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Preface
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doctoral
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Alberto
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Paul

bringing a breath of fresh air.

colleague Andrei
Huub

sharing your educational experience during course in-
structions.

secretary Meivan teaching me office essentials, such as the art of operat-
ing a fax machine.

pupil Gijs
Natalia

givingme the opportunity to supervise your graduation
projects.

MSR
colleague

Nathalie
Yann
Sanjay

your hospitality at Microsoft Research and introducing
me to American peculiarities like decorating ginger-
bread houses.

friend Hendrik openingdoors andpointing out the beer at conferences.
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lovingly referred to as “being Jacked”.

copromotor Michel introducingme to the frontier of biological visualization
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brother Sip sharing my journey as a (post-)doctoral candidate in
good spirits and company, Nuria in particular. I re-
member sitting next to you on a Saturday morning
when I received my first paper rejection. You cheered
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feels.”

father Ernst teachingme the core principles of engineering and de-
sign as a child, which I ignored for many subsequent
years. Too few children have the privilege to partake in
dinner table discussions about two-stroke engines and
19th century European politics in short succession.

mother Ria encouraging my creative activities as a child by teach-
ing me about sketching, painting, and composition,
which I ignored for many subsequent years. I admire
your tolerance of dinner table discussions about two-
stroke engines and 19th century European politics.
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Introduction



2 Introduction

Many of the processes known to take place in biological cells are analyzed in the form
of different types of networks. Network visualizations form a significant part of the
biologist’s analysis toolkit, from static wall posters [1] to interactive platforms such as
Cytoscape [2]. These methods are elementary, generic, and enable rapid analysis of
diverse data sets.

The size and complexity of biological networks increases along with our knowl-
edge of cell processes, which impedes their analysis with existing, generic methods.
This complexity is in part caused by a rich biological context. Additional structure can
therefore be imposed on, or derived from, biological networks in the form of modules,
which are subnetworks that are likely associated with specific cell processes. In this
work we introduce, demonstrate, and discuss techniques that aim to support biologi-
cal network analysis via the visualization of modular structures. These techniques are
described in self-contained chapters:

Background In Chapter 2 we first describe three network types that are commonly
used in analysis of cell biology: gene regulatory, protein interaction, and metabolic
networks. Visualization practices, problems, and opportunities are discussed as a pre-
cursor to subsequent chapters, which (amongst others) concern all threenetwork types
and their modular structures. In addition, we provide insight into the complexity en-
countered in cell biology bydiscussing the need to visually integrate the three network
types and enabling comparison of networks that belong to different organisms.

Compressed Adjacency Matrix Gene regulatory networks have structural char-
acteristics that impede standard visualization techniques such as node-link diagrams
and adjacency matrices. However, in Chapter 3 we show how these characteristics
can be leveraged to cut open, rearrange, and compress adjacency matrices. These
compressed matrices enable easy, visual detection of structures that are commonly
associated with specific regulatory functions. We discuss those structures that are of
interest to analysts, and relate them to network analysis tasks common to the visualiza-
tion domain. Analysts can easily find these structures in compressed adjacency matri-
ces, while the same is hard in standard adjacencymatrix and node-link diagrams. This
shows how gene regulatory networks allow for visualizations that emphasize specific
structures while avoiding explicit emphasis via annotations.

Kelp Diagrams Some situations merit explicit emphasis of structures, such as high-
lighting a region of interest on topof an existingmetabolic pathwayvisualization. When
dealing with a pre-positioned node-link diagram, delimiting structures with contours
is an obvious approach but one with visual caveats. These caveats become apparent
in Chapter 4, in which Kelp Diagrams are introduced. These diagrams are capable of
highlightingmultiple overlapping structures (or set relations) on top of pre-positioned
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nodes. Kelp Diagrams consist of schematic contours that are generated with special
attention to aesthetic quality, efficiency, and effectiveness. Comparison of Kelp Dia-
grams to two existing methods demonstrates the relevance of these concerns and the
difficulty of visualizing complex structures, even for small data sets.

eXamine If overlapping structures are hard to emphasize as an addition to smaller
networks such as metabolic pathways, then visualizing it for larger Protein Interaction
Networks should be an even greater challenge. Conveniently, biologists are special-
ized in specific cell processes, types, and conditions. Biologists therefore often require
the analysis of but small parts of the larger Protein Interaction Networks. Such a small
part, or module, can be extracted because of recent advances that combine methods
from statistics and combinatorics. Commonly, amultitude of set-based annotations are
then attached to the module via statistical analysis with readily available knowledge
such as Gene Ontology terms.

We present eXamine in Chapter 5, which is a Cytoscape app that supports the anal-
ysis of annotated modules. It integrates Kelp Diagram methodology into a simple lay-
out algorithm and enables interactive exploration of a module and its annotations. We
show the added value of this methodology via a case study that has resulted in a bio-
logical insight regarding the protein US28, which is associated with the development
of certain types of cancer.

Dual Adjacency Matrix Subnetworks are often interpreted as a group of nodes ac-
companied by a group of links that connect them, also known as an induced subnet-
work. This natural perspective is pervasive in aforementioned chapters, but in Chap-
ter 6 we explore the alternate perspective; grouped links that are connected by nodes.
We introduce the Dual Adjacency Matrix, which combines link and node group tech-
niques such that an analyst can navigate the conceptual gap between link and node
groups. Enabling the analysis of link groups is of particular interest for dense, or total,
networks that contain additional link information, such as brain connectivity networks
that are obtained via functional MRI studies.

Retrospective The mentioned chapters describe each technique in isolation, often
skipping details of the underlying research process, pitfalls, and surprises. These
details are left out to maintain clarity and focus, but can provide important insights
nonetheless. In Chapter 7 we therefore conclude with a discussion about these issues
and how they fit into the bigger picture of biological network visualization.
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K. Dinkla and M.A. Westenberg

Parts of this chapter have been published in Tsinghua Science and Technology [210].
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2.1. Introduction
Understanding cell biology is key to thedevelopment of effectivemedicines and, there-
fore, subject to large-scale research. A biological cell consists of chemical compounds
and its behavior is determinedby interactions and reactionsbetween these compounds.
These reactions and interactions are often represented by three types of abstract net-
works:

Gene Regulatory Network Genes and how they promote or inhibit each other;

Protein Interaction Network Proteins and their affecting or binding interactions;

Metabolic Network Metabolites and metabolite transforming reactions.

These networks are derived from experiments on cells and existing knowledge of
chemistry, but are still incomplete and imprecise. Networks become more complete
as technology advances and therefore grow in complexity, which poses new analysis
challenges.

Network visualization has been subject to much research and is pervasive in soft-
ware tools used by the bioinformatics community. However, the mentioned network
types haveproven themselves hard to visualize andnodecisive solutions have emerged
from the bioinformatics or visualization communities. We provide an overview of the
challenge of visualizing these networks, which stems from both the structure of the
networks and the needs of the scientists that analyze them. Instead of focusing on vi-
sualization tools from the target domain [3, 4], a more generic perspective is given,
focusing on techniques already in use and those that could be used. We first provide
an overview of network visualization in general, afterwhichwedive into themore con-
crete biological network types. Finally, we discuss the integration of these networks,
and network alignment.

We describe some of the workings of biological cells to explain the semantics of
biological networks and their role in research. However, we focus on the visualization
of networks and not on biological nuance.

2.2. Network Visualization
Much research in the visualization community has focused on networks [5, 6], and the
structurally more specific trees [7]. The node-link diagram and adjacency matrix are
the prime visualization techniques, as shown in Fig. 2.1.

Analystswhousenetworks oftenhave specific analysis goals that canbe expressed
as queries that in turn are answered through computation. Knowledge of specific anal-
ysis goals leads to the development of more effective visualizations. Since these goals
are often ill defined, an alternative approach is to consider basic questions or tasks that
underly a global analysis goal [8, 9]. The same approach is taken for the techniques that
are introduced in subsequent chapters.
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Figure 2.1: Examples of the two dom-
inant network visualization techniques:
node-link diagram (left) and adjacency
matrix (right). A gray cell indicates the
presence of a link.

Most people are able to interpret node-
link diagramswithout receiving further ex-
planation. Visualization tools for biolog-
ical networks, such as Cytoscape [2, 10],
VisANT [11], BiologicalNetworks [12, 13],
VANTED [14], and GENeVis [15], therefore
often use this representation. However,
this intuitiveness can be overshadowed by
the visual clutter ofmany intersecting links.
Dense networks suffer from this problem,
but also sparse networks with dense sub-
networks.

Drawingnode-linkdiagrams according to aesthetic criteria, and the combinatorics
involved, is the focus of theGraph Drawing domain [16, 17]. Important aesthetic criteria
involve visual clutter (e.g., node and link intersections) and the expression of network
structure (e.g., path distance and symmetries). Force simulation is the most often used
technique to lay out node-linkdiagrams, because it is simple andeffective [18, 19]. More
advanced techniques analyze network structure and express important structures in
the layout [20], or give links more elaborate geometry than straight lines [21, 22].

Adjacency matrices are a potent alternative to node-link diagrams when the net-
work to depict is dense, because they avoid the clutter of intersecting lines byencoding
links as markers. It also enables the use of rearrangement clustering [23] to arrange
the rows and columns of thematrices in such a way that clusters and patterns aremore
easily detected. Adjacency matrices are seldom used in biology to depict networks,
though they are pervasive in the form of weight matrices and corresponding heat map
representations that derive from microarray experiments [24]. Such heat maps are
often combined with biology-specific rearrangement clustering [25]. Adjacency ma-
trices use a complex, unfamiliar encoding, in which paths are difficult to follow. This
may explain why adjacency matrices are uncommon in the biological domain.

Interaction methods [26] alleviate the analysis of networks that are hard to visual-
ize. Nodes and links that are not of immediate interest can be filtered out to reduce
clutter. Subnetworks, such as the neighborhood of a node, are sometimes highlighted
to stand out from the rest of the network. Warping the space around a subnetwork is
another way to emphasize it [27].

Many of the more advanced techniques introduced by the visualization commu-
nity have not been adopted by the bioinformatics community. This in part has to do
with the lack of knowledge about such techniques in bioinformatics and the effort re-
quired to implement complex algorithms for possibly little gain. Another reason is
the long tradition of using manually drawn schematics that are not suited for integra-
tion with existing generic techniques. Most biological network specific tools therefore
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Figure 2.2: Overview of the three main network types used in biological cell analysis.

have many integrated analytic algorithms but few visualization options.

2.3. Networks in Cell Biology

The chemical processeswithin biological cells are studiedwith three types of network:
the Gene Regulatory Network, Protein Interaction Network, and Metabolic Network.
The following sections describe each type in detail. First, however, it is important to
realize that these types, though presented as separate, describe cell processes that
are strongly intertwined. Figure 2.2 gives an overview of the major components of
cell processes and how they relate to each other. It also shows how each network
type concerns the (indirect) interplay between compounds of a specific type, e.g., gene
regulatory networks on genes and how they influence each other.

All of the discussed network types are scale-free. A network is said to be scale-
free when the degree distribution of its nodes can be (partially) described by a power
law, such that there are few nodes with a high degree and many nodes with a low
degree. The origin of this property is commonly associated with the growth process
of these networks as species evolve [28] and makes a network error tolerant [29]. It
has been shown that scale-free networks are small-world [30] and therefore consist of
many nodes that can be reached from any other node with a shortest path that spans
few nodes.
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2.3.1. Gene regulatory networks
The cell’s chromosome(s) consists of a large number of blueprints for the construction
of proteins, which are the building blocks and workers of the cell. Each section of
a chromosome that is a viable protein blueprint, or performs another active role, is
referred to as a gene. The process of constructing a protein from a gene consists of
transcription and subsequent translation, summarized as synthesis in Fig. 2.2. The rate
at which a gene is transcribed is called its expression and affects the rate of protein
synthesis. The expression of a genemay affect the conditions within the cell and these
conditions can subsequently affect the expression of other genes. Thus, the expression
of one gene may influence the expression of another, which is called regulation.

Thephysical complexity of regulation, and the involvement of proteins andmetabo-
lites, is usually abstracted from, such that only two types of regulation between two
genes are left; the expression of a gene either promotes or inhibits the expression of
another gene. Though crude, this kind of information provides important insight into
the roles of different genes in a cell. For example, a gene could act as a master switch,
where its expression leads to the expression of many other genes.

A set of genes and known regulations between genes form aGene Regulatory Net-
work (or GRN). There are various ways to infer a GRN. For example, regulations can
be derived statistically from large-scale experiments, where the expression of many
genes is measured for varying cell conditions [31]. Mathematical modeling and simu-
lation is also used to verify or predict regulations [32]. A GRN can also be composed
from results reported in multiple papers that pinpoint individual regulations [33].

Structure There are several important structural characteristics that, in general, ap-
ply to a GRN [28, 34]: (1) Node in-degrees have a low average with little deviation
and the network is therefore sparse; (2) The network is scale-free with respect to out-
degree; (3) There are few cycles (excluding self-cycles) and every cycle is short.

GRNs are small-world because of their scale-free structure and are layered be-
cause of the presence of few and localized cycles, in which regulatory signals are
passed from few genes at top layers down to many genes at deeper layers. The few
genes with high out-degree (which tend to be at top layers) are known as regulators
and their outbound neighborhoods as regulons.

Certain subnetwork structures are statistically overrepresented in GRNs with re-
spect to networks with a random structure [35]. These subnetworks are called mo-
tifs, shown in Fig. 2.3, and are associated with specific regulatory behavior. The auto-
regulation motif consists of a gene that regulates itself, which affects its sensitivity to
regulations from other genes. The feed-forward loop consists of three genes, with one
direct and one indirect regulation, that enable the filtering or creation of short reg-
ulation signals. In a single-input module motif the genes of a regulon are affected by
only one regulator, such thatmultiple (possibly sequential) gene activations occur. The
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multiple-input modulemotif (or dense overlapping regulons) extends the single-input
module to include multiple regulons with strong overlap, which enable different se-
quences of activation for the same genes.

auto-regulation single-input module

multiple-input modulefeed-forward loop

Figure 2.3: Illustrations of GRN motifs. Gray areas represent network remainders.

Analysis Analysis of GRNs concerns both global and local structures [36]. The global
structure of the network indicates towhat extent it is vulnerable to gene alterations [29].
For example, if the function of a cell is to be changed by the manipulation of a gene,
it is useful to predict the global effect of its alteration. This relates to the common net-
work tasks of determining a node’s neighborhood and finding reachable nodes (see
Section 2.2). The local structure provides detail about more specific cell behavior, like
the behavior that is associated with motifs.

Visualization practices Node-link diagrams laid out through force simulation are
most commonly used for GRN analysis. This results in hard to interpret visualizations
for large GRNs due to the network’s scale-free structure, as shown in Fig. 2.4. These
visualizations are nonetheless used for analysis and accompany published results [37].
Smaller GRNs are drawnmanually by biologists, placing emphasis on key areas of the
network. The layered structure of a GRN is sometimes made explicit by laying out
genes of the same layer in a linear fashion [38], as shown in Fig. 2.5. This layout makes
it easier to distinguish regulators and to identify overlapping regulons. However, these
visualizations still have many link intersections that complicate analysis of local struc-
ture. Other layout strategies, such as concentric circles [10], or planes in 3D space [39],
also emphasize layers. Other GRN-specific tools are usually network editors, which
use manual layouts [40].

Visualization challenges andopportunities The scale-free structure ofGRNsmak-
es them strongly interconnected and therefore hard to visualize with node-link dia-
grams. We have to account for the most important network tasks if we are to devise
more effective visualizations: following paths, detecting local structures of interest,
and inspecting neighborhoods.

Following paths and the inspection of structures at a local level is inhibited in node-
link diagrams by visual clutter of the network remainder. For example, it is hard to



Networks in Cell Biology 11

Figure 2.4: Node-link diagram of a GRN that consists of 399 genes and 789 regulations
(inhibition in red and promotion in green) laid out with force simulation in Cytoscape.

detect a feed-forward loop in the GRN of Fig. 2.4, because its nodes are spread out
and its links are obfuscated. Cutting up the network into sections of interest, similar to
pathways in metabolic networks, is a viable approach. However, a definition of what
is interesting is required, in addition to algorithms that derive such subnetworks ac-
cordingly. Motifs and their inference [35] are a good start, but are just instances ofwhat
may be of interest. The correspondence between establishedmetabolic pathways and
the encompassing metabolic network may provide clues for the automated derivation
of GRN pathways from the global GRN topology. Nonetheless, the isolation of sub-
networks has drawbacks that need to be addressed and are discussed for metabolic
pathways in Section 2.3.3.

Reducing clutter in a node-link diagram while retaining global structural charac-
teristics is possible via node duplication [44, 45]. This is a process in which clutter is
reduced by representing a single gene as multiple nodes in a node-link diagram such
that links do not have to converge to a single point. However, node duplication detri-
ments the ability of an observer to follow paths and inspect neighborhoods of those
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Figure 2.5: Node-link diagram of a small GRN, laid out in layers without regulation
types. Illustration derived from Schreiber et al. [41].

Figure 2.6: Quilts (left) and GeneaQuilts (right), which are cascaded adjacency matri-
ces where links that run between consecutive layers are encoded as standard mark-
ers. Links that skip layers are color coded for Quilts and extended outwards for Ge-
neaQuilts. Illustrations derived from Bezeriano et al. [42] and Bae and Watson [43].

nodes that have been duplicated.

The inspection of neighborhoods is difficult in standard node-link diagrams. The
neighborhoods of smaller hubs are localized and therefore easy to interpret. However,
large hubs have spread out neighborhoods that do not appear as isolated visual units.
It is therefore difficult to analyze overlapping regulons as well. Visualization methods
have to be developed where regulon comparison is easy and prone to little bias. Adja-
cency matrices, in combination with rearrangement clustering, are promising but use
space inefficiently and do not adequately enable path following. These problems may
be resolved by more elaborate encodings that use the layering of the GRN, such as
Quilts [43] and GeneaQuilts [42] (see Fig. 2.6). Direct application of these techniques is
complicated by the scale-free structure of GRNs, where many links skip several lay-
ers, causing the visualizations to become space inefficient. In Chapter 3 we therefore
present a technique that leverages the same GRN layering but which results in matrix
encodings that are more space efficient, and benefit neighborhood comparison and
inspection of motifs.
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star bicliqueclique

Figure 2.7: Diagrams of important PIN subnetworks, where gray areas represent the
remainder of a network.

2.3.2. Protein interaction networks
Proteins consist of chains of amino acids that cause them to have complex dynamic
geometric properties that determine a multitude of possible functions in a cell. For
example, catalytic proteins speed up chemical reactions (see Section 2.3.3), and struc-
tural proteinsmake up the structure of a cell. Proteins are therefore an integral part of
the cell itself and its chemical processes.

Proteins are in part synthesized via genes, as shown in Fig. 2.2. The presence
of proteins in a cell is therefore controlled, in part, by the gene regulatory network.
Proteins play an important role in gene regulation aswell, asmentioned in Section 2.3.1.
However, proteins also physically interact with each other. For example, two or more
proteins can bind to each other to enable, disable, or combine each other’s abilities in
the cell. Therefore, if a protein is associated with a certain function, any (indirectly)
interacting protein may also be associated and required to be present in the cell for
the first protein to function properly.

The combination of a set of proteins and their interactions is called a Protein Inter-
actionNetwork (PIN). Such networks are abstract; only the notion of interactionmay be
conveyed, while there are many possible ways in which proteins interact. Mapping all
protein interactions for organisms is an ongoing effort, spurred on by so-called high-
throughput techniques [46, 47]. However, some techniques are still unreliable andhave
low coverage [48].

Structure PINs are undirected, making the notions of cycles and layers less relevant
than in GRNs. However, PINs are sparse, scale-free, and therefore also small-world
[49, 50]. In particular, they are known to have dense subnetworks [51], referred to as
clusters.

These structural characteristics imply the occurrence of several important subnet-
works [52], as illustrated in Fig. 2.7. The star consists of a protein and its neighborhood.
The frequency and size of stars match the power-law distribution of node degrees. A
complete subnetwork, or clique, consists of a set of proteins that all interact with each
other, indicating that they are able to form a larger protein complex. Likewise, a bi-
clique consists of two sets of proteins where every protein from one set interacts with
all proteins from the other set. These bicliques typically indicate the presence of pro-
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teins that have similar physical characteristcs and therefore engage in similar inter-
actions with other proteins. These cliques make up some of the clusters present in
PINs, but local clusters also result from proteins that perform more complex, dynamic
functions together.

Analysis PIN analysis involves both global and local levels. Interaction connectiv-
ity on a global level indicates the importance of a protein [53]. This is known as the
centrality-lethality rule, which states that proteins with many interactions tend to be
essential to a cell (its removal is lethal). It has been shown that protein function and
type are related to its position in global network structures [54]. Protein function is
also predicted via guilt by association [55] at a local level, where the function of a pro-
tein is approximated from its interaction with other proteins.

Furthermore, cellular functions or processes are often localized to small subnet-
works, termed modules [56, 57]. Novel modules can be discovered by combining
PIN structure and differential protein expression data. Differential expression is the
change in protein abundance across different cellular conditions that are induced by
(artificial) changes to a cell or its environment. In Chapter 5 we present a methodology
that enables the elucidation of such modules, based on pre-existing information about
the proteins that comprise them.

Visualization practices Node-link diagrams laid out with force simulation are the
preferred technique for visualizing PINs. Protein and interaction properties are then
color coded on nodes and links respectively, like in Fig. 2.8. Certain topological fea-
tures are easy to spot in such visualizations, like isolated clusters and sparse branches.
However, due to the scale-free structure of PINs, there is much obfuscation and there-
fore no guarantee that all important information is clearly visible. Common techniques
like filtering are used, which includes limiting analysis to isolated modules at a loss of
context. Customized layout algorithms also exist that incorporate protein and interac-
tion properties to generate a semantically relevant layout [58, 59].

Visualization challenges and opportunities To improve analysis of large PINs via
visualization, either common node-link diagram methods have to be improved, or al-
ternative encodings have to be developed. For example, the inspection of protein in-
teraction neighborhoods is important for analysis. Yet, those proteins that are central
to the network have large neighborhoods that are spread out and obfuscated in a node-
link diagram. This sometimesmakes it hard to determinewhether a protein has a large
(indirect) neighborhood, as is the case for the proteins at the center of Fig. 2.8. More-
over, proteins with smaller but more isolated neighborhoods draw attention, leading
to biased interpretation.
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Figure 2.8: Node-link diagram of a PIN that consists of 3852 proteins and 29293 inter-
actions, laid out with force simulation in Cytoscape.

The strong interconnectedness of large PINs makes improvement of node layout
unlikely to have much effect when it concerns reducing clutter. More advanced link
aggregation, routing [21], or bundling [22] could reduce clutter but these techniques
make it harder to distinguish individual interactionswhile the uneven spread of neigh-
borhoods remains.

Alternative visual encodings have already surfaced in the target domain but are
not widespread. For example, it is possible to aggregate links, and therefore simplify
visualizations, without loss of information. Figure 2.9 shows a Power Graph [52], where
nodes are nested in a single level hierarchy. Here, a link between two internal hierar-
chy nodes 𝑝 and 𝑞 denotes that links connect from every descendant node of 𝑝 to every
descendant node of𝑞. This enables the visual compression of cliques andbicliques, re-
sulting in their emphasis, and the removal of clutter caused by many redundant links.
However, the hierarchic nesting incorporates a visual bias in the encoding that may
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Figure 2.9: Node-link diagrams of PINmotifs at the top andmatching Power Graphs at
the bottom [52].

lead to biased interpretation.

Adjacency matrices are viable encodings as well, though hardly used in practice.
Rearrangement clustering could reveal the clusters of a PIN while still conveying the
global structure of the network. The overall sparseness of PINs pose a problem with
respect to space efficiency of the matrix. An approach like NodeTrix [60] partially
solves this by partitioning a network into dense subnetworks, conveying each as a
standard adjacency matrix. The matrices are then linked together like a node-link
diagram to convey the remaining links (see Fig. 2.10). Module detection algorithms
are suited for such partitioning [61]. Similarly, one could provide coordinated node-
link diagram and adjacency matrix views [62].

These encodings, though more structured than common node-link diagrams, still
have difficulties depicting neighborhoods in a cohesive way. For power graphs, a
neighborhood is composed of multiple links that can connect to nodes that are spread
out over different nesting levels. Likewise, the link markers of a single neighborhood
can be spread out in an adjacency matrix and NodeTrix.

However, when analysis is restricted to smaller PINs such as modules, clutter and
spread out neighborhoods are minimal in node-link diagrams. Moreover, in these
cases the analysis of structure, such as the comparison of interaction neighborhoods, is

Figure 2.10: NodeTrix representation of a citation network. Illustration derived from
Henry et al. [60].
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of little concern. Instead, the observation of individual proteins and their interactions,
in context of additional annotation and omics data, has the priority. We introduce an
analysis methodology and tool for such a scenario in Chapter 5.

2.3.3. Metabolic networks
Biological cells are chemical factories that compose and decompose molecules via re-
actions, spurred on by catalytic proteins (or enzymes) as shown in Fig. 2.2. Every reac-
tion converts a set ofmolecules, called reactants, into a set of differentmolecules, called
products. The reactions chain together in a cell to formmetabolic pathways. Suchpath-
ways give key insights into the functioning of a cell and are curated because of their
importance. The combination of molecules and reactions present in a cell makes up a
metabolic network, which provides insight into the entire range of possible chemical
conversions in a cell.

A multitude of molecules and their reactions are known due to centuries of chem-
istry. However, the relatively few of these, present in a cell, are determined through
measurement of compounds over time and through varying conditions in the cell. This
kind of measurement has been possible for a long time and we therefore have a more
complete picture of metabolism than of protein interactions and gene regulations.

Structure Metabolic networks are directed, but also bipartite with separate node
types for molecules and reactions. Metabolic networks are scale-free with respect to
molecule nodes, i.e., fewmolecules are involved inmany reactions andmanymolecules
in few reactions [63]. These networks are therefore small-world [50]. Moreover, the
presence of clusters has been established as well [64].

Metabolic pathways are prominent in analysis but do not immediately emerge
from the topological features of large metabolic networks. Pathways are the result of
selection by priority and consensus amongst researchers, whichmake them important
subnetworks nonetheless. Contrary to metabolic networks, the structure of pathways
is simple, almost planar.

Analysis Analysis of metabolism mostly relies on inspection of already established
metabolic pathways [65], which is more or less the bite sized inspection of a metabolic
network at a local level. For example, researchers look at the pathways downstream
from a metabolic reaction to predict the effects of its alteration (by manipulation of the
proteins that catalyze the reaction). Similarly, the production of a particular metabo-
lite could be promoted by enforcing particular reactions. However, it is possible for
chains of reactions to spanmultiple pathways. Pathways have to be overlaid or stitched
together to find such chains, creating metabolic networks of varying size and com-
plexity. The global structure level is of interest, as well as findingmodules [66] that are
responsible for specific functions in the cell and are preserved across species of an
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Figure 2.11: Typical poster-style drawing of the citric acid cycle.

organism. For example, the elements of a module are often strongly interconnected
but are less interconnected with the remainder of the network.

Visualization practices Traditionally, metabolic networks and pathways are drawn
manually and presented on posters [1]. The drawing style is the same as in standard
textbooks, and online databases such as BioCyc [67] have adopted this style as well.
An example can be seen in Fig. 2.11, which shows part of the citric acid cycle. In these
networks, nodes represent compounds and directed links encode their transforma-
tions. Pathway images in KEGG [68] are also constructed manually, but now using the
bipartite graph style. See Fig. 2.12 for an example of the human vitamin B6metabolism
in KEGG. In this image, a compound is represented as a circular node and an enzyme
as a rectangular one. Links to other pathways aremade explicit by drawing rectangles
with rounded corners.

However, manually laying out networks is time consuming when used in an ana-
lytic context, where the network topology is dynamic due to user interaction. This cre-
ates the need for automated layout algorithms. Standard network layout algorithms,
such as circular layouts, hierarchical layouts, and force-directed layouts, turned out
to be unsatisfactory. The layouts produced do not reflect textbook standards, which
makes the visualization ill-suited for domain experts. To overcome this problem, lay-
out algorithms that are specific to pathways havebeenproposedwhichmimic textbook
drawing styles [70–72]. In some cases, it is important to reflect the cellular locations of
reactions in the layout to understand the biology underlying the pathway. Recently,
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Figure 2.12: Vitamin B6 metabolism in humans. Image generated with KEGG [68].

Kojima et al. proposed an approach that takes this into account [69]. An example of
their method can be seen in Fig. 2.13, which shows the plasma membrane, cytoplasm,
mitochondrion, and nucleus as concentric boxes; the nodes of the network are placed
in one of these layers.

Drawing a full metabolic network by a force-directed algorithm is not very useful
for a biologist. Figure 2.14 shows the metabolic network of E. coli laid out by the FM3

algorithm [73]. Clearly, particular topological features, such as cycles and cascades,
are not distinguishable, and pathway information is not retained either.

Bourqui et al. [76] proposed a layout algorithm to handle these issues. The method

Figure 2.13: Location-aware layout algorithm, which takes the cellular location of reac-
tions into account. Illustration derived from Kojima et al. [69].
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Figure 2.14: Metabolic network of E. coli [74] drawn with a force-directed layout algo-
rithm [75].

starts by computing maximal sets (clusters) of independent pathways. Two pathways
are independent if they do not share any enzyme or compound. Next, topological
structures are detected in each cluster, and laid out accordingly: cycles on circles, cas-
cades on straight lines, and the hierarchical organization of pathways is emphasized
using a hierarchical, or layered, layout. The clusters themselves are represented and
visualized by metanodes, and all links between two of these clusters are replaced by a
single metalink. An example is shown in Fig. 2.15 where metanodes are displayed as
either blue (complete pathway), light blue (partial pathway), or yellow boxes (topolog-
ical structure).

In KGML-ED, a different approach is taken [77]. This method arranges KEGG path-
way maps in an overview network, where a node represents a pathway and links be-
tween nodes represent connections between pathways. The layout of the overview
network can be computed by any suitable layout algorithm while the layout of each
pathway is exactly as specified by KEGG. This ensures that pathway drawings con-
form to expected standards. Figure 2.16 shows an example of a small overview net-
work containing five pathways and the expanded network containing pathways and
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Figure 2.15: Metabolic network of E. coli [74], drawn with the MetaViz layout algo-
rithm [76].

connections between two nodes.

Visualization challenges and opportunities The proper visual concatenation of al-
ready laid out metabolic pathways is a major concern and has been voiced before [65,
78]. Some of the discussed techniques address this, but improvement is still possible.
Individual pathway layouts have to be retained as much as possible to preserve the
mental map of analysts. However, following paths across many concatened pathways
is difficult, as shown in Fig. 2.15 and 2.16.

Overlaying pathways is an alternative approach to cutting up pathways and plac-
ing thembeside each other. Bymanipulating their configuration in a constrainedman-
ner, it would be possible both to discern individual pathways and to follow more com-
plex paths. In addition, amore interactive pathway-centered explorationmethodology
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Figure 2.16: KGML-ED visualization style. Overview network of KEGG pathways (left)
and two expanded nodes displaying actual pathways and interconnections (right). Im-
ages derived from Klukas et al. [77].
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should be considered. Then, fewer joint pathways have to be shown at a single time,
and pathways can be dynamically added and removed. This way, the entire metabolic
network can be explored while the analyst’s visual orientation is preserved via smooth
animation of changes in joint pathway configurations. Computing such non-invasive
configuration changes is a challenging problem but could be derived from existing
techniques used for dynamic graph drawing [79]. These techniques could then also
be used to deal with the mapping of heterogeneous data on pathways in an interactive
context, which requires a lot of space and places additional constraints on the layout
of pathways.

2.4. Network Integration
Most work has focused on studying gene regulatory networks, protein interaction net-
works, and metabolic networks separately. The aim of systems biology [34, 80–82] is
to combine and integrate these individual networks to a network of networks, in order
to provide insight into the overall behavior of a cell. For example, to understand and
interpret biological function, it is helpful to explicitly show feedback control ofmetabo-
lites on regulator activity. In network terms, this requires a link between a metabolite
(a node in the metabolic network) and a regulator gene (a node in the gene regulatory
network).

Integration of networks is not simply a matter of combining them into a larger net-
work with additional node and link types. There are many challenges to overcome
when integrating various data sources [84, 85] and computational modeling [86–88].

Visualization practices Rather than explicitly constructing joint networks, current
visualization approaches aim to visually integrate the networks or parts thereof. There
are essentially two approaches: (1) overlay additional information over an existing vi-
sualization of a network [83] and (2) make use of coordinated and multiple views [89].

An example of the first approach is shown in Fig. 2.17. The visualization combines
a pathway image and a protein interaction network. The colored nodes are all part of
the pathway and most of the protein interaction network is visible in the background.
The protein with label 38 is selected and its interactions are highlighted by blue links.
Here, a potential problem is the limited space for drawing the additional links without
occluding the underlying pathway image.

In the second approach, each network is visualized in a separate view, and these
views are synchronized in some form. For example, nodes selected in one view are
highlighted in the other view(s) to indicate that the items are the same or related to each
other. An example can be seen in Fig. 2.18, which shows some highlighted nodes in
parts of a gene regulatory network and a metabolic pathway. All prominent biological
network visualization tools provide this simple functionality of highlighting. However,
from a perceptual point of view, highlighting suffers from two problems: (i) if the vi-
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Figure 2.17: Visualization of protein interactions integrated into a pathway image. One
protein is selected and its interactions are highlighted (blue links). Image derived from
Jianu et al. [83].

sualization itself makes use of different colors, it is difficult to choose a highlighting
color that stands out from the other colors, and (ii) thin and small frames drawn around
highlighted items are difficult to perceive.

Visualization challenges and opportunities To overcome the problems of simple
highlighting, a technique called visual linking has been proposed in the visualization
community [90–92]. This technique connects highlighted items with (colored) lines,
curves, or surfaces to make the relations explicit. As this may cause visual clutter
and occlusion of items of interest, a more sophisticated form of visual linking, called
context-preserving visual links [93], has been proposed recently. This approach takes
the underlying visualization into account and routes the links around important parts
to minimize occlusion. In Chapter 4 we introduce a similar technique, which is also
demonstrated for a metabolic pathway.

Drawing joint networks in an understandable way is a challenging problem. Since
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Figure 2.18: Coordinated views of a gene regulatory network (top) andmetabolic path-
way (bottom). Selectednodes are highlightedby ablueborder. Imagesgeneratedwith
GENeVis [15].
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Figure 2.19: Visualization of a joint metabolic and gene regulatory network, derived
from Yeang et al. [86].

it is unclearwhat the structural properties of suchnetworks are, it will be hard to design
specialized and effective layout algorithms. Also, there are different conventions for
drawing the individual networks, which raises the question whether it is even feasible
to combine these into one view. For example, Fig. 2.19 shows a part of a combined
gene regulatory and metabolic network from a joint model [86]. This visualization is
quite difficult to read because there are different node and link types. Furthermore,
the size and color of nodes and links can have various meanings. Finally, the layout of
the metabolic part of the network does not resemble the standard textbook style.

The Systems Biology Graphical Notation (SBGN) [94] may help to overcome the
problemswith graphical notation of different node, link, and network types. The SBGN
is a visual language, similar to theUnifiedModeling Language (UML) for software engi-
neering. However, in the same way that UML is not a software visualization approach,
SBGN is not a biological network visualization approach. While standardization of
models and notation is an important step, it is clear that major visualization challenges
are still to be tackled.
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(a) (b) (c)

Figure 2.20: Network alignment visualization approaches: (a) Combined nodes, image
derived from Pinter et al. [100]. (b) Nodes on the same horizontal line, image derived
from Koyutürk et al. [101]. (c) Nodes in approximately the same relative position, image
derived from Sharan et al. [102].

2.5. Network Alignment
The main use of network alignment in cell biology is the detection of subnetworks that
are conserved across species. Here, a particular subnetwork with known functions is
extracted from one network, and a subnetwork with an (almost) identical structure is
determined in another network. Thismatching of networks enables biologists to locate
proteins that have similar functions across different species. It also enables them to
find functional modules in one species, based on known functional modules in other
species. It is expected that network alignment techniques will take a leading role in
bioinformatics research [95].

While sequence alignment has a long history in biology, network alignment is still
in its infancy and not free of methodological problems [48]. In general, the problems
of network comparison and alignment is intractable since they can be reduced to the
subgraph isomorphism problem. Finding isomorphic subgraphs is known to be NP
hard. In most cases, methods are used that address this problem heuristically [96–
98]. However, some recent work shows that it is possible to globally align protein
interaction networks without resorting to a heuristic approach [99].

Visualization practices In a review paper, Brasch et al. [103] presented an overview
of the main approaches for visual network comparison. We briefly summarize their
main findings first and then describe some more approaches in the following para-
graphs. Approaches so far either employ side-by-side views or construction of a sin-
gle new network. Side-by-side views show networks next to each other, and aligned
nodes are connected by links. To avoid clutter, aligned nodes can be drawn on the
same horizontal line [101] (see Fig. 2.20(b)) or at roughly the same relative position in
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Figure 2.21: Visualization of overlap between a metabolic network and a part of a pro-
tein interaction network. The overlap between proteins (enzymes) and adjacent reac-
tions is shown in a center plane. Image derived from Fung et al. [104].

each network [102] (see Fig. 2.20(c)). Either approach may produce satisfactory re-
sults, if few small networks are compared simultaneously. Aligned nodes can also be
combined into a new node, resulting in a new network [100] (see Fig. 2.20(a)). In this
case, it is not clear how to handle the links of the original networks. The links can be
maintained, which can lead to many links between any two nodes, or they can be com-
bined into a single new link. In the latter case, the information in the network in which
the link originally occurred is lost. A further complicating factor in visualizing aligned
networks is posed by metabolic networks, where domain experts impose constraints
on the layout of the individual networks as we have seen before.

For the visualization of overlap between two networks, 2.5D solutions have been
explored [104]. The idea is to use three planes embedded in a 3D space: one plane is
used to draw each network, and the third plane explicitly represents the overlapping
part. Figure 2.21 shows an example of this technique. This approach works reason-
ably well for small networks as shown in the picture. However, for large networks, it
becomes a challenge to see both the individual networks and the overlap clearly. The
(potentially) many links result in a cluttered display, the individual planes will overlap
in the projection to 2D, and a lot of user interaction will be necessary to understand
the visualization. This approach also does not allow comparison of more than two net-
works.

Another 2.5D approach [105] is shown in Fig. 2.22. Here, each network is embed-
ded on a 2D layer, with the constraint that aligned nodes are kept at the same position.
Stacking the layers in 3D space effectively results in a 2.5D visualization. For small
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Figure 2.22: Visualization of two aligned networks in 2.5D space. Image derived from
Brasch et al. [105].

networks, this approach works reasonably well, as can be seen in Fig. 2.22. However,
for larger networks, this approach breaks down because of too much clutter.

Visualization challenges and opportunities The visualization of aligned networks
is a challenging problem for which hardly no good solutions exist. The difficulties
arise from the fact that both individual networks and the overlap between them needs
to be clearly visible and understandable. For small networks, most of the current ap-
proaches are usable. However, they all fail on larger networks and complex overlaps.

The visualization community has worked extensively on comparison of trees and
hierarchies [6]. However, comparison of networks has received little attention. Even
in recent work, comparison is restricted to two networks [106]. This approach does not
preserve the layout of the compared networks either, which makes it unsuitable for
application to the biological domain. Visual comparison of multiple networks is still in
its infancy, and there are many problems for which no obvious solutions yet exist.

2.6. Conclusion
We have discussed the difficulty of visualizing specific types of biological networks,
including their integration and comparison. These biological networks and associated
visualization problems will reappear in the subsequent chapters. However, there are
problems beyond visualization of network structure that have to be solved as well and
are poised to be important in the future [78]. For example, there is a need to visual-
ize elaborate attributes attached to nodes and links, including nominal and time-series
data. This data adds a new dimension to the problem of network layout because biolo-
gists want to analyze the data in network context, requiring ample space close to nodes
and links to visualize it. This requires the development of new kinds of visualizations.
A good example of such an approach is Pathline [107], where metabolic pathways are
flattened to one dimension to ease the analysis of attribute data while maintaining a
biological context.
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We present a novel technique, Compressed Adjacency Matrices, for visualizing gene
regulatory networks. These directed networks have strong structural characteristics:
out-degrees with a scale-free distribution, in-degrees bound by a low maximum, and
few and small cycles. Standard visualization techniques, such as node-link diagrams
and adjacencymatrices, are impeded by these network characteristics. The scale-free
distribution of out-degrees causes a high number of intersecting edges in node-link
diagrams. Adjacency matrices become space-inefficient due to the low in-degrees
and the resulting sparse network. Compressed adjacency matrices, however, exploit
these structural characteristics. By cutting open and rearranging an adjacency ma-
trix, we achieve a compact and neatly-arranged visualization. Compressed adjacency
matrices allow for easy detection of subnetworks with a specific structure, so-called
motifs, which provide important knowledge about gene regulatory networks to do-
main experts. We summarize motifs commonly referred to in the literature, and relate
these to network analysis tasks common to the visualization domain. We show that a
user can easily find the important motifs in compressed adjacency matrices, and that
this is hard in standard adjacency matrix and node-link diagrams. We also demon-
strate that interaction techniques for standard adjacency matrices can be used for our
compressed variant. These techniques include rearrangement clustering, highlight-
ing, and filtering.

3.1. Introduction
Standard network visualizationmethods, the node-link diagram and adjacencymatrix,
are popular due to their intuitive simplicity and their generic applicability. However,
they do not scale well for complex networks, leading to the infamous hairballs in case
of node-link diagrams. Recent developments in the field of network visualizationmove
towards the exploitation of predetermined network characteristics in order to create
visualizations that are more effective for analysis by domain experts. We present such
an approach, which has been specifically designed for gene regulatory networks of
bacteria.

The gene regulatory network (GRN) of a bacteriumdescribes interactions between
a gene product (a regulator protein) and its target genes. Genes are specific pieces of
DNA that form the blueprint for the creation of proteins. A regulator gene, a gene that
codes for a regulator protein, can either promote (further) or inhibit (impede) other
genes. Sometimes, a gene both inhibits and promotes, depending on environmental
conditions. This regulation (or control) between genes is described by a GRN, where
genes and regulations are represented as nodes and edges, respectively.

Because GRNs describe part of a bacterium’s internal mechanics, domain experts
study this type of network intensively, by making use of standard network visualiza-
tion and layout methods. However, the specific structural properties of GRNs make
visualization difficult, even when the network is small. This difficulty is caused by the
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following characteristics [34]:

Low in-degree Every gene is regulated by only a few other genes. Therefore, all
nodes of the network have a low in-degree.

Scale-free out-degree There are few genes that regulate many others, and many
genes that regulate few others. Therefore, the network’s out-degree distribu-
tion follows a power law.

Few cycles The network has few cycles because genes rarely (indirectly) regulate
each other both ways.

In this chapter, we propose an approach that exploits these structural characteristics,
by creating an adjacency matrix that is cut up and rearranged to take up less space.
Our novel network depiction benefits bacterial GRN analysis, and has the following
properties:

Compactness Enables a detailed overview of the entire network;

Localization of motifs Enables quick detection of subnetworks of interest;

Consistent arrangement Enables interaction while preserving visual context.

3.2. Related Work
Much research in the area of network visualization has been performed [5, 6]. In this
section, we restrict our overview to related work directly relevant to our proposed
approach.

The node-link diagram and adjacency matrix are the most popular for network vi-
sualization. Node-link diagrams are, in general, used to depict sparse networks (with
a low edge to node ratio), while adjacency matrices are an alternative for dense net-
works (with a high edge to node ratio) [108]. Node-link diagrams are intuitive, and
most people are able to interpret such diagramswithout receiving further explanation.
Therefore, network visualization tools in the biological domain often use this represen-
tation [2, 11, 13, 15]. However, when a network is dense, this intuitiveness is overshad-
owed by the visual clutter caused by the many edges that have to be drawn. In this
case, an adjacency matrix provides a more ordered and therefore easier to interpret
depiction, even though an observer will have to become accustomed to the visualiza-
tion [109, 110].

Optimal drawing of node-link diagrams, corresponding to aesthetic criteria, and
the combinatorial aspects of deriving diagrams that adhere to these criteria, is the fo-
cus of theGraphDrawingdomain [16]. Eadeswas the first to propose a force simulation
to lay out graphs [18], after which more elaborate force models were developed [19].
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Such force-based layouts are simple and effective. Aesthetic criteria are used to judge
the effectiveness of node-link diagrams and to derive algorithms that generate high-
quality diagrams [16]. The number of intersections in a diagram is an important cri-
terion, and therefore many techniques focus on reducing these intersections [111–113].
Giving edges a more complex geometry than a straight line, enabling the routing of
edges, is a way to avoid intersections as well [21].

A simple example of the exploitation of specific network characteristics is that of
tree-layout algorithms [114]. Such algorithms generate layouts that emphasize the in-
herent tree structure. Similarly, DAGs (short for Directed Acyclic Graphs) are given
special treatmentwith Sugiyama’s algorithm [38], where the layered structure of aDAG
is exploited and emphasized.

The layout of an adjacencymatrix is fairly rigid, i.e., nodes and edges are restricted
to rows and columns. Most attention has been given to ordering nodes in such a way
that patterns in the network structure become apparent. This is known as rearrange-
ment clustering, where nodes are placed close to each other in the arrangement when
their distance, according to some similarity measure, is small as well [23]. Such ap-
proaches take on more complex forms in bi-clustering [25], which tries to optimize
horizontal and vertical ordering of nodes simultaneously. The use of adjacency matri-
ces and corresponding rearrangement techniques is popular in the biological domain,
where they appear in the form of heat maps [24].

Many analysis tasks involve following apath along the edges of a network. In node-
link diagrams, edges can be traced easily from node to node, provided they are not
overly obfuscated by intersections with other edges. Node duplication involves the
placement of multiple copies of the same node, and distributing the edges over these
duplicates [44]. This enables greater reduction of edge crossings, creating a cleaner
depiction, at the cost of paths becoming harder to trace over the nodes that have been
duplicated. This problem also occurs in adjacency matrices, because every node is
represented horizontally as well as vertically, for outbound and inbound edges, re-
spectively. Therefore, following a path in an adjacencymatrix is notoriously hard [108].

In a biological setting, node duplication is often used for node-link diagrams of
metabolic networks [115, 116], where certain nodes have such a high degree that they
are either split into many duplicate representations or removed altogether. This is
done because some compounds, like water, are involved in so many metabolic pro-
cesses that they do not represent information of particular interest to an analyst. The
tasks that an analyst has to perform, aided by a network visualization, are of great influ-
ence to such trade-offs. In some cases, tracing paths is of no concern and representa-
tions more akin to adjacency lists are used, such as animal pedigrees [117]. Here, paths
are hard to follow, but it is much easier to compare two nodes (and their attributes) that
share an edge. Dealing with the richness of information attached to nodes and edges
of networks often leads to these kind of solutions in visual analytics. Pathline is another
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example of this [107], wheremetabolic pathways are shaped into a vertical linear order-
ing, making it harder to interpret the pathway, but easier to compare corresponding
time-series data that can now be stacked on top of each other in a consistent manner.

Any network visualization is prone to scalability issues. Large graph layout al-
gorithms [118] often result in visualizations that are difficult to interpret. In such cir-
cumstances, compression of the network, either lossless or lossy, can be beneficial.
Here, lossless compression refers to a visualization that still encodes all network in-
formation, but with more complex encoding schemes that require additional effort by
an analyst to interpret. For example, combining nodes with edges identical to other
nodes (identical neighborhoods) in a joint node can drastically reduce the number of
edges that have to be drawn. However, the routing of edges to nested nodes makes
the structure of nested nodes more complex. Grouping together children of trees is
a simple version of this [119], and an extension of this encoding to multiple levels of
nesting has been applied for the analysis of protein interaction networks, forming so-
called Power Graphs [52]. Lossy compression is usually done by clustering of nodes
into meta-nodes, thereby also collapsing edges into meta-edges, where the presence
of individual nodes and edges may be lost in the visualization [120]. These kind of ap-
proaches are used in interactive settings, where meta-nodes may be expanded and
collapsed at will [121].

3.3. Motivation and Concept
Node-linkdiagrams are the customarymethodof inspectinggene regulatory networks
in the biological domain, see Fig. 3.2 for an example. Global features of the network
are visible in the diagram, such as the strong interconnectedness of the network, few
genes that regulate many other genes, and many genes that are regulated by few
genes. More detailed features, such as the immediate neighborhood of a gene, are
obfuscated by many links causing substantial overlaps. Yet, context and details are
both important to biologists: they require a clear overview of the immediate neigh-
borhood of a gene, but also need to follow paths and determine indirect regulations.
Our aim is to facilitate both in the same visualization.

As an alternative visualization, it would be possible to use an adjacency matrix.
However, as is clear from Fig. 3.2, the network contains many nodes but relatively few
edges: it is sparse. The resulting adjacency matrix would therefore take up a lot of
display space (approximately 700 rows and columns), but it would be mostly empty.
This makes it hard to see both network context and details at the same time. However,
the specific characteristics of a GRN, low in-degree, power law out-degree, and few
and small cycles [34], allow us to introduce a variant of an adjacencymatrix that we call
a Compressed Adjacency Matrix (CAM).

The first two characteristics can be seen clearly in Fig. 3.2. It is important to note
that they cause a strong interconnectedness of the network, which makes it difficult
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Figure 3.1: Rotated CAM of the gene regulatory network of Bacillus subtilis, which con-
sists of approximately 700 genes and 1000 regulations [122].
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Figure 3.2: Node-link diagram of the same GRN as in Fig. 3.1. Generated with Cy-
toscape [2], using a standard spring-embedder layout algorithm. Genes are depicted
as dark gray nodes and regulations as colored links: green, red, orange, and blue for
promotion, inhibition, both, and unspecified, respectively.

to interpret a node-link representation. However, in combination with the third char-
acteristic, they imply that a GRN has a DAG-like structure that consists of few layers.
Moreover, because of the second characteristic, there are relatively few roots, nodes
with no inbound edges; few hubs, nodes with both inbound and outbound edges; and
many leaves, nodes with no outbound edges. This is essential to the construction of
our CAM, and they are crucial to obtain its regular structure (see Fig. 3.1).

The interpretation of a CAM is straightforward, but, like a standard adjacency ma-
trix, a CAM is somewhat less intuitive than a node-link diagram. Fig. 3.3(c) illustrates
how to read a CAM: The outbound and inbound edges of a node are found by looking to
the right and upwards, respectively, while using the underlying thick lines as guides.

From Fig. 3.3, several beneficial properties of CAMs become apparent. First, the
entire neighborhood of a node is easy to find by following its underlying line. Second,
nodes with identical neighborhoods are localized as stacks that save space (lossless
compression). Third, the few and small cycles in the network are localized and give
the impression of an actual cycle, due to the edges of the cycles being drawn as arcs.
Fourth, the layers of the network’s DAG-like structure, and regulations between these
layers, are compartmentalized and visible as contiguous surfaces. Finally, paths can
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Figure 3.3: Node-link diagrams
of a simple network on the left
and corresponding CAMs on the
right:
(a) Nodes are uniquely labelled
and edges colored blue in both
representations, the CAM shows
edges as arcs or dots.
(b) Cycles are grouped in the lay-
out of a CAM (orange), and nodes
with identical neighborhoods are
stacked (red), roots areplacedbe-
fore edges (labelled 𝑟), hubs diag-
onally (labelled ℎ), and leaves at
the bottom (labelled 𝑙).
(c) To follow a path in a CAM, one
starts at a node and traces a line
(red) to the right until an edge is
hit, then one traces a line down
until a node is hit again.

(a)

(b)

(c)

be followed by tracing the underlying thick lines through nodes, which is usually easy
in node-link diagrams as well, but not in standard adjacency matrices.

3.4. Approach
Though CAMs have a tidy appearance and standard adjacency matrices are easy to
derive from CAMs, the conversion of a network to a CAM is not trivial and consists of
six steps. First, the network is decomposed into weakly connected components, af-
ter which every component is treated as a separate network for the remaining steps.
Second, nodes with identical neighborhoods are grouped. Third, strongly connected
components are detected and grouped to form a DAG. Fourth, the nodes of the DAG
are partitioned into layers such that all edges have the same direction with respect
to the layers. Fifth, the layers are turned into blocks that form the backbone of the
CAM, where nodes are partitioned into five classes that dictate their arrangement in
the CAM. In addition, grouped strongly connected components are split into separate
nodes again while maintaining the vertex arrangement dictated by the blocks. Finally,
the blocks are concatenated to form a cascade fromwhich node positions and the CAM
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visualization are derived in various styles. We describe each step in detail and illus-
trate it with a running example.

3.4.1. Network
The network is a directed graph 𝐺 = (𝑉, 𝐸), where 𝑉 is the set of vertices (nodes)
and 𝐸 is the set of directed edges between vertices of 𝐺. We assume that 𝐺 is weakly
connected, i.e., every vertex is reachable from any other vertex when edge directions
are ignored. If a network is not weakly connected, it is decomposed into weakly con-
nected components with a connectivity search. Each weakly connected component
is then taken as 𝐺 and converted to a CAM (see Fig. 3.4). The individual CAMs are
concatenated in the final visualization.

The vertices in our network have a number of attributes, such as the gene’s name
and annotation of gene function. The edges have a single attribute that describes the
type of interaction between a gene and its target, namely promotion, inhibition, both,
and unspecified. However, the exact nature of the attributes is irrelevant to the con-
struction of a CAM.

3.4.2. Identical neighborhood grouping
Biological networks contain many vertices with an identical neighborhood. Grouping
these vertices reduces the complexity of the network, while still leaving open the pos-
sibility to properly convey each vertex of a group in the final visualization. To this end,
we define a grouped version 𝐺𝐼 = (𝑉𝐼 , 𝐸𝐼) of 𝐺, where 𝑉𝐼 is the set of vertices of 𝐺𝐼
that represent non-overlapping subsets of 𝑉 with identical neighborhoods, and 𝐸𝐼 is
the set of directed edges of 𝐺𝐼 .

The edge attribute (describing the type of regulation) is taken into account: only
edges with the same value for the attribute are combined into one. An example is
shown in Fig. 3.5, in which the vertices 𝑒 and 𝑓 both receive input from vertices 𝑏 and

G

Figure 3.4: Example network (left)
with its weakly connected components
marked in red. In this case, the largest
component is taken as 𝐺 (right).
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Figure 3.5: Example of 𝐺 (left) and the
𝐺𝐼 (right) that is derived by grouping
vertices with identical neighborhoods.
The vertices and edges in red are joined
into a larger group.
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𝑐, thus their neighborhoods are considered identical. Such vertices are stacked on top
of each other in the final visualization, cf. Fig. 3.3(b).

3.4.3. Strongly connected component grouping
We need to remove all cycles of 𝐺𝐼 to turn it into a Directed Acyclic Graph. Along the
same lines of the Sugiyama algorithm [38], we could temporarily invert those edges
that break a cycle, to be reverted again in the final visualization with a special edge
depiction. However, a better alternative is available to us because we know that𝐺 and
therefore 𝐺𝐼 has few and small cycles. The small cycles imply the existence of small
strongly connected components (SCC), i.e., sub-graphs where any vertex is reachable
from any other vertex.

The SCCs of 𝐺𝐼 are a partition of 𝑉𝐼 . By grouping every SCC into a single vertex,
as shown in Fig. 3.6, we create a DAG𝐺𝑆 = (𝑉𝑆, 𝐸𝑆). The set of vertices𝑉𝑆 represents
SCCs of 𝐺𝐼 , and the set 𝐸𝑆 is the set of directed edges between vertices in 𝐺𝑆 . The
edges𝐸𝑆 are not necessarily the same as the edges𝐸𝐼 . They represent an aggregation,
which means that edges of 𝐸𝐼 with different attribute values can be represented by a
single edge of 𝐸𝑆 . This is not important for the construction of the CAM, because it
relies only on the structure of 𝐺𝑆 .

3.4.4. Layers
Graph 𝐺𝑆 is a DAG and can therefore be regarded as a layered structure (see Fig. 3.7).
We determine its layers 𝐿𝑖, 𝑖 = 0, 1, … , 𝑚, which form a partition of 𝑉𝑆 , in the same
way as Sugiyama’s algorithm [38]:

The edges that run between layers all have the same direction. Also, no edge runs
between two vertices of the same layer. The vertex configuration is as compact as pos-
sible: if a vertex 𝑣 ∈ 𝐿𝑖 has outbound edges, then there exists 𝑣′ ∈ 𝐿𝑖+1 and an edge
from 𝑣 to 𝑣′, or there exists 𝑣′ ∈ 𝐿𝑖−1 and an edge from 𝑣′ to 𝑣. In other words, vertices
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Figure 3.6: Example of 𝐺𝐼 (left) and
the 𝐺𝑆 (right) that is derived by
grouping SCCs. The red vertices and
edges are part of an SCC that is larger
than a single vertex.
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Figure 3.7: Example of 𝐺𝑆 (left) and its lay-
ering (right).
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immediately precede their successors in the DAG if there are any successors, or im-
mediately succeed their predecessors otherwise. This is important for the derivation
of blocks from layers in a later stage.

3.4.5. Blocks
The layered node-link diagram of Fig. 3.7 already conveys the structure of the network
quite well. However, for large networks, the many edge intersections between layers
make it hard to interpret. We therefore transform the layers into blocks, which we
arrange to obtain a compact visualization.

Layers map directly to blocks, i.e., a block 𝐵𝑖 is derived from its corresponding
layer 𝐿𝑖. Block 𝐵𝑖 consists of sequences of vertices, 𝐻𝑖 and 𝑉𝑖, that specify the hori-
zontal and vertical ordering of 𝐿𝑖 ’s vertices in the CAM, respectively. An appropriate
ordering of the vertices in 𝐻𝑖 and 𝑉𝑖 is crucial to obtain the desired compactness. We
achieve this by partitioning the vertices of 𝐿𝑖 into five classes:

Leaf Vertex in 𝐿𝑖 without successors;

Short root Vertex in 𝐿𝑖 that has a successor but no predecessors and all successors
are leaves in 𝐿𝑖+1;

Long root Vertex in 𝐿𝑖 that has a successor but no predecessors and is not a short
root;

Short hub Vertex in 𝐿𝑖 that has a predecessor and successor, and all successors are
leaves in 𝐿𝑖+1;

Long hub Vertex in 𝐿𝑖 that has a predecessor and successor, but is not a short hub.
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Figure 3.8: The composition of block 𝐵𝑖 and its placement with respect to its neigh-
boring blocks.
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Figure 3.9: (a) Layers of 𝐺𝑆 . (b) Blocks of 𝐺𝑆 that form a CAM. (c) Standard adjacency
matrix arranged according to the blocks of 𝐺𝑆 . All edge depictions are in red. Here
𝑒, 𝑓 and 𝑔 are leaves, 𝑐 is a short root, 𝑘 and 𝑎, 𝑑 are long roots, 𝑏 and 𝑙 are short hubs,
and ℎ is a long hub.

The partition that we get for 𝐿𝑖 then consists of leaves 𝑃𝐿 , short roots 𝑃𝑆𝑅, long roots
𝑃𝐿𝑅, short hubs 𝑃𝑆𝐻 , and long hubs 𝑃𝐿𝐻 . Each of these sets can be ordered indi-
vidually, based on attributes or some other characteristic. This ordering affects the
readability of the CAM, and we come back to this in Section 3.4.6. Once we have the
partition, we can construct 𝐻𝑖 and 𝑉𝑖 by concatenation:

𝐻𝑖 = [𝑃𝐿, 𝑃𝑆𝑅, 𝑃𝑆𝐻 , 𝑃𝐿𝐻 , 𝑃𝐿𝑅]
𝑉𝑖 = [𝑃𝑆𝑅, 𝑃𝑆𝐻 , 𝑃𝐿𝐻 , 𝑃𝐿𝑅]

The construction of 𝐻𝑖 and 𝑉𝑖 allows us to make a spatial configuration of 𝐵𝑖 as illus-
trated in Fig. 3.8. The blocks 𝐵1, 𝐵2, ..., 𝐵𝑚 form a cascade with enough space above
it for edge depictions (see Fig. 3.9(b)). Most vertices of 𝐿𝑖 occur twice in this config-
uration. The vertices of 𝐻𝑖 have depictions above them to represent inbound edges
from predecessors (in the light gray zone). Similarly, vertices in 𝑉𝑖 have depictions to
their right to represent outbound edges to successors. This explainswhy𝑃𝐿 ismissing
from 𝑉𝑖: it consists of leaves that have no outbound edges.

The presence of 𝑃𝑆𝑅 in 𝐻𝑖 is optional. Removing it will result in a more compact
but less consistent CAM, whichwe discuss in Section 3.4.6. Likewise, the configuration
of 𝐵𝑖−1 and 𝐵𝑖 is made more compact by shifting down 𝑃𝐿 . This is possible, because
vertices of 𝑃𝑆𝑅 and 𝑃𝑆𝐻 in 𝐵𝑖−1 have only outbound edges to 𝑃𝐿 of 𝐵𝑖. Therefore, no
space is required for edge depictions beyond 𝑃𝐿 .

From the arrangement that we now have, we can actually construct a standard ad-
jacency matrix, see Fig. 3.9(c). This can be done by shifting the vertices that belong to
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some 𝐻𝑖 upwards to a common horizontal axis, and shifting those vertices that belong
to some 𝑉𝑖 to a vertical axis at the left (while respecting their block-induced arrange-
ment).

Finally, the grouped strongly connected components 𝑉𝑆 are flattened within 𝐻𝑖
and 𝑉𝑖. The sets of identical neighborhood vertices are maintained in the layout, and
drawn as stacks of vertices. In addition, edges in 𝐸𝐼 that connect vertices of a strongly
connected component are representedby arcs, which forms the cycle shown inFig. 3.3.

For the small example network, clearly not much compression can be achieved.
However, Fig. 3.1 and 3.11 show that our approach is effective for compressing large
GRNs.

3.4.6. Visualization
Our approach creates a layout that consists of inbound and/or outbound positions for
every vertex if it has an in and/or outbound neighborhood, respectively. This provides
us with enough information to create a CAM visualization. As in Fig. 3.9, edge depic-
tions are placed in a grid, outbound from the vertex to its direct left and inbound to the
vertex directly below it. We give a special treatment to hubs because they have in-
bound and outbound edges by definition. In standard adjacency matrices, they there-
fore appear both at the left and at the top of the matrix, spaced wide apart, making it
difficult to trace a path. In contrast, we place each hub at the middle of an arc that ex-
tends from the hub’s inbound neighborhood to its outbound neighborhood. This spe-
cial treatment of hubs is enabled by their carefully chosen arrangement (cf. Fig. 3.8).

Styles Like for a standard adjacency matrix, the grid drawn in the background is a
visual aid that more strongly associates a vertex depiction with edge depictions of its
in- and/or outbound neighborhoods (and vice-versa). Even with this aid, adjacency
matrices are hard to interpret when they are large. We have therefore experimented
with various visual styles to improve interpretation. A sample of style combinations is
shown in Fig. 3.10.

The first style is a plain grid, where grid cells are separated by solid lines (see
Fig. 3.10(a)). These lines help to inspect the neighborhood of a vertex, but they have to
be given a dark color to be visible due to their small width. This creates many strong
brightness transitions in the visualization, impeding its aesthetics.

The second style circumvents the need for explicit lines by introducing gray edge
depictions for those vertex pairs that have no edges between them (see Fig. 3.10(b)).
This generalization creates a grid pattern that guides the observer as well. However,
the presence of these non-edgedepictions draws away attention from the actual edges,
making it harder to get an impression of the network’s connectivity. Moreover, a con-
nection between the neighborhoods of hubs still has to bemade explicit, which is done
with a thick arc that does not integrate well with the visual style of the rest of the CAM.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.10: A sample of CAM configurations, applied to a section of Fig. 3.1: (a) Thin
separating lines. (b) Non-regulations as gray dots. (c) Thick underlying lines. (d) Peri-
odic spacing. (e) Leaves have no rearrangement clustering on neighborhood similar-
ity. (f) Thick underlying lines are shortened. (g) Roots are treated as hubs. (h) Filtered
and highlighted on two selected genes, sinR at the left and yjoB at the right.
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In our opinion, the third style is themost effective and therefore default style of the
prototype. Instead of drawing lines between the edgedepictions, thick and translucent
lines are drawn behind them (see Fig. 3.10(c)). Vertical and horizontal lines appear
darker where they intersect due to their translucency, as though they are plies that are
stacked on top of each other. This makes every line of a vertex stand out and better to
trace, e.g., it is easy to follow a line down from an edge, along an arc, to the depiction
of the hub that the edge is directed to, and even further along the arc, into the hub’s
outbound neighborhood. Thus, paths in the network are visually apparent and can be
followed. Note that this is not possible in a standard adjacencymatrix. The other styles
also enable path following, but the neighborhood of a vertex does not appear as a clear
contiguous area.

Even with the aid of a grid, it is still hard to find all edges of a vertex’s neighbor-
hood because it is easy to accidentally skip a line over a long distance. This is similar
to drifting off direction when there are no lines guiding you. One way to suppress this
effect is to add more structure to the grid, providing additional landmarks to guide an
observer. A periodic change of grid cell color is commonly used to get this effect in
adjacencymatrices and tables. However, we want to restrict the use of colors, because
we already use colors to encode edge types. Instead, extra space can be added be-
tween vertices to create a visual grouping of cells. This makes skipping a line harder,
but also causes the visualization to be less tidy (see Fig. 3.10(d)). Likewise, space be-
tween blocks and different classes of vertex can be added if desired.

We have also experimented with minimizing line length while making sure the
lines still contain all edges (see Fig. 3.10(f)). This makes it easier to determine the ex-
tent of a neighborhood. It also makes the visualization less structured, and implies the
presence of edges (possibly non-existing) at line intersections, because the immediate
neighborhood is darker. Similarly, the inbound neighborhood line of a root is hidden
by default because it wastes space (it has no edges to guide the observer to). Includ-
ing these lines may be desirable, however, to get a more consistent visualization (see
Fig. 3.10(g)).

Color All visual components of the CAM are gray scale except for the edges. The
number of grays used is kept at a minimum, because this draws attention to the edges.
This also leaves the rest of the color space available to color code edge types such that
they are easy to distinguish. Green and red colors encode regulations that promote
and inhibit, respectively, because it is a custom in the target domain. Orange encodes
regulations that both promote and inhibit, because it is approximately an intermediary
for green and red, yet can still be distinguished as a separate color. Blue encodes
unspecified regulations, because it has a neutral connotation.

Vertices are colored dark gray, not black, to make them less dominant. They are
also given halos matching the background color (white) to improve contrast, and to
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make them distinguishable when partially stacked. Likewise, edges and text labels
are given halos.

Arrangement Various vertex arrangements are implemented in the prototype, i.e.,
the sets in the partition of a layer 𝐿𝑖 (cf. Section 3.4.5) can be ordered in various ways.
Simple arrangements like sorting by in- and out-degree are possible, in addition to
rearrangement clustering by neighborhood similarity. Similarity clustering is widely
used to bring out edge patterns in standard adjacency matrices [62], and by compari-
son of Fig. 3.10(c) and (e) it is also beneficial to CAMs of GRNs. The use of arrangements
is configurable in the prototype, but by default we arrange leaves by inbound neigh-
borhood similarity, and hubs and roots by out-degree. Switching arrangements can
be done interactively, where vertices transition smoothly to their new positions.

Vertex arrangement in CAMs is more restricted than in an adjacency matrix due
to vertices being part of blocks and their partitions. It is also possible that leaves with
similar neighborhoods end up in different layers of the DAG and thus in a different
block because one inbound edge is different, causing a large distance between the
leaves in the final visualization.

Interaction Hovering over vertices and edges is possible for highlighting and ob-
taining additional information, i.e., gene name and function description for hovered
vertices, and inbound and outbound gene names for hovered edges. In addition, two
types of connectivity search are supported: highlighting of direct neighborhood and
highlighting of the entire up- and down-directed section of the network, i.e., all genes
that (in-)directly influence or are influenced by the hovered gene (see Fig. 3.10(h)).
Moreover, multiple vertices can be selected such that any highlighting is kept in place
when the vertices are no longer being hovered.

When a vertex or edge is highlighted, its size, color saturation, and brightness is
increased, such that it stands out from its surroundings. The background grid lines
are darkened as well to provide extra guidance. As shown in Fig. 3.10(h), the enlarged
edges also help to distinguish between those edges that are part of the connectivity
search, and those that are part of the neighborhood of a connected vertex.

Highlighted vertices and edges attract attention, but the remainder of the network
may inhibit their inspection. The prototype therefore allows to filter those vertices
and edges that are not highlighted. This causes a considerable reduction in size of the
CAM, making it easier to interpret (see Fig. 3.10(h)). Moreover, it enables interactive
navigation of the network, because nodes can be added or removed from the selec-
tion, increasing or decreasing parts of the network that are highlighted and therefore
visible. To better facilitate this navigation, the transition between filtered CAMs is ani-
mated, and the underlyingblock arrangement ismaintained to preserve the observer’s
visual orientation. This means that the entire network is always the basis for the gen-
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erated CAM, so the DAG structure that leads to layers and blocks is stable, and vertices
do not switch blocks, regardless of filtering.

3.5. Discussion
We now compare CAMs to standard visualization techniques that are often used for
GRN analysis. Fig. 3.11 and 3.12 show the CAM and the node-link diagram of a GRN of
the bacterium Escherichia coli, which consists of approximately 1300 genes and 2800
regulations [123].

Node-link diagrams aremore intuitive thanCAMs, but in case of Fig. 3.12, there are
so many edge intersections that the diagram is hardly readable. Some depictions are
even fully occluded, leading to a loss of information. More advanced node-link encod-
ings [124], or layout techniques that are specific to scale-free networks [125], may create
more insightful visualizations. However, the presence ofmany edge intersections can-
not be avoided due to the interconnectedness of the GRN. Edge-bundling techniques
could alleviate this further [22], but at the risk of additional information loss.

The main disadvantage of CAMs is inefficient use of space. Node-link diagrams
can bemore efficient in this aspect, because the positioning of nodes is less restricted.
Even after compression, it can be seen in Fig. 3.11 that large sections of the CAM remain
unused, and that it has a high aspect ratio. However, the neatly-arranged visualization
and lack of edge overlaps provided by a CAM outweigh these disadvantages.

GRN analysts have specific needs that have to be taken into account as well, which
involve the search of patterns. These patterns come in the form of subnetworks with a
specific structure. Some instances of these subnetworks are called motifs, which are
subnetworks that are statistically over-represented in GRNs, and are known to have a
specialized function [34]. We therefore consider themost important subnetwork struc-
tures, corresponding motifs, and related generic network tasks [9].

Genes should be regarded as part of a dynamical system to understand why spe-
cific subnetwork structures have specialized function. Genes have a so-called level of
expression that is conceptually related to the extent at which the gene is involved in
protein production or the regulation of other genes. It is also possible to talk about reg-
ulation signals, because regulations are dependent on gene expression levels and are
therefore time dependent. The motifs that we discuss can thus be regarded as signal
processing components, acting as signal delays, filters, and pulse generators.

Self-edge Single vertex with an edge directed to itself.

This structure is of particular interest in GRNs because a self-inhibiting gene (or the
negative auto-regulation motif) likely shows a faster response to inbound regulation
signals, and is more stable when receiving fluctuating signals [34]. Likewise, a self-
promoting gene (or the positive auto-regulation motif) shows slower response to in-
bound signals. Self-edges are easily spotted in both Fig. 3.11 and Fig. 3.12 as curves
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Figure 3.11: Rotated CAM of a GRN of bacterium Escherichia coli.
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Figure 3.12: Node-link diagram of a GRN of Escherichia coli, laid out with a spring-
based method in Cytoscape as commonly used by GRN analysts.

that bend back into a node. This also makes self-edges localized such that they are
easily spotted as a part of another subnetwork of interest.

Out-fan Vertex with edges directed towards a set of vertices.

Inspecting an out-fan of a vertex requires finding its neighborhood, the adjacency task
of [9]. This is relevant for gaining insight about regulators, which are geneswith a large
outbound neighborhood, referred to as a regulon. These regulators play a dominant
role in a bacterium’s response to environmental conditions, acting as master switches
for parts of a GRN. A regulator is easily spotted in a node-link diagram by the many
edges that converge at its position, creating the appearance of an actual fan. Likewise,
a regulator is easily spotted in a CAM because it is either a root or a hub, and these
vertex classes are easily distinguished. A regulator tends to be in a higher layer and
has large strips of edge depictions to its right that is emphasized by neighborhood
similarity clustering. In addition, the ordering of hubs and roots by out-degree places
regulons close to each other per layer, making them easier to spot. Surveying the
entire neighborhood of a regulon, however, is difficult in node-link diagrams because
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auto-regulation single-input module

feed-forward loop multi-input module

Figure 3.13: Illustrations of GRN motifs, generalized of regulation types. Gray areas
represent the remainder of a network.

direct neighbors can be positioned anywhere, and individual edges are hard to spot
because of themany edge intersections. While neighbors havemore regular positions
in a CAM, making them easier to find, they can be spread out over longer distances as
well.

The single-inputmodulemotif is a form of out-fanwhere the genes of a regulon are
affected by only one regulator (see Fig. 3.13). Here, a temporal arrangement of gene
activations occurs by varying the regulation strength to each gene of the regulon, in
essence creating a sequential program that is executed when the regulator becomes
active. Single-input modules are spotted in a node-link diagram by their dense ar-
rangement around a regulator, provided that it is not obfuscated by edges that are not
part of the module. Stacked leaves in a CAM, with only one inbound edge, correspond
directly to a single-input module. For example, it can be seen that Escherichia coli has
many such modules of varying size spread out over all layers, while Bacillus subtilis
(see Fig. 3.1) has relatively few large modules that are mostly part of the first layers.

In-fan Vertex with edges directed towards it from a set of vertices.

The observations for the out-fan are symmetric to those of the in-fan. However, the
in-fan is of relevance to themultiple-input modulemotif, which is an extension of the
single-input module where multiple regulons have strong overlap (see Fig. 3.13). This
enables the execution of different sequential programs with the same genes. The spe-
cial arrangement of vertices in CAMs clearly revealmultiple-inputmodules, where the
out-degree ordering of roots and hubs pushes regulators close together and the neigh-
borhood similarity arrangement of leaves showoverlap, anddifferences, between reg-
ulons as thick stripes of edge depictions. Regulon overlap can be detected in node-link
diagrams as two fans that diverge to the same set of nodes if only two regulators are
involved. However, involvement of more than two regulators results in patterns that
are hard to discern. Moreover, it is harder to compare two or more regulons in the
node-link diagram of Fig. 3.12 than in the CAM of Fig. 3.11.

Path Multiple vertices connected such that they form a directed chain.
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Apath in a GRN is effectively an indirect regulation of the gene at the end of the path by
the gene at the beginning of the path. Likewise, a regulator may have greater effect on
the entire GRN than initially estimated from its regulon, because it affects even more
genes via paths through its regulon. This stipulates the desire for focus (e.g., fans) and
context (e.g., paths). Tracing a path is called follow path in [9].

There may exist multiple paths between two genes. Such regulatory paths tend to
pass signals at different speeds, especially when the lengths of the paths are unequal.
The relevance of this follows from feed-forward loopmotifs. Feed-forward loops con-
sist of three genes with one direct and one indirect regulation (see Fig. 3.13). Its be-
haviors are the filtering of pulses (brief inbound regulation signals), the conversion of
long inbound regulation signals to outbound pulses, and the shortening or elongation
of response to inbound signals similar to auto-regulation.

Following paths is already difficult in the node-link diagrams of Fig. 3.2 and 3.12,
and spotting two paths between two nodes even more so. This is not easy in CAMs
either, but feed-forward loops can still be discerned because the nodes of the paths
follow each other in the layering and therefore create consistent patterns. These pat-
terns are made explicit by highlighting and filtering, as seen in Fig. 3.10(h).

Cycle Multiple vertices connected such that they form a cycle.

Cycles are also known as feed-back loops but they are uncommon in GRNs, and there-
fore not considered to be motifs. However, genes that are part of cycles have strongly
associated behavior, because these cycles tend to be small. For example, two genes
that inhibit each other form a cycle that functions as a form of indirect auto-regulation
on both genes. In that sense, genes that are part of a cycle behave in unison.

The presence of cycles is clearly lost in large node-link diagrams, where the nodes
of a cycle can have large distance between them, and the links of the cycles are obfus-
cated by other links. Cycles are localized in CAMs and have the appearance of actual
cycles, making them easier to spot. Moreover, the complementary nature of genes
that are part of a cycle also becomes apparent, because their neighborhood edges are
placed close to each other in the matrix. This enables easy comparison of their neigh-
borhoods (see the right-most cycle in Fig. 3.11).

Clearly, there are other visualization techniques beyond node-link diagrams that
can be considered, foremost of which are adjacency matrices and more advanced vi-
sual encodings. Adjacency matrices, however, are almost identical to CAMs but take
up much more space and do not facilitate following a path. The more advanced visual
encodings focus on networks that have structural characteristics different from those
of GRNs. NodeTrix [60], for example, is effective for networks that have somewhat
isolated clusters, which does not match the strongly interconnected nature of GRNs
that follows from their scale-free out-degree distribution. Moreover, Quilts [43] are
designed for DAG-like networks but rely on a tidy layer structure where few edges
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skip layers. As becomes clear from Fig. 3.11, GRNs have many edges that skip layers,
mainly outbound from important regulators, that make Quilts impractical. We have
also tried other node-link layout algorithms, but these gave the same, or worse, results
as the one shown in Fig. 3.12.

Finally, the question remains whether GRN analysts will value the use of CAMs
over customary node-link diagrams. We have shown several CAMs to biologists in an
informal setting. While interpreting thematrix encodingposed an initial challenge, the
biologists were able to read and appreciate them after a short explanation. However,
it is unlikely that CAMs will see day-to-day use by GRN analysts, who are typically
interested in small, isolatedGRNmodules that can be visualized as node-link diagrams
with manageable clutter. A more likely use will come from bioinformaticians, who run
algorithms on large GRNs to determine gene importance for example. Superimposing
the results of their algorithms on a CAM could assist them in associating the behavior
of their algorithms with GRN motifs.

3.6. Conclusion
We have presented a new approach for the visualization of GRNs and demonstrated
its strengths and weaknesses with respect to finding subnetwork structures that are of
importance to GRN analysts. Moreover, CAMs have clear benefits over standard adja-
cencymatrices, such as the ability to follow paths, which in some aspects is even easier
than in node-link diagrams. The feasibility of applying the CAM technique in prac-
tice is shown with a prototype that supports various interactive techniques often used
for standard adjacency matrices. The combination of adjacency matrix specific tech-
niques, such as rearrangement clustering, and node-link diagram properties, such as
no node duplication, make for a good alternative to current GRN visualizations.

Future work includes the integration of CAMs into the visual analysis process of
GRN analysts. This involves the mapping of additional data to vertices, such as gene
expression time series, where we can exploit the linear arrangement of vertices in a
CAM to improve attribute comparison tasks. We alsowant to investigate furthermatrix
compression, for example, by arranging leaves by neighborhood size and pushing
sections of them upwards where possible. In addition, the layers of a CAM could be
made to branch out, in accordancewith a possible branch-like structure of the network
itself.

For a CAM to achieve an extensive compression, the visualized network has to
fulfill specific requirements. So far we have not encountered other types of network
that fulfill these requirements. However, weplan to investigatemethods tomakeCAMs
applicable to a broader class of networks. Case in point is an alternate method to deal
with cycles, i.e., inverting edges instead of grouping strongly connected components.
This means that the few and small cycles requirement can be dropped, but likely at the
cost of less intuitive visualizations.
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Figure 4.1: Kelp Diagrams applied to a metabolic pathway (left) and a map (right).

We present Kelp Diagrams, a novel method to depict set relations over points, i.e.,
elements with predefined positions. Our method creates schematic drawings and has
been designed to take aesthetic quality, efficiency, and effectiveness into account. This
is achieved by a routing algorithm, which links elements that are part of the same set
by constructing minimum cost paths over a tangent visibility graph. There are two
styles of Kelp Diagrams to depict overlapping sets, a nested and a striped style, each
with its own strengths and weaknesses. We compare Kelp Diagrams with two existing
methods and show that our approach provides a more consistent and clear depiction
of both element locations and their set relations.

4.1. Introduction
Visualization of one or multiple sets, possibly sharing several elements, is a recurrent
theme both inside and outside the visualization community. Sometimes, depiction of
the sets is the main concern, excluding any other information of contained elements
besides some means of identification, i.e., a label. Here, simple visualizations suffice
for a small number of sets, such as a table with a mapping of elements to rows and
sets to columns, or a more space-efficient Euler diagram. Not every situation warrants
such an approach. Sometimes, other data aspects (partially) dictate the positions of
the elements’ visual representations. For example, geographic places are often best
positioned at their real-world coordinates because this is consistent with the existing
knowledge of the observer and improves visual orientation. Furthermore, it allows
spatial patterns to emerge.

The two state of the art approaches, Bubble Sets [126] andLineSets [127], use colored
shapes to visually connect elements that belong to the same set. Bubble Sets derives
an element density function for each set. Isolines are extracted from each function
to form shapes around the elements. These shapes are then connected further with
links, routed along the elements. LineSets draws a thick colored curve through the el-
ements of each set, making sure that the traversed path over the elements is relatively
short. Both approaches generate visualizations that often appear complex and some-
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Figure 4.2: The three phases of generating Kelp Diagrams: element allocation, link
allocation, and visualization.

times even convey invalid set memberships. In contrast our method strictly controls
where shapes of sets are placed. It consists of three phases (see Fig. 4.2): the allocation
of space around each element such that there is enough room to depict its containing
sets; the allocation of space for connecting shapes between demarcation zones with a
routing algorithm; and the generation of actual visualizations, by using the allocated
space, in two distinct ways.

In summary, our contribution is:

• Two styles of diagram that emphasize different aspects of set memberships and
overlap for elements with a predefined position;

• a routing algorithm for linking elements in a set to support the generation of
such diagrams, where aesthetic quality, efficiency, and effectiveness are taken
into account.

4.2. Related Work
Conveying information about multiple sets is a longstanding problem and exists in
various forms. When the location of the elements are not specified, then the input is
simply a set system. Each set can also be interpreted as a hyperedge of a hypergraph
defined on the elements (the vertices of the hypergraph). There are several papers
from the graph drawing community [16, 128] that discuss how to draw hypergraphs.
Most recent efforts have focused on so called planar supports for hypergraphs and the
associated subdivision drawings [129] (see also [130–132] for further theoretical results
on specific types of planar supports). Unfortunately most hypergraphs do not have
planar supports and hence subdivision drawings are of limited practical use.

When only sets (or hyperedges) are of concern, the depiction possibilities are nu-
merous. Euler diagrams are well-known and use contours to denote areas that repre-
sent sets, which is sometimes referred to as the subset standard. Such diagrams can be
generated automatically; by abstracting from individual elements [133], or by includ-
ing representations of the elements and related information [134–136]. Here, the posi-
tions of elements either do not matter as no elements are displayed, or are assigned to
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optimize the visualization of the sets. The number of elements and sets influences the
effectiveness of a visualization. Formany elements and groups, augmenting a contour-
based visualization is a possibility [137], or a highly-interactive analysis environment
is a necessity [138].

When dealing with predefined positions of elements, displaying the sets becomes
more difficult. If contours are used, like Euler diagrams, a fair division of display space
is an issue [126, 139, 140]. Another option is to connect highlighted elements with (col-
ored) links [90–92]. This is referred to as visual linking, which can take on sophisticated
forms [93]. However, visual linking focuses on relating elements, not the comparison
of sets in a spatial setting. For both approaches the way in which contours or links are
placed affects the depiction of the sets but also of the predefined visualization.

4.3. Problem Analysis
An input problem instance consists of three aspects: positioned elements, multiple
subsets of these elements, and the predefined visualization that embeds the elements.
We want to depict these sets in combination with the predefined visualization. To de-
termine what makes a good set depiction we enumerate tasks that an observer may
wish to perform by interpreting the visualization and hence the data. These tasks im-
pose constraints that any visualization has to fulfill whenever possible, but also provide
(conflicting) optimization criteria to improve task performance of the observer.

Supported tasks The composition of multiple elements and sets, in a spatial setting,
brings forth many questions of a comparative nature: To what extent do sets overlap
or differ? How close to each other are the elements of a set? Is the containment of an
element in a set correlated to its position? We have compiled a list of primitive tasks
that have to be supported by a visualization such that an observer is able to answer
these questions, or which the observer can perform ad-hoc to gain insight about the
data:

T1a determine the position of an element;

T1b find an element by position (relative to landmarks);

T1c estimate the density of elements in an area;

T2a determine which sets contain a specific element;

T2b find the elements that belong to a specific set;

T2c estimate the spatial distribution of a specific set;
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T3 compose a (mental) set from existing sets with operations union, intersect and
complement, and apply T1 - T2.

The tasks can be composed to answer more complex questions. When dealing
with cities on a map, with a set of large cities and a set of industrial cities, the follow-
ing questions may be asked: Which cities are large but not industrial? (T2b and T3);
Are industrial cities clustered together? (T2c); Is New York considered large and/or
industrial, and which neighboring cities are similar? (T1a, T2a, T3, and T2b). As shown,
answering common questions involves the combination and execution of these prim-
itive tasks. Thus, improving the efficiency at which tasks can be performed, improves
the ease at which complex questions can be answered.

Constraints The visualization should satisfy the following constraints:

C1 every element is clearly represented in the final visualization at its predefined
position (for T1);

C2 every element is clearlymarked or contained by a representation of every set that
it is a part of (for T2).

These constraints are satisfiable, provided that all elements are visually distinct,
i.e., all elements are positioned at a discernible distance from each other. We assume
this to be the case because any predefined visualization has to support T1 to be of prac-
tical purpose and should therefore have visually distinct elements in the first place.

Aesthetic criteria The aforementioned constraints guarantee that all tasks can be
performed but do not provide direction towards an efficient visualization that allows
(composite) tasks to be performed by an observer with little effort. Generation of aes-
thetic shapes has been a subject of research before for Euler diagrams [135], and the
generation of effective graph representations, by reduction of intersections for exam-
ple, is a common theme in graph drawing [16]. This has inspired us to list important
properties that make for good shapes that depict sets.
Shapes should have low cognitive load:

A1a small area;

A1b few and shallow bends;

A1c few outline intersections.

Not only do aesthetic shapes appeal to the observer, they in general are accompa-
nied by a low cognitive load, i.e., it takes less effort for the observer to process shapes
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(a) (b) (c)

Figure 4.3: The added benefit of linking: (a) Elements are associated solely by the col-
ored shapes that contain them. (b) Elements are associated both by color and a com-
mon shape. (c) Spatial patterns are emphasized.

and thus derive the information they aremeant to convey. For a set depiction, the faster
the shapes that convey sets are interpreted, the faster T2 can be performed.

A small area (A1a) implies less surface to inspect and process, thus less cognitive
load. Few and shallow bends (A1b) imply smooth outlines that are easy to distinguish
from their surroundings (the predefined visualization). It also means that outlines are
short and therefore easier to process. Intersections of outlines (A1c) make them harder
to tell apart and discern the area they contain and the elements therein.
Shapes should be effective:

A2a large area;

A2b large distance between outlines;

A2c little overlap of shapes that depict different sets;

A2d strong continuation of shapes that depict the same set.

Shapes of large surface area (A2a) attract attention, making the presence of a set
explicit (T2). If outlines of shapes are close to each other they are harder to tell apart,
often causing the overall shapes to be less pronounced. Likewise, overlapping shapes
(A2c) may obfuscate each other and the information they should convey. Both impact
T2 negatively.

For T2b (finding the elements that belong to a specific set) to be performed effi-
ciently, the elements have to be associated as a group by the observer. Otherwise, the
observer has to scan all elements in a linear fashion to determine their corresponding
sets. Incorporating distinguishing features such as color for the shapes is an effec-
tive approach. However, creation of a visual continuation of shapes (A2d) causes an
even stronger grouping effect (see Fig. 4.3), on which existing approaches rely as well
[93, 126, 127]. In certain situations, like the one shown in Fig. 4.3(c), strong continuation
also emphasizes spatial patterns of elements and sets. This includes improving the de-
tection of spatial clusters (T2c). As is the case for other criteria, continuation is not a
strict constraint, i.e., elements that belong to the same set do not have to be connected.
Shapes should not distort element position and density:
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(a) (b) (c)

Figure 4.4: The distorting effect of shapes on element depiction: (a) An element con-
tained in a shape attracts more attention. (b) The expected position of the element lies
at the center of the circle, which conflicts with its actual position. (c) Both sets of el-
ements have the same number of elements, but the difference in size of the shapes
suggests otherwise.

A3a little obfuscation of the predefined visualization;

A3b strong correspondence between the presence and size of a set’s shape, and the
presence and density of elements that belong to this set, in an area.

Not only do the shapes affect the way in which the predefined visualization is per-
ceived through partial occlusion or obfuscation, they also affect the way in which the
elements and their locations are perceived (A3a and A3b). For example, when the set
containment of an element is depicted with a large colored circle, this circle will form
a stronger visual cue to the presence of an element than the element’s own depiction
(see Fig. 4.4(a)). However, this can also affect the perceived position of the element (see
Fig. 4.4(b)) and the density of elements in an area (see Fig. 4.4(c)).

Many of the stated criteria are in conflict with each other: A2a with A2c, A1a with
A1b andA1c because of the routing that is required, A1cwith A2d, andA3bwith all other
criteria. Defining an optimal visualization therefore not only requires quantifying the
individual criteria, it also requires the criteria to be prioritized and combined into an
overall definition of an optimum. Such an approach has been used for the creation of
aesthetically pleasing Euler diagrams [133] and label placement on maps [141], where
different criteria are weighted and then used as a fitness function. It underlines the
varying expectations that different observers may have of visualizations.

Moreover, when criteria like A1c, which require routing, are included in an overall
optimization scheme, the combinatorial complexity of the problem greatly increases
and forces the use of heuristic algorithms.

4.4. Approach
Our approach consists of three phases: allocation of element space, allocation of ad-
ditional link space, and the generation of visualizations (see Fig. 4.2). The following
pseudo-code provides an overview of the approach, where Sections 4.4.1, 4.4.2, and
4.4.3 elaborate on lines 1 and 2, 3 to 10, and 11, respectively. Here, the elements are
denoted as 𝔼, the predefined element positions as 𝑝(𝑒) for 𝑒 ∈ 𝔼, and the collection
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of sets as 𝕊, where for every 𝑆 ∈ 𝕊 we have 𝑆 ⊆ 𝔼.

Algorithm Kelp(𝔼, 𝕊)
1. Derive Voronoi diagram of {𝑝(𝑒)|𝑒 ∈ 𝔼}.
2. For every 𝑒 ∈ 𝔼 derive 𝐴(𝑒) as the intersection of its Voronoi face and a circle

of radius 𝑟𝑒, centered at 𝑝(𝑒).
3. Derive embedded graph 𝐺𝐴 from {𝐴(𝑒)|𝑒 ∈ 𝔼}.
4. Derive tangent graph 𝐺𝑇 from 𝐺𝐴.
5. while best-to-place link 𝑙 between 𝑝, 𝑞 ∈ 𝑆 | 𝑆 ∈ 𝕊 has benefit 𝑏(𝑝, 𝑞) > 𝑏𝑡
6. do Add edges of 𝑙 in 𝐺𝑇 to subgraph 𝐺𝐿(𝑆).
7. Derive all-pair shortest paths of 𝐺𝐿(𝑆).
8. Update 𝐺𝑇 with intersections introduced by 𝑙.
9. Derive all-pair shortest paths of 𝐺𝑇 for all 𝑅 ∈ 𝕊.
10. Derive next best-to-place link from shortest paths in 𝐺𝐿(𝑅) and 𝐺𝑇 for all

𝑅 ∈ 𝕊.
11. Derive visualization style from all 𝐺𝐿(𝑆) | 𝑆 ∈ 𝕊.

4.4.1. Element space
T2 requires that for each element it is clear towhich sets it belongs, hence each element
should have ample (and at least equally divided) surrounding space to display its sets.
Taking the trade-off between A2a and A2c into account, we want the observer to have
a level of control on howmuch space is used for the set visualization. Given such fixed
area per element and considering A1a and A1b, the natural choice of area to allocate
around an element is a circle of radius 𝑟𝑒.

It is not always possible to allocate a perfect circle around each element. Some-
times the distance between two elements is smaller than 2𝑟𝑒, causing the circles to
overlap, or smaller than 𝑟𝑒, causing circles to overlap each other’s elements. To re-
solve this space contention, we first calculate the Voronoi diagram of {𝑝(𝑒)|𝑒 ∈ 𝔼}
and then, for every element 𝑒 ∈ 𝔼, intersect the allocated circle of 𝑒 with the Voronoi
face that contains 𝑝(𝑒) and use it as the new allocated space 𝐴(𝑒) (see Fig. 4.5). Hence,
no allocated space intersects and elements get a fair share of space.

The resulting space partition is stored as an embedded graph 𝐺𝐴 = (𝑉𝐴, 𝐸𝐴),
with vertices 𝑉𝔼 for the elements, and vertices 𝑉𝐼 for the intersection points between
Voronoi faces and circles, including thepoints that are sharedbymore than twoVoronoi
faces and liewithin an element circle. The edges between these intersection points are
either straight (part of a Voronoi face) or circular.

The allocated space of each element is referred to as a fair share, not an equal share,
because sometimes elements do not receive space that is equal in surface area to their
neighboring elements (Fig. 4.6(a)). This unequal allocation could in certain cases affect
the depiction of element density (A3b) negatively. Applying a repulsive force between
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(a) (b) (c)

Figure 4.5: Allocation of space for three elements: (a) Overlapping circles, centered
over elements. (b) The Voronoi faces of the elements’ positions. (c) Intersection of
circles and Voronoi faces.
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Figure 4.6: Area division between elements: (a) Ourmethod allocates an unequal share
of space. (b) Possible outcome of a force-based relocation of the circles. (c) Instance
where allocation of equal space for element 𝑒 is not possible without a more complex
shape.

the elements’ circles, and shifting their positions accordingly, would inmany situations
result in an equal division (Fig. 4.6(b)), but is not applicable to all situations (Fig. 4.6(c)).
Moreover, manipulating the position or shape of the circles will almost always harm
the ability of an observer to find elements by position (T1a) and to determine element
density in an area (A3b), see also Fig. 4.4. The intersection of an element’s Voronoi
face and circle is simple and allows for visual reinforcement of the element’s position,
which is discussed in Section 4.5.

4.4.2. Link space
A2d states that we should visually connect or link those elements that belong to the
same set such that elements from the same set are more easily associated with each
other. However, any additional link will result in a more complex visualization, nega-
tively affecting most other criteria. Therefore, we have to allocate link space for every
𝑆 ∈ 𝕊, such that the advantages of the links in the final visualization outweigh their
disadvantages, or cost, as much as possible.

We first consider the cost 𝑐(𝑙) of placing a link 𝑙 between 𝑝, 𝑞 ∈ 𝑆, where 𝑆 ∈ 𝕊,
in the scene. It can be modeled in a simple way, where:

𝑐(𝑙) = 𝑐𝑑𝑑(𝑙) + 𝑐𝛼𝛼(𝑙) + 𝑐𝐼𝐼(𝑙)
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Figure 4.7: Two possible paths of a link 𝑙 between 𝑝, 𝑞 ∈ 𝔼 (in red): (a) 𝑙 with unnec-
essarily high cost. (b) 𝑙 with identical topology but minimized cost.
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Figure 4.8: Examples of the additional edges in𝐸𝑇 (in red): (a) Tangent edges between
𝐴(𝑝) and 𝐴(𝑞), 𝑝, 𝑞 ∈ 𝔼. (b) Edges from 𝑝 to 𝑞 and 𝐴(𝑞). (c) Edges from 𝑣 ∈ 𝑉𝐼 .

Here, 𝑑(𝑙) is the distance covered by 𝑙; 𝛼(𝑙) is the aggregate angular change of 𝑙 in
radians; 𝐼(𝑙) is the number of intersections between the contours of 𝑙 and the contours
of links already placed in the scene; and 𝑐𝑑 , 𝑐𝛼, and 𝑐𝐼 are weight parameters. Dis-
tance is penalized in accordance with A1a, aggregate angular change with A1b, and
intersections with A1c.

No intersections should exist between 𝑙 and any allocated space 𝐴(𝑒) where 𝑒 ∈
𝔼\{𝑝, 𝑞}, as 𝑙 has no right to use space of 𝐴(𝑒). Also, 𝑐(𝑙) dictates that 𝑙 runs directly
adjacent to any 𝐴(𝑒) that it passes, because tightening 𝑙, without altering its topology
w.r.t. 𝐴(𝑒), will always lower 𝑑(𝑙) and 𝛼(𝑙) without changing 𝐼(𝑙) (see Fig. 4.7).

As can be seen in Fig. 4.7, this tightness means that any desirable link can be con-
structed from the edges in 𝐺𝐴 when certain (tangent) edges are added to it, similar to
robot motion planning with tangent visibility graphs [142]. So we extend 𝐺𝐴 to form
𝐺𝑇 = (𝑉𝑇 , 𝐸𝑇 ), which includes (tangent) edges between 𝐴(𝑝) and 𝐴(𝑞), 𝑝 and 𝐴(𝑞),
𝐴(𝑝) and 𝑞, and 𝑝 and 𝑞. In addition, for every 𝑣 ∈ 𝑉𝐼 , we have edges to every 𝑝 ∈ 𝔼
and tangent edges to 𝐴(𝑝) (see Fig. 4.8). This also adds vertices at the tangent points,
which split up the original circular edges.

Now, any link 𝑙 of set 𝑆 ∈ 𝕊 can be decomposed into a sequence of touching edges
{𝑒1, 𝑒2, ..., 𝑒𝑟} ⊆ 𝐸𝑇 , and 𝑐(𝑙) can then be derived from 𝐺𝑇 by summing the costs of
the individual edges. Based on these costs, it is possible to compute a minimum cost
path between 𝑝, 𝑞 ∈ 𝔼 in 𝐺𝑇 and thus get 𝑙.

Using only cost as a criterion for placing links is not enough when we want to con-
nect elements beyond a spanning tree. When spanning trees have been established
for all sets, additional low-cost links are not always of great benefit to the visualization
when they are placed. Consider the situations depicted in Fig. 4.9. For Fig. 4.9(a) the



Approach 63

la

p q

l1

lb

l1 lr

p q

(a) (b)

Figure 4.9: Benefit of placing a link between 𝑝, 𝑞 ∈ 𝑆, 𝑆 ∈ 𝕊 is dependent on already
placed links: (a) The benefit of placing 𝑙𝑎 is low because already placed 𝑙1 has low cost.
(b) The benefit of placing 𝑙𝑏 is high because already placed chain of links 𝑙1, 𝑙2, ..., 𝑙𝑟
has high cost.
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Figure 4.10: Link radius: (a) Increase of element space allocation by 𝑟𝑙. (b) Link with
allocated space of radius 𝑟𝑙 and its contours 𝑐1 and 𝑐2. (c) Two links routed beside each
other.

benefit of placing link 𝑙𝑎 is low because a low cost link 𝑙1 is already in place to provide
ample visual linking between the elements. For Fig. 4.9(b) the benefit of placing link 𝑙𝑏
is high because the links that already connect 𝑝 and 𝑞 sum to a high cost, which means
that in the current situation it is hard for the observer to follow links from 𝑝 to 𝑞, while
placement of 𝑙𝑏 would make this task considerably easier.

Let 𝐺𝐿(𝑆), for every 𝑆 ∈ 𝕊, be a subgraph of 𝐺𝑇 , which contains only edges
of links that have so far been added for 𝑆. We define the benefit of placing a lowest
cost link 𝑙 between 𝑝, 𝑞 ∈ 𝑆, as 𝑏(𝑝,𝑞) = 𝑑(𝑝,𝑞)

𝑐(𝑙) , where 𝑑(𝑝, 𝑞) is the minimum path
distance between 𝑝 and 𝑞 in 𝐺𝐿(𝑆). Hence, the benefit is higher when the cost of
placing 𝑙 is lower or the smallest distance via already placed links is higher. When 𝑝
and 𝑞 are not connected in 𝐺𝐿(𝑆), then 𝑑(𝑝, 𝑞) = ∞. In case the benefit of links has
to be compared for disconnected vertices of 𝐺𝐿(𝑆), we compare only by link cost.

Given these definitions, the algorithm places links in a greedymanner: Determine
𝑆 ∈ 𝕊 and 𝑝, 𝑞 ∈ 𝑆 with highest 𝑏(𝑝, 𝑞). If 𝑏(𝑝, 𝑞) > 𝑏𝑡 , where 𝑏𝑡 is a benefit threshold
parameter, add link 𝑙 to 𝐺𝐿(𝑆) and repeat the algorithm. When 𝑏(𝑝, 𝑞) ≤ 𝑏𝑡 , the
algorithm terminates.

In our approach so far, routed links have zero width. However, routing links of
parameterized radius 𝑟𝑙 (width 2𝑟𝑙) is achieved by increasing element space allocation
from 𝑟𝑒 to 𝑟𝑒 + 𝑟𝑙 (see Fig. 4.10).

When a link is placed, intersection information is updated for every edge 𝑒 ∈ 𝐸𝑇 ,



64 Kelp Diagrams

such that we know the number of intersections of 𝑒’s contours (dilation of 𝑒 by 𝑟𝑙) with
contours of already placed links, i.e., dilation of 𝑒𝑙 by 𝑟𝑙 for all 𝑒𝑙 of 𝐺𝐿(𝑆), 𝑆 ∈ 𝕊.
Tracking intersections between just the edges is not sound as it is possible for edges
to be placed next to each other within 2𝑟𝑙. Links routed over such edges would there-
fore intersect without receiving the right intersection penalty. To accommodate rout-
ing multiple links adjacent to each other and around the same element space (see
Fig. 4.10(c)), we also extend 𝐺𝑇 to include 𝐴(𝑒), and corresponding (tangent) edges,
dilated with steps of 2𝑟𝑙.

Overlapping contours are not counted as intersections. This allows two links 𝑙1 and
𝑙2 to share part of the same path with few intersections 𝐼(𝑙1) and 𝐼(𝑙2). Low-cost shar-
ing of paths is exactly what wewant to properly convey overlapping sets, as explained
in Section 4.5.

4.4.3. Visual styles
The space allocated for elements and their sets’ visual links can be used in various
ways. We devised two very different diagram styles: nested and striped Kelp.

Nested style Nested Kelp surrounds elements of every set with a colored shape (see
Fig. 4.11 (top)), where the shapes of every set are stacked on top of each other. It re-
lies on the ability of the observer to mentally distinguish and complete shapes that are
partially overlapped by other shapes. The allocated space for elements and links pro-
vides a framework to define the diagram such that every shape is sufficiently visible,
in correspondence with constraint C2.

We construct the set of shapes𝑁(𝑆) for every 𝑆 ∈ 𝕊 as follows: For every element
𝑒 ∈ 𝔼, assume 𝑆1, 𝑆2, ..., 𝑆𝑟 contain 𝑒, ordered such that |𝑆𝑖| ≤ |𝑆𝑗 | where 𝑖 < 𝑗. For
every 𝑆𝑖, scale the allocated space 𝐴(𝑒) around its centroid by a factor ( 𝑖𝑟 )𝑠𝑒 , where 𝑠𝑒
is a parameter, and merge it into 𝑁(𝑆𝑖).

For every edge 𝑒 ∈ 𝐸𝐿 , let 𝑄 be the set of edges reachable from 𝑒 in the union of
all 𝐺𝐿(𝑆), 𝑆 ∈ 𝕊, without passing beyond an element node. Assume that 𝑆1, 𝑆2, ..., 𝑆𝑟
contain an edge in 𝑄, ordered such that |𝑆𝑖| ≤ |𝑆𝑗 | where 𝑖 < 𝑗. Then, for every 𝑆𝑖,
dilate 𝑒 by 𝑟𝑙( 𝑖𝑟 )𝑠𝑙 , where 𝑠𝑙 is a parameter, and merge it into 𝑁(𝑆𝑖). Here dilate and
erode are the equivalents ofMinkowski sum andMinkowski subtractionwith a circle of
a specified radius [143]. Thus, for every element, setmembership depictions are bound
by the space that was allocated for the element. In addition, depictions are scaled to
nest. Links and element circles thus do not become visually dominant whenmany sets
share an element or path.

Links of a set are scaled to nest with links of other sets that partially share a path
in 𝐺𝐿 . The order in which sets are nested is based on the size of sets, i.e., smaller
sets nest in larger sets, which is consistent throughout the diagram. The scaling of
both element circles and links, by their level of nesting, depends on parameters 𝑠𝑒
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and 𝑠𝑙, respectively, such that the share of space allocated to every set can be adjusted
to compensate for the effects of perceptual scaling [144].

Figure 4.11: Kelp Diagram of eleven elements
and three sets. Top: Nested style. Bottom:
Striped style.

The shapes 𝑁(𝑆), for 𝑆 ∈ 𝕊,
are drawn on top of each other, or-
dered by |𝑆|, where 𝑁(𝑆) is filled
with a color and given a gray outline
to enhance contrast between shapes
of different sets. In addition, the
shapes are dilated and eroded to
smoothen the corners of the allo-
cated element space and the transi-
tion between links and elements. A
strong erosion results in a clear sep-
aration between shapes that are not
nested (A2b), as seen at the top of
Fig. 4.11.

Striped style Striped Kelp uses al-
ternating stripes for areas that con-
tain elements of multiple sets (see
bottom of Fig. 4.11). The allocated
space 𝐴(𝑒) of 𝑒 ∈ 𝔼 is partitioned
into radial slices, where every set that contains 𝑒 gets the same number of slices in
an alternating pattern. Edges of 𝐺𝐿 that belong to a set have link radius 𝑟𝑙. When an
edge belongs to multiple sets (links partially share a path), it is partitioned into stripes
of fixed length where the sets give an alternating pattern.

Stripes are drawn as consistently as possible. If two links share edges but even-
tually split up, the stripes will continue along the edges at the split. This is achieved
by drawing the stripes via a depth-first search in the 𝐺𝐿 graphs. Certain cyclic con-
figurations of links do not allow for consistent stripes, but these are rare enough in
practice.

4.4.4. Implementation and performance
We implemented our approach in Java, using the Java Topology Suite [145] for geomet-
ric operations such as dilation and erosion. One advantage of our purely geometric
routing and diagram definitions is that vector graphics can be generated and merged
with the predefined (vector) visualization to get images that can be rendered with ar-
bitrary resolution.

The running time of the algorithm is dominated by the iterative placement of links.
The tangent graph 𝐺𝑇 contains 𝑂(|𝔼|2) edges and nodes. To place one link, short-
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est paths are computed to all nodes in 𝐺𝑇 from every element and for every set. The
same applies to all 𝐺𝑆 graphs. This computation, including selection of the best link,
amounts to 𝑂(|𝕊||𝔼|2 log |𝔼|) when Dijkstra’s algorithm is used. After a link is placed,
any intersections that it introduces have to be accounted for. Thus, intersections are
determined for all edge pairs, which amounts to𝑂(|𝔼|2 log |𝔼|) timewith a sweepline
algorithm. It is reasonable to assume that the algorithm’s parameters are configured
such that for every set 𝑆 ∈ 𝕊 the final 𝐺𝑆(𝑆) is planar and therefore 𝑂(|𝔼|) links
are placed for 𝑆. The entire links placement phase therefore takes𝑂(|𝕊|2|𝔼|3 log |𝔼|)
time. This also bounds the running time of the entire approach, with the space alloca-
tion and visualization phases being relatively cheap.

The bound (though not tight) indicates that the current approach cannot be applied
to data sets of thousands of elements. However, most data sets commonly used in this
visualization problem do not go beyond a hundred elements and several sets, since
larger sets cannot be comprehended by an observer. Our implementation is able to
generate Kelp diagrams for such data sets within five minutes on a modern desktop
computer (Intel Core 2 Quad CPU at 2.4 GHz).

4.5. Results and Discussion
Fig. 4.12 shows Kelp Diagrams with various parameter configurations. The benefit of
visually linking elements that belong to the same set follows from Fig. 4.12(a) and (b).
Increasing the element radius 𝑟𝑒 (see Fig. 4.12(b) and (d)) causes more of the original
map to be occluded, making it harder to find capital cities by their location, but sets are
more easily distinguished. Especially when multiple links share a path, the sets of the
nested style are harder to distinguish, requiring larger 𝑟𝑙. The striped style suffers less
from this. A comparison of Fig. 4.12(b) and (e) reveals the effect of increasing the inter-
section penalty 𝑐𝐼 , where the algorithm deems it of greater benefit to route a long link
around Helsinki instead of introducing additional intersections. The effect of the link
addition threshold 𝑏𝑡 is shown in Fig. 4.12(f), where a low 𝑏𝑡 results in the construction
of spanning trees. Kelp can be applied beyond cartography, as shown for a metabolic
network in Fig. 4.1. Here, nested element scaling 𝑠𝑒 has been given a very low value to
push the contours away from labels of compounds.

Figure 4.12: Kelp applied to the capital cities of the European Union, where the eu-
rozone is blue, the EU founding members (European Coal and Steel Community) are
pink, and members with good, average, and bad credit rating are green, orange, and
red respectively (Standard & Poor’s, October 2011). The diagrams have various config-
urations: (a) Nested style without links. (b) Nested style with links. (c) Striped style. (d)
Nested style with large element radius 𝑟𝑒 and small link radius 𝑟𝑙. (e) Nested style with
large intersection penalty 𝑐𝐼 . (f) Nested style with low link addition threshold 𝑏𝑡 .
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(a) disconnected (b) connected

(c) striped (d) big elements and thin links

(e) few intersections (f) few links
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(a) (b)

(c)

Figure 4.13: Restaurants of three cate-
gories in Seattle:
(a) Bubble Sets approach, generated with a
public software library [146].
(b) LineSets approach, image reproduced
from [127].
(c) Nested Kelp Diagram.

The strengths and weaknesses of the nested and striped styles can be seen in
Fig. 4.12(b) and (c). When multiple sets share the same link, e.g., Amsterdam-Berlin,
the sets of the nested style quickly become harder to distinguish, whereas the striped
style has no such problem provided that the link is long enough to fit ample stripes
for each set. The striped style also prevents false assumptions to be made about the
nested structure of the depicted sets. The nesting at Ljubljana suggests that the blue
set is a subset of the green set, while they actually only overlap. However, the striped
style ignores some of the criteria listed in Section 4.3. The stripes of a shared link or
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(a) (b)

(c)

Figure 4.14: Disjoint sets of locations in
Manhattan, with hotels (orange), subway
stations (brown), and medical clinics (pur-
ple):
(a) Bubble Sets, image taken from [126].
(b) LineSets, image courtesy B. Alper and
N. Riche.
(c) Nested Kelp Diagram.

node break the continuation of the sets’ shapes, which explains why the shapes of the
nested style are more easily interpreted as a whole. Stripes also increase the visual
complexity of the diagram because there are more and stronger bends (A1b). There-
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fore, the nested style is easier on the eyes and likely the more versatile style in many
situations. It also happens to be the closest visual match to existing techniques.

Fig. 4.13 and 4.14 compare the nested style with the Bubble Sets and LineSets tech-
niques for the same datasets. We can see that the Bubble Sets approach has many
bends in its contours. In some locations, shapes and contours have undesirable over-
lap. Compared to the Kelp Diagram, the Bubble Sets depiction introduces more over-
lapping areas. This is not surprising since the Bubble Sets algorithm does not try to
avoid intersections between links where Kelp does. In addition, Bubble Sets create
shapes that use a lot of space and color blending introduces new colors for overlap-
ping shapes that may be interpreted as additional, non-existing sets.

Bubble Sets andLineSets cannot visually connect elements beyondcreating a span-
ning tree, whereas Kelp creates a graph to interconnect elements as much as desired
via parameter 𝑏𝑡 . Additional links, beyond a spanning tree, may not always be desired.
For example, Fig. 4.14(c) has been generatedwith a relatively high 𝑏𝑡 . For this diagram,
some links of the brown set introduce some additional visual clutter (A1a, A1b, and A3a)
though improve interpretation of spatial distributions (A2d and A3b). However, when
𝑏𝑡 is set to a low value, surplus links will only be placed when continuation greatly
improves. This is the case for the green set of Fig. 4.13.

LineSets do not route shapes around elements that should not be contained by
them, which the other techniques do. Hence, in Fig. 4.14(b) we see an element of the
brown set at themiddle left that overlaps with a shape of the orange set, while it is not a
part of the orange set. Moreover, LineSets connect elements of a set with a single line,
creating longer links, many bends, and intersections. For example, there is a line with
a strong bend at the bottom of Fig. 4.13(b) that could have been avoided.

Even though the element glyphs are very small in Fig. 4.13(c), we can immedi-
ately see the presence and density of elements because the surrounding contours are
(partially) circular. For LineSets, the presence of an element can be inferred from the
presence of a bend, while for Bubble Sets the large shapes make elements harder to
spot (see Fig. 4.13(a)). Kelp’s composition of basic visual units, circles and constant-
width connections, is an advantage over Bubble Sets. Depictions are consistent, which
means less visual clutter and easier interpretation.

Kelp Diagrams have some drawbacks. They sometimes have sharp bends where
two links of the same set converge. Also, contours can become complex for clusters
of elements that belong to the same set. LineSets suffer from this as well, in contrast
to Bubble Sets. In addition, when elements are too close to each other, their Voronoi
faces becomedominant in space allocation and cause strong corners to occur in nearby
contours. The schematic appearance of Kelp on top of a predefined visualization that
is schematic as well can be confusing, e.g., the set shapes may be interpreted as roads
or metro lines. The more organic appearance of LineSets and Bubble Sets make them
stand out from a map.
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For biological networks, conventional approaches change the color of compounds
to visualize a single region of interest in, for example, a metabolic pathway. However,
Fig. 4.1 depicts a Kelp Diagram on top of a metabolic pathway such that multiple prop-
erties of compounds are simultaneously conveyed. This flexibility extends to other bi-
ological networks such asGeneRegulatory and Protein InteractionNetworks, enabling
the visualization of multiple overlapping modules. In Chapter 5 we demonstrate how
this capability benefits actual network analysis.

4.6. Conclusion
Kelp Diagrams are a newway to depict set relations over already positioned elements.
The algorithm balances visual complexity, based on aesthetic criteria, with effective
depiction of the data. Comparison of resulting visualizations with those generated by
two state of the art approaches for the same data shows that Kelp Diagrams have a
consistent, easy to interpret, appearance. In addition, the parameters of the algorithm
give it the flexibility that is required for application to different kinds of visualization.

Still, several improvements are possible. The routing algorithm is too slow for
interactive use. Exploiting locality with spatial data structures, or replacing the tan-
gent visibility graph with a graph of smaller complexity, are possible options. Also the
greedy placement of links can be improved to reduce visual clutter. For nested Kelp,
improved derivation of link width and nesting order with respect to aesthetic criteria
requires further investigation. For example, links could be given widths according to
an additive scheme, where the width of a link is increased when it has to convey mul-
tiple sets. In addition, allocated element and link space could be made dependent on
the element density in an area.

Other extensions are possible, such as supporting elements with dimension (in-
stead of points) and automated derivation of parameter settings based on the data it-
self. Use of the subset standard, as is the case for Kelp Diagrams, has been indicated
to be effective via user studies before [127]. Nonetheless, we plan to investigate the ef-
fectiveness of the presented diagrams, and compare them to existing techniques, with
further user studies.

Current approaches share many similarities in an attempt to solve the same prob-
lem. KelpFusion [147] is a more generic method that is able to produce the distinct
visualizations of current approaches, but also able to produce hybrid visualizations of
greater quality.

Acknowledgements Wewould like to thankNathalie Henry Riche, Basak Alper, and
their colleagues for providing us with the data for Fig. 4.13 and 4.14.
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Biological networks have a growing importance for the interpretation of large scale
“omics” data. Integrative network analysis makes use of statistical and combinatorial
methods to extract smaller subnetworkmodules, and performs enrichment analysis to
annotate the modules with ontology terms or other available knowledge. This process
results in annotatedmodules, which retain the original network structure and includes
enrichment information as a set system. A major bottleneck is a lack of tools that allow
exploring both network structure of extracted modules and its annotations. We there-
fore present a visual analysis approach that targets smallmoduleswithmany set-based
annotations, and which displays the annotations as contours on top of a node-link dia-
gram. We introduce an extension of self-organizing maps to lay out nodes, links, and
contours in a unified way. An implementation of this approach is freely available as
the Cytoscape app eXamine. This app accurately conveys small and annotated mod-
ules consisting of several dozens of proteins and annotations. We demonstrate that eX-
amine facilitates the interpretation of integrative network analysis results in a guided
case study. This study has resulted in a novel biological insight regarding the virally-
encoded G-protein coupled receptor US28.

5.1. Background
High-throughput “omics” data provide snapshots of cellular states in a specific condi-
tion. Computational approaches can be used to relate these low-level measurements
with high-level changes in phenotype. Traditionally, these approaches were gene-
centric and typically resulted in ranked lists of differentially expressed genes [148–
150]. Later, gene-centric approaches were complemented by pathway- [151, 152] and
network-based methods [153, 154] to provide inter-gene context for mechanistic in-
sights. Pathway-based approaches identify overrepresentedpathways fromdatabases
such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) [155]. Network-based
approaches yield small, de novo subnetworkmodules, whichmay span several known
pathways and reveal their crosstalk [156].

Extracted network modules are analyzed in the context of established gene anno-
tations to hypothesize about themodule’s role in high-level cell conditions (see Fig. 5.1).
Genes are often related to very many terms (too many for human comprehension),
most of which are likely irrelevant to the analysis context. Therefore, overrepresenta-
tion analysis is performed to rank information items by their significance. These items
originate from ontologies such as the Gene Ontology (GO) [157], which identifies cel-
lular functions, processes and components that nodes relate to, or from KEGG [155],
which relates nodes to pathways. This results in an annotated module, which retains
the original network structure and includes enrichment information as a set system.

Existing tools focus on visualizing large networks, and have only limited or sep-
arate set system support or no support at all. Our proposed visual analysis approach
displays sets as contours on top of a node-link layout (see Fig. 5.2). It treats module



Background 75

samples

...control

experimental ...

expression
levels

sequencing

...

...

statistical
inference

differential
expression

gene
network

algorithmic
extraction

module
(D1)

ontologies424
pathways

enrichment
analysis

annotated
module
(D1-4)

eXamine
observation

knowledge

questions
exploration

(G1-4,4A1-2,4L)

hypotheses

visual4analytics4cycle

Figure 5.1: Data and analysis pipeline. First, control and experimental samples are
analyzed to estimate expression levels. Subsequently, gene expression differences
(between experiment and control) and their significance are determined. These dif-
ferences are thenmapped to an interaction network, fromwhich amodule is extracted
with overall significantly-differential gene expression. This module is annotated with
overrepresented cell mechanisms from ontology and pathway databases. Finally, the
enriched module undergoes iterative visual analysis via eXamine.

edges and annotation sets in a unified way, and contributes the following to the analy-
sis of annotated modules:

• Identification of elementary module analysis tasks and their composition into a
visual analysis process;

• Extension of the self-organizing maps (SOM) algorithm to lay out module inter-
actions and annotations in a unified approach;

• Implementation in the form of the Cytoscape app eXamine;

• Demonstration of eXamine via a guided study of an annotated module that is
activated by the virally-encoded G protein-coupled receptor US28;

• Discussion on how eXamine facilitates the analysis process.

5.1.1. Data characteristics
The annotated modules, targeted by the presented method, have the following char-
acteristics.

D1 Small and sparse network topology, in which genes and interactions number in
the dozens;
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D2 Many annotation sets, outnumbering gene interactions;

D3 Annotation sets vary in cardinality, from a single node to the entire module;

D4 Annotation sets overlap often.

Integrative network analysismethods produce small and sparse subnetworkmod-
ules (D1), rather than large lists of differentially expressed genes. Embedding themod-
ule in a rich context of annotations on overlapping sets of genes is a typical next step
to gain insights in the underlying biology (D2, D3, D4).

5.1.2. Analysis tasks
The focus (or perspective) of analysts alternates betweengenes (and interactionswithin
amodule) and annotation sets. Important analysis tasks are supported for each of these
data aspects to enable an analyst to hypothesize about the role of an extracted module
in light of experimental conditions.

For genes, analysts want to determine:

G1 Level of differential expression: under- or over-expressed, or insignificant;

G2 Interacting neighbors;

G3 Annotations (set memberships);

G4 Annotations shared with other genes.

Single genes can become the focus of attention during the analysis process within
the context of themodule. The fact that a gene is part of amodule does not imply that its
under- or overexpression is significant. However, information (G1) about differential
expression enables the elucidation of a gene’s presence in themodule. For example, it
could be the case that a gene is not differentially expressed significantly itself, but that
it is still part of a module, because it connects two differentially expressed submod-
ules. An indirect involvement of the gene in a module mechanism is therefore likely.
Neighboring genes might also become interesting (G2), as are any mechanisms that it
is associated with already (G3), and the mechanisms that it shares with other genes in
the module (G4).

For annotation sets, analysts want to determine:

A1 Significance of overrepresentation;

A2 Gene memberships.
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Figure 5.2: Visualization of an annotated module. Interacting proteins with a selection
of three subsets, corresponding to overrepresented KEGGpathways. The visualization
consists of a combination of a node-link diagram and an Euler diagram.

If a specific gene is interesting, its annotations might be too (G3 and G4). Anno-
tation sets themselves can have such significance (A1) that they become interesting,
which then translates to genes contained in them (A2). Both significance in terms of
an associated 𝑝-value and subjective significance are of importance to divide attention
between annotation sets.

For interactions, analysts want to determine:

L Annotation transitions between interacting genes.

A change between annotations (L) may occur when the focus on a gene shifts to
a neighboring gene (G2), which is of importance to an analyst to judge the role and
relevance of the neighboring gene in the module.

5.1.3. Related work
Network visualization and tools Many advanced techniques for the visualization
of network topology have been developed [5, 6, 16], but few have been transferred
to readily available tools. On the other hand, there are many tools for interpreting
and exploring biological networks [158], including the popular open source platforms
Cytoscape [10] and PathVisio [159]. However, these currently provide only limited ca-
pability to visualize annotated modules. PathVisio is a pathway analysis approach, in
which sets are restricted to subsets of static, pre-defined individual pathways, and set
membership is conveyed via node colors. Cytoscape’s group attributes layout can be
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Figure 5.3: Annotatedmodule visualization usingCytoscape’s Venn and Euler diagram
app: (a) Venn diagram and (b) Euler diagram. The number of displayed sets is limited
to four and no network structure is shown. (c) Module laid out by one of Cytoscape’s
built-in force-directed layout algorithms and BubbleSets superimposed on the net-
work (same color scheme as in Fig. 5.9(b)). Note that it is not immediately apparent
that the nodes in the 𝛽-catenin set (blue) form a subset of Adherens junction (yellow),
because the BubbleSet approach applies no explicit nesting of subsets.

used to visualize partitions by showing disjoint parts in separate circles, but it does not
support overlapping sets. The Venn and Euler diagram app [160] for Cytoscape does
support overlapping sets, but it can handle only four at the same time (see Figs. 5.3(a)
and (b)). In this app, network and sets are visualized separately: set membership
is conveyed by selecting a set and its corresponding nodes are highlighted in Cy-
toscape’s network view. The RBVI collection of plugins [161] facilitates creation and
editing of Cytoscape groups, and provides a group viewer that relies on aggregation
of groups into meta-nodes. These meta-nodes can be visualized as standard nodes, as
nodes containing embedded networks, or as charts. This approach, however, does not
allow for visualization of overlapping sets.

Set system visualization In the information visualization field, Euler diagrams are
used for the intuitive visualization of set systems [134–136], in which items belonging
to the same set are denoted by contours. Variants of these approaches visualize sets
over items with predefined positions, e.g., over a given node-link visualization of a
network. These methods range from connecting these items by simple lines (Line-
Sets) [127], via colored shapes that are routed along the items (Kelp Diagrams) [212] and
contours around the items (BubbleSets, see Fig. 5.3(c)) [126, 162] to hybrid approaches
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(KelpFusion) [147]. Visualizing an annotated module, however, requires an integrated
layout of both its network and set system topologies, which is not possible with these
approaches. Euler diagrammethods focus on the layout of set relations at the expense
of network topology. Likewise, laying out the network before superimposing set rela-
tions will emphasize network topology to the detriment of the set system. Some tech-
niques exist that provide such integrated layouts [59, 90, 163, 164], and which include
aesthetic concerns and design of visual metaphors [165]. However, these approaches
assume constraints on the network and set system topologies, e.g., strict partitions and
no overlapping sets, and they are therefore not applicable to our problem.

5.2. Method and Implementation

Visualizing an annotated module amounts to visualizing a hypergraph consisting of
binary edges (interactions) between nodes (genes) and 𝑛-ary edges (annotation sets).
Analysis tasks G2-G4 and A2 establish the equal importance of associating interactions
and annotation sets, which reflect on both the layout as well as the visualization of the
hypergraph. Therefore, as opposed to combining multiple existing techniques (e.g., a
force simulation to position the nodes according to the binary edges [19], a node over-
lap removal algorithm to keep nodes identifiable [166], and subsequent construction
of a density field to derive contours for annotation sets [126]) our approach relies on a
unified algorithm that treats binary and 𝑛-ary edges on equal terms. This allows us to
compute a balanced layout, and also to choose suitable representations for the binary
and 𝑛-ary edges. We achieve this by assigning a bit vector 𝐭 = (𝑡1, 𝑡2, … , 𝑡𝑀) to ev-
ery node 𝑡 ∈ 𝑉 (the module genes) that encodes its membership in binary and 𝑛-ary
edges 𝑆1, 𝑆2, … , 𝑆𝑀 . That is, 𝑡𝑖 = 1 if 𝑡 ∈ 𝑆𝑖 and 𝑡𝑖 = 0 if 𝑡 ∉ 𝑆𝑖.

Tomake this representationmore concrete, consider the annotatedmodule shown
in Fig. 5.2. The nodes are represented as the set 𝑉 = {Calm1, Calm2, Calm3, Kras,
Nr3c2, Plcb4}. There are seven sets representing the edges and three sets repre-
senting pathway memberships. The edge sets are 𝑆1 = {𝑣1, 𝑣4}, 𝑆2 = {𝑣1, 𝑣6},
𝑆3 = {𝑣2, 𝑣4}, 𝑆4 = {𝑣2, 𝑣6}, 𝑆5 = {𝑣3, 𝑣4}, 𝑆6 = {𝑣3, 𝑣6}, and 𝑆7 = {𝑣4, 𝑣5}.
Note that nodes 𝑣4 (Kras) and 𝑣6 (Plcb4) have some additional outgoing edges, but their
targets are not visible in the image. Therefore, we ignore these edges in this exam-
ple. The pathway memberships are the Glioma set 𝑆8 = {𝑣1, 𝑣2, 𝑣3, 𝑣4}, the Long-
term potentiation set 𝑆9 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣6}, and the GnRH signaling pathway set
𝑆10 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣6}. Now, for example, node 𝑣5 gets assigned the bit vector 𝐭𝑣5 =
(0, 0, 0, 0, 0, 0, 1, 0, 0, 0) and node 𝑣6 the bit vector 𝐭𝑣6 = (0, 1, 0, 1, 0, 1, 0, 0, 1, 1).

This high-dimensional representation is then used to lay out the nodes without
overlap, the binary edges as curves, and the 𝑛-ary edges as contours.
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Figure 5.4: Training neuron 𝑛𝑥,𝑦: (a) The neighborhood within range 𝑟𝑖 is trained (col-
ored gray). (b) Certain tiles are already reserved (colored red) in the RSOM algorithm,
item 𝑡 therefore trickles outwards to the best matching free spots (outlined).

5.2.1. Extension to Self Organizing Maps
Self Organizing Maps (SOMs), introduced by Kohonen [167], are artificial neural net-
works that are used to map high-dimensional data items to discretized low dimension.
SOMs are used in a visualization setting to cluster similar items together in a 2Dembed-
ding, which results in a landscape of items based on their features [168, 169]. Typical
SOMs consist of a square grid of size 𝑁 × 𝑁 with a neuron 𝑛𝑥,𝑦 ∈ [0..1]𝑀 at every
grid cell. A neuron 𝑛𝑥,𝑦 is a bit vector of size 𝑀 which dimension matches the data
items’ dimensions. In our case, the data items 𝕋 correspond to the set of nodes 𝑉
in the annotated module. The training algorithm applies unsupervised reinforcement
learning in an iterative fashion: at every iteration 𝑖 ∈ {1, … , 𝐼} all data items 𝑡 ∈ 𝕋 are
considered and the neuron that matches 𝑡 most closely is determined using a distance
function such as the Euclidean or Manhattan norm. This neuron and its neighboring
neurons within radius 𝑟𝑖 are updated to match 𝑡 even more closely by setting their re-
spective vectors 𝑞 to 𝑞 + 𝛼𝑖(𝑡 − 𝑞) (see Fig. 5.4(a)). In early iterations 𝑖, the trained
neighborhoods are large with 𝑟𝑖 close to the grid size 𝑁 and the training strength 𝛼𝑖
close to 1. The parameters 𝑟𝑖 and𝛼𝑖 decreasemonotonically with increasing 𝑖. As such,
items that differ strongly will distribute across the map to establish their own regions
in the grid at early stages. Items with smaller differences are separated along the grid
at a more local level as the training iterations progress.

Reservation-based training Similar itemsmay end up at the same grid position in a
standard SOM. This issue is usually solved by showing aggregate depictions of items,
butweneed to have separate depictionswithout overlap to support tasksG1-G4. There-
fore, each item has to map to a unique grid position. We achieve this by altering the
training algorithm:
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Algorithm RSOM(𝕋)
1. for 𝑖 ← 1 to 𝐼
2. do Initialize copy 𝕌 of 𝕋 and clear neuron reservations.
3. while 𝕌 contains items
4. do Draw and remove item 𝑡 from 𝕌.
5. Find unreserved neuron 𝑛𝑥,𝑦 with smallest distance 𝑑(𝑡, 𝑛𝑥,𝑦).
6. Reserve 𝑛𝑥,𝑦 for 𝑡.
7. for any neuron 𝑞 within range 𝑟𝑖 from (𝑥, 𝑦)
8. do 𝑞 ← 𝑞 + 𝛼𝑖(𝑡 − 𝑞)

The algorithm assigns items to a unique neuron after every training iteration, because,
once a neuron is reserved by an item, subsequent items will ignore it. This causes
a flooding effect where similar items end up in the same area of the grid and trickle
outwards as the area becomes more crowded (see Fig. 5.4(b)).

Configuration The metric distance form of cosine similarity is used as the distance
function 𝑑, i.e. 𝑑(𝑞, 𝑝) = cos−1(𝑞 ⋅ 𝑝 / |𝑞||𝑝|)𝜋−1. This measure outperforms the Eu-
clidean and Manhattan norms in high-dimensional spaces. The SOM is trained with a
learning strength and neighborhood range that decrease linearly with increasing iter-
ation 𝑖. A standard choice is𝛼𝑖 = 𝑐⋅(1−𝑖/𝐼) and 𝑟𝑖 = ⌊(1−𝑖/𝐼)⋅𝑁⌋, where 𝑐 ∈ (0..1) is
a small constant that determines the initial training strength. We use𝑁 = 2|𝕋| for the
number of neurons and iterations, balancing nodeplacement freedomversus required
display space, and 𝐼 = 106/|𝕋| for a gradual and accurate training, respectively.

Layout preservation A new layout has to be computed whenever the user selects
or deselects a set. The new layout should change little in comparison to the old lay-
out to preserve the user’s mental map. This is achieved by a simple addition to the
SOM algorithm, where a new SOM is initialized with the previous configuration of the
neurons, i.e., an item that was positioned at 𝑛𝑥,𝑦 in the old SOM is placed at 𝑛𝑥,𝑦 in the
new SOM and its neighborhood is trained according to the new bit vector of the item.
The new SOM retains much of the initial configuration by starting the training factor
𝛼𝑖 at 𝑐 = 0.01. Naturally, this imposes a trade-off between layout quality and conser-
vation. The layout will sometimes change strongly to accommodate the addition of a
set that contains many items. In contrast, the layout can be retained if only a small set
that does not alter much of the topology is added. This approach does not consider
a history of topological changes, as is done in online graph drawing [170] to capture
temporal dynamics, but is sufficient to maintain a stable and interactive environment.

Set dominance Theuser is enabled tomake a certain setmoredominant in the layout
by having the training algorithm place the items of that set closer to each other than
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Figure 5.5: Changing the dominance of a set: (a) Highly dominant set, drawing proteins
of the set together. (b) Non-dominant set, where the network topology fully defines the
layout.



Method and Implementation 83

(a) (b)

Figure 5.6: Derivation of contours for set 𝑆𝑖. The darkness of a tile represents the value
of the neurons’ 𝑖-th component, the thick black line is the contour, dots represent items
that are in 𝑆𝑖, andwhite dots are items that are not in 𝑆𝑖: (a) Contour that results from the
union of tiles with a value above a certain threshold. (b) Refined contour with shortcuts
across free tiles.

the items of other sets. This relies on weighting the components of the item bit vectors:
every 𝑆𝑖 is given a weight 𝑤𝑖 with 𝑤𝑖 = 1 initially. The bit vectors are augmented to
incorporate these weights: 𝑡𝑖 = 𝑤𝑖 if 𝑡 ∈ 𝑆𝑖 and 𝑡𝑖 = 0 if 𝑡 ∉ 𝑆𝑖. The bit vector
component of 𝑆𝑖 will therefore play a more prominent role in distance metric 𝑑 when
the user increases 𝑤𝑖 (see Fig. 5.5).

Assigning greater weight to a set improves the quality of its layout by coalescing
its elements, which aids tasks G4 and A2. However, it also degrades the layout qual-
ity of other sets and links when their topology conflicts with the prioritized set. This
stems from the difficulty of projecting elements from a high-dimensional space down
to a two-dimensional space, which sometimes results in a sub-optimal layout per set.
Interactive manipulation provides a way to assign different priorities to sets, and im-
prove their layouts.

Contours The SOM’s neuron grid is used to define the contours representing the
active set system. Let 𝑆𝑖 be an active set. The corresponding 𝑖-th components of the
neurons define a scalar field that forms a fuzzy membership landscape for 𝑆𝑖. This
field is similar to the density field used in Bubble Sets [126]. Now, the inclusion of the
grid tile of neuron 𝑛 in the contour body is determined by imposing a threshold, of for
example 1

2 , on the 𝑖-th component (see Fig. 5.6(a)). The contour can then be tightened
to reduce sharp corners by including parts of tiles that are free of items, as illustrated
in Fig. 5.6(b).

After establishing the layout of the contours, we apply geometric post process-
ing steps [212] to improve aesthetics, where all sets are legible (tasks G3 and A2) and
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Figure 5.7: Geometric refinement of set contours after initial layout. Corners are
smoothened by dilation and erosion operations, and contours are given a thick and
colored internal ribbon. Unique erosion levels create distance between contour out-
lines, and contour overlap is emphasized by dashed lines.

contours form clear boundaries underneath interactions (task L). Sharp corners of the
initial contours are rounded by a dilation of 𝑟, erosion of 2𝑟, and subsequent dilation of
𝑟 (see Fig. 5.6). Here dilate and erode are equivalent toMinkowski sum andMinkowski
subtraction operators with a circle of radius 𝑟 [143], respectively. In addition, the con-
tours are nested by applying different levels of erosion, enforcing a certain distance
between them. The thick colored ribbons in Fig. 5.7 are obtained by taking the body 𝑏
of a contour, eroding it to get a smaller body 𝑏𝑒, and taking the symmetric difference
𝑏 − 𝑏𝑒 of 𝑏 and 𝑏𝑒 to effectively cut 𝑏𝑒 out of 𝑏. Here, the extent of the erosions and
dilations (radius 𝑟) is bounded by a fraction of the grid’s tile size. This guarantees that
items are contained by a contour of 𝑆𝑖 if, and only if, these items are contained by 𝑆𝑖.

Set contours are drawn in descending nesting order, which is defined by their
different erosion levels; the largest contour is drawn first and the smallest contour last.
The contour ribbons are assigned unique colors per set and are drawn fully opaque to
prevent any confusion caused by blended colors. Occlusion is mitigated by limiting
the width of the ribbons. Finally, the contours are drawn a second time as dashed lines
such that occluded contour sections can be inferred (see Fig. 5.7).

5.2.2. Implementation
We have implemented the technique in a Cytoscape app, and have emphasized sim-
plicity of interaction and visual presentation in the design. The available sets are sorted
by significance and listed in the set overview on the left, where the significance of a set
is visualized as a circle, scaled logarithmically and accompanied by its scientific expo-
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nent as text (task A1). The user may select sets for inclusion in the annotated network
visualization to the right (see Fig. 5.9(c)). All described functionalities can be used at in-
teractive speeds for networks up to dozens of nodes, edges, and active sets, including
laying out the networkwith the RSOM training algorithm. Geometric operations on the
contours, such as dilations and erosions, are performed via Java Topology Suite [145].

Interaction Interactions consist of simple mouse actions. The inclusion of a set in
the network visualization is toggled via the set’s label in the set overview or its contour
in the network visualization (task A2). Additional information about a set or node may
be obtained via a hyperlink to a web page provided in the input data, enabling quick
access to external information sources such as theKEGGwebsite. This approach keeps
the tool flexible, i.e., the tool itself does not have to be altered when a new kind of set
or node from a different database is loaded.

The links of a node are emphasized when it is hovered over (see Fig. 5.8(a)) such
that its direct neighborhood can be discerned from its surroundings (task G2). More-
over, sets that contain the hovered node are highlighted as well. Likewise, links can
be hovered to highlight their nodes and common sets. Vice versa, the contours of a
set are emphasized and its comprising nodes are highlighted when it is hovered over
(see Fig. 5.8(b)). This provides immediate feedback to the user about node-set rela-
tions (tasks G3 and A2) without having to select a set and consequently changing the
layout of the network visualization.

The lists of annotations sets can be expanded and collapsed by clicking on their
headers, and scrolled downward to sets of lower significance by turning the mouse
wheel. The set circles that convey significance remain visible at all times, grouping at
the list top and bottom, to guarantee the depiction of all set memberships when a node
is hovered.

The user can adjust the dominance of a set by spinning the mouse wheel while
hovering over either the set’s label in the set overview or contour in the network visu-
alization. This enables the user to give a set a central role in the layout (see Fig. 5.5(a))
or to remove any of its influence (see Fig. 5.5(b)).

All changes to the visualization caused by interaction are animated. Colors and
positions of items are altered gradually. Link layout changes are animated by inter-
polating their control points, while contour layouts are handled by fading out the old
contour and fading in the new contour. The use of layout preservation, as described
previously, in combination with animations helps to preserve the user’s mental map.

Color Unique, distinguishable colors are derived from Color Brewer palettes [171],
and assigned to annotation sets in a cyclic manner to avoid assigning the same color
consecutively. In addition, large differences in contrast are avoided. For example,
text and set outlines are colored dark gray instead of black to reduce their visual dom-
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Figure 5.8: Item highlighting: (a) Hovered protein (Met) with emphasized interaction
links to its neighbors on the right and emphasized sets (KEGG pathways) that contain
this protein on the left. Sets outside of the list scope are grouped as markers at the
top and bottom, where one set in the bottom group is emphasized. (b) Hovered set
(Pathways in cancer) with emphasized member proteins, interactions, and contour.
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inance. Black is only used when items are hovered over or highlighted such that they
attract attention, as shown in Fig. 5.8. Moreover, labels of selected sets (in the set
overview) are colored black to ensure that they are readable in a colored surround-
ing. Node labels have a white background to make sure that their text is legible when
drawn on top of a set ribbon with a dark color. Likewise, links have halos that make
them easier to distinguish and their intersections more pronounced.

Cytoscape integration eXamine is tightly integrated into Cytoscape. Cytoscape’s
group functionality is used to represent sets and we rely on the table import function-
ality for importing both the set and node annotations. The user is also able to group
sets into different categories. The Cytoscape node fill color map attribute is used to
color the nodes in eXamine according to gene expression score (task G1). The user
therefore has the freedom to define the desired color map via Cytoscape. The user
can invoke eXamine on the currently selected nodes via the eXamine control panel.
There the user can select which categories to show as well as the number of sets per
category. In addition, the user can specify that the Cytoscape selection should be up-
dated to match the union or intersection of the selected sets in eXamine (see Fig. 5.9).
This enables the use of eXamine with any kind of module extraction algorithm and/or
filter method in Cytoscape, which includes manual node selection.

5.3. Case study of US28-mediated signaling
We demonstrate how a domain expert can use eXamine by working out a case study
in which a data set is re-analyzed (this work was done by several biologist co-authors
of the paper associated with this chapter). While this data set has been studied exten-
sively, it was possible to derive a new hypothesis via eXamine.

The Human Cytomegalovirus (HCMV) is a highly-contagious herpes virus [172].
Infection with HCMV in healthy humans usually does not result in symptoms. How-
ever, in humans with a compromised immune system the virus is correlated with dis-
eases such as hepatitis and retinitis [173]. In addition, HCMV gene products have been
detected in various tumors even though HCMV is not considered to be an oncogenic
virus. Experts therefore hypothesize that the virus may act as a stimulating factor dur-
ing onset and development of cancer without being a root cause [174–176].

HCMV is responsible for the production of several viral G protein-coupled re-
ceptors (vGPCRs). Of these vGPCRs, US28 is the most studied and is characterized
as chemokine sink [177]. Chemokines are signaling proteins that induce cell migra-
tion. Moreover, US28 hijacks the host cell’s signaling pathways, stimulates prolifer-
ative signaling pathways [178–182]. Previous studies focused on transcriptome anal-
ysis to evaluate pathways that are affected by US28. Differentially expressed genes
involved in HCMV-induced disease symptoms were identified and related to known
pathways [180, 181]. However, this analysis did not include network-based module ex-
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traction and enrichment.
To identify additional deregulated signaling due to US28, we analyzed the same

data overlaid on the KEGGmouse network [155]. The network consisted of 3863 nodes
and 29293 edges. Gene 𝑝-values, reflecting whether genes are significantly differen-
tially expressed, were derived using RMA [183] and LIMMA [184]. Heinz [154], a tool for
identifying differentially expressedmodules, was then applied using a false discovery
rate of 0.0007. This resulted in a module of 17 proteins. Finally, enrichment analysis
using TopGO [185] was performed to annotate this module with enriched GO-terms
and KEGG pathways (see Fig. 5.9).

These data processing steps correspond to the initial steps in Fig. 5.1. The sub-
sequent analysis of the annotated module aims at obtaining new insights about US28-
mediated signaling. The analysis follows the visual analytics cycle consisting of obser-
vation, knowledge, questions and exploration, finalized by a hypothesis.

C1 Two familiar pathways
Observation The KEGG pathway annotation sets show significant presence of Path-
ways in cancer and Phosphatidylinositol signaling (with 𝑝-values of 5.6 ⋅ 10−6 and
1.0 ⋅ 10−6, respectively).

Knowledge An oncomodulatory role has been proposed for US28 [174–176], which
coincides with the presence of Pathways in cancer and makes the genes annotated
by this term of interest. Phosphatidylinositol signaling corresponds to previous work
linking US28 to Phosphatidylinositol-mediated calcium responses [178, 186].

Question Which parts of the module are involved in Pathways in cancer and Phos-
phatidylinositol signaling?

Interaction Tag the Pathways in cancer and Phosphatidylinositol signaling annota-
tion sets (see Fig. 5.9(a)).

C2 Choosing sides
Observation Clear division of the module is apparent after tagging the two familiar
pathways. Genes Arf6, Csnk2a1, Csnk2a1, Ipmk, Nr3c2 and Rock1 are not part of the
pathways but have direct, unambiguous interactions with either of the pathways.

Knowledge Because of the known involvement of US28 in Phosphatidylinositol sig-
naling, we do not focus on the genes of this pathway (Calm1..3, Plcb4, Pip5k1a), nor
on the directly interacting genes (Arf6, Ipmk, Rock1). Instead, the Pathways in cancer
genesKras,Met, Figf,Hgf, Fgf7,Ctnnb1 andTcf7l1, anddirectly interactinggenesNr3c2
and Csnk2a1 may lead to new insights in US28-mediated signaling and ultimately the
oncomodulatory role of HCMV.
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Figure 5.9: Case study snapshots. Gene differential expression is shown as a colored
box drawn around the node label (green for under-expression and violet for over-
expression): (a) The annotatedmodule after tagging of the two familiar pathways Path-
ways in cancer and Phosphatidylinositol signaling system in C1. (b) The annotated
module after tagging functions Beta-catenin binding and Growth factor activity in C3
and C4. (c) The fully annotatedmodule, including annotation set overview, fromwhich
the hypothesis of C5 is derived.
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Question Do any of the aforementioned genes in or adjacent to Pathways in cancer
lead to new insights in US28-mediated signaling?

Interaction Hover over the genes in and close to Pathways in cancer to determine
mechanisms of interest.

C3 A twist of 𝛽-catenin
Observation The genes in Pathways in cancer can be divided roughly into two sub-
sets: those that are annotated by growth-factor activity and those annotated by 𝛽-
catenin binding (see Fig. 5.9(b)). Csnk2a1, Tcf7l1 andMet are part of the latter annotation
set, where Tcf7l1 and Csnk2a1 are down- and up-regulated, respectively. Expression
of the neighboring Ctnnb1 (𝛽-catenin) is up-regulated.

Knowledge 𝛽-catenin signaling results in elevated protein levels of the TCF/LEF
transcription factor family that contains the protein encoded by Tcf7l1. Although Tcf7l1
is down-regulated, a recent study shows that this is not reflected at the protein level
and that US28 induces 𝛽-catenin signaling [182]. In the same study, involvement of
WNT/Frizzled via the canonical signaling pathway was ruled out and a hypothesis
stating that US28-mediated signaling of 𝛽-catenin proceeds via ROCK1, which is also
present in the module, was postulated.

Question Are there alternative mechanisms explaining the activation of 𝛽-catenin?

Interaction Tag the Growth factor activity annotation set (see Fig. 5.9(b)).

C4 Growing knowledge
Observation Fgf, Hgf and Figf are annotated with Growth factor activity and con-
nected to 𝛽-catenin viaMet.

Knowledge MET is a receptor tyrosine kinase, whose only ligand is HGF. Therefore
we can rule out the links fromMet to Fgf and to Figf. In fact, these links are artifacts of
how the mouse network was constructed from KEGG pathways. These artifacts often
link whole groups of genes such as, in this case, growth factors to receptor tyrosine
kinases.

Question Does the Hgf toMet axis relate to 𝛽-catenin activation?

Interaction Hover overMet and Ctnnb1 (𝛽-catenin).
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Figure 5.10: Connection between Met and 𝛽-catenin. Proteins that are associated to
the selected Adherens junction at the left and corresponding KEGG pathway infor-
mation at the right, where reactions catalyzed by module proteins are marked in red.
Activation of MET by its ligand HGF results in the phosphorylation of 𝛽-catenin. This
in turn results in its release from cadherin-complexes on the cell membrane into the
cytoplasm.

C5 New insights
Observation Met and 𝛽-catenin are both part of the Adherens junction pathway, as
are Tcf7l1 and Csnk2a1 (see Fig. 5.9(c)).

Knowledge Adherens junctions bind two cells together, keeping multiple cells in
place. Alternative mechanisms have been described that explain 𝛽-catenin activation
via the release of 𝛽-catenin from cell to cell adherens junctions (e.g. [187]). US28 pro-
motes cell migration [188, 189], which causes the loss of cell to cell contacts with sub-
sequent release of 𝛽-catenin into the cytoplasm. This may explain increased levels of
𝛽-catenin as found previously [182].

By requesting additional information for Adherens junction via eXamine, showing
an external website by KEGG, we find an indirect connection between Met and 𝛽-
catenin in the pathway (see Fig. 5.10). Activation of MET via HGF mediates the release
of 𝛽-catenin from adherens junctions, resulting in increased TCF/LEF levels [190, 191].

Hypothesis Combining this with the growth factor observations of C4 leads to the
following hypothesis:

• US28-mediatedup-regulation ofHgf results in elevated levels of the correspond-
ing HGF protein;

• The subsequent activation of MET results in the release of 𝛽-catenin into the
cytoplasm;
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• Subsequent translocation into the nucleus leads to enhanced TCF/LEF activa-
tion.

Synopsis
The hypothesis is being validated experimentally. Preliminary results indicate that the
up-regulation ofHgf is indeed reflected at theprotein level. Should this hypothesis turn
out to be true, we would obtain crucial insights into one of the mechanisms by which
the HCMV-encoded chemokine receptor US28 rewires cellular signaling. Ultimately,
we would like to understand how this virus achieves its oncomodulatory role and how
this can be disrupted.

5.4. Discussion
The analysis tasks described in the background section guided the design decisions
that we have taken in the implementation of eXamine. These decisions are motivated
via the analysis cycles of the US28 case study.

Overview The benefit of a spacious annotation set overview follows from the first
cycle (C1), in which the categorized, ranked, and legible annotation lists enable the fast
recognition of two familiar and significantly represented pathways (task A1). Subse-
quent tagging of the two pathways reveals their module genes (task A2) and concisely
drawn contours emphasize the division of the module into two parts and some addi-
tional genes that are not part of the pathways.

An annotation table, separate of the network, would not have made this division as
apparent. Themain reason is that annotation set transitions along gene interactions are
not explicit in such a representation. In contrast, such cross-contour interaction links
are clearly visible in eXamine (e.g. the transition from Kras in Pathways in cancer to
Nr3c2 outside of Pathways in cancer).

Annotated genes The need to focus on specific genes and their properties appears
in the second analysis cycle (C2), in which genes of Pathways in cancer are inspected
for annotations of interest (task G3). Highlighting annotations by hovering over genes
enables fast identification of relevant annotations in the stable overview that oriented
the analyst in C1. Vice versa, hovering an annotation of interest (𝛽-Catenin binding)
confirms that it is shared by Csnk2a1, Tcf7l1, andMet (task G4). The same observations
could have beenmade from an annotation table. However, the topological characteris-
tics of these three geneswould have beenharder to discern, i.e., their direct interaction
with Ctnnb1 (task G2). This also applies to other set visualizations without depiction of
network topology, such as Venn or Euler diagrams, as shown in Fig. 5.3(a) and (b).
To make the topology of the gene interactions more explicit, a node-link visualization
could be used. For example, Fig. 5.3(c) shows themodule laid out by one of the built-in



Discussion 93

force-directed layout algorithms of Cytoscape with all five annotation sets superim-
posed as BubbleSets. However, the structure of the annotation sets is hard to discern,
and it is not immediately clear that nodes belonging to the 𝛽-catenin binding set (blue
shape) form a proper subset of the Adherens junction set (yellow shape).

Integration The third cycle (C3) shows the importance of gene expression values
(task G1), which is not limited to the interpretation of genes in isolation but alongmulti-
ple genes, their interactions, and shared annotation sets. The importance of integrated
support for all analysis tasks follows from the remaining cycles (C4-C5), wheremultiple
deductions aremade in succession viamultiple tasks. Here, tagging relevant pathways
enables the analyst to build up a context for making deductions.

Limitations eXamine is designed to accurately convey small and annotated mod-
ules, consisting of up to about thirty proteins and categories of up to about twenty anno-
tations (note that these limits are not hard). The case study shows that common analysis
tasks for these modules are covered. Scalability is a concern as our approach focuses
on smallmodules to enable accurate depiction of sets contours; it is not possible to con-
struct a comprehensive layout if themodule consists of hundreds of proteins or if there
are dozens of annotation sets to visualize at the same time. Both aspects make visual
analysis ineffective. This is a natural limitation of any visualization approach based on
node-link diagrams and set contours, however.

Our technique relies on a focus and context approach, inwhich the network and set
system has been pruned down to the most relevant components first. Communicating
small-scale information is given priority to support hypothesis generation at the level
of individual proteins and their interactions, as follows from the targeted analysis tasks.
Nonetheless, the tool is capable of visualizing modules of up to a hundred proteins,
albeit with less legibility of interactions and annotations.

The integration of eXamine into Cytoscape mitigates many scalability issues. Cy-
toscape, for example, provides a global view of the network, in which the user can
zoom in on smaller subnetworks for more in-depth analysis by eXamine. In addition,
the integration into Cytoscape provides access to further analysis algorithms.

The extended SOM algorithm embeds an annotated module to reflect its topology,
i.e., the distances between its proteins based on common interactions and annotations.
This does not guarantee optimal aesthetics however, and unnecessary link and con-
tour intersections can sometimes occur. The analysis tasks targeted by eXamine are
not much hampered by such intersections since all interactions, annotations, and their
interplay remain pronounced. However, to communicate analysis results, aesthetics
might need further improvement. This could be done along the same lines as Kelp Di-
agrams (see Chapter 4), byweighing aesthetic criteria, such as the number of intersec-
tions and shape complexity, against each other and formulating this as an optimization
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problem. The associated algorithms [16] are complex, and it is difficult to integrate
these into an interactive system.

5.5. Conclusions
We have proposed a visualization approach that enables the analysis of small and an-
notated network modules, and have implemented this in the Cytoscape app eXamine.
Our approach displays sets as contours on top of a node-link layout. We have intro-
duced an extension to the self-organizingmaps algorithm to lay out module edges and
annotation sets in a unified way. The added value of our approach has been demon-
strated in a case study of a US28-mediated signaling module, in which a novel hypoth-
esis about the way US28 induces 𝛽-catenin signaling has been derived.
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Figure 6.1: Dual adjacencymatrix (left), node-link-contour diagram (middle), and high-
lighted group nodes (right) that depict a trade network of countries (nodes) with sub-
stantial changes in volume traded (links) over a fifty year period. One group of links is
selected in the top-left matrix, which covers countries such as Japan (ASI_JPN) and the
USA (AME_USA).

Node grouping is a common way of adding structure and information to networks
that aids their interpretation. However, certain networks benefit from the grouping
of links instead of nodes. Link communities, for example, are a form of link groups that
describe high-quality overlapping node communities. There is a conceptual gap be-
tween node groups and link groups that poses an interesting visualization challenge.
We introduce the Dual Adjacency Matrix to bridge this gap. This matrix combines
node and link group techniques via a generalization that also enables it to be coordi-
nated with a node-link-contour diagram. These methods have been implemented in a
prototype that we evaluated with an information scientist and neuroscientist via inter-
views and prototype walk-throughs. We demonstrate this prototype with the analysis
of a trade network and an fMRI correlation network.

6.1. Introduction
Many networks are derived through experimental observation of real-world systems
for analysis purposes. Social networks, for example, describe interactions between
people and provide insights about the functioning of society (see Fig. 6.2(a)). Some of
these networks are dense, in which most nodes are so interconnected that their indi-
vidual roles are of less interest than the concert of their interactions. This phenomenon
appears as the notion of a network module, or community, which is a dense network
section (with a high link-to-node ratio) that reflects part of a system that is likely to
have a special role (see Fig. 6.2(b)). For example, communities in the social network
of a company could be correlated to departmentalization, where team members are
likely to interact. Likewise, communities emerge via natural selection in organisms
and appear in protein interaction and metabolic networks [51, 64]. Communities are
often defined in terms of node groups.
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Figure 6.2: Example of a network and derived community structures: (a) Plain social
network, people are nodes (dots) and their interactions are links (connecting lines).
(b) Densely interconnected nodes of (a) have been grouped into communities, inwhich
Dalia is part of a single community in spite of her widespread interactions. (c) Densely
interconnected links of (a) have been grouped into communities, in whichDalia is part
of multiple communities.

Node group A set (or cluster) of nodes that together fulfill a role within a network.
Node groups are disjoint.

For visualization purposes, node groups ease the aggregation of networks into several
joint nodes for which information is summarized. However, certain networks benefit
from grouping (or clustering) links instead of nodes.

Link group A set (or cluster) of links that together fulfill a role within a network. Link
groups are disjoint.

Suppose the links of a network are accompanied by a time series. Grouping links by
similar behavior over time will expose links (and the nodes that they connect) that act
in concert, indicating a shared role. Likewise, link groups that are clustered by net-
work connectivity can be used to determine high-quality overlapping node commu-
nities [192], as shown in Fig. 6.2(c).

Link groups are more difficult to grasp as a concept than node groups and there-
fore pose an interesting visualization challenge. We bridge this conceptual gap by
contributing:

• Generalization and combination of node and link group techniques into a Dual
Adjacency Matrix (DAM) and node-link-contour diagram;

• A prototype implementation and demonstration of our approach on a trade net-
work and fMRI correlation network;

• Informal evaluation by an information scientist and neuroscientist via interviews
and prototype walk-throughs.
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6.2. Related Work Table 6.1: Analysis tasks
from Node-centric and
Link-centric perspectives.

N
ode-centric

Link-centric
T1.M

em
bership

Find
link

groups
thatcover

given
nodes

Find
the

nodes
ofa

given
link

group
T2.O

verlap
Find

link
groups

thatshare
given

nodes
Find

nodes
shared

by
given

link
groups

T3.Path
Find

paths
betw

een
nodes

via
link

groups
Find

paths
betw

een
link

groups
via

nodes
T4.C

luster
(clique)

Find
m
ultiple

nodes
thatshare

m
any

link
groups

Find
m
ultiple

link
groups

thatshare
m
any

nodes
T5.C

om
ponent

Find
(dis-)connected

com
ponents

ofnodes
Find

(dis-)connected
com

ponents
oflink

groups
T6.H

ub
Find

a
node

thatis
covered

by
m
any

link
groups

Find
a
link

group
thatcovers

m
any

nodes
T7.Bridge

Find
nodes

thatare
sole

link
group

connectors
Find

link
groups

thatare
sole

node
connectors

A
.A

ttribute
C
om

pare
attributes

oflinks
thatcover

given
nodes

C
om

pare
attributes

ofgiven
link

groups

Visualization of network topology has been the subject of
much research [5, 6], where node groups often occur to,
for example, support node time-series [193] or multivari-
ate [194] analysis. Shifting focus from nodes to links has
already appeared in various forms. Bundling links based
on the position of their nodes in a predefined hierarchy
reveals correlations between links based on the proper-
ties of their nodes [22]. Visual manipulation of network
topology can be avoided via explicit visualization of link
to link relations by introducing an extra type of link [195].

An overview of node community visualization can be
found in [196]. Many approaches involve node-link dia-
grams in which community memberships are visualized
by layout [196] and color [197, 198]. A dual, community-
centric approach is taken in [197], where communities
are depicted as nodes and their overlaps as weighted
links. These techniques have all proved effective, either
for arbitrary overlapping communities or those that re-
sult from specific detection algorithms. However, to the
best of our knowledge, no visualization techniques have
been explored for link groups and the node groups that
they induce.

Visualizing overlapping node groups while abstract-
ing from the underlying network topology is equivalent
to the visualization of a set system or undirected hyper
graph. Venn and Euler diagrams represent these set
systems as overlapping shapes with elements placed in
the shapes according to their set memberships. Here
the layout of shapes and elements plays an important
role [134–136] and this layout is sometimes constrained as
well [126, 147]. Some methods give priority to visualiz-
ing the distribution of elements among sets, instead of
set system topology [199–201]. Various matrix-like rep-
resentations exist as well [202, 203]. An overview of set
system visualization can be found in [204].



Link Group Analysis Tasks 99

6.3. Link Group Analysis Tasks
Related research [9, 136, 205] has formalized a list of important tasks performed by an-
alysts on networks, set systems, and node groups in networks. Network tasks capture
how nodes are related to each other via their link connectivity. As a dual to this, we
consider relating links to each other via their imposed groups as well as node connec-
tivity, and identify a set of analogous tasks, which capture how link groups are related
to each other via shared nodes. Additional link attributes, possibly used to derive link
groups, are included in these tasks (see Table 6.1).

6.4. Concept
To the best of our knowledge, visual aggregation and navigation techniques have so far
only focused on node groups. We transfer established techniques fromnode groups to
link groups and introduce visualizations that couple node and link group perspectives.

Dual AdjacencyMatrix Both node and link perspectives are not only combined but
unified in the dual adjacency matrix, which consists of four quadrants, as shown in
Fig. 6.3.

The bottom-right quadrant (see Fig. 6.3(b)) is the familiar matrix that shows adja-
cencies between node groups. Node groups (along the diagonal) are colored brown
according to their size and the number of links that connect two node groups is shown
with a green color scale (see Fig. 6.3(e)). For example, a node group in Fig. 6.3 is high-
lighted in blue, which includes its matrix row and column. This node group consists
of Ava and two additional people (indicated by a +2), and it is connected to the node
group of Dalia.

The top-left quadrant is the dual of the matrix at the bottom-right; it shows ad-
jacencies between links or link groups. Again, link groups (along the diagonal) are
colored green according to their size, and the number of nodes shared between two
link groups is color coded in brown. For example, one link group in Fig. 6.3(a) is high-
lighted in red and shares nodes with two other link groups.

The bottom-left and top-right quadrants are symmetric and connect the top-left
link groups to the bottom-right node groups, showingwhich node groups are covered
by which link groups. For example, the bottom-left and top-right quadrant tiles that
are highlighted in black in Fig. 6.3(c) show the connection between the blue and red
node and link groups respectively. Here, the green color coding shows the number of
links that cover nodes from a node group.

Node-link diagram Matrix visualizations are suited for the visualization of dense
networks, where link group overlaps are common. In case of simple link group topol-
ogy, we also show how to create node-link diagrams. Coordinating these diagrams
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a
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Figure 6.3: Concept of the dual adjacency matrix, in which the network of Fig. 6.2(c) is
depicted while aggregated according to its link groups: (a) The rows and columns of
the top-left quadrant represent link groups in which the diagonal shows the number of
links in each link group, and the quadrant remainder shows the number of nodes that
connect the row and column link groups. (b) The rows and columns of the bottom-right
quadrant represent node groups, in which the diagonal shows the number of nodes in
each node group, and the quadrant remainder shows the number of links that connect
row and column node groups. (c) The rows and columns of (a) and (b) extend into
the two remaining quadrants that show which node groups are covered by which link
groups. (d) Node-link diagrams that match the dual matrix are used to depict link and
node group topology when it is sparse. (e) Numbers of nodes and links are encoded
by color scales, and selected groups are shown in red and blue.

with a dual adjacency matrix via interactive highlighting eases the transition from
reading a familiar node-link diagram to reading amore complexmatrix. For example,
the node-link diagram of Fig. 6.3(d) shows the node group of Ava highlighted in blue
and covered by a link group highlighted in red. It also shows that the red link group
covers the Dalia node group, as can be seen in Fig. 6.3(c).

6.5. Network Aggregation
We regard node and link groups as each other’s dual, where nodes and links can be
interchanged. The dual of a regular network is also known as a link-to-node dual or
line graph.
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Figure 6.4: Overview of network aggregation applied to the network of Fig. 6.2: (a)
Bipartite network that bridges the node and link duality of (b) and (c), in which the
node-to-node (solid dots) and link-to-link (hollow dots) connections correspond to
node-link-node and link-node-link paths respectively. (b) Node-link diagram inwhich
nodes (solid dots) are colored by group. (c) Node-link diagram of the dual of (b) in
which links (hollowdots) are coloredbygroup. (d) and (e)Node-linkdiagrams inwhich
the respective groups of (b) and (c) are aggregated into single nodes. (f),(g),(h), and (i)
Adjacency matrices of the (b),(c),(d), and (e) networks respectively.
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Node groups Node groups are derived from node attributes [121, 206] or topology.
For example, nodes can be grouped by similar attribute values, short topological dis-
tance, or neighborhood similarity. The node groups in Fig. 6.4(b), indicated by color,
induce the aggregated network of Fig. 6.4(d). Every node in the aggregated network
represents a group of people and every link represents the presence of an interaction
between one or more members of the two groups. Both networks can also be repre-
sented as node adjacency matrices, shown in Fig. 6.4(f) and (h).

Link groups The grouping of links can also be expressed as a grouping of nodes in
the dual of Fig. 6.4(b). This dual can be represented by either a node-link diagram or a
link adjacency matrix as shown in Fig. 6.4(c) and (g) respectively. The aggregated ad-
jacencymatrix of Fig. 6.4(i) depicts every link group as a row and column in the matrix
(with accompanying labels to the sides), and shared nodes as the dots at intersections.

The conceptual gap between grouping nodes and grouping links can be closed
via a bipartite graph interpretation (see Fig. 6.4(a)). Nodes and links are shown as solid
and hollow dots that are connected if the associated nodes and links are connected in
the original network. This interpretation structures the node-centric versus the link-
centric tasks of Section 6.3, for which an observer traces connections between the two
groups of the bipartite graph and the only difference between the task categories is
the type of node that the observer starts from.

6.6. Construction of a Dual Adjacency Matrix
The link adjacencymatrices of Fig. 6.4(g) and (i) display overlaps of only two linkgroups
at a time, while there is a need to oversee the intersection of an arbitrary number of
groups (tasks T2 and T4). For example, D in Fig. 6.4(a) is covered by three link groups,
but this is difficult to see in Fig. 6.4(g). We therefore extend the link adjacency matrix
into a Dual Adjacency Matrix (DAM), where link groups (Fig. 6.5(a)) are regarded in
terms of their overlap combinations (Fig. 6.5(b)) to construct additional matrix quad-
rants (Fig. 6.5(c) and (d)) that translate link groups into node groups (Fig. 6.5(e)).

Link group intersections The need to oversee intersections of arbitrary numbers
of link groups can be met by grouping nodes according to the link groups that cover
them, as shown in Fig. 6.5(a) & (b). This is similar to visualizing overlapping sets by
grouping nodes according to set membership combinations [203, 204]. However, in
this case each set consists of the nodes covered by a link group. The resulting link
group to node group relationships can also be shown as thematrix in Fig. 6.5(c), where
node groups are not predefined (as in Fig. 6.4) but derive from link groups. These node
groups also derive the node adjacency matrix of Fig. 6.5(d), in which row and column
intersections depict links that are shared between node groups. This type of adjacency
matrix enables node-centric hub (T6) and bridge (T7) identification.
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Figure 6.5: Providing a node group interpretation of link groups with a dual adjacency
matrix: (a) Network of Fig. 6.4(a), but with links colored to emphasize their groups.
(b) Euler diagram of the set system that is induced by the link groups of (a), in which
every set contains those nodes covered by its corresponding link group. (c) Set mem-
bership table (or matrix) of the set system of (b) that depicts all link group overlaps as
the composition of node groups. (d) Node adjacency matrix of the node groups of (c).
(e) Combination of (c), (d), and Fig. 6.4(i) that forms a dual adjacency matrix.

Combination and extension The matrix of Fig. 6.5(c) forms the bridge between
node and link groups that enables combination of the node and link adjacency ma-
trices into the dual adjacency matrix shown in Fig. 6.5(e). This combination supports
both node- and link-centric tasks, in particular membership (T1) and overlap (T2).

The top-left quadrant of a dual adjacencymatrix shows the nodes that connect link
groups and the bottom-right quadrant shows the links that connect node groups. This
leaves the quadrants of Fig. 6.5(c) open to what their cells (row and column intersec-
tions) represent; either connecting nodes or connecting links. Showing connecting
nodes is superfluous, because our link groups induce node groups such that any cover
of a node group by a link group is complete (all nodes are covered). Representing links
does provide additional information however, as shown in Fig. 6.3(c). It conveys which



104 Dual Adjacency Matrix

links of a link group cover a node group; a column shows howa link groupdecomposes
over nodegroups, and a row shows how the neighborhood links of a nodegroupdivide
over link groups.

6.7. Construction of a Node-link Diagram
Thedual adjacencymatrix focuses on the visualization of link groups and their overlaps
(tasks T2, T4, and T6) as an extension of common adjacencymatrices. Adjacencymatri-
ces aredifficult to read and theyperformpoorly onglobal topology tasks (T3, T5, andT7)
in comparison to node-linkdiagrams [108]. Wehave therefore also explored linkgroup
visualization as forms of node-link diagram.

Detailed node-link diagram Early prototypes featured a node-link diagram of the
entire network, in which nodes have a pre-computed position (see Fig. 6.6(a)). Inter-
actions with the link and node groups of the duality matrix are coordinated with this
node-link diagram; nodes and links are colored according to hovered groups. This
approach was valued by users for small and sparse link groups but did not scale due
to a lack of aggregation.

Aggregated node-link diagram Aggregating the detailed node-link diagramdown
to the groups of the dual adjacency matrix gives a less cluttered but more abstract
visualization: Every node group appears as a node and every link group as multiple
lines; one line runs between two nodes for every link group that covers them. This
approach is common for the visualization of multiple (overlapping) link types, but in
this case it shows link groups.

Node-link-contour diagram Link groups facilitate the creation of the overlapping
shapes of an Euler diagram because their individual links can be inflated and com-
bined (see Fig. 6.6(c)). The links that underlie a community therefore act as a skeleton,
which can be inflated to form hulls [147, 207]: a contour is derived per link group by di-
lating its links (the application of a Minkowski sum [143] with a circle), dilating covered
node groups with a greater radius for emphasis, then eroding the contour to smoothen
it, and finally subtracting the areas around non-member nodes to avoid invalid over-
laps. Contours are separated by dilating with different radii at nodes that are shared
by multiple link groups (see the nested contours in Fig. 6.6(c)). Contours are also co-
hesive per link group, provided that the link groups themselves are cohesive (which is
often the case [192]). To provide more insight into network topology it is also possible
to visualize aggregated links at the expense of some additional clutter (see Fig. 6.6(d)).
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(a) (b)

(c) (d)

Figure 6.6: Node-link diagrams that incorporate link groups: (a) Detailed, full node-
linkdiagramwith color codingof nodes and links via interaction. (b) Aggregatednode-
link diagram with links between node group pairs, color coded like (a). (c) Link group
contours derived (and color coded) from the links of (b). (d) Addition of links between
group pairs to (c) for improved depiction of topology.

6.8. Prototype Design
We implemented the DAM in a prototype that was refined in an iterative fashion with
feedback from link group experts. The prototype includes additional node and link
information.

Node labels Node groups are labeled to provide some indication of their contents.
This label consists of the name of themost important node in the group (by input score)
and is shown at an extension of itsmatrix row (see Fig. 6.3(b)). It also shows the remain-
ing number of nodes in the group to emphasize it being a group.

Multi-level link groups We expect input link groups to be the result of clustering,
based on link topology and/or attributes like a time series. Such clusterings are of-
ten hierarchic, which is why the prototype supports a link hierarchy. This hierarchy
is mirrored at the top and side of the top-left matrix quadrant as icicle plots that ex-
tend to the rows and columns of the matrix (see Fig. 6.1). The sides of this icicle plot
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are tapered to get a tree-like representation with pronounced hierarchy branches. In-
teractive hierarchy navigation is enabled for better scalability, where changes to the
visualizations due to splitting high-level groups are animated.

Aesthetics The colors for highlighted groups are derived from Color Brewer [171].
Strong contrast and hard outlines are avoided, though black is used for highlights and
node legibility. Matrix rows and columns are of a translucent gray such that their in-
tersections are more pronounced. A large space is placed between the dual matrix
quadrants to make them appear cohesive and emphasize their difference. The color
scales for node and link abundance (see Fig. 6.3(e)) are divided into four levels; the first
level encodes zero abundance, the second level encodes a single node or link, and the
remaining levels follow a log scale.

Highlighting Highlighting is enabled via mouse-over of up to two matrix rows,
columns, or diagram contours. If two of such elements belong to the same group, then
this group is highlighted in red (and translucent red in the background), as shown in
Fig. 6.1. If two different groups are hovered, then one group is shown in red, the other
group in blue, and their overlap in black (see Fig. 6.3). This simultaneous highlighting
enables the comparison of two groups in coordinated views, which include additional
information (task A).

One such coordinated view is shown at the right of Fig. 6.1, which lists the nodes of
a highlighted node group, or those nodes covered by a highlighted link group. Three
lists are shown when two groups are highlighted: two lists that show all nodes per
group, and one list in the middle that shows overlapping nodes. Links are coupled
to time series data in another view (see Fig. 6.7). It visualizes the time series of up
to two highlighted groups as semi-transparent colored trend plots. For a highlighted
link group, these are the time series that belong to its links, and for a highlighted node
group, these are the time series of the links that cover any of its nodes. Time series of
links that are shared by two groups are emphasized as black plots.

6.9. Exploration Demonstration
We demonstrate the described concepts and the use of the tool by exploring a dense
network of countries (20 nodes) and their trade relations (95 links). These trade rela-
tions are the combined import and export (in millions of dollars) between countries,
measured on a yearly basis between 1948 and 2000 (53 time points).

Preprocessing The analyzed data set was derived from a larger trade network by
selecting the countries from four major regional trading groups (North-America as
AME, Europe as EUR, Arabia as ARA, and Asia as ASI). In addition, trade relations were
filtered for high variance, which leaves the most dynamic relations for analysis. These
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trade relations were attached to corresponding links as time series. Subsequently,
links were grouped according to these time series with a 𝑘-means algorithm. This
clustering uses angular (cosine) distance for the time series vectors such that links
with similar trade dynamics are grouped together. Links from the same group could
therefore be trade relations with common external influences, explaining their similar
dynamics, or they could have been grouped as a clustering artifact. Clustering was
applied twice to get a multi-level grouping, with 𝑘 = 5 for top groups and 𝑘 = 3 for
subgroups. The resulting five top link groups can be typified as follows: a large group
with consistent trade growth but a lot of missing data, a large group with consistent
growth and little missing data, a smaller group with a minor trade slump in the 1980s,
a group of four links with major slumps in the ’90s, and a group of a single link with the
same slump in the ’90s.

Matrix perspective Dual adjacency matrix and node-link-contour visualizations of
the initial, top-level link groups are shown in Fig. 6.1. These visualizations provide
insights into the trade network topology. For example, the matrix at the top-left shows
that all link groups overlap, which indicates that different trade behaviors intermingle.
Three link groups at the top-left have a strong overlap (they share many nodes), which
is shown by dark brown matrix intersections (T4).

The bottom-left and top-right matrix quadrant confirm a strong overlap of these
link groups. These quadrants also reveal a large node group, led by the United King-
dom (EUR_UKG), that is exclusively covered by these link groups (T1). Only two other
groups of countries, led by the United States (AME_USA) and Japan (ASI_JPN), are cov-
ered by more link groups, making them link group hubs (T6). The familiar adjacency
matrix at the bottom-right shows that both country groups are also hubs in the tradi-
tional sense, connecting to most or all other node groups. However, China is isolated
to one link group, making this link group a bridge (T7), while the bottom right matrix
shows that China has links to many countries, making China a conventional hub that is
constrained to one link group.

Node-link-contour perspective The node-link-contour diagram in Fig. 6.1 enables
the same observations as the dual adjacencymatrix because the link group topology is
plain. However, the overlap between all link groups is not as apparent as in the top-left
matrix. Likewise, the presence of three large, mostly overlapping, link groups is more
striking in the bottom-left matrix than in the diagram. On the other hand, sparsely
connected node groups such as Iraq (ARA_IRQ) and Bahrain (ARA_BAH) are easier to
spot in the diagram than in the matrices. Moreover, small link groups stand out, such
as the two groups that bridge to Iraq. These link groups can also be detected in the
bottom-left matrix due to their sparse and aberrant covering of countries.



108 Dual Adjacency Matrix

Inspecting link groups The three large link groups and two smaller link groups can
be explainedby inspecting their associated time series in an additional view (taskA). In
Fig. 6.7(a)wehighlight one of the larger linkgroups (colored red) and one of the smaller
groups (blue) by hovering their intersection in the top-left matrix quadrant. The large
group contains a large number of links that appear as numerous red trend lines. These
series are noisy until 1970, likely caused by a lack of data (defaulting trade volume to
nil), but show consistent trade growth afterwards. Comparing the large link groups to
each other confirms that all large link groups share this growth pattern. The smaller
group shows a significant trade slump in the 90’s. The bottom-left matrix quadrant
shows that this link group covers Iraq.

We request more detail about Iraq in Fig. 6.7(b) (colored red) by hovering its over-
lap with a link group (blue). Hovering the row or column of a group of countries in-
cludes all of its trade relations in the time series view. Trade volume plots of the blue
link group that involve Iraq are colored solid black like thematrix overlap cell. We see
that all of Iraq’s relations are covered by the blue link group except for one (the red
plot). Nonetheless, all of Iraq’s trade relations feature the 90’s volume slump, which is
likely caused by the regional conflicts during this period.

Cluster assessment In Fig. 6.7(a)&(b) the blue link group contains one trade relation
that does not slump and which excludes Iraq. This mismatch appears to be a fault in
the clustering, so we split the blue link cluster by clicking on its link hierarchy branch
at the top-left to get the newmatrix configuration in Fig. 6.7(c). This unveils that the link
without the slump, positioned between the blue and red subgroups, does not involve
Iraq but Saudi Arabia (ARA_SAU) and France (EUR_FRN), which explains the trade de-
velopment that is similar to Iraq up to the war and why their trade links were clustered
together. Comparing one of the link subgroups that involve Iraq with the only other

Figure 6.7: Elucidation of link groups in a trade network, in which time series of high-
lighted groups are shown as trend plots that show trade volume on an adaptive log
scale: (a) Comparison of the time series of a large link group (red) that has a mostly
steady growth of trade volume, and a smaller link group (blue) with a significant trade
slump in the 90’s. (b) Overlap of all available trade relations of Iraq (red) with the re-
lations of the smaller link group of (a) (blue), showing that many 90’s volume slumps
involve trade with Iraq (overlapping relations colored black). (c) The blue link group
of (a) is expanded to reveal its three subgroups, of which one subgroup contains only
one link (red, covering ARA_IRQ and EUR_GFR) that is compared to the single link of
a smaller top group (blue, covering ARA_IRQ and AME_USA).
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link group that involves Iraq (colored red and blue respectively in Fig. 6.7(c)) shows
similar trade developments, but the isolation of the cluster (being the trade link with
the United States) could be explained by its very strong increase in trade volume be-
fore the turn of the millennium.

6.10. Preliminary Expert Feedback
We performed interviews and walk-throughs of our prototype with two experts from
different fields to gather feedback on our approach. We first performed a series of
interviews with each expert to collect several of their datasets and associated analysis
questions. Then, during a one-hour session, one of the authors walked the experts
through the prototype while they used their own data.

Information science expert Our first expert, JevinWest, is an academic researcher
at the information science school of the University of Washington, with solid exper-
tise in analyzing complex networks and a focus on understanding communities. The
datasets he was primarily interested in were scientific journal citation networks, com-
posed of several hundreds of nodes and several thousands of links that are hierarchi-
cally partitioned into link communities [192]. After our presentation of the tool, it took
about 15minutes for Jevin to interact with the system andmake effective use of the dual
adjacency matrix to explore his data. Jevin commented that the tool had a steep learn-
ing curve, but is powerful once understood. This enables him to answer questions on
link and node communities that were not easy to answer before. In particular, it helped
himmake the leap from link groups to shared node groups. For example, he identified
nodes acting as hubs by glancing at the link to node groupmatrix and reviewing node
groups. He also pointed out link communities sharing many nodes, commenting that
this was helpful to identify noise in the data or regions with a low clustering quality.

Jevin was quickly familiar with the link group intersection matrix and used the
hierarchical navigation several times to adjust the level of link groups to the desired
granularity. Jevin concentrated most of his analysis on the link to node group matrix
and the conventional node group matrix. He explained that “the most useful feature
here [pointing at the node group adjacency matrix] is [seeing] what is not connected
because we usually know about the [presence of] clusters [themselves]”. He com-
mented that it was compelling to see holes in this matrix and argued that this could
be useful to identify missing data or, if not missing, serve to make predictions on fu-
ture connections, which he mentioned is of interest in many scenarios.

Neuroscience expert Our second expert, Tara Madhyastha, is an academic
researcher at the radiology department of the University of Washington, with exper-
tise in analyzing functional brain connectivity networks extracted from magnetic res-
onance imaging. She was primarily interested in dynamic weighted networks, com-
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posed of two dozens of regions of interest in the brain and their weighted connections
that evolve over time. We augmented the prototype with a spatial brain view to pro-
vide a familiar context to the nodes and weighted connections. In our initial interview,
Tara explained that she had experimented with several link grouping algorithms be-
fore. The output usually contained one large group of links and many small ones, from
which she concluded it was not worth pursuing this type of analysis. Aware of these
past attempts, we experimented with several other algorithms to get to a more bal-
anced distribution of the number of links in groups. We presented the output of k-
means clustering on vectors of link weight to Tara in our walk-through session. Tara
had never before used visual tools to inspect link and node groups at the same time.

Tara had a very different exploration process than Jevin. She spentmost of the ses-
sion inspecting the content of the link group matrix coupled with the time series view.
As we presented the tool, she immediately identified a link group of interest, pointing
at the time series view, and asked a series of questions about the clustering algorithm.
From this point, Tara used the prototype to visually assess the quality of the link groups.
In a later session we combined Tara’s own link clusters of three large-scale intrinsic
brain zones [208] for her to explore a subset of individuals with Parkinson’s Disease
(PD) and age-matched controls. Research, including Tara’s, suggests that the coupling
of these zones may be dysregulated in PD. The DAM enabled her to examine the time-
courses ofmultiple link communities inmultiple zones at the same time, expecting that
some are coupled and others are not (see Fig. 6.8). For example, she discovered par-
tial coupling of the Posterior Default Mode zone and parts of the Fronto-Parietal Task
Control zone in a PD subject at rest.

6.11. Discussion and Limitations
We have demonstrated DAMs for small but dense networks where links are subject to
multi-level grouping. Even for networkswith fewnodes this poses a visualization chal-
lenge, because standard node-link diagrams are hard to read (see Fig. 6.7(c)). How-
ever, such a diagram is likely to enable more effective analyses for a sparse network,
provided its link groups are coherent (see Fig. 6.6).

DAMs scale to larger networks by adding interaction techniques tomanipulate link
groups and their hierarchy: filtering link groups on criteria such as size and density,
interactive branch pruning, and automated branch expansion. This involves common
hierarchy interaction that is peripheral to the concept of DAMs but was vital to support
Jevin’s large link community analyses with our prototype. Nonetheless, analyses with
DAMs can be impeded by flat or imbalanced link hierarchies.

An alternative to DAMs of dense networks are regular adjacency matrices with
links color coded by group, and rows and columns arranged by link group similar-
ity. While this regular adjacency matrix might be easier to read, color coding limits
the number of link groups shown and complicates interactive link group navigation.
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One benefit of a DAM is its dual representation of link groups, which enables the at-
tachment of explicit hierarchy representations, and the mouse-over highlighting and
comparison of two groups.

(a) (b)

(c)
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(d) (e)

Figure 6.8: Exploration of 20 brain regions connected by 183 links that encode (slid-
ing window) fMRI signal correlations along 200 time points. The brain is divided into
three zones (DAN, FPTC, and DMN) and links are grouped accordingly: three intra-
zone link groups that are subgrouped [208], and three inter-zone link groups: (a) The
top-left matrix shows no overlap between the three intra-zone link groups, but that
they do overlap with the inter-zone link groups. The bottom-right matrix has three
node groups that match the zones. The intra-zone link group DMN (red) has mixed
signals, while DAN (blue) and FPTC have positive signals. (b) Both the FPTC link group
(red) and the link group between FPTC and DAN (blue) have positive signals. (c) Split-
ting DMN because of its mixed signals reveals its overlapping link subgroups. Two
link subgroups have strong overlap, where one group (red) is strongly correlated and
tightly positioned in the brain, and the other group (blue) is less correlated and more
spread across the brain. (d) The bottom-right adjacency matrix shows a missing link
between spatial opposites Rlattemp and Llattemp. Hovering the empty spot compares
all neighboring links of Rlattemp and Llattemp, where their signals show a consensus.
(e) One node group (red) acts as a hub to DMN link groups. Hovering this node group
and the DMN link groups shows that the node group hasmany anti-correlations within
the DMN zone. However, hovering the inter-zone link groups (blue) shows that this
node group has mostly positive correlations with the ‘remainder’ of the network.
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6.12. Conclusion
We have introduced a generalization of the adjacency matrix for exploring link and
node groups. This generalization enables analysis of (hierarchical) link groups while
providingboth node and link groupperspectives. Iterative implementation of this con-
cept, while relying on feedback from link group experts, has resulted in an interactive
systemwith coordinatedmatrix and node-link diagram views. Walk-through sessions
with two experts revealed that DAMs help link and node group analysis, bridging the
concepts.

The experts had different exploration processes, in which they understood and
relied on all quadrants of the adjacency matrix in spite of a steep learning curve. This
feedback suggests that our approach enables analysts to bridge the gap between link
and node groups. We believe this is an encouraging first step towards visual explo-
ration of link groups.

Acknowledgements We thank Jevin West and Tara Madhyastha for their expert
feedback. We also thank Sune Lehmann and Yong-Yeol Ahn for their constructive
comments about earlier prototypes. This research was supported by grants from the
National Institutes of Health (NIH) 1RC4NS073008-01 and P50NS062684K, and Nether-
lands Organization for Scientific Research (NWO) 612.001.004.



7
Retrospective

The techniques presented in the previous chapters concern modular network struc-
tures in various forms. We sometimes talk about these modular structures as subnet-
works. Subnetworks are generic, e.g., the interactive highlighting of a node and its
neighbors is the portrayal of a subnetwork within a subnetwork. What differentiates
our techniques are a focus on particular modular structures in biology and leverag-
ing associated modular structures to aid biologists in their analyses. Moreover, the
simultaneous portrayal of multiple network structures recurs in all chapters:

Compressed Adjacency Matrices were introduced in Chapter 3 to make gene reg-
ulatory motifs (frequently occurring network structures) stand out in context of
the entire network. These motifs are of interest to biologists because of their
concerted control of cell processes.

Kelp Diagrams can be used to portray multiple set relations as schematic contours
on top of existing visualizations, as was shown for a metabolic network at the
beginning of Chapter 4.

eXamine is a tool that enables the interactive exploration of many ranked annotations
on top of a small protein interaction module. The methodology presented in
Chapter 5 targets modules that are small and sparse due to their extraction from
larger networks via protein expression analysis.

Dual Adjacency Matrices enable the analysis of multiple structures that are induced
via an unconventional perspective; the grouping of links instead of nodes. In
Chapter 6 we have shown how link groups are of benefit to the analysis of dense
networks, such as fMRI brain networks.

The above techniques share a theme but diverge in assumptions about the kinds of
structures present in the data that is to be analyzed, and the analysis goals themselves.
The proceeding chapters describe each technique in isolation, often skipping details
of the underlying research process, pitfalls, and surprises. These details are left out to
maintain clarity and focus. Luckily, it is not too late to reminisce. I therefore discuss
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some of these details, placed in context of larger issues that I have encountered during
my research.

Addressing Challenges
In Chapter 2 we identified several challenges for the visualization of gene regulation,
protein interaction, and metabolic networks. Some of these challenges are addressed
by the introduced techniques. For example, we can now convey local GRN motifs and
neighborhood patterns in an integrated and structured overview with CAMs, though
supporting the following of paths remains a challenge. Weproposed a similar tactic for
PINs in Chapter 2, whichwould have been close to the NodeTrix approach due to PINs’
undirected edges. Instead of testing this tactic, we aimed at themore urgent challenge
of visualizing smaller PIN modules via eXamine, prioritizing the depiction of detailed
PIN topology and annotations over motif and neighborhood patterns in larger PINs.

We have not addressed most of the metabolic network challenges. Yet, metabolic
pathways do feature as PIN annotations in Chapter 5. Interestingly, the eXamine case
study suggests that themetabolic network analysis challenges should be shifted in pri-
ority from pathway-centric (for example, the visual integration of multiple pathways)
to amore heterogeneous data landscape that puts GRNs, PINs, andmetabolic networks
on an even footing. This shift was already reflected in the challenge of network inte-
gration, which reappears in eXamine where we show that supporting the integration
of networks is not always about combining large networks, but about the navigability
of the many inter-network associations of smaller modules.

We were unable to come to grips with several challenges of Chapter 2 (network
alignment in particular) because these appear in an generic and isolated form. For ex-
ample, solving ‘the PIN visualization’ challenge is difficult without placing constraints
on analysis questions that are to be answered and whether additional PIN information
is available that can help in finding answers. eXamine addresses a specific form of
a PIN visualization challenge, not PIN visualization in its entirety. More time should
therefore be invested in cataloging the specifics of biological network analysis, as op-
posed to creating taxonomies of biological network fundamentals, which are easier to
interpret by computer scientists, but less meaningful for biologists.

Everything and Nothing is a Network
Computer scientists often strive for the solution to a generic problem, even when the
instigating problem is more specific. However, taking a generic viewpoint and ab-
stracting from the specifics of a problem could result in missed opportunities due to a
lack of context. The expression “Everything is a network” is often uttered by network
scientists, but lies within a stone’s throw from “Everything is an object”. For example,
it is possible to combine any two objects into an abstract group of objects, but we may
want to take precautions if we know these two objects to be a jerry can and a lighter.
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Targeting data characteristics and associated analysis questions lies at the heart of
visualization. However, dealing with (domain) specifics may have been lost with the
rise (or hype) of generic network analysis. Being able to translate observations into
networks for further analysis can be of great use. Yet, we should also be concerned
about the information loss, or distortion in reasoning, that results from this translation.

Our way of dealing with gene regulatory networks in Chapter 3 demonstrates that
targeting networks with specific characteristics can benefit visualization design and
provide new perspectives. However, in doing so we have still ignored the source of
GRNs: the positions of genes on a chromosome and the physical interactions of gene
products. These two aspects play an important role in (indirect) regulations between
genes that are encoded by the links of a GRN.

Case in point is the scale-free outbound degree distribution of nodes in a GRN.
This is a nice characteristic for mathematicians to discover, and for us to exploit in
the compression of adjacency matrices. However, this distribution is strongly related
to how genes are positioned on a chromosome and how their synthesis is inhibited
or promoted by gene products that latch onto the chromosome at a nearby position.
Genes that are positioned closely together on a chromosome are therefore likely to be
under the influence of the samegenes and their products. Itmight bepossible to derive
a better composition of the compressed adjacencymatrix (which includes the stacking
of nodes) directly from the positions of genes on the chromosome. Finally, it leaves us
with an additional question: To what extent are we reconstructing the chromosomal
positions of genes from GRNs by computing the CAM arrangement?

These observations do not contradict the importance of abstract reasoning and
generic solutions. For example, we initially observed the peculiar structural charac-
teristics of gene regulatory networks by looking at their node-link diagrams, which
were created with a generic visualization technique. It was only later on that we con-
firmed these characteristics via targeted computations and existing literature. More-
over, in Chapter 5we rely on a generic combinatorial optimization technique to extract
a protein module.

Staking Stakeholders
Visualization techniques can not only be generic in the data that they are able to con-
vert into images, but also in the analysis tasks that they support. In Chapter 3 we focus
on the ability of the analysts to find GRN motifs, which is quite specific from the per-
spective of a computer scientist. However, providing an overview of these structures
is likely of greater interest to a bioinformatician than to a biologist. In Chapter 5 we
observe that biologists are far more interested in network specifics, where the leg-
ible depiction of important proteins and their interactions outweigh the provision of
context by displaying additional information.

Both node-link diagrams (Kelp and eXamine) and adjacency matrices (CAMs and
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DAMs) have been used to present networks throughout this thesis. Predictably, we use
node-link diagrams for network and set system topologies that we expect to be simple,
andweuse adjacencymatrices for complex topologies. The users targeted by each en-
coding (and underlying topology complexity) divide along this line as well. CAMs of
GRNs are of most interest to bioinformaticians, who themselves develop analysis tech-
niques. Likewise, DAMs were originally developed around link community detection
algorithms (before transitioning to a more generic form) and the designers of these
algorithms were the ones who appreciated DAMs the most. On the other hand, Kelp
Diagrams and eXamine target observers without deep knowledge of any underlying
data analysis algorithms; the knowledge that they can derive from the data is their goal,
instead of knowledge about preprocessing algorithms.

The generic set system analysis tasks that are introduced in Chapter 4 serve as
an evaluation tool for Kelp Diagrams and its competitors. These tasks are modeled di-
rectly on set systems and are therefore highly abstract, ignoring possible stakeholders
and their specific analysis needs. A senior Dutch visualization researcher brought this
to my attention when I presented Kelp Diagrams at a conference, pointing out that an
attempt to service everyone by focusing on generic analysis goals could spread a solu-
tion too thin. This is a possible outcome, but also suggests that a visualization technique
should have an immediate purpose. Instead, the analysis tasks and methodology of
Kelp served as a scaffold for dealing with set systems in eXamine and Dual Adjacency
Matrices. Moreover, the case study of Chapter 5 shows that Kelp’s abstract tasks have
relevant, concrete counterparts.

Graph Visualization and Network Drawing
There are two scientific domains that deal with the visualization of networks: Visual-
ization and Graph Drawing. The visualization domain is mostly concerned with inter-
active visual analysis of any data type, networks included, and its research covers a
broad spectrum between the abstract and concrete. This has resulted in a rich collec-
tion of techniques that target specific and combined data forms, which is of particular
use for the kind of research questions that biologists pose in light of available omics
data. The graph drawing domain is concerned with efficient and effective drawing
of networks (or graphs), often achieved by imposing aesthetic optimization goals on
the embedding of node-link diagrams. Kelp Diagrams were developed in the same
manner.

These two domains are similar but differ in their priorities. Scalability and flexibil-
ity is important in the visualization domain, which stimulates the use of simple encod-
ings and layout algorithms. Graph drawing, on the other hand, prioritizes (theoretical)
optimization of aesthetic constraints and criteria. This stimulates the development of
complicated algorithms that often take only small networks as input. These priorities
(arguably) stem from the domains’ origins.
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This difference in priorities seems to make the domains incompatible. Yet, certain
scenarios reveal the complementary nature of graph drawing and visualization. Case
in point is the analysis of large Protein InteractionNetworkswith eXamine inChapter 5.
The discussed PIN that consists of around 4000 proteins, the differential expression of
corresponding genes, and 30,000 interactions, could be visualized in Cytoscape as a
node link diagram that is laid out with a plain force simulation. The resulting visualiza-
tion is impressive at first and provides a fair depiction of the data complexity. These
visualizations therefore often serve as billboards, on websites and even papers. Sup-
porting specific analyses is more involved however.

Detecting a small, differentially expressed module in a large, highly connected
network, is difficult to do by eye alone and prone to human error. eXamine there-
fore uses automated and concise module extraction, discarding most of the network
as irrelevant with respect to experimental conditions, which leaves a small and sparse
network of proteins. The small size and complexity of such amodulemakes the gener-
ation of a high-quality diagram with a graph drawing algorithm viable. Moreover, as
we have seen in Chapter 5, the analysis of thesemodules relies heavily on the observa-
tion of specific proteins and interactions, as opposed to the observation of clusters and
outliers in network topology. The use of automated analysis therefore mitigates the
PIN scalability issue, but increases the need for a tidier depiction of what remains. The
layout algorithm that we developed for eXamine is a means to this end; it is simple but
able to combine multiple network structures (a PIN topology and a set system of anno-
tations). Nonetheless, a more refined algorithm can create tidier node-link diagrams
and therefore enable more efficient analyses.

Numerous network visualization techniques incorporate filtering and aggrega-
tion techniques to maintain legibility or introduce conciseness as data volume scales.
Graph drawing can therefore benefit network visualization by providing the means to
make tidy drawings when the data characteristics and the concerns of analysts merit
this. (Proving theoretical characteristics of drawings and algorithm running times is a
different matter, however.) On the other hand, visualization provides graph drawing
with scenarios that make it of practical use in interactive data exploration.

Drifting Analysis Goals
We can throw ourselves at specific analysis tasks in an attempt to make visualizations
as effective as possible. However, building a visualization tool to suit the goals of a
user, who subsequently uses the tool, may affect the user and shift the analysis goals
considerably.

For example, the initial prototypes of eXamine were not designed to provide a se-
mantic context for extracted protein modules. Instead, we aimed to investigate the
effects of the False Discovery Rate parameter on the size and other characteristics of
the extracted module, and how many modules were extracted. The extracted mod-
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ules, per FDR step within a predefined range, formed a set system on top of the union
of all modules. We expected a consistency between modules for consecutive FDR val-
ues, and therefore designed the SOM layout algorithm, which would flatten out high-
dimensional redundancies and provide set contours as a bonus.

The visualization technique itself worked but showed that the module extraction
algorithm was more predictable than we had anticipated; one or two proteins were
added to the module per FDR increment. Such stable behavior is, of course, desired
in case of module detection, and indicates that the data contains a clear signal. How-
ever, it does not make for an interesting demonstration of a visualization technique.
Luckily, our curiosity as computer scientists consequently shifted to the explanation
of this strong signal, which we were able to do by integrating domain knowledge via
enrichment analysis.

The simultaneous visualization of a network and a set system therefore, in the end,
serve a purpose that is different from its initial design goals (and motivates the devel-
opment of generic techniques). It was only at this point that we exposed our biologist
collaborators to a prototype of eXamine, which resulted in the findings of Chapter 5.
These findings make for the most convincing visualization case in this thesis, which
is remarkable because the inception of eXamine was mostly technique-driven, where
specific analysis questions materialized late in the development process. This shows
that visualization as a practice is not only useful by providing analysis tools, but also
by stimulating the research process itself and the people involved.

Directing the Drift
In light of drifting analysis goals I still wonder how visualization as a discipline can best
service cell biology research. We should of course continue to solve specific research
problems via visualization. Even if research goals shift in the end, we will have gained
understanding and we will have contributed to the research process. However, based
on the aforementioned experiences, my intuition directs me into a research direction
that could be of greater value to cell biologists.

We must empower the analysis methodology that has proven so effective for eX-
amine, namely faceted exploration and inclusion of network annotations, which taps
into the uniquely rich stores of knowledge that are at the disposal of cell biology re-
searchers. In order to do so, we will have to retain the familiar node-link-contour en-
coding that has been the bread and butter of cell biology illustrations for decades (see
Chapter 2). However, at the same time we will have to integrate (domain-specific) an-
notation navigation more tightly into a network view, instead of a side view.

More specifically, we have to improve scalability and aesthetics by replacing the
SOM layout algorithm of Chapter 5 with an exact combinatorial optimization method.
Here we will also regard binary edges as a special case of sets, and consequently links
as a tightened form of contour, in order to specify a uniform optimization criterion.
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In addition, we should use the ability to visualize both network and set systems to
compress and mark modular structures losslessly with the Power Graph method (see
Fig. 2.9). Here we have to experiment with different ways to conform link and node
compression to already known or tagged annotations such that this compression is no
longer ambiguous and easier to interpret.

I hope to have convinced you that the discussed research is but a stepping stone in
the support of complex analyses. I therefore delegate my closing statement to a wiser
man who, without attaining a formal degree, became the leading consulting engineer
of the United States during its antebellum era:

No engineer can go upon a new work and not find something peculiar,
that will demand his careful reflection, and the deliberate consideration
of any advice that he may receive; and nothing so fully reveals his inca-
pacity as a pretentious assumption of knowledge, claiming to understand
everything.

- John B. Jervis (1795-1885)
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Summary
Visualization of Modular Structures in Biological Networks

Many of the processes known to take place in biological cells are analyzed in the form
of different types of network. Our knowledge of cell processes increases, but the size
and complexity of these networks impedes their analysis. An important means for
the bite-size analysis and understanding of biological networks is the distillation of
theirmodular structures. We introduce, demonstrate, anddiscuss several visualization
techniques that support biological network analysis by leveragingmodular structures:

Compressed AdjacencyMatrices Gene regulatory networks have structural char-
acteristics that impede standard visualization techniques such as node-link diagrams
and adjacency matrices. However, we show how these characteristics can be lever-
aged to cut open, rearrange, and compress adjacency matrices. These compressed
matrices enable easy, visual detection ofmodular structures commonly associatedwith
specific regulatory functions.

Kelp Diagrams Some situations merit explicit emphasis of modular structures, such
as highlighting a region of interest on top of an existing metabolic pathway visualiza-
tion. When dealing with a pre-positioned node-link diagram, delimiting structures
with contours is an obvious approach but one that requires care. We introduce Kelp
Diagrams to emphasize regions of interest on pre-positioned elements.

eXamine Biologists are specialized in specific cell processes, types, and conditions.
Biologists therefore analyze only small modules within larger Protein Interaction Net-
works. Commonly, a multitude of set-based annotations are attached to such a module
via readily available knowledge such as gene ontology terms. We therefore present
eXamine, which is a Cytoscape app that supports the analysis of annotated modules.
It integrates Kelp Diagram methodology with a simple layout algorithm and enables
interactive exploration of a module and its annotations.

Dual Adjacency Matrices Modular structures in networks are often interpreted as
a group of nodes accompanied by a group of links that connect them, also known as
an induced subnetwork. We explore the alternate perspective; grouped links that are
connected by nodes. In doing so we introduce the Dual AdjacencyMatrix, which com-
bines link and node group techniques such that an analyst can navigate the conceptual
gap between link and node groups.
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