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CONNECTIVITY THRESHOLD FOR RANDOM SUBGRAPHS OF

THE HAMMING GRAPH

LORENZO FEDERICO, REMCO VAN DER HOFSTAD, AND TIM HULSHOF

Abstract. We study the connectivity of random subgraphs of the d-dimensional
Hamming graph H(d, n), which is the Cartesian product of d complete graphs
on n vertices. We sample the random subgraph with an i.i.d. Bernoulli bond
percolation on H(d, n) with parameter p. We identify the window of the transition:
when np−logn → −∞ the probability that the graph is connected goes to 0, while
when np − logn → +∞ it converges to 1. We also investigate the connectivity
probability inside the critical window, namely when np− logn → t ∈ R. We find
that the threshold does not depend on d, unlike the phase transition of the giant
connected component the Hamming graph (see [1]).

Keywords: connectivity threshold, percolation, random graph, critical window
MSC 2010: 05C40, 60K35, 82B43

1. Introduction

In this paper we investigate the random edge subgraph of d−dimensional Ham-
ming graphs. Hamming graphs are defined as follows:

Definition 1.1 (Hamming graph). For integer n write [n] := {1, . . . , n}. We define

the d−dimensional Hamming graph H(d, n) as the graph with vertex set

V = [n]d, (1.1)

and edge set

E = {(v, w) : v, w ∈ V, vj 6= wj for exactly one j}. (1.2)

Now we study a percolation model on the Hamming graph, defining the random
subgraph Hλ(d, n) as the random edge subgraph with uniform edge retention prob-
ability p = λ

d(n−1)
. Since the degree of every vertex in H(d, n) is d(n − 1), the

parameter λ thus indicates the expected number of outgoing edges from any given
vertex.

The phase transition for the existence of a giant component (i.e., when |Cmax| ≈
ζ |V | for ζ ∈ (0, 1)) was studied in [1] for a larger class of finite transitive graphs
that includes H(d, n), while the slightly supercritical behavior was analyzed in [6]
and [7] for d = 2.
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In this work, we move away from the giant component critical point and we aim
to determine the asymptotic probability that Hλ(d, n) is connected for d fixed and
n → ∞. The analogous problem was first solved for the Erdős-Rényi Random Graph

(ERRG) in [3]. Observe that the ERRG arises as a special case of our problem if
we put d = 1. We will follow the proof for the Erdős-Rényi Random Graph (see e.g.
[5, Section 5.3]), but we find that at places the internal geometry of the Hamming
graph plays an important role. To overcome this difficulty we use an induction on
the dimension d and an exploration of the graph.

2. Main Results

Let Hn := Hλ(d, n) be a sequence of random edge subgraphs of H(d, n) with
parameter λ = λ(n). Given λ we want to determine the asymptotic probability that
Hn is connected.

Theorem 2.1 (Connectivity threshold for Hλ(d, n)). If limn→∞ λ− d logn = t ∈ R,

then

Pλ(Hn is connected) → e−e−t

. (2.1)

Consequently,

Pλ(Hn is connected) →

{

0 if λ− d logn → −∞,

1 if λ− d logn → +∞.
(2.2)

These results show an interesting difference between the critical values of the gi-
ant component threshold and the connectivity threshold. The critical probability of
the former, pGC = 1

d(n−1)
(1 + o(1)), depends on d, while the latter, pconn =

logn
n−1

, does

not. This fact provides us with some insight into the structure of Hλ(d, n) at the
connectivity threshold: Consider the lower-dimensional “hyperplanes” (i.e., the sub-
graphs of H(d, n) induced by all vertices (v1, . . . , vd) that satisfy a set of constraints
of the form vj = kj for some j ∈ [d], kj ∈ [n], see Definition 4.1 below). Note that
these hyperplanes are isomorphic to Hamming graphs. From [1] we know that there
exist values of λ such that Hλ(d, n) has a giant component while the intersections
of Hλ(d, n) with a hyperplane are subcritical (i.e., the largest components inside a
hyperplane are of order O(logn)). But an analogous property does not hold for the
connectivity threshold: if Hλ(d, n) is connected with probability converging to 1,
then the same holds for all its hyperplanar subgraphs.

We believe this phenomenon holds in much greater generality than Hamming
graphs: our proof of Theorem 2.1 can easily be modified to show that it also holds
for the Cartesian product of d copies of the complete k-partite graph, and we believe
it to be true for a larger class of powers of high-degree transitive graphs.
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2.1. Related literature. In [4] Erdős and Spencer studied the connectivity thresh-
old of the hypercube H(d, 2), where they found that the connectivity threshold occurs
around p = 1

2
(also independent of d). Clark [2] studied the connectivity threshold

of H(d, n) for n fixed and d → ∞, showing that if

p = 1−

(

ξ(d)1/d

n

)

1
n−1

(2.3)

and ξ(d)
d→∞
−−−→ a ∈ (0,∞), then limd→∞ Pλ(Hλ(d, n) is connected) = e−a. Expan-

sion of the above equation around n = ∞ shows that the d → ∞ limit for large
values of n has the same behavior as the n → ∞ limit. Moreover, [9] shows that
more generally, Cartesian products of fixed graphs have a connectivity threshold
that only depends on their degree distribution as d → ∞.

Sivakoff gives a statement analogous to our main theorem for site percolation
in [10]. It should be noted that site and edge percolation are very different models
on the Hamming graph, as can be seen for instance in the fact that connectivity
of site percolation on Kn is trivial, whereas connectivity of edge percolation on Kn

(i.e., the ERRG) is not. See also [11].

3. Poisson convergence of isolated vertices

We start investigating the number of isolated vertices in the Hamming graph. As
in the case of the ERRG, this provides a sharp lower bound on the window of the
connectivity threshold. We define the number of isolated vertices

Y :=
∑

i∈V

1{|Ci|=1},

where |Ci| is the number of vertices in the connected component of vertex i. We prove
that in the critical window (i.e., when λ− d logn → t ∈ R) the random variable Y
converges in distribution to a Poisson random variable. This proof is standard, and
uses the same arguments applied to the proof given for the Erdős-Rényi Random
Graph in [5, Section 5.3].

Let (x)n denote the nth lower factorial of x, i.e., (x)n := x(x− 1)(x− 2) · · · (x−
n+ 1). We will use the following lemmas, whose proofs are given in [5, Section 2.1]
(for general versions see [8, Chapter 6]):

Lemma 3.1. A sequence of integer-valued random variables (Xn)
∞
n=1 converges in

distribution to a Poisson random variable with parameter k when, for all r = 1, 2, ...

lim
n→∞

E[(Xn)r] = kr. (3.1)
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Lemma 3.2. When X =
∑

i∈I 1i is a sum of at least r indicators then

E[(X)r] =
∑

i1 6=i2 6=... 6=ir

P(1i1 = 1i2 = · · · = 1ir = 1). (3.2)

Given Hn = (Vn, En), we want to prove that (3.1) holds for Yn :=
∑

vi∈Vn
1{|Cvi |=1}.

We will use Lemma 3.2 with an upper and lower bound on Pλ(1i1 = · · · = 1ir = 1)
where we take 1i to be the indicator function of the event that the vertex vi is
isolated. Observe that we have nd!/(nd − r)! different sets of distinct vertices of
cardinality r. We call m := d(n− 1) the degree of H(d, n).

The lowest probability comes from sets where none of the r vertices are adjacent,
hence we bound

Pλ(1i1 = 1i2 = · · · = 1ir = 1) ≥

(

1−
λ

m

)rm

, (3.3)

while the highest probability comes from sets where all the r vertices belong to the
same 1-dimensional subgraph, hence

Pλ(1i1 = 1i2 = · · · = 1ir = 1) ≤

(

1−
λ

m

)rm−
r(r−1)

2

. (3.4)

For n ≤ r we can find better bounds but we do not mind, since we are interested
in the asymptotic behavior when n → ∞ and r is fixed. By the transitivity of the
Hamming graph we bound, using λ = d logn + t(1 + o(1)),

Eλ[(Yn)r] ≥
nd!

(nd − r)!

(

1−
λ

m

)rm

=
nd!

(nd − r)!
e−dr logn−tr(1+o(1)).

(3.5)

Since
nd!

(nd − r)!
= ndr(1− o(1)), we find

Eλ[(Yn)r] ≥ ndre−dr logn−tr(1− o(1)) = e−tr(1+o(1)). (3.6)

Similarly

Eλ[(Yn)r] ≤
nd!

(nd − r)!

(

1−
λ

m

)rm− r(r−1)
2

=
nd!

(nd − r)!
n−dre−tr(1+o(1))

(

1−
λ

m

)−
r(r−1)

2

= e−tr(1+o(1)).

(3.7)

This proves that for each r, E[(Yn)r] → e−tr so that by Lemma 3.1 the distribution
of Yn converges to Poi(e−t) when λ− d logn → t, so that
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Pλ(Yn = 0) → e−e−t

. (3.8)

Furthermore {Hn connected} ⊆ {Yn = 0}, so we conclude that for λ− log n → t

lim sup
n→∞

Pλ(Hλ(d, n) is connected) ≤ e−e−t

. (3.9)

It remains to prove the matching lower bound, i.e., that in the critical window
Pλ(Hλ(d, n) is disconnected | Y = 0) → 0.

4. Connectivity conditioned on no isolated vertices

We prove (2.1) via induction on d (the standard “tree counting” proof for the
ERRG given in [5, Section 5.3] is too involved in the presence of geometry). We
initialize the induction by noting that that H(1, n) is a complete graph, so the
random subgraph Hλ(1, n) has the same distribution as an Erdős-Rényi random
graph with p = λ

n−1
. For this case it is proved in [3] that (2.1) holds.

The inductive hypothesis is that (2.1) holds for H(d− 1, n).

Definition 4.1 (Hyperplanes). Given H(d, n) = (V,E) define the hyperplanes
Gjk = (Vjk, Ejk) for some j ∈ [d], k ∈ [n] as

• Vjk = {(i1, i2, ...id) ∈ V : ij = k} ;

• Ejk = {(v, w) ∈ E : v, w ∈ V }.

Note that H(d, n) has exactly dn hyperplanes and that they are all isomorphic to

H(d− 1, n).
We define Gλ

jk as the intersection of the Random Edge Subgraph Hλ(d, n) with the

hyperplane Gjk, for each couple j, k.

We now state a simple graph theoretic lemma that will be useful in our proof:

Lemma 4.2. If Hλ(d, n) has two hyperplanes Gjk and Gj′k′ with j 6= j′ such that

Gλ
jk and Gλ

j′k′ are connected, then the union of all connected hyperplanes belong to

the same component.

Proof. We first observe that Gjk ∩Gj′k′ 6= ∅.
Suppose we there exists a third connected subgraph Gλ

il of a hyperplane Gil. We
want to prove that if we choose v ∈ Gjk and w ∈ Gil then v ↔ w in Hλ(d, n).

If j 6= i then Gjk ∩ Gil 6= ∅, so we can choose u ∈ Gjk ∩ Gil and then v ↔ u in
Gλ

jk and u ↔ w in Gλ
il, and the claim follows.

If j = i then i 6= j′ so that Gjk ∩Gj′k′ 6= ∅ and Gj′k′ ∩Gil 6= ∅. So we can choose
u ∈ Gjk ∩Gj′k′ and t ∈ Gj′k′ ∩Gil and then v ↔ u in Gλ

jk, u ↔ t in Gλ
j′k′ and t ↔ w

in Gλ
il, and the claim follows. �

We assume that for a fixed α ∈ (0, 1) in each possible direction j at least αn of
the (d− 1)-dimensional subgraphs Gλ

jk are connected.
We will prove the inductive step conditioned on two events:
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• A := {Y = 0},
• B := {∀j ∈ [d] ∃ at least αn hyperplanes Gjk s.t. Gλ

jk is connected}.

Proposition 4.3. Let λ− d logn → t, |t| < ∞, d ≥ 2 then

lim
n→∞

Pλ(Hλ(d, n) is disconnected | A ∩ B) = 0.

Proof. We notice that conditioning on B the connected component that contains
all the connected hyperplanes contains at least nd(1 − (1 − α)d) vertices, thus it is
the almost surely unique giant component. We have to prove that with probability
converging to 1 all other edges present in the graph are connected to the giant
component as well. There are at most d

2
((1−α)n)d+1 edges such that both their end

vertices are not in a connected hyperplane. We call the number of edges that do
not connect to the giant component W . If W = 0 the claim holds, since all points
outside the giant component must be isolated and we condition on A. To estimate
the probability that each edge is connected to the giant component we explore their
connected component. We describe the exploration algorithm, starting from the two
end vertices of a given edge:

(1) Pick an edge (v1, v2) and set as active the two end vertices v1, v2.
(2) Check all the edges (v1, w), (v2, w) such that w belongs to a connected hyper-

plane. If they are all vacant go on to Step 3, else terminate the algorithm.
(3) Check all the edges (v1, w), (v2, w) such that w does not belong to a connected

hyperplane. If there are at least two neighbors w1, w2 such that either
(v1, wi) or (v2, wi) is occupied go to Step 4 (without considering other possible
neighbors of v1, v2), else terminate the algorithm.

(4) Set w1, w2 as the active vertices v1, v2, and return to Step 2.

Activating only two neighbors at each cycle of the algorithm allows some control
over the depletion of points outside the connected hyperplanes. This means that
the algorithm can terminate before the starting edge has been connected to the
giant component or its connected component has been completely explored, but the
following calculations show that this algorithm gives a sufficiently sharp result to
prove the claim.

We call Pg = Pg(k) the probability that we find a connection to the giant compo-
nent during the k-th cycle of the exploration, conditioned on the event B and the
fact that we have not terminated yet the algorithm. We bound

1− Pg ≤

(

1−
λ

m

)2αm

→ e−2λα ≍ n−2dα. (4.1)

This bound does not depend on k, because we terminate the algorithm as soon
as the exploration finds a connected hyperplane, so there is no depletion of points
inside the connected hyperplanes.
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Let Nk denote the number of vertices discovered in Step 3 of the k-th cycle of the
exploration and let

Pk,2 := Pλ(Nk ≥ 2 | B) = 1− Pλ(Nk = 0 | B)− Pλ(Nk = 1 | B).

On the event B, Nk is stochastically dominated by Bin(2(1−α)m−2k, λ/m). We
bound

Pλ(Nk = 0 | B) ≤

(

1−
λ

m

)2(1−α)m−2k

, (4.2)

Pλ(Nk = 1 | B) ≤(1− α)m
λ

m

(

1−
λ

m

)2(1−α)m−2k−1

. (4.3)

So we obtain for some constant C

1− Pk,2 ≤

(

1−
λ

m

)2(1−α)m−2k
(

1 + (1− α)
λ

1− λ
m

)

≤Cλn−2d(1−α)

(

1−
λ

m

)−2k

.

(4.4)

Now we want to estimate the probability that the exploration process dies before
hitting the giant component, namely that our algorithm terminates during Step 3.
We call T the cycle at which this happens, we set T = ∞ if the process hits the
giant component, namely if the algorithm terminates during Step 2. For each cycle
s we have

Pλ(T = s | B) ≤ (1− Ps,2)
∏

k≤s

(1− Pg) ≤ Cλn−2d

(

1−
λ

m

)−2s

n−2dαs

= Cλn−2d

(

(

1−
λ

m

)2

n2dα

)−s

,

(4.5)

because for T = s we need that the exploration does not reach a connected hyper-
plane during the first s cycles and then the algorithm terminates on Step 3 of the
s-th cycle. So we can estimate

Pλ(T < ∞ | B) = O



λn−2d
∑

k

(

(

1−
λ

m

)2

n2dα

)−k


 . (4.6)

For sufficiently large n we have n2dα(1− λ
m
)2 > 1, so the tail of the sum behaves like

a convergent geometric series, so that

Pλ(T < ∞ | B) = O(n−2d log n) ≪ 2
d
((1− α)n)−(d+1)

for all d ≥ 2.
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Since on the event B there are at most d
2
((1−α)n)d+1 edges that do not have an

endvertex in a connected hyperplane

Eλ[W | B] ≤ d
2
((1− α)n)d+1

Pλ(T < ∞) → 0, (4.7)

and the claim now follows. �

Completion of the proof: induction on the dimension. Recall that the case
d = 1 initiates the induction, since Hλ(1, n) is an Erdős-Rényi graph, so (2.1) holds.

For the inductive step we assume that (2.1) holds for Hλ(d − 1, n), i.e., that for
all t ∈ R and all sequences λ = λ(n) such that limn→∞ λ− (d−1) logn = t, we have

Pλ(Hλ(d− 1, n) is connected) = e−e−t

.

We want to prove that the same holds for Hλ(d, n).
Given Hλ(d, n), its intersection Gλ

jk with the hyperplane Gjk has the same dis-

tribution as H d−1
d

λ(d − 1, n) since p = λ
d(n−1)

, and each vertex has (d − 1)(n − 1)

outgoing edges in Gjk. We assumed that limn→∞ λ− d logn = t, which implies that

lim
n→∞

d− 1

d
λ− (d− 1) logn =

d− 1

d
t.

Note moreover that 1{Gλ
jk is connected} and 1{Gλ

jk′
is connected} are i.i.d. random vari-

ables when k 6= k′ under Pλ, so for fixed j all the subgraphs Gλ
jk are i.i.d. random

subgraphs with the same law as H d−1
d

λ(d− 1, n).

It thus follows by the inductive hypothesis that the asymptotic probability that

Gλ
jk is connected is e−e−(d−1)t/d

. We define the events

Bj := {Hλ(d, n) contains a connected subgraph Gλ
jk for more than αn different k},

for j ∈ [d].

If we choose α = e−e−(d−1)t/d
− ε, for some ε > 0, for each j, we have by the

induction hypothesis and the Weak Law of Large Numbers that

Pλ(B
c
j ) =Pλ

(

n
∑

k=1

1{Gλ
jk is connected} ≤ αn

)

≤Pλ

(∣

∣

∣

∣

∣

1

n

n
∑

k=1

1{Gλ
jk is connected} − e−e−(d−1)t/d

∣

∣

∣

∣

∣

> ε

)

→ 0 as n → ∞.

(4.8)

By the FKG-inequality, since Bj is an increasing event for every j,

Pλ(B) ≥ Pλ(Bj)
d → 1. (4.9)

Because

Pλ(A
c) ≤Pλ(Hλ(d, n) is disconnected)

≤Pλ(A
c) + Pλ(B

c) + Pλ(Hλ(d, n) is disconnected | A ∩B),
(4.10)
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using (3.8), (4.9) and Proposition 4.3 we can now obtain (2.1), completing the
proof. �
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