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Stress distribution during neck formation: An
approximate theory

Bas van ’t Hof Lotte Sewalt Keith Myerscough
Nicodemus Banagaaya Björn de Rijk Johan Dubbeldam∗

15 March 2013

Abstract

In this paper we investigate the effects of deformation of a metal specimen,
which is either a plate or a cylindrical rod in our case. In particular we study
neck formation in tensile loading of a plastic metal. We try to generalize the
work of Bridgman, who considered a purely two-dimensional geometry, to an
effective theory that takes into account some essential three dimensional char-
acteristics. That extending the description of neck formation to three dimensions
is necessary was illustrated by recent experimental findings of [1].

We have studied existing models from the literature that describe necking
for plates and cylinders to identify the consequences of the crucial assumption
of uniform in-plane stress. We also developed a new model that we have not yet
been able to analyze. Finally, using work of [4] in which a power law relation
between the von Mises stress and the effective strain is used, a perturbation anal-
ysis for a simple flat geometry was performed. The perturbation analysis offers
a good starting point for generalizing the work of Bridgman to three dimensions.

Keywords: Neck formation, von Mises stress, tensile pulling, plane stress as-
sumption

1 Introduction
In many daily life situations materials are deformed. If deformations are very small
the material will respond elastically. However, for metals deforming in collisions
the plasticity regime is entered for relatively small deformations and the material
will therefore not return to its initial state. This phenomenon can also be observed
in uniaxial tension experiments of a specimen, which is in our case a metal bar or
cylinder. If in an experiment the length of the bar is continuously increased by exerting
a pulling force sufficiently large to accomplish elongation of the metal, then for certain
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loading the metal will yield and enter the plasticity regime. Still further enlarging
the load gives rise to so-called "necking". A picture of typical neck occurring in a
cylindrical specimen is depicted in Fig. 1.

The stress distributed in the metal has been shown in [1] to become fully three-
dimensional, that is, the two-dimensional models originally proposed by Bridgman
in the nineteenfifties will not be appropriate to model necking. The goal of this
study during the SWI 2013 is to extend the 2D description of Bridgman, so that the
findings in [1] are effectively incorporated. Such a description would be very useful in
finite element codes for collisions of ships, as full 3D models are computationally very
expensive and so an approximate incorporation of the stresses in 2D could drastically
improve the computation time needed to analyze such situations. To find an extension
of the existing models a good review of the literature and the most important concepts
in continuum mechanics were required.

The paper is organized as follows. We first introduce some concepts from con-
tinuum mechanics needed for the description of the problem. Next we describe the
model that we employed for both a cylindrical and a plane geometry. In section 3,
we discuss our preliminary findings. Finally, in section 4, we summarize our results
and make recommendations for future research.

Figure 1: A neck appears after applying a critical load to the cylinder.

2 Model

In this section we discuss three different models that were investigated. The first
model was constructed from some special assumptions using the general theory and
a modelling assumption about the strain rate. We discuss two possible choices for
the strain rate. The first possibility was to assume a constant strain rate, the other
was found in a paper [4]. The other two models we studies were both taken from
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the literature: the original model of Bridgman in [2] and a more recent version by
Kaplan in [5]. Before discussing the models we start with reviewing some concepts of
continuum mechanics.

2.1 Concepts from continuum mechanics
To understand the problem of necking, we need some concepts of continuum mechanics
that we here present. If a material is deformed a displacement field results, which is
denoted as u(x). The strain ε is defined as

ε =
1

2

(
∇u + (∇u)T

)
. (1)

It is a symmetric tensor that is related to the stress tensor σ(x), which assigns a value
of the force per unit area to each point x in the material, by a constitutive relation.
In the elastic case the constitutive relation between σ and ε is linear. In the regime
where the material yields and the deformation is plastic, the situation is much more
difficult. However, for the one-dimensional case an empirical relation between stress
and strain still exists as we will see.

Figure 2: A deformation of a material may lead to a change in volume and stresses
throughout the solid.

If we assume that the yielding is unaffected by moderate hydrostatic pressure or
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tension, which is correct to a first approximation it follows that the yielding condition
only depends on the principal components, or eigenvalues, of the deviatoric stress
tensor, σ′, defined by

σ′ij = σij −
1

3
Tr(σ)δij . (2)

The eigenvalues of σ′, {σ′1, σ′2, σ′3} are not independent since they satisfy

σ′1 + σ′2 + σ′3 = 0,

as follows immediately from the definition of deviatoric stress. If we further assume
that the material isotropic, the condition for which yielding will occur only depends
on the eigenvalues, of which only two are independent. So we can write the equation
for yielding

F (σ′1, σ
′
2) = 0, (3)

with F an arbitrary function.
Finally, we use the von Mises proposal (1937) which has been verified in a number

of experiments that the yielding condition depends quadratically on σ′1, σ′2, σ′3. Using
symmetry this gives

σ′21 + σ′22 + σ′23 =
2

3
σ̄2, (4)

where σ̄ is called the von Mises stress. This nonlinear relation can be expressed in
term of the eigenvalues of the original stress tensor σ as

σ̄ =

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

2
. (5)

It turns out that in the plastic regime the von Mises stress is related to the strain
by a power law. For the one-dimensional case this relation is

σ̄ = CεN , (6)

where C is a material constant and N is a power law exponent whose value is in the
range [0.1, 0.2]. To generalize the constitutive relation (6) to three dimensions different
approaches are possible, that we will discuss in Model I. The original Bridgman model
and related to it the model by Kaplan, will be explained in the subsections Model II
and Model III.

2.2 Model I
1. Steady motion

In this approach we try to generalize (6) to 3D by defining an effective scalar
strain, ε̄ such that (6) remains valid when ε is replaced by ε̄. The problem is that
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we need to know the effective strain, which in general depends on the loading
history. Even though we do not know how the strain evolves, the strain rates ε̇
obey [3]

ε̇ =

√
2

9
((ε̇1 − ε̇2)2 + (ε̇1 − ε̇3)2 + (ε̇3 − ε̇2)2), (7)

where the dot denotes differentiation with respect to time. Assuming constant
time derivatives, Eq. (7) is also valid for the strains, which implies that the dots
in (7) can simply be left out.
In order to close the equations we need two more equations. To this end we
invoke the Levy-Mises flow rules which state

ε1 − ε2
σ1 − σ2

=
ε1 − ε3
σ1 − σ3

=
ε3 − ε2
σ3 − σ2

. (8)

and give the two necessary conditions to close the system.

2. Hutchinson theory
In a paper by Hutchinson et al. [4] it was proposed to generalize relation (6) in
the following natural fashion

ε̇ij =
3

2
ασ̄n−1σ′ij , (9)

with α a material constant and n the strain hardening exponent that is typically
larger than 1 and directly related to N . We remark that relation (9) is similar
to (6) if we require in addition that the the strain rate is time independent and
that the strain and the stress have a common set of eigenvectors.

We next discuss two existing models in the literature. One is the orginal model of
Bridgman for necking. The other model is a model introduced by [5].

2.3 Model II: The Bridgman model for necking
Bridgman discusses neck formation in a cylindrical tensile specimen. The distribution
of stress across a transverse section is, however, not necessarily uniform. Measure-
ments generally only provide data about the mean stress through the neck. Since
the shape of the neck is not known beforehand calculating the stress distribution is
extremely difficult and determining its shape from first principles requires tracing the
time evolution of the dynamical process of neck formation as is done by [4]. Bridgman
made the assumption, based on his own experimental data, that at the neck minimum
the stress is uniformly distributed. From the area reduction at the position of the
neck, which we call x = 0, the strain is known. Furthermore the strain rate can be
shown to be proportional to the radial distance r. For equation for equilibrium is
again given by

∂σrr
∂r

+
∂σrz
∂z

= 0, at z = 0. (10)
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The yield condition is also very much simplified in this case, because σrr = σθθ as
ε̇rr = ε̇θθ and the strain rate is proportional to r. This gives the yield condition

σzz − σrr = Y. (11)

Bridgman then lets his principal stress direction in a meridian plane to the axis as in
Fig. 2.1. We have

σzz 'σ3, σrr ' σ1, σrz ' (σ3 − σ1)ψ. (12)

This implies that the yield condition is

σ3 − σ1 = Y +O (ψ) , (13)

from which it immediately follows that
(
∂σrz
∂z

)

z=0

= Y

(
∂ψ

∂z

)

z=0

=
Y

ρ
. (14)

a
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Figure 3: The geometry for the Bridgman model. Neck formation in a cylindrical
geometry. Plane and uniform stress assumption at z = 0.

This leads to the following partial differential equation for σzz

∂σzz
∂r

+
Y

ρ
= 0, for z = 0. (15)

Using the symmetry in Fig. 3, we can deduce that

ρ2'CT 2 = OC2 −ON2 ' (r + ρ)2 −ON2, (16)
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hence for any point on OA we have

ρ =
a2 + 2aR− r2

2r
. (17)

From (17) [2] obtained the formula

σzz
Y

=1 + ln

(
a2 + 2aR−R2

2aR

)
. (18)

2.4 Model III: The Kaplan model
In 1973, M.A. Kaplan [5], extended the analysis of Bridgman. His analysis deals
with necking in bars of mild steel. One assumption that is made here is that the
displacement will be axially symmetric in a symmetric bar. This reduces the number
of unknowns in this analysis drastically. Another important assumption is that the
deformation will be produced entirely by plastic flow, so the elastic deformation is
neglected. This can be supported by the fact that the elastic contribution to the total
axial strain in ductile metals is of the order of 1 percent at the onset of necking, and
decreases as necking proceeds.

Kaplan uses the work of Bridgman to calibrate his own model. Experimentally,
Bridgman concluded that during necking, the ratio between the external radius and
core radius remains constant during necking from the point on where necking has
started. This means that r/a = r0/a0 where r and r0 are the deformed and initial
radial positions of a particle respectively. The radius of the profile, a is measured
on a plane on which the particle lies after deformation. The initial radius of the bar
is a0. This fixed quantity implies an equation for the radial displacement in terms
of the profile of the bar a, which is assumed to be a function of the z-direction (see
Fig. 1) and time t. Kaplan then performs a formal analysis to derive the strain fields
and strain rates in terms of this profile.

From the strain field, the Levy-Mises plasticity equations and use of the radial
displacement uniformity, the stress field could be determined. This is a closed system
of eight equations and unknowns. After some formal derivations the predicted profile
of the neck, a(z, t) is determined and has the shape of a parabola.

The analysis of [5] is valid throughout a significantly larger portion of the plastic
flow region than the analysis of [2]. The analysis holds only for a necked cylindrical
mild steel tensile specimen. However, experiments show a high similarity for ductile
metals and Kaplan argues that his results apply to those materials as well.

A nice feature of Kaplan’s work is that all parameters used in his model can be
measured very well. Also, his results have good agreement with experiments and
tensile tests.

3 Results
To understand the necking process in time we studied a thin sheet as sketched in
Fig. 4. In this study we use the formalism as presented in [4]. The sheet is initially in



122 SWI 2013 Proceedings

rest and then a force P per unit length is applied at the ends, which are initially at
x = −L and x = L. For simplicity we assume L�1. The width of the sheet is given
by h(x, t). The stress is linearly related to P by at each section x1 = constant

P = σ11h (19)

We next make the plane stress assumption, that is, all quantities are independent
of x2. Moreover only the σ22 and σ11 do not vanish and these are taken to be uniform
over a section with constant x1. Finally, we assumed symmetry with respect to the
x3 coordinate and imposed volume conservation, that is,

ε̇11 + ε̇22 + ε̇33 = 0, (20)

with the additional condition that ε̇22 = 0, as there is no x2 dependence. If we use
Eq. (9), we find after calculating the von Mises stress

ε̇11 = −ε̇33 =
α
√

3

2

(√
3P

2h

)n
. (21)

We can now find the evolution equation of h(x1, t), by calculating the time deriva-
tive of h with respect to time, keeping in mind that there will also be a convective
contribution, that is

ḣ =
∂h

∂t
+ v1

∂h

∂x1
= ε̇33h. (22)

In Eq. (22) we introduced v1(x1), which is the velocity in the x1-direction. If we
now use Eq. (21), we have derived an evolution equation for h(x1, t), which however
includes the velocity v1.

3.1 Perturbation analysis

To find an approximate solution to Eq. (22) we perform a perturbation analysis. We
will repeat here the reasoning of [4]. First we assume that the sheet is perfect and
therefore h(x1, t) only depends on t, next we add a small sinusoidal perturbation, so
we can write

h(x1, t) = h0(t)

(
1− ξ cos

(
2πx1
l

))
, (23)

where ξ is a small parameter. The solution to zero order in ξ satisfies

ḣ0 = −1

2

√
3α

(√
3P

2

)n
h1−n0 = −h0f(h0), (24)
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where we introduced f(h0) = ε̇11 for notational convenience. Eq. (24) is easily solved
as

h0(t) =

[
hn0 (0)− n

2

√
3α

(√
3P

2

)n
t

] 1
n

. (25)

The first order contribution in ξ can be obtained by substituting Eq. (21) in Eq. (22)
and next differentiating with respect to x1. This yields

∂2h

∂x1∂t

∂h

∂x1
− ∂2h

∂x21

∂h

∂t
=

(
∂h

∂x1

)2

[−f ′(h)− f(h)] + f(h)
∂2h

∂x21
, (26)

with f as defined in (24). We could try to solve the nonlinear equation (26) numer-
ically, but we have to keep in mind that that this equation is only valid for in-plane
stress and the strain rates only depend on x and not on z . If we do make such an
assumption then solving Eq. (26) would determine how a perturbation h(x, t) would
evolve in time. For reasons of time we have not numerically solved (26), but rather
delved deeper in the theory behind neck formation closely following [4].

Of course, like in [4] it is possible to substitute the sinusoidal expression for h (23)
and see keeping only terms linear in ξ to calculate the linear variation of the h(x1, t)
in time as a consequence of the convective term. We will not repeat this calculation
here, but rather try to determine the functional form of h when a perturbation is
introduced.

R

1

=xz

x

3

h(x )
1

ψ

Figure 4: A perturbation analysis can help to calculate the initial neck shape, without
assumptions on the curvature.

Assume now that the wavelength of the perturbation is very large and define
X = βx1, where β is of the order of the inverse wavelength as in [4]. We use X and
z = x3 as coordinates. In the creeping flow approximation we can use div σ = 0, as
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an equilibrium condition. In components this reads

β
∂σ11
∂X

+
∂σ13
∂z

= 0 (27)

β
∂σ13
∂X

+
∂σ33
∂z

= 0 (28)

The boundary condition at z = h(X)/2 is given by

−σ11 sinψ + σ13 cosψ = 0

−σ13 sinψ + σ33 cosψ = 0 (29)

where tanψ = βh′(X)/2 and the prime denotes differentiation with respect to X.
The boundary conditions can be expanded up to order β2 as well as the stresses

σ11 = σ(0)(X) + βσ
(1)
11 + β2σ

(2)
11 + · · ·

σ33 = βσ
(1)
33 + β2σ

(2)
33 + · · · (30)

σ13 = βσ
(1)
13 + β2σ

(2)
13 + · · ·

and the strain rates

ε̇11 = −ε̇33 = ε̇(X) + βε̇
(1)
11 + β2ε̇

(2)
11 + · · ·

ε̇13 = ε̇
(0)
13 + βε̇

(1)
11 + β2ε̇

(2)
11 + · · · , (31)

where ε(0)13 = 0, but is kept for clarity as in [4].
The strain rates are related to the flow velocity in the following way

ε̇11 = β
∂v1
∂X

ε̇33 =
∂v3
∂z

2ε̇13 =
∂v1
∂z

+ β
∂v3
∂X

. (32)

To go beyond the in-plane plane stress assumption we would need to take into account
ε̇22, which could be achieved in a perturbative approach. Of course, this would make
the equations much more difficult to solve, but in this way a good estimate of non
in-plane effects can be given.

We next continue with the Hutchinson analysis. A major simplification of ε̇22 = 0
is that we can express σ22 in terms of σ11 and σ33 as

σ22 =
σ11 + σ33

2
.

If we write all expressions up to order β2, we find the following values of the stress
and strain rates

σ11 = σ(0)

[
1 +

β2(n− 2)hh′′

12n

(
1− 12

z2

h2

)]

σ33 = σ(0) β
2hh′′

8

(
1− 4

z2

h2

)

ε̇11 = ε̇(0)
(

1− β2hh′′

24

)(
n+ 4 + 12(n− 4)

z2

h2

)
(33)
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From Eqs. (33) it can be seen that only when the strain hardening exponent n equals
4, ε̇11 will be uniform across the neck.

Furthermore, we can now compare the result in [4] with that in [2] by introducing
the radius of curvature as

1

R
=
β2

2
h′′. (34)

Buy eliminating h from the expression for σ11 and σ33 we obtain
√

3σ11
2σ̄

= 1 +
h

4R

[
1− z2

h2

]

√
3σ33
2σ̄

=
h

4R

[
1− z2

h2

]
, (35)

which agree exactly with the Bridgman expressions to order z2

h2 .

4 Conclusions and recommendations

We conclude that the problem of neck formation is far from trivial. In order to find
a generalization of the Bridgman result we studied 3 different models. The model of
Kaplan is interesting and may prove very useful, however, we have not been able to
generalize this to more dimensions. We constructed a model using the assumption of
constant strain rates, which makes it much easier to take the convective terms into
account. Finally, we found a study of [4], which appears to be a good alternative to
the Bridgman theory. This model takes into account time dependent strain rates and
can indeed be generalized to cases in which there is no assumption made about the
stresses all being in-plane. Unfortunately, time has not permitted to do the complete
analysis, but a perturbation analysis along similar lines as that in [4] would open
new avenues for the resolution of the problem of taking the necking problem to three
dimensions.

Another direction which may be fruitful, is to start with one of the constitutive
models proposed in this study and investigate them numerically. Comparison between
experimental data and modeling results would indicate which constitutive relation
would be best. Next, complementary to the perturbation analysis, a numerical study
of the nonlinear model could be performed at reasonable computational costs, so that
a good estimate of the errors resulting from the assumptions such as a uniform stress
distribution across the neck can be obtained.
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