
quantified references in WebDSL is called FieldAccess. The relevant properties
of the field access are the name of the target property and the expression that
represents the base object. In line 136-138, the rule extracts the type of the
base expression from the resultSort property, then the actual entity from the
type, and finally the features of the entity from the allBody property. The rule
then selects a field from the potential candidates identified by scoping in line
139, checks that the property indeed has the correct name, and finally verifies
that the property is part of the correct entity. If this is the case, then the rule
can be fully applied and the field attribute of the resulting element will be set
to refer to the computed field.

Listing 5.9: WebDSL field access rule
133 from textualWebDSL::FieldAccess(links = $links ,

base = $exp , position = $pos , field = $name)
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134 with $exptype , $entity , $props , $name
135 to WebDSL::FieldAccess(field = $field ,

resultSort = $t)
136 where $exptype = $exp.resultSort ,
137 $entity = $exptype.entity ,
138 $props = $entity.allBody ,
139 $field in $links ,
140 $field = textualWebDSL::Property(sort =

$t , name = $name),
141 $field in $props

Note that the feature allBody, referred to in line 138, contains not only the
properties directly contained in the entity, but also those inherited from super
classes. It is not directly filled by the parser, but a result of type computation.
This computation is specified in the rule shown in Listing 5.10 that type checks
entity definitions. The rule does not compute an actual type for an entity defi-
nition, because an entity is already a type itself. Instead, a type checking rule is
used to resolve the superentity reference, and to compute the inherited proper-
ties. The specification is actually rather straightforward. The first two lines of
the precondition select the target entity and are similar to other reference rules.
Line 305 extracts the features, both direct and inherited, of the superentity, and
the last line adds the local features to compute the desired set of features, which
is stored in allBody.

Listing 5.10: WebDSL entity definition rule
300
301 from textualWebDSL::Entity(body = $body , links

= $links , superentity = $s)
302 with $superb
303 to WebDSL::Entity(superentity = $e , allBody =

$allbody)
304 where $e in $links ,
305 $e = WebDSL::Entity(name = $s),
306 $superb = $e.allBody ,

Overloading

Though strictly speaking unrelated, overloading presents similar challenges to
object orientation. Recall that overloading refers to identifiers that are used
for multiple similar entities, like multiple functions with similar, but different
signatures. For each reference that uses an overloaded identifier, for example as
part of a function call, we have to use additional information, like the types of
the arguments of the call, to decide which entity is the actual intended target.
Like with qualified references, we solve this by designing the scoping to return all
possible targets for a reference, and then choose the actual target during typing.
The rules involved, however, tend to be more complex than those for objects.
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For one, functions tend to have a variable number of arguments. Additionally,
instead of a simple test if the target occurs in a certain place, deciding between
overloaded targets can involve a more subtle judgment based on several factors.
In EMF-TL, the way functions are compared to make this choice is defined using
the strategy part of the type system, as introduced in Section 4.3. There, the
type system designer can define what functions are preferred over other, for
example by comparing the types of parameters or the return types.

In the actual type system specification, the function call is represented by two
rules, one to handle instances where the function explicitly is linked to an object,
and one for instances where a global function, one that is not accompanied by a
reference to an object. In Listing 5.11, we show the latter of those two rules. The
lines 198-200 describe the source and target elements of the rule. As part of this,
we state that we are interested in three properties of the input element, namely
base, the base expression, links, the candidate functions discovered during the
scoping step and arguments, the expressions that provide the argument values
for the function call. The base expression of a function call is the expression
that determines the object the function is part of, if one is provided. The more
interesting part is in the preconditions of the rule. In line 201, the rule tests if the
base expression is indeed empty. In WebDSL, the reference to the function to be
called is part of the call itself. Thus, the next line ensures the function is valid
according to the scoping rules, and line 203 checks that it it is indeed a function
and extracts the parameters and the return type. The next line extracts a list of
parameter types from the list of parameters. This list essentially represents the
parameter part of the function signature. In the final line, line 205, the most
important work is done. In this loop, we compare the type of each argument
to the type of the corresponding parameter, using the widening operator. If all
the arguments are compatible, we know the chosen function call can be called
here and could be part of the final result.

Listing 5.11: WebDSL function call rule

198
199 from textualWebDSL::Call(base = $base , links =

$links , arguments = $args)
200 with $fparams , $fparamtypes
201 to WebDSL::Call(function = $f , resultSort = $t)
202 where $base = OclUndefined ,
203 $f in $links ,
204 $f = textualWebDSL::Function(arguments =

$fparams , returnSort=$t),
205 for $fparam in $fparams , $fparamtype in

$fparamtypes : $fparam =
textualWebDSL::FormalArg(sort =
$fparamtype),

The case for calls to functions linked to specific objects is similar, and we
will not show it separately here. The only difference is that instead of testing
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if the base expression is empty, the rule tests that there is an expression. The
type of this expression should be an object type, and the function called should
be part of that object. That part of the rule is similar to the one discussed in
Section 5.3.

As mentioned before, if the rule shown in Listing 5.11 has multiple answers
for a certain model element, we need to decide between them according to some
metric. In WebDSL, the selection is based on the following two rules. In line
323, the specification states that the left function is preferable to the right
one only if they have the same name and if all parameters of the left function
are preferred over the corresponding parameter in the right function. In turn,
preference between parameters is described in line 324, and simply corresponds
to preference between the types of the parameters. As an example, consider two
functions, both called “double”, one with a parameter of sort Integer and the
other with a parameter of sort Float. If we compare these two functions using
the preference rule, we first check if their names are equal, which is the case.
We then check for each parameter, in this case only one, how they are related.
This triggers the second preference rule. If we assume that elsewhere in the
specification, a preference rule has been defined that indicates that Integer <
Float, the second rule will indicate that Integer parameters are preferred over
Float parameters. As a result, the function with the Integer sort parameter
will be preferred over the function with the Float sort parameter.

Listing 5.12: WebDSL function strategy rule
323 simpletype(sort = $s1) < simpletype(sort = $s2)

if $s1 = "Integer", $s2 = "Float"
324 WebDSL::Function(name = $n1 , arguments = $args1)

< WebDSL::Function(name = $n2 , arguments =
$args2)

325 if $n1 = $n2 ,
326 for $arg1 in $args1 ,
327 $arg2 in $args2 : $arg1 < $arg2
328 WebDSL::FormalArg(sort = $s1) <

WebDSL::FormalArg(sort = $s2)

Evaluation

Unlike for SLCO and CIF, the tool suite of WebDSL already included a type
checker for the language. This type checker is defined by a Stratego/XL [110]
program. Because this type checker is implemented in a more mature sys-
tem than our prototype, it makes little sense to compare them quantitatively
performance-wise. Generally speaking, we expect our prototype to be signifi-
cantly slower, using seconds to type models rather than the tens or hundreds
of seconds used by the production type checker. Further optimizations should
remedy to a significant extent, however. Another difference is that we have cho-
sen not to focus on the sublanguages of WebDSL, focussing instead on the core
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features of the main language. This automatically makes our specification con-
siderably less complete. On the other hand, we feel the declarative nature of our
specifications makes them both easier to understand and easier to maintain.

5.4 Case Study: mCRL2

Every mCRL2 specification consists of abstract data types and algebraic pro-
cesses, with possibly added functions and equations. Abstract data types are
used to model the data that flows through the system as processes communi-
cate. Each abstract data type, known as a sort, is essentially a non-empty set of
data elements. Data elements are defined using constructors. Each constructor
has a name, optionally some parameters and belongs to a specific sort. The
simplest constructors have no parameters, and thus add at most one element
to the sort each. More advanced constructors add new data elements based on
smaller data elements. An example of a sort can be seen in Listing 5.13. In this
definition, we define a sort for binary trees that contain integer numbers in the
leaves. The leaf constructor is essentially the base case of the sort, and has one
Int parameter, representing the value stored in the leaf. The node constructor
combines two binary trees into one bigger binary tree.

Listing 5.13: mCRL2 sort example
sort BinaryTree = struct leaf(value : Int) |

node(left : BinaryTree ,
right : BinaryTree);

The other crucial part of a mCRL2 specification are the processes. Two
example processes are shown in Listing 5.14, which will be discussed in greater
detail later in this section. The processes define the behavior of the system. In
mCRL2, a process consists of actions, which are also defined in the specifica-
tion. Each action can have parameters, that contain the data involved in the
action. In Listing 5.14, the actions defined are call, answer, exchange, done
and alldone. Once actions are defined, they can be combined into processes
with several operators. The primary operators are the alternative composition,
written as +, which creates a choice between two options, and sequential com-
position, written as ., which creates an order between two actions. These two
operators are independent of data, meaning for example the choice among the
alternatives cannot be influenced by the values of the parameters of the action.

Listing 5.14: mCRL2 example
1 map N: Pos;
2 Information: Set(Pos);
3 eqn N = 5;
4 Information = { k:Pos | 1 <= k && k <= N };
5
6 act done , all_done;
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7 call , answer , exchange: Pos # Pos # Set(Pos)
# Set(Pos);

8
9 proc Person(myid:Pos ,myin:Set(Pos)) =
10 sum herid:Pos , herin:Set(Pos) . (
11 ( myid != herid ) -> (
12 ( call(myid ,herid ,myin ,herin)
13 + answer(herid ,myid ,herin ,myin) ) .
14 Person(myid ,myin + herin) ) ) +
15 ( myin == Information ) -> done . delta;
16
17 proc Person_init(id:Pos) = Person(id ,{id});
18
19 init allow({exchange ,all_done},
20 comm({call|answer -> exchange ,
21 done|done|done|done|done -> all_done },
22 Person_init (1) || Person_init (2) ||

Person_init (3) ||
23 Person_init (4) || Person_init (5)
24 ));

If we do want data to influence behavior, we need to use two further opera-
tors, the conditional and the sum operator. The conditional operator selects an
action based on the result of an expression, similar to the well-known if-then-
else-statement in traditional programming languages, and is shown in lines 11-14
of the example. The sum operator, shown in line 10, is an generalization of the
alternative operator. Instead of a choice between two options, it defines a choice
between instances of the same action that differ in one or more parameters. To
be more precise, there is one instance of the action for every data element in a
particular sort. Because sorts can contain an infinite number of elements, this
can not be replicated by using the ordinary alternative operator. A common
case where the sum operator can be useful are actions that represent the re-
ception of a message. If the message contains, for example, a positive number,
there are an infinite number of messages that the sender can choose to send. In
order to model that we can receive any of them, we can use the sum operator
with the sort representing natural numbers to model all possibilities.

Another major construct that can be used in creating processes is recursion.
Recall that recursion in general refers to items that contain one or more copies of
themselves. In order to keep process specifications of manageable size, mCRL2
uses the concept of process variables. These process variables can not only be
referenced in other processes to access the process contained within, but also
in the process being assigned itself. This way, processes can contain direct
or indirect references to themselves, allowing processes of infinite length to be
specified. This may sound strange, but in practice it is a convenient way to
specify the behavior of many systems. Like actions, process variables can have
parameters that define the data involved. This is useful, for example, to specify
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a protocol for sending or receiving messages in greater detail, without having
to repeat the definition of the protocol in several places in the specification. In
Listing 5.14, we can see recursion in process Person, defined in lines 9–15 and
referenced from inside its own definition in line 14.

The previous constructs all describe a single process operating in isolation. In
reality, a system may have multiple components that act largely independently,
but do communicate. In that case, we do want to model them together. For this
purpose, there is a parallel composition operator, represented by the || operator,
that enables two processes to act separately. This is often needed to represent
independent systems, like separate computers, that do need to interact at some
points. Once we have multiple parallel processes, it becomes possible for them
to act simultaneously. This is referred to as a multi-action, and an example
where this must occur is when two processes communicate in a synchronous
manner. In synchronous communication, the message is sent and received at
the same time, like for example in a telephone conversation. In mCRL2, this
kind of communication can be modeled by using the comm operator, used in line
20 of the example in Listing 5.14. With this operator, we can define groups of
actions that can be merged together into one communication action when the
data parameters are equal. Most commonly, one of the actions will represent the
sending of a message, for example someone speaking, another will represent the
reception of a message, for example someone listening, and the data parameters
represent the contents of the message, for example the text spoken. Note that
while the communication operator describes how actions can combine, it does
not force these actions to only occur together. This means that, for example, the
action to hear something could be taken without anything being said. To model
situations where that is not desired, the allow operator is used, as shown in line
19 of the example. By applying the allow operator to a process, we can restrict
the actions that can be taken to a specific set. If we put only the combined
action into the set, the components of the communication cannot be performed
in isolation.

Finally, there are three operators that can be used for modeling, but are
primarily used to enable reuse or improve analysis of the resulting transition
system. These operators are blocking, renaming and hiding. As the name
suggests, the block operator prevents actions from a given set from occurring.
In essence, it is the opposite of the allow operator. The block operator is most
often used to remove some uninteresting behavior from the system, allowing the
analysis to focus on more important actions. The rename operator allows, as the
name suggests, actions to be renamed. This can be useful, for example, when we
want to reuse a process in several places, and want to distinguish the instances.
The final operator is the hide operator. This operator essentially makes all
actions from a given set silent. A silent action, conventionally represented using
the τ symbol or tau, can still be executed, but cannot be observed directly.
Proper use of silent actions can dramatically reduce the size of the observable
state space of systems, making analysis much easier.
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Listing 5.15: mCRL2 Phone Book Function example
1 sort Name;
2 PhoneNumber;
3 PhoneBook = Name -> PhoneNumber;
4
5 map p0: PhoneNumber;
6 emptybook: PhoneBook;
7 add_phone: PhoneBook # Name # PhoneNumber ->

PhoneBook;
8 del_phone: PhoneBook # Name -> PhoneBook;
9 find_phone: PhoneBook # Name -> PhoneNumber;
10
11 eqn emptybook = lambda n: Name . p0;
12
13 var b: PhoneBook;
14 n: Name;
15 p: PhoneNumber;
16 eqn add_phone(b, n, p) = b[n->p];
17 del_phone(b, n) = b[n->p0];
18 find_phone(b, n) = b(n);

In addition to sorts and processes in mCRL2, we can define functions and
equations. Like constructors, a function definition is essentially only a signature.
Examples of such signatures are shown in Listing 5.15. We first define three
sorts for representing a simple phone book, that links names to numbers. In the
example, we show two functions, called maps in mCRL2, with no arguments
in lines 5 and 6, which are used to create specific constant values, namely the
empty phone number and the empty phone book, when invoked. The other
functions all take an existing phone book as a parameter, and either search,
add or remove phone numbers in it. Unlike constructors, functions have actual
behavior, defined in equations. In principle, an equation defines two terms to
be equal. In practice, equations are often defined with a complex function term
on one side and a smaller result on the other side. For example, if we want
to define a function representing addition, we specify one or more equations
with an addition on one side and a simpler addition, or even a direct result, on
the other side. Ideally, by repeatedly applying equations, we can reduce any
addition to a single final result. In the example3 in Listing 5.15, we show four
equations defining the behavior of the declared functions. The first one, in line
11, defines a phone book that contains an empty phone number for every entry.
Next, in lines 13–15, we declare a number of variables. These are used in the
next three equations, in lines 16–18, which define the behavior of the functions
that modify phone books. In the first two, we use the map update operator to
either replace a phone number by a new one, in the add_phone function, or to
replace a phone number by an empty one, in the del_phone function. In the

3This example is based on http://www.mcrl2.org/release/user_manual/tutorial/
phonebook/index.html
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last, the map access operator is used to extract the number corresponding to
the given name from the phone book.

An example4 of an mCRL2 specification can be seen in Figure 5.14. In
this case, the language is used to describe a communication problem, where we
want to know the minimum number of actions needed for a number of people
to share information. In the beginning, each person has exactly one part of the
information. People can share information by calling each other. After each
call, the caller and the callee have shared all their information, so they know
the same things. The process is complete when all people know all information.

In the model, we first define the information, in lines 1–4. The information
is represented as a set with each information item represented as a number,
specifically a positive number of the sort Pos. In this instance of the problem,
there are five pieces of information, so the set contains 5 elements. The next step
is to define the actions that are involved, in lines 6 and 7. The first two actions
done and all_done are introduced as indications that the process is done. The
first one, done, is used by each participant to indicate that he or she has all
information. Once all participants have all information, they together take the
all_done action to indicate the problem is solved. The other actions, call,
answer and exchange represent the communication between people. They each
have four parameters, with the first two representing the people involved in the
call, and the second two representing their knowledge. Note that in both cases,
we are not interested in the details of the person or fact involved, but only in
their existence as separate entities, thus, numbers are used to represent them.

The next and main part of the specification is the definition of the people.
The behavior of each person is defined by a recursive process. In this process,
the person gets a choice between communicating with another, as defined in
lines 10–14, or stopping, as defined in line 15. The second option has a so-called
guard, which states that it can only be used once the person has collected all
information. Note that a person can still choose to communicate once this guard
holds. If the person chooses to stop, the done action has to be taken, which can
only be done by communicating with all other participants. If all participants
take the done action, we know that all pieces of information have spread to all
people, and the problem is solved. We then use the predefined delta action,
also referred to as deadlock, to indicate that the process is over. If the choice
is made to communicate, the person has to decide who to communicate with.
This is specified by the sum operator in line 10. The sum allows the person to
choose any communication partner, and to receive any information item form
them. In the next line, line 11, a guard is used to eliminate the possibility of a
person calling itself. While such a call would not affect the validity of a solution,
it does not result in any progress towards the goal. The next step is to choose
between communicating by calling someone, or by being called by someone,
using alternate composition operator, written as +. This is represented by the
choice in lines 12 and 13, between the call action and the answer action. After

4This example is based on http://www.mcrl2.org/release/user_manual/tutorial/
gossip/index.html
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communication, the person now knows all information the other person knew,
in addition to his own. This is accomplished using the set union operator, which
is also written as +, an example of operator overloading in mCRL2. So, once the
call is compete, the process repeats, but with the person’s knowledge updated
to a new value.

The next code line, line 17, defines a convenience process that initializes a
person with their own piece of information. It is used in the next part, lines 19–
24, that defines the actual system. In lines 22 and 23, the five people involved
are created as parallel processes. As mentioned before, if defined like that, they
can take actions independently. But in this case, it does not make sense to
answer a call that has not been made, or vice versa. Thus, we need to define
the actions as communications, and this is done in lines 20 and 21. In the first
of those lines, we define that call and answer combine to create an exchange.
Essentially, the exchange action defines a complete phone call. In the next
line, we define that the action all_done consists of five parallel done actions.
This action serves mainly a modeling use, because when it can be used, we
know all five people are done, and everyone has all information. Note, however,
that despite having defined what sensible phone calls are, the call and answer
action can still be done separately. This is solved with line 19, with the allow
operator. By allowing only complete communications, we ensure the separate
communication actions, like call and answer, do not cause any problems.

mCRL2 Type System

The mCRL2 type system is static, strong and explicit. It is not object-oriented,
so it does not feature objects or inheritance. It does feature type parameters,
and a limited form of type inference. In particular, references to actions and
processes can be ambiguous. For instance, in Listing 5.14, we use two atomic
actions, call and answer, to represent a phone conversation in an abstract way.
If we wanted to model a phone conversation in greater detail, we could choose to
define call and answer as processes instead, allowing us to define how separate
steps together make a conversation. When invoking call or answer however,
like is done in line 12 and 13, it makes no difference whether they are defined
as actions or processes: the syntax is identical. Instead, the type system is used
to decide for each invocation whether the referenced behavior is defined as an
action or as a process. In EMF-TL, this is implemented by a combination of rules
that transforms the base reference into an action reference or a process reference
depending on the target that is found. This disambiguation is discussed in more
detail in Section 5.4. Another important feature of the mCRL2 type system lies
in sort aliases. In mCRL2, users can not only use built-in sorts and define new
sorts themselves, new names can also be given to existing sorts. These aliases
can be used to, for example, create names for complex container types that
are easier to use and update. From a type system perspective, this means we
have to take into account that the same type might occur in the system under
different names. Because mCRL2 semantics define that the fundamental type
should be used to determine if a given expression is valid, no matter how it was
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referenced, this means that we need normalization to discover the underlying
type for each sort expression, so we can apply the type system rules based on
the correct values. This is discussed in greater detail in Section 5.4. Our full
mCRL2 type system formalization can be found in Appendix D.

Element Transformation

In Section 5.3 of the WebDSL case study, we discussed how to handle the concept
of overloading in EMF-TL. In WebDSL, overloading represents the possibility
to define multiple functions with the same name. This means it cannot be
syntactically decided which of the implementations is referenced by a given
function invocation, so the invocations have to be disambiguated based on their
type signature during type checking. In mCRL2, functions can be overloaded,
but there is an additional complication in the form of actions and processes.
Recall that actions represent basic units of behavior, and can be combined in
processes to define more complex behavior. Both actions and processes have
parameters, and invocations of actions and processes can be syntactically very
similar. While this flexible syntax makes the language more user-friendly, as a
consequence, the parsers cannot decide whether a given invocation refers to an
action or a process. This means that in the untyped model, invocations of both
actions and processes are represented using the same class of elements. In the
typed model, however, we would like to use model elements with direct references
to the action or process invoked, and this can be best represented by using
separate classes for action invocations and process invocations. We implement
this in EMF-TL by using multiple rules that transform model elements based
on the computed types.

In the rules, the disambiguation is primarily represented by the first two
rules shown in Listing 5.16, in lines 73 to 90. Note that while these two rules
share the same source element, they have differing target elements, representing
different semantics. Because actions and processes in mCRL2 are almost similar
from a typing perspective, the two rules are nearly identical also. In the first line
of the conditions, we select the relevant action or process from the environment.
In the second line, we test whether we are dealing with an action or a process
by using a reference to the Atom and Process, and if the name is correct, we
also extract the parameters from the element. In the third line, we then test if
the types of the argument expressions match the type of the parameters of the
action or process.

The third rule in Listing 5.16, in lines 92 to 96, deals with some specific
semantics for processes. In order to simplify the definition of recursive processes,
a shorthand form can be used where parameters can be copied from an invoking
process implicitly. As a result, a process can be invoked in its own definition
without giving explicit arguments for all its parameters. Unfortunately, due to
limitations of the parser we used to implement the textual syntax of mCRL2,
we do not fully support this feature, but only the version where all argument
values are copied from the parent expression, the remainder being possible future
work. In the rule, the first thing to note is the reference to the parent process
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next to the source element of the rule. This reference gives us both a way to
test if the process call is actually contained in a process definition, and not,
for example, part of an initialization expression, but also gives us access to the
process element, so we can check if the properties of the element match where
required. In the conditions, we check if the number of arguments is indeed zero,
in the first line. In the next line, we extract the process from the parent process
declaration. Finally, we check if the process name matches the name used in
the invocation, to ensure the call is really recursive. If these conditions hold,
the call represents a valid recursive invocation, and is typed correctly.

Listing 5.16: mCRL2 AtomicAction rules

73 from textualmcrl2::AtomicAction(atomname =
$name , links = $env , arguments = $args)

74 with $t
75 to mcrl2::AtomicAction(atom = $a)
76 where $a in $env ,
77 $a = textualmcrl2::Atom(name = $name ,

type = $t),
78 for $arg in $args ,
79 $param in $t :
80 $arg.type.sort < $param.sort
81
82 from textualmcrl2::AtomicAction(atomname =

$name , links = $env , arguments = $args)
83 with $t
84 to mcrl2::Instance(process = $p)
85 where $p in $env ,
86 $p = textualmcrl2::Process
87 (name = $name , parameters = $t),
88 for $arg in $args ,
89 $param in $t :
90 $arg.type.sort < $param.sort.sort
91
92 from textualmcrl2::AtomicAction(atomname =

$name , links = $env , arguments = $args) in
$parent: textualmcrl2::ProcessDecl

93 to mcrl2::Instance(process = $p)
94 where length $args = 0,
95 $parent =

textualmcrl2::ProcessDecl(process =
$p),

96 $p = textualmcrl2::Process(name=$name)
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Sort Renaming and Normalization

Another important aspect of the mCRL2 type system is sort renaming. A
designer can introduce a new name for any sort, and then refer to the sort
using that name throughout the model. In fact, as designed in mCRL2, such a
renaming essentially creates an alias, using the new name of the sort is the same
as using the sort directly. This contrasts with other languages, like WebDSL,
where you cannot define new names for built-in types. During type checking,
we have to make sure that two aliases of the same sort are properly treated as
equal. In other words, we cannot use the elements in the model defined by the
user directly in the type system, but we have to do a so-called normalization to
compute the actual sort represented.

In our metamodel of mCRL2, we implemented this concept by creating a
clear distinction between sorts, represented using the Sort class and its sub-
classes, and sort expressions, represented by the subclasses of SortExpr. In the
type system specification, this means that to relate SortExprs to Sorts, we need
a number of rules like those shown in Listings 5.17, 5.18 and 5.19. In the first
rule, a BoolSort element is added to a Bool sort expression. This rule is basic
in structure, because that is the only sort that this expression can represent. If
multiple sorts could be represented by this expression, we would likely need more
conditions to determine which is applicable in which situation. The next rule,
in Listing 5.18, adds a ListSort element to a List sort expression. Because list
sorts in mCRL2 are parameterized with the sort of elements they can contain,
we have to take the sort of a child sort expression and add it to the resulting
ListSort. The final rules, in Listing 5.19, address sort reference expressions. The
first rule handles references to structured sorts, and creates a direct reference
to the relevant sort. The second rule handles expression sort elements, which
are used to implement sort aliases. In that case, the intended sort is not the
expression sort itself, but the sort represented by the sort expression contained
in it. We extract that sort, and create the appropriate reference. This means all
references to a sort use the same model element to represent it, even if a number
of different identifiers are involved. As a consequence of this, if you define the
same type in multiple places, all instances will be considered equivalent, even if
the literal expressions are different.

Listing 5.17: mCRL2 Bool Sort Expression
18 from textualmcrl2::Bool
19 to mcrl2::Bool(sort = $t)
20 where $t = mcrl2::BoolSort

Listing 5.18: mCRL2 List Sort Expression
38 from textualmcrl2::List(elementSort=$es)
39 to mcrl2::List(sort = $t)
40 where $t =

mcrl2::ListSort(elementSort=$es.sort)

138



Listing 5.19: mCRL2 Sort Reference Expression
58 from textualmcrl2::SortRef(sortname=$n ,links =

$env)
59 to mcrl2::SortRef(sort=$s)
60 where $s in $env ,
61 $s = textualmcrl2::StructureSort(name =

$n)
62
63 from textualmcrl2::SortRef(sortname=$n ,links =

$env)
64 with $es
65 to mcrl2::SortRef(sort=$s)
66 where $es in $env ,
67 $es = textualmcrl2::ExpressionSort(name

= $n),
68 $s = $es.expression.sort

In type rules for other mCRL2 expressions, the normalization leads to con-
structs as shown in Listing 5.20. The listing shows the rule for NumberExpression
elements. In order to give these elements a type, we need to create both a Sort
element and a SortExpr element to hold it. For consistency reasons, we choose
to use the same element that a user would use to specify a type to represent it
here.

Listing 5.20: mCRL2 Number Expression
146 from textualmcrl2::Number
147 to mcrl2::Number(type=$t)
148 where $t = mcrl2::Nat(sort=mcrl2::NatSort)

Listing 5.21 shows an example of a rule for more complex expressions. This
particular rule defines some of the type behavior of addition, subtraction and
multiplication. Because these are binary expressions, we first have to extract
the types of the two subexpressions. To cover the case where the sort of a
subexpression is actually a sort expression, we use the computed sort reference
instead of the base type element. In this case, we do that by defining a variable
which contains the maximum of these types. As long as that maximum is smaller
than or equal to the real type, the current expression is correctly typed. In order
to store the type in the model element, however, we need a SortExpr element.
Because we do not want a separate rule for each possible type, we choose to use
a RealSort element here, even if the actual type is different. For the purpose of
the type system, this makes no difference.

Listing 5.21: mCRL2 Binary Expression Example
232 from textualmcrl2::BinaryExpression(right= $r,

left = $l , operator = $op)
233 with $t
234 to mcrl2::BinaryExpression(type = $et)
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235 where $op in set{
textualmcrl2::BinaryOps::Multiplication ,

236 textualmcrl2::BinaryOps::Addition ,
237 textualmcrl2::BinaryOps::Subtraction},
238 $t > $l.type.sort ,
239 $t > $r.type.sort ,
240 mcrl2::RealSort > $t,
241 $et = mcrl2::Real(sort=$t)

As an example of a more complex rule, we show the rule for MapAccess
expressions in Listing 5.22. An mCRL2 Map is a data structure that links keys
to values, or in other words a dictionary. From an mCRL2 perspective, they are
actually considered a limited form of function, in particular one that has only
one parameter. MapAccess expressions are used to add new key-value pairs to
a map, or to extract the key linked to a given value from a map. In the type
rule, MapAccess elements are treated similarly to function calls. In particular,
in the first line of the conditions, we extract the SortExpr that represents the
base map expression. This will be used as the type of the complete expression
if typing is successful. The next three lines extract the actual sort, which must
be a HigherOrderSort. The parameter list and the result type of the function
sort are stored in variables $parameterlist and $valuetype respectively. The
sixth line checks if the map indeed has exactly one parameter. The seventh line
extracts type of the single parameter from the list. This type is used in line 403
to check if the expression that provides the key has the correct type. The final
line, line 404, checks if that type of the value expressions is compatible with the
type of elements already in the map.

Listing 5.22: mCRL2 Map Expression

394 from textualmcrl2::MapAccess(base = $b, key =
$k , value = $v)

395 with $parameterlist , $parameter , $valuetype
396 to mcrl2::MapAccess(type=$t)
397 where $t = $b.type ,
398 $b.type.sort = mcrl2::HigherOrderSort
399 (domain =

$parameterlist ,
400 result =

$valuetype),
401 length $parameterlist = 1,
402 $parameter in $parameterlist ,
403 $k.type.sort < $parameter ,
404 $v.type.sort < $valuetype
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Evaluation

Like WebDSL, but unlike CIF, SLCO and POOSL, mCRL2 has a type checker
as part of its tool set [31]. This type checker is implemented in an imperative
language, and was constructed in an ad-hoc fashion. A formal definition [66]
for part of the type system has been created, but the relation between the
formalization and the behavior of the existing type checker is yet to be shown.
The type system given in this thesis is primarily based on the formal definition,
not on the implementation. Because mCRL2 is not an EMF-based language, it
makes little sense to compare the performance of our type checker to the hand-
crafted version. If tested, we expect the existing type checker to be significantly
faster. At the moment, our type checker takes several seconds to typecheck even
small models, but we expect that further optimization can reduce this time. In
terms of correctness, we attempted to make the types computed match the types
described in the report, but because there is no official implementation of it yet,
it is hard to verify if this is true in all cases.

In comparison with the formal definition, we observe that our specification
is about half the size than the technical report version of the official speci-
fication. In terms of completeness, our version does not include all possible
mCRL2 data expression constructs, but it does include process expressions and
other constructs which are not included in the official specification. It also must
be said that that the technical report includes an extensive explanation in nat-
ural language of the type system, the algorithm used to resolve applications of
overloaded functions, and the decisions behind it, which naturally makes the
report longer. In terms of actual rules, we observe that report uses one rule for
most constructs, for a total of 21 rules for 18 constructs. In our specification,
we require only one rule for most constructs, but implementation details can
increase that number, resulting in 58 rules for 38 constructs. In particular, we
make the rules for built-in unary and binary operators fully explicit, defining 18
rules for just those two constructs, unlike the report, which uses just one rule
to cover both.

5.5 Case Study: POOSL

As mentioned in the case study introduction in Section 5, POOSL specifications
are organized in layers. We will describe these layers by using examples taken
from the POOSL website5. The architecture layer describes the overall struc-
ture of the system in terms of three main constructs. The first construct is the
process class, which describes the basic components. The second construct is
the cluster class, which groups processes and smaller clusters together. Clusters
are used to introduce hierarchy into the system. The third and final construct
is the channel, that describes connections between processes and clusters. All
communication in POOSL is modeled as messages that pass through these chan-

5http://www.ics.ele.tue.nl/\~lvbokhov/poosl/introduction/intro.html
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nels. An example6 of an architecture layer model is shown in Listing 5.23. It
describes a system consisting of two components, a sender and a receiver, oper-
ating in parallel. The sender and receiver communicate using channel c. Using
the hiding operator “\", this channel is then hidden, to prevent outsiders from
inserting or removing messages from the channel, thus disrupting the system. As
the example shows, cluster classes can have parameters, which are commonly
used to initialize components, i.e. other clusters or processes, like is done in
Listing 5.23.

Listing 5.23: POOSL Cluster Example
1 cluster class SenderReceiverPair(n: Integer)
2 behaviour specification
3 (
4 s: Sender /* instantiate

from process class Sender */
5 ||
6 r: Receiver (3 * n - 4) /* instantiate

from process class Receiver */
7 ) \{c}

Behavior of the processes is described in the process layer, in an object-
oriented style. Each process is an instance of a process class that defines its
methods, instance variables, ports and messages. Methods and variables adhere
to common object-oriented principles, so we do not describe them here. Ports
define how channels can be connected to the process, and messages define what
the process can send and receive.

In Listing 5.24, we show the Receiver process class used in the architecture
example as an example of a process layer model. Like cluster classes, pro-
cess classes can have parameters. Unlike cluster classes, process classes can
have instance variables and instance methods, defining system behavior. In
the Receiver class, we have one instance variable and two instance methods.
The first method, setUpTheReceptionQueue, is an initialization method, that
is called every time the class is instantiated, as defined in the initial method
call part of the class. The second method, receiveItems defines the actual
behavior, where items are received using the ? operator, until the queue items
reaches a predetermined size. Note that because POOSL process methods can
have both input and output parameters, each method call has two lists of argu-
ments. In the example, these are both empty in all cases, as indicated by the
“()()" symbols, because no parameters are defined for either method.

Listing 5.24: POOSL Process Example
1 process class Receiver(itemsToReceive: Integer)
2 instance variables
3 items: Queue /* this variable

will be used to store the objects received

6http://www.ics.ele.tue.nl/\~lvbokhov/poosl/language/systemspecification.html
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*/
4 initial method call
5 setUpTheReceptionQueue ()()
6 instance methods
7 setUpTheReceptionQueue ()()
8 items := new(Queue); /* create a new

queue to store objects */
9 receiveItems ()().
10
11 receiveItems ()()
12 | anObject: Object | /* anObject is a

local variable of this method */
13 while items size < itemsToReceive do
14 c?m(anObject);
15 items add(anObject)
16 od.

The final layer is the data layer, where the data objects are described. In
contrast to processes, data objects cannot send or receive messages, but are used
to represent data in the system and computations on it. Like process classes,
data classes can have methods, but they are restricted to data expressions, so
they cannot send or receive messages, for example. An example of a data class
is shown in Listing 5.25. This data class is taken from the same source7 as
the previous examples, but has no direct relation to them. The class can be
used to store and use a simple finite state machine. The state machine is stored
as an array, TransitionTable, linking each state to a successor. Additionally,
for each state we store a binary number, as indicated by the % signs in line 9,
to be used in displaying the current state of the state machine. In the class,
the reset method resets the state machine to a default state. This is done by
setting TransitionTable and OutputTable to a predefined value, creating a
new array and using the put command to set the value of the cells one at a
time. The nextState method is used to advance the state machine to the next
state. The other two functions, output and displayOutput, can be used to
read or display the current state of the state machine.

Listing 5.25: POOSL Data Example

1 data class Simple_FSM
2 extends Object
3 instance variables
4 State: Integer , TransitionTable: Array
5 instance methods
6 reset: Simple_FSM
7 /* Initialise the transition table and

the output table */

7http://www.ics.ele.tue.nl/\~lvbokhov/poosl/language/dataclasses.html
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8 TransitionTable := new(Array) size (4)
put(0, 1) put(1, 2) put(2, 3) put(3,
0);

9 OutputTable := new(Array) size (4)
put (0 ,%0001) put(1, %0010)
put (2 ,%0100) put(3, %1000);

10 State := 0; /*
Reset the internal state to 0 */

11 return self.
12
13 nextState: Simple_FSM
14 State := TransitionTable get(State); /*

Use the transition table to compute
the next state */

15 return self.
16
17 output: Integer
18 return OutputTable get(State). /*

The output is found in the OutputTable
at index State */

19
20 displayOutput: Simple_FSM
21 primitive. /*

The actual implementation is provided
in another language;*/

POOSL type system

In contrast with mCRL2 and WebDSL, the POOSL toolset contains no type-
checker that implements the static part of the POOSL type system. This means
that we can only discover the type system by looking at the documentation and
at the other tools, like SHESim8 and Rotalumis9, which use POOSL. Addi-
tionally, the documentation gives very little information on the type system.
While this is unfortunate, based on our review in Section 2.2 we expect that
this situation is not uncommon among DSLs. In our SLR, we found that 76%
of DSLs had no description of its type system in a paper. While this does not
necessarily mean there is no type system documentation at all, we expect this
to be the case for a significant fraction of those DSLs. In fact, in these cases,
a formal specification can both clarify the type system, and help to expose in-
consistencies and gaps in manuals and implementations. In the case of POOSL,
the documentation provided online is very sparse on the matter of types. There
are a number of specific comments in the documentation on the topic, but they
deal mostly with some specific features of the language. For example, while

8http://www.ics.ele.tue.nl/\~mgeilen/shesim/index.html
9http://www.ics.ele.tue.nl/\~lvbokhov/poosl/rotalumis/index.shtml
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mathematical operations like addition apply to to integers and reals equally,
these values cannot be sensibly compared by the equality operations10. Unlike
in many other languages, such as WebDSL and MCRL2, the integers are not
part of the reals so any real is different from any integer. Thus, in the type sys-
tem, it makes sense to consider any application of the equality operator to a real
and an integer as a type error, because such an expression can never evaluate
to anything other than false. Recall that for CIF, we had a similar restriction,
but there it applied only to some, not all, expressions. In terms of our SLR, we
observe that POOSL is a strongly typed language with some statically typed
aspects, though in practice the models are not actually checked before they are
compiled. POOSL is explicitly typed, has objects, inheritance and overload-
ing. It does not feature type inference or type parameters. In Sections 5.5 and
5.5, we will discuss our implementation of the POOSL type system. The full
formalization can be found in Appendix E.

Primary Expression

While POOSL shares many concepts with WebDSL, the metamodel is organized
in a different style, and while this is not really noticeable for the user, it does
impact the type system. Consider for example function calls. In WebDSL, a
function call is a separate kind of expression, consisting of a function name,
some arguments and possibly a base expression if the function is a member of
an object. This means a function call can be combined with other expressions in
arbitrary ways. In POOSL, there is instead the concept of a primary expression.
A primary expression consists of a base expression, one or more method calls
and a possible negation operator. If there are no method calls, the type of the
primary expression is the same as the base expression. If there are method
calls, the result of the base expression serves as the base object for the first
method call. The result of that method call serves as the base object for the
second method call, and so on. All methods are members of a class, therefore
we always need a base expression to determine which instance of the class will
be used to execute the method.

In our type formalism, the semantics of primary expression elements are
implemented by a combination of rules, one for each situation, i.e.: only a
primary expression, only method calls, or a combination of both. Because the
behavior of the element is different in each case, we use a dedicated rule for each
case. We show some of those rules in Listing 5.26. To be precise, we show the
rules for the case where there is no negation operator. We use a separate set of
rules for the case where there is a minus operator, but the only difference with
the rules presented is the addition of a condition to check if the result of the
expression can have the negation operator applied to it. In the version shown in
Listing 5.26, the first rule handles the case where there are no method invoked.
In that case, the first condition tests if there is indeed no minus operator in
this element. The second and third condition check if there are no methods

10http://www.ics.ele.tue.nl/\~lvbokhov/poosl/resources/numbers.html
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present. The final condition of the first rule states that the type of the primary
expression is equal to the base expression it contains.

The next rule handles the case where the element contains method calls, but
no base expression. However, this does not actually mean that any method in
the model can be invoked, but in fact means that there is an implicit reference
to the containing class of this primary expression. Only methods contained in
the containing class can be invoked. In order to specify this, we use the in
mechanism in EMF-TL to get the reference to the containing class, and then
extract the methods from that class.

First, we get the first method that is part of this expression, and check if
it is part of the base class. If this is the case, we then create a list of method
pairs, using the pairs method, which turns a list of elements into a list of pairs
of consecutive elements, as shown in line 164. In each pair, the result of the
first method serves as the base object for the second method. Using a loop, we
check if this connection is valid for all methods in this expression. Finally, we
take the final method of the list, and extract its return type. This return type
is the final type of the expression.

The third rule deals with the case where the element contains method calls
and a base expression which indicates which object serves as the starting point.
Overall, the rule is very similar to the previous one, except that instead of
using the in construct, the type of the base object is extracted from the base
expression.

Listing 5.26: POOSL PrimaryExpression rules
148 from untypedpoosl::PrimaryExpression(primary=$p,

methodCall = $mc , minusSign = $minus)
149 with $s
150 to poosl::PrimaryExpression(type = $t)
151 where $minus = "false",
152 $s = length $mc ,
153 $s = 0,
154 $t = $p.type
155
156 from untypedpoosl::PrimaryExpression(primary =

$p , methodCall = $mc , minusSign = $minus) in
$dc : untypedpoosl::DataClass

157 with $dcmethods , $firstmethod , $lastmethod ,
$mcpairs

158 to poosl::PrimaryExpression(type = $t)
159 where $minus = "false",
160 $p = OclUndefined ,
161 $dc = untypedpoosl::DataClass(method =

$dcmethods),
162 $firstmethod = first $mc.method ,
163 $firstmethod in $dcmethods ,
164 $mcpairs = pairs $mc ,
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165 for ($mc1 ,$mc2) in $mcpairs:
166 ($mc2.method in

$mc1.method.returnType.method),
167 $lastmethod = last $mc.method ,
168 $t = $lastmethod.returnType
169
170 from untypedpoosl::PrimaryExpression(primary =

$p , methodCall = $mc , minusSign = $minus)
171 with $dcmethods , $firstmethod , $lastmethod ,

$mcpairs
172 to poosl::PrimaryExpression(type = $t)
173 where $minus = "false",
174 $p.type = untypedpoosl::DataClass(method =

$dcmethods),
175 $firstmethod = first $mc.method ,
176 $firstmethod in $dcmethods ,
177 $mcpairs = pairs $mc ,
178 for ($mc1 ,$mc2) in $mcpairs:
179 ($mc2.method in

$mc1.method.returnType.method),
180 $lastmethod = last $mc.method ,
181 $t = $lastmethod.returnType

Method Calls

In addition to the process method calls discussed in the previous section, recall
that POOSL also has data methods. Calls to these data methods are typed using
the rule shown in Listing 5.27. This rule is structurally similar to the rule used
in CIF, as shown in Listing 5.5, WebDSL, as shown in Listing 5.11, and MCRL2
for similar constructs, but is unusual in that the reference to the method and the
actual call are combined into one model element instead of two or more. Another
unusual aspect is that the metamodel as created by the language designers
supports a shorthand for parameter declaration, allowing multiple parameters
of the same type to be declared in one element. This shorthand element has to
be unfolded again to reconstruct the actual list of parameters of the function.
In this rule, the method is chosen from the environment in the first three lines
of the condition, lines 262 and 264. Once we have a method with the correct
name, we extract the types of the parameters from it in lines 265 to 271 of the
conditions, using a nested loop. We need a nested loop, because it is possible
in POOSL to define multiple parameters with the same type in one shorthand
declaration. Using the nested loop, we unfold this shorthand into a list of lists
of types, where each type corresponds to a parameter. In line 272, we use the
flatten function to convert the list of lists into just a list of types. We can then
use another loop to compare the types of the arguments to the types of the
parameters. If the types of all arguments fit with the types expected by the
corresponding parameter, we have found a correct method for this call.
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Listing 5.27: POOSL DataMethodCall rule

259 from untypedpoosl::DataMethodCall(links = $l,
methodname = $mn , arguments = $args)

260 with $params , $ptypeslist , $varlists ,
$paramtypes , $argexps , $arguments

261 to poosl::DataMethodCall(method = $method)
262 where $method in $l ,
263 $method = untypedpoosl::NamedDataMethod
264 (parameter = $params , name =

$mn),
265 for $param in $params ,
266 $ptypes in $ptypeslist ,
267 $vars: ($param =

untypedpoosl::Declaration
268 (variable = $vars),
269 for $ptype in $ptypes ,
270 $var in $vars :
271 $ptype = $param.type),
272 $paramtypes = flatten $ptypeslist ,
273 $args = untypedpoosl::ListOfExpressions
274 (expressions = $argexps),
275 for $argexp in $argexps ,
276 $argument in $arguments ,
277 $paramtype in $paramtypes :
278 ($argexp = untypedpoosl::Expressions
279 (expression = $argument),
280 $paramtype > last $argument.type)

Recall that, in addition to data classes and methods, POOSL has process
classes and methods. This means that in addition to data method calls, there
are also process method calls. Unlike data method calls, process method calls
are not part of other statements, but are directly statements in their own right.
Another difference between data methods and process methods is that data
methods always have exactly one returned value, while process methods can
return results using output variables, but do not have to. From a type system
perspective, this means that the rule for process method calls, shown in List-
ing 5.28, is fundamentally similar to the rule for data method calls, but we need
only one rule instead of several. The rule is quite large, though, because we need
to handle both input arguments and output variables, instead of only input ar-
guments. The conditions of the rule can be divided into five parts. In the first
part, consisting in the first two lines, lines 472 and 473, a method is extracted
from the links feature. The next part, consisting of lines 477 to 485, collects the
types of the parameters and is similar to the part of the rules for data method
calls. The third part, consisting of lines 486 to 494, is similar to the second
part and collects the types of the output variables. The fourth part, in lines 495
to 502, tests if the types of the arguments actually fits the types expected as
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parameters. An unusual complication is that the arguments of process method
calls are actually syntactically lists of expressions. Each expression is evaluated
in turn, but only the result of the last one is actually used for the call. This is
reflected in the rule by applying the last function to get the relevant expression
from the list. The final part, consisting of lines 503 to 511, checks if the variable
provided to accept the output values created by the method.

Listing 5.28: POOSL ProcessMethodCall rule
466 from untypedpoosl::ProcessMethodCall(links = $l,

methodname = $mn , inputArguments = $args ,
outputvarnames = $ovnames)

467 with $params , $ptypeslist , $paramtypes ,
468 $outparams , $outptypeslist , $outparamtypes ,
469 $varlists ,
470 $argexps , $arguments , $ovdecs
471 to poosl::ProcessMethodCall(method = $method ,

outputVariables = $ovs)
472 where $method in $l ,
473 $method = untypedpoosl::ProcessMethod(
474 inputParameter = $params ,
475 name = $mn ,
476 outputParameter = $outparams),
477 for $param in $params ,
478 $paramvars ,
479 $ptypes in $ptypeslist: (
480 $param = untypedpoosl::Declaration
481 (variable = $paramvars),
482 for $ptype in $ptypes ,
483 $var in $paramvars :
484 $ptype = $param.type),
485 $paramtypes = flatten $ptypeslist ,
486 for $outparam in $outparams ,
487 $outparamvars ,
488 $outptypes in $outptypeslist: (
489 $outparam =

untypedpoosl::Declaration
490 (variable = $outparamvars),
491 for $outptype in $outptypes ,
492 $var in $outparamvars :
493 $outptype = $outparam.type),
494 $outparamtypes = flatten $outptypeslist ,
495 $args = untypedpoosl::ListOfExpressions
496 (expressions = $argexps),
497 for $argexp in $argexps ,
498 $argument in $arguments ,
499 $paramtype in $paramtypes :
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500 ($argexp = untypedpoosl::Expressions
501 (expression =

$argument),
502 $paramtype > last $argument.type),
503 for $ov in $ovs ,
504 $ovdec ,
505 $ovname in $ovnames ,
506 $outparamtype in $outparamtypes :
507 ($ovdec in $l,
508 $ov in $ovdec.variable ,
509 $outparamtype = $ovdec.type ,
510 $ov = untypedpoosl::Variable
511 (name = $ovname))

To explain this complex rule in more detail, we use a small example, consist-
ing of Listings 5.29 and 5.30. In Listing 5.29, we show part of the declaration
of a process method, where the actual implementation has been elided. This
method has three input and three output parameters. Listing 5.30 shows an ex-
ample call of the method, that would be typed by the rule shown in Listing 5.27.
When we apply the rule, first the variables in the source element are set to their
values. In this case, that means the variable $mn gets the value “someMethod",
the variable $args gets as value the list of input arguments, which consists of the
expression lists [qs],[qc] and [3∗MaxQsize+5], and $ovnames gets as values the
list of output variables, which are qs, size and qc. Finally, the variable $links
gets as value a list of process methods declarations from the model, including
the declaration shown in Listing 5.29. Then, the conditions are applied to the
list elements in the order they are placed in the list.

Listing 5.29: POOSL Process Method
1 someMethod(InA , InB: Queue , InC: Integer)(OutA ,

OutB , OutC: Object)

Listing 5.30: POOSL Process Method Call
1 someMethod(qs, qc, 3 * MaxQsize + 5)(qs , size , qc)

In the first line of the conditions, an element is selected from the list con-
tained in $links variable into the $method variable. During computation, the
engine will try all elements one by one but for the purpose of this example, we
will consider only the case where the correct process method is selected here. In
the next line, we compare the element in $method with an element pattern. Us-
ing this pattern, we can check if the element is a member of the ProcessMethod
class, and extract the values of its features. In this case, the $params variable
is set to the value of the inputParameter feature, which contains a list of input
parameter declarations. In this example, there are two declarations, one for
InA and InB and another for InC. The $mn is set to the value of the name, in
this case the string “someMethod". Recall $mn was also set to that value in the
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initialization, so the two assignments do not conflict. In other words, this con-
dition can only hold if the name of the process method in $method is the same
as the name of the method name in the invocation. Finally, the $outparams
variable is set to the value of the outputParameter feature, a list consisting of
one declaration for OutA, OutB and OutC.

In the next lines, we examine the extracted input parameters, stored in
$params, in more detail. Each declaration consists of one or more names and a
type. For the purpose of method invocation, we are not interested in the names
but only in the types, so we would like to have a list that contains only the
types. Additionally, if a declaration contains multiple names, we would like to
split it up so we have one element per parameter. In order to create that list,
we define a loop over the list in $params, using the variable $param to hold
each element. For example, in one instance of the loop, $param contains the
declaration for InA and InB. For each element, we first compare it with a
Declaration pattern, and extract the list of declared names from it, in this
case, as mentioned before, InA and InB. Using a nested loop, we then create
a list containing a type element for each name, resulting in [Queue,Queue]. As
the loop is processed, the lists are then added to a new list, which is stored
in $ptypeslist. So, after the loop is completed, $ptypeslist contains a list
of lists of the types in the declarations, namely [[Queue,Queue], [Integer]]. In
line 485, we use the flatten function to combine the lists into one list of types,
which is stored in the $paramtypes variable, [Queue,Queue, Integer].

In the next four lines, we apply the same procedure again, this time to
the output parameter list. In this case, there is only one declaration, that
contains three variables, OutA, OutB and OutC. The end result is the list
[Object, Object, Object], which is stored $outparamtypes.

Lines 497-502 describe the actual tests that verify if the types of the argu-
ments match the types of the input parameters. To do this, we again use a loop,
iterating over $args and $paramtypes at the same time. In order for this to
work, those two lists must be of the same length, which they are. In the loop
body, we first extract the actual expression lists from the Expressions elements
where they are placed by the parser. We then compare a parameter type to the
type of the corresponding expression list. In POOSL, the type of an expression
list is the type of the last expression in the list. In the type rules, this is im-
plemented by applying the last function to the list. In this example, each list
has only one element, so that is trivially the last one. We then access the type
attribute of the expression to extract its computed type. We assume that, for
the purpose of this example, the variable qs has type Queue. Because the type
of the first parameter is also Queue, this means the required widening is Queue
< Queue, which automatically is true, because the < operator in EMF-TL is
reflexive.

Now that we have checked if the types of the arguments of the method call
fit the input parameters, the last thing we have to do is to check if the output
variables are compatible with the output parameters. Note that, at this point,
we have not yet actually identified which variables will be used for the output
parameters, we only have access to their names. Both the computation of the
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referenced variables and the checking of the types is implemented in one loop,
that iterates over the output variables from $ovs and the output parameter
types from $outparamtypes. For each variable reference, we extract a variable
from $links, and check if the name matches the references. Once we have found
the variable with the correct name, we extract its type from the declaration.
Similarly to the previous loop, we then compare the type of the variable to the
type of the output parameter. In the example, if we assume variables OutA,
OutB and OutC are all declared with type Object, these comparisons can all
be resolved without problems.

Once all conditions have been satisfied, the relevant result are linked to the
corresponding features of the target element, as defined in the target element
of the rule. By doing this, we allow rules being applied to other elements to
access that information. In this case, the information computed is the method
invoked and the output variables that will be used to store the result. Because
POOSL process methods do not have a single return type, we do not not actually
compute a type for this element.

Evaluation

Unlike WebDSL and mCRL2, but like CIF and SLCO, POOSL does not have
an existing type checker. In contrast to CIF, but like SLCO, the language was
also already completely designed before we made our specification. In terms of
complexity, POOSL lies between SLCO and CIF. It has more types than SLCO,
and complex object types in particular, but it does not have as many types,
and particularly compound types, as CIF. The complexity of the POOSL type
system lies mainly in the presence of complex expression elements. The elements
combine several concepts that are represented by separate constructs in other
languages into one. In EMF-TL, this results in rules larger than we see for other
languages, but because they themselves combine a number concepts that would
be split over several elements in many other languages, we feel they are still
understandable and maintainable. In terms of completeness, our specification
is based on the way types are described in the documentation, extended with
what we observe from the examples given in the documentation referred to
earlier. Because the existing POOSL tools that would normally handle typed
models, like the Rotalumis execution engine, are not actually equipped to use
this information, we were not able to test how well the types computed match
the expectations of the tools.

In terms of performance, we cannot compare our implementation to any
existing POOSL type checker, because no other exists. We can observe however,
that our generated POOSL type checker is equal in speed to other type checkers
generated based on our specifications, checking models with tens of elements in
a few seconds, which means the performance is useable for the scale of model
we tested.
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5.6 Conclusion

In this chapter we looked at four domain specific languages from the perspective
of EMF-TL. We specified the type systems of the languages either whole or
partially. Here, we will first recap the specific type system that stood out for
each language.

CIF

In the first case study, we described a type system specification of CIF in EMF-
TL, as a continuation of our case study for MSOS in Chapter 3.9. We considered
examples from all parts of an EMF-TL specification, and explain how they
were applied to CIF. In particular, we looked at the restrictions on numeric
type widening we designed in Section 3.5, and found that we did not need
the extra types introduced there to implement the same behavior. Recall that
we essentially used these types to indicate that widening was possible. The
disadvantage of this approach was that these types were considered undesirable
outside the typing phase, creating a need for additional processing to make the
model suitable for further processing. By using constraints in the definition
of the rules of numeric constants in combination with a strategy to express our
preferred type, we can create the same flexibility without introducing new types,
thus ensuring the created model is useable in further processing directly.

We have also shown how function calls can be implemented in EMF-TL in
Listing 5.5. Because function types can have arbitrary numbers of parameters,
this is a prime situation where loop constructs are very useful. We show how
the EMF-TL, we can extract the types of the parameters and the return type
of the function from any function type. We can then compare the types of the
provided arguments to the expected types, to determine if the function call is
valid. If there are multiple options, we can use the strategy functionality to
select the preferred function from the available alternatives.

WebDSL

In the WebDSL case, we specifically looked at what impact quantified references
and inheritance have on our way of handling scoping. For the first concept, quan-
tified references, we essentially choose a filtering approach. We observed that
every quantified reference can be split into two parts: an ‘outer’ reference that
defines an environment, and another, ‘inner’, part that references something in
that environment. By reusing the rules for basic references, we get an overes-
timate of the possible targets for the reference. The outer reference can then
filter out the targets that are not part of the correct environment. This results
in a very clean and simple specification, using only one rule of eight lines, that
makes full use of the strengths of the constraint solver.

For the second concept, overloading, we heavily used constraint solver con-
cepts, in particular the functionality where a set of values can be assigned to a
variable, that is refined at a later stage. The core idea of overloading is based
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on the fact that some functionality can be implemented in multiple ways, each
with their own advantages and disadvantages. By gathering all implementations
under one identifier, thus overloading it, we can shift the burden of selecting
the best implementation from the programmer to the type checker. The main
problem created this way for the type checker lies in the need to arrive at a
single solution, while keeping all options open as long as possible. By using
constraints to describe the rules of the type system, we can achieve this. The
constraint solver will keep track of all possible values for as long as they remain
valid. After all possible type rules have been applied, we arrive at a set of pos-
sible typings for the whole model. Using techniques from optimization, we then
select the best possible result from this set.

mCRL2

As we worked on the mCRL2 case study, we discovered that the most unusual
part of this type system is the sort normalization required. While other type
systems use references to types, these references are usually limited to specific
kinds of types, and each type has only one name. In mCRL2, multiple names
can be defined for any type of sort. We addressed this feature by creating a
clear separation between sort expressions and sorts. For each sort expression,
we defined type rules that describe how the underlying sort can be computed.
These computed values are then used as basis for the rest of the type system,
ensuring that all ways of referencing the same sort are indeed treated as equals.

The mCRL2 type system also features element transformations. Because in-
vocations of atomic actions and processes use the same syntax, it is not possible
for the parser to separate them into different element classes. Instead, during
typing, we discover the details of the target of the reference, and use that to
create either and action invocation or a process invocation in the result model.

POOSL

In the final case study, we looked at the type system of POOSL and how its
static part can be specified in EMF-TL. We choose POOSL as an example of an
object-oriented language that is structured differently than WebDSL, allowing
us to compare our the structure of two languages and its effect on our specifi-
cation, as is primarily done in Section 5.5. We found that the main difference
between the two languages lay in the way the way expressions were structured.
in WebDSL, all expressions are considered equal, and they can be nested in
arbitrary combinations. In POOSL, binary and unary expressions are handled
separately, and function calls can only be placed in specific places. This results
in rules that are similar in structure, but different in implementation.

Overall results

Overall, though the implementation was more complex and actually required
a change in our metamodel of mCRL2, the type system could be implemented
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without modifying or extending EMF-TL. While we focussed on a subset of
mCRL2 that could be handled by our parser, we believe the remaining part
could be implemented without any problems if desired, and if a more advanced
parser was used to implement the language syntax. This demonstrates EMF-TL
as a viable answer to RQ 3: “What is the specification formalism most suited
for describing the type systems of DSLs?".
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Chapter 6

Conclusions

6.1 Contributions
In recent years, the concept of DSLs has become more popular. DSLs are a
fundamental part of MDE, because they are used to create the models that define
systems and serve as input for model transformations. In order to construct a
DSL, we need, as for any formal language, to specify its syntax and semantics.
While much work has been done on this kind of specification, one area has
remained underdeveloped, namely specification of static semantics, in particular
type systems. The central research question of this thesis is therefore:

RQ. How can DSL type systems be specified in an understandable, formal and
evolvable way?

To answer this research question, we need to find one or more formalisms
that can be used to define type systems, and evaluate their usefulness for DSLs.
We decided we first needed to know more about DSLs and their type systems.
We conducted a SLR aimed at discovering what type system properties and
features are common among DSLs. We found that a significant number of DSLs
were typed, and most DSL type systems were static and strong. Based on these
findings, we selected MSOS as our first semantics formalism. MSOS is based on
the well-known SOS formalism, a rule-based operational semantics formalism,
which has been used for the static semantics of GPLs. We choose a rule-based
formalism because it naturally supports the judgments needed for strong type
systems, and an operational formalism because it supports type checking as a
static phase separately from dynamic semantics. MSOS differs from SOS in
the presence of modularity features, which makes specifications more reuseable
and evolvable. Because DSLs are limited by nature, we consider the ability
to easily construct new DSLs or adapt existing DSLs to new circumstances an
important use case of a type system specification. We defined the type sys-
tem of the DSL Chi in MSOS, and created a PyKE-based implementation by
using a type checker generator. While we achieved some initial success with
this approach, we eventually decided MSOS was not as suitable for type system
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specification as we initially hoped. In particular, we found specifications were
closely tied with specific input and output formats, limiting interoperability
with other components in DSL toolsets. We also found type system constructs
creating or dealing with ambiguity were hard to express in an understandable
way. Thus, we decided to create a new formalism ourselves, called EMF-TL.
In contrast with MSOS, EMF-TL makes use of the Ecore format provided by
the EMF framework as a generic way to interact with other tools, and provides
more flexible constructs that make type system specification easier, clearer and
more convenient, as shownin Section 4.3. We formally defined the semantics of
EMF-TL, and created a generator that creates type checkers based on specifi-
cations. We then conducted a number of case studies where we defined (part
of) the type systems of several languages, namely CIF, WebDSL, mCRL2 and
POOSL, in EMF-TL. We choose these languages as example DSLs to cover the
most common and important DSL type system properties we discovered in our
SLR 2.2. For each language, we discussed several type system features of that
language and how they were implemented in EMF-TL. With these case stud-
ies, we demonstrated that EMF-TL provides an understandable, formal and
evolveable method for defining type systems, thus providing an answer for our
research question. In the remainder of this section, we will discuss our more
detailed research subquestions, and how we addressed them.

DSL type system features
While DSLs have increased in popularity recently, the concept has been around
for some time and a significant number of DSLs have already been developed
over the years. Each one of those DSLs has static semantics to some extent,
whether formally defined or not. When we want to consider the suitability of
a given formalism for DSL type system specification, these DSLs can provide
valuable data on what kind of properties we should look at. This led to the
following research question:

RQ 1. What are common features of DSL type systems?

To answer this question, we first had to collect data on DSLs and their
properties. Because many DSLs are designed and used by specific companies,
groups or even individuals and not intended for public use, we cannot expect
to get a complete picture of all existing DSLs. Instead, we choose to do a SLR
to collect a representative sample. For this review, we looked at information
on DSLs published in scientific papers. We found a total of 497 DSLs in our
initial search. We looked at a number of properties, and described our findings
in Section 2.2. Our conclusions were that a significant number, 279 of the 497,
of the DSLs are typed. Based on the information available, we then selected 173
of the 279 typed DSLS as subjects of a more detailed analysis, based a number
of properties we expected DSL type systems to have. We found that a number
of basic properties are indeed shared by most DSLs. For example, many DSLs,
139 of 173 considered, are statically and strongly typed. More advanced features
like object-orientation and type inference were present, but were rarer. Based
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on this, we concluded that our type system specification formalism should focus
on statically, strongly typed languages. If possible, it should support features
like overloading and type inference as well, but those features are less common,
and hence, less important.

Another factor in the suitability of type system specification formalisms lies
in the people who interact with it. For GPLs, the vast majority of people
who interact with the type system will be users of the language. For DSLs,
the number of users is typically much lower, making the other stakeholders
relatively more important. Overall, these considerations led to the following
research question:

RQ 2. How can DSL type systems specification help stakeholders reach their
goals?

We discussed our vision of the priorities of the different stakeholders in Sec-
tion 2.3. The stakeholders are first and foremost the users of the language, but
also the language designers and the language implementers. Based on our dis-
cussions of the relation of the stakeholders with type system specifications, we
formulated several requirements that the specification formalism should meet.

Based on the requirements, we have to select one or more suitable formalisms
to investigate further. There are a number of choices to make, because our
requirements do not specify if the language should use primarily textual or
graphical syntax. This led to the following, basic, formalization of our next
research question:

RQ 3. What is the specification formalism most suited for DSL type systems?

The first formalism we selected was MSOS. MSOS is an operational se-
mantics formalism based on the well-known SOS language. We explored the
possibilities of applying MSOS to the type system of the CIF language in Chap-
ter 3. While we initially found MSOS flexible and intuitive, later on we found
these features were lost as we tried to incorporate more complex type system
concepts. Based on those experiences, we decided to develop a new specification
formalism, EMF-TL. EMF-TL is introduced in Chapter 4, and further described
in several case studies, described in Chapter 5. Using these studies, we tried to
demonstrate that EMF-TL is a valid answer to this research question.

When we were working with MSOS, we decided to focus on one particular
requirement where we expect a declarative formalism like MSOS to have an
advantage: evolvability. We consider DSLs to be more likely to evolve than
GPLs, both because DSLs are limited in their expressiveness, increasing the
chance a new requirement can only be implemented by extending the language,
and because the number of users is lower, decreasing the cost of changing the
language. By using a more abstract, declarative specification over a more direct
implementation, we expect we can both evolve the type system and adapt to
evolution of other components more easily. Overall, this leads to the following
research question:

RQ 4. How can DSL type systems specification assist the process of language
evolution?
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In order to answer this question, we observe that language evolution can
take many forms and take take place in all components of a language. Because
the type checker essentially serves as a bridge between other components, there
are more opportunities for it to be affected by evolution. For example, if a
new shorthand notation is introduced in the parser for some elements, the type
checker has to be updated to handle these new cases. A particular issue here
is that if the implementation of the type checker is updated separate from the
specification, there is a significant risk the implemented semantics will deviate
from the specified semantics.

To prevent this from occurring, we decided to study the concept of type
checker generation, to minimize this risk. We first applied this concept to MSOS,
as described in Chapter 3.9. We found the type checker generator made exper-
imentation much easier, but the resulting specification was significantly influ-
enced by the details of the in- and output interfaces with parsers and execution
environment respectively. Combined with complicated MSOS rules required to
implement the desired features, we found the benefits from generation less than
they could be, because specifications could not be easily reused for different con-
figurations. Based on these experiences, we decided to develop a new generator
for our new formalism, EMF-TL. The details of this generator are described
in Chapter 4. By constructing our formalism around the EMF framework, we
reduced the dependency on specific parsers and other components, and by incor-
porating a constraint solver component in the generated type checker, we made
it possible to reduce the complexity of the specifications. Overall, we conclude
that generation significantly reduces the effort to keep a type checker consistent
with its specification. Any evolution in the specification will be reflected in the
generated type checker directly and consistently.

In addition to implementation aspects of type system specification, they can
also be used as documentation of type systems. However, a specification is only
useful in this regard if it is clear and understandable. This means our formalism
needs the right constructs to allow DSL type system concepts to be expressed
effectively and concisely. This leads to our last research question:

RQ 5. How can DSL type system features best be expressed in our chosen for-
malism?

Fundamentally, this relates closely to our survey of DSL type systems from
Section 2.2, as we cannot expect a formalism to express all imaginable semantics
with equal proficiency, nor can we cover them all in this thesis. Thus, we decided
to look at some of the most popular type system features, as discovered in
our SLR. For each of these features, we looked for a case study that contains
that feature and focussed on it during our type system discussion of that case.
For example, we choose WebDSL as an example object-oriented language, and
discussed how we implemented this in our type system formalism in Section 5.3.
Overall, we found type rules most effective when focussed on conditions applying
to one element at a time. By combining several of these rules, we can create
flexible type systems that work intuitively. If we need to refer to multiple
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elements in one rule, the rules tends to become much more complex, and more
rules are often needed to cover all possible cases.

6.2 Directions for future research

In this thesis, we present research into, and a formalism for, type systems for
DSLs. This section addresses possible directions for future research in this area.

The survey we did on domain specific languages and their type systems is
extensive, but questions remain on how representative our DSLs are compared
to the complete population of existing DSLs. Due to limitations in the time and
resources available, we had to restrict our survey to information on DSLs that
can be found in peer-reviewed papers. While we can expect DSLs created in
academic context to be published in this way, this is definitely not the case for
industrial DSLs. This means that if there is a difference between academic and
industrial DSLs, it will not show up in our survey. Further surveys that collect
material from other sources would be very beneficial both as a basis of compar-
ison, in addition to increasing the number of covered DSLs. Additionally, our
survey focussed on the theoretical aspects of DSL type systems. In particular,
we did not consider the implementations of the DSL type systems we found,
looking only at the information given in papers, because the sheer number of
DSLs involved made doing more in-depth investigations impractical. A more
focused study could look at actual implementations of a more limited set of
DSLs and compare them to their descriptions, to discover how well descriptions
match implementations.

In Chapters 3 and 3.9, we considered MSOS as a type system specification
language. While we eventually concluded MSOS was not as suitable as a type
system specification formalism as we hoped, it is still possible to use MSOS
as such. To recap, one issue we had with MSOS is that it was unclear how
to effectively establish a connection between the type system specification and
the structure of its input and output. This makes it much harder to check the
specification for inconsistencies, because we do not know what the type checker
can expect as input or what constitutes a valid output. Another issue we had
with MSOS lay in the lack of the ability to disambiguate cases where there were
multiple valid solutions. In EMF-TL, we solved this through the introduction
of special widening and strategy operators, allowing designers to both specify
possible choices and to select one choice to be the final answer.

In response to our experience with MSOS, in Chapter 4 we introduced a
new formalism, EMF-TL, as an alternative that does not suffer from the same
drawbacks as MSOS. We defined formal semantics for EMF-TL, and created
a prototype generator that creates type checkers. While the generated type
checkers are useable, performance was not a major consideration in the im-
plementation of the prototype generator and further optimization should be
certainly possible. Another direction for future work in type checker generation
could lie in the connection of EMF-TL with the EMF framework. While this
connection offers considerable benefits in allowing the generated type checkers
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to interface with a variety of tools, not every tool works with EMF, so it might
be worth considering extending the language and/or the generator to deal with
other modeling frameworks.

In addition to improving the generator, the language itself can be improved
further. We did case studies to test and demonstrate the effectiveness of the
language in dealing with common type system features, but further case studies
might well show that the language is lacking some constructs required to fully
specify the desired type system. For example, EMF-TL is not intended to be
Turing-complete, so any language for which the type system is Turing-complete,
can probably not be expressed fully in EMF-TL. At this point, we do not con-
sider that a major flaw in the language, because DSLs with Turing-complete
type systems are very rare, but other limitations might be evaluated differently.
In a different direction, one case study that would be interesting is to describe
the type system of EMF-TL itself. We anticipate no particular difficulties in
this, because the EMF-TL type system is quite basic, but it would be valuable
to define this part of the language more formally, and allow us to simplify the
language by removing some disambiguation constructs.

Furthermore, another direction we could consider other forms of static anal-
ysis that EMF-TL is suitable for. While primarily designed with the idea of
computing types, EMF-TL can in theory compute all kinds of values. As long
as an analysis can be defined using a structure similar to a type system, it can
be defined in EMF-TL. In particular, we could consider data and control flow.
For example, data flow analysis could be used to discover if some computed
values are never actually used, which strongly suggests computing them can be
avoided, thus increasing performance. The results of these are primarily used
for optimization and code generation rather than error detection, but those are
relevant concerns even for DSLs.

We have to be careful, however, not to overextend the language. Our lan-
guage focusses on computing local properties, based on information contained
in each model element itself or in elements directly related to it. In contrast,
some kinds of analysis, like name binding, strongly relate to the global structure
of the models involved. As discussed in Section 4.3, we currently use a hand-
crafted model transformation to link references to potential targets, converting
a global problem to a more local one. While suitable for the scope of this thesis,
this is not the most user-friendly and maintainable solution. It might be better
to use a DSL, like for example NBL [70], that covers this area instead.

This leads to a more general point. While EMF-TL is designed to be a DSL
for type systems, that does not mean it can cover all type systems imaginable.
There might be some type systems that are better served by designing a com-
pletely new language, to deal with their particular structure. A prime example
are DSLs with dynamic type systems: EMF-TL does not have the constructs
to describe the interaction with the dynamic semantics that would be required.
Adding the needed constructs would require major changes to not just the lan-
guage, but also its implementation. This suggest that extending EMF-TL as
opposed to developing a separate type system language would not offer many
advantages, while likely reducing EMF-TL’s ease of use for static type systems.
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Overall, we expect a number of languages and tools will be needed to cover
all use cases. We can draw experience on this from some other components
of DSL tool sets, like those for model creation and editing tools. For textual
languages, a large number of parser generators have been created over the years,
and similarly a number of tools have been developed for graphical DSLs. Until
now, we have not seen many similar tools for further processing of models, like
type checking and other forms of analysis.
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Appendix A

Type system for SLCO

Listing A.1: SLCO EMF-TL Rules
1 imports
2 http://www.emftext.org/language/textualSLCO;
3 http://mdse.tue.nl/slco;
4 start textualSLCO::Model
5
6 typesystem
7 slcotype(type) =

slco::PrimitiveType(primitiveTypeEnum);
8 widening
9
10 rules
11
12 from textualSLCO::StringConstantExpression
13 to slco::StringConstantExpression(type = $t)
14 where $t = slcotype {{type =

slco::PrimitiveTypeEnum::String }}
15
16 from textualSLCO::BooleanConstantExpression
17 to slco::BooleanConstantExpression(type = $t)
18 where $t = slcotype {{type =

slco::PrimitiveTypeEnum::Boolean }}
19
20 from textualSLCO::IntegerConstantExpression
21 to slco::IntegerConstantExpression(type = $t)
22 where $t = slcotype {{type =

slco::PrimitiveTypeEnum::Integer }}
23
24 from

textualSLCO::BinaryOperatorExpression(operator
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= $o , operand1 = $l , operand2 = $r)
25 to slco::BinaryOperatorExpression(type = $t)
26 where $o in set{textualSLCO::Operator::differs ,

textualSLCO::Operator::equals},
27 $r.type = $l.type ,
28 $t = slcotype {{type =

slco::PrimitiveTypeEnum::Boolean }}
29
30 from

textualSLCO::BinaryOperatorExpression(operator
= $o , operand1 = $l , operand2 = $r)

31 to slco::BinaryOperatorExpression(type = $t)
32 where $o in set{textualSLCO::Operator::add ,
33 textualSLCO::Operator::subtract},
34 $l.type = $t ,
35 $r.type = $t ,
36 $t = slcotype {{type =

slco::PrimitiveTypeEnum::Integer }}
37
38 from

textualSLCO::BinaryOperatorExpression(operator
= $o , operand1 = $l , operand2 = $r)

39 to slco::BinaryOperatorExpression(type = $t)
40 where $o = textualSLCO::Operator::and ,
41 $l.type = $t ,
42 $r.type = $t ,
43 $t = slcotype {{type =

slco::PrimitiveTypeEnum::Boolean }}
44
45 from

textualSLCO::BinaryOperatorExpression(operator
= $o , operand1 = $l , operand2 = $r)

46 to slco::BinaryOperatorExpression(type = $t)
47 where $o = textualSLCO::Operator::atLeast ,
48 $l.type = slcotype {{type =

slco::PrimitiveTypeEnum::Integer }},
49 $r.type = slcotype {{type =

slco::PrimitiveTypeEnum::Integer }},
50 $t = slcotype {{type =

slco::PrimitiveTypeEnum::Boolean }}
51
52 from textualSLCO::VariableExpression(links =

$scope , name = $varname)
53 to slco::VariableExpression(type = $t , variable =

$v)
54 where $v in $scope ,

176



55 $v = textualSLCO::Variable(name = $varname ,
type = $t)

56
57 from textualSLCO::Transition(sourcename =

$source , targetname = $target , guard = $g,
links = $links)

58 to slco::Transition(source = $sourcevertex ,
target = $targetvertex)

59 where $sourcevertex in $links ,
60 $sourcevertex = textualSLCO::Initial(name =

$source),
61 $targetvertex in $links ,
62 $targetvertex = textualSLCO::Initial(name =

$target),
63 $g.type = slcotype {{type =

slco::PrimitiveTypeEnum::Boolean }}
64
65 from textualSLCO::AssignmentStatement(expression

= $e ,links = $links)
66 with $t
67 to slco::AssignmentStatement(variable = $variable)
68 where $variable in $links ,
69 $variable = textualSLCO::Variable(type =

$t),
70 $e.type = $t
71
72 from textualSLCO::Object(links = $links)
73 to slco::Object(class = $class)
74 where $class in $links ,
75 $class = textualSLCO::Class
76
77 from textualSLCO::SignalReception(links = $links)
78 to slco::SignalReception(port = $port)
79 where $port in $links ,
80 $port = textualSLCO::Port
81
82
83 from textualSLCO::SignalArgumentVariable(links =

$scope)
84 to slco::SignalArgumentVariable(variable = $v)
85 where $v in $scope ,
86 $v = textualSLCO::Variable
87
88
89 from textualSLCO::SendSignalStatement(links =

$links)
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90 to slco::SendSignalStatement(port = $port)
91 where $port in $links ,
92 $port = textualSLCO::Port
93
94 from textualSLCO::Channel(links = $links ,

object1name = $object1name , object2name =
$object2name , port1name = $port1name , port2name
= $port2name)

95 to slco::Channel(object1 = $object1 , object2 =
$object2 , port1 = $port1 , port2 = $port2)

96 where $object1 in $links ,
97 $object1 = textualSLCO::Object(name =

$object1name),
98 $object2 in $links ,
99 $object2 = textualSLCO::Object(name =

$object2name),
100 $port1 in $links ,
101 $port1 = textualSLCO::Port(name =

$port1name),
102 $port2 in $links ,
103 $port2 = textualSLCO::Port(name =

$port2name)
104 strategy
105
106 strategytarget
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Appendix B

Type system for CIF

Listing B.1: CIF EMF-TL Rules rule
1 imports
2
3 http://ucif.tue.nl/ucif -1.0.0;
4 http://cif.tue.nl/cif -2.1.1;
5
6 start
7
8 ucif::Specification
9
10 typesystem
11
12 bool = cif::types::BoolType;
13 real =cif::types::RealType;
14 int = cif::types::IntType;
15 nat = cif::types::NatType;
16 string = cif::types::StringType;
17
18 matrix(x, y, e) = cif::types::MatrixType

(rowDimension ,columnDimension ,elementType);
19 array(d, e) =

cif::types::ArrayType(dimension ,elementType);
20 vector(d, e) =

cif::types::VectorType(dimension ,elementType);
21 list(e) = cif::types::ListType(elementType);
22 cifset(e) = cif::types::SetType(elementType);
23 function(p,r) =

cif::types::FunctionType(parameterTypes ,
returnType);

24 distributiontype(r) =
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cif::types::DistributionType(resultType);
25 dictionary(k,v) =

cif::types::DictionaryType(keyType ,valueType);
26 tuple(f) = cif::types::TupleType(fields);
27
28 widening
29
30 nat < int
31 int < real
32
33 list(e=$e1) < list(e=$e2) if $e1 < $e2
34 array(d=$d1 ,e=$e1) < array(d=$d2 , e=$e2) if $d1 =

$d2 , $e1 < $e2
35
36
37 rules
38
39 from

ucif::expressions::ArrayExpression(elements=$e)
40 with $te
41 to cif::expressions::ArrayExpression(type=$t)
42 where for $es in $e : $te = $es.type ,
43 $t = array{{d =

cif::expressions::Number(value = length
$e , type = nat {{}}), e = $te}}

44
45 from

ucif::expressions::BinaryExpression(operator=$o,
leftChild=$l, rightChild=$r)

46 with $tl ,$tr
47 to cif::expressions::BinaryExpression(type=$t)
48 where $o in

set{ucif::expressions::BinaryOperators::Addition ,
ucif::expressions::BinaryOperators::Multiplication ,
ucif::expressions::BinaryOperators::Subtraction ,
ucif::expressions::BinaryOperators::Minimum},

49 $t < real {{}},
50 $tl = $l.type ,
51 $tl < real {{}},
52 $tl < $t,
53 $tr = $r.type ,
54 $tr < real {{}},
55 $tr < $t
56
57 from ucif::expressions::BinaryExpression(operator

= $o , leftChild=$l, rightChild=$r)
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58 to cif::expressions::BinaryExpression(type=$t)
59 where $o =

ucif::expressions::BinaryOperators::Concatenation ,
60 $t = $l.type ,
61 $t = $r.type ,
62 $t < string {{}}
63
64 from ucif::expressions::BinaryExpression(operator

= $o , leftChild=$l, rightChild=$r)
65 with $te
66 to cif::expressions::BinaryExpression(type=$t)
67 where $o in

set{ucif::expressions::BinaryOperators::Concatenation ,
ucif::expressions::BinaryOperators::ListSubtraction},

68 $t = $l.type ,
69 $t = $r.type ,
70 $t = list{{e = $te}}
71
72 from ucif::expressions::BinaryExpression(operator

= $o , leftChild=$l, rightChild=$r)
73 with $tr ,$tl ,$dl ,$dr ,$te ,$dres
74 to cif::expressions::BinaryExpression(type=$t)
75 where $o =

ucif::expressions::BinaryOperators::Concatenation ,
76 $tl = $l.type ,
77 $tr = $r.type ,
78 $tl = array {{d =

cif::expressions::Number(value = $dl), e =
$te}},

79 $tr = array {{d =
cif::expressions::Number(value = $dr), e =
$te}},

80 $dres = cif::expressions::Number(value = $dl
+ $dr ,type = nat {{}}),

81 $t = array{{d = $dres , e = $te}}
82
83 from ucif::expressions::BinaryExpression(operator

= $o , leftChild=$l, rightChild=$r)
84 with $tr ,$tl ,$dl ,$dr ,$te , $dres
85 to cif::expressions::BinaryExpression(type=$t)
86 where $o =

ucif::expressions::BinaryOperators::Concatenation ,
87 $tl = $l.type ,
88 $tr = $r.type ,
89 $tl = vector {{d =

cif::expressions::Number(value = $dl), e =
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$te}},
90 $tr = vector {{d =

cif::expressions::Number(value = $dr), e =
$te}},

91 $dres = cif::expressions::Number(value = $dl
+ $dr ,type = nat {{}}),

92 $t = vector {{d = $dres , e = $te}}
93
94 from ucif::expressions::BinaryExpression(operator

= $o , leftChild=$l, rightChild=$r)
95 to cif::expressions::BinaryExpression(type=$t)
96 where $o in set{

ucif::expressions::BinaryOperators::ConditionalConjunction ,
ucif::expressions::BinaryOperators::ConditionalDisjunction ,
ucif::expressions::BinaryOperators::Conjunction ,
ucif::expressions::BinaryOperators::Disjunction ,
ucif::expressions::BinaryOperators::Implication},

97 $t = $l.type ,
98 $t = $r.type ,
99 $t = bool {{}}
100
101 from

ucif::expressions::BinaryExpression(operator=$o,
leftChild=$l, rightChild=$r)

102 with $tl ,$tr
103 to cif::expressions::BinaryExpression(type=$t)
104 where $o =

ucif::expressions::BinaryOperators::Division ,
105 $t = real {{}},
106 $tl = $l.type ,
107 $tl < real {{}},
108 $tr = $r.type ,
109 $tr < real {{}}
110
111 from ucif::expressions::BinaryExpression(operator

= $o , leftChild=$l, rightChild=$r)
112 with $tl , $tr
113 to cif::expressions::BinaryExpression(type=$t)
114 where $o =

ucif::expressions::BinaryOperators::ElementTest ,
115 $tl = $l.type ,
116 $tr = $r.type ,
117 $tr = list{{e = $tl}},
118 $t = bool {{}}
119
120 from ucif::expressions::BinaryExpression(operator
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= $o , leftChild=$l, rightChild=$r)
121 with $tl , $tr
122 to cif::expressions::BinaryExpression(type=$t)
123 where $o =

ucif::expressions::BinaryOperators::ElementTest ,
124 $tl = $l.type ,
125 $tr = $r.type ,
126 $tr = cifset {{e = $tl}},
127 $t = bool {{}}
128
129 from ucif::expressions::BinaryExpression(operator

= $o , leftChild=$l, rightChild=$r)
130 with $u
131 to cif::expressions::BinaryExpression(type=$t)
132 where $o in

set{ucif::expressions::BinaryOperators::Equal ,
ucif::expressions::BinaryOperators::NotEqual},

133 $u = $l.type ,
134 $u = $r.type ,
135 $t = bool {{}}
136
137 from

ucif::expressions::BinaryExpression(operator=$o,
leftChild=$l, rightChild=$r)

138 with $tl ,$tr
139 to cif::expressions::BinaryExpression(type=$t)
140 where $o =

ucif::expressions::BinaryOperators::FloorDivision ,
141 $t = nat{{}},
142 $tl = $l.type ,
143 $tl =nat{{}},
144 $tr = $r.type ,
145 $tr = nat {{}}
146
147 from

ucif::expressions::BinaryExpression(operator=$o,
leftChild=$l, rightChild=$r)

148 with $tl ,$tr
149 to cif::expressions::BinaryExpression(type=$t)
150 where $o =

ucif::expressions::BinaryOperators::FloorDivision ,
151 $t = int{{}},
152 $tl = $l.type ,
153 $tl < real {{}},
154 $tr = $r.type ,
155 $tr < real {{}}
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156
157 from ucif::expressions::BinaryExpression(operator

= $o , leftChild=$l, rightChild=$r)
158 with $u
159 to cif::expressions::BinaryExpression(type=$t)
160 where $o in set{

ucif::expressions::BinaryOperators::GreaterEqual ,
ucif::expressions::BinaryOperators::GreaterThan ,
ucif::expressions::BinaryOperators::LessEqual ,
ucif::expressions::BinaryOperators::LessThan},

161 $u = $l.type ,
162 $u = $r.type ,
163 $u < real {{}},
164 $t = bool {{}}
165
166 from ucif::expressions::BinaryExpression(operator

= $o , leftChild=$l, rightChild=$r)
167 with $u
168 to cif::expressions::BinaryExpression(type=$t)
169 where $o in

set{ucif::expressions::BinaryOperators::GreaterEqual ,
ucif::expressions::BinaryOperators::GreaterThan ,
ucif::expressions::BinaryOperators::LessEqual ,
ucif::expressions::BinaryOperators::LessThan},

170 $u = $l.type ,
171 $u = $r.type ,
172 $u = string {{}},
173 $t = bool {{}}
174
175 from ucif::expressions::BinaryExpression(operator

= $o , leftChild=$l, rightChild=$r)
176 with $te
177 to cif::expressions::BinaryExpression(type=$t)
178 where $o in

set{ucif::expressions::BinaryOperators::Intersection ,
ucif::expressions::BinaryOperators::SetSubtraction ,
ucif::expressions::BinaryOperators::Union},

179 $t = $l.type ,
180 $t = $r.type ,
181 $t = cifset {{e = $te}}
182
183 from ucif::expressions::BinaryExpression(operator

= $o , leftChild=$l, rightChild=$r)
184 to cif::expressions::BinaryExpression(type=$t)
185 where $o =

ucif::expressions::BinaryOperators::Maximum ,
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186 $t = $l.type ,
187 $t = nat{{}},
188 $t = $r.type
189
190 from ucif::expressions::BinaryExpression(operator

= $o , leftChild=$l, rightChild=$r)
191 with $tr
192 to cif::expressions::BinaryExpression(type=$t)
193 where $o =

ucif::expressions::BinaryOperators::Maximum ,
194 $t = $l.type ,
195 $t = nat{{}},
196 $tr = $r.type ,
197 $tr = int {{}}
198
199 from ucif::expressions::BinaryExpression(operator

= $o , leftChild=$l, rightChild=$r)
200 with $tl
201 to cif::expressions::BinaryExpression(type=$t)
202 where $o =

ucif::expressions::BinaryOperators::Maximum ,
203 $tl = $l.type ,
204 $tl = int{{}},
205 $t = $r.type ,
206 $t = nat {{}}
207
208 from ucif::expressions::BinaryExpression(operator

= $o , leftChild=$l, rightChild=$r)
209 to cif::expressions::BinaryExpression(type=$t)
210 where $o =

ucif::expressions::BinaryOperators::Maximum ,
211 $t = $l.type ,
212 $t = int{{}},
213 $t = $r.type
214
215 from ucif::expressions::BinaryExpression(operator

= $o , leftChild=$l, rightChild=$r)
216 to cif::expressions::BinaryExpression(type=$t)
217 where $o =

ucif::expressions::BinaryOperators::Maximum ,
218 $t = $l.type ,
219 $t = real {{}},
220 $t = $r.type
221
222 from ucif::expressions::BinaryExpression(operator

= $o , leftChild=$l , rightChild=$r)
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223 to cif::expressions::BinaryExpression(type=$t)
224 where $o =

ucif::expressions::BinaryOperators::Maximum ,
225 $t = $l.type ,
226 $t = string {{}},
227 $t = $r.type
228
229 from ucif::expressions::BinaryExpression(operator

= $o , leftChild=$l, rightChild=$r)
230 to cif::expressions::BinaryExpression(type=$t)
231 where $o =

ucif::expressions::BinaryOperators::Modulus ,
232 $t = $l.type ,
233 $t < int{{}},
234 $t = $r.type
235
236 from

ucif::expressions::BinaryExpression(operator=$o,
leftChild=$l, rightChild=$r)

237 with $tl ,$tr
238 to cif::expressions::BinaryExpression(type=$t)
239 where $o =

ucif::expressions::BinaryOperators::Power ,
240 $t = nat{{}},
241 $tl = $l.type ,
242 $tl = nat{{}},
243 $tr = $r.type ,
244 $tr = nat {{}}
245
246 from

ucif::expressions::BinaryExpression(operator=$o,
leftChild=$l, rightChild=$r)

247 with $tl ,$tr
248 to cif::expressions::BinaryExpression(type=$t)
249 where $o =

ucif::expressions::BinaryOperators::Power ,
250 $t = int{{}},
251 $tl = $l.type ,
252 $tl = int{{}},
253 $tr = $r.type ,
254 $tr = nat {{}}
255
256 from

ucif::expressions::BinaryExpression(operator=$o,
leftChild=$l, rightChild=$r)

257 with $tl ,$tr
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258 to cif::expressions::BinaryExpression(type=$t)
259 where $o =

ucif::expressions::BinaryOperators::Power ,
260 $t = real {{}},
261 $tl = $l.type ,
262 $tl = int{{}},
263 $tr = $r.type ,
264 $tr = real {{}}
265
266 from

ucif::expressions::BinaryExpression(operator=$o,
leftChild=$l, rightChild=$r)

267 with $tl ,$tr
268 to cif::expressions::BinaryExpression(type=$t)
269 where $o =

ucif::expressions::BinaryOperators::Power ,
270 $t = real {{}},
271 $tl = $l.type ,
272 $tl = int{{}},
273 $tr = $r.type ,
274 $tr > int{{}},
275 $tr < real {{}}
276
277 from ucif::expressions::BinaryExpression(operator

= $o , leftChild=$l, rightChild=$r)
278 with $ts ,$te
279 to cif::expressions::BinaryExpression(type=$t)
280 where $o in

set{ucif::expressions::BinaryOperators::Subset},
281 $ts = $l.type ,
282 $ts = $r.type ,
283 $ts = cifset {{e = $te}},
284 $t = bool {{}}
285
286 from ucif::expressions::BoolLiteral
287 to cif::expressions::BoolLiteral(type=$t)
288 where $t= bool {{}}
289
290 from

ucif::expressions::ReferenceExpression(links=$scope ,
text = $name)

291 to cif::expressions::ClockReference(type=$t,
clock=$o)

292 where $o in $scope ,
293 $o = cif::Clock(staticType=$t, name = $name)
294
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295 from
ucif::expressions::ConditionalExpression(alternatives=$a)

296 with $guards ,$values , $tg
297 to

cif::expressions::ConditionalExpression(type=$t)
298 where for $alt in $a , $guard in $guards , $exp in

$values : $alt =
ucif::expressions::ConditionalAlternative(guard
= $guard , value = $exp),

299 for $guard in $guards : $tg = $guard.type ,
300 $tg = bool {{}},
301 for $exp in $values : $t = $exp.type
302
303 from

ucif::expressions::DictionaryExpression(pairs=
$p)

304 with $tkey , $keys , $tvalue , $values
305 to cif::expressions::DictionaryExpression(type =

$t)
306 where for $pair in $p , $key in $keys , $value in

$values: $pair =
ucif::expressions::DictionaryPair(key=$key ,value=$value),

307 for $key in $keys : $tkey = $key.type ,
308 for $value in $values : $tvalue =

$value.type ,
309 $t = dictionary {{k=$tkey ,v=$tvalue }}
310
311 from ucif::expressions::Distribution(name = $n,

parameters = $ps , seed = $s)
312 with $ptypes , $te
313 to cif::expressions::Distribution(type=$t)
314 where $n = "Constant",
315 for $ptype in $ptypes , $p in $ps : $ptype

=$p.type ,
316 $ptypes = set{bool {{}}},
317 $te = $s.type ,
318 $te = nat{{}},
319 $t = bool {{}}
320
321 from ucif::expressions::Distribution(name = $n,

parameters = $ps , seed = $s)
322 with $ptypes
323 to cif::expressions::Distribution(type=$t)
324 where $n = "Constant",
325 for $ptype in $ptypes , $p in $ps : $ptype

=$p.type ,
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326 $ptypes = set{bool {{}}},
327 $s = OclUndefined ,
328 $t = bool {{}}
329
330 from ucif::expressions::Distribution(name = $n,

parameters = $ps , seed = $s)
331 with $ptypes , $te
332 to cif::expressions::Distribution(type=$t)
333 where $n = "Constant",
334 for $ptype in $ptypes , $p in $ps : $ptype

=$p.type ,
335 $ptypes = set{nat {{}}},
336 $te = $s.type ,
337 $te = nat{{}},
338 $t = nat {{}}
339
340 from ucif::expressions::Distribution(name = $n,

parameters = $ps , seed = $s)
341 with $ptypes
342 to cif::expressions::Distribution(type=$t)
343 where $n = "Constant",
344 for $ptype in $ptypes , $p in $ps : $ptype

=$p.type ,
345 $ptypes = set{nat {{}}},
346 $s = OclUndefined ,
347 $t = nat {{}}
348
349 from ucif::expressions::Distribution(name = $n,

parameters = $ps , seed = $s)
350 with $ptypes , $argtypes , $te
351 to cif::expressions::Distribution(type=$t)
352 where $n = "Constant",
353 for $ptype in $ptypes , $p in $ps : $ptype

=$p.type ,
354 $argtypes = set{int{{}}},
355 for $ptype in $ptypes , $argtype in

$argtypes : $ptype < $argtype ,
356 $te = $s.type ,
357 $te = nat{{}},
358 $t = int {{}}
359
360 from ucif::expressions::Distribution(name = $n,

parameters = $ps , seed = $s)
361 with $ptypes , $argtypes , $te
362 to cif::expressions::Distribution(type=$t)
363 where $n = "Constant",
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364 for $ptype in $ptypes , $p in $ps : $ptype
=$p.type ,

365 $argtypes = set{int{{}}},
366 for $ptype in $ptypes , $argtype in

$argtypes : $ptype < $argtype ,
367 $s = OclUndefined ,
368 $t = int {{}}
369
370 from ucif::expressions::Distribution(name = $n,

parameters = $ps , seed = $s)
371 with $ptypes , $argtypes , $te
372 to cif::expressions::Distribution(type=$t)
373 where $n = "Constant",
374 for $ptype in $ptypes , $p in $ps : $ptype

=$p.type ,
375 $argtypes = set{real {{}}},
376 for $ptype in $ptypes , $argtype in

$argtypes : $ptype < $argtype ,
377 $te = $s.type ,
378 $te = nat{{}},
379 $t = real {{}}
380
381 from ucif::expressions::Distribution(name = $n,

parameters = $ps , seed = $s)
382 with $ptypes , $argtypes
383 to cif::expressions::Distribution(type=$t)
384 where $n = "Constant",
385 for $ptype in $ptypes , $p in $ps : $ptype

=$p.type ,
386 $argtypes = set{real {{}}},
387 for $ptype in $ptypes , $argtype in

$argtypes : $ptype < $argtype ,
388 $s = OclUndefined ,
389 $t = real {{}}
390
391 from ucif::expressions::Distribution(name = $n,

parameters = $ps , seed = $s)
392 with $ptypes , $argtypes , $te
393 to cif::expressions::Distribution(type=$t)
394 where $n = "Bernoulli",
395 for $ptype in $ptypes , $p in $ps : $ptype

=$p.type ,
396 $argtypes = set{real {{}}},
397 for $ptype in $ptypes , $argtype in

$argtypes : $ptype < $argtype ,
398 $te = $s.type ,
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399 $te = nat{{}},
400 $t = bool {{}}
401
402 from ucif::expressions::Distribution(name = $n,

parameters = $ps , seed = $s)
403 with $ptypes , $argtypes
404 to cif::expressions::Distribution(type=$t)
405 where $n = "Bernoulli",
406 for $ptype in $ptypes , $p in $ps : $ptype

=$p.type ,
407 $argtypes = set{real {{}}},
408 for $ptype in $ptypes , $argtype in

$argtypes : $ptype < $argtype ,
409 $s = OclUndefined ,
410 $t = bool {{}}
411
412 from ucif::expressions::Distribution(name = $n,

parameters = $ps , seed = $s)
413 with $ptypes , $argtypes , $te
414 to cif::expressions::Distribution(type=$t)
415 where $n = "Bernoulli",
416 for $ptype in $ptypes , $p in $ps : $ptype

=$p.type ,
417 $argtypes = set{real {{}}},
418 for $ptype in $ptypes , $argtype in

$argtypes : $ptype < $argtype ,
419 $te = $s.type ,
420 $te = nat{{}},
421 $t = nat {{}}
422
423 from ucif::expressions::Distribution(name = $n,

parameters = $ps , seed = $s)
424 with $ptypes , $argtypes
425 to cif::expressions::Distribution(type=$t)
426 where $n = "Bernoulli",
427 for $ptype in $ptypes , $p in $ps : $ptype

=$p.type ,
428 $argtypes = set{real {{}}},
429 for $ptype in $ptypes , $argtype in

$argtypes : $ptype < $argtype ,
430 $s = OclUndefined ,
431 $t = nat {{}}
432
433 from ucif::expressions::Distribution(name = $n,

parameters = $ps , seed = $s)
434 with $ptypes , $argtypes , $te
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435 to cif::expressions::Distribution(type=$t)
436 where $n = "Beta",
437 for $ptype in $ptypes , $p in $ps : $ptype

=$p.type ,
438 $argtypes = set{real {{}}, real {{}}},
439 for $ptype in $ptypes , $argtype in

$argtypes : $ptype < $argtype ,
440 $te = $s.type ,
441 $te = nat{{}},
442 $t = real {{}}
443
444 from ucif::expressions::Distribution(name = $n,

parameters = $ps , seed = $s)
445 with $ptypes , $argtypes
446 to cif::expressions::Distribution(type=$t)
447 where $n = "Beta",
448 for $ptype in $ptypes , $p in $ps : $ptype

=$p.type ,
449 $argtypes = set{real {{}}, real {{}}},
450 for $ptype in $ptypes , $argtype in

$argtypes : $ptype < $argtype ,
451 $s = OclUndefined ,
452 $t = real {{}}
453
454 from ucif::expressions::Distribution(name = $n,

parameters = $ps , seed = $s)
455 with $ptypes , $argtypes , $te
456 to cif::expressions::Distribution(type=$t)
457 where $n = "Binomial",
458 for $ptype in $ptypes , $p in $ps : $ptype

=$p.type ,
459 $argtypes = set{real {{}},nat {{}}},
460 for $ptype in $ptypes , $argtype in

$argtypes : $ptype < $argtype ,
461 $te = $s.type ,
462 $te = nat{{}},
463 $t = nat {{}}
464
465 from ucif::expressions::Distribution(name = $n,

parameters = $ps , seed = $s)
466 with $ptypes , $argtypes
467 to cif::expressions::Distribution(type=$t)
468 where $n = "Binomial",
469 for $ptype in $ptypes , $p in $ps : $ptype

=$p.type ,
470 $argtypes = set{real {{}},nat {{}}},
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471 for $ptype in $ptypes , $argtype in
$argtypes : $ptype < $argtype ,

472 $s = OclUndefined ,
473 $t = nat {{}}
474
475 from ucif::expressions::Distribution(name = $n,

parameters = $ps , seed = $s)
476 with $ptypes , $argtypes , $te
477 to cif::expressions::Distribution(type=$t)
478 where $n = "Erlang",
479 for $ptype in $ptypes , $p in $ps : $ptype

=$p.type ,
480 $argtypes = set{nat{{}}, real {{}}},
481 for $ptype in $ptypes , $argtype in

$argtypes : $ptype < $argtype ,
482 $te = $s.type ,
483 $te = nat{{}},
484 $t = real {{}}
485
486 from ucif::expressions::Distribution(name = $n,

parameters = $ps , seed = $s)
487 with $ptypes , $argtypes
488 to cif::expressions::Distribution(type=$t)
489 where $n = "Erlang",
490 for $ptype in $ptypes , $p in $ps : $ptype

=$p.type ,
491 $argtypes = set{nat{{}}, real {{}}},
492 for $ptype in $ptypes , $argtype in

$argtypes : $ptype < $argtype ,
493 $s = OclUndefined ,
494 $t = real {{}}
495
496 from ucif::expressions::Distribution(name = $n,

parameters = $ps , seed = $s)
497 with $ptypes , $argtypes , $te
498 to cif::expressions::Distribution(type=$t)
499 where $n = "Exponential",
500 for $ptype in $ptypes , $p in $ps : $ptype

=$p.type ,
501 $argtypes = set{real {{}}},
502 for $ptype in $ptypes , $argtype in

$argtypes : $ptype < $argtype ,
503 $te = $s.type ,
504 $te = nat{{}},
505 $t = real {{}}
506
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507 from ucif::expressions::Distribution(name = $n,
parameters = $ps , seed = $s)

508 with $ptypes , $argtypes
509 to cif::expressions::Distribution(type=$t)
510 where $n = "Exponential",
511 for $ptype in $ptypes , $p in $ps : $ptype

=$p.type ,
512 $argtypes = set{real {{}}},
513 for $ptype in $ptypes , $argtype in

$argtypes : $ptype < $argtype ,
514 $s = OclUndefined ,
515 $t = real {{}}
516
517 from ucif::expressions::Distribution(name = $n,

parameters = $ps , seed = $s)
518 with $ptypes , $argtypes , $te
519 to cif::expressions::Distribution(type=$t)
520 where $n = "Gamma",
521 for $ptype in $ptypes , $p in $ps : $ptype

=$p.type ,
522 $argtypes = set{real {{}}, real {{}}},
523 for $ptype in $ptypes , $argtype in

$argtypes : $ptype < $argtype ,
524 $te = $s.type ,
525 $te = nat{{}},
526 $t = real {{}}
527
528 from ucif::expressions::Distribution(name = $n,

parameters = $ps , seed = $s)
529 with $ptypes , $argtypes
530 to cif::expressions::Distribution(type=$t)
531 where $n = "Gamma",
532 for $ptype in $ptypes , $p in $ps : $ptype

=$p.type ,
533 $argtypes = set{real {{}}, real {{}}},
534 for $ptype in $ptypes , $argtype in

$argtypes : $ptype < $argtype ,
535 $s = OclUndefined ,
536 $t = real {{}}
537
538 from ucif::expressions::Distribution(name = $n,

parameters = $ps , seed = $s)
539 with $ptypes , $argtypes , $te
540 to cif::expressions::Distribution(type=$t)
541 where $n = "Geometric",
542 for $ptype in $ptypes , $p in $ps : $ptype
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=$p.type ,
543 $argtypes = set{real {{}}},
544 for $ptype in $ptypes , $argtype in

$argtypes : $ptype < $argtype ,
545 $te = $s.type ,
546 $te = nat{{}},
547 $t = nat {{}}
548
549 from ucif::expressions::Distribution(name = $n,

parameters = $ps , seed = $s)
550 with $ptypes , $argtypes
551 to cif::expressions::Distribution(type=$t)
552 where $n = "Geometric",
553 for $ptype in $ptypes , $p in $ps : $ptype

=$p.type ,
554 $argtypes = set{real {{}}},
555 for $ptype in $ptypes , $argtype in

$argtypes : $ptype < $argtype ,
556 $s = OclUndefined ,
557 $t = nat {{}}
558
559 from ucif::expressions::Distribution(name = $n,

parameters = $ps , seed = $s)
560 with $ptypes , $argtypes , $te
561 to cif::expressions::Distribution(type=$t)
562 where $n = "LogNormal",
563 for $ptype in $ptypes , $p in $ps : $ptype

=$p.type ,
564 $argtypes = set{real {{}}, real {{}}},
565 for $ptype in $ptypes , $argtype in

$argtypes : $ptype < $argtype ,
566 $te = $s.type ,
567 $te = nat{{}},
568 $t = real {{}}
569
570 from ucif::expressions::Distribution(name = $n,

parameters = $ps , seed = $s)
571 with $ptypes , $argtypes
572 to cif::expressions::Distribution(type=$t)
573 where $n = "LogNormal",
574 for $ptype in $ptypes , $p in $ps : $ptype

=$p.type ,
575 $argtypes = set{real {{}}, real {{}}},
576 for $ptype in $ptypes , $argtype in

$argtypes : $ptype < $argtype ,
577 $s = OclUndefined ,
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578 $t = real {{}}
579
580 from ucif::expressions::Distribution(name = $n,

parameters = $ps , seed = $s)
581 with $ptypes , $argtypes , $te
582 to cif::expressions::Distribution(type=$t)
583 where $n = "Normal",
584 for $ptype in $ptypes , $p in $ps : $ptype

=$p.type ,
585 $argtypes = set{real {{}}, real {{}}},
586 for $ptype in $ptypes , $argtype in

$argtypes : $ptype < $argtype ,
587 $te = $s.type ,
588 $te = nat{{}},
589 $t = real {{}}
590
591 from ucif::expressions::Distribution(name = $n,

parameters = $ps , seed = $s)
592 with $ptypes , $argtypes
593 to cif::expressions::Distribution(type=$t)
594 where $n = "Normal",
595 for $ptype in $ptypes , $p in $ps : $ptype

=$p.type ,
596 $argtypes = set{real {{}}, real {{}}},
597 for $ptype in $ptypes , $argtype in

$argtypes : $ptype < $argtype ,
598 $s = OclUndefined ,
599 $t = real {{}}
600
601 from ucif::expressions::Distribution(name = $n,

parameters = $ps , seed = $s)
602 with $ptypes , $argtypes , $te
603 to cif::expressions::Distribution(type=$t)
604 where $n = "Poisson",
605 for $ptype in $ptypes , $p in $ps : $ptype

=$p.type ,
606 $argtypes = set{real {{}}},
607 for $ptype in $ptypes , $argtype in

$argtypes : $ptype < $argtype ,
608 $te = $s.type ,
609 $te = nat{{}},
610 $t = nat {{}}
611
612 from ucif::expressions::Distribution(name = $n,

parameters = $ps , seed = $s)
613 with $ptypes , $argtypes
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614 to cif::expressions::Distribution(type=$t)
615 where $n = "Poisson",
616 for $ptype in $ptypes , $p in $ps : $ptype

=$p.type ,
617 $argtypes = set{real {{}}},
618 for $ptype in $ptypes , $argtype in

$argtypes : $ptype < $argtype ,
619 $s = OclUndefined ,
620 $t = nat {{}}
621
622 from ucif::expressions::Distribution(name = $n,

parameters = $ps , seed = $s)
623 with $ptypes , $argtypes , $te , $length
624 to cif::expressions::Distribution(type=$t)
625 where $n = "Random",
626 $length = length $ps ,
627 $length = 0,
628 $te = $s.type ,
629 $te = nat{{}},
630 $t = real {{}}
631
632 from ucif::expressions::Distribution(name = $n,

parameters = $ps , seed = $s)
633 with $ptypes , $argtypes , $length
634 to cif::expressions::Distribution(type=$t)
635 where $n = "Random",
636 $length = length $ps ,
637 $length = 0,
638 $s = OclUndefined ,
639 $t = real {{}}
640
641 from ucif::expressions::Distribution(name = $n,

parameters = $ps , seed = $s)
642 with $ptypes , $argtypes , $te
643 to cif::expressions::Distribution(type=$t)
644 where $n = "Triangle",
645 for $ptype in $ptypes , $p in $ps : $ptype

=$p.type ,
646 $argtypes = set{real {{}}, real {{}}, real {{}}} ,
647 for $ptype in $ptypes , $argtype in

$argtypes : $ptype < $argtype ,
648 $te = $s.type ,
649 $te = nat{{}},
650 $t = real {{}}
651
652 from ucif::expressions::Distribution(name = $n,
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parameters = $ps , seed = $s)
653 with $ptypes , $argtypes
654 to cif::expressions::Distribution(type=$t)
655 where $n = "Triangle",
656 for $ptype in $ptypes , $p in $ps : $ptype

=$p.type ,
657 $argtypes = set{real {{}}, real {{}}, real {{}}} ,
658 for $ptype in $ptypes , $argtype in

$argtypes : $ptype < $argtype ,
659 $s = OclUndefined ,
660 $t = real {{}}
661
662 from ucif::expressions::Distribution(name = $n,

parameters = $ps , seed = $s)
663 with $ptypes , $argtypes , $te
664 to cif::expressions::Distribution(type=$t)
665 where $n = "Uniform",
666 for $ptype in $ptypes , $p in $ps : $ptype

=$p.type ,
667 $argtypes = set{nat{{}},nat {{}}},
668 for $ptype in $ptypes , $argtype in

$argtypes : $ptype < $argtype ,
669 $te = $s.type ,
670 $te = nat{{}},
671 $t = nat {{}}
672
673 from ucif::expressions::Distribution(name = $n,

parameters = $ps , seed = $s)
674 with $ptypes , $argtypes
675 to cif::expressions::Distribution(type=$t)
676 where $n = "Uniform",
677 for $ptype in $ptypes , $p in $ps : $ptype

=$p.type ,
678 $argtypes = set{nat{{}},nat {{}}},
679 for $ptype in $ptypes , $argtype in

$argtypes : $ptype < $argtype ,
680 $s = OclUndefined ,
681 $t = nat {{}}
682
683 from ucif::expressions::Distribution(name = $n,

parameters = $ps , seed = $s)
684 with $ptypes , $argtypes , $te
685 to cif::expressions::Distribution(type=$t)
686 where $n = "Uniform",
687 for $ptype in $ptypes , $p in $ps : $ptype

=$p.type ,
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688 $argtypes = set{int{{}},int {{}}},
689 for $ptype in $ptypes , $argtype in

$argtypes : $ptype < $argtype ,
690 $te = $s.type ,
691 $te = nat{{}},
692 $t = int {{}}
693
694 from ucif::expressions::Distribution(name = $n,

parameters = $ps , seed = $s)
695 with $ptypes , $argtypes
696 to cif::expressions::Distribution(type=$t)
697 where $n = "Uniform",
698 for $ptype in $ptypes , $p in $ps : $ptype

=$p.type ,
699 $argtypes = set{int{{}},int {{}}},
700 for $ptype in $ptypes , $argtype in

$argtypes : $ptype < $argtype ,
701 $s = OclUndefined ,
702 $t = int {{}}
703
704 from ucif::expressions::Distribution(name = $n,

parameters = $ps , seed = $s)
705 with $ptypes , $argtypes , $te
706 to cif::expressions::Distribution(type=$t)
707 where $n = "Uniform",
708 for $ptype in $ptypes , $p in $ps : $ptype

=$p.type ,
709 $argtypes = set{real {{}}, real {{}}},
710 for $ptype in $ptypes , $argtype in

$argtypes : $ptype < $argtype ,
711 $te = $s.type ,
712 $te = nat{{}},
713 $t = real {{}}
714
715 from ucif::expressions::Distribution(name = $n,

parameters = $ps , seed = $s)
716 with $ptypes , $argtypes
717 to cif::expressions::Distribution(type=$t)
718 where $n = "Uniform",
719 for $ptype in $ptypes , $p in $ps : $ptype

=$p.type ,
720 $argtypes = set{real {{}}, real {{}}},
721 for $ptype in $ptypes , $argtype in

$argtypes : $ptype < $argtype ,
722 $s = OclUndefined ,
723 $t = real {{}}
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724
725 from ucif::expressions::Distribution(name = $n,

parameters = $ps , seed = $s)
726 with $ptypes , $argtypes , $te
727 to cif::expressions::Distribution(type=$t)
728 where $n = "Weibull",
729 for $ptype in $ptypes , $p in $ps : $ptype

=$p.type ,
730 $argtypes = set{real {{}}, real {{}}},
731 for $ptype in $ptypes , $argtype in

$argtypes : $ptype < $argtype ,
732 $te = $s.type ,
733 $te = nat{{}},
734 $t = real {{}}
735
736 from ucif::expressions::Distribution(name = $n,

parameters = $ps , seed = $s)
737 with $ptypes , $argtypes
738 to cif::expressions::Distribution(type = $t)
739 where $n = "Weibull",
740 for $ptype in $ptypes , $p in $ps : $ptype

=$p.type ,
741 $argtypes = set{real {{}}, real {{}}},
742 for $ptype in $ptypes , $argtype in

$argtypes : $ptype < $argtype ,
743 $s = OclUndefined ,
744 $t = real {{}}
745
746 from ucif::expressions::ReferenceExpression(links

= $scope ,text = $name)
747 to cif::expressions::FieldReference(type = $t,

field = $o)
748 where $o in $scope ,
749 $o = cif::types::Field(name = $name , type =

$t)
750
751 from ucif::expressions::FunctionCallExpression(

function = $function , arguments = $arguments)
752 with $functiontype , $parametertypes
753 to cif::expressions::FunctionCallExpression( type

= $returntype)
754 where $functiontype = $function.type ,
755 $functiontype = function {{p =

$parametertypes , r = $returntype }},
756 for $pt in $parametertypes , $a in

$arguments : $pt = $a.type

200



757
758 from

ucif::expressions::ReferenceExpression(links=$scope ,
text = $name)

759 with $parameters ,$parametertypes ,$returntype
760 to cif::expressions::FunctionReference(type=$t,

function=$function)
761 where $function in $scope ,
762 $function =

cif::InternalFunctionDeclaration(name =
$name , formalParameters=$parameters ,
returnType=$returntype),

763 for $p in $parameters , $pt in
$parametertypes : $p =
cif::Variable(staticType=$pt),

764 $t = function {{p = $parametertypes , r =
$returntype }}

765
766 from

ucif::expressions::ReferenceExpression(links=$scope ,
text = $name)

767 to
cif::expressions::GlobalConstantReference(type=$t ,
constant=$o)

768 where $o in $scope ,
769 $o = cif::ConstantDeclaration(type=t, name

= $name)
770
771 from

ucif::expressions::LambdaExpression(formalParameters
= $fps , returnExpression = $exp , returnType =
$rt)

772 with $ptypes
773 to cif::expressions::LambdaExpression(type = $t)
774 where for $ptype in $ptypes , $fp in $fps : $fp =

ucif::expressions::Parameter(type=$ptype),
775 $rt > $exp.type ,
776 $t = function {{p = $ptypes , r = $rt}}
777
778 from

ucif::expressions::ListExpression(elements=$e)
779 with $te
780 to cif::expressions::ListExpression(type=$t)
781 where for $es in $e : $te = $es.type ,
782 $t = list{{e = $te}}
783
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784 from
ucif::expressions::ReferenceExpression(links=$scope ,
text = $name)

785 to
cif::expressions::LocalConstantReference(type=$t ,
constant=$o)

786 where $o in $scope ,
787 $o = cif::Constant(staticType=$t , name =

$name)
788
789 from

ucif::expressions::MatrixExpression(rows=$mrs)
790 with $rows , $nc , $tr
791 to cif::expressions::MatrixExpression(type=$t)
792 where for $row in $rows , $mr in $mrs : $mr =

ucif::expressions::MatrixRow(columnElements=$row),
793 for $row in $rows : ($nc = length $row ,for

$elem in $row : $tr = $elem.type),
794 $tr = real {{}},
795 $t = matrix {{x = $nc , y = length $rows , e =

real {{}}}}
796
797 from ucif::expressions::Number
798 to cif::expressions::Number(type=$t)
799 where $t< real {{}}
800
801 from

ucif::expressions::ReferenceExpression(links=$scope ,
text = $name)

802 to cif::expressions::ParameterReference(type=$t,
parameter=$o)

803 where $o in $scope ,
804 $o = cif::expressions::Parameter(type=$t,

name = $name)
805
806 from ucif::expressions::RealNumber
807 to cif::expressions::RealNumber(type=$t)
808 where $t = real {{}}
809
810 from ucif::expressions::SetExpression(elements=$e)
811 with $te
812 to cif::expressions::SetExpression(type=$t)
813 where for $es in $e : $te = $es.type ,
814 $t = cifset {{e = $te}}
815
816 from
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ucif::expressions::ReferenceExpression(links=$scope ,
text = $name)

817 with $parameters ,$parametertypes ,$returntype
818 to

cif::expressions::StdLibFunctionReference(type=$t ,
function=$function)

819 where $function in $scope ,
820 $function =

cif::InternalFunctionDeclaration (name =
$name , formalParameters=$parameters ,
returnType=$returntype),

821 for $p in $parameters , $pt in
$parametertypes : $p =
cif::Variable(staticType=$pt),

822 $t = function {{p = $parametertypes , r =
$returntype }}

823
824 from ucif::expressions::StringLiteral
825 to cif::expressions::StringLiteral(type=$t)
826 where $t= string {{}}
827
828 from ucif::expressions::TimeLiteral
829 to cif::expressions::TimeLiteral(type=$t)
830 where $t = real {{}}
831
832 from ucif::expressions::TupleExpression(fields =

$fields)
833 with $tfields
834 to cif::expressions::TupleExpression(type=$t)
835 where for $tfield in $tfields , $field in $fields:

$tfield = cif::types::Field(type=$field.type),
836 $t = tuple{{f=$tfields }}
837
838 from ucif::expressions::UnaryExpression(operator

= $o , child = $c)
839 with $v
840 to cif::expressions::UnaryExpression(type=$t)
841 where $o in

set{ucif::expressions::UnaryOperators::Derivative ,
ucif::expressions::UnaryOperators::New},

842 $v = $c.variable ,
843 $v = cif::Variable ,
844 $t = $c.type ,
845 $t< real {{}}
846
847 from ucif::expressions::UnaryExpression(operator

203



= $o , child = $c)
848 with $v
849 to cif::expressions::UnaryExpression(type=$t)
850 where $o in

set{ucif::expressions::UnaryOperators::Derivative ,
ucif::expressions::UnaryOperators::New},

851 $v = $c.clock ,
852 $v = cif::Clock ,
853 $t = $c.type ,
854 $t < real {{}}
855
856 from ucif::expressions::UnaryExpression(operator

= $o , child = $c)
857 to cif::expressions::UnaryExpression(type=$t)
858 where $o =

ucif::expressions::UnaryOperators::Inverse ,
859 $t = $c.type ,
860 $t < int {{}}
861
862 from ucif::expressions::UnaryExpression(operator

= $o , child = $c)
863 to cif::expressions::UnaryExpression(type=$t)
864 where $o =

ucif::expressions::UnaryOperators::Inverse ,
865 $t = $c.type ,
866 $t = real {{}}
867
868 from ucif::expressions::UnaryExpression(operator

= $o , child = $c)
869 to cif::expressions::UnaryExpression(type=$t)
870 where $o =

ucif::expressions::UnaryOperators::Negate ,
871 $t = $c.type ,
872 $t = bool {{}}
873
874 from ucif::expressions::UnaryExpression(operator

= $o , child = $c)
875 with $tc
876 to cif::expressions::UnaryExpression(type=$t)
877 where $o =

ucif::expressions::UnaryOperators::Pick ,
878 $tc = $c.type ,
879 $tc = cifset {{e=$t}}
880
881 from ucif::expressions::UnaryExpression(operator

= $o , child = $c)
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882 with $tc
883 to cif::expressions::UnaryExpression(type=$t)
884 where $o =

ucif::expressions::UnaryOperators::Sample ,
885 $tc = $c.type ,
886 $tc = distributiontype {{r=$t}}
887
888 from

ucif::expressions::ReferenceExpression(links=$scope)
889 to cif::expressions::VariableReference(type=$t,

variable=$o)
890 where $o in $scope ,
891 $o = cif::Variable(staticType=$t)
892
893 from

ucif::expressions::VectorExpression(elements=$e)
894 with $te
895 to cif::expressions::VectorExpression(type=$t)
896 where for $es in $e : $te = $es.type ,
897 $te < real {{}},
898 $t = vector {{d =

cif::expressions::Number(value = length
$e , type = nat {{}}), e = $te}}

899
900
901 strategy
902 nat < int
903 int < real
904 list(e=$e1) < list(e=$e2) if $e1 < $e2
905 array(d=$d1 ,e=$e1) < array(d=$d2 , e=$e2) if $d1 =

$d2 , $e1 < $e2
906
907 strategytarget
908 type
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Appendix C

Type system for WebDSL

Listing C.1: WebDSL EMF-TL Rules
1 imports
2 http://mdse.tue.nl/textualWebDSL.ecore;
3 http://mdse.tue.nl/WebDSL.ecore;
4
5 start textualWebDSL::Unit
6
7 typesystem
8 simpletype(sort ,constraintvar) <

textualWebDSL::SimpleSort(name ,constraintvar)>
WebDSL::SimpleSort(name);

9 generictype(sort ,args) =
WebDSL::GenericSort(name ,sorts);

10
11 widening
12
13 simpletype(sort = $s1 ) < simpletype(sort =

$s2) if $s1 = "Integer", $s2 = "Float"
14
15 rules
16 from textualWebDSL::Int
17 to WebDSL::Int(resultSort=$t)
18 where $t = simpletype {{sort = "Integer "}}
19
20 from textualWebDSL::Float
21 to WebDSL::Float(resultSort=$t)
22 where $t = simpletype {{sort = "Float "}}
23
24 from textualWebDSL::BooleanLiteral
25 to WebDSL::BooleanLiteral(resultSort=$t)
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26 where $t = simpletype {{sort = "Boolean "}}
27
28 from textualWebDSL::StringLiteral
29 to WebDSL::String(resultSort=$t)
30 where $t = simpletype {{sort = "String "}}
31
32 from textualWebDSL::BinaryExpression(operator =

$o ,
33 left=$l,
34 right = $r)
35 to WebDSL::BinaryExpression(resultSort=$t)
36 where $o in

set{textualWebDSL::BinaryOperator::Add ,
textualWebDSL::BinaryOperator::Sub ,
textualWebDSL::BinaryOperator::Mul},

37 $t > $l.resultSort ,
38 $t > $r.resultSort ,
39 $t < simpletype {{sort = "Float "}}
40
41 error textualWebDSL::BinaryExpression(operator

= $o ,position = $pos)
42 message "Only numbers can be added , subtracted

or multiplied"
43 sourceposition $pos
44 where $o in

set{textualWebDSL::BinaryOperator::Add ,
textualWebDSL::BinaryOperator::Sub ,
textualWebDSL::BinaryOperator::Mul}

45
46 from textualWebDSL::BinaryExpression(operator =

$o ,
47 left=$l,
48 right = $r)
49 with $te
50 to WebDSL::BinaryExpression(resultSort=$t)
51 where $o in

set{textualWebDSL::BinaryOperator::LargerThan ,
textualWebDSL::BinaryOperator::LargerThanOrEqual ,
textualWebDSL::BinaryOperator::SmallerThan ,
textualWebDSL::BinaryOperator::SmallerThanOrEqual},

52 $te > $l.resultSort ,
53 $te > $r.resultSort ,
54 $te < simpletype {{sort = "Float"}},
55 $t = simpletype {{sort = "Boolean "}}
56
57 error textualWebDSL::BinaryExpression(operator
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= $o ,position = $pos)
58 message "Only numbers can be compared based on

size"
59 sourceposition $pos
60 where $o in

set{textualWebDSL::BinaryOperator::LargerThan ,
textualWebDSL::BinaryOperator::LargerThanOrEqual ,
textualWebDSL::BinaryOperator::SmallerThan ,
textualWebDSL::BinaryOperator::SmallerThanOrEqual}

61
62 from textualWebDSL::BinaryExpression(operator =

$o ,
63 left=$l,
64 right = $r)
65 with $te
66 to WebDSL::BinaryExpression(resultSort=$t)
67 where $o in

set{textualWebDSL::BinaryOperator::Eq ,
textualWebDSL::BinaryOperator::NotEq},

68 $te > $l.resultSort ,
69 $te > $r.resultSort ,
70 $t = simpletype {{sort = "Boolean "}}
71
72 error textualWebDSL::BinaryExpression(operator

= $o ,position = $pos)
73 message "Only values of similar types can be

compared"
74 sourceposition $pos
75 where $o in

set{textualWebDSL::BinaryOperator::Eq ,
textualWebDSL::BinaryOperator::NotEq}

76
77 from textualWebDSL::Cast(exp = $exp , sort =

$ttarget)
78 to WebDSL::Cast(resultSort = $ttarget)
79
80 from textualWebDSL::IsA
81 to WebDSL::Cast(resultSort = $t)
82 where $t = simpletype {{sort = "Boolean "}}
83
84 from textualWebDSL::SetCreation(elements =

$elems , sort = $telem)
85 to WebDSL::SetCreation(resultSort = $t)
86 where for $e in $elems : $telem = $e.resultSort ,
87 $t = generictype {{sort="Set",

args=set{$telem} }}
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88
89 error textualWebDSL::SetCreation(position =

$pos)
90 message "All elements of a set must have the

same type"
91 sourceposition $pos
92
93 from textualWebDSL::ListCreation(elements =

$elems , sort = $telem)
94 to WebDSL::ListCreation(resultSort = $t)
95 where for $e in $elems : $telem = $e.resultSort ,
96 $t = generictype {{sort="Set",

args=set{$telem} }}
97
98 error textualWebDSL::ListCreation(position =

$pos)
99 message "All elements of a list must have the

same type"
100 sourceposition $pos
101
102 from textualWebDSL::MapCreation(mapping=

$mapping)
103 with $keys , $tkey , $values , $tvalue
104 to WebDSL::MapCreation(resultSort = $t)
105 where for $m in $mapping , $k in $keys , $v in

$values : $m = textualWebDSL::Mapping(key =
$k , value = $v),

106 for $k1 in $keys : $tkey = $k1.resultSort ,
107 for $v1 in $values : $tvalue >

$v1.resultSort ,
108 $t = generictype {{sort="Map",

args=set{$tkey , $tvalue} }}
109
110 error textualWebDSL::MapCreation(mapping=

$mapping ,position = $pos)
111 message "All keys of a map must have similar

types"
112 sourceposition $pos
113 with $values , $tvalue
114 where for $m in $mapping , $v in $values : $m =

textualWebDSL::Mapping(value = $v),
115 for $v in $values : $tvalue >

$v.resultSort
116
117 error textualWebDSL::MapCreation(mapping=

$mapping ,position = $pos)
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118 message "All keys of a map must have similar
types"

119 sourceposition $pos
120 with $keys , $tkey
121 where for $m in $mapping , $k in $keys : $m =

textualWebDSL::Mapping(key = $k),
122 for $k in $keys : $tkey = $k1.resultSort
123
124 from textualWebDSL::VariableAccess(links =

$links , variable = $name)
125 to WebDSL::VariableAccess(variable = $var ,

resultSort = $t)
126 where $var in $links ,
127 $var =

textualWebDSL::AbstractVarDecl(name =
$name ,sort = $t)

128
129 error textualWebDSL::VariableAccess(links =

$links , variable = $name , position = $pos)
130 message "No variable with given name in scope"
131 sourceposition $pos
132
133 from textualWebDSL::FieldAccess(links = $links ,

base = $exp , position = $pos , field = $name)
134 with $exptype , $entity , $props , $name
135 to WebDSL::FieldAccess(field = $field ,

resultSort = $t)
136 where $exptype = $exp.resultSort ,
137 $entity = $exptype.entity ,
138 $props = $entity.allBody ,
139 $field in $links ,
140 $field = textualWebDSL::Property(sort =

$t , name = $name),
141 $field in $props
142
143 error textualWebDSL::FieldAccess(base = $exp ,

position = $pos)
144 message "Only entities have fields"
145 sourceposition $pos
146 with $texp , $ent
147 where $texp = $exp.resultSort ,
148 $ent = $texp.entity ,
149 $ent = OclUndefined
150
151 error textualWebDSL::FieldAccess(base = $exp ,

position = $pos)
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152 message "Entity does not have property with
given name"

153 sourceposition $pos
154 with $texp , $ent , $props
155 where $texp = $exp.resultSort ,
156 $ent = $texp.entity ,
157 $props = $ent.allBody ,
158 $field in $links ,
159 $field = textualWebDSL::Property(sort =

$t),
160 for $p in $props : $p # $field
161
162 from textualWebDSL::ObjectCreation(sort = $s,

objectPropertiesAssignments = $ps)
163 with $e, $b , $panames , $props
164 to WebDSL::ObjectCreation(resultSort = $s)
165 where $e = $s.entity ,
166 $b = $e.allBody ,
167 for $aname in $panames , $pa in $ps , $prop

in $props :
168 ($pa =

textualWebDSL::ObjectPropertyAssignment
(property = $aname),

169 $prop = textualWebDSL::Property (name
= $aname),

170 $prop in $b)
171
172 error textualWebDSL::ObjectCreation(sort = $s ,

position = $pos)
173 message "Only objects can be created using this

operator"
174 sourceposition $pos
175 with $e
176 where $e = $s.entity ,
177 $e = OclUndefined
178
179 error textualWebDSL::ObjectCreation(sort = $s ,

objectPropertiesAssignments = $ps)
180 message "Some properties do not exist in target

object"
181 sourceposition $pos
182 with $e, $b , $pa
183 where $e = $s.entity ,
184 $b = $e.allBody ,
185 $pa in $ps ,
186 $pa =
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textualWebDSL::ObjectPropertyAssignment(property
= $aname),

187 for $prop in b : ($prop =
textualWebDSL::Property , $aname #
$p.name)

188
189 from textualWebDSL::ObjectPropertyAssignment(

links = $links , value = $val)
190 with $t
191 to WebDSL::ObjectPropertyAssignment(property =

$property)
192 where $property in $links ,
193 $property = textualWebDSL::Property(sort

= $t),
194 $t = $val.resultSort
195
196 error textualWebDSL::ObjectPropertyAssignment
197 message "No such property exists"
198
199 from textualWebDSL::Call(base = $base , links =

$links , arguments = $args)
200 with $fparams , $fparamtypes
201 to WebDSL::Call(function = $f , resultSort = $t)
202 where $base = OclUndefined ,
203 $f in $links ,
204 $f = textualWebDSL::Function(arguments =

$fparams , returnSort=$t),
205 for $fparam in $fparams , $fparamtype in

$fparamtypes : $fparam =
textualWebDSL::FormalArg(sort =
$fparamtype),

206 for $arg in $args , $ftype in $fparamtypes
: $ftype > $arg.resultSort

207
208 error textualWebDSL::Call(base = $base ,

position = $pos)
209 message "Function does not exist"
210 sourceposition $pos
211 where $base = OclUndefined ,
212 for $f in $links : $f #

textualWebDSL::Function(arguments =
$fparams , returnSort=$t)

213
214 error textualWebDSL::Call(base = $base ,

position = $pos)
215 message "Types of arguments do not match
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expected parameters"
216 sourceposition $pos
217 with $f
218 where $base = OclUndefined ,
219 $f in $links ,
220 $f = textualWebDSL::Function
221
222 from textualWebDSL::Call(base = $base , links =

$links , arguments = $args)
223 with $texp , $ent , $body , $fparams , $fparamtypes
224 to WebDSL::Call(function = $f , resultSort = $t)
225 where $texp = $base.resultSort ,
226 $ent = $texp.entity ,
227 $ent = textualWebDSL::Entity ,
228 $body = $ent.allBody ,
229 $f in $body ,
230 $f in $links ,
231 $f = textualWebDSL::Function(arguments =

$fparams , returnSort=$t),
232 for $fparam in $fparams , $fparamtype in

$fparamtypes : $fparam =
textualWebDSL::FormalArg(sort =
$fparamtype),

233 for $arg in $args , $ftype in $fparamtypes
: $ftype > $arg.resultSort

234
235 error textualWebDSL::Call(base = $base , links =

$links , arguments = $args , position = $pos)
236 message "Only objects have member functions"
237 sourceposition $pos
238 where $texp = $base.resultSort ,
239 $ent = $texp.entity ,
240 $ent # textualWebDSL::Entity
241
242 error textualWebDSL::Call(base = $base , links =

$links , position = $pos)
243 message "Function does not exist in this object"
244 sourceposition $pos
245 with $texp , $ent , $body , $f
246 where $texp = $base.resultSort ,
247 $ent = $texp.entity ,
248 $ent = textualWebDSL::Entity ,
249 $body = $ent.allBody ,
250 $f in $body ,
251 for $l in $links : $f # $l
252
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253 error textualWebDSL::Call(base = $base , links =
$links , position = $pos)

254 message "Only functions can be called"
255 sourceposition $pos
256 with $texp , $ent , $body , $f
257 where $texp = $base.resultSort ,
258 $ent = $texp.entity ,
259 $ent = textualWebDSL::Entity ,
260 $body = $ent.allBody ,
261 $f in $body ,
262 $f in $links ,
263 $f # textualWebDSL::Function
264
265 error textualWebDSL::Call(base = $base , links =

$links , position = $pos)
266 message "Types of arguments do not match

expected parameters"
267 sourceposition $pos
268 with $texp , $ent , $body , $f
269 where $texp = $base.resultSort ,
270 $ent = $texp.entity ,
271 $ent = textualWebDSL::Entity ,
272 $body = $ent.allBody ,
273 $f in $body ,
274 $f in $links ,
275 $f # textualWebDSL::Function
276
277 from textualWebDSL::SimpleSort(name = $s)
278 to WebDSL::SimpleSort
279 where $s = "String"
280
281 from textualWebDSL::SimpleSort(name = $s)
282 to WebDSL::SimpleSort
283 where $s = "Integer"
284
285 from textualWebDSL::SimpleSort(name = $s)
286 to WebDSL::SimpleSort
287 where $s = "Float"
288
289 from textualWebDSL::SimpleSort(name = $s)
290 to WebDSL::SimpleSort
291 where $s = "Boolean"
292
293 from textualWebDSL::SimpleSort(links =

$links ,name = $s)
294 to WebDSL::SimpleSort(entity = $e)
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295 where $e in $links ,
296 $e = WebDSL::Entity(name = $s)
297
298 error textualWebDSL::SimpleSort
299 message "No such entity exists"
300
301 from textualWebDSL::Entity(body = $body , links

= $links , superentity = $s)
302 with $superb
303 to WebDSL::Entity(superentity = $e , allBody =

$allbody)
304 where $e in $links ,
305 $e = WebDSL::Entity(name = $s),
306 $superb = $e.allBody ,
307 $allbody = $superb & $body
308
309 error textualWebDSL::Entity(body = $body , links

= $links , superentity = $s)
310 message "No such entity exists"
311 where for $e in $links : $e #

WebDSL::Entity(name = $s)
312
313 from textualWebDSL::GenericSort
314 to WebDSL::GenericSort
315
316
317
318 from textualWebDSL::Entity(body = $b ,

superentity = $s)
319 to WebDSL::Entity(allBody = $b)
320 where $s = OclUndefined
321
322 strategy
323 simpletype(sort = $s1) < simpletype(sort = $s2)

if $s1 = "Integer", $s2 = "Float"
324 WebDSL::Function(name = $n1 , arguments = $args1)

< WebDSL::Function(name = $n2 , arguments =
$args2)

325 if $n1 = $n2 ,
326 for $arg1 in $args1 ,
327 $arg2 in $args2 : $arg1 < $arg2
328 WebDSL::FormalArg(sort = $s1) <

WebDSL::FormalArg(sort = $s2)
329 if $s1 < $s2
330
331
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332 strategytarget
333 resultSort function

217
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Appendix D

Type system for mCRL2

Listing D.1: mCRL2 EMF-TL Rules
1 imports http://mdse.tue.nl/mcrl2;
2 http://mdse.tue.nl/textualmcrl2;
3
4 start textualmcrl2::Specification
5 typesystem
6 widening
7 mcrl2::Pos < mcrl2::Nat
8 mcrl2::Nat < mcrl2::Int
9 mcrl2::Int < mcrl2::Real
10 mcrl2::PosSort < mcrl2::NatSort
11 mcrl2::NatSort < mcrl2::IntSort
12 mcrl2::IntSort < mcrl2::RealSort
13 mcrl2::ListSort(elementSort = $el) <

mcrl2::ListSort(elementSort = $er) if $el <
$er

14 mcrl2::SetSort(elementSort = $el) <
mcrl2::SetSort(elementSort = $er) if $el <
$er

15 mcrl2::BagSort(elementSort = $el) <
mcrl2::BagSort(elementSort = $er) if $el <
$er

16
17 rules
18 from textualmcrl2::Bool
19 to mcrl2::Bool(sort = $t)
20 where $t = mcrl2::BoolSort
21
22 from textualmcrl2::Pos
23 to mcrl2::Pos(sort = $t)
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24 where $t = mcrl2::PosSort
25
26 from textualmcrl2::Nat
27 to mcrl2::Nat(sort = $t)
28 where $t = mcrl2::NatSort
29
30 from textualmcrl2::Int
31 to mcrl2::Int(sort = $t)
32 where $t = mcrl2::IntSort
33
34 from textualmcrl2::Real
35 to mcrl2::Real(sort = $t)
36 where $t = mcrl2::RealSort
37
38 from textualmcrl2::List(elementSort=$es)
39 to mcrl2::List(sort = $t)
40 where $t =

mcrl2::ListSort(elementSort=$es.sort)
41
42 from textualmcrl2::Set(elementSort=$es)
43 to mcrl2::Set(sort = $t)
44 where $t = mcrl2::SetSort(elementSort=$es.sort)
45
46 from textualmcrl2::Bag(elementSort=$es)
47 to mcrl2::Bag(sort = $t)
48 where $t = mcrl2::BagSort(elementSort=$es.sort)
49
50 from textualmcrl2::HigherOrder(domain =

$dlist , result = $r)
51 with $dslist ,$rsort
52 to mcrl2::HigherOrder(sort = $t)
53 where for $d in $dlist , $ds in $dslist : $ds =

$d.sort ,
54 $rsort = $r.sort ,
55 $t = mcrl2::HigherOrderSort
56 (domain = $dslist , result =

$rsort)
57
58 from textualmcrl2::SortRef(sortname=$n ,links =

$env)
59 to mcrl2::SortRef(sort=$s)
60 where $s in $env ,
61 $s = textualmcrl2::StructureSort(name =

$n)
62
63 from textualmcrl2::SortRef(sortname=$n ,links =
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$env)
64 with $es
65 to mcrl2::SortRef(sort=$s)
66 where $es in $env ,
67 $es = textualmcrl2::ExpressionSort(name

= $n),
68 $s = $es.expression.sort
69
70
71 error textualmcrl2::SortRef
72 message "No such sort"
73
74 from textualmcrl2::AtomicAction(atomname =

$name , links = $env , arguments = $args)
75 with $t
76 to mcrl2::AtomicAction(atom = $a)
77 where $a in $env ,
78 $a = textualmcrl2::Atom(name = $name ,

type = $t),
79 for $arg in $args ,
80 $param in $t :
81 $arg.type.sort < $param.sort
82
83 from textualmcrl2::AtomicAction(atomname =

$name , links = $env , arguments = $args)
84 with $t
85 to mcrl2::Instance(process = $p)
86 where $p in $env ,
87 $p = textualmcrl2::Process
88 (name = $name , parameters = $t),
89 for $arg in $args ,
90 $param in $t :
91 $arg.type.sort < $param.sort.sort
92
93 from textualmcrl2::AtomicAction(atomname =

$name , links = $env , arguments = $args) in
$parent: textualmcrl2::ProcessDecl

94 to mcrl2::Instance(process = $p)
95 where length $args = 0,
96 $parent =

textualmcrl2::ProcessDecl(process =
$p),

97 $p = textualmcrl2::Process(name=$name)
98
99 from textualmcrl2::Block(atomnames = $anames ,

links = $env)
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100 to mcrl2::Block(atoms = $atoms)
101 where for $aname in $anames ,
102 $atom in $atoms :
103 ($atom in $env ,
104 $atom = textualmcrl2::Atom(name =

$aname))
105
106 from textualmcrl2::Allow(atomnames = $anames ,

links = $env)
107 to mcrl2::Allow(atoms = $atoms)
108 where for $aname in $anames ,
109 $atom in $atoms :
110 ($atom in $env ,
111 $atom = textualmcrl2::Atom(name =

$aname))
112
113 from textualmcrl2::Hide(atomnames = $anames ,

links = $env)
114 to mcrl2::Hide(atoms = $atoms)
115 where for $aname in $anames ,
116 $atom in $atoms :
117 ($atom in $env ,
118 $atom = textualmcrl2::Atom(name =

$aname))
119
120 from textualmcrl2::Rename
121 to mcrl2::Rename
122
123 from textualmcrl2::Renaming(oldname = $o,

newname = $n , links = $env)
124 to mcrl2::Renaming(old = $oatom , new = $natom)
125 where $oatom in $env ,
126 $oatom = textualmcrl2::Atom(name = $o),
127 $natom in $env ,
128 $natom = textualmcrl2::Atom(name = $n)
129
130 from textualmcrl2::MultiAction(actionnames =

$anames , resultname = $rn , links = $env)
131 to mcrl2::MultiAction(actions = $actions ,

result = $result)
132 where for $aname in $anames ,
133 $action in $actions :
134 ($action in $env ,
135 $action = textualmcrl2::Atom(name =

$aname)),
136 $result in $env ,
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137 $result = textualmcrl2::Atom(name = $rn)
138
139 from textualmcrl2::Sequence
140 to mcrl2::Sequence
141
142 from textualmcrl2::Implication(condition = $c)
143 to mcrl2::Implication
144 where $c.type.sort = mcrl2::BoolSort
145
146 from textualmcrl2::Number
147 to mcrl2::Number(type=$t)
148 where $t = mcrl2::Nat(sort=mcrl2::NatSort)
149
150 from textualmcrl2::BooleanLiteral
151 to mcrl2::BooleanLiteral(type = $t)
152 where $t = mcrl2::Bool(sort = mcrl2::BoolSort)
153
154 from textualmcrl2::SetEnumeration(elements =

$es)
155 with $te
156 to mcrl2::SetEnumeration(type = $t)
157 where for $e in $es : $te > $e.type.sort ,
158 $t = mcrl2::Set
159 (sort=mcrl2::SetSort
160 (elementSort=$te))
161
162 from textualmcrl2::Identifier(varname = $n,

links = $env)
163 to mcrl2::Identifier(variable=$v , type = $t)
164 where $v in $env ,
165 $n = $v.name ,
166 $t = $v.sort
167
168 from textualmcrl2::Identifier(varname = $n,

links = $env)
169 with $sort
170 to mcrl2::ConstructorReference(constructor=$c,

type = $t)
171 where $sort in $env ,
172 $c in $sort.constructors ,
173 $n = $c.name ,
174 $t = mcrl2::SortRef(sort=$sort)
175
176 from textualmcrl2::ListEnumeration(elements =

$es)
177 with $te
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178 to mcrl2::ListEnumeration(type = $t)
179 where for $e in $es : $te > $e.type.sort ,
180 $t = mcrl2::List
181 (sort=mcrl2::ListSort
182 (elementSort=$te))
183
184 from textualmcrl2::BagEnumeration(elements =

$es)
185 with $te
186 to mcrl2::BagEnumeration(type = $t)
187 where for $e in $es :
188 ($e.quantity.type.sort =

mcrl2::NatSort ,
189 $te > $e.element.type.sort),
190 $t = mcrl2::Bag
191 (sort=mcrl2::BagSort
192 (elementSort=$te))
193
194 from textualmcrl2::UnaryExpression(right= $e,

operation = $op)
195 to mcrl2::UnaryExpression(type = $t)
196 where $op = textualmcrl2::UnaryOps::Negation ,
197 $e.type.sort = mcrl2::BoolSort ,
198 $t = mcrl2::Bool(sort=mcrl2::BoolSort)
199
200 from textualmcrl2::UnaryExpression(right= $e,

operation = $op)
201 to mcrl2::UnaryExpression(type = $t)
202 where $op = textualmcrl2::UnaryOps::Minus ,
203 $e.type.sort < mcrl2::IntSort ,
204 $t = mcrl2::Int(sort=mcrl2::IntSort)
205
206 from textualmcrl2::UnaryExpression(right= $e,

operation = $op)
207 to mcrl2::UnaryExpression(type = $t)
208 where $op = mcrl2::UnaryOps::Minus ,
209 $e.type.sort = mcrl2::RealSort ,
210 $t = mcrl2::Real(sort=mcrl2::RealSort)
211
212 from textualmcrl2::UnaryExpression(right= $e,

operation = $op)
213 to mcrl2::UnaryExpression(type = $t)
214 where $op = textualmcrl2::UnaryOps::ListSize ,
215 $e.type = mcrl2::ListSort ,
216 $t = mcrl2::Nat(sort=mcrl2::NatSort)
217
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218 from textualmcrl2::Quantification(expression =
$e)

219 to mcrl2::Quantification(type = $t)
220 where $e.type.sort = mcrl2::BoolSort ,
221 $t = mcrl2::Bool(sort=mcrl2::BoolSort)
222
223 from textualmcrl2::BinaryExpression(right= $r,

left = $l , operator = $op)
224 with $te
225 to mcrl2::BinaryExpression(type = $t)
226 where $op =

textualmcrl2::BinaryOps::Projection ,
227 $l.type.sort = mcrl2::ListSort
228 (elementSort = $te),
229 $r.type.sort = mcrl2::NatSort ,
230 $t = mcrl2::SortRef(sort=$te)
231
232 from textualmcrl2::BinaryExpression(right= $r,

left = $l , operator = $op)
233 with $t
234 to mcrl2::BinaryExpression(type = $et)
235 where $op in set{

textualmcrl2::BinaryOps::Multiplication ,
236 textualmcrl2::BinaryOps::Addition ,
237 textualmcrl2::BinaryOps::Subtraction},
238 $t > $l.type.sort ,
239 $t > $r.type.sort ,
240 mcrl2::RealSort > $t,
241 $et = mcrl2::Real(sort=$t)
242
243 from textualmcrl2::BinaryExpression(right= $r,

left = $l , operator = $op)
244 with $te ,$tle ,$tre
245 to mcrl2::BinaryExpression(type = $t)
246 where $op in set{

textualmcrl2::BinaryOps::Multiplication ,
247 textualmcrl2::BinaryOps::Addition ,
248 textualmcrl2::BinaryOps::Subtraction},
249 $l.type.sort =

mcrl2::SetSort(elementSort = $tle),
250 $r.type.sort =

mcrl2::SetSort(elementSort = $tre),
251 $te > $tle ,
252 $te > $tre ,
253 $t =

mcrl2::Set(sort=mcrl2::SetSort(elementSort
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= $te))
254
255 from textualmcrl2::BinaryExpression(right= $r,

left = $l , operator = $op)
256 with $ttemp
257 to mcrl2::BinaryExpression(type = $t)
258 where $op in set{

textualmcrl2::BinaryOps::Modulo ,
259 textualmcrl2::BinaryOps::Division},
260 $ttemp > $l.type.sort ,
261 $ttemp > $r.type.sort ,
262 mcrl2::IntSort > $ttemp ,
263 mcrl2::Int(sort = $ttemp) = $t
264
265 from textualmcrl2::BinaryExpression(right= $r,

left = $l , operator = $op)
266 to mcrl2::BinaryExpression(type = $t)
267 where $op in set{

textualmcrl2::BinaryOps::LessThan ,
268 textualmcrl2::BinaryOps::GreaterThan ,
269 textualmcrl2::BinaryOps::LessEqual ,
270 textualmcrl2::BinaryOps::GreaterEqual},
271 mcrl2::RealSort > $l.type.sort ,
272 mcrl2::RealSort > $r.type.sort ,
273 $t = mcrl2::Bool(sort=mcrl2::BoolSort)
274
275 from textualmcrl2::BinaryExpression(right= $r,

left = $l , operator = $op)
276 with $te , $tle , $tre
277 to mcrl2::BinaryExpression(type = $t)
278 where $op in set{

textualmcrl2::BinaryOps::LessThan ,
279 textualmcrl2::BinaryOps::GreaterThan ,
280 textualmcrl2::BinaryOps::LessEqual ,
281 textualmcrl2::BinaryOps::GreaterEqual},
282 $l.type.sort = mcrl2::SetSort
283 (elementSort = $tle),
284 $r.type.sort = mcrl2::SetSort
285 (elementSort = $tre),
286 $te > $tle ,
287 $te > $tre ,
288 $t = mcrl2::Bool(sort=mcrl2::BoolSort)
289
290 from textualmcrl2::BinaryExpression(right= $r,

left = $l , operator = $op)
291 with $te
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292 to mcrl2::BinaryExpression(type = $t)
293 where $op = textualmcrl2::BinaryOps::Element ,
294 $l.type.sort = mcrl2::SetSort
295 (elementSort = $te),
296 $te > $r.type.sort ,
297 $t = mcrl2::Bool(sort=mcrl2::BoolSort)
298
299 from textualmcrl2::BinaryExpression(right= $r,

left = $l , operator = $op)
300 with $te
301 to mcrl2::BinaryExpression(type = $t)
302 where $op = textualmcrl2::BinaryOps::Element ,
303 $l.type.sort = mcrl2::ListSort
304 (elementSort = $te),
305 $te > $r.type.sort ,
306 $t = mcrl2::Bool(sort=mcrl2::BoolSort)
307
308 from textualmcrl2::BinaryExpression(right= $r,

left = $l , operator = $op)
309 with $te
310 to mcrl2::BinaryExpression(type = $t)
311 where $op = textualmcrl2::BinaryOps::Element ,
312 $l.type.sort = mcrl2::BagSort
313 (elementSort = $te),
314 $te > $r.type.sort ,
315 $t = mcrl2::Bool(sort=mcrl2::BoolSort)
316
317 from textualmcrl2::BinaryExpression(right= $r,

left = $l , operator = $op)
318 with $te , $tre
319 to mcrl2::BinaryExpression(type = $t)
320 where $op = textualmcrl2::BinaryOps::Cons ,
321 $r.type.sort = mcrl2::ListSort
322 (elementSort = $tre),
323 $te > $tre ,
324 $te > $l.type.sort ,
325 $t = mcrl2::List
326 (sort=mcrl2::ListSort
327 (elementSort = $te))
328
329 from textualmcrl2::BinaryExpression(right= $r,

left = $l , operator = $op)
330 with $te , $tle
331 to mcrl2::BinaryExpression(type = $t)
332 where $op = textualmcrl2::BinaryOps::Snoc ,
333 $l.type.sort = mcrl2::ListSort
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334 (elementSort = $tle),
335 $te > $tle ,
336 $te > $r.type.sort ,
337 $t = mcrl2::List
338 (sort=mcrl2::ListSort
339 (elementSort = $te))
340
341 from textualmcrl2::BinaryExpression(right= $r,

left = $l , operator = $op)
342 with $te ,$tle ,$tre
343 to mcrl2::BinaryExpression(type = $t)
344 where $op in

set{textualmcrl2::BinaryOps::Concat},
345 $l.type.sort = mcrl2::ListSort
346 (elementSort = $tle),
347 $r.type.sort = mcrl2::ListSort
348 (elementSort = $tre),
349 $te > $tle ,
350 $te > $tre ,
351 $t = mcrl2::List
352 (sort=mcrl2::ListSort
353 (elementSort = $te))
354
355 from textualmcrl2::BinaryExpression(right= $r,

left = $l , operator = $op)
356 with $te
357 to mcrl2::BinaryExpression(type = $t)
358 where $op in set{

textualmcrl2::BinaryOps::Equal ,
359 textualmcrl2::BinaryOps::DisEqual},
360 $l.type.sort < $te ,
361 $r.type.sort < $te ,
362 $t = mcrl2::Bool(sort=mcrl2::BoolSort)
363
364 from textualmcrl2::BinaryExpression(right= $r,

left = $l , operator = $op)
365 to mcrl2::BinaryExpression(type = $t)
366 where $op in set{

textualmcrl2::BinaryOps::Conjunction ,
367 textualmcrl2::BinaryOps::Disjunction ,
368 textualmcrl2::BinaryOps::Implication},
369 $l.type.sort = mcrl2::BoolSort ,
370 $r.type.sort = mcrl2::BoolSort ,
371 $t = mcrl2::Bool(sort=mcrl2::BoolSort)
372
373 from textualmcrl2::FunctionApplication(base =
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$b , arguments = $args)
374 with $ft , $params
375 to mcrl2::FunctionApplication(type = $t)
376 where $ft = $b.type ,
377 $ft = mcrl2::HigherOrderSort
378 (domain = $params , result =

$t),
379 for $arg in $args ,
380 $param in $params :
381 $arg.type.sort < $param.sort
382
383 from textualmcrl2::FunctionApplication(base =

$b , arguments = $args)
384 with $ft , $params
385 to mcrl2::FunctionApplication(type = $t)
386 where $ft = $b.constructor ,
387 $ft = textualmcrl2::Constructor
388 (projections = $params),
389 for $arg in $args ,
390 $param in $params :
391 $arg.type.sort < $param.domain.sort ,
392 $t = $b.type
393
394 from textualmcrl2::MapAccess(base = $b , key =

$k , value = $v)
395 with $parameterlist , $parameter , $valuetype
396 to mcrl2::MapAccess(type=$t)
397 where $t = $b.type ,
398 $b.type.sort = mcrl2::HigherOrderSort
399 (domain =

$parameterlist ,
400 result =

$valuetype),
401 length $parameterlist = 1,
402 $parameter in $parameterlist ,
403 $k.type.sort < $parameter ,
404 $v.type.sort < $valuetype
405
406 from textualmcrl2::Lambda(variable = $v,

expression = $e)
407 with $d, $r , $vt
408 to mcrl2::Lambda(type = $t)
409 where $vt = $v.sort.sort ,
410 $d = set{$vt},
411 $r = $e.type.sort ,
412 $t = mcrl2::HigherOrder
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413 (sort=mcrl2::HigherOrderSort
414 (domain = $d,
415 result = $r))
416
417 from textualmcrl2::Equation(left = $l ,

right=$r)
418 with $t
419 to mcrl2::Equation
420 where $t > $l.type.sort ,
421 $t > $r.type.sort
422
423 from textualmcrl2::Sequence
424 to mcrl2::Sequence
425
426 from textualmcrl2::Choice
427 to mcrl2::Choice
428
429 from textualmcrl2::Summation
430 to mcrl2::Summation
431
432 from textualmcrl2::Deadlock
433 to mcrl2::Deadlock
434
435 from textualmcrl2::Parallelism
436 to mcrl2::Parallelism
437
438 from textualmcrl2::Communication
439 to mcrl2::Communication
440
441 strategy
442 mcrl2::Pos < mcrl2::Nat
443 mcrl2::Nat < mcrl2::Int
444 mcrl2::Int < mcrl2::Real
445 mcrl2::PosSort < mcrl2::NatSort
446 mcrl2::NatSort < mcrl2::IntSort
447 mcrl2::IntSort < mcrl2::RealSort
448 mcrl2::ListSort(elementSort = $el) <

mcrl2::ListSort(elementSort = $er) if $el <
$er

449 mcrl2::SetSort(elementSort = $el) <
mcrl2::SetSort(elementSort = $er) if $el <
$er

450 mcrl2::BagSort(elementSort = $el) <
mcrl2::BagSort(elementSort = $er) if $el <
$er

451 strategytarget type
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Appendix E

Type system for POOSL

Listing E.1: POOSL EMF-TL Rules
1 imports
2 http://poosl.esi.nl/untypedpoosl/1 .2.0;
3 http://poosl.esi.nl/poosl/1 .2.0;
4 start untypedpoosl::Poosl
5 typesystem
6 widening
7 poosl::DataClass(name = $n1) <

poosl::DataClass(name = $n2) if $n1 =
"Integer", $n2 = "Real"

8 rules
9
10 from untypedpoosl::Declaration(typename = $n,

links = $l)
11 to poosl::Declaration(type = $t)
12 where $t in $l,
13 $t = untypedpoosl::DataClass(name = $n)
14
15 from untypedpoosl::NamedDataMethod(returntypename

= $n , links = $l)
16 to poosl::NamedDataMethod(returnType = $t)
17 where $t in $l,
18 $t = untypedpoosl::DataClass(name = $n)
19
20 from untypedpoosl::DataClass(extendsname = $n,

instanceVariable = $vs , method = $ms)
21 to poosl::DataClass(allInstanceVariables = $vs ,

allMethods = $ms)
22 where $n = OclUndefined
23
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24 from untypedpoosl::DataClass(extendsname = $n,
links = $l, instanceVariable = $vs , method =
$ms)

25 to poosl::DataClass(extends = $c ,
allInstanceVariables = $avs , allMethods = $ams)

26 where $c in $l,
27 $c = untypedpoosl::DataClass(name = $n),
28 $avs = $vs & ($c.allInstanceVariables),
29 $ams = $ms & ($c.allMethods)
30
31 from untypedpoosl::ProcessClass(extendsname = $n,

variable = $vs , method = $ms)
32 to poosl::ProcessClass(allVariables = $vs ,

allMethods = $ms)
33 where $n = OclUndefined
34
35 from untypedpoosl::ProcessClass(extendsname = $n,

links = $l, variable = $vs , method = $ms)
36 to poosl::ProcessClass(extends = $c , allVariables

= $avs , allMethods = $ams)
37 where $c in $l,
38 $c = untypedpoosl::ProcessClass(name = $n),
39 $avs = $vs & ($c.allVariables),
40 $ams = $ms & ($c.allMethods)
41
42
43 from untypedpoosl::Channel(links = $l , portname =

$pn)
44 to poosl::Channel(port = $p)
45 where $p in $l,
46 $p = untypedpoosl::Port(name = $pn)
47
48 from untypedpoosl::ConnectionPI(links = $l,

channelname = $cn , portname = $pn , instancename
= $in)

49 with $class , $ports
50 to poosl::ConnectionPI(channel = $c , port = $p ,

instance = $i)
51 where $c in $l,
52 $c = untypedpoosl::Channel(name = $cn),
53 $i in $l ,
54 $i = untypedpoosl::Instance(name = $in),
55 $class = $i.classDefinition ,
56 $class = untypedpoosl::ProcessClass(port =

$ports),
57 $p in $ports ,
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58 $p = untypedpoosl::Port(name = $pn)
59
60
61 from untypedpoosl::ConnectionEP(links = $l,

channelname = $cn , portname = $pn)
62 to poosl::ConnectionEP(channel = $c , port = $p)
63 where $c in $l,
64 $c = untypedpoosl::Channel(name = $cn),
65 $p in $l ,
66 $p = untypedpoosl::Port(name = $pn)
67
68 from untypedpoosl::Instance(links = $l , classname

= $cn , arguments = $args)
69 with $params , $ptypeslist , $paramtypes , $argexps ,

$arguments
70 to poosl::Instance(classDefinition = $c)
71 where $c in $l,
72 $c =

untypedpoosl::SpecificationPrimaryClass(name
= $cn , instantiationParameter = $params),

73 for $param in $params ,
74 $ptypes in $ptypeslist ,
75 $vars : ($param =

untypedpoosl::Declaration(variable =
$vars),

76 for $ptype in $ptypes ,
77 $var in $vars :
78 $ptype = $param.type),
79 $paramtypes = flatten $ptypeslist ,
80 $args =

untypedpoosl::ListOfExpressions(expressions
= $argexps),

81 for $argexp in $argexps ,
82 $argument in $arguments ,
83 $paramtype in $paramtypes :
84 ($argexp = untypedpoosl::Expressions
85 (expression = $argument),
86 $paramtype > last $argument.type)
87
88
89 from untypedpoosl::BooleanConstant(links = $l)
90 to poosl::BooleanConstant(type = $t)
91 where $t in $l,
92 $t = untypedpoosl::DataClass(name=" Boolean ")
93
94 from untypedpoosl::CurrentTime(links = $l)
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95 to poosl::CurrentTime(type = $t)
96 where $t in $l,
97 $t = untypedpoosl::DataClass(name="Real")
98
99 from untypedpoosl::IntegerConstant(links = $l)
100 to poosl::IntegerConstant(type = $t)
101 where $t in $l,
102 $t = untypedpoosl::DataClass(name=" Integer ")
103
104 from untypedpoosl::New(links = $l , classname = $c)
105 to poosl::New(type = $t)
106 where $t in $l,
107 $t = untypedpoosl::DataClass(name=$c)
108
109 from untypedpoosl::NilPrimary(links = $l)
110 with $c
111 to poosl::NilPrimary(type = $t)
112 where $t in $l,
113 $t = untypedpoosl::DataClass(name="Nil")
114
115 from untypedpoosl::RealConstant(links = $l)
116 to poosl::RealConstant(type = $t)
117 where $t in $l,
118 $t = untypedpoosl::DataClass(name="Real")
119
120 from

untypedpoosl::RoundBracketExpression(expressions
= $exps , links = $l)

121 with $exp , $e
122 to poosl::RoundBracketExpression(type = $t)
123 where $exps =

untypedpoosl::Expressions(expression = $exp),
124 $e = last $exp ,
125 $t > $e.type ,
126 $t in $l
127
128 from untypedpoosl::Self(links = $l)
129 to poosl::Self(type = $t)
130 where $t in $l,
131 $t = untypedpoosl::DataClass
132
133 from untypedpoosl::StringConstant(links = $l)
134 to poosl::StringConstant(type = $t)
135 where $t in $l,
136 $t = untypedpoosl::DataClass(name=" String ")
137
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138 from untypedpoosl::VariablePrimary(variablename =
$n , links = $l) in $dc : untypedpoosl::DataClass

139 with $d, $lv
140 to poosl::VariablePrimary(type = $t , variable =

$v)
141 where $d in $l,
142 $d = untypedpoosl::Declaration(variable =

$lv),
143 $d in $dc.allInstanceVariables ,
144 $v in $lv ,
145 $v = untypedpoosl::Variable(name = $n),
146 $t = $d.type
147
148 from untypedpoosl::PrimaryExpression(primary=$p,

methodCall = $mc , minusSign = $minus)
149 with $s
150 to poosl::PrimaryExpression(type = $t)
151 where $minus = "false",
152 $s = length $mc ,
153 $s = 0,
154 $t = $p.type
155
156 from untypedpoosl::PrimaryExpression(primary =

$p , methodCall = $mc , minusSign = $minus) in
$dc : untypedpoosl::DataClass

157 with $dcmethods , $firstmethod , $lastmethod ,
$mcpairs

158 to poosl::PrimaryExpression(type = $t)
159 where $minus = "false",
160 $p = OclUndefined ,
161 $dc = untypedpoosl::DataClass(method =

$dcmethods),
162 $firstmethod = first $mc.method ,
163 $firstmethod in $dcmethods ,
164 $mcpairs = pairs $mc ,
165 for ($mc1 ,$mc2) in $mcpairs:
166 ($mc2.method in

$mc1.method.returnType.method),
167 $lastmethod = last $mc.method ,
168 $t = $lastmethod.returnType
169
170 from untypedpoosl::PrimaryExpression(primary =

$p , methodCall = $mc , minusSign = $minus)
171 with $dcmethods , $firstmethod , $lastmethod ,

$mcpairs
172 to poosl::PrimaryExpression(type = $t)
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173 where $minus = "false",
174 $p.type = untypedpoosl::DataClass(method =

$dcmethods),
175 $firstmethod = first $mc.method ,
176 $firstmethod in $dcmethods ,
177 $mcpairs = pairs $mc ,
178 for ($mc1 ,$mc2) in $mcpairs:
179 ($mc2.method in

$mc1.method.returnType.method),
180 $lastmethod = last $mc.method ,
181 $t = $lastmethod.returnType
182
183 from untypedpoosl::PrimaryExpression(primary=$p,

methodCall = $mc , minusSign = $minus)
184 with $s
185 to poosl::PrimaryExpression(type = $t)
186 where $minus = "true",
187 $s = length $mc ,
188 $s = 0,
189 $t = $p.type ,
190 $t = untypedpoosl::DataClass(name =

"Boolean ")
191
192 from untypedpoosl::PrimaryExpression(primary =

$p , methodCall = $mc , minusSign = $minus) in
$dc : untypedpoosl::DataClass

193 with $dcmethods , $firstmethod , $lastmethod ,
$mcpairs

194 to poosl::PrimaryExpression(type = $t)
195 where $minus = "true",
196 $p = OclUndefined ,
197 $dc = untypedpoosl::DataClass(method =

$dcmethods),
198 $firstmethod = first $mc.method ,
199 $firstmethod in $dcmethods ,
200 $mcpairs = pairs $mc ,
201 for ($mc1 ,$mc2) in $mcpairs:
202 ($mc2.method in

$mc1.method.returnType.method),
203 $lastmethod = last $mc.method ,
204 $t = $lastmethod.returnType ,
205 $t = untypedpoosl::DataClass(name =

"Boolean ")
206
207 from untypedpoosl::PrimaryExpression(primary =

$p , methodCall = $mc , minusSign = $minus)
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208 with $dcmethods , $firstmethod , $lastmethod ,
$mcpairs

209 to poosl::PrimaryExpression(type = $t)
210 where $minus = "true",
211 $p.type = untypedpoosl::DataClass(method =

$dcmethods),
212 $firstmethod = first $mc.method ,
213 $firstmethod in $dcmethods ,
214 $mcpairs = pairs $mc ,
215 for ($mc1 ,$mc2) in $mcpairs:
216 ($mc2.method in

$mc1.method.returnType.method),
217 $lastmethod = last $mc.method ,
218 $t = $lastmethod.returnType ,
219 $t = untypedpoosl::DataClass(name =

"Boolean ")
220
221 from untypedpoosl::PrimaryExpression(primary=$p,

methodCall = $mc , minusSign = $minus)
222 with $s
223 to poosl::PrimaryExpression(type = $t)
224 where $minus = "true",
225 $s = length $mc ,
226 $s = 0,
227 $t = $p.type ,
228 $t < untypedpoosl::DataClass(name = "Real")
229
230 from untypedpoosl::PrimaryExpression(primary =

$p , methodCall = $mc , minusSign = $minus) in
$dc : untypedpoosl::DataClass

231 with $dcmethods , $firstmethod , $lastmethod ,
$mcpairs

232 to poosl::PrimaryExpression(type = $t)
233 where $minus = "true",
234 $p = OclUndefined ,
235 $dc = untypedpoosl::DataClass(method =

$dcmethods),
236 $firstmethod = first $mc.method ,
237 $firstmethod in $dcmethods ,
238 $mcpairs = pairs $mc ,
239 for ($mc1 ,$mc2) in $mcpairs:
240 ($mc2.method in

$mc1.method.returnType.method),
241 $lastmethod = last $mc.method ,
242 $t = $lastmethod.returnType ,
243 $t < untypedpoosl::DataClass(name = "Real")
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244
245 from untypedpoosl::PrimaryExpression(primary =

$p , methodCall = $mc , minusSign = $minus)
246 with $dcmethods , $firstmethod , $lastmethod ,

$mcpairs
247 to poosl::PrimaryExpression(type = $t)
248 where $minus = "true",
249 $p.type = untypedpoosl::DataClass(method =

$dcmethods),
250 $firstmethod = first $mc.method ,
251 $firstmethod in $dcmethods ,
252 $mcpairs = pairs $mc ,
253 for ($mc1 ,$mc2) in $mcpairs:
254 ($mc2.method in

$mc1.method.returnType.method),
255 $lastmethod = last $mc.method ,
256 $t = $lastmethod.returnType ,
257 $t < untypedpoosl::DataClass(name = "Real")
258
259 from untypedpoosl::DataMethodCall(links = $l,

methodname = $mn , arguments = $args)
260 with $params , $ptypeslist , $varlists ,

$paramtypes , $argexps , $arguments
261 to poosl::DataMethodCall(method = $method)
262 where $method in $l ,
263 $method = untypedpoosl::NamedDataMethod
264 (parameter = $params , name =

$mn),
265 for $param in $params ,
266 $ptypes in $ptypeslist ,
267 $vars: ($param =

untypedpoosl::Declaration
268 (variable = $vars),
269 for $ptype in $ptypes ,
270 $var in $vars :
271 $ptype = $param.type),
272 $paramtypes = flatten $ptypeslist ,
273 $args = untypedpoosl::ListOfExpressions
274 (expressions = $argexps),
275 for $argexp in $argexps ,
276 $argument in $arguments ,
277 $paramtype in $paramtypes :
278 ($argexp = untypedpoosl::Expressions
279 (expression = $argument),
280 $paramtype > last $argument.type)
281
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282 error untypedpoosl::PrimaryExpression
283 message "Undefined Expression"
284
285 from untypedpoosl::OperatorExpression(operator =

$o , leftOperand = $l , rightOperand = $r ,links =
$links)

286 with $te
287 to poosl::OperatorExpression(type = $t)
288 where $o in set{poosl::Operator::equals ,
289 poosl::Operator::equalsNot ,
290 poosl::Operator::isIdenticalWith ,
291 poosl::Operator::isNotIdenticalWith},
292 $te = $l.type ,
293 $te = $r.type ,
294 $t in $links ,
295 $t = untypedpoosl::DataClass(name=" Boolean ")
296
297 from untypedpoosl::OperatorExpression(operator =

$o , leftOperand = $l , rightOperand = $r)
298 to poosl::OperatorExpression(type = $t)
299 where $o in set{poosl::Operator::and ,
300 poosl::Operator::or},
301 $t = $l.type ,
302 $t = $r.type ,
303 $t = untypedpoosl::DataClass(name =

"Boolean ")
304
305 from untypedpoosl::OperatorExpression(operator =

$o , leftOperand = $l , rightOperand = $r)
306 to poosl::OperatorExpression(type = $t)
307 where $o in set{poosl::Operator::add ,
308 poosl::Operator::subtract ,
309 poosl::Operator::multiply ,
310 poosl::Operator::divide},
311 $t > $l.type ,
312 $t > $r.type ,
313 $t < untypedpoosl::DataClass(name = "Real")
314
315 from untypedpoosl::OperatorExpression(operator =

$o , leftOperand = $l , rightOperand = $r)
316 with $te
317 to poosl::OperatorExpression(type = $t)
318 where $o in set{poosl::Operator::lessThan ,
319 poosl::Operator::lessOrEqual ,
320 poosl::Operator::moreThan ,
321 poosl::Operator::moreOrEqual},
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322 $t > $l.type ,
323 $t > $r.type ,
324 $t < untypedpoosl::DataClass(name = "Real"),
325 $t = untypedpoosl::DataClass(name =

"Boolean ")
326
327 from untypedpoosl::AssignmentExpression(name =

$n , expression = $e , links = $l)
328 with $d, $dvs
329 to poosl::AssignmentExpression(type = $t,

variable = $v)
330 where $d in $l,
331 $d = untypedpoosl::Declaration(variable =

$dvs),
332 $v in $dvs ,
333 $v = untypedpoosl::Variable(name = $n),
334 $t = $d.type ,
335 $t > $e.type
336
337 from untypedpoosl::IfExpression(condition =

$cexps , thenClause = $texps , elseClause =
$eexps)

338 with $ccs , $tcs , $ecs , $bool
339 to poosl::IfExpression(type = $t)
340 where $cexps =

untypedpoosl::Expressions(expression = $ccs),
341 $bool = last $ccs.type ,
342 $bool = untypedpoosl::DataClass(name =

"Boolean "),
343 $texps =

untypedpoosl::Expressions(expression =
$tcs),

344 $t > last $tcs.type ,
345 $eexps =

untypedpoosl::Expressions(expression =
$ecs),

346 $t > last $ecs.type
347
348 error untypedpoosl::IfExpression
349 message "Incorrect if expression"
350
351 from untypedpoosl::ReturnExpression(expression =

$e)
352 to poosl::ReturnExpression(type = $t)
353 where $t = $e.type
354
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355 from untypedpoosl::WhileExpression(condition =
$cexps , loopBody = $lexps)

356 with $ccs , $lcs , $bool
357 to poosl::WhileExpression(type = $t)
358 where $cexps =

untypedpoosl::Expressions(expression = $ccs),
359 $bool = last $ccs.type ,
360 $bool = untypedpoosl::DataClass(name =

"Boolean "),
361 $lexps =

untypedpoosl::Expressions(expression =
$lcs),

362 $t > last $lcs.type
363
364 from

untypedpoosl::MessageReceiveSignature(portname
= $n , links = $l)

365 to poosl::MessageReceiveSignature(port = $p)
366 where $p in $l,
367 $p = untypedpoosl::Port(name = $n)
368
369 from untypedpoosl::MessageSendSignature(portname

= $n , links = $l)
370 to poosl::MessageSendSignature(port = $p)
371 where $p in $l,
372 $p = untypedpoosl::Port(name = $n)
373
374 from untypedpoosl::MessageParameter(parametername

= $n , links = $l)
375 to poosl::MessageParameter(parameter = $p)
376 where $p in $l,
377 $p = untypedpoosl::DataClass(name = $n)
378
379 from untypedpoosl::PortName(portname = $n, links

= $l)
380 to poosl::PortName(port = $p)
381 where $p in $l,
382 $p = untypedpoosl::Port(name = $n)
383
384 from untypedpoosl::Expressions
385 to poosl::Expressions
386
387 from untypedpoosl::DelayStatement(expression =

$cexp)
388 with $real
389 to poosl::DelayStatement
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390 where $cexp.type < untypedpoosl::DataClass(name =
"Real")

391
392 from

untypedpoosl::GuardedStatement(guardExpressions
= $cexps)

393 with $ccs , $bool
394 to poosl::GuardedStatement
395 where $cexps =

untypedpoosl::Expressions(expression = $ccs),
396 last $ccs.type =

untypedpoosl::DataClass(name = "Boolean ")
397
398 from

untypedpoosl::IfStatement(conditionExpressions
= $cexps)

399 with $ccs , $bool
400 to poosl::IfStatement
401 where $cexps =

untypedpoosl::Expressions(expression = $ccs),
402 last $ccs.type =

untypedpoosl::DataClass(name = "Boolean ")
403
404 from untypedpoosl::ReceiveMessage(messagename =

$n , links = $l, receptionCondition = $ce ,
variablenames = $vns)

405 with $msig , $bool , $ps
406 to poosl::ReceiveMessage(_message = $m , variable

= $vs)
407 where $msig in $l,
408 $msig =

untypedpoosl::MessageReceiveSignature
409 (_message = $m, parameter = $ps),
410 $m = untypedpoosl::MessageReceive(name =

$n),
411 $ce = OclUndefined ,
412 for $v in $vs ,
413 $vn in $vns :
414 ($v in $l,
415 $v = untypedpoosl::Variable(name =

$vn)),
416 for $v in $vs ,
417 $dec , $decvars ,
418 $p in $ps :
419 ($dec in $l,
420 $dec = untypedpoosl::Declaration
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421 (variable = $decvars),
422 $v in $decvars ,
423 $dec.type = $p.parameter)
424
425 from untypedpoosl::ReceiveMessage(messagename =

$n , links = $l, receptionCondition = $ce ,
variablenames = $vns)

426 with $msig , $bool , $ps , $decs , $decvarslist ,
$dectypes

427 to poosl::ReceiveMessage(_message = $m, variable
= $vs)

428 where $msig in $l,
429 $msig =

untypedpoosl::MessageReceiveSignature
430 (_message = $m, parameter =

$ps),
431 $m = untypedpoosl::MessageReceive(name =

$n),
432 $bool = $ce.type ,
433 $bool =

untypedpoosl::DataClass(name=" Boolean "),
434 for $v in $vs ,
435 $vn in $vns :
436 ($v in $l, $v = untypedpoosl::Variable
437 (name = $vn)),
438 for $v in $vs ,
439 $dec in $decs ,
440 $decvars in $decvarslist ,
441 $p in $ps :
442 ($dec in $l,
443 $dec = untypedpoosl::Declaration
444 (variable = $decvars),
445 $v in $decvars ,
446 $dec.type = $p.parameter)
447
448 from untypedpoosl::SendMessage(messagename = $n,

links = $l, listOfExpressions = $liste)
449 with $msig , $ms , $exps , $es , $ts , $ps
450 to poosl::SendMessage(_message = $m)
451 where $msig in $l ,
452 $msig = untypedpoosl::MessageSendSignature
453 (_message = $m, parameter =

$ps),
454 $m = untypedpoosl::MessageSend(name = $n),
455 for $t in $ts ,
456 $p in $ps :
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457 $t = $p.parameter ,
458 $liste = untypedpoosl::ListOfExpressions
459 (expressions = $exps),
460 for $exp in $exps ,
461 $e in $es ,
462 $t in $ts :
463 ($exp =

untypedpoosl::Expressions(expression
= $e),

464 $t = last $e.type)
465
466 from untypedpoosl::ProcessMethodCall(links = $l,

methodname = $mn , inputArguments = $args ,
outputvarnames = $ovnames)

467 with $params , $ptypeslist , $paramtypes ,
468 $outparams , $outptypeslist , $outparamtypes ,
469 $varlists ,
470 $argexps , $arguments , $ovdecs
471 to poosl::ProcessMethodCall(method = $method ,

outputVariables = $ovs)
472 where $method in $l ,
473 $method = untypedpoosl::ProcessMethod(
474 inputParameter = $params ,
475 name = $mn ,
476 outputParameter = $outparams),
477 for $param in $params ,
478 $paramvars ,
479 $ptypes in $ptypeslist: (
480 $param = untypedpoosl::Declaration
481 (variable = $paramvars),
482 for $ptype in $ptypes ,
483 $var in $paramvars :
484 $ptype = $param.type),
485 $paramtypes = flatten $ptypeslist ,
486 for $outparam in $outparams ,
487 $outparamvars ,
488 $outptypes in $outptypeslist: (
489 $outparam =

untypedpoosl::Declaration
490 (variable = $outparamvars),
491 for $outptype in $outptypes ,
492 $var in $outparamvars :
493 $outptype = $outparam.type),
494 $outparamtypes = flatten $outptypeslist ,
495 $args = untypedpoosl::ListOfExpressions
496 (expressions = $argexps),
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497 for $argexp in $argexps ,
498 $argument in $arguments ,
499 $paramtype in $paramtypes :
500 ($argexp = untypedpoosl::Expressions
501 (expression =

$argument),
502 $paramtype > last $argument.type),
503 for $ov in $ovs ,
504 $ovdec ,
505 $ovname in $ovnames ,
506 $outparamtype in $outparamtypes :
507 ($ovdec in $l,
508 $ov in $ovdec.variable ,
509 $outparamtype = $ovdec.type ,
510 $ov = untypedpoosl::Variable
511 (name = $ovname))
512
513
514 from untypedpoosl::SkipStatement
515 to poosl::SkipStatement
516
517 from

untypedpoosl::WhileStatement(conditionExpressions
= $cexps)

518 with $ccs , $cc , $bool
519 to poosl::WhileStatement
520 where $cexps =

untypedpoosl::Expressions(expression = $ccs),
521 $cc = last $ccs ,
522 $bool = $cc.type ,
523 $bool = untypedpoosl::DataClass(name =

"Boolean ")
524
525 strategy
526 poosl::DataClass(name = $n1) <

poosl::DataClass(name = $n2) if $n1 =
"Integer", $n2 = "Real"

527 strategytarget type
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Appendix F

Summary

In recent years, Model Driven Engineering (MDE) has been suggested as an
approach to make software development easier, faster and cheaper. In order to
achieve this, domain models are used to represent systems and their behavior
within a specific knowledge domain such as finance or complex manufacturing
systems. Domain experts design and interact with these models. As domain
experts frequently have limited knowledge of software engineering, facilitating
model design and interaction becomes imperative. A popular solution address-
ing this challenge consists in creating Domain-Specific Languages (DSLs). As
opposed to General Purpose Languages (GPLs), DSLs include special constructs
for domain concepts, and exclude constructs that are not useful in the domain.
Using these constructs, models can be made smaller, clearer and more expres-
sive.

One disadvantage of DSLs is that each DSL needs its own set of tools to
implement it in order to make the DSL effective. Tools are used to create, display
and modify models, to convert models between different representations and
languages, and to express the behavior or computation expressed in the model.
From a theoretical perspective, these tools are all based on two fundamental
aspects of any formal language, its syntax and semantics. The syntax describes
how models in the language are constructed. Usually, the syntax is split into two
parts, one that defines the concepts at a conceptual level, called abstract syntax,
and a part that describes how models are presented to the user, called concrete
syntax. Most formal languages allow a user to create models in concrete syntax,
which is then converted to a representation in abstract syntax by a so-called
parser.

A common step after parsing is type checking. The purpose of type checking
is twofold. First of all, type checking uses the semantics of the language to
recover more explicit information from the result of parsing. This more explicit
information might be required for the subsequent model processing such as con-
version between different representations and languages. For instance, the type
information can also be used to select between different possible interpretations
of similar constructs, allowing more concise representations of detailed models.
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Second, type checking provides early error diagnostics. Indeed, as the name
suggests, type checking revolves around the concept of types. Types describe
set of values that can be produced as results of computations, or are expected
by computations as input. By comparing the type of the values produced to the
expected type of the input, inconsistencies can be discovered before they cause
failures or errors.

These features make type systems useful for many languages. However,
constructing a type checker takes significant effort and requires specific skills.
Additionally, it is difficult to verify whether a manually constructed type checker
indeed implements the desired type system. We propose to address this by
generating type checkers based on specifications. We believe this process will
reduce the skill required to create a type checker and clarify the relation between
type checker and type system, making it easier both to create a type checker
and to evaluate the usefulness of type system constructs for different languages.
However, in order to specify type systems, a suitable formalism is needed. This
formalism should be precise, but accessible to language designers, and support
the language design process. This leads to the primary research question of this
thesis: How can DSL type systems be specified in an understandable, formal and
evolvable way?

To decide what properties a type system formalism needs, we conducted
a Systematic Literature Review (SLR) to discover the kind of type systems
DSLs have. We found DSL type systems are generally strong, static and not
object-oriented. Based on the SLR, exploration of the requirements of DSL
stakeholders and previous experience, we decided to select Modular Structural
Operational Semantics (MSOS) as our first candidate as type system specifica-
tion formalism. MSOS is a semantics formalism developed to specify operational
semantics in a syntax-oriented and inductive way. Until now, MSOS has mainly
been used to specify dynamic semantics, but theoretically it can be used for
static semantics as well. We tested this by specifying part of the type system of
the modeling language Compositional Interchange Format (CIF) in MSOS. We
found that was an effective specification method, that in particular allowed the
domain experts to give rapid feedback on how the type system should behave.

Once we had a type system, we wanted to create an implementation of it that
could type CIF models. While doing this, we discovered that MSOS was not as
convenient for specifying type systems as we initially presumed. In particular,
we found MSOS had little support to define some of the properties of the CIF
type system in an efficient manner, and the abstract nature of the rules make
it hard to connect them to the actual data structures used by the parser and
other tools, limiting interoperability.

To solve these problems, we decided to create our own language inspired
by MSOS, EMF-TL. The primary theoretical difference between EMF-TL and
MSOS lies in the addition of constraint conditions, which allow us to define
CIF constructs that require multiple MSOS rules to define in one EMF-TL rule
instead. Furthermore, EMF-TL is based on the Eclipse Modeling Framework,
EMF, a framework designed to improve interaction between modeling tools by
providing a common infrastructure. EMF aims to make DSL design easier by
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providing a “One Stop Shop" with tools that cover a variety of use cases. By
basing our language on EMF, we can use the facilities the framework provides
to connect with the infrastructure of the base language of our type system, CIF
in our first example, directly.

We then implemented EMF-TL using the ATL transformation language and
the ECLiPSe constraint engine. By using these pre-existing technologies we
were able to create a flexible and reasonably efficient prototype with only lim-
ited effort. Because the CIF language is also EMF-based, we could use this
implementation to create a prototype type checker for CIF models. Using this
prototype, we could demonstrate that EMF-TL indeed solves the problems we
had with MSOS and can effectively implement the CIF type system.

To validate EMF-TL further, we then carried out a number of other case
studies, to evaluate the general applicability of EMF-TL. The three languages
we choose for these case studies are WebDSL, an object-oriented web design
language, mCRL2, a process language with algebraic data types, and POOSL,
a process modeling language with object features. With these three languages,
we covered both a representative set of different type system features, but also
different levels of complexity and of existing type checkers. We implemented
partial or complete type systems for all three languages, demonstrating the
flexibility of EMF-TL.

We conclude that EMF-TL reinforces EMF as a “One Stop Shop" solution
for defining DSLs, enabling the definition of non-trivial DSL type systems that
can be seamlessly integrated with existing Ecore infrastructure. Overall, we
have demonstrated that type system specifications are an effective and practical
technique in domain specific language design.
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Appendix G

Samenvatting

In recente jaren is Model-gedreven Ontwikkeling opgekomen als een gesug-
gereerde aanpak om het ontwikkelen van software makkelijker, sneller en goed-
koper te maken. Om dit te bereiken worden domein modellen gebruikt om sys-
temen en hun gedrag te beschrijven binnen een specifiek domein, zoals geldzaken
of assemblage van complexe machinerie. Experts uit het domein ontwerpen en
werken actief mee aan deze modellen. Omdat domeinexperts vaak beperkte
kennis hebben van de constructie van software, is het van fundamenteel be-
lang het ontwerpen en werken met deze modellen te faciliteren. Een popu-
laire oplossing om deze uitdagingen aan te pakken bestaat uit het creëren van
domein-specifieke talen(DST), ook wel Domain-Specific Languages (DSLs) ge-
noemd. In tegenstelling tot algemene programmeertalen, ook wel General Pur-
pose Languages (GPLs), bevatten domein-specifieke talen speciale constructies
voor concepten in het domein, en worden constructies die niet zinvol zijn in het
domein weggelaten. Met deze constructies kunnen modellen kleiner, duidelijker
en expressiever gemaakt worden.

Een nadeel van DSTs is dat elke DST zijn eigen set gereedschappen nodig
heeft om de DST bruikbaar te maken. Deze gereedschappen worden gebruikt
om modellen te maken, te visualiseren, aan te passen, te vertalen tussen verschil-
lende representaties en naar andere talen en om het gedrag en de berekeningen
die in het model zijn uitgedrukt uit te voeren. Van een theoretisch perspectief
gezien zijn al deze gereedschappen gebaseerd op twee fundamentele aspecten
van elke formele taal, namelijk de syntax en de semantiek. De syntax beschri-
jft hoe modellen in de taal zijn opgebouwd. In veel gevallen wordt de syntax
gescheiden in twee delen, een dat de concepten van de taal op een conceptueel
niveau definieert, ook wel de abstracte syntax genaamd, en een deel dat beschri-
jft hoe de modellen worden getoond aan de gebruiker, ook wel concrete syntax
genaamd. De meeste formele talen laten de gebruiker modellen maken met con-
crete syntax, die daarna worden vertaald naar een representatie in abstracte
syntax door een zogenoemde parser.

Een veelgemaakte stap na parseren is typecontrole. Het doel van typecontrole
is tweevoudig. Ten eerste, typecontrole gebruikt de semantiek van de taal om
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meer expliciete informatie te vergaren op basis van het resultaat van de parser.
Deze extra expliciete informatie kan nodig zijn voor latere model operaties zoals
vertalingen naar andere representatie en talen. Bijvoorbeeld, de type informatie
kan ook gebruikt worden om te kiezen tussen verschillende mogelijke interpre-
taties van vergelijkbare constructies, waardoor meer compacte representaties
van modellen mogelijk worden. Ten tweede, typecontrole maakt het mogelijk
fouten in een vroeg stadium te detecteren. Zoals de naam suggereert draait
typecontrole om het concept type. Types beschrijven sets van waardes die door
berekeningen als uitkomst kunnen worden geproduceerd. Door het type van de
geproduceerde waardes te vergelijken met de verwachte waarden van de invoer,
kunnen inconsistenties worden ontdekt voor dat ze problemen en fouten kunnen
veroorzaken.

Deze eigenschappen maken typesystemen nuttig voor veel talen. Helaas kost
het construeren van een gereedschap om typecontrole uit te voeren significante
moeite en vereist specifieke vaardigheden. Verder is het moeilijk om te veri-
fiëren of een handmatig geconstrueerd typecontrolegereedschap inderdaad het
gevraagde typesysteem implementeert. We stellen voor om dit aan te pakken
door typecontrolegereedschappen te genereren op basis van specificaties. We
geloven dat dit proces de vereiste vaardigheden om een typecontrolegereedschap
te bouwen vermindert en de relatie tussen het typecontrolegereedschap en het
typesysteem kan verduidelijken. Maar, om typesystemen te specificeren is een
geschikt formalisme nodig. Dit formalisme moet precies zijn, maar toegankelijk
voor taal ontwikkelaars, en moet het ontwikkelproces van talen ondersteunen.
Dit leidt tot de primaire onderzoeksvraag van dit proefschrift: Hoe kunnen DST
typesystemen worden gespecificeerd in een begrijpelijke, formele en verbeterbare
manier?

Om te beslissen welke eigenschappen een formalisme voor typesystemen
nodig heeft, hebben we een systematisch onderzoek van de literatuur, ook wel
Systematic Literature Review (SLR) genoemd, uitgevoerd om te ontdekken wat
voor typesystemen DSTs hebben. We ontdekten dat DST typesystemen over
algemeen sterk, statische en niet object-georiënteerd zijn. Op basis van het
literatuuronderzoek, bestudering van de verwachte eisen van betrokkenen bij
DSTs en bestaande ervaring, besloten we Modular Structural Operational Se-
mantics (MSOS) te selecteren als onze eerste kandidaat typesysteem specificatie
formalisme. MSOS is een semantiek-formalisme ontwikkeld om operationele se-
mantiek in een syntax-georiënteerde en inductieve manier te specificeren. Tot
heden is MSOS toegepast om dynamische semantiek te beschrijven, maar het
kan ook gebruikt worden voor statische semantiek. We hebben dit getoetst door
delen van het typesysteem van de modeleringstaal Compositional Interchange
Format (CIF) in MSOS te specificeren. We constateerden dat MSOS een effec-
tieve specificatie-methode was, die met name de domeinexperts toestond snel te
oordelen of het typesysteem voldeed aan de verwachtingen.

Toen we een typesysteem hadden, wilden we een gereedschap creëren dat
gebruikt kon worden om CIF-modellen te typeren. Terwijl we dit deden, ont-
dekten we dat MSOS niet zo geschikt was als we eerst dachten. We realiseerden
met name dat MSOS weinig ondersteuning had om sommige gewenste eigen-
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schappen van het CIF-typesysteem in een efficiënte manier te definiëren, en dat
de abstracte natuur van de regels het maken van verbindingen met bestaande
data structuren die door de parser en andere gereedschappen gebruikt worden,
waardoor interoperabiliteit beperkt wordt.

Om deze problemen op te lossen, besloten we onze eigen taal te creëren op
basis van inspiratie uit MSOS, genaamd EMF-TL. Het voornaamste theoretis-
che verschil tussen EMF-TL en MSOS zit in het toevoegen van beperkingscon-
dities, die ons toestaan om CIF-constructies die meerdere MSOS regels nodig
hebben in een enkele EMF-TL regel gevangen kunnen worden. Verder is EMF-
TL gebaseerd op Eclipse Modeling Framework, EMF, een raamwerk ontworpen
om interactie tussen modeleringstools te verbeteren door een gedeelde infras-
tructuur aan te bieden. EMF heeft tot doel DST ontwerp eenvoudiger te maken
door een “Alles In Een” oplossing aan te bieden met tools die een variëteit aan
mogelijke doeleinden afdekken. Door onze taal op EMF te baseren, kunnen we
de faciliteiten gebruiken die het raamwerk aanlevert om een directe verbinding
te maken met de infrastructuur van de onderliggende taal van ons typesysteem,
CIF in ons eerste voorbeeld.

We hebben daarna EMF-TL geïmplementeerd door gebruik te maken van
de ATL transformatietaal en het ECLiPSe systeem. Door deze bestaande tech-
nologie te gebruiken waren we in staat om een flexibel en redelijk efficiënt pro-
totype te maken met een relatief beperkte investering. Omdat de taal CIF ook
EMF gebaseerd is, konden we deze implementatie gebruiken om een prototype
typecontrolegereedschap te maken voor CIF-modellen. Gebruik makend van dit
prototype konden we aantonen dat EMF-TL de problemen oplost die we hadden
met MSOS en het typesysteem van CIF effectief kan implementeren.

Om EMF-TL verder te valideren, hebben we daarna een aantal praktische
studies uitgevoerd om de meer generieke toepasbaarheid van EMF-TL te toet-
sen. De drie talen die we uitkozen voor deze praktische studies zijn WebDSL, een
object-georiënteerde taal voor webontwerp, mCRL2, een proces taal met alge-
braïsche datatypes, en POOSL, een procesmodeleringstaal met bepaalde object
constructies. Met deze drie talen dekten we een representatieve set van ver-
schillende typesysteemeigenschappen, maar ook verschillende niveaus van com-
plexiteit en van bestaande typecontrolegereedschappen. We implementeerden
gedeeltelijke of complete typesystemen voor alle drie talen, en demonstreerden
hiermee de flexibiliteit van EMF-TL.

We concluderen dat EMF-TL EMF als “Alles In Een” oplossing voor DST
ontwikkeling versterkt, door het mogelijk te maken niet-triviale DST typesys-
temen te definiëren die naadloos geïntegreerd kunnen worden met bestaande
Ecore infrastructuur. In vogelvlucht hebben we gedemonstreerd dat typesys-
teemspecificaties een effectieve en praktische techniek is in het ontwikkelen van
een domein-specifieke taal.
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