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INTRODUCTION 

The relation between electrical and magnetic properties ofmagnetic metals 1) 

and magnetic semiconductors 2 ) is a problem with many aspects. With regard 
to antiferromagnetic semiconductors, investigations have been mainly restricted 
to transition-metal oxides (see, e.g., ref. 3). The question of the proper descrip
tion of their electrical conduction has a long history and has not yet been 
solved. 

This thesis*) is devoted to a study of the electrical properties of MnTe, 
which is a non-oxidic antiferromagnetic semiconductor 4 - 9 ). By suitable 
doping it can be made relatively low-ohmic and, in the temperature range 
from 77 to 500 °K, the resistivity and Seebeck coefficient (thermoelectric 
power) of such material increases with rising temperature. The increase is 
particularly marked just below 307 oK and weak above 307 °K. This behav
icur is clearly connected with the magnetic properties of the compound 
since 307 oK is the Néel temperature, TN, of MnTe (at which a second-order 
phase transition occurs from the low-temperature antiferromagnetically 
ordered phase to the high-temperature paramagnetic phase). 

Similar effects near TN appear to be absent in oxidic antiferromagnetic semi
conductors. Some of these have, however, one interesting phenomenon in 
common with MnTe, viz. a very anomalous behaviour of the Hall coefficient 
at temperatures near and above TN. The effects mentioned are not due to a 
change in energy gap. ln MnTe the optical-energy gap is 1·2 eV both below 
and abme TN. 

At the present moment it is difficult to evaluate the relation between the 
electrical properties of MnTe and those of the oxidic antiferromagnetic semi
conductors. lt may be significant that the effective mass of the charge carriers 
is relatively low in MnTe while it is much larger in the oxides. According to 
Albers and Haas 10- 12) such a difference might stem from the fact that in the 
oxides the charge carriers occupy states of a narrow energy band derived mainly 
from nearly non-overlapping 3d orbitals of the transition-metal atoms, while 
in (p-type) MnTe the holes occupy statesof a broad energy band predominantly 
originating from markedly overlapping 5p Te orbitals. In addition to the low 
effective mass ( ~ 0·6 m0 ) another argument for a model based on broad-band 
conduction in p-type MnTe is the relatively high mobility of the holes (about 
5 cm2/V s at TN and 100 cm2/V s at 77 °K). In this work a model of this kind 
will be used for the theoretica] description of the observed properties. 

In two brief communications publisbed some time ago 13
•
14

) we have 
reported the results of measurements on the resistivity, Hall coefficient and 

*) This work wiJl also be publisbed as Philips Res. Repts Suppl. 1969, No. 8. 
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Seebeck coefficient of MnTe at temperatures between 77 and 350 °K. The 
change in the temperature dependenee of the resistivity at TN mentioned above 
was attributed to spin-disorder scattering, which is known to give rise to a 
similar behaviour of the resistivity in ferromagnetic metals. The temperature 
dependenee of the Seebeck coefficient could he accounted for by magnon drag 

a phenomenon similar to phonon drag in non-magnetic semiconductors -
the existence of which was theoretically predicted by Bailyn 15), but which had 
never previously been observed (Bailyn also had ferromagnetic metals at low 
temperatures in mind rather than an antiferromagnetic semiconductor at TN). 
The anomalous behaviour of the Hall coefficient observed above 240 °K could 
not be explained at the time. 

In the meantime the following developments have taken place. (1) The anom
alous behaviour ofthe Hall coefficient was interpreted by Maranzana 16) as being 
due to an "extraordinary" contribution to the Hall coefficient like that found 
in ferromagnetic metals (as remarked above, a similar effect has now been 
found in the oxidicanti ferromagnetic semiconductors too 1 7

)). (2) The theoretica} 
mobility in magnetic semiconductors due to spin-disorder scattering was 
recently calculated by Haas 18). The temperature dependenee of this mobîlity 
is quite different from that previously assumed. (3) In conneetion with optical 
workon MnTe. 19) it was pointed out by Zanmarchi and Haas 20•21 ) that in con
siclering magnon drag in MnTe second-order effects may have to be taken into 
account. 

In this thesis more experimental data on the electrical properties of p-type 
MnTe are given than in the papers cited above 13

•
14

). With respect to this 
earlier work the main new features of this thesis are: 
(I) a temperature-dependent anisotropy is found in the resistivity, indicating 
a temperature-dependent anisotropy in either the effective mass or the relaxa
tion time for scattering, 
(2) proposals are made for extensions of Haas' theory of spin-disorder scat
tering, on the basis of discrepancies found in comparing the experimental 
data with the theory, 
(3) considerations involving second-order drag effects suggest that the effective 
mass and the acceptor-level depth may change with temperature near TN (in 
accordance with one of the proposed modifications of the theory). 

The presentation of the various subjects is arranged as follows. 
In chapter I we briefly indicate the physical meaning of the transport prop

erties investigated, as well as their interpretation as given in our previous 
papers 13 •14). The method used for preparing MnTe is given and also some of 
the physico-chemical and magnetic properties of MnTe. 

Chapter 2 contains a description of the experimental arrangements employed 
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for the measurements, and of a new and sensitive metbod for determining 
anisotropies of the resistivity. 

In chapter 3 the experimental results are presented and different possibilities 
for their interpretation are indicated. the main difficulty here is that the 
anomalous behaviour of the Hall coefficient does not allow the temperature 
dependenee ofthe hole concentration near TN to be established unambiguously. 

Chapter 4 reviews Haas' theory of spin-disorder scattering and the model on 
which it is based. From the discrepancy between the result of this theory and 
the experimental data some suggestions are made as to points in which the theory 
could he improved. Among these is a proposal of a model in which the band 
parameters (such as the effective mass) depend on the magnitude of the sub
lattice magnetization. In the last section of this chapter the spin-disorder 
mobility in antiferromagnetic semiconductors is calculated on the basis of 
magnon scattering. 

In chapter 5 a brief account is given of the physical origin of the fust-order 
and second-order drag effects. Equations are presented which have been derived 
from a simplified model and from detailed calculations publisbed for the case 
of pbonon drag. Assuming that the hole concentration is essentially independent 
of temperature one finds that first-order magnon-drag effects give a satisfactory 
description of the anomalous behaviour of the Seebeck coefficient in MnTe. 
For degenerate samples second-order effects have to he taken into account at 
temperatures near TN. In this case no agreement between theory and experiment 
is found. 

In the final chapter the main points of disagremeent between theory and 
experiment are reviewed and it is concluded that a magnetization dependenee 
of the band parameters contributes significantly to the observed behaviour of 
the electrical transport properties of MnTe. 
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1. SOME PROPERTIES OF MnTe 

In this chapter an introductory discussion is given of the most prominent 
features of the electrical properties of MnTe reported earlier. The metbod used 
for preparing MnTe and some of its physico-chemical and magnetic properties 
are brietly discussed. 

1.1. Previous work on the electrlcal properties of MnTe 

The anomalous behaviour of the transport properties of (p-type) MnTe near 
its Néel temperature, TN 307 °K, has been noted by several authors 4 - 9 ), 

but no consistent or complete explanation of these phenomena has been given. 
In two brief earlier communications 13 •14) we reported additional experimental 
data of which the most important was the discovery of a large anisotropy in 
the Hall coefficient at temperatures above 240 °K. The explanation of the 
experimental data given in these papers will now be summarized. 

In normal (non-magnetic and extrinsic) semiconductors the Hall coefficient, 
RH, is a simple (nearly) isotropie quantity which is a direct measure for the 
concentration and the sign of the charge carriers responsible for the electrical 
conductivity (see sec. 3.1.2), 

RH YHfpe (p-type); RH= -yHfne (n-type), (1.1) 

where YH is a numerical constant of the order of unity, and where e is the 
absolute value of the electronic charge, while p and n are the concentrations 
of holes and electrons, respectively. As just mentioned, it is found that in 
MnTe the Hall coefficient is anisotropic above 240 °K. Above TN (307 °K) 
this anisotropy is so large that RH has a different sign when measured 
with the magnetic field parallel or perpendicular to the crystallographic 
c-axis *). From this unusual anisotropy it was concluded that in MnTe above 
240 oK relation (1.1) is not valid, but from secondary evidence it was possible 
to show that it holds at least approximately at temperatures below 240 °K. At 
these temperatures RH is positive so that conduction occurs by holes. 

With hole concentradons p derived by use of the Hall coefficient below 
240°K we obtained from the resistivity 

(1.2) 

the hole mobility p, i.e. the average drift velocity acquired by the holes due to 
the combined action of an applied electrical field of unit strength and scattering 
processes. This mobility is found to decrease with increasing temperature, the 
decrease being particularly marked just below TN, but rather weak above TN. 
It was remarked that this behaviour is very similar to that observed in ferro-

*) MnTe has a hexagonal NiAs structure below 1312 °K. 
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magnetic metals and should be ascribed to spin-disorder scattering. This scatter
ing arises from an exchange interaction between the spin of the charge carrier 
and the magnetic spins of the Mn atoms. It is expected to be strong when the 
Mn spins are disordered and to vanish with perfect ordering of all Mn spins. 

In general the Seebeck coefficient, or thermoelectric power, of non-magnetic 
semiconductors contains two components. The first, the purely electronic con
tribution Se, arises from the thermodiffusion of the charge carriers in a tem
perature gradient, which is balanced by the ditrusion due to the concentration 
gradient and electrical field created. The value of Se at a given temperature 
can be calculated from the concentration and the effective mass of the charge 
carriers (the energy dependenee of the mean free path should also be known, 
cf. eq. (3.3)). A second contribution to the Seebeck coefficient may arise from 
drag effects. If the carriers are (predominantly) scattered by phonons, the 
phonon-drag contribution originates from the fact that in these scattering 
processes crystal momenturn is conserved so that the carriers are dragged along 
with the thermodiffusion current of the phonons. This enlarges the thermal 
e.m.f. and thus the Seebeck coefficient. 

Descrihing the scattering ofthe charge carriers by spin disorder as a scattering 
by magnons, magnon-drag effects are to be expected in magnetic semicon
ductors. Although the magnon description of spin disorder is strictly valid at 
temperatures well below TN, it was shown that such a drag effect can explain 
the anomaly in the Seebeck coefficient of MnTe observed near TN· 

Other work carried out on MnTe in the Philips' Research Laboratories 
relates to its optical properties 19- 21 ); the thermal hysteresis of its resistivity 
at high temperatures 22), the extraordinary behaviour of the Hall effect and 
magnetoresistance in Cu-doped MnTe 23•24), the attenuation of ultrasonic 
waves 25) and, more recently, the phase diagram of MnTe 26). A discussion 
of this work falls outside the scope of this thesis. It will suffice to note that 
an energy gap of 1·2 eV at room temperature is found from the optical prop
erties, and an effective mass m 1 = 0·4 m0 for motions perpendicular to the 
c-axis and m11 1·6 m0 for motions parallel to the c-axis, both for tempera
tures below 150 °K (for higher temperatures, see sec. 3.3). 

1.2. Physico-chemical properties 

The MnTe crystals used in the present investigation were obtained by slowly 
cooling a melt of MnTe contained in a carbon boat *). The ambient gas was 
argon at a pressure of 200 mm Hg. This pressure was found to prevent the 
formation ofmacroscopic holes in the ingot formed when workingin a vacuum. 

*) During the first stage of the investigation the preparation was carried out by Dr W. Albers. 
This workwas continued by Mr A. J. M; H. Seuter. 
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The temperature of the melt before cooling was begun was 1470 °K. 
Under the above conditions of preparation, solidification occurs at about 

1440 oK and the crystals formed have the NaCI structure initially. Upon further 
cooling a fust-order transition point is reached at 1312 oK where the crystals 
transform into the NiAs structure. This modification appears to be stabie down 
to the lowest temperature used in the present investigation (cf. ref. 27). The 
first-order transition is the probable cause of the fact that the crystals finally 
obtained are far from perfect and show many fractures and dislocations. 

Recently Van den Boomgaard 26) has investigated the phase diagram of the 
Mn-Te system near the equiatomic composition. He finds that it should be 
possible to obtain crystals of MnTe which grow directly in the NiAs structure. 
The conditions which must be satisfied are, however, rather difficult to fulfil 
and no crystals have been grown in this manner. At ordinary temperatures the 
crystals made by the metbod followed by Seuter always contain precipitates of 
MnTe2 • 

The homogeneity range of MnTe is found to be very smallandtolie probably 
entirely on the Te-rich si de of the stoichiometrie composition. It may be assumed 
that the p-type conductivity found in undoped material is connected with the 
deviation from stoichiometry. Changes in the equilibrium between the single
phase MnTe and the MnTe2 precipitates or the vapour phase also cause a change 
in hole concentration. This mechanism was proposed by Seuter 22) as being the 
probable origin of the effects of thermal hysteresis in the resistivity which are 
observed in MnTe at temperatures above 400 °K 4 •27). 

Doping of the crystals may be achieved by adding the dopants to the starting 
materiaL Incorporation of Na increases the p-type conductivity 6), indicating 
that Na acts as an acceptor. High-resistivity material may be obtained by adding 

c 

•Mn o Te 

Fig. 1.1. The crystal structure of MnTe; the right-hand figure is the unit cell. 
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Cr (cf. ref. 7), but the MnTe thus prepared remains p-type. ApparentlyCracts 
as a donor but its solubility does not exceed the concentration of native defects 
acting as acceptors. Another possibility is that the concentration of Cr atoms 
exceeds the concentration of native defects but that their donor level is closer 
to the valenee band than to the conduction band. 

The NiAs structure is shown in fig. l.I. It may be thought of as an h.c.p. 
lattice of the anions in whose octahedral sites the cations are located. The latter 
form a simpte hexagonallattice. For MnTe the c/a ratio is 1·62 28

), which is 
close to the ideal value of (8/3)112 1·63, corresponding to a perfect octa
hedral coordination of the cations. The crystallographic unit cell contains two 
anions and two cations, all betonging to different c-planes (planes perpendicular 
to the c-axis). 

1.3. Magnetic properties 

The magnetic susceptibility of MnTe has a maximurn near 328 oK 4 ), but 
the magnetic-ordering temperature, or Néel temperature TN, is somewhat lower, 
307 °K. This value has been established in several ways, e.g. from an abrupt 
decreasein the specific heat 29) and, very accurately, from a sharp peak in the 
attenuation of ultrasonic waves 25), botheffects presumably taking place at TN. 
The change of slope at T N of the resistivity vs temperature curve has been used 
to investigate the pressure dependenee of TN 30). 

Above 600 oK the susceptibility follows the Curie-Weiss law x C/(T + 8) 
with an asymptotic Curie temperature () of 600 to 700 oK 4 •31). The Curie 
constant C corresponds to a magnetic moment of five Bohr magnetons per 
Mn atom, in agreement with an expected 6S configuration for five unpaired 
3d electrons on each Mn atom 27). 

The magnetic structure in the antiferromagnetic phase below TN has been 
determined from the anisotropy of the magnetic susceptibility 31) and from 
neutron diffraction 27

•
32

). It is found that the average spin directionsof the 
Mn atoms in each c-plane are parallel to each other and antiparallel to those 
of the Mn atoms in the next c-plane. The magnetic unit cell is thus identical 
with the crystallographic unit cell. 

There are relatively strong anisotropy forces causing the spin direction to be 
oriented perpendicularly to the c-axis, but the forces coupling the orien
tation to any particular direction within the c-plane are much weaker 31

). 

This direction has not been determined experimentally. It can be shown, how
ever, that if the preferred direction of sublattice magnetization is notalong the 
Mn-Mn direction, weak ferromagnetism is possible 23 •24). Since weak ferro
magnetism is not usually observed in MnTe, it seems likely that the direction 
of preferred sublattice magnetization is normally along the Mn-Mn direction. 
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2. EXPERIMENTAL METHODS 

This chapter contains a description of the experimental set-up used for 
measuring the resistivity, Hall coefficient and Seebeck coefficient. Calculations 
and applications of a new and sensitive metbod for determining anisotropies 
of the resistivity are given. 

2.1. Experimental arrangements 

2.1.1. Resistivity and Hall effect 

Most measurements on MnTe reported here were performed using the metbod 
of Van der Pauw 33 •34) (see also sec. 2.2). The dimensions of the samples were 
ahout 5 x 5 x 0·5 mm 3 and silver paste was used for making electrical contacts. 

The various components of the electdeal equipment used for the measure
ments are shown in the hlock diagram of fig. 2.1. The measuring current is 

Fig. 2.1. Block diagram of apparatus used for resistivity and Hall-effect measurements~ 

drawn from ten 1· 5-V air-depolarized cells. Currents ranging from 0· 5 to 100 mA 
are ohtained hy stepwise variation of the series resistance of the circuit. The 
voltmeter is a Keithley model 150A d.c. Microvolt-Ammeter. The zero sup
pression up to 100 times full scale of this instrument can be used conveniently 
for compensating the voltage drop across the Hall probes. lts output is con
nected to a Philips PR 4069 M/06 recorder. Por the Hall measurements thè 
u se of a recorder instead of directly reading a voltmeter has several advantages. 
It allows less stringent demands on temperature stahility, the performance of 
the measurements is facilitated and in some cases the recorder trace shows 
details which otherwise would easily he overlooked. 

The sample cantactscan he checked by displaying the current through two 
cantacts as a function of the voltage across these cantacts on an oscilloscope. 
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A rectifying contact can usually be made ohmic by discharging a condensor 
through it. 

Five multiple switches serve for making the desired connections between the 
units described and the leads to the sample. The leads consist of thin copper 
wires (100 !Lm) and are twisted around each other in order to diminish piek-up 
from stray fields. The loop in the voltage circuit is fixed to one of the pole caps 
of the magnet and is employed for compensating the induction voltage which 
occurs during changing and switching of the magnetic field. With the ten-turn 
100-Q potentiometer (R) the compensation by the loop can be adjusted accu
rately. 

Many measurements were carried out at temperatures between 77 and 350 oK 
in a magnet giving 5 kG. For measurement at higher field strengtbs a special 
magnet was designed in cooperation with Dr D. H. Kroon (cf. ref. 35). It 
attains a maximum field of nearly 23 kG in an air gap of 22 mm (at 90 A and 
90 V); its weight is only 500 kg. The magnet current is obtained by rectification 
of a 380-V three-phase rnains supply and is continuously variable. 

The small air gap of this magnet necessitated a special apparatus for per
forming measurements at various temperatures. It is shown in fig. 2.2. The 
sample (I) is fixed to the cadmium-plated copper sample holder (fig. 2.2a) by 
means of four phosphor-bronze springs (2) pressing against the dectrical con-

7 8 ~ 17 

7 10 
11 
12 

6 
13 

4 14 
5 15 

J..------1 

1cm 

a) b) c) e) 

Fig. 2.2. Apparatus for Hall-effect measurements between 200 and 350 °K in magnet (21) 
with 22-mm air gap. For explanation, see text. 
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tactsof the sample. Thin mica discs (dashed lines 4) fix the springs by turning 
on the screws (3) and serveforelectricalinsulation. Thelead wires (5) are solder
ed to the springs. The sample holder is connected to a roetal disc (8) by means of 
a novotex rod (7), fig. 2.2b. The measuring leads (5) and a thermocouple (6) 
pass through the disc (8) via thin molybdenum tubes sealed in glass (9). 

After the sample has been mounted the sample holder is lowered into an 
open double-walled glass tube (18), fig. 2.2d. This tube is silvered internally 
and the interspace is evacuated (the seal is not shown). It is provided with a 
roetalflange (17) to which the disc (8) is fastened. In the tube the sample holder 
is surrounded by the heating element, fig. 2.2c. lts lower part (13) consists of 
a copper tube covered with an insulating layer of Al20 3 on which a heating 
wire (14) is wound. This wireis connected to leads (16) by means of screws in 
an asbestos block (15) which also serves for centring the heating element in the 
glass tube. The upper part (11) of the heating element is made of stainless steel 
and contains four holes (12). The asbestos piece (10) serves for suspending the 
heating element in the glass tube. 

For cooling the sample a rubber tube (20) reaching into a Dewar vessel (22), 
fig. 2.2e, has been fitted to the lower part of the glass tube. The Dewar vessel 
can be :filled with liquid nitrogen which will evaporale in proportion to the 
heat developed in a resistor (23) located within the rubber tube. The nitrogen 
vapour passes along the lower part of the heating element which now mainly 
serves for protecting the sample from rapid temperature fluctuations. Due to 
the asbestos part (10) the vapour is forced to flow through the holes (12) and 
through the upper part of the heating element. This reduces the heat inflow 
from above along the measuring leads and thermocouple. The vapour leaves 
the apparatus through the outlet (19). 

To avoid cracking, the temperature ditTerenee between the inner and the 
outer glass tube may not be too large, so that only a limited temperature range 
around room temperature can be covered. Sufiicient stability of the sample 
temperature is obtained by a constant heat input in the heating element (13) 
for measurements above room temperature, or in the resistor (23) in the nitro
gen bath for measurements at lower temperature. In the latter case it is neces
sary, however, to maintain a constant nitrogen level in the Dewar vessel. 

2.1.2. Seebeck effect 

In conducting matenals a temperature ditTerenee LlT creates an electromotive 
force Ll V. For small temperature ditierences the ratio Ll VjLlT is called the 
Seebeck coefficient or thermoelectric power, and will be denoted by S. 

Thermocouples are conveniently used for measuring the temperature differ
ence. Two elementary ways of obtaining S using thermocouples are shown in 
fig. 2.3. In both cases the sample is clamped between two (metal) blocks which 
are maintained at different temperatures. 
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a) 
+----» 

6~ 

Fig. 2.3. Two common arrangements for measuring the Seebeck coefficient. The sample is 
clamped between two blocks which can be held at different temperatures; a and b are thermo
couple branches, c and d measuring leads. Junctions between thermocouple wires and 
measuring leads are kept at a same temperature T0 • In case a the thermocouples are in 
electrical contact with the sample. In case b they are electrically insulated from the sample. 

In case (a) the thermocouples are fixed to the sample in such a way that 
they make good thermal as well as good electrical contact with the sample. 
Denoting the measured voltages as shown in the figure, one finds the Seebeck 
coefficient of the sample from 

s (2.1) 

where Sa and Sb are the Seebeck coefficients of the thermocouple wires a and b, 
respectively, at the average temperature T = T0 + t (V1 V2)/(Sa- Sb). 
The total thermoelectric power of the thermocouples, Sa - Sb, can be ob
tained by differentiating their calibration curve. One branch should consist of 
a metal with known Seebeck coefficient in order that the corrections Sa and 
Sb in eq. (2.1) can be applied. 

In case (b) tbe tbermocouples are used differentially. In order to avoid short
circuiting tbe tbermal e.m.f. of the sample, at least one of the tbermocouples 
has to be electrically insulated from the sample. 

The advantages of metbod (b) over metbod (a) are that it gives a direct 
reading of L1 Vab V1 - V2 , and that when measuring different samples only 
tbe samples have to be changed. With metbod (b) smaller samplescan also be 
handled tban witb metbod (a). On tbe other hand, metbod (b) is less accurate 
because of possible heat resistance at tbe contacts between the sample and the 



-12-

heating blocks *). In case (a) this heat resistance does not affect the measure
ments. 

An accurate measurement of the Seebeck coefficient of a low-ohmic sample 
of MnTe (0·02 0 cm at room temperature) has been obtained by employing 
a method proposed by Dauphinee and Mooser 36 •37). This method com
bines the advantages of methods (a) and (b) by giving a direct reading of 
L1 v.b with the absence of troublesome heat resistance. The principle of the 
measurement is shown in the upper part of fig. 2.4. The sample and 

Fig. 2.4. Dauphinee-Mooser circuit used for accurate measurements ofthe Seebeck coefficient. 
Switches S1 and S2 vibrate simultaneously at a rate of about 40 cycles per second, charging 
condenser C2 to voltage Ll Vab· Resistances R 1 = 20 kfl, R 2 = 7 kQ and R 3 = 3 kQ permit 
fraction {1 = 1, 1/3 and 1/10 of the thermal e.m.f. Ll V tó be measured on the same scale of 
the voltmeter as Ll Vab· 

thermocouples are mounted as for method (a). The motor-driven "break
before-make" switches sl and s2 vibrate simultaneously at a rate of about 40 
cycles per second. In this way the condensor C1 is charged to the voltage 
delivered by the thermocouple to the left, cl + c2 to the voltage delivered 
by the thermocouple to the right. The difference between the two voltages L1 v.b 
will then be found across C2 • This voltage is measured by a Keithley 150A 
connected to a Philips recorder, as for the measurement of the Hall effect. 

*) Such heat resistance shows up as a hysteresis effect in the Ll V vs Ll T curve. It is noted 
that in all cases it is necessary to measure Ll V as a function of LlT in order to eliminate 
smal! differences in the thermoelectric power of the thermocouples as well as spurious 
e.m.f.s in the measuring circuit. These effects cause the Ll V vs Ll T curve not to pass 
through the origin. 
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The double reversal switch S3 permits of the measurement of the thermal 
e.m.f. L1 V of the sample with respect to the copper as well as to the constantan 
wires of the thermocouples. With the resistances R1o R2 and R 3 a known 
fraction fJ of L1 V can be supplied to the voltmeter so that fJ L1 V and L1 Vab 

may be read with the same range setting. Being much larger than all other 
resistances in the circuit they introduce negligible errors in the results. The 
connections between the thermocouple wires and their lead wires were immersed 
in an ice bath in order to proteet them from temperature variations. This was 
also convenient for using the thermocouples for determining the temperature 
of the sample. 

To perform the measurements we clamped the sample between two copper 
blocks (fig. 2.5). The thermocouple junctions were immersed in a small amount of 

CID 

CID 

Screws 

I cm 
>---------< 

Sample 

Thermo
couple Nuts 

Springs Rods 
Heatsink 

Fig. 2.5. Device used for creating a temperature gradient in a sample by means of a Peltier 
element. 

a liquid metal alloy which had been brought into two grooves made in the 
sample. One of the copper blocks was clamped on top of a Bi2 Te 3 Peltier 
element and was cooled or heated depending on the direction of the current 
passed through this element. The whole device was placed in a copper tube 
whose temperature could be controlled between 77 and 330 °K. 

The voltages L1 Vab and fJ L1 V could be recorded alternately during 3 and 7 
seconds, respectively, the duty cycle of 10 seconds being obtained by means of 
a motor-driven microswitch. A drawing of a typical recorder trace during some 
successive reversals ofthe current through the Peltier element (and a continuous 
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Fig. 2.6. Recorder trace obtained with apparatus shown in figs 2.4 and 2.5; L1 Vab and f3 L1 v. 
are recorded alternately during 3 and 7 seconds, respectively. Cooling and heating refer to 
the top of the Peltier element (cf. fig. 2.5). During the time that no trace is shown, measure
ments of temperature and resistivity were taken. Horizontal arrows indicate crossings of 
L1 Vab and L1 v. traces and show absence of thermal hysteresis. Vertical arrows indicate two 
ways of obtaining the relevant data for calculating the Seebeck coefficient of the sample. 

change of the overall temperature of the measuring device) is shown in fig. 2.6. 
The L1 v.b and fJ L1 V traces interseet at the same distance below the zero axis 
for both directions of the current through the Peltier element, which shows the 
absence of a hysteresis effect due to a possible poor thermal contact between 
the thermocouples and the sample. That the two traces do not interseet on the 
zero axis is due to spurious e.m.f.s in the circuit andfor inequality of the 
thermocouples (cf. footnote above). 

During the time for which fig. 2.6 shows no traces the voltages L1 v.b, fJ L1 V, 
L1 V1 and L1 V2 were read directly on the voltmeter for both positions of the 
switch S 3 (for determining the resistivity the change of fJ L1 V was also ob
served when a given current was passed through the sample via the copper 
blocks; actually these measurements were usually made after the temperature 
difference across the sample had been niade constant by adjusting the current 
through the Peltier element). From these readings the Seebeck coefficient was 
obtained from the voltages indicated in fig. 2.6 by the vertical arrows ({J L1 V) 1 

and (Ll v.b)1 • Another possibility is indicated by the vertical arrows ({J L1 Vh 
and (Ll v.bh· 

From the readings for the two positions of the switch S3 it was possible to 
calculate the Seebeck coefficient of the sample both with respect to copper, 
S- Scu, and with respect to constantan, S- Sconst ( cf. eq. (2.1 )). For all meas
urements the relation 

(S- Scu) = (S- Sconst) + (Sconst- Scu) (2.2) 

was satisfied within two per cent. An impression of the reproducibility of the 
metbod is given by fig. 2.7, which shows the results ofmeasurements at various 
temperatures on the MnTe sample mentioned. Below 200 oK the Bi2 Te 3 
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Fig. 2.7. Result of measurements of the Seebeck coefficientof an MnTe sample. Forsome 
points the change of average sample temperature during the measurement is indicated. 

element was less effective in producing temperature differences across the sample 
and the measurements were somewhat less accurate than at higher temperatures. 

It is remarked that with the device used at a constant ambient temperature 
one obtains a difference in average sample temperature for the two current 
directions through the Peltier element which is often much larger than AT. 
When, however, measurements are carried out while continually changing the 
ambient temperature, every second measurement can be made in such a way 
that it refers to a nearly constant average sample temperature. This is shown, 
e.g., by the four successive measurements between 254 and 263 °K. The 
Secbeek coefficient of the sample is given below in fig. 3.2a. 

2.2. A metbod for determining the anisotropy of the resistivity 

2.2.1. The Van der Pauw method 

In an earlier paper 38) a method was described by which the components of 
the resistivity of an anisotropic conductor can be obtained by means of a 
customary four-probe resistivity measurement (equally spaeed probes in a 
collinear or square arrangement). This method requires samples with dimen
sions large compared to the spacing of the probes, otherwise complicated 
corrections have to be applied. In the present section another method will be 
discussed which does not impose such a condition and which, furthermore, 
has been found to be more sensitive. 



-16 

The metbod may be regarded as a special case of the Van der Pauw metb
od 33 •34) for measuring resistivities. For applying the latter metbod a fiat 
sample (of arbitrary shape but with no holes in it) is provided with four con
tacts P, Q, Rand S at its circumference and two "resistances" R 1 and R 2 are 
measured. R 1 is defined as RPQ.RS• i.e. the voltage across the contacts R and S 
per unit current passed through the contacts P and Q. Similarly R 2 = RoR.sP· 

If the sample is isotropie it can be shown that R 1 and R 2 do notchange by 
conformat mapping of the sample onto some other shape. Taking for this 
other shape a half-plane, as e.g. in fig. 2.8d, it follows from elementary theory 
that 

R =R =-ln --·--
e (R'P' S'Q') 

t PQ,RS 7€ d R'Q' S'P' , 
(2.3a) 

R- - ln · e (S'Q' P'R') 
2 - RoR,SP - 7€ d S'R' P'Q' , (2.3b) 

where e and d are the resistivity and the thickness of the sample, respectively; 
R'P' denotes the distance between the image points of Rand P, etc .. Van der 
Pauw proceeds by noting that 

R'Q' S'P' S'R' P'Q' 
·-+ . =1 

R'P' S'Q' S'Q' P'R' 
so that 

exp (-n R 1 d/eJ exp (-:n: R2 d/e) = 1, 

which may also be written as 

:n:d 
-- (Rt + R2)f(R1/R2), 
2ln 2 

(2.4) 

(2.5) 

(2.6) 

f(RtfR2) being a complicated function of the ratio R 1/R2 which is given by 
Van der Pauw in graphical form *). The surprising element in tbe metbod is 
tbat the sbape of the sample and the position of the contacts need not be known. 
These geometrical factors enter into the calculation of e only in so far as tbey 
determine tbe ratio R 1 /R2. 

The metbod for measuring anisotropic resistivities proposed here is based 
on the fact that 

*) Some parts of the curve as reproduced in Van der Pauw's paper 33) deviate from the 
correct curve by a few per cent. A useful parametrie relation for calculating the curve is 

log-! R 1 log(t-x) 
f(R 1 /R1) = log(! +x) + log (t- x} ; Rz = log H+ x}' 

with --t <x < t (cf. eq. (2.20)}. 
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(1) for an isotropie sample of simple geometry the ratio R 1/R2 of the Van der 
Pauw metbod ean be ealculated explieitly, and 

(2) an anisotropie sample with resistivities e1 (i = 1, 2, 3) along the three 
prineipal (mutually orthogonal) axes x1 is eleetrieally equivalent to an iso
tropie sample whose dimensions x/ are related to the dimensions x 1 of the 
anisotropic sample by 34·39) 

(2.7) 

and whose resistivity is 

e Ü!I ez e3)
113

• (2.8) 

Caleulations will be given below for reetangolar and eireular samples. 

2.2.2. Reetangu/ar samples 

Consicter a flat, anisotropie, reetangolar sample of length /1 , width /2 and 
thiekness / 3 with its edges parallel to the direetions of the principal resistivities 
et. ez and e3 , and provided in a symmetrieal way with two pairs of contaets 
at distances a 11 apart (a~ 1) as shown in fig. 2.8a. Aecording to eqs (2.7) and 
(2.8) the sample is eleetrieally equivalent to an isotropie sample with resistivity 
e = (el ez 123)113 and dimensions lt' = (et/e) 112 ft (fig; 2.8b). 

It is well known (see e.g. refs 40 and 41) that the sine-amplitude funetion 

I 
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12[1 j •1 
I ,_p 

R' 
b) 

A' B' I C' . I I • •I 

i -7/k -1 i j1 
Q'' R" S" 

d) 

w-plane 

(2.9) 

lp• .1 

l l s· 

D' 
I 

1/k i 
P" 

Fig. 2.8. Anisotropic rectangular sample with edges parallel to principal directions of e; 
(a): the sample, (b): transformed into an electrically equivalent isotropie sample, (c): iso
tropie sample in z·plane, (d): sample mapped onto Im w ;;;. 0. 



-18-

conformally maps the interior of a rectangle with sides 2 K(k) and K'(k) 
situated in the z-plane as shown in fig. 2.8c, onto the upper half of the w-plane 
(fig. 2.8d). Here K(k) and K'(k) are the complete elliptic integrals of the first 
kind and its associate, respectively. They are functions of the modulus k. The 
shape of the rectangle is determined by the ratio K(k)/K'(k), i.e. by the value 
of k. Compilations of mathematica! tables usually do not give K(k)/K'(k) as a 
function of k, but rather the gnome q(k) = exp {-n K(k)/K'(k)} as a function 
of k or of arcsin k. 

A trivial transformation preserving the ratio lt'/12 ' maps the sample of fig. 
2.8b conformally onto the rectangle of fig. 2.8c so that the appropriate value 
of k for the sample considered can he obtained from the tables of q(k) with 

q(k) = exp ( -n :) (2.10) 

Here, as in the formulae given below, we omit in the notation the explicit 
dependenee of the various elliptic functions of k, it being understood that in 
all expressions k has the same value, viz. that determined by eq. (2.10). 

With the transformation (2.9) and the properties of the sine-amplitude func
tion the position of the images of the contacts in the w-plane become (fig. 2.8d) 

w(P") = sn(aK+ iK') {ksn(aK)}- 1
, 

w(Q") = sn (-a K +iK')= -{k sn (a K)}- 1 , 

w(R") = sn (-a K) -sn (a K), 

w(S") = sn (a K). 

(2.11a) 

(2.llb) 

(2.11c) 

(2.lld) 

Substituting the distances P"Q" = w(Q")- w(P"), etc. in eqs (2.3a) and 
(2.3b) one finds that 

(1!1 ez)112 I+ ksn2 (aK) 
(2.12a) R1 2ln--·· , 

n /3 I k sn2 (a K) 

Rz 
(et e2)112 

2ln 
1 + ksn2 (aK) 

(2.12b) -·--
n 13 2 k 112 sn (a K) 

From these equations the ratio R 1/R2 bas been calculated as a function of 
(/1

2 e1)f(ll e2) for a I, 5/6, 2/3, 1/2, 1/3 and 1/6. The result is shown in 
fig. 2.9. These curves permit etfe2 to he obtained from measured values of 
R1/R2 , 11/!2 and a. The value of e1rh follows from replacing e by (e1 e2 )

112 

in eq. (2.6). 
It should he noted that the application of this metbod requires the knowledge 

of the directions of the principal axes of the resistivity tensor. If the plane of 
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Fig. 2.9. R 1 /R 2 for reetangolar samples as a function of 11
2 (! 1 /12

2 (!2 for different values 
of the fraction a (see fig. 2.8a). 

the sample is not perpendicular to the direction of (} 3 the results obtained refer 
to the principal "sheet resistances" (! 1 and (! 2 in the plane of the sample. 

2.2.3. Circular samples 

A flat anisotropic circular sample (fig. 2.10a) of radiusrand thickness d with 
its plane perpendicular to the direction of the principal resistivity e3 is electri
cally equivalent to an isotropie elliptic sample with semi-axes a r ((} 1/(})112 

and b r ((!2 /(!)112
, and with a thickness d' = d (e 3 /(!)112, (} being again 

equal to (e 2 e1 (! 3 ) 113• The circumference of this ellipse may be represented 
in the z-plane (fig. 2.10b) by 

Q 

a) 

z-plone 

R' 

Semiaxes a=r\jfi>b=r'{{j 

b) 

w-plcme 

Radius 1 

c) 

Fig. 2.10. Anisotropic circular sample; (a): the sample, (b): transformed into an elliptical, 
electrically equivalent isotropie sample, (c): the sample conformally mapped onto the unit 
circle. 
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z = a cos q; + i b sin q; = (a 2
- b2)112 cos (q;- ie), (2.13) 

(supposing !?1 > !?2) with 

exp (-c) = (a- b)(a2- b2)-1/2 = (e11/2- e//2)(e1 - !?2)-112. (2.14) 

This ellipse will first be transformed conformally into a unit circle (fig. 2.10c), 
which is achieved by 

w = k 112 sn - arcsin k (
2K z ) 
n (a2 _ b2)1;2 ' 

(2.15) 

if the modulus k satisfies 

( 

n K') (e11/2- e/12)4 
q(k) = exp - - = exp (-4 c) = -----

K Ce1- !?2)2 
(2.16) 

Like eq. (2.10) the later again determines the appropriate value of k fora given 

ratio ede2· 
By substituting (2.13) and 4 c = n K'/K (cf. (2.16)) into (2.15) (and using 

the properties of the sine amplitude and related functions), the image of a 
point r exp (iq;) on the circumference of the original circle on the unit circle 
w = exp (i'rp) is found to be 

w = k 1
1

2 sn (2 K q;/n + K- i K'/2, k) = 

(1 + k) sn (u+ K)-icn(u + K)dn(u + K) 

1 + k sn2 (u + K) 

en u dn u+ i (1- k) sn u 

1-k sn2 u 

(2.17) 

The functions en (u, k) and dn (u, k) are re1ated to sn (u, k) by cn2 u = 

1- sn2 u and dn2 u= 1- P sn2 u. Inthelast partsof (2.17) the modulus k 
has been omitted in the notation and u has been written short for 2 K q;/n. 

The interior of the unit circle I w I = 1 is mapped conformally onto the upper 
half-p1ane Im t ;;;::: 0 by, e.g., 

This gives 

w-i 
t=---

-iw + 1 

cos tp 
!=---

sin tp + 1 

(2.18) 

(2.18a) 
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fora point on the circumference, w exp (itp). The final formula for the image 
of any point of the original circle r exp (iep) on the axis Im t = 0 is obtained 
by substituting (2.17) into (2.18). Using eqs (2.3a) and (2.3b), R 1 and R2 can 
then be calculated for any arrangement of the contacts and any value of (! 1 

and (!2 (as in the case of the rectangular samples, (!3 does not enter into the 
final results). 

It will, of course, be advantageous to choose a simple geometrical arrange
ment. lf the contacts are placed in such a way tbat they He on two perpen
dicular diameters, a rather long but elementary calculation gives the simple 
re sult 

Ü!l (!2)112 ln 2 
R1 (2.19a) 

:red 1- k sn (2 u)' 

(el e2)1t2 ln 2 
R2 (2.19b) 

:red 1 k sn (2 u)' 

where u 2 K(k) cpj:n, cp being the angle between one of the principal axes 
of the resistivity and a line connecting two opposite contacts. 

Figure 2.11, on a normalized scale, shows the dependenee of R 1/R2 on cp 
for various values of ede2. Using this figure it is possible to determine the 
directions of the principal axes by making measurements rotating the contacts 
(at angles :n/2 apart) around the circumference of the sample. If the results of 
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Fig. 2.11. Dependenee of In (R 1 /R 2 ) on angle of rotation cp for anisotropic circular samples 
with fhifh = 1·1, 4, 10 and 20, respectively. · 
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such measurements deviate from the expected curve, the sample must be 
inhomogeneous. 

The maximum value of R 1/R2 occurs if g; = n/4, for which sn (2 u)= 1. 

In that case 

( ) 1/2 2 
(R) = e1 e2 In 

lmax nd 1 k' (2.20a) 

(el e2)
112 2 

(R2)mtn = In , 
nd 1 +k 

(2.20b) 

In H(l-k)} 
(R/R) - · 

1 2 max - In H (1 k)} ' (2.20c) 

(R1/R2)max is shown as a function of e1/e 2 in fig. 2.12. 

2.2.4. Sensitivity of the method 

In fig. 2.12 the dependenee of RtfR2 on etfe2 for the proposed methods 
(curves 1 and 2) and the earlier ones 38) (curves 3 and 4) are compared. The 
figure demonstrates the extreme sensitivity of the new methods. lt should be 
remarked, however, that the accuracy of the determination of ede2 also de
pends on the accuracy achieved in obtaining the proper geometry. 

1·5 2 4 s 6 7 8 910 

---Pr1P2 

Fig. 2.12. Comparison of different methods of determining fhlfh from R 1 /R 2 ; (1): square 
sample with contacts at the corners, (2): circular sample with n = t:p/4, (3) and (4): four 
probes in a square on a large thick and a large thin sample 38). 
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The influence of deviations from the proper geometry and of the finite 
dimensions of the contacts have not been investigated. The fact that in the case 
of rectangular samples the R 1/R2 vs (h/fb curves for a = 1 and a 5/6 lie 
close together (fig. 2.9) suggests that forthese geometries the factors mentioned 
should not influence the results very drastically. The maximum at qy 45° 
in the curves of fig. 2.11 also ensures that for circular samples the 45° positions 
of the contacts with respect to the resistivity axes are not extremely critical. 

2.2.5. Applications 

The metbod discussed has been applied to rectangular and circular samples 
of MnTe (see fig. 3.10) and to rectangular samples of SiC 42). As an mus
tration of the application to magnetoresistance measurements fig. 2.13 shows 
some results obtained on a circular ceramic sample of a:-Fe20 3 doped with 
about 5.10- 4 at.% Ti*). The tigure relates to measurements performed in a 
field of 20 kG which was applied parallel to a line connecting two neighbouring 
contacts (see inset) or perpendicular to the plane of the sample. In the former 
case both the transverse effect Lle1 and the longitudinal effect Lle11 are obtained 
without changing the orientation of the sample (other, off-diagonal, magneto-

2 
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Fig. 2.13. Transverse and longitudinal magnetoresistanee of a polyerystalline sample of 
a-Fe20 3 in a field of 20 kG at temperatures between 200 and 300 °K. The cireular sample 
has four eontacts 90° apart. Dots: LJR 1/R1 and LJR2 /R 2 measured with the magnetic field 
parallel to the line connecting two neighbouring contacts. Thick curves: LJ g11 I(! and LJ C!il (! 
calculated from the dots with eqs (2.25a) and (2.25b). Open circles: LJR1 /R 1 = LJR 2 /R 2 
= LJelht measured with the magnetic field perpendicular to the plane of the sample. 

*) The sample, 8 mm in diameter and 1 mm thick, was kindly put at our disposal by Dr 
Bosman of our laboratory. 
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resistance effects should he absent in perfectly disordered polycrystalline 
material). Denoting the resistivity at zero field by eo one may put 

(!1 = eo + Llel (!o (1 + 61), 

(!2 = eo + Lle/1 = eo (I + 61/). 

(2.2la) 

(2.21b) 

Since the resistance changes are small eq. (2.16) may be expanded in powers 
of k and of the ds. Retaining first terros only one has 

(2.22) 

that is 
(2.23) 

The direction of the magnetic field considered corresponds to rp n/4, i.e. 
sn (2 u)= 1 and (2.19) reduces to 

( )1/2 

R1 R::J e1 e2 
(ln 2 + k), (2.24a) 

nd 

( )112 
R2 R::J e1 

(!
2 

(ln 2- k). (2.24b) 
nd 

Using (e1 e2)
112 

R::J eo (1 + t d 1 + t d11) and combining eqs (2.21), (2.23) and 
(2.24) one finds that the relative changes d 1 and d11 of the resistivity follow 
from the observed relative changes r 1 = LIR1/R 1 and r2 = LIR2 /R 2 according 
to 

61 r 1 -0·327(r1 r2), 

d11 r 2 + 0·327 (r 1 - r 2 ), 

where 0·327 - t ~ (ln 2)/4. 

(2.25a) 

(2.25b) 

As fig. 2.13 shows, the values obtained for 61 Lle1!e with these equations 
from the measurements with the magnetic field in the plane of the sample are 
in good agreement with the values directly observed with the magnetic field 
perpendicular to the plane of the sample. 

(The physical significanee of these measurements will not he discussed; it is 
only noted that the temperature of the maximum of Lle/e I roughly coincides 
with the transition point from antiferromagnetism to weak ferromagnetism.) 

Haas et al. 43) have used the method described above to establish the fact 
that the exceedingly large magnetoresistance of n-type CdCr2Se4 around 
120 oK is essentially isotropic. 
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3. EXPERIMENTAL RESULTS AND DISCUSSION 

In the fi.rst section of this chapter the main experimental data on the electrical 
properties of p-type MnTe between 77 and 350 °K are presented and their most 
prominent features are briefly reviewed. The sections which follow discuss in 
detail the Hall coefficient, the resistivity and Seebeck coefficient, and the 
mobility. Finally, measurements on the anisotropy of the resistivity are pre
sented and some remarks are made on magnetoresistance effects. 

3.1. Survey of main experimental results 

3.1.1. Measurements of Hall coefficient, resistivity and Seebeck coefficient 

Figures 3.la and b show a number of resistivity e(T) and Hall-coefficient 
RH(T) curves obtained at temperatures between 77 and about 350 °K. The 
curves are representative of more numerous results of measurements on other 
samples performed with the conventional Van der Pauw method. The lower 
curves (1 to 3) refer to Na-doped MnTe, the higher ones (11 to 13) to Cr-doped 
MnTe. The other samples (4 to 10) were not intentionally doped. Symbols 1 
and // mark curves re lating to samples whose plane was oriented perpendicular 
or parallel to the crystallographic c-axis. The difficulty in obtaining good 
electrical contacts to high-ohmie samples prohibited the determination of the 
Hall coefficient of the Cr-doped samples (11 to 13). Most Hall-effect measure
ments were carried out in a field of 5 kG applied perpendicularly to the plane 
of the samples. Only for samples I to 3 was the Hall effect measured in fields 
up to 23 kG at temperatures above 200 oK (see sec. 3.2). 

Figure 3.2a, shown below, gives the Seebeck coefficient S(T) of one of our 
Na-doped samples as well as of two similarly doped samples reported in the 
literature. The resistivity of these samples is given in fig. 3.2b. Other S(T) 
and e(T) curves obtained by Milier 6

) are reproduced in fig. 3.3. The choice of 
scales for S and e is motivated by eq. (3.8) given below. The measurements 
taken from literature were made on sintered samples and the compositions 
quoted probably refer to the startingïnaterial. Our crystalline sample contained 
0·3 at.% Na (according to spectrochemical analysis) and was measured with 
the temperature gradient and the electrical current perpendicular to the c-axis. 

3.1.2. Theoretica! formulae 

In the interpretation of the experimental data reported above, the possibility 
of mixed conduction by holes as well as electrous may be disregarded for a 
number of reasons, such as the wide energy gap of about 1·2 eV, the wide range 
of resistivities and Seebeck coefficients found for different samples, and the 
approximate temperature independenee of the resistivity and Seebeck coefficient 
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Fig. 3.1. (a) Resistivity I! and (b) (next page) Hall coefficient RH of some MnTe samples as 
determined by the Van der Pauw method. Samples l to 3 contained 0·3 at.% Na, samples 11 
to 13 were doped with Cr; the other samples were not intentionally doped but had received 
different heat treatments. Symbols 1 and 11 label samples having their plane perpendicular 
and parallel to the c-axis, respectively. All Hall coefficients were positive except for samples 
2 and 3 at temperatures above 305 °K. 

at temperatures well above TN (cf. fig. 3.3). The positive sign of S (as well as 
of RH11) indicate p-type conduction, i.e. conduction by holes. 

The standard equations (see e.g. refs 44 and 45) for interpreting the Hall 
coefficient, resistivity and Seebeck coefficient for a semiconductor with hole 
concentration p, and mobility p, determined by a scattering mechanism leading 
to a mean free path of a hole with energy E proportional to E' are *) 

'") Usually the "scattering parameter" r has a value between 0 (e.g. forscattering by acoustical 
phonons) and 2 (for ionized-impurity scattering). 
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Se= (k/e) (r + 2)---'f} 
F,(rJ) , 

~ (kje) {r + 2 +In (NvfP)} 

~ (kje) ::.__ -- (r + 1)(NvfP)213 
;n;2 ( 4 )2/3 
3 3 n 112 

for rJ « 0, 

for rJ » 0. 

(3.1) 

(3.2) 

(3.3) 

(3.3a) 

(3.3b) 

The Hall coefficient is a third-rank tensor 46
). lts symmetry properties allow 

it to be reduced to asecond-rank pseudotensor, whose diagonal elements refer 
to measurements made with the magnetic field applied perpendicular to the 
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plane of the sample. For these diagonal elements the "Hall-coefficient factor" 
YH usually has a value between 1 and 2, depending on the dominant scattering 
mechanism. 

k is Boltzmann's constant, Nv is the effective density of states of the valenee 
band, 

( 
m * T )312 

= 2·51.1019 -
4
--- cm- 3, 

m0 300 

(3.4) 

m4* being the density-of-states effective mass of the valenee band, (m4*)3 = 

= v (m1m1mk), where v is the number of equivalent valenee-band maxima 
for each of which the diagonalized effective-mass tensor has components m~> 
mJ, mk. Fora single valenee-band maximum (v 1) we shall write m4 instead 
of m4*. Unspecified componentsof the diagonalized effective-mass tensor will 
be denoted by m, the free-electron mass by m0 • For discussions invo1ving the 
Seebeck coefficient it may be advantageous to introduce a "Seebeck effective 
density of states" N 5 and a "Seebeck effective mass" ms according to 

Ns = e' Nv ~ (r + 1)312 Nv, 

m 5 = e2
' 13 m4* ~ (r + 1) m4*, 

(3.5a) 

(3.5b) 

where the ~ sign obtains for all valnes of r of common interest, 0 r 2 *). 
Fn(11) represents a Fermi integral of order n as a function of the reduced 

Fermi energy 11 = EF/kT (see e.g. ref. 45), 

1 
00 

B" de 
F~~(11) f -----

F(n 1) 1 + exp (e- 11)' 
0 

(3.6) 

~ exp 11 for 11 « 0, (3.6a) 

~ {tJ 11 +1 jT(n + 2)}{1 + :
2 

(n + 1) n 11- 2 + .. .} for 11 » 0. (3.6b) 

The top of the valenee band is taken as the zero point of the energy scale and 
energies are counted positive (negative) when below (above) the top of the 
valenee band. 

For the present discussions EF or 11 may be considered as a measure for the 
hole concentration, 

*) The usefulness of such substitutions is demonstrated e.g. by the metbod of estimating the 
maximum thermoelectric figure of merit of a semiconductor which we described in ref. 47. 
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P Nvftd'YJ) 

~ Nv exp 'YJ for 'YJ « 0, 

4 
~ -- N 17 3

'
2 (2 ma* Ep) 3

'
2 f3 n 2 n3 for 'YJ » 0. 3 nl/2 v 

(3.7) 

(3.7a) 

(3.7b) 

Material for which p » Nv, i.e. 'YJ » 0 is called degenera te. For non-degenerate 
material, p « Nv and 'YJ « 0. For r = 0 eq. (3.3a) is valid within 10% of Se 
if S > 160 [.LV/deg or p < 1·4 Nv, and eq. (3.3b) if Se< 130 [.LV/deg or 
p > 2·1 Nv• 

It is noted that eqs (3.3) refer to the "purely electronic" contribution Se to 
the Seebeck effect arising from the thermodiffusion of charge carriers in a 
temperature gradient. Other contributions to the Seebeck coeffi.cient may arise 
from the phonon- or magnon-drag effects, which originate from the dragging 
of the charge carriers by the thermodiffusion current of phonons or magnons, 
respectively. These effects are discussed in chapter 5. 

Strictly speaking, for a given scattering mechanism the Hall-coefficient factor 
YH and the mobility p, also depend on the degree of degeneracy (cf. eq. (4.12) 
given below). This dependenee is neglected in the present chapter. 

3.1.3. Preliminary discussion 

A remarkable feature of the measurements presented is the change of sign 
ofthe Hall coefficient which forsome samples (e.g. samples 2 and 3 in fig. 3.1b) 
occur near 300 °K. Normally such a chánge of sign would indicate the onset of 
mixed conduction, but as already remarked there are many arguments showing 
that this interpretation is unlikely. It is noted that this change of sign only 
occurs in samples cut perpendicular to the c-axis. In samples cut parallel to 
the c-axis (e.g. like samples 1 and 10) the Hall coeffi.cient does decrease between 
240 °K and about 300 °K, but not to the extent that it changes sign. This 
different temperature dependenee of the Hall coeffi.cient in samples of different 
orientation shows that RH is highly anisotropic at temperatures near and above 
TN. Since normal transport theory cannot account for this unusual behaviour 
some additional measurements have been carried out. These are reported below 
in sec. 3.2. As discussed in that section it appears that in the temperature region 
indicated, T > 240 °K, there is an "extraordinary" or "anomalous" contribu
tion to the Hall coefficient which is related to the antiferromagnetic properties 
of MnTe. This contribution seems to he absent below 240 °K and at these 
temperatures the hole concentration can be estimated in the normal way from 
the Hall coefficient. According to fig. 3.1b the hole concentration of the Na
doped and most undoped samples (samples 1 to 8) is thus nearly independent 
of temperature. 

Apart from the anomaly in the Hall coefficient, other interestins features of 
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Fig. 3.2. (a) The Seebeck coefficient of Na-doped samples; 
-- our measurements (cf. fig. 2.7),---- measurements by Milier 6) on Na.01 Mn.99Te, 
.... measurements by Deviatkova et al. 8 ) on Na.01 Mn.99Te. 
(b) The resistivity of these samples. 
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Fig. 3.3. Seebeck coefficient and resistivity of four samples of different composition reported 
by Milier 6). The S and e scales have been chosen such that 198 !J.VtK inS corresponds 
to one decade in e (cf. discussion to eq. (3.8)). The e scale bas been shifted ve'rtically in 
such a way that the e curves nearly coincide with the S curves at 320 °K. 
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the data are the strong increase in resistivity and in the Seebeck coefficient at 
temperatures near TN, and the change of slope of e(T) and S(T) at TN; this 
behaviour is shown most clearly by the low~ohmic samples (1 to 3 in fig. 3.1a; 
c and d in fig. 3.3), but is also apparent in more high~ohmic samples (4 to 8 
in fig. 3.1a; a and b in fig. 3.3). 

Because of its anomalous behaviour the Hall coefficient cannot be used to 
determine the hole concentration at temperatures above 240 °K and in the 
absence of other data the behaviour of the resistivity and Seebeck coefficient 
can be interpreted in different ways. 

In explaining the temperature dependenee of the resistivity and Seebeck 
coefficient near TN in termsof broad-band conduction, two basically different 
assumptionscan be made. First (case (1 )), it may be supposed that no appreciable 
change occurs in the structure and shape of the valenee band near TN. In that 
case there is no reason why the acceptor-level depth should change, and the 
hole concentration in undoped and Na-doped samples will be essentially inde
pendent of temperature above 240 °K, as it is at temperatures below 240 °K. 
On this assumption the temperature dependenee of the resistivity is mainly 
determined by the mobility, and the Seebeck coefficient can only be understood 
if there is some additional contribution at temperatures above 240 °K. Because 
of the similarity between the e(T) curves for MnTe and ferromagnetic metals 
it would seem likely that the mobility originates from spin-disorder scattering. 
As shown previously 13

•
14

) the additional con tribution to the Seebeck coefficient 
may be ascribed to magnon drag. 

It may also be supposed (case (2)) that near TN the shape of the valenee band 
dependsin some way on the magnitude of the sublattice magnetization (cf. sec. 
4.3.2). In this case one bas to reekon with the possibility that both the effective 
mass and the acceptor-level depth may change markedly near TN. A change in 
effective mass affects the theoretica! mobility as well as the electronic contri
bution to the Seebeck coefficient. A varlation in the acceptor-level depth may 
affect the hole concentration. The observed S(T) and e(T) curves suggest that 
just below TN with rising temperature the hole concentration decreases (i.e. 
the acceptor-level depth increases) and/or the effective mass increases. 

Elimination of p from eqs (3.2) and (3.3a) gives for non-degenerale samples 

S = (kje} {r + 2 + ln (Nv ft e e)} 198log10 (e/eo} l.I. V /deg, (3.8) 

with eo - 1 = er+ 2 Nv ft e. 
According to fig. 3.3 this relation between resistivity and Seebeck coefficient is 
reasonably well satisfied at temperatures above 240 °K with the same tempera
ture-independent value of eo for all samples. This means that in this tempera
ture region the same temperature dependenee of the hole concentra ti on required 
to explain the Seebeck effect would also explain the resistivity if Nv ft is inde
pendent of the temperature. This condition is satisfied for acoustical-phonon 
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scattering and, according to the theory presented in sec. 4.1.2, also roughly 
satisfied forspin-disorder scattering in antiferromagnetic semiconductors. For 
these scattering mechanisms Nv p oc m- 1 , so that the data of fig. 3.3 above 
240 oK cannot he accounted for solely by a change of effective mass. A more 
detailed discussion of the resistivity and Seebeck coefficient is given in sec. 3.3. 

At temperatures below 240 °K eq. (3.8) is not obeyed by the data of fig. 3.3. 
For the low-ohmic samples this is clearly due to the fact that by heing degener
ate (S < 160 fLV/deg, see comment to eq. (3.7)) eq. (3.3a) no Jonger applies and 
eq. (3.3b) should he used instead. It is noted, however, that at low temperatures, 
according to their Hall coefficient, the low-ohmic samples have a temperature
independent hole concentration so that S should he proportional to T. Figure 
3.2a shows that this is not quite the case. This behaviour, as well as the low
temperature varlation in the Seebeck coefficient of more high-ohmie samples, 
may be attributed to magnon drag (see chapter 5). 

3.2. Tbe Hall coefficient 

3.2.1. Further measurements on the anisotropy of RH 

The remarkable dependenee of the Hall coefficient on the orientation of the 
sample with respect to the crystallographic c-axis has been investigated more 
closely on five samples cut from an Na-doped ingot. Measured values of RHl 

(for samples cut perpendicular to the c-axis) and of RH// (for samples cut parallel 
to the c-axis) are shown in fig. 3.4. 

Below 240 °K the Hall coefficient of these samples was independent of tem-

Plateletsllc-axis 

or---------------------------~~~~~-~-~~-
Platelets lc-axis 

I 

w 
I 

Fig. 3.4. Temperature dependenee of the Hall coefficient RH of Na-doped samples cut per· 
pendienlar or parallel to the c-axis. 
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perature and had valnes between 0·1 and 0·2 cm3 /C. There is no correlation 
between these valnes and the orientation of the samples with respect to the 
c-axis, which indicates that RH is isotropie below 240 °K. Apparently the ingot 
from which the samples were taken was not quite homogeneous. 

Because of the unusual anisotropy of the Hall coefficient above 240 °K some 
additional measurements were made. Between 200 an 350 °K it was verified 
that for both orientations the Hall effect was proportional to the magnetic field 
up to 23 kG (for the low negative valnes of R~ the accuracy of this check was, 
however, poor). 

By shaping a sample in the form of a bar with square cross-section and with 
one of the short edges parallel to the c-axis it was possible to obtain both RHl 
and RH/I for one and the same sample. Although the unfavourable geometry of 
this sample did not allow very accurate measurements, the results were in agree
ment with those represented in fig. 3.4. 

Since above 300 °K the Hall coefficient is relatively small and the Seebeck 
coefficient relatively large, a considerable Ettingshausen contribution to the 
measured Hall voltage might be possible. If the Ettingshausen effect 44

) creates 
a temperature difference Ll T across the Hall pro bes, and S and Sa are the 
Seebeck coefficients of the sample and the measuring leads, respectively, the 
measured Hall voltage becomes 

(3.9) 

V H 
0 being the true Hall voltage. In order to detect the possible presence of such 

an effect we have measured the Hall effectinsome samples twice, using voltage 
probes consisting of thin copper and thin constantan wires, respectively. Care 
was taken that the probes made good thermal contact with the sample. In the 
temperature region of interest 60 < S < 210 fLV/deg, while Scu R> 2 fLVfdeg 
and Sconstantan R> 40 fL V /deg. For the two measurements, therefore, the last 
term differs by at least 20%. Since, nevertheless, no difference was found in 
VH, the Ettingshausen contribution to the Hall effect can only be small. 

Although we have stuclied the anisotropy of RH only for Na-doped samples 
insome detail, the anisotropy is also apparent from the temperature dependenee 
of RH of samples 9 and 10. The decreasein RH for sample 9, cut perpendicular 
to the c-axis, sets in at a higher temperature than for sample 10 whose plane 
was parallel to the c-axis. For the latter sample, RH could still be measured at 
temperatures above 300 °K, which was not so for the former sample. The 
anisotropy in undoped samples has also been observed by Janssen 48

). 

3.2.2. The anomalous Hall effect 

For the interpretation ofthe Hall effect a clue is provided by the fact that in 
our Na-doped samples the Na concentration has been found from spectro
chemical analysis to be about 6.1019 Na atoms per cm3 • The low-temperature 
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Hall coefficient of these samples is isotropie and has values of 0·1 to 0·2 cm3 /C, 
which corresponds to a hole concentration of p = 1/R"e = 6 to 3.1019 cm3

• 

Since it is not unreasonable to assume that each Na atom gives rise to one 
hole by being incorporated as an Na+ ion on the site of an Mn2 + ion, it is con
cluded that between 77 and 240 oK the Hall coefficient may he interprered in 
the usual way as RH~ (p e)- 1 • 

Judging from their resistivity and Seebeck coefficient it seems very unlikely 
that in the Na-doped samples the hole concentration increases between 240 °K 
and TN. Therefore both the decrease of R"l and of R8 /l above 240 °K is 
anomalous. 

Maranzana 16) bas attributed this anomaly to the interaction between the 
· angular momenturn of a charge carrier with respect to a magnetic ion and the 

spin Sof this ion ( denoting the ionic d-electrons by d, and the carrier by s, this 
may he called ad-spin, s-orbitinteraction). For antiferromagnets this interaction 
is shown to lead to a Hall coefficient of the form 

{3.10) 

RH0 being the normal Hall coefficient, roughly equal to (p e)- 1, as in eq. (3.1). 
The anomalous contribution to the Hall coefficient is A B(T) RHo· Here A is 
a dimensionless constant depending on the strength of the d-spin, s-orbit inter
action, and B(T) a function of temperature shown in fig. 3.5. In calculating 
the effect Maranzana only takes account of "spin-flip" scattering processes 
{cf. end of sec. 4.1.1) which he deals with in the approximation given by eq. 

B(T} 

I 
Theory 

- - - Sample .i c axis 
--• Sample 11 c axis 

-r1w 
Fig. 3.5. The function B(T) descrihing the anomalous contribution to the Hall effect in anti· 
ferromagnets according to Maranzana 16) (see eq. (3.10)). The theoretica! curves were cal
culated with S = ! and with S oo (i.e. using the Langevin function instead of a Brillouin 
function). The dashed curves are calculated from the experimental curves of fig. 3.4. 
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(4.16). For temperatures below TN Maranzana bas only considered the case 
that the external magnetic field is applied in the direction of the sublattice 
magnetization. 

Our measurements on MnTe do not satisfy the latter condition because the 
small magnetic anisotropy in the c-plane causes the sublattice magnetization 
to orient itself mainly perpendicularly to an applied magnetic field 31

). 1t 
seems, however, reasonable to suppose that in this case a formula similar to 
eq. (3. 10) applies, with perhaps a slightly different value of A and a slightly 
different function B(T). Above TN the distinction betweenthe cases of the field 
perpendicular or parallel to the sublattice magnetization does not exist, so that 
the functions B(T) for the two cases are identical for T TN. 

In fig. 3.5 we give the quantity 

{RH(T) RH(77 °K)}/{RH(77 °K) RH(TN)} 

as calculated from the data of fig. 3.4 for both orientations of the Na-doped 
samples with respect to the c-axis. Supposing RH0 to be independent of T this 
quantity is identical with 

(using B(TN) = -1). It is seen that the experimental temperature dependenee 
of B(T) calculated in this way roughly agrees with the theoretica! temperature 
dependenee of this function for the case considered by Maranzana, in partienlar 
with regard to its behaviour above 0·8 TN. The value of A B(T) for tempera
tures below 240 °K cannot be derived from our measurements because of the 
inhomogeneity of the ingot from which the Na-doped samples were taken. 
Since it is found that RH ~ (elNa])- 1 for T < 240 °K, it seems nevertheless 
unlikely that this quantity differs much from zero at these temperatures. 

Inserting appropriate valnes for the quantities determining the constant A, 
one finds a much smaller value than the measurements require. No solution 
bas yet been found for this discrepancy (which, as Maranzana temarks, also 
exists for the anomalous Hall effect in ferromagnetic metals, both in bis own 
theory and, for in stance, in the theory proposed by Kon do 49

)). We also note that 
the theory does not account for the anisotropy of RH in the paramagnetic 
region. This anisotropy, occurring at temperatures where both the resistivity 
and susceptibility are isotropic, rnight perhaps provide a clue to the solution 
of the theoretica! problem. 

3.3. Resistivity and Seebeck coefficient 

We again consider our Na-doped samples, for which it was shown that the 
hole concentration below 240 °K is of the order of 6.1019 cm- 3 • The Seebeck 
coefficient S of one of these samples is given in fig. 3.2a. At low temperatures S 
is very small, in fact so small that the sample must be considered degenerate 
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(cf. comment to eq. (3.7)). For degenerate semiconductors eqs (3.3b) and {3.4) 
require that the Seebeck coefficient for a constant carrier concentra\ion is pro
portional to the absolute temperature. This is only approximately the case for 
the S(T) curves of fig. 3.2a below about 200 °K. With r 0 and p 6.1019 

cm- 3 the highest possible value ofthe density-of-states effective mass consistent 
with our curve is md* = 0·53 m0. This is a reasonable value. In fact, from 
optica! measurements Zanmarchi and Haas 21

) find m 1 = 0·4 m0 and m11 = 
1·6 m0, or (m 1

2 m1 1 )
113 = 0·6 m0. Comparison of these val u es suggests that the 

valenee band of MnTe does not have different equivalent maxima. 

As mentioned in sec. 3.1.3 two different causes may be envisaged in order to 
explain the e(T) and S(T) curves at temperatures near TN. In case (I) it is 
assumed that spin-disorder scattering and magnon drag are the main effects 
giving rise to the observed temperature dependenee of the resistivity and Seebeck 
coefficient. The possibility of maintaining this relatively simpte explanation 
constitutes the main subject of chapters 4 and 5. In case (2) the temperature 
dependenee of resistivity and Seebeck coefficient near TN is attributed to changes 
in acceptor-level depth andfor effective mass. We now calculate the magnitude 
of these effects as if each acted separately. 

Case (2a). The explanation of the Seebeck coefficient and resistivity in terms 
of a change in hole concentration p requires that p decreases between 240 °K 
and TN. This would imply that forsome reason or another the energy level EA 
of the acceptors rises with increasing temperature. Supposing that the donor 
concentration is small compared to the Na-acceptor coneentration NA and 
to the hole coneentration, one has 45) 

NA 
p = N.,F112(1J) = 1 + f exp (EAfkT + 1}) 

(3.11) 

(EA is counted positive when above the valenee-band top). The pre-exponential 
factor! in eq. (3.11) is the acceptor-level spin degeneracy which has the value 
indicated because the Na+ ion, corresponding to the situation that it has aceept
ed an electron from the valenee band, has spin-paired electrons only. For our 
Na-doped samples NA,:::::; 6.1019 cm- 3 • From the density-of-states effective 
mass md* 0·53 m0 it follows that Nv 1.1019 (T/300)312 cm- 3

• With these 
values it is possible to calculate EA using the value of 1J which follows from the 
Seebeck coefficient (cf. eq. (3.3)). The result for an assumed value r = 0 is 
shown in fig. 3.6 *) (for temperatures above 320 °K the Seebeck coefficient of 

") With p 6.1019 cm- 3 and md* = 0·53 m0 the Fermi level for complete degeneracy is 
EF =! n2 (3 n 2 p)3 12 fmd 0·1 eV below the top of the valenee band. In order that all 
Na acceptors have trapped an electron their energy level must be well below EF, which 
explains the negative values of EA at temperatures below 285 °K. Negative values of EA 
are not improbable if the Na levels are derived from Mn 3d-states supposed to lie well 
below the top of the Te 5p-valence band. 
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Fig. 3.6. The Na acceptor-level depth as a function of temperature if the variation of the 
Seebeck coefficient with temperature is due to a change in hole concentration. The curve is 
derived from our experimental curve of the Seebeck coefficient given in fig. 3.2a using eqs 
(3.11) and (3.3) with NA= 6.1019 cm- 3, N. = 1.1019 (T/300)312 cm- 3 and r 0. 

the sample considered was extrapolated using the temperature dependenee of 
the Seebeck coefficient of Miller's samples c and d, fig. 3.3). The corresponding 
decrease in hole concentration is from 6.1019 cm- 3 for T < 240 °K to 
0·8.1019 cm- 3 for TN < T < 600 °K. 

Case (2b ). As remarked in sec. 3.1.3, the temperature dependenee of the 
resistivity and Seebeck coefficient near TN cannot be explained in terros of a 
temperature dependenee of the effective mass alone. However, the theoretica! 
mobility may contain other temperature-dependent factors (cf. sec. 4.3.2) and 
also the scattering parameter might change near TN. Figure 3. 7 shows the 
effectivemass ascalculated from our experimental curve for an Na-doped sample, 
fig. 3.2a, using eq. (3.3) and assuming p 6.1019 cm- 3 and r = 0. For other 
values of the scattering parameter r the curve given is nearly identical with the 
"Seebeck effective mass" defined in eq. (3.5b). 

In order to be able to decide which of the interpretations is correct, further 
experimental information is necessary. Such information might be obtained 
from optical measurements, were it not that these too admit of different inter
pretations. In Na-doped MnTe the reDeetion minimum due tofree-carrier reso
nance shifts towards longer wavelengtbs when the temperature is raised 19- 21 ). 

This shift may be caused by a (second-order) magnon-drag effect, as suggested 
by Zanmarchi and Haas 21), by a decreasein hole concentration, as suggested 
by Callen 50

), as well as by an increase in effective mass, as suggested by Zan
marchi 19). These three interpretations correspond precisely to the cases (1), 
(2a) and (2b), respectively. 
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Fig. 3.7. The effective mass as a function of temperature if the varîation of the Seebeck 
coefficient with temperature is due to a change in effective mass. The curve is calculated 
from our experimental curve of the Seebeck coefficient given in fig. 3.2a using eq. (3.3) with 
p = 6.1019 cm- 3 and r = 0. 

In the following we shall base the interpretation of the experimental data on 
the most simple assumptions of case (1 ). Comparison with the theoretica! pre
dictions for the mobility and magnon drag will then decide whether or notthese 
assumptions can be maintained. 

3.4. The "experimental" mobility 

In the preceding sections only Na-doped samples were considered. For the 
undoped samples the Hall coefficient cannot be compared to a chemically 
determined impurity concentration or deviation from stoichiometry. It seems 
reasonable, however, that for these samples too the Hall coefficient may be 
interpreted in the normal way below 240 °K, but not at higher temperatures 
(where for several samples the Hall curves show the same orientation-dependent 
decrease as the Na-doped samples). 

Assuming that the acceptor-level depth does not change with temperature 
between 240 °K and TN, the hole concentration will roughly be equal to 
(e RH*)- 1

, where below 240 °K RH* is the measured Hall coefficient and 
above 240 oK it is an extrapolation of the low-temperature RH(T) curve. The 
log RH(T) curve of several undoped samples shows only a weak dependenee 
on T below 240 oK whose extrapolation should not introduce serious errors. 
The quantity p,* = RH*!e ~ (p e e)- 1 will be called the "experimental" mobil
ity (or, where no confusion is possible, simply: mobility). lt is shown for 
some samples in fig. 3.8. 
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Fig. 3.8. The "experimental'' mobility p.*(T) forsome samples. Below 240 °K p.*(T) is equal 
to the Hall mobility, at higher temperatures it is calculated using extrapo!ated values of the 
Hall coefficient. 

At temperatures below 240 °K the experimental mobility is equal to the 
(drift) mobility p, ::(pee)- 1 if y8 - 1 {I+ AB(T)} has the value 1 (cf. eqs 
(3.1), (3.2) and (3.10)). Above 240 °K the equality of p,* and p, further requires 
that the hole concentration doesnotchange in an anomalous way. 

Because p,* is small forT ?;' TN one would have expected at these temperatures 
to find in fig. 3.8 a curve representing the lattice mobility of the holes in MnTe, 
independent of the purity of the samples. At lower temperatures the mobility 
is larger and impure samples could show smaller mobilities than pure ones due 
to impurity scattering, while an additional difference should occur for differently 
oriented samples because of the anisotropy of the resistivity below TN (see next 
section, fig. 3.10). Since the measurements were performed according to the 
Van der Pauw method and 1 ~ e11!e1 < 3, this anisotropy can give at the most 
a difference of a factor Jl12 1·7 at low temperatures. Although the spread 
in the experimental mobilities is in deed somewhat larger at low temperatures 
than at high temperatures, it is still considerable forT?: TN. Furthermore the 
highest mobilities occur in the most heavily doped samples, or in any case in 
the samples with the smallest resistivities. This is true both at high and at low 
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temperatures. With respect to this behaviour of the experimental mobility the 
following remarks may he made. 

The difficulty of preparing good single crystals of MnTe due to the phase 
transition at 1312 °K bas been mentioned already in sec. l.2. It bas been 
remarked also that the Na-doped samples though originating from the same 
ingot showed different Hall coefficients at Iow temperatures, while they also 
show different resistivities, even near TN where the resistivity is isotropic. The 
three undoped samples used todetermine the resistivity anisotropy (see fig. 3.10 
below) were taken from an ingot which was considered to he of the best avail
able quality, and nevertheless show significant ditierences in the values of e1!e11 
obtained below 230 °K. These observations may imply that the spread of the 
experimental mobilities is due to crystal imperfections and inhomogeneities 
giving rise to erroneous measurements of the resistivity and/or the Hall coef
ficient. That the highest mobilities are found in the Na-doped samples might 
he caused by crystal imperfections and inhomogeneities influencing the measure
ments less in material with Iow resistivity than in material with higher resistivity. 
It may also he possible that Na promotes the crystal growth of the NiAs phase 
at the phase transition *). 

In drawing final conclusions from the comparison of theory and experimental 
data, a point of considerab1e interest is the different change of slope at TN 
which the experimental mobility shows for undoped and Na-doped samples. 
This difference is completely due to a different temperature dependenee of the 
resistivity in the two types of samples near TN and is clearly visible in figs 3.1a 
and 3.3 (see also fig. 4.4). Because figs 3.la and 3.3 refer to crystalline and 
sintered samples, respectively, it seems unlikely that this difference is due to 
sample quality. From fig. 3.3 it is seen that a similar difference obtains for the 
Seebeck coefficient. 

3.5. Some additional data 

3.5.1. Anisotropy of the resistivity 

Resistivity measurements on the five Na-doped samples used to investigate 
the anomalous Hall effect also revealed a temperature-dependent anisotropy 
of the resistivity. This is shown in fig. 3.9, which gives their resistivities e1 and 
(e11 e1)112 as determined by the usual Van der Pauw method. The specialized 
Van der Pauw metbod described in sec. 2.2 was applied to one circular and 
two rectangular ( undoped) samples. The results are shown in fig. 3.1 0. Although 
these measurements themselves are rather accurate (the ratio eulr!l of 0·45 at 
100 °K for the circular sample corresponds to R'dR2 = 10) inhomogeneities 

*) The reverse effect is, however, known to occur in MnSe. In this compound the transition 
from the high-temperature NaCI phase to the low-temperature NiAs phase is inhibited 
by the incorporation of 2% Li 51). 
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Fig. 3.9. Temperature dependenee of the resistivity of the Na·doped samples of fig. 3.4. The 
lower curves refer to 1:11 as found from a bar-shaped sample, or from platelets cut per
pendicular to the c-axis using the Van der Pauw method. The two upper curves refer to 
(C!L g11)

112 as obtained with the Van der Pauw method from platelets cut parallel to the c-axis. 

Fig. 3.10. Anisotropy of the resistivity, 12Lil211 , as determined in three samples using the 
method described in sec. 2.2. 

or small cracks could, in principle, appreciably influence the results. The nearly 
identical curves found for the three samples at temperatures above 230 °K 
suggest that such influences manifest themselves only below this temperature. 
The curves of fig. 3.9 are consistent with those of fig. 3.10, both figures indicating 
that el depends more strongly on temperature than eu· 

3.5.2. Magnetoresistance 

During the measurements of the Hall effect it appeared that in many cases 
the voltage V0 + L1 V(H) across the Hall probes (V0 is the misalignment voltage) 
was nota symmetrie function of the applied field H, i.e. L1 V(H) =I= -Ll V(-H). 
The voltage VH corresponding to the Hall effect is an odd function of Hand 
was obtained from the difference 



42-

VH = ! {LI V(H) Ll V(-H)}. (3.12) 

As mentioned already, in the samples considered bere VH was found to he 
proportional to H. The sum of Ll V(H) and Ll V(-H) corresponds to a magneto
resistance effect which is an even function of H, 

V.do ! {LIV(H) + LIV(-H)}. (3.13) 

This effect was briefly examined in some of the Na-doped samples. These 
samples did not have a suitable form for applying the metbod described in 
sec. 2.2. It was found that at temperatures between 230 and 350 oK V.d 11 was 
roughly proportional to IHIH for fields between 5 and 23 kG. In a sample 
cut parallel to the c-axis the constant of proportionality had the same tem
perature dependenee as the resistivity; in a sample cut perpendicular to the 
c-axis the effect tapidly vanished for temperatures below TN. Above TN in both 
samples V.dg was of the same order of magnitude as VH. In the sample whose 
plane contained the c-axis the change of the Van der Pauw resistances R1 and 
R2 was measured also. One of these increased and the other decreased upon 
application of the field. This indicates that the transverse magnetoresistance is 
quite anisotropic (although not necessarily to the extent that the effect bas 
different signs for different directions). The peculiar field dependenee of the 
magnetoresistance effect seems to indicate that it is not caused by the same 
mechanisms as in non-magnetic semiconductors. Since no detailed measure
ments have been made the magnetoresistance effect will not be discussed further. 
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4. SPIN-DISORDER SCAITERING 

In our earlierpapers 13•14) the temperature dependenee of the mobility near 
TN was qualitatively attributed to spin-disorder scattering. The main argument 
used was that the large change of slope of the mobility vs temperature curve 
at the Néel temperature refl.ects the rapid change of long-range magnetic order 
near TN. Recently, however, the spin-disorder mobility in magnetic semicon
ductors bas been calculated by Haas 18

) on the basis of a model which seems 
quite appropriate to MnTe. According to this theory the change of slope in 
p,(T) at TN should be much smaller than found in MnTe, while it also does not 
explain the temperature-dependent anisotropy of the resistivity in MnTe. This 
chapter contains the following parts: a description of Haas' model and cal
culation, a comparison with the experimental result, and some considerations 
on possible ways in which the theory might be extended. 

In view of the discussion of magnon dragin chapter 5 spin-disorder scattering 
is also calculated in terms of magnon scattering. 

4.1. Haas' theory of spin-disorder scattering 

4.1.1. The physical model 

As in several theories of spin-disorder scattering in metals (see e.g. refs 52-55) 
it is assumed in Haas' theory that, to a first approximation, the charge carriers 
responsible for the electrical properties and the electroos responsible for the 
magnetic properties may be considered as independent of each other. Next, an 
exchange interaction between the spin of a charge carrier and the total spins of 
the "magnetic" electroos is introduced, from which, among other things, the 
spin-disorder mobility is calculated using perturbation theory. 
This model is brietly outlined in the following. 

As in the theory of magnetic insuiators 56
) the magnetic properties are 

attributed tothefact that the atoms (or ions) of one ofthe constituent elements 
have a fixed, whole, number of electroos in a partially filled shell. Due to this 
partial filling these electroos have the possibility to combine their spins and 
angular momenta in different ways, and according to Hund's first rule, ex
change interactions usually result in a ground state in which the total spin S 
of these electroos is as large as possible. Supposing orbital contributions to be 
quenched by the crystal field, the magnetic moment associated with each 
magnetic ion is gp,B S, #B being the Bohr magneton and g ~ 2. Only this 
case is considered in the following. 
This restrietion bas no consequences for the application of the theory to 
MnTe since the ground state of the five electroos occupying half of the available 
orbitals of the 3d-shell of the Mn ions have a 6S ground state, which bas zero 
angular momentum. ' 
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Similar to the exchange interaction which causes the energy of the electroos 
in a partially filled shell to depend on the relative orientation of their spins, 
there are exchange interactions which give rise to a coupling between the total 
spins St and SJ of two magnetic ions. This interaction is usually assumed to 
be of the Heisenberg form 

(4.1) 

The exchange integrals J1i can be negative, favouring the parallel orientation 
of St and S;, as well as positive, which promotes their anti-parallel orientation. 
For reasoos of simplicity we shall only consider the case of ferromagnets or 
two-sublattice antiferromagnets with one type of magnetic ions situated at 
crystallographically equivalent lattice sites. 

The charge carriers are described in terms of the usual band theory of solids. 
They have Bloch wave functions (see e.g. refs 57 and 58) 

(/Jbk(r) ubk(r) exp (ik • r), (4.2) 

which extend throughout the whole crystal. These are characterized by a wave 
vector k and a function ubk(r) which is invariant for all fundamental trans
lations of the crystal lattice. The index b labels the various energy bands. 

In the case of p-type MnTe the charge carriers are holes occupying states of 
a valenee band which may be assumed to originate mainly from the outer 
5p-orbitals ofTe atoms. An energy-band scheme showing the relative positions 
of the energy levels of the localized "magnetic" electroos and those of the band 
electroos has been given by Atbers and Haas 10- 12). 

The interaction between a charge carrier and the magnetic spins, which ulti
mately gives rise to the scattering, is assumed to be of the form 

(4.3) 

where s and r, St and R1 are the spin and position of the carrier and a magnetic 
ion, respectively. The thermal motion of the magnetic ions is disregarded, as 
well as the possible effect of the presence of the charge carriers on the inter
actions between the magnetic spins. 

Only that part of the potential (4.3) will contribute to the scattering of the 
charge carriers which does not have the periodicity of the lattice. The part of 
( 4.3) which does have the periodicity of the lattice affects the band structure. For 
ferromagnets the periodic potential *) 

*) The thermal average of a quantity X 1 pertaining totheions (i) of a (sub)lattice is denoted 
as (X,) or sirnply as (X). For a thermal average over the ions of a given sublattice (a) 
the notation (Xa) will be used as well. 
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HoF s. (S,> ~ J(r R1) (4.4) 
t 

lifts the spin degeneracy of the electron energy bands, which results in different 
bands for charge carriers with spin parallelor antiparallel to (S1>. The splitting 
of a given band extremum is to first order independent of k and proportional 
to (S,>. 

In an antiferromagnet with sublattice magnetizations (Sb>= -(Sa> (sub~ 
scripts a and b label the two sublattices) the periodic part of (4.3) is 

If the crystallographic unit cell contains a single magnetic ion this potential 
constitutes a superstructure as a result of whiçh the original Brillouin zone is 
halved, and a band discontinuity may develop at the new zone boundary. This 
effect perhaps plays a role in the semiconductor~to~metal transition in VO and 
related compounds 59

). In the case of MnTe the crystallographic unit cell con
tains two Mn atoms, one of each magnetic sublattice, and the antiferromagnetic 
order does notintroduce a new zone boundary. Since, furthermore, the magnetic 
structure of MnTe has a centre of inversion (viz. each Mn ion) the spin de
generacy of the bands cannot be lifted (cf. ref. 57, p. 184). These observations, 
however, do not exclude the possibility that the wave functions, and thus the 
band structure, may depend on the sublattice magnetization. This effect will be 
discussed below (sec. 4.3.2) and is neglected in the following. 

Subtracting its periodic part, (4.4) or (4.5), from the potential (4.3) one 
obtains the scattering potentials for both ferro- and antiferromagnets 

(4.6) .. 

where St represents the spin deviation S1 - (S1> on the ion at Rt. 
Before giving explicit results of mobility calculations based on this scattering 

potential it may be noted that there are two distinct types of scattering processes, 
viz. those in which the carrier's spin is reversed, and those in which this does 
not occur. They will be called spin-flip and non-spin-flip processes, respectively. 
In the former type the total quanturn number of the magnetic system with 
respect to the direction of magnetization is changed by L1M101a1 = 1, while 
it remains unchanged in the latter case. In the following this distinction will 
be seen to have two consequences. 
(I) For ferromagnets below the Curie temperature the band splittingis usually 

much larger than the energy which is exchanged between carriers and 
magnetic system during scattering processes. In that case only interband 
scattering through non-spin-flip scattering processes can occur. 



-46 

(2) If the magnetic disorder is described in terms of magnons, the emission or 
absorption of a magnon corresponds to L1M101a1 = ± I, so that scattering 
of a charge carrier by a single magnon is a spin-flip process. Non-spin
flip processes involve two, or four, etc., magnons. 

4.1.2. The theoretica! mobility 

In Haas' calculation 18) of the spin-disorder mobility ansmg from the 
scattering potential (4.6) the following additional assumptions are made. 

The change k' - k in wave vector of a charge carrier due to a scattering 
process is generally small compared to the wave veetors at the Brilionin
zone boundary, i.e. Ik' kl « nf2a, where a is a representative dirneusion 
of the crystallographic unit cell. This restricts the calculation to scattering 
in semiconductors which, furthermore, should he of the type illustrated in 
figs 4.la and 4.lc. The calculation does not apply to the type of intervalley 
scattering shown in fig. 4.Ib. 

- The energy transfers between a charge carrier and the magnetic system are 
generally small compared with kT, i.e. the scattering is quasi-elastic. 

- The range of the exchange integral J(r- R1) is small compared with repre
sentative valnes of Ik' k 1-1 • 

The energy band in which the carriers move may he considered parabolic. 
With these assumptions a relaxation time for scattering exists and is given 

by 

1 n J2 kT 
1 '(E) 2 (4.7) 

•u(E) ;/ 4 N N g2 P.B2 x , 
:n; J2 kT 

•tt(E) 
'(E) 11 t/ 4 N N g2 Jl-B2 X • 

(4.8) 

Here Ttt(E) and •tt(E) are the relaxation times for a carrier of energy E 
due to spin-flip and non-spin-flip scattering, respectively, g'(E) is the density 
of states at the energy E of the band to which the carrier is scattered, xl 
and xll are the magnetic susceptibility measured with the magnetic field 
perpendicular and parallel to the direction of (sublattice) magnetization, 
respectively *), and J is 

J N f ub'k'* ubk J(r R1) exp {i (k- k'). (r- R1)} dr (4.9) 

(the ubk(r) are normalized to unit volume, which contains N magnetic atoms). 
Because of the assumption made with regard to the scattering wave vector 
k' - k and the range of J(r- R1), the integral is, to a first approximation, 

*} This definition requires some further specification in the case of ferromagnets below Tc, 
which is given in Haas' paper. 
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a) b) c) 

Fig. 4.1. (a): Intraband scattering, (b): interband scattering between states of equivalent band 
extremes, (c): interband scattering between states of non-equivalent band extremes situated 
at the same value ofk. Arrows indicate the scattering vector k' k. For reasans of simplicity 
the energy bands are shown for a one-dimensional lattice. 

independent of k and k'. It is independent of i as well (but not in the case 
discussed in sec. 4.3.2). 

Only scattering processes are considered that take place within a single band 
(fig. 4.Ia). One then has, with md = (mx my mz) 113

, 

g'(E) g(E) = (2 m/ E)112jn21t3, (4.10a) 

except in the case of -rn(E) in a ferromagnet below Tc for which 

g'(E) 0, (4.10b) 

corresponding to the fact that the band splitting prevents the occurrence of 
spin-flip processes (the energy Eis counted from the top of the highest valenee 
band or the bottorn of the lowest conduction band in p- and n-type material, 
respectively ). 

In order to arrive at a simpte formula for the mobility we introduce the 
parameter T* which has the dimension of a temperature and which is equal to 

Ng2 !" 2 

T* = S(S + 1) B 

k x" 
(4.11a) 

for ferromagnets below Tc and equal to 

N gz !" 2 

T* = S(S + 1) B 

k (2 x1 +x") 
(4.llb) 

otherwise. According to simpte theoriesof the susceptibility,T* may for example 
have the following values 

T* T Tc 

T* T+ 0 

T* HTN + 0) 

(ferro, T > Tc), 

(antiferro, T ~ TN), 

(antiferro, T = 0) 

(0 is the asymptotic Curie temperature of the antiferromagnet). 

(4.llc) 

(4.lld) 

(4.lle) 
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Por obtaining an expression valid for arbitrary degeneracy of the carrier 
system (cf. sec. 3.1.2) we define another temperature, T', according to 

9n 
kT' - [E- 112]- 2 {fo(1})/f112(rJ)}- 2 kT, (4.12) 

16 

R:>kT (non-deg.), (4.12a) 

9 n 9 n h2 (3 n 2 p )213 

R:> EF = (deg.), (4.12b) 
16 16 2 md 

where p is the carrier concentration and [ ] denotes the usual average in the 
case of Fermi-Dirac statistics. 

With the above expressions the mobility in a direction i = x,y,z becomes 

[<(E)] 8 (2 n)
112 

e h
4 

N ( T* ) (-1-)112 

3 m1 m/12 J2 S (S + I) T kT' 
(4.13a) 

e 

10·3.10
22 

N 1 ( T*) (300)
112 

m, m/'2fmoS!2 J2 S (S + 1) T T cm2/V s(4.13b) 

(N in cm- 3 , J in eV). These equations contain two temperature-dependent 
factors, T*/T and 1/T'. The former, T*/T, is shown by the curves labelled 1 
in fig. 4.2. These curves were calculated with molecular-field expressions for 

T'PT 

1 

Fig. 4.2. The temperature dependenee ofthe function T* fT in eqs (4.13a) and (4.13b). Curves I: 
calculated according to Haas' theory from eqs (4.11a) and (4.11 b) for S 5/2. Curves 2: 
calculated from eqs (4.17a) and (4.17b) forS= 5/2. For the antiferromagnetic semiconductor 
the asymptotic Curie temperature is taken to be twice the Néel temperature. Curves labelled 
l t .j, and 1 t t correspond to spin-flip scattering and non-spin-flip scattering separately. 
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(300/T '/2 r-r-r,-rrrr-----,---,---,--,.--,-...,....,...,.., 

• I 3 

Fig. 4.3. The temperature dependenee of the function (300/T')1
'
2 in eq. (4.13b) indicating 

the effect of degeneracy. Numbers labelling the curves are values of p/Nv(300), where 
Nv(300) = 2·5.1019 (m/m0 ) 312 cm- 3 is the effective density of states at 300 °K. Dots refer 
to the temperature where p = Nv(T). 

the susceptibilities using in x'' below Tc and TN the Brillouin functions for 
S = 5j2, and in the case of the antiferromagnet e 2 TN. Figure 4.3 shows 
the temperature dependenee of (300fT') forsome values of p/2·5.1 019 (mafm0) 312 • 

Other consequences of Haas' calculation are the following. 
According to eq. (4.10a) the relaxation times are proportional to E-112. It 

follows that the scattering parameter r, defined by l(E) oc E 112 r(E) oc E', is 
equal to zero. As remarked in sec. 3.1.2 the knowledge of this value is of 
importance for calculating the electronic con tribution of the Seebeck coefficient. 

1t is seen also that the relaxation times are isotropic, i.e. they do not depend 
on the directions of k and k'. This implies that, as shown also by eqs (4.13), 
any anisotropy in the mobility can only he due to an anisotropic effective mass. 

4.1.3. Additional remarks 

The susceptibility occurs in eqs (4.7) and (4.8) because in the calculation of 
transition probabilities double sums arise of the form 

~ ~ (Sn i Sm1) exp {i q. (Rn- Rm)} (4.14a) 
n m 

(i,j = x,y,z; q = k'- k) which are equal to 60
) 

kT 
2 2 xii(q), 

g ftB 
(4.l4b) 

xii(q) being a generalized susceptibility. For small values of q this susceptibility 
can he expanded as 

(4.15) 
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where x1J is the value for homogeneous magnetic fields. In Haas' calculation 
the terms in q2 are neglected, which is the main reason why this theory only 
pertains to small values of k' k. 

For large scattering wave veetors it may be argued 54) that interference 
effects due to correlation between different ionic spins may be neglected. 
Following Maranzana 16) we put 

(Sn1 SmJ) (Sn1
) (Sm1) for n =F m, (4.16) 

and it is easily found that the expression (4.14a) then leads to 

I n P 
--=- g'(E) {S (S + 1)- (M2

) ± -t ((Ma)+ (Mb))}, (4.l7a) 
rn(E) h 4N 

(4.17b) 

where M has been written for the eigenvalue of sz, and where the term 
! ((Ma) +(Mb)) vanishes for an antiferromagnet and should be taken equal 
to (M) for a ferromagnet. Except for some minor details these expressions 
have been obtained by several authors who considered spin-disorder scattering 
in ferromagnetic metals 52- 55). In the paper by Van Peski-Tinbergen and 
Dekker 55) account is taken of non-elasticity in spin-flip processes. This removes 
the difference in relaxation times for carriers with opposite spin directions to 
which the sign in eq. ( 4.17a) refers (in ferromagnetic metals spin-flip scattering 
can occur because the band splitting due to the potential ( 4.4) is smaller than EF). 

The curves labeled 2 in fig. 4.2 we re calculated from eqs ( 4.17) using molecular
field expressions for (M) and (M2), while, as before, only non-spin-flip scatter
ing was assumed to occur below Tc for the ferromagnet. At low temperatures 
the curve shown for the antiferromagnet is dashed because in that temperature 
region molecular-field theory does not apply, while moreover explicit account 
has to be taken of spin-wave theory. 

Curve 2 for the antiferromagnetic semiconductor of fig. 4.2 shows a con
siderable change of slope at TN. This change is roughly similar to that found 
in ferromagnetic metals. For a qualitative explanation of such behaviour one 
is easily led to associate the mobility with long-range magnetic order (which 
changes rapidly below TN and Tc, and is absent above these temperatures). 
The correct relation between scattering and magnetic order is given, however, 
by the expression (4.14a), or the susceptibility x(q), which has a quite different 
temperature dependenee as long-range magnetic order. This is clearly shown 
by curves 1 in fig. 4.2 which pertain to x(q = 0). For the antiferromagnetic 
semiconductor curve 1 exhibits only a very small change of slope at TN. 

If long-range magnetic order is an irrelevant, though plausible, quantity, 
one may ask why it is the susceptibility that determines the behaviour of the 
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mobility. Perhaps one might reason as follows. According to the term s • 8 1 

in the interaction (4.3), the spin of a carrier acts on the magnetic system in a 
similar way as a magnetic field, and the ease with which it can create a disturb
anee in the magnetic system is proportional to the suseeptibility. The creation 
of a disturbanee means, however, that the carrier is scattered. In this way there 
is a direct proportionality between scattering probability and suseeptibility. 

A more detailed description is needed to explain that it is rather x(q) that 
counts than x(k). 

4.2. Comparison with the experimental mobility in MnTe 

It has already been mentioned that Haas' theory leads to a small change of 
slope at TN in the mobility vs temperature curve. A much larger change is found 
experimentally for p-type MnTe. This is clearly demonstrated in fig. 4.4, which 
shows the temperature dependenee of both the theoretica} curve and some 
curves of experimental mobilities (see sec. 3.4). 

That there is also a difference in temperature dependenee at low temperatures 
may be due to the presenee of other scattering mechanisms or, in particular for 
the undoped samples, to unreliable results of the Hall measurements because 
of imperfect crystalline quality (cf. sec. 3.4). These may also be reasoos that 
degenera te samples (1 to 3) seem to have higher mobilities than non-degenerate 
samples (4 to 8), while according to fig. 4.3 theory prediets the opposite. 
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Fig. 4.4. Theoretica} and experimental curves of the rnobility norrnalized a T N 307 °K. 
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The temperature-dependent anisotropy of the mobility, as shown in fig. 3.10 
poses another problem. Withanisotropic relaxation time an anisotropic mobil
ity can only be due to an anisotropic effective mass. At low temperatures we 
have in deed ft 1 ; ft/I R:;; 0·3 which is roughly equal to m11 /m 1 R:;; 0·25 as deter
mined from optica} measurements 21 ). At temperatures near and above TN, on 
the other hand, ft1!ftu R:;; I. This may indicate that m1 and m11 depend on 
temperature, or, more specifically, on the magnetic order. That such a depend
enee is not a priori impossible is discussed in sec. 4.3.2. Other mechanisms 
which may have to be considered are discussed in sec. 4.3.1. 

4.3. Possible improvements of the theory 

4.3.1. Various mechanisms 

Beside mechanisms which the theory discussed in the foregoing has not taken 
into account and whose incorporation may result in a better agreement with 
experiment, there are also a number which might at first sight seem relevant, 
but are not so. Some examples of the latter are discussed first. 

It has been mentioned already in sec. 4.1.1 that antiferromagnetic order can 
give rise to a new Brillauin-zone boundary along which an energy gap could be 
created, but that this does not occur in MnTe. 

The theory given does not apply to inelastic scattering. The condition of 
elastic scattering is more readily satisfied in semiconductors than in metals 
(cf. sec. 4.4.2), and in the latter case it has been shown 54

•
55

) that for simple 
ferromagnets quasi-elastic scattering obtains at temperatures near and above 
Tc. In antiferromagnets one might perhaps have the complication of the pres
enee of "optica[" magnetic excitations (at low temperatures: optical magnons), 
which could give rise to inelastic scattering and, possibly, toa behaviour of the· 
mobility as observed in MnTe. In simple two-sublattiee antiferromagnets such 
as MnTe there are two branches of magnon states which are, however, bothof 
the acoustical type (cf. ref. 57, p. 60). 

Comparison of the two curves of -r(E) for antiferromagnets in fig. 4.2 shows 
that intervalley scattering of the type indicated in fig. 4.lb can give rise to a 
mobility with a sharper change of slope at TN. Since the (density-of-states) 
effective mass derived from the Seebeck coefficient is not larger than the 
optically determined effective mass(cf. sec. 3.3)the existence of different equiv
alent maxima in the valenee band of MnTe seems unlikely. 

Having excluded the above possibilities one may consider the invalidity of 
one or more of the assumptions made. 

The use of perturbation theory is strictly permitted only if the uneertainty in 
energy AE hf-r connected with the finite time -r between scattering events is 
less than kT (see e.g. ref. 58, p. 212). In terms of the mobility this condition 
reads 
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300 m0 
,u> 44 - cm2/V s, 

T m 
(4.18) 

which is clearly violated by the experimental mobility, especially near and 
above TN (cf. fig. 3.8). This may indicate that at these temperatures a magnetic 
analogue of the large polaron is a more appropriate starting point for theoretica! 
interpretation 61

). 

The form of the exchange interaction ( 4.3) may be too simple in the case of 
MnTe. Assuming a valenee band made up of predominantly 5p-orbitals of 
Te atoms, we have to do with p-electrons (or holes). The angular momenturn 
of such electrous may also contribute to the exchange interaction *). In order 
to account for the observed anisotropy in the resistivity, the relaxation time due 
to this interaction should be an anisotropic function of the wave vector k, the 
anisotropy depending on temperature. 

The other assumptions made in conneetion with eq. (4.3) would seem of 
minor importance. This is also the case as regards the neglect of the dependenee 
of J and x on k' k (eqs (4.9) and (4.15)). 

4.3.2. Magnetization-dependent band parameters 

According to eq. (4.5) antiferromagnetic order introduces a lattice-periodic 
potential H0AF in the crystal which is proportional to the sublattice magnetiza
tion. As is seen from its form, this potential causes a charge carrier with a 
given spin direction to be attracted by one sublattice and to be repulsed by the 
other, and the carrier will adapt its wave function accordingly. It can do so 
because for each ion there is another equivalent ion in the unit cell; wave 
functions therefore occur in pairs which in chemica! terms may belabelled as 
bonding and antibonding (see fig. 4.5). By forming linear combinations of these 
wave functions the desired adaptation can be achieved. In terms of band theory 
this means that in the antiferromagnetic phase H0 AF causes a mixing of states 
of different bands. Although for MnTe this mixing cannot give rise to a splitting 
of the bands (as it may do in the case of different crystallographic and magnetic 
unit cells, cf. sec. 4.1.1) it can change the shape of the bands and therefore also 
for instanee the effective mass. Since H0 AF depends on the sublattice magnetiza
tion (Sa) the temperature dependenee of such changes might be strong just 
below TN. It will be difficult, however, to estimate the magnitude of the effect 
since it will depend critically on the (unknown) band structure of MnTe. 

In principle the temperature dependenee of the experimental mobility and 
its anisotropy would be explained if the effective mass were isotropie in the 
paramagnetic region, T > TN, and if m 1 (and perhaps also m11 , though less 
markedly) decreased with increasing sublattice magnetization in the antiferro-

*) The author is indebted to Dr C. Haas for pointing out this possibility. 
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Unit cell 

~ I 
Magnetic ions 

a) 

b) 

c) 

d) 

Fig. 4.5. A bonding orbital (a) and an antibonding orbital (b) can mix in such a way that the 
wave function of a charge carrier with a given spin direction is largerat the positions of the 
ions of one magnetic sublattice than at those of the other sublattice, (c) and (d). 

magnetic region, T < TN. It should be noted, however, that apart from a tem
perature-dependent effective mass other effects arise which must also betaken 
into account in calculating the mobility. Temperature-dependent wave functions 
imply, for instance, that the exchange integral J, eq. (4.9), depends on temper
ature. Even more important may be the fact that with different wave functions 
for opposite spin directions one obtains different exchange integrals J. It can 
be readily shown that such different values of J lead in the expression for 
1/-r(E) to additional terms which contain the "staggered" susceptibilities 
xl(0,0,2nfc) and x11(0,0,2nfc). These susceptibilities would be found if a 
spatially varying magnetic field having one direction on the one sublattice and 
the opposite direction on the other were applied. They are similar in magnitude 
and temperature dependenee to the static susceptibilities xl and xll of ferro
magnets and can become very large. 

Another possibility contained in the present model is that the change in 
shape of the bands may result in a change of acceptor-level depth. This, in 
turn, may lead to an anomalous temperature dependenee of the hole concen
tration near TN. The model of magnetization-dependent band parameters, 
therefore, includes the most prominent features of case (2) considered in sec. 3.3. 
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In sec. 5.4.3 we shall come back to the question which of the proposed 
modifications of the theory possibly plays the major role in determining the 
electdeal properties of MnTe. 

4.4. Magnon scattering in antiferromagnetic semiconductors 

In Haas' theory the scattering probability is directly connected with the 
general expression for the susceptibility. This theory is independent, therefore, 
of the model used for the description of the magnetic system and it will be 
valid also in the temperature region where spin disorder should be described 
in termsof spin waves (magnons). 

In view of the considerations on magnon drag in chapter 5 we consider in 
this section the ~;everse problem, viz. the question up to what temperature does 
magnon scattering give the correct mobility. Only the case of one-magnon 
scattering processes in antiferromagnets is discussed. Such processes dominate 
those involving two or more magnons, in any case at low temperatures (the 
fact that in fig. 4.2 the curve lH forspin-flip scattering lies below the curve ltt 
for non-spin-flip scattering agrees with this observation). Furthermore, as ex
plained in sec. 5.2.2, the main contribution to magnon-drag effects is expected 
to arise from one-magnon scattering processes. 

One of the conditions for the validity of Haas' theory is that the scattering 
may be regarded as quasi-elastic. This condition is easily formulated in the 
case of magnon scattering and will be treated briefly too. 

4.4.1. Ca/culation of magnon scattering 

We consider an antiferromagnet having N/2 magnetic ionsof one sublattice 
at positions Ra1 and N/2 magnetic ions of the other sublattice at (equivalent) 
positions Rbl· With the exchange integral J of eq. (4.9) the relevant matrix 
element for the scattering of a charge carrier with wave function <pk(r) and 
spin m, = to a state with 9'k·(r) and m, = is found to be 

M M (k,+t,p; k',-!,p') (4.19) 

~I (-!,p'lts- [Sa/ exp {i(k k') • Raj}+ 

j,! Sb/ exp {i(k-k'). Rb1}]1 +t, ,u), 

where the symbol p represents the magnon system and s± sx ± iSY. 
For evaluating this matrix element the following expressions from the stand

ard, linear, theory of antiferromagnetic magnons are used (see e.g. ref. 57, 
chapter 4; a slightly different convention with regard to the sign ofthe wave 
veetors is used here: the creation and annihilation operators for a magnon 
with wave vector ±q are denoted as oe±/ or {J±/ and oc±q or {JH, respec
tively.) 
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( 
s )1/2 

.Sbt+ = 2 N ~ exp (i q. Rb1). (uq {J_q + + Vq exq), 

tanh 2x 

yq = ~ exp (i q . 8) y -q 

ó 

~1 ~ a/qt2 (for small q), 
i=x,y,z 

h w A = g flB H A• 

h wq h {(we+ wA)2 - we2 yq2}112 

~ h We (2 ~a/ q/)112 jf WA< 2 We~ al ql < 2 We 

(4.20a) 

(4.20b) 

(4.2la) 

(4.21 b) 

(4.22) 

(4.22a) 

(4.23) 

(4.24) 

(4.25) 

(4.25a) 

(J12 is the exchange integral between the z nearest neighbours of a given 
magnetic ion to which they are connected by the veetors 8; HA is the anisot
ropy field; the a1 are interatomie distances multiplied by numerical constants). 

When substituting (4.20a) and (4.20b) into (4.19) use can be made of the 
general relation 

N/2 

~ exp {i(k-k' + q).a1R} 
J=l 

~2 N 
~ exp {i (k-k' +q).Rb1} =- !5k•-k q+G, (4.26) 
1=1 2 . 

G being 2n times a fundamental vector of the reciprocallattice. In semicon
ductors, however, it is usually not necessary to consider Umklapp processes, 
i.e. scattering processes for which G =I= 0. Neglecting these one finds 

J( s )1/2 
M = 2 N (Uq + Vq) (tl lo:q + {J_q +I ft), (4.27) 

with q k'- k. The terms in the operators o:q and fi-q + correspond, re
spectively, toa scattering process ofthe charge carrier in which an a: magnon 
with wave vector q is absorbed and one in which a {J magnon with wave 
vector -q is emitted. Upon squaring the matrix element one obtains 

J2S 
M2 -- (uq + Vq)2 {nq" + (n_qtJ + 1)}. 

4N 
(4.28) 
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If the magnon distribution in q-space is not significantly disturbed by the 
electrical current *) the occupation numbers n

11 
and n_ 11 are given by the Bose

Einstein distribution, and 

n11"' + n_/ + 1 = coth (I! w11/2 kT) 

~ 2 k Tfli w
11 

for I! w11 < 2 kT, 

~1 for I! w11 > 2 k T. 

(4.29) 

(4.29a) 

(4.29b) 

In conneetion with these equations it should be remarked that for I! w
11 
> k T 

the scattering processes are not quasi-elastic so that the transport equations 
normally used for semiconductors cannot be applied (see next section). For the 
present we are interested in the high-temperature case, h w11 < k T. Here the 
scattering processes may be regarded as quasi-elastic, but for large values of n11 

magnon theory should generally take account of higher-order terms in tx
11 

and 
{3

11
, which have been omitted in eqs (4.20a) and (4.20b). Nevertheless, we shall 

now make use of eq. (4.29a), on the argument that we are concerned with 
magnons of small wave vector and that for these the approximation of the 
linear magnon theory appears to be less serious than for magnons with large 
wave veetors (see e.g. ref. 62). 

From eqs (4.2la), {4.21 b) and (4.25) we obtain 

so that the squared matrix element becomes 

PS w 
----~--Cl_____ ____ (2 n 
4 N We+ WA We Y11 

11 

PS 2kT 
~ ----------

4 N ft (we+ WA We yJ 
PS kT 

P kT 
---2xl(T< T) 

4N Ng2 f.lnz N' 

(4.30) 

I) (4.31) 

(4.3la) 

(4.3Ib) 

(4.31c) 

where the approximation (4.29a) is introduced in (4.31a), where in (4.31b) the 
terms WA and We~ a,2 

q1
2 have been neglected WÎth respect tO We, and Where 

in (4.3lc) use bas been made of 

*) Theviolation of this condition leads to the secoud-order drag effects described in chapter 5. 
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s 
(4.32) 

for nearest-neighbour interaction only (xl(T < TN) represents the perpen
dienlar susceptibility for temperatures be1ow TN). 

Because M2 does not depend on q, the relaxation time due to the scattering 
is given by 1/rmagnon(E) = (n/li) g(E)M 2

, and comparison with eq. (4.7) for 
rtt(E) shows that for the case considered 

'tmaanon = 'tH for T < TN. (4.33) 

This result may easily be generalized to interactions between arbitrary neigh
bours in a two-sublattice antiferromagnet. In that case 2 TN in eq. (4.23) is 
replaced by TN 8, while due to interactions within one and the same sub
lattice an additional term -()Je' 2: b1

2 q1
2 should be included in wA. If this 

term and the term we 2: a1
2 ql are retained in eq. (4.3la), one obtains a 

result which is in complete agreement with the form of the expansion of x11(q) 
given in eq. (4.15). 

We have thus arrived at the coneinsion that in antiferromagnetic semicon
ductors the scattering of charge carriers by singlemagnons-described in termsof 
the simple, linear magnon theory -leads to the same mobility as Haas' theory 
up to the Néel temperature. An analogous result has been obtained for a similar 
problem in conneetion with neutron scattering in ferromagnets (ref. 60, p. 131 ). 

4.4.2. The condition of elastic scattering 

The calculation of magnon scattering as well as that of spin-disorder scatter
ing discussed in this chapter requires that the scattering processes be regarded 
as quasi-elastic, i.e. that on the average they change the energy of a carrier by 
an amount less than k T. This condition will be briefly considered. 

Assuming an energy-independent magnon velocity, eq. (4.25a), the conse
quences of the 1aws of conservation of energy and crysta1 momenturn are the 
same as for acoustical-phonon scattering. For an isotropie magnon velocity, c, 
and an isotropie effective mass, m, one thus finds (see e.g. ref. 63, p. 530) that 
a carrier of wave vector k can only be scattered by magnons with wave vector 

q < qm = 2 k + m cjli. (4.34) 

In non-degenerate semiconductors a "thermal" carrier has a wave vector 
kr (2 m k T) 112jli and its energy can at the most be changed by an amount 
/i c qm 2 /i c k r m c2 • Requiring that this be less than k T implies that 
the temperature should be higher than 

(4.35) 
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(c in cmjs). In degenerare semiconductors, qm 2 kF m cfk~ 2 kF = 
2 (3 n 2 p)113• In this case the temperature should be higher than 

T0 ' 2/i c kpfk = 47- -- °K 
c ( p )1/3 

106 101s 
(4.36) 

(c in cmjs; p in cm- 3). 

For MnTe c is 1·4.106 cm/s 21) so that T0 is 72 °K for m 0·6 m0 , while 
T0 ' is 260 °K for p 6.1019 cm- 3 • This shows that in highly Na-doped 
samples effects of inelasticity may become important. On the other hand it is 
known in the case of metals that large deviations from the "classical" linear 
temperature dependenee of the resistivity only occur at temperatures well 
below the Debye temperature. Since this temperature plays the same role as 
T0 ' in our case 64

), large effects are not expected to occur in the temperature 
range considered, especially if other scattering processes too occur at low tem
peratures. 
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5. MAGNON DRAG 

In this chapter we reconsider the magnon-drag explanation previously given 
for the anomalous behaviour of the Seebeck coefficient in MnTe 13•14). 1t will 
be seen that a detailed analysis is impossible, mainly due to the lack of suffi
ciently accurate mobility data. Therefore only the simplest theoretica) model 
will be considered, neglecting anisotropies in effective mass, mobility and 
magnon velocity. Nor do we discuss in any detail the difficult theoretica! 
question with regard to the description of magnetic excitations in terms of 
magnons at temperatures comparable to TN. The treatment includes, however, 
the "second-order" drag effects, which Zanmarchi and Haas 21 ) have used to 
explain optical phenomena in MnTe. 

5.1. Physical description of the drag effects 

The phonon- 65) and magnon-clrag 15
) effects arise as a consequence of the 

law of conservation of crystal momenturn for scattering processes between 
charge carriers and phonons or magnons. In its strict sense this law is not valid 
forscattering between (quasi) particles having large wave vectors, in which case 
Umklapp processes may occur (cf. comment to eq. (4.26)). In such processes 
a considerable amount of momenturn is transferred to or withdrawn from the 
crystal as a whole. In the following we shall consider the case of a semiconductor 
in which the charge carriers are scattered between states of a single band extre
mum (fig. 4.la). Since in that case the scattering processes only involve (quasi) 
particles with small wave vectors, the law of conservation of crystal momenturn 
obtains in its strict sense. For the quasi particles which scatter the carriers we 
consider magnons, but the following discussion is valid for phonons as well. 
Scattering by impurities will be neglected. 

5.1.1. First-order effects 

The drag con tribution Ild to the Peltier effect may be thought to arise in the 
following way 65). Due to the combined action of the electrical field and the 
scattering by magnons the charge carriers acquire a stationary excess amount of 
crystal momentum. Since crystal momenturn is conserved in the scattering 
processes, the magnons also acquire an excess amount of crystal momentum, 
i.e. they are dragged along with the carrier current. The energy flux carried 
by the magnon current constitutes the magnon-clrag contribution to the Peltier 
heat. 

In the Seebeck effect the drag con tribution Sd = IldfT is due to the fact that 
the flow of magnons created by the temperature difference (which, in principle, 
contributes to the heat conduction) drags the charge carriers along, thus en
hancing the carrier accumulation which already exists at the colder end of the 
sample due to thermodiffusion. 
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In the first-order effects two relaxation times are of importance. First, the 
relaxation time -r 1 of the charge carriers characteristic of the ra te at which they 
loose excess momenturn to the magnons and, second, the relaxation time -r3 of 
the magnons characterizing the rate at which magnons dissipate excess mo
mentum in Um.klapp processes, boundary scattering, etc. (the interpretation of 
-r3 is considered in more detail in sec. 5.2.2). 

It will be easily understood that lid should be proportional to -r 3 /-r 1 : a large -r 3 

means a long distance over which the magnons can transport excess energy, 
while a small -r 1 signifies a strong coupling between the carrier and magnon 
systems. 

5. 1.2. Second-order effects 

As pointed out by Sondheimer 66
), the formulation of the drag problem which 

considers only the processes mentioned above leads to a violation of the Kelvin 
relations. In order that these be satisfied account must also be taken of the 
scattering of magnons (phonons) by the charge carriers. The relaxation time -r 2 

for the rate at which magnons loose excess momenturn to the caniers will be 
inversely proportional to the carrier concentration. 

As a consequence of these processes it is possible that the momentum, which 
is transferred from a carriertoa magnon, is returned toanother carrier before 
it is randomized ( due to a process characterized by -r 3). This means that the 
scattering of charge carriers by magnons becomes less effective, so that the 
spin-disorder mobility is increased. Consirlering the probabilities with which 
the processes mentioned occur, the factor by which the mobility increases is 
found to be (1 + -r3 /-r2). This increase mayalso be attributed tothefact that 
the carriers are scattered by a magnon system which moves along with them 
due to the fust-order drag effect (cf. footnote in conneetion with eq. (4.29)). 
Effects of this kind are called second-order effects. 

It can be shown that the drag contributions [Jd and sd are decreased by 
roughly the samefactor (1 -r3 /-r2) by which the mobility is increased. In the 
case of the Peltier and Seebeck coefficient the second-order effect is also called 
saturation effect 65). 

5.2. Simplified theory 

5.2.1. Basic equations 

A simplified calculation of the first-order drag effects has been given by 
Herring 6 5). The simplification consists ofneglecting of the energy dependenee of 
the relaxation times. Extending this approach to the case where second-order 
effects are important Zanmarchi and Haas 21) have derived the following ex
pressions for the drag contribution Sd to the Seebeck coefficient and for the 
mobility: 
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(5.1) 

e 
(5.2) 

m 

(eq. (5.1) is written in the form given because it clearly shows the factor 
k/e = 86 ~-~oV/deg, the "natural" unit in which the Seebeck coefficient can be 
expressed; the other two factors are dimensionless). The (average) relaxation 
times occurring in these equations have been defined in the preceding section 
and, briefly, refer to the following processes: 
(T1) scattering of carriers by magnons, 
( T 2) scattering of magnons by carriers, 
( T 3) scattering of magnons by magnons, boundaries, etc. 
In eq. (5.1) cis the magnon velocity *). For the limiting case T 2 --+ oo eq. (5.1) 
refers to the first-order drag effect in the Seebeck coefficient and eq. (5.2) reduces 
to the normal mobility due to magnon scattering. If other scattering mechanisms, 
chamcterized by a relaxation time T 4 , contribute to the mobility the present 
approximation gives 

1 
(5.3) 

#tot 

while Sd remains unchanged. 
Because T1 and T 2 relate to one and the same mechanism, viz. the mutual 

scattering of carriers and magnons, there must be a relation between them. 
From the argument that in the absence of all other scattering mechanisms the 
carriers and magnons must have the same drift velocity Zanmarchi and Haas 
find that 

Tt 1 m c2 

A kT' 
(5.4) 

T2 

2 NV 
A --- (non-deg.), (5.4a) 

3 n112 p 

A=t (deg.), (5.4b) 

where p is the carrier con centration and N" the effective density of states of the 
band in which they move. In non-degenerate material T 1 is independent of p 

*) The calculation pertains in particular to drag effects due to antiferromagnetic "acoustical" 
magnons and to acoustical phonons, for which c may be regarded as energy-independent. 
For optica! magnons and phonons the group velocity c is vanishingly small so that these 
do not contribate to the drag effects. Some remarks concerning the drag effects in ferro
magnetic semiconductors will be made in the next section. 
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so that 1:2 is inversely proportional to the carrier concentration, as should be 
expected. In degenerate material, 1:1 oc kF 1 ocp- 113 giving 1:2 ocp- 11

3
• 

Combining eqs (5.4), (5.4a) and (5.4b) with (5.1) and (5.2) one may write 

Sa Sa0 /(1 + Sa0 /SM), 

Sa0 = Sa/0- Sa! SM), 

#1 = #1°/(1- Sa/SM), 

2 N 0 k 
SM (non-deg.) 

3 :n;112 p e 

k 

(5.5a) 

(5.5b) 

(5.5c) 

(5.5d) 

= !--. (deg.) (5.5e) 
e 

Here Sa0 and #1° are the first-order quantities (for 1:'2 00 or SM oo), and 
Sa and p 1 the quantities including second-order effects. In these expressions 
the factor (1 + S//SM) (1- Sa!SM)- 1 reptaces the factor (1 + 1:3 /1:2 ) in 
eqs (5.1) and (5.2). The use of eqs (5.5b) and (5.5c) is that they permit a direct 
estimate to be made of the importance of second-order effects by comparing 
the experimental drag contribution Sa with the quantity SM. The value of the 
latter is a constant given by eq. (5.5e) for degenerate samples, and depends 
only on the carrier concentra ti on and effective density of states for non-degener
ate samples. From eqs (5.5a) and (5.5b) it follows that Sa can never exceed 
SM (nor Sa0

) so that, for example, according to eq. (5.5e) in degenerate samples 
Sa can be at most !- kfe = 43 !LV /deg. 

The above eqnations follow from a rather crude model based on (ill-defined) 
average relaxation times. Calculations in which the averaging procedures are 
carried out more accurately have been performed in the analogous case of 
phonon drag. As will be shown in sec. (5.3) these calculations result in higher 
values of SM (or the coefficient A of eq. (5.4)). 

One correction to the value of the coefficient A is a rather trivial one. In their 
calculation Zanmarchi and Haas assume a single magnon branch. Usually, 
however, the magnon states in antiferromagnets are doubly degenerate (ne
glecting magnetic anisotropy). Because, according totheir calculation, the drift 
velocity of the magnons is inversely proportional to the number of magnons, 
it can be easily seen that a double degeneracy of the magnon states implies 
that A, and thus SM, is twice as large as given by the above equations (one 
may say that the more magnons there are, the more difficult it is to give them 
the samedrift velocity as the carriers). 

5.2.2. The magnon relaxation times in antiferromagnetic and in ferromagnetic 
semiconductors 

Herring 65
•
67

) has emphasized that in order to understand phonon drag in 
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semiconductors it is necessary to be aware of the fact that charge carriers of 
wave vector k can only be scattered by a pbonon having a wave vector q if 
q :5 2 k (cf. eq. (4.34)). In this way an electric current feeds surplus momenturn 
only in the low-q modes of the pbonon system. Phonon-phonon scattering next 
distributes the surplus momenturn over all other modes, but, in general, does 
not destroy it *). This is because the most probable processes between low- and 
high-q phonons are normal, i.e. non-Umklapp, processes in which crystal 
momenturn is conserved. The ultimate dissipation of crystal momenturn in the 
pbonon system occurs through U-processes between high-q phonons. Since, 
however, the relaxation time for these processes is much shorter than for the 
scattering of low-q by high-q phonons, it is the latter which determine the rate 
of lossof crystal momenturn for the low-q modes. The relaxation time r 3 for 
pbonon dragis thus roughly equal to the average relaxation time of the phonons 
with wave vector q < 2 k, where 

k = kr = (2 m k T) 112/li (non-deg.), 

k kF = (2 m EF) 112fli (3 n 2 p)113 (deg.) 

(5.6a) 

(5.6b) 

are the wave veetors of a carrier of energy kT and EF, respectively. For 
r 1 oc k 2r-t and r 3 oc q-s-z we thus have 

(5.6c) 

Assuming that the same arguments apply to magnon drag, one finds that 
there should be a rather fundamental difference in the interpretation of r 3 for 
antiferromagnetic and ferromagnetic semiconductors. 

As mentioned in chapter 4, in the case of antiferromagnets the larger carrier 
relaxation time for non-spin-flip scattering as compared with the carrier relaxa
tion time for spin-flip scattering can be understood from the argument that the 
former processes involve two magnons while the latter only involve a single 
magnon. The dominant scattering mechanism of the carriers is, therefore, the 
scattering by single magnons, so that for antiferromagnets r 3 may be interpreted 
as the relaxation time for magnons with q :5 2 k. 

In the case offerromagnets, however, the band splitting due to the magnetiza
tion prevents spin-flip scattering at temperatures up to nearly Tcand the mobil
ity is practically determined by non-spin-flip processes, i.e. two-magnon proc
esses. In that case the magnons taking part in the scattering of the carriers are 
notsubject to the condition q ;S 2 k. This means that r 3 wil be an average over 
all possible magnon modes which will be much smaller than the r 3 for low-q 
modes only. 

If all other quantities involved are equal one therefore expects that r 3/r1 , 

*) Scattering of phonons (magnons) by impurities and boundaries is neglected here. 



65-

and thus the first-order magnoo-drag effect, will be much smaller in ferro
magnetic than in antiferromagnetic semiconductors. 

With respect to secoud-order effects it is to be expected that these will be 
smaller for multi-magnon scattering than for one-magnon scattering. First 
because in the former case 1:3 will be smaller, and, second, because T 2 will be 
larger due to the fact that also magnons with q > 2 k have to be given the same 
drift velocity as the carriers (cf. the remark on the effect ofthe double degener
acy of the antiferromagnetic magnon states made at the end of sec. 5.2.1). 

Another condusion to be drawn from the above observations is that in anti
ferromagnetic semiconductors non-spin-flip scattering contributes much less 
than spin-flip scattering to the first-order effects in S and to the secoud-order 
effects. This may be accounted for by interpreting T 1 as being due to spin-flip 
scattering only and including non-spin-flip scattering in the relaxation time T 4 

of eq. (5.3). Except in cases of extremely large secoud-order effects this cor
rection is of some importance only at temperatures T ~ TN since only at these 
temperatures are Ttt and TH of the sameorder of magnitude (see fig. 4.2). 

It is finally noted that intervalley scattering between equivalent band extremes 
at different k-values involves magnons of large q having a small 1:3 , and is 
therefore expected to contribute only slightly to the drag effects. 

5.2.3. Magnon drag near and above TN 

Fr om the point of view of elementary theory the notion of magnons is valid 
only at low temperatures, while we also wish to apply the theory of magnon 
drag to MnTe at temperatures near and above TN. The probierus relating to 
magnons at high temperatures will not be discussed in this paper and the naïve 
point of view will be taken that for present purposes the magnon description 
of spin disorder is valid at all temperatures. Some support for this view is 
provided by the fact that neutron-scattering experiments have demonstrated 
the existence of magnon-like excitations at temperatures near and above 
TN 68

- 70), while the calculation in sec. 4.4.1 also shows that the formula 
derived for the mobility due to (one-) magnon processes is identical with Haas' 
formula relating to spin-flip scattering at temperatures up to TN. At higher 
temperatures the difference is only a factor (TN + B)/(T + B). 

An estimate of the time of decay of a magnon with wave vector q at tem
peratures comparable to TN has been given by Zanmarchi and Haas 21

): 

I 
=A q2 = l:: 2 J1 S z1 a1

2 q2 /h, (5.7) 
ï 3(q) i 

where the J1 are exchange integrals referring to the exchange interaction between 
a magnetic ion and its z1 neighbours at distance a1 which all have a spin S. 
A similar formula (with, however, a smaller value of the ditfusion constant A) 
has been given by Mori and Kawasaki 71

) and by De Gennes 72). 
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5.3. More accurate calculations 

More accurate formulae for the drag effects should he derived taking account 
ofthe wave-vector dependenee ofthe carrier and magnon (or phonon) relaxation 
timeST1(k), -c2(q), • 3(q) and • 4 (k). Theproblem to he solved has been formulated 
by Sondheimer 66) in the form of two Boltzmann transport equations, one for 
the carriers and one for the magnons (phonons), which have to he solved 
simultaneously. This approach has been used by Parrott 73

) and by Appel 74
). 

A somewhat different treatment has previously been given by Herring 65 •67). 

The papers cited consider acoustical-phonon drag. Their results should, 
however, apply also to magnon drag in antiferromagnetic semiconductors 
because the antiferromagnetic magnons have the same linear-dispersion law as 
acoustical phonons (neglecting the few magnons with very small wave vector, 
q < wAfc, cf. eq. (4.25)). 

As long as the scattering of the charge carriers may he regarded as quasi
elastic no partienlar difficulties arise in the calculation of the tirst-order drag 
contribution to the Seebeck coefficient. For the case that 

and 

one finds 67) 

F(3J2- r sJ2) 4 c2 -c3 

F(5/2) F(2 + r) 2 s p,1°T 

4 c2 T3 
sao= --

2- S ftlo T 

. 'f3 =: T3(Û() 

(non deg.), (5.8a) 

(deg.), (5.8b) 

(5.8c) 

(kis de:fined by eq. (5.6), p, 1 ° is the normal mobility due to • 1 only). As indicated 
by the factor 2 s these expressions are only valid if s < 2 *). For both the 
pbonon case and the case of magnons near TN one has r = 0 and s = 0, so 
that (5.8) reduces to 

c2 
• 3 km c2 r 3 

Sa<> = :! = ::rr;l/2 --
3 p, 1°T e kT r 1 

(non deg.), (5.9a) 

c2 r3 km c2 T3 
S/=2-- 2 

ft1°T e kT r1 
(deg.), (5.9b) 

•1 = r1(k), (5.9c) 

*) If larger valnes of s should occur one has to take into account that magnons and phonons 
with a very small wave vector always have a mean free path which cannot exceed the 
dimensions of the sample (or, perhaps those of the magnetic domains). 
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the first-order mobility p,1 o being given by 

4 e 
fllo = -3 l/2- Tl 

:n m 

e 
/l1°=-T1 

m 

(non deg.), (5.10a) 

(deg.). (5.10b) 

Taking into account that the T3 in the present formulae is a factor of 4 smaller 
than the T3 used by Zanmarchi and Haas 21), who put T3 = T3(k), the value 
of Sd predicted by eqs (5.9a) and (5.9b) is about 40% of that predicted by 
eq. (5.1) (with T 2 = oo). 

The problem of calculating the second-order effects is much more complicated 
than that of the first-order effects. In the papers cited only partial solutions with 
a limited range of validity were obtained. 

For a small second-order effect and T1(k) oc k-I, T4 = oo, T3(q) oc q- 2
, 

Parrott 73) finds a relative change in the mobility of non-degenerate material 

fl1- fl1° p m C2 T3 0·48 p Sd0 

---=0·48---=---
fll0 Nv kT T1 :n112 Nv kje 

(5.11) 

With the same approximations one finds from his equation 58 a relative change 
in the drag contribution to the Seebeck coefficient 

sdo- sd p sdo 
----=!--, 

sd NV k/e 
(5.12a) 

which is equivalent to 

Nv 
SM = 2- (k/e), (5.12b) 

p 

SM being defined by eq. (5.5a). It may be noted that eqs (5.5c) and (5.11) lead 
to a different value of SM. In the limit of high saturation, however, eqs (5.5a) 
and (5.5c) must have the same SM. 

In his conference paper 65
) Herring quotes an equation, also valid for small 

second-order effects and non-degenerate statistics, which corresponds to 

Nv 
SM = :n112 - (kfe). 

p 
(5.13) 

This is very nearly the same result as (5.12b). In his other paper (1954b) Herring 
treats the case that Te~ T4 (k) is independent of k *) while T1(k) oc k- 1 and 

*) The condition r 1 > r 4 is implied by the replacement of {1 •• by {1./ 0> in eq. 53 ofthe paper 
cited, which corresponds to neglecting thesecond-order effect on the carrier distribution. 
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r 3(q) oc q- 2 • His result for non-degenerate statistics is presented in graphical 
fonn and shows that the numerical coef:ficient in eq. (5.13) increases gradually 
with increasing importance of the second-order effect. At Sd/Sdo = 0·1, for 
example, one has approximately 

N. 
SM= 7 (kfe). (5.14) 

p 

The paper also gives an explicit expression for Sd/ Si valid for complete de
generacy and the same conditions regarding the relaxation times as above, 

(5.15a) 

which is equivalent to 

1 
(5.15b) 

with I ~M < 4/3 for 0 ~ ~ < oo. The parameter ~ in these equations may 
be written as 

(5.15c) 

where fis the fraction due to r 1 of the total loss of momenturn of the charge 
carriers and neglecting second-order effects. Since f R::> 1: 4 /r 1 and Te R::> 1:4 these 
equations give 

SM = (1 to 4/3) (kfe). (5.16) 

This result can also be obtained from the considerations on phonon drag 
in metals by Ziman (ref. 58, p. 409). He finds SM= n 2 Cdekp3 , CL being 
the pbonon heat capacity. Assuming that only phonons with wave vector 
q 2 kp contribute to CL it is easily shown that at high temperatures this 
leads to SM= (4/3) (kfe) per (acoustical) pbonon branch. At lower tempera
tures, viz. T < T0 ' 2 hckpfk (cf. eq. (4.36)), the heat capacity of the relevant 
phonons decreases as D(T/T0 ')/D(oo), D(x) being the well-known Debye 
function for the specific heat. At these temperatures one therefore expects 

D(T/T0 ') k 

~ D(oo) ; 
(5.17) 

in degenerate samples. Towards lower temperatures this correction slowly de
creases SM to half of its original value at T R::> 0·25 T0 '; at still lower 
temperatures SM diminishes more rapidly. 
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lt is noted that a similar quanturn correction should be applied for the tirst
order effect. Such correction might be of the form G(T/T0 ') D(T/T0')/D(oo), 
the first factor being the Grüneisen function (e/T)/(e/T)oo and descrihing the 
decrease of the coupling between caniers and phonons (i.e. an increase of r 1), 

and the secoud factor taking account of the deercase in heat capacity of the 
phonon system. As these corrections are not very important in the cases to 
be considered we have not investigated whether or not this argument is too 
simple. 

Appel 74) has considered the problem of second-order effects for combined 
phonon and ionized-impurity scattering of the carriers and a q-independent 
relaxation time of the phonons. This is a somewhat peculiar case because it is 
only due to the presence of impurity scattering that some of the relevant inte
grats remain finite. Because of this special feature it is doubtful whether the 
results of the calculations have a more general validity, and we have not 
analyzed them. 

5.4. Magnon dragin MnTe 

5.4.1. General remarks 

As mentioneJ in sec. 3, 1.1, only few measurements of the Seebeck coefficient 
in MnTe have been made. Especially in view of the shape of the S(T) curve near 
TN we did an accurate measurement on an Na-doped sample, theresultofwhich 
agrees very well with that obtained by others on similarly doped samples (see 
fig. 3.2). Below we shall consider this (degenerate) sample as well as the four 
(degenerate and non-degenerate) samples reported by Milier 6) (fig. 3.3). The 
temperature dependenee of the resistivity of these samples agrees with that of 
our samples of comparable resistivity. 

The separation of the Secbeek coefficient of the samples into contributions 
from the purely dectronie effect and the drag effect is hampered by two circum
stances. In the first place, our "experimental" mobility curves (fig. 3.8) provide 
no reliable data on the value of the mobility which is necessary in order to 
evaluate the hole concentration in Miller's samples from their resistivity. In the 
secoud place, especially near TN, the temperature dependenee ofthe experimental 
mobility deviates considerably from that predicted by Haas' theory of spin
disorder scattering. In sec. 4.3 we have proposed some possible explanations 
for this deviation. Each of these may affect the value of Se at temperatures 
near and above TN in some way or another, perhaps even to the extent that 
they are responsible for the larger part of the anomaly in S near TN. Por the 
moment, however, it will be assumed this is not the case and that the electronic 
contribution Se may be calculated from eq. (3.3) with temperature-independent 
effective mass and scattering parameter, and that the "experimental" mobilities 
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Fig. 5.1. The Seebeck coefficient of a non-degenerate sample (sample a from fig. 3.3); (a) meas
ured Seebeck coefficient S, and calculated electronk contribution S., (b) drag contribution 
Sd =S-S., and maximum drag contribution SM calculated using eq. (5.18a). For the 
curves labelled 1 the hole concentration was derived from the resistivity of the sample and 
the experimental mobility of samples 4 and 8 in fig. 3.8. For the curves labelled 2 a mobility 
was used having a value of 100 cm2 /V s at 77 °K and the temperature dependenee of the 
experimental mobility ofNa-doped samples. For comparison curve 3 of fig. 5.2b is also shown. 

750 

Fig. 5.2. The Seebeck coefficient of our Na-doped sample (see fig. 3.2); (a) measured Seebeck 
coefficient S, and calculated electronk contribution s., (b) drag contribution Sd = S-s., 
and maximum drag contribution SM calculated using eq. (5.18b). For curves 3 and 4 the 
hole concentration is 17.1019 cm- 3 and 33.1019 cm- 3 , respectively, assuming r = 0 and 
m = 0·6m0 • 

defined in sec. 3.4 may be used to convert resistivities into hole concentrations. 
These are the assumptions of case (1) considered in sec. 3.1.3. 

Figures 5.1a and 5.2a show the experimental Seebeck coefficient Sof a non
degenerate and a degenerate sample, and some possible electronic contribu-
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tions Se· For the non-degenerate sample, curve 1 for Se was obtained from the 
resistivity of the sample and the experimental mobility of samples 4 and 8 
(fig. 3.8). This mobility is 30 cm2 /V s at 77 °K. Curve 2 for Se was obtained 
with a mobility having a value of 100 cm2/V s at 77 °K and the temperature 
dependenee as found in Na-doped samples. For the degenerate sample Se was 
calculated with two different temperature-independent carrier concentra
tions. The difference S- Se is shown in figs 5.1b and 5.2b and presumably 
represents the magnon-drag contribution sd. 

F or a qualitative discussion of these curves we note first of all that the theory 
requires that Sd should be inversely proportional to the mobility. This gives a 
direct conneetion between the change of slope of Sa(T) and that of the mobility 
at TN. 

A striking difference between figs 5.lb and 5.2b is that towards lower tem
peratures Sd increases strongly in the non-degenerate sample while this is not 
the case in the degenerate sample. This difference is due to the fact that 
T 3(2 k)/T 1 (k) depends on temperature, k being equal to kr = (2 m k T)112 /ft 
for non-degenerate samples, whereas for degenerate samples k = kF 
(3 n 2 p)113 is independent of temperature. 

As follows from the correction factor (l SdfSM) in eqs (5.5b) and (5.5c), 
second-order effects become important if the drag contribution Sd comes close 
to the quantity SM. Assuming eqs (5.12b) and (5.17) tobevalid and taking 
the double degeneracy of the magnon states into account, we have 

Nv 
SM= 4-(kM 

p 

D(T'/T. ') 
SM ~ 0 

(kfe) 
3 D(oo) 

(non-deg.), (5.18a) 

(deg.). (5.18b) 

These estimates are indicated in figs .5.1b and 5.2b. They show that secoud
order effects should indeed be considered. 

5.4.2. Drag effects at 77 °K 

We fust consider the situation at low temperatures. Figures 5.lb and 5.2b 
show that at low temperatures sd remains well below SM for the degenerate 
sample, but that for curves labelled 1 of the non-degenerate sample Sd con
siderably exceeds SM. The latter cannot be correct. Either we have to take into 
account that for large second-order effects the numerical constant in eq. (5.18a) 
may be considerably larger than assumed (as in the case considered by Herring, 
eq. (5.14)), or we have used too small a mobility in calculating Se (fora given 
resistîvity a larger mobility means a smaller carrier concentration, a larger Se, 
a smaller Sd, and a higher SM)· The second possibility may be assumed to be 
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the case because sd shows no tendency to follow the temperature dependenee 
of SM towards lower temperatures. 

Curves labelled 2 represent the case of a larger assumed mobility and, indeed, 
does not show the contradiction S4 >SM. From this curve we find at 77 oK 
that Sd = 350 !LV/deg and SM 650 !LV/deg. Using eq. (5.5b) this gives 
S/ = 760 !LV /deg. If the mobility is entirely due to magnon scattering, the 
first-order mobility calculated according to eq. (5.11) becomes p 1° = 60 
cm2 /V s. Substituting these values and c 1·4.106 cm/s 21 ) in eqs (5.9a) and 
(5.9b) we obtain r 3 13.10- 13 s. If, however, other scattering mechanisms 
determine the mobility at 77 °K, then p 1° and thus r 3 may be considerably 
larger. To establish a more accurate value of T 3 and its temperature dependenee 
it will be necessary to have more information on the mobility and the scattering 
prevailing at low temperatures. 

In the preceding section the different temperature dependenee of Sd at low 
temperatures in degenerate and non-degenera te samples was attributed to the 
different temperature dependenee of r 3(2 k)/r1(k) for the two cases. For the 
strongly degenerate sample d of fig. 3.3 (see also fig. 3.2) it is found that 
Sd = sdo ~ 15 !LV/deg at 77 °K, which seems extremely low compared to the 
estimate S/ = 760 !LV /deg for the non-degenerate sample considered in fig. 
5.1. The differenèe may, however, be understood by noting that at 77 °K with 
m = 0·6 m0 and p [Na]= 2.1020 cm- 3 (or p 90 cm/V s) one has 
kF!kT = 5·6. The ratio 760/15 = 51 is, therefore, more than accounted for if 
S/ rx f- 2 · 5 • This implies that the scattering parametersrand s for caniers 
and magnons satisfy 2r + s 1·5 (cf. eq. (5.6c); r 1(k) rx P'-1, r 3(q) rx 
q-•- 2). This relation requires no values of r and s which are a priori impos
sibie *). 

5.4.3. Drag effects near TN 

At temperatures near TN second-order effectsneed notbetaken into account 
for non-degenerate samples because Sd «SM. In view of the uncertainties 
mentioned in sec. 5.4.1 the first-order drag contribution at 320 °K (i.e. just 
above TN) bas been analyzed in the following general way. Figure 5.3 shows 
the Seebeck coefficient and resistivity at 320 °K of the four samples of fig. 3.3. 
According to the figure the relation between S and e may be written as 

S = (k/e) In (e/eo) = l98logw(e/eo) !LV/deg, 

(Jo~ 1·5.10- 3 Q cm. 

(5.20a) 

(5.20b) 

Denoting by Pt and p 1 the total (drift) mobility and mobility due to one-

*) In the calculation of • 3 above it was assumed that r s 0. Other values of r and s 
do not, however, change the results very much, except if s would be 2 or larger, cf. eqs 
(5.8a) and (5.8b). 
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Fig. 5.3. Seebeck coefficient vs resistivity at 320 °K for samples a, b, c and d of fig. 3.3. 
The arrow indicates the value 1·5.10- 3 fl cm for eo in eq. (5.20). 

magnon scattering, respectively, one also bas for non-degenerate statistics, 
negligible second-order effects and r 3 given by eq. (5.7), 

k h 
[r + 2 + In (Nv ltr e e)] + · 

e A 6p,1 m kT2 
(5.21) 

From the theoretica! point of view the quantity of main interest is c2 /A. The 
value of this quantity and that of Sd are now determined. 

Combiningeqs (5.20a) and (5.21), one obtains, putting x= ltr (T/300)3
'
2 and 

m5 = m e2, 13 (cf. eq. (3.5b)): 
k 

Sd = In (e2 +r Nv !tr e eo)- 1 

e 

A 

k 3·36.10- 2/eo 
-In , 
e x (m5fm0 )312 

6p,1 m(kT)2 

-----ln(e2 +r Nu en )- 1 
h2 e v rt r:o 

5·25.1012 e-2r/3/-t1 (_!_)1/2 x ms In 3·36.10-2/eo , 
#r 300 m0 x (m5fm0 )

3
'

2 

(5.22) 

(5.23) 

with x in cm2/V s, eo in n cm, c2/A in s- 1 • Figures 5.4a and b show StJ and 
y = {exp (2 r/3)} (3p,1/2 p,1) (300/T)1' 2 (c2/A) as a function of x for f!o = 
1·5.10- 3 0 cm and different relevant values of m5 • From these figures Sd and 
{exp (2 r/3)} (3p,r/2p,1) (c2/A) are directly evaluated once #r and m5 are 
known. They also show the effect of changing the assumed values of ltr and 
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Fig. 5.4. (a) The drag contribution 8 4 and (b) the quantity 
Y = (3/2) 5·25.1012 x (m5 /m0 ) 1n {22 x- 1 (ms/m0)- 312 } 

as a function of x = ftt (T/300) 312 for various values of m5 = m exp (2 r/3) acording to eqs 
(5.22) and (5.23) with eo 1·5.10- 3 n cm. Arrows indicate combinations of values of x 
and ms for which x (ms/m0 ) 312 22 cm2/V s. 

Milier 6 ) finds frorn the resistivity of samples of cornposition NaöMn1 -öTe 
a rnobility of about 2 crn2/V s at 320 oK (assurning that at this ternperature 
the hole concentration is equal top [Na]= 2 ó.l022 crn- 3

). A rnobility 
of 4 crn2/V s seerns a reasonable cornprornise between this value and our 
highest experirnental rnobility of 7 crn2/V s at 320 oK (see fig. 3.8). With 
x 4·5 crn2/V s and ms = 0·6 m0 figs 5.4a and b give S11 R::: 200 [.LV/deg and 
{exp (2 r/3) }{3 p,/2 p 1)(c2JA) ~ 5.1013 s- 1

• 

Assurning that Haas' theory of spin-disorder scattering is valid, r 0 and 
2 ,ud3 p, = I (assurning that only spin-flip scattering contrib"!ltes to the drag 
effect) so that c2 /A = 5.1013 s- 1 • The theoretica! value calculated according 
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to eq. (5.7) with exchange integrals quoted by Zanmarchi and Haas 21) is 
1·1.1013 s- 1 . As remarked in conneetion with eq. (5.7) other authors 71 •72) 

obtain somewhat smaller values of A than Zanmarchi and Haas. Our experi
mental value of 5.1013 s- 1 for c2/A thus appears to he in quite satisfactory 
agreement with theory. 

lt will he noted that according to fig. 5.4b the value of c2 /A is fairly in
sensitive to variations in mobility and Seebeck effective mass as long as 
x (m5fm0 ) 312 ;S 15 cm2 /V s. There is therefore a certain freedom in changing 
the assumed values of f.lt and m5 without coming into conflict with the theor
etica} value of c2 /A. 

For a qualitative discussion of the temperature dependenee of c2 /A near TN 
it is remarked that towards lower temperatures the quantity x increases roughly 
as the ratio of the experimental mobility to the theoretica} mobility in fig. 4.4. 
Above TN the mobility in non-degenerate material is not accurately known, 
but it seems likely that at these temperatures x is roughly constant. Because, 
as just mentioned, c2 /A is only a weak function of x and, furthermore, f!o is 
constantforT > 240 °K (fig. 3.3), it follows that c2 /A is roughly constant for 
T > TN and increases only slightly towards lower temperatures. A pronounced 
change of c2 /A with temperature near TN is not expected 21). 

We now consider degenerate samples, like the sample of fig. 5.2 and sample d 
of figs 3.3 and 5.3. As the latter two figures show, the resistivity and Seebeck 
coefficient of degenerate samples ohey the same relations (5.20a) and (5.20b) 
as non-degenerate samples. As long as only first-order effects are considered 
this may he attributed to the fact that the total Seebeck coefficient Se + S4° 
may he rather insensitive to effects of degeneracy because these enlarge Se and 
reduce sdo (forT> TN we have sdo oc r3/rl oc f- 1). Figure 5.2 shows, however, 

"' that for degenerate samples second-order effects cannot he neglected at tem-
peratures T ~ TN. Making the appropriate correction according to eq. (5.5b) 
for SM= 220 !1-V/deg, one finds for curve 3 with S4 150 !1-V/deg and curve 
4 with S4 = 170 !1-V/deg that S4° is 470 and 750 !1-/Vdeg, respectively. Contrary 
to the expectation these values are appreciably larger than the 200 !1-V /deg ob
tained for non-degenerate samples. 

Another feature of the experimental data also disagrees with the theoretica! 
expectation concerning second-order effects. As mentioned in sec. 5.1.2 and as 
shown by eq. (5.5c), the mobility increases with increasing second-order effect. 
Therefore, the mobility in the degenerate sample should he larger than in a 
non-degenerate sampleforT;;:;:; TN. This is indeed the case (cf. fig. 3.8). How
ever, at temperatures below TN second-order effects are negligible and both 
types of samples should have the same mobility (neglecting the effect of T', 
fig. 4.3). This should lead to only a small change of slope at TN in the mobility 
for the degenerate sample, as shown by the dashed curve in fig. 5.5. lnstead of 
a small change of slope the experimental mobility in degenerate samples shows 
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Fig. 5.5. Expected behaviour of mobility near T N in the presence of second-order effects 
(schematic). Curve 1: experimental mobility in degenerate samples; curve 2: experimental 
mobility in non-degenerate samples; dasbed curve: expected mobility in degenerate samples 
in the presence of second-order effects. 

on the contrary a large change of slope, see fig. 4.4. The same difficulty is en
countered when consirlering the different temperature dependenee of the See
beck coefficient in degenerate and non-degenerate samples (fig. 3.3). 

The above discrepancies can be explained if it is assumed that the hole con
centration in degenerate (Na-doped) samples and non-degenerate (undoped) 
samples depend differently on temperature between 240 °K and TN· If in the 
undoped samples p increases, both sdo and the change of slope in the mobility 
at TN forthese samples become larger. Conversely, if in the Na-doped samples 
p decreases between 240 °K and TNtheir sdo and change of slope in the mobility 
become smaller. In the latter case Sdo diminishes both because Se increases and 
because the correction for thesecond-order effect decreases. In this case, there
fore, a much smaller change in p is required to satisfy the expected relations 
than in the case ofthe undoped samples. This may be an argument for assuming 
that the anomalous temperature dependenee of the hole concentration occurs 
rather in the Na-doped samples than in the undoped samples. 

It will be noted that the correction of the experimental mobility p,*(T) 
necessitated by the proposed change in hole concentration near TN increases 
the difference in p,* at T > 240 °K for undoped and Na-doped samples. Sirree 
this difference is already large at temperatures below 240 oK this may not be 
a strong argument against the proposed interpretation, and it should probably 
be atttibuted to poor crystal quality (cf. sec. 3.4). 

It thus appears that an anomalous temperature dependenee of the acceptor
level depth as envisaged in case (2a) of sec. 3.3 may be a real effect occurring 



-77 

in MnTe. As mentioned in sec. 4.3.2 such an effect is possible ifthe band param
eters depend on the sublattice magnetization. 

The model of magnetization-dependent band parameters also includes the 
possibility of a temperature-dependent effective mass (case (2b) of sec. 3.3). A 
temperature-dependent effective mass cannot contribute much to diminish the 
discrepancies discussed here, but it can contribute significantly to the tempera
ture dependenee of Se. The proposed model need not, however, lead to a 
magnon-drag contribution to the Secbeek coefficient smaller than theoretically 
expected because of the insensitivity of c2/A to variations in effective mass and 
mobility. 

In sec. 4.3 two other modifications in the theory of spin-disorder scattering 
are mentioned, viz. an interaction between charge carriers and ionic spins 
different from that assumed by Haas, and the possible importance of magnetic
polaron effects at T ~ TN. In the former case the relaxation time determining 
the mobility is an anisotropic function, as yet unknown, of the wave vector k. 
It can he easily shown that a possibly temperature-dependent effective *) 
scattering parameter r cannot account for the different temperature dependenee 
of the resistivity and Secbeek coefficient in degenerate and non-degenerate 
samples. The magnetic-polaron model can account for this difference only if 
it also leads to a different temperature dependenee of the hole concentration 
in the two types of samples, or if the model includes a mechanism that corre
sponds to the second-order effect but works out differently. 

*) Because of the anisotropy of -r(k) a true scattering parameter r defined by • a: E'- 1 12 

may not exist. 
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6. CONCLUDING REMARKS 

For temperatures below 240 °K the interpretation of the electrical transport 
properties of p-type MnTe seems to pose no essential problems. From a further 
study of the Seeheck coefficient and the dominating scattering mechanism it 
should be possible to obtain the value of the magnon relaxation time and its 
dependenee on temperature and wave vector. 

The origin of the interesting transport properties above 240 oK is less clear. 
Starting from the simple assumptions of a temperature-independent acceptor
level depth and effective mass, and assuming an interaction between the charge 
carriers and ionic spins proportional to s • S 1, as well as the validity of a simple 
description of magnon drag, it has been shown that the following experimental 
data cannot he accounted for: 
(A) the sharp change of slope at TN (307 °K) in the "experimental" mobility 

as a function of temperature (see fig. 4.4), 
(B) the temperature-dependent anisotropy ttu I ft 1 ( see fig. 3.1 0), 
(C) the larger experimental mobility in degenerate samples than in non-de

generate samples (see fig. 3.8), 
(D) the different temperature dependenee of the experimental mobility (see 

figs 4.4 and 5. 7) and of the Seeheck coefficient (see fig. 3.3) near TN in 
degenerate and non-degenerate samples, 

(E) the larger drag contribution to the Seebeck coefficient at T?; TN in de
generate samples (after correction for second-order effects) than in non
degenerate samples. 

Point (C) may he related to imperfect crystal quality. It seems unlikely that 
this is also the case for the other points listed although, of course, verifica
tion by measurements on more perfect crystals would he valuable. 

In conneetion with (A) and (B) three possible modifications of the theory of 
spin-disorder scattering were proposed in sec. 4.3: 
(1) the interaction between charge carriers and ionic spins giving rise to spin

disorder scattering is of a more complex form than that assumed in eq. 
(4.3), this complexity being possibly due to spin-orbit coupling of the 
chat gt: carriers, 

(2) the interaction between charge carriers and ionic spins leads not only to 
scattering, but also to magnetization-dependent band parameters, 

(3) at T ?; TN the mean free path of the charge carriers due to the scattering 
is so small that a magnetic-polaron model is a better starting point for 
theoretica! explanations. 

In case (1) no anomalous temperature dependenee of the hole concentration 
is expected to occur near TN and the "experimental" mobility detined in sec. 3.4 
will he equal to the drift mobility (except for the trivial effect of crystal quality, 
and the possibility that there is an anomalous con tribution to the Hall coefficient 
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at low temperatures). In order to account for the observed anisotropy in the 
mobility, point (B), the relaxation time must be an anisotropic function, as yet 
unknown, of the wave vector k. It can be easily shown that point (E) requires 
the effective scattering parameter to be smaller than Such a change in the 
value of r cannot, however, account for the different temperature dependenee 
of the mobility and Seebeck coefficient in degenerate and non-degenerate 
material, point (D). 

If the band parameters depend markedly on the sublattice magnetization 
(case (2)), the acceptor-level depth, and thus the hole concentration, may change 
anomalously near TN . .Due to this change the drift mobility is not equal to the 
"experimental" mobility. The drift mobility might still originate from the inter
action (4.3), but account must be taken of temperature dependenee of the 
effective mass and exchange integrals J, while the mobility will also include 
terms containing the staggered susceptibility. This model seems to be capable 
of explaining all items listed, except perhaps (C). Further theoretical work is 
necessary to determine whether the model does in fact lead to the required 
temperature dependenee of the drift mobility and its anisotropy, points (A) 
and (B). The difficulties of points (D) and (E) would be removed if near TN 
and with rising temperature the hole concentration either increases in the non
degenerale (undoped) samples or decreases in the degenerate (Na-doped) 
samples. As remarked in sec. 5.4.3, the fact that the mobility and the effective 
mass may have values different from those assumed in that section need not 
greatly affect the experimental value of c2/A, the quantity determining the 
magnitude of the first-order drag effect at temperatures comparable to TN. 

In tbe case of magnetic po larons both the theoretical mobility and the Seebeck 
coefficient have to be reconsidered completely. Point (D) requires tbat tbe 
model leads to a temperature-dependent acceptor-level deptb, or tbat it in
cludes some mecbanism which corresponds to the second-order drag effect and 
wbich results perhaps in a polaron effective mass depending on the hole con
centration. 

According to tbe above considerations tbe evidence of tbe available data 
strongly suggests that in the case of broad-band conduction tbe transport 
properties of p-type MnTe are significantly affected by amagnetization-depend
ent effective mass and acceptor-level deptb (althougb tbe dependenee need 
not be as large as sbown in tigs 3.6 and 3.7). 

Tbe optical data 19 - 21) are not in disagreement with tbis conclusion, but 
neither do they provide information regarding its validity. For experimental 
verification of tbe conclusion it would be of interest to find new and independent 
ways of measuring tbe drift mobility, hole concentration or effective mass at 
temperatures near TN. Tbe drift mobility could perhaps be obtained from noise 
measurements 75

) or witb tecbniques using injection pulses 76). In spite of its 
anomalous behaviour a carefut study of the Hall effect might still give infor-
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mation regarding the possible anomalous temperature dependenee of the hole 
concentration near TN. If these measurements show that points (C) and (D) 
are real mobility effects, a polaron model with concentration-dependent effective 
mass deserves serious attention. 
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Summary 

MnTe is an antiferromagnetic semiconductor with a Néel temperature TN of 
307 °K and an energy gap of 1·2 eV. The electrical properties, Hall coefficient, 
resistivity and Seebeck coefficient (thermoelectric power) ofp-type MnTe show 
a marked infiuence of the rapidly changing magnetic ordering occurring near T N· 

The investigation and explanation of this infiuence constitutes the main subject 
of this thesis. 

In chapter 1 some general properties of MnTe are discussed. In chapter 2 a 
description is given of the experimental arrangements used, and of a simple and 
sensitive method for measuring anisotropies in the resistivity. 

The results of the measurements are presented and their interpretation is 
discussed in chapter 3. It is found that a pronounced anisotropic anomalous 
contribution to the Hall effect occurs at temperatures above 240 °K. The sign 
and temperature dependenee of this contribution agrees with the predictions 
of Maranzana's theory descrihing the anomalous Hall effect in magnetic con
ductors. However, this theory does not account for the magnitude and the 
anisotropy of the observed effect. 

Important factors for the description of the resistivity and Seebeck effect are 
spin-disorder scattering and magnon drag. These phenomena are discussed 
in chapters 4 and 5, respectively. 

Disorder in the orientation of the magnetic moments causes scattering of the 
charge carriers due to the existence of an exchange interaction between a charge 
carrier and the partially filled shells of the magnetic atoms. Haas recently cal
culated the mobility of charge carriers in magnetic semiconductors making 
certain assumptions, among other things as regards the form of the interaction 
mentioned. It is found that this theoretica! mobility cannot account for the 
temperature dependenee of the resistivity observed in MnTe near TN, nor for 
the observed temperature dependenee of the anisotropy of the resistivity. 

Three possible extensions ofthe theory of spin-disorder scatteringareindicated: 
(1) The true form of the interaction between charge carriers and magnetic spins 
is more complicated than assumed. (2) The interaction causes a mixing of 
states of different energy bands, the amount of mixing depending on the 
magnitude of the (sublattice) magnetization. This may lead to a magnetiza
tion-dependent effective mass and acceptor-level depth. (3) At temperatures 
T?::, TN the mobility is so small (of the order of 5 cm2 /V s) that a magnetic
polaron model is a better starting point for theoretica! explanations. 

In conneetion with the discussion of magnon drag a calculation is given of 
the mobility in antiferromagnetic semiconductors due to the scattering caused 
by the creation and annihilation of a magnon. The equation obtained agrees 
with the corresponding equation of Haas' theory at all temperatures up to TN. 

At temperatures above TN the difference between the two results is only small. 
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In chapter 5 both fi.rst-order and second-order magnon-drag effects are dis
cussed. The first-order drag effect appears in the Seebeck (and Peltier) effect, 
and is caused by the mutual drag between currents of charge carriers and 
magnons resulting from the scattering of charge carriers by magnons. Secoud
order effects become important if the scattering of magnons by charge carriers 
contributes significantly to restoring equilibrium in the magnon system. This 
is only the case if the carrier concentration is large. Second-order effects lead 
to an increased mobility of the carriers and to a decreased drag contribution 
to the Seebeck effect. 

At low temperatures (measurements have been done down to 77 °K) the 
magnitude and wave-vector dependenee of the magnon relaxation time can he 
estimated from the drag contri bution to the Seebeck coefficient in samples with 
different hole concentration. For obtaining more accurate results more infor
mation is required regarding the mobility at these temperatures. 

If it is assumed that in MnTe the hole concentration and effective mass do 
not, or do nearly not, depend on temperature, the first-order magnon-drag 
effect is found to account adequately for the observed Seebeck coefficient at 
temperatures near and above TN. From the measurements the ditfusion con
stant of the magnons can be derived. The value obtained is relatively insensitive 
to variations in the assumed values of effective mass and mobility, and it agrees 
fairly well with theoretica! expectation. 

It is shown that at temperatures close to and above TN second-order effects 
should be important in highly-Na-doped samples, which have a large hole 
concentration. From this fact a different temperature dependenee is expected 
to occur in the resistivity and Seebeck coefficient of undoped and Na-doped 
samples. The observed difference is, however, opposite to th~t expected. It is 
concluded that probably the Na-acceptor-level depth depends on the sublattice 
magnetization. Also a refined magnetic-polaron model may perhaps account 
for the experimental data. 

In the final chapter 6 the main differences between experimental data and 
the simple theoretica! roodels used are reviewed and compared to the theoretica! 
refinements proposed in chapter 4. Some suggestions for further experimental 
workon MnTe are made. 
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Samenvatting 

MnTe is een antiferromagnetische halfgeleider waarvan de elektrische eigen
schappen duidelijk beïnvloed worden door de sterk veranderende magnetische 
ordening die plaats vindt rond de Néel-temperatuur, TN 307 °K. Het voor
naamste onderwerp van dit proefschrift is de bestudering en verklaring van 
deze invloed op de elektrische weerstand, het Hall-effekt en het Seebeck-effekt 
(thermokracht) in p-type MnTe. 

Na een bespreking van enige algemene eigenschappen van MnTe in hoofd
stuk I, wordt in hoofdstuk 2 een beschrijving gegeven van de gebruikte meet
methoden. In het bijzonder wordt ingegaan op een methode om op eenvoudige 
en gevoelige wijze weerstandsanisotropieën te meten. 

In hoofdstuk 3 worden de meetresultaten en hun mogelijke interpretaties be
sproken. In het Hall-effekt blijkt een sterk anisotrope anomale bijdrage op te 
treden bij temperaturen boven 240 °K. De temperatuurafhankelijkheid van 
deze bijdrage is in goede overeenstemming met Maranzana's theorie van het 
anomale of buitengewone Hall-effekt in magnetische geleiders. Deze theorie 
geeft echter geen verklaring voor de grootte en de anisotropie van het waar
genomen effekt. 

Belangrijk voor de beschrijving van weerstand en Seebeck-coefficient zijn 
spinwanorde-strooiing en magnon-drag ("magnon-meesleep-effekt"). Deze ver
schijnselen worden achtereenvolgens besproken in de hoofdstukken 4 en 5. 

Wanorde in de orientatie van de magnetische momenten geeft aanleiding tot 
strooiing van ladingdragers doordat er een plaatsruil-wisselwerking is tussen 
een ladingdrager en de gedeeltelijk gevulde schillen van de magnetische atomen. 
Onder bepaalde veronderstellingen, o.a. wat betreft de vorm van genoemde 
wisselwerking, heeft Haas een theoretische berekening gegeven van de uit deze 
strooiing voortvloeiende beweeglijkheid van ladingdragers in magnetische half
geleiders. Het verloop van deze beweeglijkheid blijkt de bij de Néel-temperatuur 
waargenomen temperatuurafhankelijkheid van de weerstand in p-type MnTe 
niet te kunnen verklaren. Ook geeft de theorie geen rekenschap van de gevonden 
temperatuurafhankelijkheid in de anisotropie van de weerstand. 

Drie mogelijke uitbreidingen van de theorievoor spinwanorde-strooiingwor
den genoemd: (1) De werkelijke vorm van de wisselwerking tussen ladingdragers 
en magnetische spins kan gecompliceerder zijn dan in Haas' theorie wordt aange
nomen. (2) De wisselwerking brengt een menging teweeg van toestanden uit 
verschillende energiebanden, waarbij de grootte van de menging afhangt van 
de subrooster-magnetisatie. Dit kan onder meer leiden tot een magnetisatie
afhankelijkheid van effektieve massa en acceptordiepte. (3) De beweeglijkheid 
bij temperaturen T :;_:: TN is zo klein (van de orde van 5 cm2 /V s) dat een 
magnetisch-polaronmodel een beter uitgangspunt voor theoretische beschou
wingen is. 
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In verband met de discussie van magnon-drag-verschijnselen wordt aan het 
eind van hoofdstuk 4 een berekening gegeven van de beweeglijkheid in anti
ferromagnetische halfgeleiders verO&rzaakt door strooiing ten gevolge van het 
creëren en annihileren van een magnon. De verkregen formule stemt in het hele 
temperatuurgebied totTNovereen met de overeenkomstige formule uit Haas' 
theorie. Bij temperaturen boven TN zijn de afwijkingen tussen de uitkomsten 
van de twee berekeningen slechts gering. 

Bij de magnon-drag-effekten worden in hoofdstuk 5 zowel de eerste- als 
de tweede-orde effekten besproken. Het eerste-orde effekt geeft een extra 
bijdrage tot het Seebeck- (en tot het Peltier-) effekt en wordt veroorzaakt 
doordat wegens onderlinge botsingen ladingdragers meegesleept worden 
door een magnonenstroom (en omgekeerd). Tweede-orde effekten zijn van 
belang wanneer strooiing van magnonen aan ladingdragers een aanzienlijke 
bijdrage levert tot het in evenwicht komen van het magnonsysteem. Dit is alleen 
het geval bij grote ladingdragersconcentratie. Tweede-orde effekten leiden tot 
een vergroting van de beweeglijkheid van de ladingdragers en tot een verkleining 
van de magnon-drag-bijdrage tot de Seebeck-coefficient. 

Bij lage temperaturen (metingen zijn gedaan vanaf 77 tot 350 °K) kan uit 
de drag-bijdrage aan de Seebeck-coefficient van preparaten met verschillende 
gatenconcentraties een schatting gemaakt worden van de grootte en golfvektor
afhankelijkheid van de relaxatietijd van de magnonen. Voor nauwkeuriger uit
komsten zijn meer gegevens betreffende de beweeglijkheid bij deze temperaturen 
vereist. 

Indien men aanneemt dat in MnTe de gatenconcentratie en de effektieve 
massa niet of nauwelijks van de temperatuur afhangen, vindt men dat het 
eerste-orde magnon-drag effekt een goede verklaring geeft voor de waarge
nomen Seebeck-coefficient bij temperaturen in de buurt van of boven de Néel
temperatuur. Uit de metingen kan de diffusieconstante van de magnonen be
paald worden. De afgeleide waarde is betrekkelijk onafhankelijk van de ver
onderstellingen aangaande de effektieve massa en de beweeglijkheid, en zij stemt 
redelijk goed overeen met de theoretisch voorspelde waarde. 

Men kan laten zien dat tweede-orde effekten van belang zijn in sterk met 
natrium verontreinigde preparaten (die een grote gatenconcentratie hebben) 
bij temperaturen T ~ TN· Hieruit volgt dat de temperatuurafhankelijkheid van 
de weerstand en van de Seebeck-coefficient verschillend moet zijn voor al dan 
niet met Na verontreinigde preparaten. Het waargenomen verschil is echter 
tegengesteld aan het verwachte verschil. Hieruit wordt de gevolgtrekking ge
maakt dat waarschijnlijk het Na-acceptorniveau van de subroostermagnetisatie 
afhangt. Ook een verfijnd magnetisch-polaronmodel zou de waarnemingen 
misschien kunnen verklaren. ' 

In het zesde en laatste hoofdstuk worden de voornaamste verschillen tussen 
de waarnemingen en de gebruikte eenvoudige theoretische modellen nog eens 
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kort samengevat en vergeleken met de theoretische verfijningen die in hoofd
stuk 4 werden voorgesteld. Tenslotte worden enige voorstellen gedaan betref
fende eventueel verder te doen experimenteel onderzoek aan MnTe. 
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I 

Anisotropieën in de soortelijke weerstand kunnen zeer geschikt bepaald worden 
door de methode van Van der Pauw toe te passen op preparaten van eenvoudige 
vorm. 

Dit proefschrift, hoofdstuk 2. 

11 

"Xoor een beter begrip van de elektrische geleiding in p-type MnTe rond de 
Néel-temperatuur zijn metingen gewenst waaruit de beweeglijkheid, gatencon
centratie, of acceptordiepte op onafhankelijke wijze bepaald kan worden. 

Dit proefschrift, hoofdstukken 5 en 6. 

111 

De wijze waarop Abrikosov et al. het existentiegebied van MnTe bepaald hebben 
is aan bedenking onderhevig. 

N. Kh. Abrikosov, K. A. Dyul'dina en V. V. Zhdanova, 
Inorg. Mat. 4, 1638, 1968. 

IV 
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