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ABSTRACT 

 
 

Distinguishing neurodegenerative diseased patients (e.g., 

suffering from Alzheimer‟s Disease (AD)) from healthy 

individuals with the aid of MRI images is one of the 

challenges that need to be addressed in the field of 

Computational Anatomy (CA). A crucial feature in the 

analysis is the rate of atrophy of brain structures like the 

hippocampus or the ventricles. Until recently, analysis of 

atrophy rate has been restricted mainly to „localized 

atrophy‟, i.e. atrophy within one brain structure. 

Distinguishing correlations of atrophy rates between 

different brain structures could possibly provide additional 

information about the disease process. Therefore, in this 

paper, we propose a method to measure and analyze 

correlations of atrophy rate between hippocampus and 

ventricles with the aid of some correlation parameters. We 

combine the parameters that we thus obtain with some local 

atrophy rate parameters into a multidimensional vector, and 

use various vector classification methods to analyze the 

atrophy process with the aid of MRI brain volumes from the 

ADNI database. We obtain a good agreement between our 

classification results and the ground truth data. The analysis 

is facilitated with the aid of a specially designed graphical 

user interface. 

 

Index Terms— Computational Anatomy, Non-local atrophy 

correlation, Vector classification methods, Segmentation of 

ventricles, Chan-Vese method.  

 

1. INTRODUCTION 

 

Alzheimer's disease (AD) is one of the most costly diseases 

for society in Europe and the United States, and with the 

aging population its importance will increase in the future. 

Therefore, quick and reliable diagnostic tools will be of 

great importance. Nowadays, Alzheimer‟s disease can be 

diagnosed non-invasively with the aid of MRI brain images. 

When the brain ages, cells die and are replaced by 

cerebrospinal fluid (CSF), a process known as atrophy. In 

AD patients, atrophy occurs at a faster rate than in normal 

persons, initially especially in the hippocampus and the 

ventricles. In order to determine brain atrophy, one or more 

scans are used, that are usually taken at intervals of several 

months. The diagnosis of AD is being performed by a 

radiologist, comparing these scans “by eye”. For a more 

quantitative, reliable and reproducible procedure, 

automation of the diagnostic process would be very useful. 

 

In order to compare two MRI images (referred to often by 

“Template” and “Study” images) a number of steps are 

needed [3]: 1. The bias field needs to be corrected. 2. There 

should be intensity scaling and/or histogram equalization to 

remove the differences in intensity that are not due to 

structural differences. 3. Rigid (or affine) registration needs 

to be performed to remove misalignment of the images. 4. A 

local registration needs to be performed, through which the 

true anatomical differences can be revealed by the 

deformation field ( )u r . 5. “Diagnostic” parameters can 

give more insight into the (local or global) characteristics of 

the deformation field. Step 4 and 5 typically belong to the 

field of “Computational Anatomy” (CA), a term introduced 

Grenander and Miller in 1998 [1]. Many methods to perform 

local registration  have already been developed [1, 5]. In our 

work described here we use a method based on fluid-

dynamical equations developed by Christensen [2]. Many 

diagnostic parameters have also been proposed [1, 5]. Most 

often used are the deformation magnitude | |u and the 

Jacobian determinant JD , both parameters that are 

measured at positions within various brain structures, like, 

especially in the case of AD research, the hippocampus and 

the ventricles. It is very probable, however, that correlations 

exist between the parameters measured in different 

structures, and that measuring these correlations will 

provide additional information about the development of the 

illness.  

In a previous work [3] we enhanced the ability to evaluate 

local parameters by introducing two new spaces to monitor 

the (virtual) time evolution of the deformation calculated by 

a deformation algorithm, viz. the  ( ',| |)J u , and ( , )   

space  (where we indicate ' 1J JD     as the “Jacobian 

displacement”  
 
is the size of the deformation vector, and 

( , )   are the polar angles of the deformation vectors), and 



designed a user interface that enabled a quick interpretation 

of the data. Application of these features to a set of MRI 

brain volumes of the ADNI [4] database revealed new 

possibilities of pattern analysis, but a clear distinction 

between sets of AD and NL subjects could not yet be made, 

possibly due to effects like imperfect rigid registration. 

In this paper we introduce the possibility of measuring non-

local properties through the introduction of a number of 

“correlation parameters”.  In addition we measured already 

existing parameters like the divergence. We extended the 

functionality of our user interface to include these functions. 

Then we performed an analysis using vector classification 

methods on the same dataset we used for the analysis of [3], 

to examine whether differences between AD and NL 

subjects could be identified. It appeared that such 

differences did indeed occur, and that a good 

correspondence was achieved between the diagnosis and the 

ground truth data. 

This paper is organized as follows:  In Section 2, we  

describe the diagnostic parameters. In Section 3 we describe 

some aspects of the new user interface, particularly the part 

that facilitates the selection of the regions that can be 

studied. Section 4 describes the different vector 

classification methods to distinguish AD from NL with the 

aid of our diagnostic parameters. In Section 5 we present the 

experimental results, and we conclude in Section 6. 

 

2. DIVERGENCE AND  CORRELATION 

PARAMETERS 

 

In this section we introduce the parameters we added to our 

diagnostic set, to further enhance the analysis of the 

deformation process, and give a short motivation for their 

use. 

1. The divergence of the deformation 

  u  
   

  
 

   

  
 

   

  
                               

An integration of this quantity over a certain region can 

show whether sources of compression or expansion appear 

within this region, and can thus be used to identify atrophy.  
2. The directional correlation coefficient 
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Here, RN  is the number of points inside region R, ( )u r  is 

the deformation vector at point r , ( ), ( ')u r u r   is the 

scalar product for two vectors ( )u r  and ( ')u r  . 

The correlation coefficient is 1 when the deformation is in 

the same direction, and 0 when the deformation directions 

are random, and can thus provide an indication to 

distinguish a large global deformation (that can be due to 

imperfect rigid registration) from local deformations. 

3. Mean Inproduct Correlation. 
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This parameter yields an indication of the relation of the size 

and the direction of the deformation of two structures. 

4. Mean Jacobian Displacement Correlation 

'_

' ''

1
( , ') '( ) '( ')J Corr

r R r RR R

f R R J r J r
N N  

 


       (4)                         

This gives an indication of whether the joint deformation of 

two regions is large for both regions, and whether it is in the 

same direction, e.g. it will be large and positive if there is 

mainly expansion or contraction in both regions. 

5. Mean Jacobian Displacement Sign Correlation 
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This coefficient will yield an indication about whether there 

will be mainly contraction or expansion in both of the 

regions, and their correlation.  

 

 

3. VISUALIZATION ENVIRONMENT 

 

We implemented the enhanced Graphical User Interface in 

Matlab. Below we describe some of its functionality 

 

 
Fig.1. Starting window of the user interface. Left side: top 

two images: | |u  for two slices; middle two images:    for 

two slices; bottom 3 slices:      and   component of the 

deformation field. Right side: an arbitrary slice can be 

selected to display the displacement field (shown by colored 

glyphs).  

 

 

3.1. Region of Interest (ROI) 

 

In the user interface, the starting screen shows pictures of 

the displacement u , as well as pictures of the Jacobian 

displacement J′, and a 3D vector plot of deformation of a 



slice (Fig.1). The regions that are used to calculate the 

correlation coefficients mentioned above can be selected 

from this window either manually, or automatically, using 

the data of a predefined atlas. In addition, the ventricles can 

be segmented automatically with the Chan-Vese method, 

where we use convexity and edge conditions for correction 

of initially imperfect results. The result for a volume of 16 

coronal slices is shown in Fig.2 

 

 
 

  Fig. 2. Ventricle segmentation result: (left) in 2D view, 

(right) in 3D view 

 

3.2. Deformation View of ROI 

 

Once the ROI is selected, the deformation vectors can be 

shown in a separate window (see Fig. 3 for the a region 

within the ventricles). In this way, the distribution within the 

selected structure can be monitored, which yields additional 

information about the deformation. 

 

 

 
 
Fig. 3.  Deformation vector plot of 3D ventricle regions in 

the brain.  

 

 

4. VECTOR CLASSIFICATION METHODS 

 

In our present study we have a large number of analytical 

parameters, whose effectiveness still has to be examined.  

The results of the measurement of the parameters can be 

written down into a vector. (In the experiments below we 

used a seven-component vector).  In order to investigate 

whether information about the difference between AD and 

NL could be derived from these vectors, we performed 

several experiments using automated vector classification 

methods. It is not clear beforehand which method would 

yield the best results. Therefore we tested three of them,  

viz. Linear Discriminant Analysis (LDA), K-nearest 

neighbour  (KNN) and  Support Vector Machine (SVM).   

The LDA method is a way to find a linear combination of 

features which discriminate two or more classes of objects. 

The KNN  method is a method for classifying objects based 

on closest training examples in the feature space. KNN is a 

type of instance-based learning, it is a kind of voting 

method. The SVM method is used to find an optimal 

boundary based on a few feature points (support vectors), 

and it can map non-linear separable features into a higher 

dimension space and make it linearly-separable. The study 

we describe below should give a first indication of whether 

the application of such a method could be developed further 

and studied in greater detail, for which the discerning effects 

should be significantly present. 

 

5. EXPERIMENTS AND RESULTS 

 

In our experiments, we used brain MRI data from the ADNI 

database [4]. We used 19 groups of NL subjects‟ 

longitudinal brain MRI images and 12 groups of AD 

patients‟ longitudinal brain MRI  images as input to 

compute the displacement field and Jacobian determinant by 

the 3D Christensen method.  Following ref. [3], For each 

pair of images we applied the method to 16 central slices of 

a coronal image  [3]. For each longitudinal group of data 

and their derived deformation field and Jacobian 

determinant, we computed the coefficients given in Eqs. (2)-

(5), of the ventricle and hippocampus,  and ventricle region 

size as well as ventricle and hippocampus region divergence 

as a seven components feature vector. The sizes of the 

features may play a role. Therefore we study them both in 

their original range (NonScaled), and with all of them scaled 

between 0 and 1 (Scaled). As it is not obvious  which 

combination of feature components is the best, we tested 

these three methods on different combinations of the input 

features. In addition, we used the leave-one-out cross 

validation method to test the usefulness of both the features 

and the classification methods. From the LDA method, we 

find that for the best combination, the accuracy of the 

classification for all the data set is 87.1% . When either only 

AD or only NL are considered, the accuracy is 75% and 

94.74%. Thus considering the percentage of AD and NL in 

our whole dataset(12 in 31, and 19 in 31), it becomes clear 

that the optimal values cannot be reached when all subjects 

are considered simultaneously,  as is shown in Table 1.  

http://en.wikipedia.org/wiki/Linear_combination
http://en.wikipedia.org/wiki/Features_(pattern_recognition)


Table 1.  optimal classification accuracy for LDA 

method with different scaled feature 

  AD NL ALL 

NonScaled 75% 94.74%. 87.1% 

Scaled 75% 94.74%. 87.1% 
For the KNN classification method,   we choose the 

parameter K=2, and from the result, we find that this method 

can achieve a higher best feature combination classification 

accuracy (for over all, the optimal accuracy is  93.55%), 

shown in Table 2. However, it still has the same problem as 

the LDA method, viz. that the optimal AD, NL and overall 

optimal accuracy do not occur at the same time. This is 

because some of the combinations can lead to a very high 

accuracy in either AD and NL case, but a lower  accuracy of 

the other case. As a result, the optimal overall accuracy can 

be smaller than both the optimal AD patient accuracy and 

the optimal NL accuracy.  As shown in Table 2, the scale of 

the features will largely affect the accuracy. 

Table 2. optimal classification accuracy for KNN method 

with different scaled feature 

  AD NL ALL 

NonScaled 100% 90.32% 83.33% 

Scaled 91.67% 100% 93.55% 
 

A better solution, that keeps both high accuracy and the 

simultaneous optimal accuracy for AD, NL and overall data, 

was obtained by the SVM method with a Quadratic kernel 

function. From the result, which is shown in Table 3,  we 

can see that it has a high accuracy (90.32% for all sets), 

while the optimal AD and NL accuracy rate can be achieved 

at the same time for the original feature data and the Scaled 

feature data, as shown  in Table 3. Thus, in our experiment, 

the SVM performs better than the LDA and KNN methods.  

When the SVM method attains its optimal accuracy, the best 

combination of  the input features is:  Directional 

Correlation Coefficient of the ventricle and hippocampus, 

Mean Jacobian Displacement Correlation of the ventricle 

and hippocampus  and Ventricle Region size. 

Table 3. optimal classification accuracy for SVM method 

and Quadratic Kernel function P with different scaled 

feature 

  AD NL ALL 

NonScaled 75% 100% 90.32% 

Scaled 75% 100% 90.32% 
 

6. CONCLUSIONS 

 

In most studies about the effects of AD on the development 

in time of brain atrophy, the investigation is restricted to the 

measurement of local effects of diagnostic parameters like 

the size of the brain deformation or the Jacobian 

determinant on brain structures like the hippocampus or the 

ventricles. It is very likely, however, that inter-structural 

correlations exist in the process of brain aging. Therefore, in 

this work, we performed a study of the relation of the 

deformation when correlations between the hippocampus 

and the ventricles are made. We combined the correlation 

parameters together with some local deformation parameters 

into a seven-dimensional vector, and performed a number of 

vector-classification methods to investigate if such vectors 

could yield diagnoses that are in agreement with the ground 

truth data. In order to facilitate the diagnostic analysis, we 

built a user interface that can visualize the deformation 

within the structures we want to study, and can facilitate the 

selection of the regions for which we want to measure the 

local and inter-structural effects of atrophy. We performed 

the analysis of the seven-dimensional vectors with the aid of 

three vector-classification methods, and used them to 

analyze data from the ADNI database. All three vector 

methods showed good agreement of the diagnosis with the 

ground truth data, but the SVM method yielded the best 

results. We also performed a cross validation to see which 

parameters were most useful for the diagnosis. We find that 

the Directional Correlation Coefficient of the ventricle and 

hippocampus, Mean Jacobian Displacement Correlation of 

the ventricle and hippocampus  and Ventricle Region size 

are the most useful. 
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