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The kinetics of collapse and explosion transitions in microcanonical self-gravitating ensembles is analyzed.
A system of point particles interacting via an attractive soft Coulomb potential and confined to a spherical
container is considered. We observed that for 100–200 particles collapse takes 103–104 particle crossing times
to complete; i.e., it is by two to three orders of magnitude slower than the velocity relaxation. In addition, it is
found that the collapse time decreases rapidly with an increase of the soft-core radius. We found that such an
anomalously long collapse time is caused by the slow energy exchange between a higher-temperature compact
core and relatively cold diluted halo. The rate of energy exchange between the faster modes of the core
particles and slower-moving particles of the halo is exponentially small in the ratio of the frequencies of these
modes. As the soft-core radius increases and the typical core modes become slower, the ratio of core and halo
frequencies decreases and the collapse accelerates. Implications for astrophysical systems and phase transition
kinetics are discussed.
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I. INTRODUCTION

Many groups of stellar systems have highly universal
structures despite the apparent differences in their history
and environment [1,2]. These universal structures are
thought to have arisen as a result of relaxation towards equi-
librium or to otherwise long-lived states. A comparison be-
tween the age of the stellar systems with universal features
and corresponding collisional relaxation times reveals, how-
ever, that several types of stellar systems, such as elliptical
galaxies, have not existed long enough to be collisionally
relaxed [1]. Other collisional types of relaxation, such as
“violent relaxation” or phase-space mixing caused by strong
gravitational field fluctuations[3], have been suggested to
explain this apparent contradiction between the time scales.
Yet a full understanding of the kinetics of relaxation in natu-
rally occurring self-gravitating systems is still lacking.

A number of fairly idealized models have been analyzed
to understand the nature of equilibrium and transitory states
of stellar systems. A well-studied example is an ensemble of
self-gravitating particles with a sufficiently short-range
small-distance regularization confined in a container. That
system exhibits a gravitational phase transition between a
relatively uniform high-energy state and a low-energy state
with a core-halo structure[4–15]. During such a transition in
a microcanonical ensemble the system undergoes a discon-
tinuous jump from a state that just ceases to be a local en-
tropy maximum to a global entropy maximum state with the
same energy but different temperature. A transition from a
high-energy uniform state to a lower-energy core-halo state
is usually called collapse. The reverse transition during
which the core disappears is often referred to as explosion.

It has been recently observed in molecular dynamics
(MD) simulations [15] that a typical time scale for such
gravitational transitions is paradoxically large, for a system
of 125–250 particles being of the order of 103 relaxation
times for a collapse and 102 relaxation times for an explo-

sion. The relaxation timetr =R3/2N1/2/ ln N is the time scale
of typical particle velocity thermalization which proceeds
mostly via soft Coulomb collisions[1]. It was also observed
in Ref. [15] that the density relaxation, such as the formation
of the core, advances relatively fast, while the evolution of
the kinetic energy or temperature proceeds noticeably slower
[15].

In this paper we undertake a more detailed study of the
kinetics of collapses in self-gravitating systems, in some way
completing the investigation initiated in[15]. The structure
of the paper is the following: After this introduction we
briefly outline the simulation setup and present the results for
collapse kinetics. A section analyzing a slow core-halo en-
ergy transfer as the bottleneck of system relaxation follows.
Conclusions and discussion of the results completes the pa-
per.

II. SIMULATIONS

We consider systems consisting ofN=125–250 identical
particles of unit mass confined in a spherical container of
radiusR with reflecting walls. The Hamiltonian of the sys-
tem reads as

H = o
i=1

N
pi

2

2
− o

i, j

N
1

Îr ij
2 + r0

2
, s1d

where r0 is the soft-core radius. Along with the physical
units, we use the standard rescaled units(as discussed, e.g.,
in Ref. [4]). For energye, temperatureQ, distancex, and
time t they read as

e ; E
R

N2 ,

Q ; T
R

N
,
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x ;
r

R
,

t ; tÎ N

R3 . s2d

Expressed in these rescaled units, the equilibrium properties
of self-gravitating systems become universal. The velocity
relaxation, assuming that it is caused mostly by soft colli-
sions, is expected to be universal in terms of timetvel
=t ln N/N [1], where the factorN/ ln N is proportional to the
number of crossings a particle needs to change its velocity
by a factor of 2.

The phase diagram of the system is presented in Fig. 1;
see also Refs.[8,12,15]. High- and low-energy branches ter-
minating at the energiesecoll andeexpl correspond to the uni-
form and core-halo states. The collapse and explosion ener-
gies areecoll<−0.339 andeexpl<0.267 forx0=5310−3.

Each MD run was initiated with a configuration in which
the particles were seeded according to the correspondingecoll
or eexpl equilibrium (metastable) density profiles, and the ve-
locities were assigned according to the Maxwell distribution.
A more detailed description of the MD simulation procedure
is presented in[15].

To reveal all facets of gravitational phase transitions in the
most informative way, we consider the following parameters.

(i) TemperatureQ as the indicator of the advancement of
a phase transition as a whole. WhenQ reaches the target
phase equilibrium value, all other system parameters come to
equilibrium as well and the phase transition is complete.

(ii ) Number of core particles,Nc, as the measure of den-
sity relaxation.

(iii ) Temperature of the core,Qc, which is proportional to
the average kinetic energy of the core particles. Deviations of
Qc from Q quantify the temperature gradients occurring dur-
ing a phase transition.

We do not list here any parameters which characterize the
velocity relaxation: As follows from the definition oftvel [1]
and as observed in simulations[15], the velocity distribu-
tions in both the core and halo become thermalized within
tvel,1.

Results, averaged over four runs, for the temperature, core
temperature, and the number of core particles for a collaps-
ing system are presented in Fig. 2. The time evolution of
these parameters is described in terms of the relative vari-
ablesQ8std, Qc8std, and Nc8std which are defined asQ8std
;fQstd−Qsudg / fQsc-hd−Qsudg. The valuesQsud and Qsc
-hd correspond to the uniform and core-halo states in equi-
librium.

As in Ref. [15], we observe that a collapse in a system
with N=125–250 particles andx0=0.005 takes about 103

velocity relaxation times to complete. It also follows from
Fig. 2 that the growth of the core is significantly faster than
the relaxation of the average kinetic energy: The core reaches
half of its equilibrium size in only about 5 velocity relaxation
times, while temperature relaxes to halfway in only 110 ve-
locity relaxation times. In addition, we conclude that the core
temperature is evolving synchronously with the number of
core particles—i.e., noticeably faster than the total tempera-
ture of the system.

The results for the collapse in an otherwise identical sys-
tem but with soft-core radius twice larger,x0=0.01, are pre-
sented in Fig. 3. It follows from a comparison between Figs.
2 and 3 that while the initial stages of relaxation are not
affected by the change of short-range potential, the overall
collapse proceeds much faster for largerx0.

FIG. 1. Plots of entropyssed (solid line) and temperaturetsed
=de /ds (dashed line) vs energye for a system with a gravitational
phase transition and a soft-core radiusx0=0.005.

FIG. 2. Plots of the relative values of(from top to the bottom)
the number of core particles,Nc8std (blue), and total temperature
Q8std (red) vs t for a collapse in system withe=−0.5,N=125, and
x0=0.005. The time evolution of the core temperatureQc8std is prac-
tically indistinguishable fromNc8std and cannot be seen in the plot.

FIG. 3. Same as in Fig. 2 but forx0=0.01.
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The above numerical results suggest that after a rapid ini-
tial core growth, which takes a few velocity relaxation times,
further evolution is hindered by some slow process that is
essential for the completion of the phase transition. The ki-
netics of this slow process strongly depends on the short-
range part of the interparticle potential. It follows from Figs.
2 and 3 that a collapse comes to its completion only when
the temperatures of the core and halo become equal. Hence,
it seems natural to assume that the bottleneck process is the
energy, or heat, exchange between the core and the rest of the
system. The rate of this heat exchange depends on the struc-
ture of the core which in turn is determined by the potential
softening. In the next section we consider the heat exchange
between the core and halo in more detail.

III. CORE-HALO ENERGY EXCHANGE

To analyze the energy exchange between the core and
halo, let us first examine the motion of a core particle. In a
system of reference of the center of mass(c.m.) of the core
we expand the potential energy terms in the Hamiltonian, Eq.
(1), in powers ofr ij / r0 and arrive at the harmonic oscillator
Hamiltonian

H < −
Nc

2r0
3 +

1

2o
i=1

Nc Spi
2 +

Nc

r0
3 r i

2D . s3d

Hence the motion of core particles relative to the core c.m. is
characterized by harmonic oscillations with frequency

vc =ÎNc

r0
3 . s4d

It is interesting to note that the frequency of the motion of
a particle in a uniform self-gravitating sphere ofNc particles
and radiusr0 with the bare gravitationals−1/rd interaction is
also given by Eq.(4). Since the core radius is roughly equal
to r0 [15], both the bare interaction and the “very soft” po-
tential frequencies are essentially the same.

While the motion of the core particles is bound by gravity,
the higher-energy halo particles can be viewed as free and
being confined by the container walls only. Hence, the inter-
action between a core and a halo particle can be approxi-
mated as an interaction between a point mass on a rectilinear
trajectory and a harmonic oscillator. The first relevant term in
the multipole expansion of this interaction is the monopole-
dipole term

Vstd = o
i=1

Nc xivt + zir

fsvtd2 + r2g3/2. s5d

Herexi andzi are the coordinates of core particles, andv and
r are the velocity and impact parameter of the halo particle,
respectively(Fig. 4). The monopole-monopole term, corre-
sponding to the interaction between the halo particle and the
core c.m., is irrelevant to the internal motion of the core
particles.

With the introduced approximations the core-halo energy
exchange becomes physically identical to the well-studied
process of energy exchange between the vibrational degrees

of freedom of bound states and fast free particles in a plasma.
Naturally, such molecular processes are usually considered in
quantum mechanical terms. Following a standard textbook
[16] we start with the first-order term of the interaction rep-
resentation expansion of the perturbation of the oscillator
wave function during a complete single collision,

C = −
i

"
E

−`

+`

Vstdexpsivctddt, s6d

and arrive at the following expression for the probabilityuCu2
of the excitation from(or de-excitation to) the ground state
of a harmonic oscillator:

uCu2 =
2vc

2Nc
2

"v4 FK0
2Svcr

v
D + K1

2Svcr

v
DG . s7d

HereKj are the McDonald functions(modified Bessel func-
tions of the second kind), the factorNc

2 appears since the
interaction potential in Eq.(7) is the sum ofNc identical
terms, and the probability is quadratic inVstd. Multiplying
Eq. (7) by the transferred energy"vc, we get rid of the
quantum constants and obtain an expression for the typical
energy exchange during a collision between a core and a halo
particle:

dEsr,vd =
2vc

2Nc
2

v4 FK0
2Svcr

v
D + K1

2Svcr

v
DG

→
vc/v→`

2pvcNc
2

v3r
expS−

2vcr

v
D . s8d

The same expression can be obtained by a completely clas-
sical analysis considering the energy transfer during forced
oscillation [17]. The last limit in Eq.(8) is taken sincer /v,
which is of order of a halo particle crossing timeR/v, is
much larger than a period of oscillation of the core particle
1/vc. It follows from Eq. (8) that the rate of energy ex-
change between the core and halo particles is exponentially
small in the ratio of typical frequencies of their motion.

To obtain the rate of energy transfer between the core and
all halo particles per unit time, one needs to average Eq.(8)
over impact parameters and velocities:

DE

Dt
=E

r0

R

2prdrE vWMsvdndEsr,vdd3v. s9d

Here the lower limit of integration for the impact parameter
is set equal to the core radius for the dipole approximation to
be correct, WMsvd is the Maxwell distribution, andn
=3N/ s4pR3d is the particle density. Using thatr0!R and
evaluating the velocity integral in the steepest descent ap-

FIG. 4. Sketch of a core-halo particle scattering event.
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proximation, the following expression is obtained:

DE

Dt
<

pÎ3Nc
2Ns2Tvcr0d1/3

TR3 expF− 3Sv2r0
2

2T
D1/3G . s10d

Assuming that the typical time of core-halo relaxationtc-h is
roughly equal to the ratio of the total transferred energy to
the rate of the transfer and using Eq.(4), we arrive at the
following expression fortc-h:

tc-h =ÎR3

N
De

Q2/3sx0/ncd1/6

21/3Î3pnc
2 expF3S nc

2x0Q
D1/3G . s11d

HereDe is the total transferred energy in rescaled units and
nc=Nc/N.

To evaluate the numerical value oftc-h we consider the
example from Fig. 2 with the following parameters:e=
−0.5,x0=0.005,nc<0.2, andQ<sekin

c-h+ekin
u d /3<1.2 (which

is the average between the initial and final halo temperatures)
[15]. Since the total energy during a microcanonical collapse
is conserved, a change in kinetic energy of the system must
be compensated for by a simultaneous change in the total
potential energy which is roughly equal to the potential en-
ergy of the core. Given that most(80%) of the system par-
ticles are in the halo, the energy transfer from the core to the
halo can be estimated asDe<ekin

c-h−ekin
u <2.6. With these pa-

rameters we obtain

tc-h ; tc-hÎ N

R3 < 12 300 s12d

for the relaxation time. Given the number of approximations
used in obtaining Eq.(11), the agreement with the simula-
tional result for the complete phase transition timetc-h

MD

<27 000(see Fig. 2) is surprisingly good. The agreement is
even better for systems with the same energye=−0.5 but
larger soft-core radius,x0=0.01, wherenc<0.22, Q<0.83,
and De<1.5. The theoretical estimate, Eq.(11), yields tc-h
<3600 which is only very little below the simulational result
tc-h

MD <3800.
The most significant contributions to underestimating the

value oftc-h are the following.
(i) All collision were considered complete—i.e., the inte-

gral in Eq.(6) had infinite limits. This is certainly not true for
a confined system especially for large impact parameters.

(ii ) The energy exchange between the core oscillations
and halo particles was always considered in one direction—
i.e., from core to halo. In reality, this is only true for slow
halo particles. Close to equilibrium, the exchange becomes
progressively mutual with increasing number of fast halo
particles losing their energy to the core vibrations.

Other factors not taken into account in our estimate, but
possibly affecting the core-halo energy relaxation are quad-
rupole and higher-order terms in the potential expansion,
overlapping collision, more complex dynamics than oscilla-
tion and rectilinear motion of the core and halo particles,
higher than one-photon processes, or higher-order terms in
the perturbation expansion to mention some. Yet we believe

that our relatively simple approach presented above captures
the essence of the core-halo energy relaxation and has semi-
quantitative predictive power.

IV. DISCUSSION AND CONCLUSION

In the previous two sections we obtained the following
results for the kinetics of collapse from the uniform to the
core-halo state in self-gravitating systems.

(i) The molecular dynamics simulations revealed that in a
system of 100–200 particles the collapse time is by two to
three orders of magnitude longer than the velocity relaxation
and strongly depends on the short-range part of the interac-
tion potential.

(ii ) It was found that the nonequilibrium feature with the
slowest relaxation time is the temperature difference between
the core and halo. In contrast, such parameters as the number
of core particles and core kinetic energy evolve relatively
fast.

(iii ) A mechanism similar to the vibrational-translational
relaxation in plasmas was suggested for the core-halo energy
exchange. For this mechanism we show that the core-halo
thermalization is exponentially slow in the ratio of typical
frequencies of the motion of core and halo particles. Despite
several rather strong approximations used in our analysis, a
theoretical estimate for the relaxation time is in a good agree-
ment(not more than by a factor of 2 off) with the simulation
results.

So far nothing has been said about the reverse to collapse
transition—i.e., explosion—illustrated in Fig. 5. It follows
from this figure that similarly to the collapse, the kinetic
energy is the slowest-evolving quantity while the number of
core particles and core kinetic energy lead the explosion.
Since the fastest particles leave the core first, the core is
always colder than the rest of the system. At the end of
explosion the core becomes just a single cold particle indis-
tinguishable from any other particle of the system. This ex-

FIG. 5. Plots of the relative values of the(from top to the bot-
tom) number of core particles,Nc8std (blue), total temperatureQ8std
(red), and core temperatureQc8std (black) vs t for the explosion in
system withe=0.5, N=125, andx0=0.005.
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plains the sudden jump of the core temperature at the very
end of explosion. Using Eq.(11) it is straightforward to ex-
plain why an explosion is faster than a collapse: Since the
explosion starts at higher energy than collapse, the corre-
sponding “explosion core-halo state” has noticeably fewer
core particles(twice for the considered here case) than the
final collapse state. This reduces the exponential term in Eq.
(11). In addition, the total amount of energy which needs to
be transferred between core and halo is smaller in the case of
an explosion than in the case of collapse. It follows from Fig.
1 where the temperature jumps at collapse and explosion
points are proportional to the energy exchanged between
core and halo.

Are these results applicable to self-gravitating systems
with other types of short-range regularization? For systems
with continuous potentials at low energies the particle mo-
tions near the equilibrium position are harmonic oscillations
with a frequency roughly given by Eq.(4) wherer0 is of the
order of the core radius. Examples include ensembles with
Fourier-truncated Coulomb potentials[14], truncation of the
expansion of the potential in spherical Bessel functions[18],
and exchange interaction in systems with phase-space exclu-
sion [6]. For potentials with a singular short-range part such
as a hard-core repulsion, the motion of core particles is dis-
continuous, yet a typical inverse time scale of such motion is
given by Eq.(4) as well. This follows from the fact that the
expression, Eq.(4), can be obtained by dividing a typical
core particle velocityÎNc/ r0 by the core radiusr0. The
analysis and conclusion made in Sec. III are based on a gen-
eral principle that for a perturbation of a fast system by a
slow one, the rate of energy transfer between these systems
is exponentially small in the ratio of their frequencies. And
since the motion of core particles is always faster than the
motion of the halo ones, we conclude that the results ob-
tained here are qualitatively applicable to all collapsing self-
gravitating systems independent of the form of the short-
range cutoff.

An important implication of the essential nonisothermic-
ity of collapsing system demonstrated here is about the ap-

plicability of the Smoluchowski equation description to these
systems[11]. Compared to the more complete Boltzmann
equation with a Landau collision term(often called in case of
the self-gravitating system Fokker-Plank-Vlasov equation
[19]), the Smoluchowski equation offers a significant simpli-
fication: In the physically relevant case of spherically sym-
metric systems the solution depends only on one radial co-
ordinater. To make such a description more realistic, one
needs to take into account the nonuniform temperature field.
This can be achieved by coupling the Smoluchowski and
heat conduction equations. The nonisothermicity of the evo-
lution also indicates that the collapse in the canonical en-
semble must be radically different from its microcanonical
counterpart.

Finally a few words about the astrophysical relevance of
the obtained results. The structure and mere existence of the
equilibrium core is a consequence of the short-range regular-
ization of the gravitational potential and the confining con-
tainer which are the artifacts of the model. Hence true equi-
librium core-halo states never occur in stellar systems.
However, the observation that the collapse progress is hin-
dered by the core-halo energy exchange which is exponen-
tially slow in the ratio of the typical frequencies of motion of
the core and halo particles remains applicable. Hence it is
possible to interpret the states of the systems such as globu-
lar clusters whose age is noticeably larger than the corre-
sponding velocity relaxation(and, therefore, initial core for-
mation) time [1] as the transitory long-living states similar to
core-halo thermalization states observed in this study.
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