

Speeding up dynamic programming with representative sets:
An experimental evaluation of algorithms for Steiner tree on
tree decompositions
Citation for published version (APA):
Fafianie, S., Bodlaender, H. L., & Nederlof, J. (2015). Speeding up dynamic programming with representative
sets: An experimental evaluation of algorithms for Steiner tree on tree decompositions. Algorithmica, 71(3), 636-
660. https://doi.org/10.1007/s00453-014-9934-0

DOI:
10.1007/s00453-014-9934-0

Document status and date:
Published: 01/01/2015

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://doi.org/10.1007/s00453-014-9934-0
https://doi.org/10.1007/s00453-014-9934-0
https://research.tue.nl/en/publications/67874da5-3484-4fe6-b976-67fb8b67eece

Algorithmica (2015) 71:636–660
DOI 10.1007/s00453-014-9934-0

Speeding Up Dynamic Programming with
Representative Sets: An Experimental Evaluation of
Algorithms for Steiner Tree on Tree Decompositions

Stefan Fafianie · Hans L. Bodlaender ·
Jesper Nederlof

Received: 25 November 2013 / Accepted: 16 August 2014 / Published online: 29 August 2014
© Springer Science+Business Media New York 2014

Abstract Dynamic programming on tree decompositions is a frequently used
approach to solve otherwise intractable problems on instances of small treewidth.
In recent work by Bodlaender et al. (Proceedings of the 40th international colloquium
on automata, languages and programming, ICALP 2013, part I, volume 7965 of Lec-
ture Notes in Computer Science. Springer, Berlin, pp 196–207, 2013), it was shown
that for many connectivity problems, there exist algorithms that use time linear in
the number of vertices and single exponential in the width of the tree decomposi-
tion that is used. The central idea is that it suffices to compute representative sets,
and that these can be computed efficiently with help of Gaussian elimination. In this
paper, we give an experimental evaluation of this technique for the Steiner Tree

problem. Our comparison of the classic dynamic programming algorithm and the
improved dynamic programming algorithm that employs table reduction shows that
the new approach gives significant improvements on the running time of the algorithm
and the size of the tables computed by the dynamic programming algorithm. Thus,
the rank-based approach from Bodlaender et al. (2013) does not only give signifi-
cant theoretical improvements but also is a viable approach in a practical setting, and
showcases the potential of exploiting the idea of representative sets for speeding up
dynamic programming algorithms. Furthermore, we propose an alternative represen-

The third author is supported by the NWO Project ‘Space and Time Efficient Structural Improvements of
Dynamic Programming Algorithms’.

S. Fafianie · H. L. Bodlaender (B) · J. Nederlof
Utrecht University, Utrecht, The Netherlands
e-mail: h.l.bodlaender@uu.nl

S. Fafianie
e-mail: s.fafiani@gmail.com

J. Nederlof
e-mail: jespernederlof@hotmail.com

123

Algorithmica (2015) 71:636–660 637

tation of partial solutions using weighted bit strings in order to circumvent a part of
the reduction step that is computationally expensive in practice. In the experimental
evaluation we find that this representation yields further significant improvements.
We show that the representation can also be used for the other problems fitting in the
framework of Bodlaender et al. (2013).

Keywords Experimental evaluation · Algorithm engineering · Steiner tree ·
Treewidth · Dynamic programming · Exact algorithms

1 Introduction

The notion of treewidth provides us with a method of solving many NP-hard problems
by means of dynamic programming algorithms on tree decompositions of graphs,
resulting in algorithms which are fixed-parameter tractable in the treewidth of the input
graph, i.e., they run in f (k)nc time for some function f and constant c if we are given
an n-vertex graph along with a tree decomposition of it of width at most k. For many
problems, this gives algorithms that are linear in the number of vertices n (i.e., c = 1),
but where f (k) is at least exponential in the width of the tree decomposition on which
the dynamic programming algorithm is executed. The dependency of the running time
on the width of the tree decomposition has been a point of several investigations. For
many problems, algorithms were known whose running time is single exponential in
the width, see e.g., [25]. A recent breakthrough was obtained by Cygan et al. [11]
who showed for several connectivity problems like Hamiltonian Circuit, Steiner

Tree, Connected Dominating Set, and many other problems, that these can be
solved in time single exponential in the width. However, this is at the cost of introducing
randomization and an additional factor in the running time that is polynomial in n.
More recently, Bodlaender et al. [5] introduced a new technique (termed the rank-based
approach) that allows algorithms for connectivity problems that are (i) deterministic,
(ii) can efficiently handle weighted extensions of the problems, and (iii) have a running
time of the type O(ckn) for graphs with a given tree decomposition of width k and
n vertices, i.e., the running time is single exponential in the width, and linear in the
number of vertices.

The main idea of the rank-based approach is that each step where a table for a bag
of the tree decomposition is computed is followed by an step where several entries
of this table are deleted. These entries can be seen to be unnecessary for finding an
optimal solution. This latter step is an application of Gaussian elimination, and the
size of the resulting table is bounded by the rank of a certain matrix, hence the name
rank-based approach.

In this paper, we give an experimental evaluation of the rank-based approach for
the Steiner Tree problem. We will see that it gives a significant speed-up; we expect
that similar speed-ups will be achieved when the approach is used for other problems,
like Hamiltonian Circuit or Connected Dominating Set.

Dynamic programming and the rank-based approach: a high-level description We
will now give a high level description of the standard dynamic programming algorithm

123

638 Algorithmica (2015) 71:636–660

for Steiner Tree on tree decompositions, and the improvement with the rank-based
approach.

In the Steiner Tree problem, we are given an undirected graph G = (V, E), a
subset of the vertices K ⊆ V (called the terminals), and a weight for each edge. A
subtree of G that includes all the terminals is called a Steiner tree; the problem is to
find the minimum weight of a Steiner tree.

In our algorithms, we assume that we have a nice tree decomposition of G. (Details
on nice tree decompositions can be found in Sect. 2.) To each bag i of the nice tree
decomposition (with vertex set Xi), we associate a graph Gi ; Gi is the subgraph of
G, formed by all vertices that belong to a bag that is a descendant of i (including
i itself), and all edges that are introduced in a bag that is a descendant of i (again,
including i itself). A Steiner tree T restricted to a subgraph Gi describes a partial
solution, which can be defined as the intersection of T and Gi , i.e., all vertices and
edges of T that belong to Gi . Thus, we can associate with each bag i a collection of
partial solutions. A partial solution thus must be a forest in Gi fulfilling a number of
conditions (discussed in detail later in the paper.) If Steiner tree T contains partial
solution F , we also say that T extends F . The set of edges in T that do not belong to
F is said to be an extension of F .

To partial solutions, we associate their weight (the total sum of the weights of the
edges in the forest) and a characteristic. The characteristic describes which vertices in
bag Xi belong to the forest and how these are connected in the forest. Now, if we have
two partial solutions with the same characteristic with costs c1 and c2, then if we can
extend the first to a Steiner tree with cost c1 +α, the same extension can be applied to
the second partial solution to obtain a Steiner tree with cost c2 +α. This gives the main
idea of the standard dynamic programming algorithm: it is sufficient and possible to
compute for each bag a table, with for each characteristic the minimum weight over
all partial solutions with that characteristic. We compute these table bottom-up in the
tree (e.g., in postorder): to compute a table for a bag, we use the information local in
the bag and the tables of its children.

In the rank based approach, each step where we compute a table for a bag is
followed by a reduce step. The main observation is the following. Suppose we have
a characteristic c in our table, representing some partial solution s. Suppose that for
each extension e of s to a Steiner tree T , there is another characteristic c′ for a partial
solution s′ with equal or smaller cost compared to s, such that e applied to s′ also gives
a Steiner tree, say T ′. We directly observe that the cost of T ′ is equal to or smaller
than the cost of T . Thus, we see that we do not need c for finding the optimum weight
of a Steiner tree, and can delete it from the table computed by dynamic programming.
(For formal proofs, we refer to the paper by Bodlaender et al. [5].) This idea leads to
the notion of representativity, pioneered by Monien [23] (see also Sect. 3.2).

To find small representative sets, we consider the matrix M with rows indexed by
partial solutions, and columns indexed by extensions of partial solutions, with a 1 if
the combination gives a full solution (i.e., Steiner tree), and a 0 otherwise. Rows of
partial solutions with the same characteristic can be seen to be equal. Similarly, we can
define characteristics of extensions, such that extensions with the same characteristic
correspond to equal columns. The following two facts form the basis of the rank-based
approach. First, a maximal subset of linear independent rows of minimal cost forms

123

Algorithmica (2015) 71:636–660 639

a representative set. Second, the rank of this matrix M is bounded by 3|Xi |, for the
Steiner tree problem, i.e., single exponential in the width of the tree decomposition.
(Similar bounds, single exponential in the bag size / treewidth can be shown for other
problems, see [5] and [10].) In both cases, we compute in G F(2).

Now, if we have an explicit basis of M (the characteristics of the columns in a maxi-
mal set of independent columns in T), we can find a representative set of size bounded
by the rank of M , just by performing Gaussian elimination on a submatrix of M , with
the rows corresponding to the entries in the table, and the columns corresponding to
the elements of the basis.

It has been shown [5,10] that the approach sketched above for the Steiner Tree

problem gives for several connectivity problems on graphs deterministic algorithms
that are single exponential in the treewidth of the graph. In this paper, we report on an
experimental evaluation of this approach for the Steiner Tree problem.

Previous work Concerning previous work related to the rank-based approach, as men-
tioned before, the notion of representative sets was pioneered by Monien [23]. Using
the well-known two families theorem by Lovász [21], it is possible to obtain efficient
FPT algorithms for several other problems in a way that is similar to ours [14,22].
Cygan et al. [10] give an improved bound on the rank as a function of the width of
the tree decomposition for problems on finding cycles and paths in graphs of small
treewidth, including TSP, Hamiltonian Circuit and Long Path.

The Steiner Tree problem (of which Minimum Spanning Tree is a special
case) is a classic NP-hard problem which was one of Karp’s original 21 NP-complete
problems [17]. Extensive overviews on this problem and algorithms for it can be found
in [16,30]. Applications of Steiner Tree include electronic design automation, very
large scale integration (VSLI) of circuits and wire routing. In this paper we consider
the weighted variant, i.e., edges have a weight, and we want to find a Steiner tree of
minimum weight. It is well-known that Steiner Tree can be solved in linear time
for graphs of bounded treewidth. In 1983, Wald and Colbourn [27] showed this for
graphs of treewidth two. For larger fixed values of k, polynomial time algorithms are
obtained as a consequence of a general characterization by Bodlaender [4] and linear
time algorithms are obtained as a consequence of extensions of Courcelles theorem,
by Arnborg et al. [2] and Borie et al. [7]. In 1990, Korach and Solel [20] gave an
explicit linear time algorithm for Steiner Tree on graphs of bounded treewidth.
Inspection shows that the running time of this algorithm is O(2O(k log k)n); k denotes
the width of the tree decomposition. We call this algorithm the classic algorithm.
Recently, Chimani et al. [8] gave an improved algorithm for Steiner Tree on tree
decompositions that uses O(B2

k+1 · k · n) time, where the Bell number Bi denotes
the number of partitions of an i element set. Our description of the classic algorithm
departs somewhat from the description in Korach and Solel [20], but the underlying
technique is essentially the same. We have chosen not to use the coloring schemes from
Chimani et al. [8], but instead use hash tables to store information. While the coloring
schemes give a better worst-case running time, the tables are typically sparse, and thus
we expect faster computations when using hash tables. Wei–Kleiner [29] gives a tree
decomposition based algorithm for Steiner tree that particularly aims at instances
with a small set of Steiner vertices.

123

640 Algorithmica (2015) 71:636–660

This paper As said, we perform an experimental evaluation of the rank-based
approach, targeted at the Steiner Tree problem, i.e., we discuss an implementation
of the algorithm, described by Bodlaender et al. [5] for the Steiner Tree problem and
its performance. We test the algorithm on a number of graphs from a benchmark for
Steiner Tree, and some randomly generated graphs. The results of our experiments
are very positive: the new algorithm is considerably faster compared to the classic
dynamic programming algorithm, i.e., the time that is needed to reduce the tables with
help of Gaussian elimination is significantly smaller than the reduction of the running
time caused by the fact that tables are much smaller. Furthermore, we propose an
alternative representation for partial solutions using weighted bit strings. This allows
us to avoid a computational step in the table reductions, namely the construction of
certain matrices, that is expensive in practice. Again, the experimental evaluation of
this bit string representation shows very positive results.

We compare five different algorithms:

– The classic dynamic programming algorithm (CDP), see the discussion above. On
a nice tree decomposition, we build for each node i a table. Tables map partitions
of subsets of Xi to values, representing the minimum weight of a partial solution
that has this partition of a subset as characteristic.

– The rank-based approach (RBA): To the classic dynamic programming algorithm,
we add a step where we apply the reduce algorithm from [5]. This elimination step
is performed each time after the DP algorithm has computed a table for a node of
the nice tree decomposition.

– The rank-based combined approach (RBC): Similar to RBA, but now the elimina-
tion step is only performed for ‘large’ tables, i.e., tables where the theory tells us
that we will delete at least one entry when we perform the elimination step.

– The rank-based bit string approach (BSA): Similar to RBA, but here we use a
weighted bit string representation for partial solutions. These bit strings directly
represent the rows of the matrix on which Gaussian elimination is applied during
the reduction step. The entries in this matrix are thus acquired implicitly during
the building of tables in the dynamic programming algorithm.

– The rank-based bit string combined approach (BSC): Similar to BSA, but again
the elimination step is only performed for ‘large’ tables.

Our software is publicly available, can be used under a GNU Lesser General Public
Licence, and can be downloaded at: http://www.staff.science.uu.nl/~bodla101/java/
steiner.zip.

This paper is organized as follows. Some preliminary definitions are given in Sect. 2.
In Sect. 3, we briefly describe both the classic dynamic programming algorithm for
Steiner Tree on nice tree decompositions, as well as the improvement with the
rank-based approach as presented in [5]. We then show how the operators used to
define dynamic programming formulations in [5] can be applied to sets of weighted
bit strings as opposed to sets of weighted partitions. In Sect. 4, we describe the setup
of our experiments, and in Sect. 5, we discuss the results of the experiments. Some
final conclusions are given in Sect. 6.

123

http://www.staff.science.uu.nl/~bodla101/java/steiner.zip
http://www.staff.science.uu.nl/~bodla101/java/steiner.zip

Algorithmica (2015) 71:636–660 641

2 Preliminaries

We use standard graph theory notation and additional notation taken from [5]. For a
subset of edges X ⊆ E of an undirected graph G = (V, E), we let G[X] denote the
subgraph induced by edges and endpoints of X , i.e. G[X] = (V (X), X) and V (G)

denote the vertex set of G. Let �(U) denote the set of all partitions of some set U .
Given p ∈ �(U) we let #blocks(p) denote the number of blocks of p. If X ⊆ U
we let p↓X ∈ �(X) be the partition obtained by removing all elements not in X from
it, and analogously we let for U ⊆ X denote p↑X ∈ �(X) for the partition obtained
by adding singletons for every element in X \ U to p. Also, for X ⊆ U , we let U [X]
be the partition of U where one block is {X} and all other blocks are singletons. If
a, b ∈ U we shorthand U [ab] = U [{a, b}]. If ω : U → N and X ⊆ U , we let ω(X)

denote
∑

e∈X ω(e).
Formally a partition of a ground set S is a family of pair-wise disjoint subsets of

S whose union equals S. In this paper, we will shorthand the trivial partition in one
set (i.e., {S}, if the ground set is S), with S itself (i.e., the name of the ground set in
general). For two partitions p and q of a set W , we say that p is a coarsening of q
(or, q is a refinement of p) if every block of q is contained in a block of p. We will
shorthand this by p � q. We let p 	 q denote the finest partition that is a coarsening
of p and of q.1

In graph terms: take an edge between v ∈ W and w ∈ W iff v
= w and v and w

belong to the same block in p or to the same block in q. Now, the classes of p 	 q are
the connected components of this graph.

Definition 1 (Tree decomposition [24]) A tree decomposition of a graph G is a tree
T in which each node x has an assigned set of vertices Bx ⊆ V (called a bag) such
that

⋃
x∈T

Bx = V with the following properties:

– for any e = (u, v) ∈ E , there exists an x ∈ T such that u, v ∈ Bx .
– if v ∈ Bx and v ∈ By , then v ∈ Bz for all z on the (unique) path from x to y in T.

The treewidth tw(T) of a tree decomposition T is the size of the largest bag of T

minus one, and the treewidth of a graph G is the minimum treewidth over all possible
tree decompositions of G.

Definition 2 (Nice tree decomposition) A nice tree decomposition is a tree decom-
position with one special bag z called the root and in which each bag is one of the
following types:

– leaf bag: a leaf x of T with Bx = ∅.
– introduce vertex bag: an internal vertex x of T with one child vertex y for which

Bx = By ∪ {v} for some v /∈ By . This bag is said to introduce v.
– introduce edge bag: an internal vertex x of T labelled with an edge e = (u, v) ∈ E

with one child bag y for which u, v ∈ Bx = By . This bag is said to introduce e.

1 The notation is motivated from lattice theory; it can be observed that the set of all partitions of a set
partially ordered by � is a lattice (i.e., the inverse of the usual partition lattice), and that 	 is the meet
operation of this lattice.

123

642 Algorithmica (2015) 71:636–660

– forget vertex bag: an internal vertex x of T with one child bag y for which Bx =
By \ {v} for some v ∈ By . This bag is said to forget v.

– join bag: an internal vertex x with two child vertices y and y′ with Bx = By = By′ .

We additionally require that every edge in E is introduced exactly once.

Nice tree decompositions were introduced in the 1990s by Kloks [18]. We use here
a more recent version that distinguishes introduce edge and introduce vertex bags [11].
To each bag x we associate the graph Gx = (Vx , Ex), with Vx the union of all By with
y = x or y a descendant of x , and Ex the set of all edges introduced at bags y with y = x
or y a descendant of x . There are many heuristics for finding a tree decomposition of
small width; see [6] for a recent overview. Given a tree decomposition T of G, a nice
tree decomposition rooted at an empty forget bag can be computed in n · twO(1) time
by following the arguments given in [18], with the following modification: between
a forget bag Xi where we ‘forget vertex v’ and its child bag X j , we add a series of
introduce edge bags for each edge e = {v,w} ∈ E and w ∈ X j . We can also assume
that the root bag z is a forget node with Bx = ∅ and that the vertex that is forgotten at
the root bag is a terminal.

The Steiner Tree problem studied in this paper can be defined as follows.

Steiner Tree

Input: A graph G = (V, E), weight function ω : E → N \ {0}, a terminal set
K ⊆ V and a nice tree decomposition T of G of width tw forgetting a terminal.
Question: The minimum of ω(X) over all subsets X ⊆ E of G such that G[X] is
connected and K ⊆ V (G[X]).

As outline above, the requirements on the tree decomposition can be easily relaxed.
A collection of operators (e.g. functions outputting a modification of the input) on

sets of weighted partitions is presented in [5]. It is shown that we can apply the rank-
based approach to any dynamic programming algorithm that can be formulated using
these operators and maintain correctness. Let A ⊆ �(U)×N denote a set of weighted
partitions, i.e. pairs (p, w) ∈ A consist of a partition p of U and a non-negative
integer weight w. The operators are then defined as follows.

Definition 3 (Operators on sets of weighted partitions)

– Union For B ⊆ �(U) × N, define A ∪↓ B = rmc(A ∪ B). Combine two sets of
weighted partitions and discard dominated partitions.

– Insert For X ∩ U = ∅, define ins(X,A) = {
(p↑U∪X , w) | (p, w) ∈ A}

. Insert
additional elements into U and add them as singletons in each partition.

– Shift For w′ ∈ N define shft(w′,A) = {
(p, w + w′) | (p, w) ∈ A}

. Increase
the weight of each partition by w′.

– Glue For u, v, let Û = U ∪ {u, v} and define glue(uv,A) ⊆ �(Û) × N as

glue(uv,A) = rmc
({

(Û [uv] 	 p↑Û , w)

∣
∣
∣ (p, w) ∈ A

})
.

123

Algorithmica (2015) 71:636–660 643

Also, if ω : Û × Û → N, let glueω(uv,A) = shft(ω(u, v),glue(uv,A)).
In each partition combine the sets containing u and v into one; add u and v to
the base set if needed.

– Project For X ⊆ U let X = U \ X , and define proj(X,A) ⊆ �(X) × N as

proj(X,A)=rmc
({

(p↓X , w)

∣
∣
∣ (p, w)∈A ∧ ∀e∈ X : ∃e′ ∈ X : p � U [ee′]

})
.

Remove all elements of X from each partition, but discard partitions where this
would reduce the number of blocks/sets.

– Join For B ⊆ �(U ′) × N let Û = U ∪ U ′ and define join(A,B) ⊆ �(Û) × N

as

join(A,B) = rmc
({

(p↑Û 	 q↑Û , w1 + w2)

∣
∣
∣ (p, w1) ∈ A ∧ (q, w2) ∈ B

})
.

Extend all partitions to the same base set. For each pair of partitions return the
outcome of the meet operation 	, with weight equal to the sum of the weights.

Here rmc(A) = {
(p, w) ∈ A | �(p, w′) ∈ A : w′ < w

}
denotes the set obtained

by removing non-minimal weight copies. The partition that is the same as p but with
sets containing a and b merged is obtained by p 	U [ab] and p � U [ab] is true when
a and b are in the same set in p.

3 Dynamic Programming Algorithms for Steiner Tree Parameterized by
Treewidth

In this section we describe both the classic dynamic programming algorithm on (nice)
tree decompositions for (the edge weighted version of) Steiner Tree and its variant
with the rank-based approach. We then give a detailed description of the weighted bit
string representation of partial solutions.

3.1 Classic Dynamic Programming

We follow the description from [5]. In order to facilitate the correctness proof and the
description of the algorithms we will use the operators from Definition 3 here, and
thus obtain compact descriptions of the recurrences (for the different types of nodes
in the nice tree decomposition) that shape the dynamic programming algorithm.

For each node in the nice tree decomposition, we compute a table. Each table entry
maps a partition of a subset of the bag to an integer value. We now will introduce
the notation, and give the corresponding recurrences (with just brief sketches for their
correctness).

We will denote the weighted partition tables as Ax (·) and sets of partial solutions as
Ex (·) where x denotes the current bag. The classic dynamic programming algorithm
computes for each bag x the function Ax . This function is stored in a table, with only
trivial entries (e.g., partitions mapping to infinity, as there are no forests corresponding
to the partition) not stored.

123

644 Algorithmica (2015) 71:636–660

We use S ⊆ Bx to describe which vertices belong to the tree. For a bag x and
S ⊆ Bx define:

Ax (S) =
{(

p, min
X∈Ex (p,S)

ω(X)

) ∣
∣
∣
∣p ∈ �(S) ∧ Ex (p, S)
= ∅

}

, where

Ex (p, S) =
{

X ⊆ Ex

∣
∣
∣ V (G[X]) ∩ Bx = S ∧ Vx ∩ K ⊆ V (G[X])

∧ ∀v1, v2 ∈ S : v1, v2 are in same block in p ↔ v1, v2 connected in G[X]
∧ #blocks(p) = cc(G[X])

}

In words, Ax (S) is all pairs (p, w) where p is a partition of S, and w is the minimum
weight to connect the terminals K ∩ Vx and the vertices in S according to p using
only edges in Ex .

In the definition of Ex (p, S), partial solutions have (a subset of) S as incident
vertices in Bx connected according to the partition p. The blocks in p represent
connected components in the partial solution. When two vertices are in the same
block they belong to the same connected component. Naturally, any terminal v ∈ K
has to be used in a partial solution and we are allowed to use other vertices to connect
these terminals. Connected components are formed by using subsets X ⊆ Ex of edges
and multiple different subsets can form the same partition in a partial solution. In the
partial solution tables Ax (S) we only consider minimum weight partial solutions and
discard any other partial solutions that are dominated. If we have a tree decomposition
T such that its root is a forget vertex bag for v ∈ K as input for Steiner Tree, then
this root has one child y with one entry in Ay(S) where v ∈ S. There are no other
vertices in this bag since the root bag is empty. Therefore Ay(S) only contains the
partition p = {{v}} in which the single block represents a single connected component
containing all terminals with minimum weight over all possible subsets of edges, thus
yielding the solution.

We proceed with the recurrence for Ax (S) which is used by the classic dynamic
programming algorithm. In order to simplify the notation, let v denote the vertex
introduced and contained in an introduce bag, and let y, z denote the left and right
children of x in T, if present. We let U respectively U ′ denote the base set of vertices
present in y and z. We distinguish on the type of bag in T. For a leaf bag x let:

Ax (∅) = {
(∅, 0)

}

This is the trivial case, where Ex (p, S) only contains the empty set, which does not
contain or connect any vertices and has weight 0.

For an introduce vertex v bag x with child y let:

Ax (S) =
⎧
⎨

⎩

ins({v}, Ay(S \ v)), if v ∈ S
Ay(S \ v), if v /∈ S ∧ v /∈ K
∅, if v /∈ S ∧ v ∈ K

For each partial solution in Ay(S) we consider whether or not to use v and add
both cases (when feasible) to Ax to fill our table for introduce vertex bag x . Using

123

Algorithmica (2015) 71:636–660 645

v corresponds to v ∈ S, and because v was just introduced and thus is currently an
isolated vertex, we insert it as a singleton into each partition. If we do not use v, i.e,
v /∈ S then we do not insert v and preserve the same partial solution as in the child
bag. If v is a terminal, then not inserting v is not feasible.

For a forget vertex v bag x with child y let:

Ax (S) = Ay(S) ∪↓ proj(v, Ay(S ∪ v))

We assume that x is not the root. The procedure basically does two steps: if v is
forgotten, then any partition in which v is used and is a singleton gives more than one
connected component. (Recall here that the root bag forgets a terminal, and here v

cannot be connected to that terminal vertex.) All such entries are deleted. All other
entries are ‘projected’, i.e., v is removed from the partitions. Possibly, multiples entries
have the same projection; then we keep the one with the smallest value.

For an introduce edge e = (u, v) bag x with child y let:

Ax (S) =
{

Ay(S), if {u, v} � S

Ay(S) ∪↓ glueω(uv, Ay(S)), otherwise.

For each partial solution in Ay(S) we consider whether or not to include e and
add both cases (when feasible) to Ax to fill our table for introduce edge bag x . If we
include an edge in a partial solution then we must ensure that u and v are used in the
partition i.e. u, v ∈ S. Including the edge increases the weight of the partial solution
by ω(u, v) and connects the connected components containing v respectively u, and
thus, we combine their blocks in the new partial solution. Again, if we do not include
e, the partial solution remains the same. Because v and u may already have been part
of the same connected component we must eliminate dominated partial solutions.

For join bag x with children y and z let:

Ax (S) = join(Ay(S), Az(S))

Here we combine choices previously made in the subtree of y with choices made in
the subtree of z, by combining pairs of partial solutions. We account for the weight by
adding their respective weights. Using edges from both partial solutions may merge
connected components, so we join their connectivity. This may again result in multiple
partitions of different weight, of which we keep the minimum weight. This concludes
the formulation of the recurrence for the classic dynamic programming algorithm.

The algorithm now can be expressed as follows: in bottom-up order for each bag
x we compute Ax , and finally computes the minimum weight of a Steiner Tree by
inspection the information for the root bag, as discussed above.

3.2 Rank-Based Table Reductions

In this section, we describe the rank-based approach from [5]. The main idea is that
after we have computed a table for a bag in the nice tree decomposition, we can carry

123

646 Algorithmica (2015) 71:636–660

out a reduction step and possibly remove a number of entries from the table without
affecting optimality. A table is transformed thus to a (possibly smaller) table whose
weighted partitions are representative for the collection of weighted partitions in the
earlier table. If a set of partitions extends to an optimal solution then we should also
be able to extend to an optimal solution from the representative set. Representation is
formally defined as:

Definition 4 (Representation) Given a set of weighted partitions A ⊆ �(U)×N and
a partition q ∈ �(U), define:

opt(q,A) = min{w | (p, w) ∈ A ∧ p 	 q = {U }}

For another set of weighted partitions A′ ⊆ �(U) × N, we say that A′ represents A
if for all q ∈ �(U) it holds that opt(q,A′) = opt(q,A).

Intuitively, partitions store connectivity of partial solutions and in order for two
partial solutions to combine to a global solutions, the meet of the two corresponding
partitions need to be the trivial partition. Then opt(q,A) is the minimum weight over
all partial solutions from A that combine with q.

Although this definition is symmetric, we will only be interested in finding A′
where A′ ⊆ A and where we have a size guarantee such that A′ is small. Omitting
the formal proof (see [5]), we now state that the functions describing the formulation
of the recurrence in Sect. 3.1 preserve representation:

Definition 5 (Preserving representation) A function f : 2�(U)×N × Z → 2�(U ′)×N

is said to preserve representation if for every A,A′ ⊆ �(U) × N and z ∈ Z it holds
that if A′ represents A then f (A′, z) represents f (A, z).

We consider possible extensions of partial solutions, e.g., for Steiner Tree we
consider forests in G \ Gx that can extend partial solutions for bag x into a spanning
tree. Similar to partial solutions, the connectivity of these extensions can be denoted
with a partition.

At the core of the rank-based approach, the key to obtaining a small representative
set is to find for partitions q the minimum weight of partial solutions (p, w) ∈ A such
that p	q = {U }. So if we can find a set cover of partitions p with minimum weight for
every q with this property, then we have a representative set, since when they can all
extend to the unit partition, then one must also extend to the optimal solution. We can
achieve this by finding a basis of minimum weight in the matrix M ∈ Z

�(U)×�(U)
2

where M[p, q] = 1 if p	q = {U } and M[p, q] = 0 otherwise. In arithmetic modulo
two we can rewrite this matrix as a product of two cut-matrices C defined as:

Definition 6 Define cuts(U) := {(V1, V2) | V1 ∪V2 = U ∧1 ∈ V1}, where 1 stands
for an arbitrary but fixed element of U . Define C ∈ Z

�(U)×cuts(t)
2 by C[p, (V1, V2)] =

1 if (V1, V2) � p and C[p, (V1, V2)] = 0 otherwise.

We now can see that M ≡ CCT and because of linear dependencies we are allowed
to use the lightest (i.e., with minimal weights) basis of the cut-matrix C as the repre-
sentative subset A′ ⊆ A where |A′| ≤ 2|U |. We can find this basis via straightforward
Gaussian elimination in C[A, ·] after we order its rows by weight.

123

Algorithmica (2015) 71:636–660 647

This yields the improved algorithm for solving Steiner Tree: for each node in the
tree of the nice tree decomposition, in bottom-up order, we compute a table and then
reduce the size of this intermediate table by the reduce algorithm.2 The computation
of the table uses the same recurrences as for Ax , but as inputs we use the reduced
tables for the children, i.e., we restrict the domains—in this way, we obtain for each
node a table whose entries are ‘representative’ for Ax since the recurrence only use
the operators from Definition 3, which preserve representation as mentioned above.
For a formal proof, we refer the reader to [5].

We have two variants: we can choose to always apply the reductions, or to apply
them only in some cases. Correctness follows from the analysis in [5]. In our experi-
ments, we consider both the case where we always apply the reduction step, and the
case where we only apply it when |A| ≥ 2|U |. Both cases give the same guarantees
on the size of tables and worst-case upper bound on the running time, but the actual
running times in experiments differ, as we discuss in later sections.

3.3 Representing Partial Solutions with Weighted Bit Strings

When we first performed our experimental evaluation [13], we found that during the
reduction steps most time is spent calculating the entries of cut matrices. While the
asymptotic worst-case running time of the Gaussian elimination step dominates this
time for the calculation of the cut matrices, in our experiments, we observed that
the actual time for the latter is significantly larger than the actual time for Gaussian
elimination. Inspired by this observation, we designed a version of the algorithms
where we avoid most of the work to compute the entries of the cut matrices. More
precisely, we identify partial solutions not with help of partitions, but directly by the
row elements of cut matrices. Every partial solution is part of a set of partial solutions
with partitions that are based on the same set W . During the reduction step a cut-
matrix is calculated for W in which each partial solution has a corresponding row.
The partition can thus be implicitly represented by this row. This new representation
allows us to calculate rows in cut matrices for parent nodes directly from rows in cut
matrices obtained from child nodes.

We will now formally introduce the weighted bit string representation for partial
solutions. For each of the operators used in the framework introduced by Bodlaender
et al. [5] we show an adaptation for weighted bit strings. The effects that each of these
operators have for partial solutions on entries in a cut matrix should now be captured
directly as manipulations on these weighted bit strings. Thus, we show that this alter-
native representation can be used for any of the connectivity problems presented in
[5], as well as any other connectivity problem that can be represented with recurrences
using these operators.

Consider a set of weighted bit strings Ax (W) for bag x that represent partial solu-
tions using vertices in W . Let (s, w) ∈ Ax (W) be a pair consisting of a bit string s
directly representing a row in a cut matrix (i.e. corresponding to a partition of W) and
w be an integer (referred to as its weight). Let l(s) = 2|W |−1 denote the length of

2 See the proof of Theorem 3.7 in the arXiv report of [5].

123

648 Algorithmica (2015) 71:636–660

this bit string and let si ∈ {0, 1} denote the value of the bit at index i ∈ [0..l − 1].
If the partial solution represented by (s, w) does not use any vertices, i.e. W = ∅,
then s is an empty bit string. In order to capture the effects that the operators have on
this bit string we should first make a strict assumption about which specific cut corre-
sponds to entry si . Without loss of generality let us assume an arbitrary fixed ordering
W = {v0, . . . , v|W |−1} on the vertices in W . Now let cuts(W) = {c0, . . . , cl−1} be
cuts corresponding to index i in the bit string. Intuitively, at some point during the
dynamic programming algorithm we have a set W = {v0} where cuts(W) contains
a single cut (v0|∅). This set of cuts is gradually expanded when introducing other
vertices by fixing the new vertex to the left- and right-hand side of the cuts represented
by columns in the previous table, i.e.

cuts({v0}) = ((v0 | ∅))

cuts({v0, v1}) = ((v0, v1 | ∅), (v0 | v1))

cuts({v0, v1, v2}) = ((v0, v1, v2 | ∅), (v0, v1 | v2), (v0, v2 | v1), (v0 | v1, v2))

etc.

As an invariant we will assume that for any given pair (s, w) ∈ Ax (W) the indices
of s correspond to cuts ordered this way. We can now proceed with the adaption of
the operators on sets of weighted partitions (see Sect. 2). First let us trivially adapt
the definition of rmc(A) and the union operator where A is now a set of weighted bit
strings.

rmc(A) = {
(s, w) ∈ A

∣
∣ �(s, w′) ∈ A ∧ w′ < w

}

– Union For a table of weighted bit strings B, define A∪↓ B = rmc(A∪B). Combine
two sets of weighted bit strings and discard dominated bit strings.

The insert operator is more involved. Suppose we have a bit string s based on cuts
of set W and extend this set with a single vertex v, i.e. W ′ = W ∪{v}. We then want to
capture the effect of adding this vertex as singleton in our partial solution. The resulting
bit string s′ will have length l(s′) = 2·l(s) since we have twice as many cuts. If we have
a cut (V1, V2) ∈ cuts(W) where V1 ∪ V2 = W then (V1 ∪ {v}, V2), (V1, V2 ∪ {v}) ∈
cuts(W ′). If a partial solution is a refinement of the old cut then it must be a refinement
of the two new cuts once we add a vertex as singleton since no change in connectivity
is introduced. Likewise, if a partial solution is not a refinement of the old cut then it
cannot be a refinement of the new cuts when we add a vertex as singleton.

When we have a bit si we are left with finding the position for two copies of this
bit in s′ such that the invariant holds. Suppose v j ∈ W ′ is the inserted vertex. Then
we need the position of cuts (V1 ∪{v j }, V2), (V1, V2 ∪{v j }) ∈ cuts(W ′). If v j
= v0
then according to our invariant we have pairs of cuts that are next to each other in
cuts(v0, . . . , v j) which are identical except for the side on which v j is fixed. When
we expand cuts(v0, . . . , v j) to cuts(W ′) these pairs are at a distance of d = 2|W ′|−1− j

apart since we expand for |W ′| − 1 − j more vertices, each time fixing a vertex left or
right. These pairs are packed in blocks of size b = 2|W ′|− j (see Fig. 1). We calculate

123

Algorithmica (2015) 71:636–660 649

Fig. 1 Emerging pattern in ordered cuts. The edges depict cuts that are identical if the corresponding vertex
is left out

the new bit string by iterating over indices i of string s. The block containing the new
bits corresponding to si starts at index p · b where p = i/d indicates in which of the
blocks we are currently working. Note that we use integer division for p. In this block
we find the first bit after k = i mod d more indices and the second bit d indices later.
So we have the following.

– For a single element v j ∈ W ′ = W ∪ {v j } where v j
= v0, define

ins(v j ,A) = {
(s′, w)

∣
∣ (s, w) ∈ A ∧ s′

p·b+k = s′
p·b+k+d = si

}
where

b = 2|W ′|− j , d = b

2
, p = i/d and k = i mod d, ∀i ∈ [0..l(s) − 1]

In the case that v j = v0 we have pairs of cuts that are identical except for the side
on which v0 is fixed. These cuts are pushed to opposite sides at every expansion since
cuts({v0}) = (v0 | ∅) starts out asymmetrically (see Fig. 1), i.e.

– For a single element v j ∈ W ′ = W ∪ {v j } where v j = v0, define

ins(v j ,A) = {
(s′, w)

∣
∣ (s, w) ∈ A ∧ s′

i = s′
l(s′)−i−1 = si

}
, ∀i ∈ [0..l(s) − 1]

When we insert v0 while W = ∅ there is a single cut, i.e. cuts(W ′) = (v0 | ∅).
Partial solutions based on W ′ = {v0} are always a refinement of this cut.

– For a single element v j ∈ W ′ = W ∪ {v j } = {v j }, define

ins(v j ,A) = {
(s′, w)

∣
∣ (s, w) ∈ A ∧ s′

0 = 1
}

We now have an adaptation of the insert operator for bit strings where we insert a
single vertex. Finally, in order to insert a set of vertices we can insert them one at a
time, i.e.

123

650 Algorithmica (2015) 71:636–660

– Insert For X ∩ W = ∅ and x ∈ X , define

ins(X,A) = {
ins(X \ {x},ins(x,A)

}

The project operator is somewhat similar, but here the length of a bit string decreases
by half. In this case, if we project for a single vertex v, we have pairs of bits corre-
sponding to (V1 ∪ {v}, V2), (V1, V2 ∪ {v}) ∈ cuts(W) and end up with a single
bit corresponding to (V1, V2) ∈ cuts(W ′) where W ′ = W \ {v}. Now, if a partial
solution is a refinement of either of the old cuts then it must be a refinement of the
new cut since connectivity with v is lost. Likewise, if a partial solution is a refinement
of neither of the old cuts then it cannot be a refinement of the new cut since there
must be some other connectivity between vertices in V1 and vertices in V2. Now we
must make sure that the partial solution is removed if removing v would have reduced
the number of blocks in the original partition. We can do this by finding out if v is a
singleton, which we can achieve by checking if the partial solution is a refinement of
the cut (W\{v} | v). Suppose we project v j ∈ W . Assuming our invariant holds we
can find the bit corresponding to this particular cut at index 2|W |− j−1 if v j
= v0 and
at index l(s) − 1 otherwise. Note that partial solutions will always be eliminated in
the case that W = {v j }. Therefore we will not see new empty bit strings as the result
of the project operator. The project operator for bit strings is then as follows.

– For a single element v j ∈ W where v j
= v0, define

proj(v j ,A) = rmc
({

(s′, w)
∣
∣ (s, w) ∈ A ∧ ¬singleton(v j , s)

∧s′
i = sp·b+k OR sp·b+k+d

})
where b = 2|W |− j , d = b

2
, p = i/d

and k = i mod d,∀i ∈ [0..l(s) − 1]

– For a single elementv j ∈ W where v j = v0, define

proj(v j ,A) = rmc
({

(s′, w)
∣
∣ (s, w) ∈ A ∧ ¬singleton(v j , s)

∧s′
i = si OR sl(s)−i−1

})
, ∀i ∈ [0..l(s) − 1]

– For a single element v j and bit string s define

singleton(v j , s) =

⎧
⎪⎨

⎪⎩

true v j
= v0 ∧ s2|W |− j−1 = 1

true v j = v0 ∧ sl−1 = 1

false otherwise.

– Project For X ⊆ W and x ∈ X , define

proj(X,A) = {
proj(X \ {x},proj(x,A))

}

Let us now consider the join operator. Suppose we have some cut c and join the
connectivity of partitions p and q. If either p or q is not a refinement of c then there is

123

Algorithmica (2015) 71:636–660 651

Fig. 2 Emerging pattern in ordered cuts. The arrows depict on which side of the cuts the corresponding
vertex is fixed

at least one block b in either partition with vertices in both the left- and right-hand side
of the cut. When we join the connectivity of these partitions a block in the resulting
partition z = p 	 q will contain all vertices in b and therefore c
� z. Conversely, if
c � p and c � q then each block in p and q is contained either completely in the
left- or right-hand side of the cut. Joining the connectivity would not result in blocks
containing vertices from both sides. Therefore z is a refinement of c, i.e. c � z if
and only if c � p and c � q.3 Assuming our invariant holds for (sa, wa) ∈ A and
(sb, wb) ∈ B where A and B are based on the same set of vertices W , we know that
sa

i and sb
i correspond to the same cut ci . If A and B are not based on the same set

of vertices we can extend them using the insert operator. We can then adapt the join
operator as follows.

– Join For a table of weighted bit strings B corresponding to a set of vertices W ′,
define

join(A,B) = rmc
({

(s, wa + wb)
∣
∣ si = (sa

i AND sb
i)

∧(sa, wa) ∈ ins(W ′ \ W,A) ∧ (sb, wb) ∈ ins(W \ W ′,B)
})

For the glue operator, combining sets with vertices v j , vk ∈ W in a partial solution
is equal to performing the meet operator with a partition which contains a single class
{v j , vk} and all other vertices as singletons. This partition is a refinement of a cut if v j

and vk are fixed on the same side. In cuts(W) we have alternating blocks of 2|W |− j

cuts where vertex v j is fixed to the left side and then on the right (see Fig. 2). Using
l
v j
i to indicate if v j is contained in the left side of the cut corresponding to bit i we

can then build a bit string s(v jvk) for the partition as follows.

– For vertices v j and vk , define

s(v jvk)i = l
v j
i XNOR lvk

i where

l
v j
i =

{
1, i mod bvk <

bvk
2

0, otherwise.
,

lvk
i =

{
1, i mod bv j <

bv j
2

0, otherwise.
,

bv j = 2|W |− j and bvk = 2|W |−k .

3 In fact, for any lattice we have c � p 	 q if and only if c � p and c � q.

123

652 Algorithmica (2015) 71:636–660

This gives us a bit string where the bit s(v jvk) is set to 1 if both v j and vk are
completely contained in either the left- or right-hand side of the corresponding cut
indexed by i . We then use this bit string in the adaptation of the glue operator.

– Glue For v j , vk ∈ W , define

glue(v jvk,A) = rmc
({

(s′, w)
∣
∣ (s, w) ∈ A ∧ s′

i = si AND s(v jvk)i
})

Finally we trivially adapt the shift operator.

– For w′ ∈ N, define

shft(w′,A) = {
(s, w + w′)

∣
∣ (s, w) ∈ A}

And the glue with weight operator.

– For ω : W ′ × W ′ → N where W ′ = W ∪ {v j , vk}, define

glueω(v jvk,A) = shft(ω(v j , vk),glue(v jvk,A))

This concludes the introduction of the representation of partial solutions using
weighted bit strings. For each of the operators defined for weighted partitions we have
shown an adaption for the weighted bit string representation. We can now use this
representation in any of the connectivity problems for which we can apply the rank-
based approach. By implicitly representing the partition by its row in the cut-matrix
we can compute entries of the cut matrices more efficiently.

4 Implementation

In this section, we give some details on our implementation of the algorithms described
in the previous section. We have implemented the algorithms in Java. For each of the
test graphs, we used the well-known (and quite simple and effective, see e.g., [6])
Greedy Degree heuristic to find a tree decomposition. These tree decompositions
were subsequently transformed into nice tree decompositions, using the procedure
which was previously described in Sect. 2. The algorithms were executed on the thus
obtained nice tree decompositions.

The recursions for the different types of nodes were implemented such that we
spend linear time per generated entry (before removing double entries, and before the
reduction step). For most types, this is trivial. The computation for join bags contains
a step, where we are given two partitions, and must compute the partition that is the
closure of the combination of the two (i.e., the finest partition that is a coarsening of
both). We implemented this step with a breadth first search on the vertices in the bag,
with the children of a vertex v all not yet discovered vertices that are in the same block
as v in either of the partitions.

Sets W ⊆ Bx are represented by a bit string. In the computations of join, introduce
edge, and forget nodes, it is possible that we generate two or more entries for the same
W and partition p of W . Of these duplicate partial solutions, we need to keep only

123

Algorithmica (2015) 71:636–660 653

the one with the smallest weight. In order to find such duplicate partial solutions we
have represented the partial solution tables in a nested hash-map structure. First we
use sets of vertices that were not used in a partial solution as keys, pointing to tables
of weighted partitions, effectively grouping partitions consisting of the same base set
of vertices together. These weighted partition tables are then represented by another
hash-map where the partitions, which are represented as nested sets, are used as keys,
pointing to the minimum weight corresponding to the partial solution. For a new partial
solution (p, w) we use the outer hash-map to find one of the inner hash-maps, in which
we can check if a partial solution that has the same partition p is already present, and
if so, what its weight is. We then decide whether or not (p, w) should be inserted
into this inner hash-map as (key, value) pair. This allows us to find and replace any
duplicate partial solution in amortized constant time.

Java provides hash-codes for sets by adding the hash-codes for all objects contained
within a set, which works well enough for the outer hash-table used in our structure.
This standard approach breaks down when we use it to calculate hash-codes for par-
titions however, as it effectively adds all hash-codes of vertices used in the partition
together. This results in the same hash-code for all partitions used in the same inner
hash-map. To resolve this problem we disrupt this commutative effect of this hash
code by multiplying indexes of vertices contained in each block, and then taking the
sum of these values of blocks in order to calculate hash-codes for partitions. We apply
the multiplications modulo a prime number to avoid integer overflows. In our experi-
ments, we observed that this approach results in approximately 3 % collisions for large
tables. In the implementation using weighted bit strings we can directly use the value
of these strings as hash codes.

In the implementation of the rank-based approach, for each bag, we first compute
a table as in the classic algorithm, and then compute the corresponding matrix C, as
discussed above. When we use the weighted bit string representation we fill rows in
this matrix by directly copying values from the strings stored in the table. We perform
the steps of Gaussian elimination with rows in order of nondecreasing weight. I.e., first
we order the rows of C in order of nondecreasing weight, find the first 1 in the row, and
now add the values in this row to all later rows with a 1 in the same column (modulo
2). Note that this is precisely one step of Gaussian elimination. When a row consists
of only 0’s, it is linearly dependent on previous processed rows (of smaller weight),
and thus safely eliminated. We stop when all partial solutions have been processed, or
when we have processed 2|W | rows, since all remaining partial solutions are linearly
dependent on solutions in A. Any time a partial solution is processed we can eliminate
the column containing its leading 1, since all elements in this column are 0.

Chimani et al. [8] give an efficient algorithm for Steiner tree for graphs given
with a tree decomposition, that runs in O(B2

k+2kn) time, with k the width of the tree
decomposition. We have chosen not to use the coloring scheme from Chimani et al. [8],
but instead use hash tables as discussed above to store the tables. Of course, our choice
has the disadvantage that we lose a guarantee on the worst-case running time (as we
cannot rule out scenarios where many elements are hashed to the same position in the
hash table), but it gives a simple mechanism which works in practice very well. In
fact, if we assume that the expected number of collisions of an element in the hash
table is bounded by a constant (which can be observed in practice), then the expected

123

654 Algorithmica (2015) 71:636–660

running time of our implementation matches asymptotically the worst-case running
time of Chimani et al.

5 Experimental Results

In this section, we will report the results for experiments with the algorithms discussed
in Sect. 3. We will compare the runtime of the five earlier introduced algorithms
CDP, RBA, RBC, BSA and BSC. Furthermore we will compare the number of partial
solutions generated during the execution of CDP, RBA and RBC algorithms to illustrate
how much work is being saved by reducing the tables. The number of partial solutions
generated for BSA and BSC are comparable to RBA and RBC, respectively.

Each of the five algorithms receives as input the same nice tree decomposition of the
input graph; this nice tree decomposition is rooted at a forget bag of a terminal vertex.
The experiments where performed on sets of graphs of different origin, spanning a
range of treewidth sizes of their tree decompositions, and where possible diversified
on the number of vertices, edges and terminals. Our graphs come from benchmarks
for algorithms for the Steiner Tree problem and for Treewidth. The graphs from
Steiner tree benchmarks can be found in Steinlib [19], a repository for Steiner tree
problems. These are prefixed by b, i080 or es. Graph instances prefixed by b are
randomly generated sparse graphs with edge weights between 1 and 10; these were
introduced in [3] and were generated following a scheme outlined in [1]. The i080
graph instances are randomly generated sparse graphs with incidence edge weights,
introduced in [12]. We have grouped these sparse graphs together in the results. The
next set of instances, prefixed by es, were generated by placing random points on a
two-dimensional grid, which serve as terminals. By building the grid outlined in [15]
they where converted to rectilinear graphs with L1 edge weights and preprocessed
with GeoSteiner [28]. The last collection of graphs are often used as benchmarks for
algorithms for Treewidth. These come from Bayesian network and graph coloring
applications. We transformed these to Steiner Tree instances by adding random
edge weights between 1 and 1,000, and by selecting randomly a subset of the ver-
tices as terminals (about 20 % of the original vertices). These graphs can be found in
[26].

All algorithms have been implemented in Java and the computations have been
carried out on a Windows-7 operated PC with an Intel Core i5-3550 processor and
16.0 GB of available main memory. We have given each of the algorithms a maximum
time of 2 h to find a solution for a given instance; in the tables, we marked instances
halted due to the use of the maximum time by a *.

In Tables 1, 2 and 3, we have gathered the results for the run-times of the five
algorithms for the aforementioned graph instances. We immediately notice that RBC
outperforms RBA in all cases. In Tables 4, 5 and 6 we give the number of partial
solutions (table entries) computed for each of the CDP, RBA and RBC algorithms. If
we investigate these tables we notice that the number of partial solutions computed
during RBA is not significantly smaller compared to the number computed during
RBC. From these results and their running times we can conclude that it is preferable
to use the reductions more sparingly in order to decrease runtime, since applying the

123

Algorithmica (2015) 71:636–660 655

Table 1 Runtime in milliseconds for instances from Steinlib (1)

Instances tw(T) |V | |E | |T | CDP RBA RBC BSA BSC

b01.stp 4 50 63 9 63 55 19 26 22

b02.stp 4 50 63 13 12 30 12 9 8

b08.stp 6 75 94 19 592 122 73 10 7

b09.stp 6 75 94 38 88 55 38 6 6

b13.stp 7 100 125 17 1,552 548 892 95 240

b14.stp 7 100 125 25 2,001 515 336 43 32

b15.stp 8 100 125 50 15,860 1,695 1,503 161 169

i080-001.stp 9 80 120 6 477,716 13,386 9,279 1,571 1,251

i080-003.stp 9 80 120 6 1,996,394 21,598 19,250 3,077 3,019

i080-004.stp 10 80 120 6 2,283,606 74,845 74,464 14,464 18,197

b06.stp 10 50 100 25 1,449,534 36,041 28,389 6,021 5,379

I080-005.stp 11 80 120 6 * 815,457 723,720 236,683 293,567

b05.stp 11 50 100 13 * 341,862 275,824 137,917 118,226

Table 2 Runtime in milliseconds for instances from Steinlib (2)

Instances tw(T) |V | |E | |T | CDP RBA RBC BSA BSC

es90fst12.stp 5 207 284 90 76 130 65 19 11

es100fst10.stp 5 229 312 100 116 177 93 20 16

es80fst06.stp 6 172 224 80 308 329 185 30 22

es100fst14.stp 6 198 253 100 133 179 93 19 14

es90fst01.stp 7 181 231 90 684 351 201 29 20

es100fst13.stp 7 254 361 100 1,594 1,351 804 112 84

es100fst15.stp 8 231 319 100 2,069 1,470 826 120 101

es250fst03.stp 8 543 727 250 3,320 2,343 1,484 206 162

es100fst08.stp 9 210 276 100 5,088 2,588 2,165 309 321

es250fst05.stp 9 596 832 250 35,961 14,521 8,322 1,550 1,109

es250fst07.stp 10 585 799 250 127,681 60,701 37,042 7,508 5,942

es500fst05.stp 10 1,172 1,627 500 145,408 51,504 34,684 5,972 4,933

es250fst12.stp 11 619 872 250 * 138,073 99,427 23,311 20,045

es100fst02.stp 12 339 522 100 * 365,800 299,014 150,013 143,582

es250fst01.stp 12 623 876 250 * 395,694 288,476 105,810 91,650

es250fst08.stp 13 657 947 250 * 2,469,463 2,208,040 1,257,730 1,236,192

es250fst13.stp 13 713 1,053 250 * 2,725,460 2,416,867 1,684,224 1,557,617

reductions when the tables are already smaller than their size guarantee does not seem
to have a noteworthy effect. In the case of BSA and BSC the preferred strategy is
less clear, since we inherently perform part of the reduction step, i.e. the filling of cut
matrices, during the table calculations.

123

656 Algorithmica (2015) 71:636–660

Table 3 Runtime in milliseconds for instances on graphs from TreewidthLib

Instances tw(T) |V | |E | |T | CDP RBA RBC BSA BSC

myciel3.stp 5 11 20 2 8 9 5 1 <1

BN_28.stp 5 24 49 4 7 15 8 2 2

pathfinder.stp 6 109 211 21 599 281 157 26 18

csf.stp 6 32 94 6 1,135 254 165 19 15

oow-trad.stp 7 33 72 6 803 601 371 50 36

mainuk.stp 7 48 198 9 10,040 3,925 2,444 291 214

ship-ship.stp 8 50 114 10 6,015 3,929 2,465 352 254

barley.stp 8 48 126 9 3,000 1,836 1,248 168 142

miles250.stp 9 128 387 25 37,745 14,099 8,444 1,761 1,291

jean.stp 9 80 254 16 17,988 20,404 9,231 1,907 1,175

huck.stp 10 74 301 14 18,652 37,696 20,376 3,829 2,657

myciel4.stp 11 23 71 4 1,602,408 86,183 83,358 16,385 23,824

munin1.stp 11 189 366 37 * 521,081 501,164 162,717 227,469

pigs.stp 12 441 806 88 * 4,155,602 3,808,347 2,835,576 2,878,242

anna.stp 12 138 493 27 * 5,515,952 4,822,620 2,357,740 2,398,758

Table 4 Number of generated partial solutions for instances of Steinlib (1)

Instances tw(T) |V | |E | |T | CDP RBA RBC

b01.stp 4 50 63 9 1,921 1,654 1,654

b02.stp 4 50 63 13 1,948 1,628 1,638

b08.stp 6 75 94 19 99,740 11,654 12,005

b09.stp 6 75 94 38 18,615 5,302 5,302

b13.stp 7 100 125 17 279,852 47,032 58,717

b14.stp 7 100 125 25 318,744 37,406 38,146

b15.stp 8 100 125 50 2,248,833 76,681 93,161

i080-001.stp 9 80 120 6 65,460,491 570,132 571,425

i080-003.stp 9 80 120 6 249,390,279 1,279,544 1,282,358

i080-004.stp 10 80 120 6 256,761,016 2,687,590 3,507,987

b06.stp 10 50 100 25 151,246,080 723,392 754,926

I080-005.stp 11 80 120 6 * 25,194,893 29,825,246

b05.stp 11 50 100 13 * 6,827,459 6,955,686

We also notice that, while RBA outperforms CDP in numerous cases, RBC out-
performs CDP in all but one (discussed below). For example, in the case of i080-004
we see a significant speed-up: the classic DP uses 38 min to find the optimal solution,
but RBC uses just 74 s. Furthermore we see a strong increase in the runtime differ-
ence when the width of the tree decompositions increases. This is further reflected in
Table 4, where we see that when the width of the tree decompositions increases, the
difference in the number of of generated partial solutions grows significantly. Again,

123

Algorithmica (2015) 71:636–660 657

Table 5 Number of generated partial solutions for instances of Steinlib (2)

Instances tw(T) |V | |E | |T | CDP RBA RBC

es90fst12.stp 5 207 284 90 25,817 17,693 17,706

es100fst10.stp 5 229 312 100 34,612 22,181 22,204

es80fst06.stp 6 172 224 80 73,436 31,721 32,301

es100fst14.stp 6 198 253 100 35,664 21,947 21,971

es90fst01.stp 7 181 231 90 137,705 30,097 30,139

es100fst13.stp 7 254 361 100 323,259 99,203 99,420

es100fst15.stp 8 231 319 100 388,118 100,469 100,487

es250fst03.stp 8 543 727 250 593,651 151,722 151,802

es100fst08.stp 9 210 276 100 724,207 84,869 90,006

es250fst05.stp 9 596 832 250 5,283,073 739,953 740,698

es250fst07.stp 10 585 799 250 15,397,120 1,664,352 1,665,205

es500fst05.stp 10 1,172 1,627 500 17,953,689 1,790,843 1,791,361

es250fst12.stp 11 619 872 250 * 3,771,954 3,772,893

es100fst02.stp 12 339 522 100 * 4,909,388 4,909,500

es250fst01.stp 12 623 876 250 * 4,715,125 4,715,631

es250fst08.stp 13 657 947 250 * 18,954,259 19,509,166

es250fst13.stp 13 713 1,053 250 * 15,870,380 16,101,777

Table 6 Number of generated partial solutions for instances on graphs from TreewidthLib

Instances tw(T) |V | |E | |T | CDP RBA RBC

myciel3.stp 5 11 20 2 2,382 1,295 1,347

BN_28.stp 5 24 49 4 2,346 1,670 1,700

pathfinder.stp 6 109 211 21 128,163 21,206 22,073

csf.stp 6 32 94 6 206,434 21,111 21,215

oow-trad.stp 7 33 72 6 164,723 39,318 39,327

mainuk.stp 7 48 198 9 1,691,584 202,454 210,694

ship-ship.stp 8 50 114 10 1,093,800 144,493 144,682

barley.stp 8 48 126 9 472,223 77,799 84,125

miles250.stp 9 128 387 25 5,524,562 273,711 278,717

jean.stp 9 80 254 16 2,932,817 292,577 302,644

huck.stp 10 74 301 14 3,238,678 526,947 531,597

myciel4.stp 11 23 71 4 203,990,952 1,876,695 3,482,635

munin1.stp 11 189 366 37 * 19,289,467 23,535,116

pigs.stp 12 441 806 88 * 164,037,075 169,483,545

anna.stp 12 138 493 27 * 82,060,857 99,551,566

for algorithms BSA and BSC we see further significant speed-ups compared to RBA
and RBC for all but the smallest instances. In the case of i080-004 we now see that
BSA uses just 14 s and BSC uses 17 s.

123

658 Algorithmica (2015) 71:636–660

The huck instance is the only example where using a straightforward implementa-
tion of the rank-based approach does not pay off. Upon further inspection we found
that the tree decomposition for this instance has only one bag of size 11, while most
of the other bags are of size 7 and below. This is also reflected by the difference in the
number of generated partial solutions, where the improvement factor is not compara-
ble to the other cases. Conversely we found that the i080-004 case included 18 bags
of treewidth 11 of which 6 were join bags, which explains the extreme difference. In
practice, when we run dynamic programming algorithms on tree decompositions, the
underlying structure of the decomposition has a large influence on the performance,
which is not always properly reflected by the treewidth of a graph. In general however,
the rank-based approach is more and more advantageous as the treewidth increases,
even allowing us to find solutions where CDP does not find any within the time limit.
The implementation of the rank-based approach using bit strings gives us an even
better performance. However, when comparing the proportion of decrease in running
times between straightforward and bit string implementations we see slight diminish-
ing returns as the treewidth increases. As treewidth increases the Gaussian elimination
step which is the bottleneck of the algorithm in theory starts to have more influence
on the running time of the algorithms. Nevertheless, in a practical setting the bit string
representation seems to be very advantageous.

6 Discussion and Concluding Remarks

In this paper, we presented an experimental evaluation of the rank-based approach by
Bodlaender et al. [5], comparing the classic dynamic programming for Steiner Tree

and the new versions based on Gaussian elimination. The results are very promis-
ing: even for relatively small values of the width of the tree decompositions, the
new approach shows a notable speed-up in practice. The theoretical analysis of the
algorithm already predicts that the new algorithms are asymptotically faster, but it is
good to see that the improvement is already clearly visible at small size benchmark
instances.

Furthermore, we have presented an implementation of the rank-based approach
using weighted bit strings to directly identify rows in the cut matrix C. This implemen-
tation yields even further significant improvements on the running time. In addition, as
we have shown in Sect. 3.3, this new representation of partial solutions using weighted
bit strings can not only be used for the Steiner Tree problem, but also for the other
problems that fit in the framework given by Bodlaender et al. [5],

Overall, the rank-based approach is an example of the general technique of represen-
tativity: a powerful but so far underestimated paradigmatic improvement to dynamic
programming. A further exploration of this concept, both in theory (improving the
asymptotic running time for problems) as in experiment and algorithm engineering
seems highly interesting. Our current paper gives a clear indication of the practical
relevance of this concept.

We end this paper with a number of specific points for further study:

– The rank-based approach also promises faster algorithms on tree decompositions
for several other problems. The experimental evaluation can be executed for other

123

Algorithmica (2015) 71:636–660 659

problems. In particular, for Hamiltonian Circuit and similar problems, it would
be interesting to compare the use of the basis from [5] with the smaller basis given
by Cygan et al. [10]. It follows from our results (Sect. 3.3) that we can use the
representation with bit strings when working with the basis from [5]. As an open
problem, we pose if a smaller representation with bit strings is possible when using
the basis of Cygan et al. [10].

– How well does the Cut and Count method perform? As remarked in [11], it seems
advantageous to use polynomial identity testing rather than the isolation lemma to
optimize the running time.

– To what extent do results change if we use normal (instead of nice) tree decompo-
sitions?

– We notice that the underlying structure of a decomposition can have a large influ-
ence on the performance of the algorithms. What is the payoff for further optimiz-
ing a decomposition (i.e. minimizing the number of large bags and join bags) after
one of small width has been found?

– What is the effect of the ratio between the number of terminals and the number of
vertices on the running times and space usages?

– Are running time improvements possible by other forms of reduction of tables
(without affecting optimality)? If we exploit the two families theorem by Lovász
[21], we obtain a variant of our algorithm, with a somewhat different reduce algo-
rithm [14] (see also [22]); how does the running time of this version compare to
the running time of the algorithm we studied?

– Can we use the rank-based approach to obtain a faster version of the tour merging
heuristic for TSP by Cook and Seymour [9]? Also, it would be interesting to try a
variant of tour merging for other problems, e.g., ‘tree merging’ as a heuristic for
Steiner Tree.

– For what other problems does the rank-based approach give faster algorithms in
practical settings?

– Are there good heuristic ways of obtaining small representative sets, even for
problems where theory tells us that representative sets are large in the worst case?

References

1. Aneja, Y.P.: An integer linear programming approach to the Steiner problem in graphs. Networks 10,
167–178 (1980)

2. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algorithms 12,
308–340 (1991)

3. Beasley, J.E.: An algorithm for the Steiner problem in graphs. Networks 14, 147–159 (1984)
4. Bodlaender, H.L.: Dynamic programming algorithms on graphs with bounded tree-width. In: Lepistö,

T., Salomaa, A. (eds.) Proceedings of the 15th International Colloquium on Automata, Languages and
Programming, ICALP’88, Volume 317 of Lecture Notes in Computer Science, pp. 105–119. Springer,
Berlin (1988)

5. Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single exponential time algo-
rithms for connectivity problems parameterized by treewidth. In: Proceedings of the 40th International
Colloquium on Automata, Languages and Programming, ICALP 2013, Part I, Volume 7965 of Lecture
Notes in Computer Science, pp. 196–207. Springer, Berlin (2013)

6. Bodlaender, H.L., Koster, A.M.C.A.: Treewidth computations I. Upper bounds. Inf. Comput. 208,
259–275 (2010)

123

660 Algorithmica (2015) 71:636–660

7. Borie, R.B., Parker, R.G., Tovey, C.A.: Automatic generation of linear-time algorithms from predicate
calculus descriptions of problems on recursively constructed graph families. Algorithmica 7, 555–581
(1992)

8. Chimani, M., Mutzel, P., Zey, B.: Improved Steiner tree algorithms for bounded treewidth. J. Discret.
Algorithms 16, 67–78 (2012)

9. Cook, W., Seymour, P.D.: Tour merging via branch-decomposition. INFORMS J. Comput. 15(3),
233–248 (2003)

10. Cygan, M., Kratsch, S., Nederlof, J.: Fast Hamiltonicity checking via bases of perfect matchings.
In: Proceedings of the 45th Annual Symposium on Theory of Computing, STOC 2013, pp. 301–310
(2013)

11. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J., Wojtaszczyk, J. O.: Solving
connectivity problems parameterized by treewidth in single exponential time. In: Proceedings of the
52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, pp. 150–159 (2011)

12. Duin, C.: Steiner problems in graphs. Ph.D. thesis, University of Amsterdam, Amsterdam, The Nether-
lands (1993)

13. Fafianie, S., Bodlaender, H.L., Nederlof, J.: Speeding-up dynamic programming with representative
sets: an experimental evaluation of algorithms for Steiner tree on tree decompositions. Report on
arXiv:1305.7448 (2013)

14. Fomin, F.V., Lokshtanov, D., Saurabh, S.: Efficient computation of representative sets with applications
in parameterized and exact algorithms. In: Proceedings of the 24th Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2014, pp. 142–151

15. Hanan, M.: On Steiner’s problem with rectilinear distance. SIAM J. Appl. Math. 14, 255–265 (1966)
16. Hwang, F., Richards, D.S., Winter, P.: The Steiner Tree Problem, Volume 53 of Annals of Discrete

Mathematics. Elsevier, Amsterdam (1992)
17. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Com-

plexity of Computer Computations, pp. 85–104. Plenum Press, New York (1972)
18. Kloks, T.: Treewidth. Computations and Approximations, Volume 842 of Lecture Notes in Computer

Science. Springer, Berlin (1994)
19. Koch, T., Martin, A., Voß, S.: Steinlib, an updated library on Steiner tree problems in graphs. Technical

Report ZIB-Report 00–37, Konrad-Zuse Zentrum für Informationstechnik Berlin. http://elib.zib.de/
steinlib (2000)

20. Korach, E., Solel, N.: Linear time algorithm for minimum weight Steiner tree in graphs with bounded
treewidth. Technical Report 632, Technion, Haifa, Israel (1990)

21. Lovász, L.: Flats in matroids and geometric graphs. In: Combinatorial Surveys. Proceedings 6th Britisch
Combinatorial Conference, pp. 45–86. Academic Press, London (1977)

22. Marx, D.: A parameterized view on matroid optimization problems. Theoret. Comput. Sci. 410, 4471–
4479 (2009)

23. Monien, B.: How to find long paths efficiently. Ann. Discret. Math. 25, 239–254 (1985)
24. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7,

309–322 (1986)
25. Telle, J., Proskurowski, A.: Efficient sets in partial k-trees. Discret. Appl. Math. 44, 109–117 (1993)
26. Treewidthlib. http://www.cs.uu.nl/people/hansb/treewidthlib (2004)
27. Wald, J.A., Colbourn, C.J.: Steiner trees, partial 2-trees, and minimum IFI networks. Networks 13,

159–167 (1983)
28. Warme, D., Winter, P., Zachariasen, M.: GeoSteiner, software for computing Steiner trees. http://www.

diku.dk/hjemmesider/ansatte/martinz/geosteiner/
29. Wei-Kleiner, F.: Tree decomposition based Steiner tree computation over large graphs. Report on

arXiv:1305.5757 (2013)
30. Winter, P.: Steiner problem in networks: a survey. Networks 17, 129–167 (1987)

123

http://arxiv.org/abs/1305.7448
http://elib.zib.de/steinlib
http://elib.zib.de/steinlib
http://www.cs.uu.nl/people/hansb/treewidthlib
http://www.diku.dk/hjemmesider/ansatte/martinz/geosteiner/
http://www.diku.dk/hjemmesider/ansatte/martinz/geosteiner/
http://arxiv.org/abs/1305.5757

	Speeding Up Dynamic Programming with Representative Sets: An Experimental Evaluation of Algorithms for Steiner Tree on Tree Decompositions
	Abstract
	1 Introduction
	2 Preliminaries
	3 Dynamic Programming Algorithms for Steiner Tree Parameterized by Treewidth
	3.1 Classic Dynamic Programming
	3.2 Rank-Based Table Reductions
	3.3 Representing Partial Solutions with Weighted Bit Strings

	4 Implementation
	5 Experimental Results
	6 Discussion and Concluding Remarks
	References

