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Abstract

We study a situation where several independent service providers collaborate by
complete pooling of their resources and customer streams into a joint service system.
These service providers may represent such diverse organizations as hospitals that
pool beds, call centers that share telephone operators, or maintenance firms that pool
repairmen. We model the service systems as Erlang delay systems (M/M/s queues)
that face a fixed cost rate per server and homogeneous delay costs for waiting cus-
tomers. We examine rules to fairly allocate the collective costs of the pooled system
amongst the participants by applying concepts from cooperative game theory. We
consider both the case where players’ numbers of servers are exogenously given and
the scenario where any coalition picks an optimal number of servers. By exploiting
new analytical properties of the continuous extension of the classic Erlang delay func-
tion, we provide sufficient conditions for the games under consideration to possess
a core allocation (i.e., an allocation that gives no group of players an incentive to
split off and form a separate pool) and to admit a population monotonic allocation
scheme (whereby adding extra players does not make anyone worse off). This is not
guaranteed in general, as illustrated via examples.

Keywords: game theory, queuing theory, service operations.

∗Corresponding author. Tel.: +31-40-247-4432. E-mail address: f.j.p.karsten@tue.nl.

1



1 Introduction

Resource pooling is an efficient strategy for dealing with uncertainty in service industries.

It refers to an arrangement in which a group of common resources or servers is held for

multiple customer streams rather than dedicated, separate resources for each individual

customer stream. The main benefit of resource pooling is reduced congestion, as measured

by the time spent by customers waiting to be served (Smith and Whitt, 1981). This

reduction occurs because with service systems working separately a customer may have

to wait for one server while another server is idle — a situation that does not occur in

the pooled system. The efficiency benefits of resource pooling are commonly exploited in

case multiple customer streams are served by one common service provider. But these

benefits can also be obtained if the customer streams belong to several independent service

providers.

There are numerous real-life examples in various sectors of independent service providers

who may collaborate by pooling their resources into a joint service system. For instance,

several manufacturers of advanced technical equipment may employ a number of non-

branded repairmen to maintain and repair machines at their customer’s sites. Similarly,

business units of a large insurance firm may operate a common call center with cross-trained

telephone agents. One can also think of airline companies pooling check-in counters. Fur-

ther, a hospital is often comprised of clinical departments that share operating rooms,

hospital beds, and medical staff. Another example is found in manufacturing facilities,

where flexible production equipment is shared between several job types. As a final ex-

ample, consider a number of university faculties that are empowered to make independent

decisions. They may collaborate by setting up a common computer cluster and obtain re-

source pooling benefits. On top of this, they might also be able to buy their ICT-systems

at a reduced price due to increased bargaining power. In general, collaboration among ser-

vice providers enables more efficient use of their resources, offers the opportunity to benefit

from large economies of scale, and enhances their negotiation power: benefits aplenty!

But how should these independent entities allocate the total costs of the pooled system

among them? A fair cost division is an essential prerequisite for a successful cooperation,

but the construction of such an allocation tends to be challenging — in fact, it often is a

severe impediment for cooperation (Cruijssen et al., 2007). Cooperative game theory offers

a natural paradigm to tackle this problem. In this paradigm, participants or players draw

up binding agreements and make side payments to each other. A main notion of fairness

from cooperative game theory is the core, which is the set of all stable allocations of the

joint costs that give no group of players an incentive to secede and act separately. Under
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such a stable allocation, each player will feel motivated to collaborate; indeed, no group of

players is paying to subsidize the others.

In this paper, we consider cooperative games where an arbitrary number of service

providers, the players, face exogenous Poisson streams of customer arrivals and are allowed

to collaborate by completely sharing their servers and individual customer streams. We

model the service system of any coalition as an Erlang delay system, i.e., an M/M/s(/∞)

queue. Costs consist of linear resource costs for servers and linear delay costs for customers

that have to wait before being served. Our modeling approach differs from the approach

taken in most of the previous work on cooperative queueing games (e.g., González and

Herrero, 2004; Anily and Haviv, 2010). These authors consider cooperative games where

each coalition operates an M/M/1 queue. Although such a model is applicable if service

capacity can be easily consolidated into a single server (e.g., by choice of material or

technology), the M/M/1 model is not appropriate when service facilities consist of multiple

servers whose service speeds are given, as in all our real-life examples mentioned above.

Despite that, some of these examples have been previously used to motivate the study

of M/M/1 games: for instance, González and Herrero (2004) are motivated by shared

medical services, and Anily and Haviv (2010) mention pooled service technicians in their

introduction. By more accurately modeling these settings as M/M/s queues, we obtain

more precise results and insights for these settings. Our analysis reveals fundamental

differences between cooperative behavior in M/M/1 and M/M/s contexts (see Sections 4.3

and 5.3) and expands our understanding of resource sharing in queueing systems.

We distinguish two cases: fixed numbers of servers and optimal numbers of servers.

In the former case, each player possesses a predetermined number of servers, which he

brings to any coalition. This setting captures short-term collaborations that arise from an

existing situation wherein adjustment of the number of servers is prohibitively expensive

or practically unfeasible. In the latter case, each coalition picks a cost-minimizing num-

ber of servers. This setting is appropriate when parties are setting up a new, long-term

collaborative project. It is also applicable for existing situations if the number of servers

can be easily adjusted against negligible costs. In both cases, we assume that customers

are homogenous in waiting time costs and in service requirements across players (in line

with Anily and Haviv, 2010). Altogether, our analysis of cooperative games for both cases

provides insights for a variety of practically relevant collaborative arrangements.

We mainly focus on the existence of stable allocations and, for settings where a stable

allocation exists, on the selection of an appropriate, transparant allocation mechanism.

Studying existence is important because the core of a game may be empty in general, even

if collaboration leads to an overall cost reduction. We investigate under what conditions
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a core allocation is guaranteed to exist for our queueing games. To deal with the possible

multiplicity of stable allocations, we consider the refinement of a population monotonic

allocation scheme. An allocation scheme deals with partial cooperation: it proposes a

cost division not only for the grand coalition of all players but also for every possible sub-

coalition. Such a scheme is called population monotonic (cf. Sprumont, 1990) if no member

of any coalition is assigned more costs after an extra player joins in. We will investigate

whether core allocations can be reached through a population monotonic allocation scheme

(PMAS).

The main contributions and results of this paper are as follows:

• To the best of our knowledge, we are the first to introduce the class of cooperative

games arising from resource pooling in multi-server queueing systems where the

total number of servers is exogenously determined, and we are the first to consider

the exact problem for the case with optimal numbers of servers in detail. We derive

new insights which differ from the ones previously obtained for M/M/1 games.

• For the case with a fixed number of servers, we prove that cooperation is always

beneficial and supportable by (infinitely many) stable cost allocations. Counterex-

amples indicate that, in general, the cooperative games in this setting may lack a

PMAS and, moreover, some players may be assigned a negative cost in every core

allocation. Nevertheless, under a natural assumption on the ratios between players’

servers and arrival rates, we identify a simple, positive, proportional core allocation

that can be reached through a PMAS.

• For the case in which each coalition picks an optimal number of servers, we show

that the existence of a stable allocation and a PMAS is dependent on the domain

over which optimization takes place. If each coalition is required to choose an integer

number of servers, this existence is not guaranteed. But by comparison to a relaxed

problem, we show that this nonexistence is purely attributable to the integrality

requirement. We introduce approximate core and PMAS concepts, which may be

relevant beyond the context of this study, to describe an upper bound on the impact

of integrality.

• To obtain these structural results, we derive several new analytical properties of

the (standard) continuous extension of the classic Erlang delay function. As a side

benefit, our approach generalizes and strengthens well-known characteristics of key

performance measures in the M/M/s model.
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The remainder of this paper is organized as follows. We start in Section 2 with a

brief review of related literature. Then, in Section 3, we provide some preliminaries on

cooperative game theory and the continuous extension of the Erlang delay function. In

Section 4, we analyze the case in which the number of servers is fixed. In Section 5, we

treat the case with optimal numbers of servers. Finally, we draw conclusions and suggest

directions for future research in Section 6. All proofs are given in the Appendix.

2 Related literature

There is a rich literature on resource pooling in queueing systems. Smith and Whitt

(1981) were the first to prove that sharing the servers of multiple Erlang delay systems with

identical service time distributions into an aggregate system is always beneficial. Calabrese

(1992) found that combining servers into larger groups, while keeping server utilization

constant, leads to reduced congestion, and Benjaafar (1995) provides performance bounds

on the effectiveness of resource pooling. These studies assume that the system is owned by

a single entity who decides whether or not to pool. In contrast, the present paper considers

resource pooling arrangements between independent service providers, each with their own

interests, and explicitly addresses the issue of fair cost allocation.

There are several papers that apply cooperative game theory to analyze resource pooling

in queueing facilities. The papers in this stream of research can be classified along several

dimensions. Tables 1 and 2 position the existing literature according to various modeling

assumptions. We first review the previous literature in the area of single-server queueing

games and compare our research to this previous work. Afterwards, we will discuss the

existing research on multi -server queueing games.

In single-server queuing games with optimal service capacity, each player is associated

with a customer arrival stream and any coalition of players operates an M/M/1 queue that

serves the union of its members’ arrival streams. González and Herrero (2004) deal with

the problem of fairly allocating the cost of the server, which is assumed to be proportional

to its service rate. In their model, each coalition optimally chooses the service rate such

that certain exogenously given constraints on customers’ mean sojourn time are satisfied.

Garćıa-Sanz et al. (2008) analyze three variations of the model in González and Herrero

(2004): they allow more generic sojourn time constraints, consider constraints on the mean

waiting time in the queue, and investigate a preemptive priority queueing discipline. Yu

et al. (2009) enrich the setting by introducing delay costs and consider a game where

coalitions optimize their service rate to minimize the sum of delay and capacity costs. All
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Optimal service capacity Fixed service capacity

Waiting in queue

González and Herrero (2004) Anily and Haviv (2010)

Garćıa-Sanz et al. (2008) Timmer and Scheinhardt (2010)

Yu et al. (2009) Anily and Haviv (2011)

Table 1: Classification of literature on single-server cooperative queueing games

Optimal number of servers Fixed number of servers

Waiting in queue Yu et al. (2007) This paper

This paper

No waiting allowed Karsten et al. (2011) Karsten et al. (2009)

Özen et al. (2011)

Table 2: Classification of literature on multi-server cooperative queueing games

papers in this stream of literature assume that a coalition picks an optimal service rate,

which can be viewed as the analogue of our case with optimal numbers of servers.

Conversely, Anily and Haviv (2010) study a model in which each player has its own

capacity endowment, modeled as a potential service rate. To reduce congestion costs,

each coalition may cooperate by pooling these endowments and their individual customer

streams into a single M/M/1 system whose service rate is the sum of the potential service

rates of its members. This setting parallels our case with fixed numbers of servers. Timmer

and Scheinhardt (2010) and Anily and Haviv (2011) analyze models with several single-

server stations in a certain network structure. In these models, the network structure is kept

intact (as opposed to pooling capacities into a single station) and the total network capacity

is predetermined; the various stations may cooperate by redistributing their combined

service capacity or by re-routing arrivals, resulting in a network of M/M/1 queues.

In contrast to the cooperative games associated with M/M/1 queues, our work con-

siders service systems with multiple servers in parallel. Inspired by the real-life examples

described in the introduction where servers represent human operators, we assume that a

server’s speed is fixed rather than variable. At first glance, an M/M/s system where each

server provides service at a rate µ may seem to behave similar to an M/M/1 system with

service rate sµ. Indeed, as long as all servers are busy, the group of customers as a whole is

served at the same rate in both systems. However, if less than s customers are present, the

single-server system can use its total service capacity, whereas the multi-server system has
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idle capacity.1 Thus, the behavior of the two systems is fundamentally different. A second

difference is that the number of servers (i.e., total capacity in a multi-server system) can

typically only be varied in discrete amounts, a limitation that is absent in single-server

systems where the service speed can be set at arbitrary levels.

Other previous literature has tackled multi-server cooperative queueing games, both

for systems where waiting is allowed and for systems where waiting is not possible. For

the latter setting, Karsten et al. (2009, 2011) study situations where several independent

service providers collaborate by pooling their resources into a joint service system for,

respectively, the case with fixed numbers of servers and the case with optimal numbers of

servers. In these two papers, the service facilities are modeled as Erlang loss systems in

which customers that find no free server upon arrival are lost and redirected elsewhere,

which differs — both from a modeling and an application perspective — from the setting

considered in the present paper where waiting in a queue is allowed. Özen et al. (2011)

independently derived the same conclusion as Karsten et al. (2011): games corresponding

to server optimization in Erlang loss systems have a nonempty core. Karsten et al. (2011)

derive structural properties of a novel extension of the Erlang loss function to arrive at this

conclusion, whereas Özen et al. (2011) posit a new framework of single-attribute games to

derive this result.

Shifting our attention to multi-server settings where waiting is allowed, we remark

that Özen et al. (2011) also used their framework to study the core of various cooperative

games arising from a given2 Erlang delay system wherein cooperating parties optimize the

service rate or the amount of demand to serve, and each coalition uses the same amount

of servers. The games considered in the present paper are fundamentally different: we

consider exogenously given service speeds and arrival rates, and we allow a coalition to

possibly optimize the number of servers instead. Finally, we mention that Yu et al. (2007),

a previous version of Yu et al. (2009), briefly considers a setting similar to ours where each

coalition operates an M/M/s queue with an adjustable number of servers. They only show

nonemptiness of the core in a heavy traffic limit under the assumption that the number

of servers is chosen via the square-root safety staffing principe, a close-to-optimal rule of

1To allow a formal comparison, we fix the arrival rate λ; additionally, we set x = 1/(sµ − λ) and
a = λ/µ. Then, consider the well-known expressions for expected waiting time: x · a/s in the single-server
system with rate sµ and x · Ĉ(s, a) in the s-server system with rate µ, with Ĉ(s, a) the Erlang delay
function (see Section 3.2). It is easily verified that a/s is a grossly inaccurate approximation of Ĉ(s, a),
especially when the number of servers s is large.

2Özen et al. (2011) assumed in this particular model that each coalition, irrespective of its size, uses the
same number of servers. This differs significantly from the setting in which coalitions combine the servers
of their members; hence, Özen et al. (2011) is not classified under “fixed number of servers” in Table 2.
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thumb, whereas we are interested in the exact optimization problem.

3 Preliminaries

For reasons of self-containedness, we introduce in this section several concepts from coop-

erative game theory that are relevant to our work. Subsequently, we present the continuous

extension of the classic Erlang delay function and derive several of its properties.

3.1 Cooperative game theory

Let N be a nonempty finite set of players. A subset M ⊆ N is called a coalition, and the

set N of all players is referred to as the grand coalition. We let 2N− = {M ⊆ N | M 6= ∅}
denote the power set consisting of all nonempty coalitions. For any two sets M and L,

we write M ⊂ L if M is a proper subset of L, i.e., if M ⊆ L and M 6= L. The function

c that assigns to every coalition M ⊆ N its costs c(M) is called the characteristic cost

function. The value c(M) is interpreted as the total costs of the joint cooperative effort

if only the players in M are involved in it. By convention, c(∅) = 0. We assume that the

costs of any coalition M are freely transferable between the players of M . Then, the pair

(N, c) constitutes a cooperative cost game with transferable utility. In the remainder, we

will simply refer to this as a game.

An interesting property that a game might satisfy is (strict) subadditivity. A game

is called subadditive if it is always beneficial to combine coalitions, i.e., if for any two

coalitions M,L ⊆ N with M ∩ L = ∅ it holds that c(M) + c(L) ≥ c(M ∪ L). If this

inequality is strict for each two disjoint nonempty coalitions M and L, we call the game

strictly subadditive. In a subadditive game, cooperation by the grand coalition is socially

optimal. In a strictly subadditive game, each other partition is worse.

A central problem in cooperative game theory is to allocate c(N) to the individual

players in a fair way. Formally, an allocation for a game (N, c) is a vector x = (xi)i∈N ∈ RN

satisfying
∑

i∈N xi = c(N). The latter requirement is often called efficiency. The value xi

is interpreted as the costs assigned to player i. Two well-known allocation rules are the

Shapley value (Shapley, 1953) and the nucleolus (Schmeidler, 1969). The Shapley value Φ

of game (N, c) is defined, for all players i ∈ N , by

Φi(N, c) =
∑

M⊆N :i∈M

(|M | − 1)!(|N | − |M |)!
|N |!

· [c(M)− c(M \ {i})].

An allocation x for a game (N, c) is called stable if
∑

i∈M xi ≤ c(M) for all M ∈ 2N− .
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Under a stable allocation, each group of players has to pay no more collectively than

what they would face by acting independently. Hence, if the costs of the grand coalition

are assigned according to a stable allocation, no coalition has an incentive to split off

and establish cooperation on its own. The (convex) set of all stable allocations is called

the core, introduced by Gillies (1959). The core of a game may be empty, even if the

game is subadditive. The nucleolus always results in a core element whenever the core

is nonempty, but the Shapley value does not. One class of games for which the Shapley

value is guaranteed to be in the core, however, is the class of concave games (Shapley,

1971). A game is called concave if any player’s marginal cost contribution is smaller for

large coalitions, i.e., if for each i ∈ N and for all M,L ⊆ N \ {i} with M ⊆ L it holds that

c(M ∪ {i})− c(M) ≥ c(L ∪ {i})− c(L).

The last concept that we wish to introduce is a population monotonic allocation

scheme (cf. Sprumont, 1990). An allocation scheme for a game (N, c) is a vector y =

(yi,M)i∈M,M∈2N−
, with

∑
i∈M yi,M = c(M) for all coalitions M ∈ 2N− , which specifies how

to allocate the costs of every coalition to its members. This scheme is called a population

monotonic allocation scheme (PMAS) if the amount that a player has to pay does not in-

crease when the coalition to which he belongs grows. That is, yi,M ≥ yi,L for all coalitions

M,L ∈ 2N− with M ⊆ L and i ∈M . If a game (N, c) admits a PMAS, say y, then its core

is nonempty, (yi,N)i∈N is an element of its core, and for each nonempty coalition L ∈ 2N−
the sub-game (L, cL), where cL(M) = c(M) for all M ⊆ L, has a nonempty core.

3.2 New properties of the continuous extension of the Erlang

delay function

Consider an Erlang delay system, i.e., an M/M/s queue. In such a system, customers

arrive according to a Poisson process with rate λ > 0. They are served by a group of s ∈ N
homogeneous parallel servers. Service times are independent and exponentially distributed

with rate µ > 0. Customers who find all servers busy wait in an infinite capacity queue

until served by the first available server. We let a = λ/µ denote the offered load.

The steady-state probability of delay (the probability that an arrival must wait before

beginning service) in such a system is described by the classic Erlang delay function, first

published by Erlang (1917). This function is defined, for each a > 0 and s ∈ N with s > a

(to guarantee stability of the queueing system), by

Ĉ(s, a) =

(
1 +

s−1∑
y=0

s!(1− a/s)
y!as−y

)−1

. (1)
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Another interesting performance measure, also derived by Erlang (1917), is the expected

waiting time (delay before beginning service) experienced by an arbitrary customer in

steady state. For any λ > 0, µ > 0, and s ∈ N with s > λ/µ, this waiting time equals

Ŵq(s, λ, µ) =
Ĉ(s, λ/µ)

sµ− λ
. (2)

Equations (1) and (2) are valid for any non-biased service discipline, i.e., a service discipline

that selects the next customer to be served without taking the waiting customers’ actual

service lengths into account (cf. Cooper, 1981, pp. 95–98). Examples of non-biased service

disciplines are service on a first-come first-serve basis, service in random order, or service

on a last-come first-serve basis.

For analytical purposes, it will be convenient to extend the domain of the Erlang

delay function to non-integral values of s. Jagers and Van Doorn (1991) have suggested

a confluent hypergeometric function as a natural continuous extension. This function is

defined, for each a > 0 and s ∈ R with s > a, by

C(s, a) =

(∫ ∞
0

ae−ax(1 + x)s−1xdx

)−1

. (3)

For fixed a > 0, C(s, a) is non-increasing and convex in s for s ∈ R (Jagers and Van Doorn,

1991). This analytic extension of the Erlang delay function enables a natural way to define

the expected waiting time in an (artificial) queueing system with a non-integral number of

servers: for any λ > 0, µ > 0, and s ∈ R with s > λ/µ, we define

Wq(s, λ, µ) =
C(s, λ/µ)

sµ− λ
. (4)

As observed by Jagers and Van Doorn (1991), Equations (1) and (3) coincide for integer

values of s, i.e., Ĉ(s, a) = C(s, a) for all s ∈ N and a ∈ (0, s). Accordingly, Equations (2)

and (4) coincide for those cases as well.

The performance measures described above satisfy various interesting structural prop-

erties. The literature dealing with these properties is rich (an excellent overview is provided

in Whitt, 2002), but most research has focused on Ĉ and Ŵq, thereby restricting the anal-

ysis to integer numbers of servers. In what follows, we will show that various well-known

monotonicity, convexity, subadditivity, and other properties of Ĉ and Ŵq are also valid for

C and Wq. Thus, we extend the analysis to non-integral numbers of servers by means of

(3).

But given that all real-life queueing systems operate under an integral number of servers,

why the fuss of this extended analysis? First there is the mathematical appeal of a gener-

alization of known results; in fact, our analysis of the continuous extension (3) will provide
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simple alternative proofs of classic results in the M/M/s model. But more importantly, the

ensuing properties of the continuous extensions C and Wq will allow us to derive interesting

results for queueing games.

To obtain new structural results for the extensions C and Wq, we exploit a relation

between the continuous extension of the Erlang delay function and the continuous extension

of the Erlang loss function (for the M/G/s/s model), and we use a result that has already

been established for the latter. Following Jagers and Van Doorn (1991), the continuous

extension of the classic Erlang loss function is defined for any s ∈ [0,∞) and a > 0 by

B(s, a) =

(∫ ∞
0

ae−ax(1 + x)sdx

)−1

. (5)

The following lemma shows that the Erlang delay function can be expressed in terms

of the Erlang loss function, and vice versa. For integer s, this relation is well known (see,

e.g., Cooper, 1981, p. 92). It appears that this relation remains valid for the continuous

extensions (3) and (5).

Lemma 3.1. Let a > 0 and s ∈ R with s > a. Then,

C(s, a) =
B(s, a)

1− (a/s)(1−B(s, a))
.

The proof of this and subsequent results is given in the Appendix. Next, we show that

when the load per server is held constant, the probability of delay is decreased by adding

servers. (We will use, throughout, “decreasing” in the strict sense.) For integer s, this has

already been proven by Calabrese (1992, Proposition 1).

Lemma 3.2. Fix a > 0 and s ∈ R with s > a. Then, C(ts, ta) is decreasing in t for t > 0.

The following theorem states that when the load per server is held constant again, the

expected waiting time is decreased by adding servers. Benjaafar (1995, p. 377) provides a

proof of this result for integer s.

Theorem 3.3. Fix λ, µ > 0 and s ∈ R with s > λ/µ. Then, Wq(ts, tλ, µ) is decreasing in

t for t > 0.

The following theorem says that the expected waiting time is decreasing and strictly

convex in the number of servers. For integer s, these properties have already been proven

by Dyer and Proll (1977).

Theorem 3.4. Let λ, µ > 0. Then, Wq(s, λ, µ) is a decreasing and strictly convex function

of s for s ∈ R with s > λ/µ.
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We conclude this section with a subadditivity property that describes the economy-of-

scale effect associated with larger service systems. Specifically, the following theorem says

that combining two separate M/M/s queues with common service rates into a joint system

will lead to a reduction in the average (per-arrival) delay. Smith and Whitt (1981) provide

a proof of this result for integer s, although not with strict inequality.

Theorem 3.5. Let λ1, λ2, µ > 0. Then, for all s1 ∈ R with s1 > λ1/µ and for all s2 ∈ R
with s2 > λ2/µ, it holds that

Wq(s1 + s2, λ1 + λ2, µ) · (λ1 + λ2) < Wq(s1, λ1, µ) · λ1 +Wq(s2, λ2, µ) · λ2.

4 Fixed numbers of servers

In this section, we consider a setting in which each player brings a predetermined number

of servers to any coalition. This is a reasonable model for situations where adjusting the

number of servers is too expensive or practically impossible. We first introduce the situ-

ation in more detail and define the associated game. Subsequently, we analyze structural

properties of this game and identify stable and population monotonic cost allocations.

4.1 Situation

Consider several service organizations, which we will simply refer to as players. Each player

witnesses a Poisson arrival process of customers, and the arrival processes of the players

are assumed to be independent. Each player has an exogenously given number of servers

to provide service to their customer streams. The number of servers cannot be easily

adjusted and is therefore considered to be fixed. Service times for an arbitrary customer of

any player are independent and identically exponentially distributed. Customers who find

all servers busy upon arrival wait in a queue, incurring delay costs that are proportional

to their waiting time. These delay costs, which are symmetrical across players, represent

customer dissatisfaction, lost goodwill, and/or contractual penalties; they are borne by the

player to whom the customer belongs.

Players are interested in their long-term average costs per unit time, which they can re-

duce by collaborating, i.e., pooling their resources to serve their customer streams together.

Our aim is to determine (existence of) fair allocations of costs to support the collaboration.

To analyze this, we formally define a multi-server queueing situation with a fixed number

of servers (FIX-queueing situation for short) as a tuple (N, (λi)i∈N , µ, (si)i∈N , h, d), where

12



• N is the nonempty finite set of players;

• λi > 0 is the arrival rate of customers that belong to player i ∈ N ;

• µ > 0 is the rate of the exponential service time distribution;

• si > 0 is the amount of servers that player i ∈ N brings to any coalition3;

• h ≥ 0 is the resource cost incurred for each server per unit time;

• d > 0 is the delay cost incurred by any customer for waiting one unit of time in the

queue.

With Ψ we denote the set of such situations for which si > λi/µ for all i ∈ N , i.e., for

which each player possesses enough servers to ensure that the expected waiting time in his

own service facility is finite4. For each coalition M ∈ 2N− , we denote λM =
∑

i∈M λi and

sM =
∑

i∈M si.

This model is sufficiently general to cover a wide variety of situations in which a resource

pooling arrangement can arise between independent service providers that already have

existing facilities. Our model is simple, yet it has all the necessary ingredients to capture

a concrete setting. To illustrate this, we recall the real-life medical example described

in the introduction. Modeling this health-care context as a FIX-queueing situation, we

can let the players correspond to clinical departments in a hospital, each with their own

patient arrival streams. The servers can be represented by hospital beds; the amount of

beds is fixed for the duration of the envisioned collaboration. Service time corresponds to

a patient’s length of stay. Finally, maintenance and capital costs for beds represent the

resource costs, and legal regulations and governmental fines determine the delay costs.

4.2 Game

Consider any FIX-queueing situation ψ = (N, (λi)i∈N , µ, (si)i∈N , h, d) ∈ Ψ and an arbitrary

coalition M ∈ 2N− . The players in this coalition collaborate by complete pooling of their

3Although this situation only has a natural interpretation when each player has an integer number of
servers, our formulation does allow a player to possess a non-integral number of servers. While we could
have restricted ourselves to situations with integral numbers of servers, we chose to consider the more
general setting for convenience (it allows shorter proofs) and for a better fit with Section 5.

4This assumption is not essential; it merely allows a clear exposition. Our results would remain valid
under the weaker assumption of sN > λN/µ, but analysis of possibly unstable queueing systems for some
coalitions would require inconvenient notation.
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Figure 1: A Markov chain representation of the joint service facility of coalition M . A state is

defined by the number of customers in the system (in service and in queue).

respective arrival streams and servers into a joint system. Since the superposition of

independent Poisson processes is also a Poisson process, this coalition now faces a combined

Poisson arrival process with aggregate rate λM . The coalition has sM servers at their

disposal. We assume that each server can handle all types of customers with equal ease

and that all customers can effortlessly access the joint service facility. A non-biased service

discipline, such as service in order of arrival, is used.

Based on these assumptions, the pooled system behaves as an Erlang delay system.

Figure 1 illustrates this Markovian queue. The expected waiting time that an arbitrary

customer spends in the queue before starting service is equal to Wq(sM , λM , µ). We can

now can formulate a game corresponding to FIX-queueing situation ψ. We call the game

(N, cψ) with

cψ(M) = hsM +Wq(sM , λM , µ) · λMd. (6)

for all M ∈ 2N− and cψ(∅) = 0 the associated FIX-queueing game. The first term in (6)

represents the (additive) resource cost per unit time faced by coalition M , and the second

term corresponds to the delay costs per unit time in steady state.

The following proposition shows that, consistent with intuition, cooperation in the

context of resource pooling always leads to a reduction in costs. Its proof is given in the

Appendix; it directly follows from Theorem 3.5.

Proposition 4.1. FIX-queueing games are strictly subadditive.

Although Proposition 4.1 affirms that collaboration among all players is beneficial, it

does not imply the existence of a stable cost allocation or a PMAS. If FIX-queueing games

would be concave, existence of both would have been guaranteed. The following example,

however, shows that FIX-queueing games need not be concave. The example also illustrates

possible allocation rules and shows that the Shapley value is not necessarily in the core.
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Coalition M {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
Wq(sM , λM , µ) 1 3 1

1243
25
39

27
11453

1
147

81
14077

cψ(M) 5 221
2

5
2486

8 1
78

405
22906

10
147

1215
14077

Table 3: The FIX-queueing game and expected delay times of Example 4.1.

Example 4.1. Consider the FIX-queueing situation ψ = (N, (λi)i∈N , µ, (si)i∈N , h, d) ∈ Ψ

with player set N = {1, 2, 3}, service rate µ = 1, resource cost rate h = 0, delay cost rate

d = 10, and

λ1 = 1/2; λ2 = 3/4; λ3 = 1/4;

s1 = 1; s2 = 1; s3 = 3.

The characteristic cost function cψ of the associated FIX-queueing game (N, cψ) is repre-

sented in Table 3, along with the expected waiting time of an arbitrary customer in any

coalition’s service system.

This game has a nonempty core: for example, the allocation x given by x1 = 2, x2 = 3,

and x3 = −412862
14077

is stable. However, this game is not concave since cψ({1, 2})− cψ({2}) =

−1419
39

< 5405
295617

= cφ({1, 2, 3}) − cφ({2, 3}). In other words, player 1’s marginal cost

contribution may increase if he joins a larger coalition. Accordingly, the game’s Shapley

value Φ(N, cψ), which is approximately equal to Φ1(N, c
ψ) ≈ −0.74, Φ2(N, c

ψ) ≈ 8.04,

and Φ3(N, c
ψ) ≈ −7.21 (rounded to 2 decimals), is not in the core of this game since

Φ2(N, c
ψ) + Φ3(N, c

ψ) > cψ({2, 3}). ♦

We remark that the characteristic cost function in the preceding example is not mono-

tonically decreasing. In fact, expected waiting times may increase when a new player joins!

Consider coalition {2, 3} in the example. When player 2 joins player 3, the expected delay

experienced by a customer of player 2 reduces from 3 to 1/147. But player 3, on the other

hand, observes an increase in expected delays when player 2 joins him; this is because

player 3 possesses a relatively large number of servers and, as a result, observes few delays

when acting independently. Nevertheless, player 2 can motivate player 3 to collaborate

by means of side payments, and the average (per-arrival) delay experienced is lower under

a resource pooling arrangement than under an arrangement where both players operate

separate systems, in line with Theorem 3.5.
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4.3 Cost allocation: stability and population monotonicity

Recall that the FIX-queueing game in Example 4.1 admitted a stable allocation. The

following theorem, which presents our general results on the existence and multiplicity of

stable cost allocations for FIX-queueing games, shows that this is not a coincidence. In

particular, we show that any FIX-queueing game, as well as each of its sub-games, has a

stable allocation. Moreover, unless there is only one player, the core is never a singleton.

We remark that these properties are also satisfied by M/M/1 games with fixed numbers of

servers (cf. Anily and Haviv, 2010).

Theorem 4.2. Let ψ = (N, (λi)i∈N , µ, (si)i∈N , h, d) ∈ Ψ be a FIX-queueing situation.

(i) The associated game (N, cψ) and each of its sub-games possess a non-empty core.

(ii) If |N | > 1, there are infinitely many core allocations for the game (N, cψ).

The proof of this theorem is based on the powerful characterization of balanced games,

due to Bondareva (1963) and Shapley (1967), and on several properties derived in Section

3.2. Part (i) of Theorem 4.2 implies that the nucleolus is always a stable cost allocation

for FIX-queueing games. Since the nucleolus satisfies appealing fairness properties (cf.

Snijders, 1995), it would be a suitable method to allocate the total costs of the grand

coalition. Nevertheless, computation of the nucleolus may be difficult (see, e.g., Leng and

Parlar, 2010). In light of this downside and part (ii) of Theorem 4.2, one may well ask

whether the core contains a simple proportional type of cost allocation, e.g., proportional

with respect to arrival rates or to numbers of servers. The following example shows that

such proportional allocations will not necessarily be in the core, as there are instances in

which a player is assigned a negative cost (i.e., a reward) in every core allocation.

Example 4.2. Consider the FIX-queueing game (N, cψ) of Example 4.1 again. For any

allocation x in the core of (N, cψ), it holds that x1 + x3 ≤ cψ({1, 3}), x2 + x3 ≤ cψ({2, 3}),
and x1 + x2 + x3 = cψ({1, 2, 3}). Hence,

x3 = x3+x1+x2+x3−cψ(N) ≤ cψ({1, 3})+cψ({2, 3})−cψ(N) =
405

22906
+

10

147
− 1215

14077
< 0.

Thus, player 3 is assigned a negative cost in every core allocation. The intuition behind

this is that player 3 should be compensated for the relatively large number of servers that

he adds to any coalition. ♦

Interestingly, in the corresponding M/M/1 queueing game (cf. Anily and Haviv, 2010),

nonnegative core allocations always existed; thus, in this respect, the multi-server models

exhibit different behavior than their single-server counterparts.
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We next introduce an allocation scheme under which the expected waiting cost of any

coalition is allocated proportional to the arrival rates of its members and, in addition,

each player pays the resource costs for its own servers. Under a natural assumption on

the ratios between players’ servers and arrival rates, this allocation scheme will turn out

to be population monotonic. We remark that Anily and Haviv (2010) did not consider

population monotonicity or symmetry conditions for their M/M/1 modeling.

Allocation scheme P for FIX-queueing situation ψ = (N, (λi)i∈N , µ, (si)i∈N , h, d) ∈ Ψ

is defined, for all M ∈ 2N− and all i ∈M , by

Pi,M(ψ) = hsi +Wq(sM , λM , µ) · λid. (7)

Now, suppose that the ratio of the number of servers to arrival rates is symmetric among

players. This is a reasonable symmetry condition, as it implies that players with larger

arrival rates possess more servers. This symmetry is also in place when players represent

equally sized service providers, all with the same number of servers and arrival rates. The

following theorem states various properties exhibited by FIX-queueing games under this

symmetry condition.

Theorem 4.3. Let ψ = (N, (λi)i∈N , µ, (si)i∈N , h, d) ∈ Ψ be a FIX-queueing situation with

si/λi = sj/λj for all i, j ∈ N .
(i) For any two coalitions M,L ∈ 2N− with M ⊂ L, Wq(sM , λM , µ) > Wq(sL, λL, µ).

(ii) The proportional scheme P(ψ) is a PMAS for the FIX-queueing game (N, cψ).

(iii) The allocation that assigns Pi,N(ψ) to each player i ∈ N is a stable allocation for the

FIX-queueing game (N, cψ).

(iv) For any partition Z of N containing z > 1 nonempty disjoint coalitions covering N ,

it holds that Wq(sN , λN , µ) · z <
∑

M∈Z Wq(sM , λM , µ) · λM/λN .

Part (i) says that the average delay experienced by an arbitrary customer decreases as

a coalition grows larger. Part (ii) states that the amount a player has to pay under P(ψ)

does not increase when the coalition to which he belongs grows, and part (iii) identifies a

core element, cf. Sprumont (1990). Part (iv) is a direct corollary of Theorem 1 in Benjaafar

(1995); it states that pooling among z groups results in a reduction of expected waiting

time by at least a factor of z.

The following example shows that, in general, FIX-queueing games with four or more

players need not admit a PMAS. This contrasts with results that we will obtain in Section

5 for queueing games with optimal (real) numbers of servers. Absence of a PMAS may

complicate coalition formation: it implies that under some sequence of adding players one-

by-one to a pooling group, there is at least one player who, at a certain point, becomes

worse off when another player is added.
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Example 4.3. Consider the FIX-queueing situation ψ = (N, (λi)i∈N , µ, (si)i∈N , h, d) ∈ Ψ

with N = {1, 2, 3, 4}, µ = 1, h = 0, d = 10, and

λ1 = λ2 = 1/10; λ3 = λ4 = 9/10;

s1 = s2 = 2; s3 = s4 = 1.

To show that the associated FIX-queueing game (N, cψ) game does not admit a PMAS,

we use the dual description of the class of games with a PMAS, introduced in Norde

and Reijnierse (2002). They provide a set of necessary conditions (their Theorem 8) to

determine whether a game has a PMAS or not. For our 4-player game, one of these

conditions5 is given by (cf. p. 331 of their paper):

cψ(1, 2, 3) + cψ(2, 3, 4) ≤ cψ(1, 3) + cψ(2, 3) + cψ(2, 4). (8)

Here, we have dropped the curly set brackets for notational ease. Inequality (8) may be

interpreted as stating that an arrangement in which players 1, 2, and 3 work one unit of

time together, incurring costs cψ(1, 2, 3) per time unit, and in which player 2, 3, and 4 work

one unit of time together, incurring costs cψ(2, 3, 4) per time unit, generates lower costs

than an alternative schedule in which players work the same amount of time as before, but

in smaller coalitions. As in our game it holds that

cψ(1, 2, 3) + cψ(2, 3, 4) =
1771561

109696119
+ 1

655000

1821099
>

5

11
· 3 = cψ(1, 3) + cψ(2, 3) + cψ(2, 4),

Inequality (8) is not satisfied. We conclude that this game lacks a PMAS.

To make this nonexistence intuitively plausible, notice that there are two types of

players: on the one hand there are players 1 and 2, both with low arrival rates and many

servers, and on the other hand there are players 3 and 4, both with high arrival rates and

few servers. Any two-player coalition containing one player of each type can already attain

most of the benefits of pooling. Combining this fact for three of those two-player coalitions

leads to an incompatibility with the costs that should be paid in two related three-player

coalitions, which have relatively high costs. ♦

5 Optimal numbers of servers

In this section, we consider a setting in which the number of servers can be jointly optimized

by each coalition. This is a reasonable model for situations where the number of servers

5Note that this condition follows from y2,{1,2,3} ≤ y2,{2,3} and five similar monotonicity inequalities,
combined with efficiency.
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can be easily adjusted against negligible costs. We will define and analyze two games

associated with such a situation, which differ in the domain on which this optimization

takes place.

5.1 Situation

Consider a setting as previously described in Section 4.1, but now with an additional aspect:

we allow any coalition of players (including singletons) to re-optimize the number of servers

in their joint system. This is equivalent to a setting where players do not possess a number

of servers a priori, but instead jointly purchase or develop a cluster of new servers after

cooperation is established. Taking this into account, we further allow larger coalitions to

exploit stronger bargaining power and/or economies of scale; as a result, larger coalitions

can acquire and maintain servers at a reduced cost rate.

Clearly, if collaboration in this fashion is allowed, then the grand coalition will be no

worse off than in the case with a fixed number of servers. After all, due to the resource

pooling effect, fewer servers may suffice to jointly serve all customer streams in a cost-

effective way. This reduction in the costs of the grand coalition would make it easier to

find a stable allocation. Yet, sub-coalitions will also choose a cost-minimizing number of

servers, reducing their costs and shrinking the core. Given these two opposite effects, we

will investigate whether the properties obtained for FIX-queueing games — such as the

existence of a stable cost allocation — remain valid for this new setting.

To analyze this, we introduce a multi-server queueing situation with optimal numbers

of servers (OPT-queueing situation for short) as a tuple (N, (λi)i∈N , µ, (hM)M∈2N−
, d), where

N , λ, µ, and d are as in Section 4, and hM is the resource cost incurred per unit time for

each server operated by coalition M . Note that players are not associated with a number of

servers anymore. With Γ we shall denote the set of such situations for which hM ≥ hL > 0

for all M,L ∈ 2N− with M ⊆ L, i.e., for which the resource cost rate does not increase as a

coalition grows and always remains positive.6

OPT-queueing situations are often applicable if customers are served by human op-

erators who are easily hired or fired — as opposed to service by technically advanced,

expensive machines, in which case a FIX-queueing situation may be more appropriate. To

illustrate how the OPT-queueing framework accommodates various known settings, one

may think of several copy machines manufacturers (players) that use technicians (servers)

6This situation could be extended by allowing concave increasing unbounded resource cost functions
rather than linear costs (cf. Karsten et al., 2011). This extended model, however, does not provide new
insights.
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Figure 2: The cost function Kγ
M (s) as a function of the number of servers s, for λM = 0.5, µ = 1,

hM = 1, and d = 2.15. This function is not defined for s ≤ λM/µ. The values Kγ
M (1) = 2 3

40 and

Kγ
M (2) = 2 43

600 are identified by black dots.

to deal with machine breakdowns (arrivals). Alternatively, one may think of various busi-

ness units of a large insurance firm (players) that employ telephone agents (servers) to

quickly respond to incoming customer calls (arrivals).

5.2 Games

Let γ = (N, (λi)i∈N , µ, (hM)M∈2N−
, d) ∈ Γ be an OPT-queueing situation, and consider

a coalition M ∈ 2N− . As before, this coalition will jointly serve customers that arrive

according to a Poisson process with combined rate λM =
∑

i∈M λi. Suppose that this

coalition would pick s > λM/µ common servers. Then, this coalition’s joint service facility

behaves as an Erlang delay system, and the expected costs per unit of time in steady state

incurred by coalition M are equal to

Kγ
M(s) = hMs+Wq(s, λM , µ) · λMd. (9)

Figure 2 illustrates this cost function. Next, we formulate two different games correspond-

ing to OPT-queueing situation γ. In the first game, any coalition M optimizes Kγ
M(s)

over integer numbers of servers, i.e., over domain N γ
M = {s ∈ N | s > λM/µ}. In the

second game, the optimization is taken over real numbers of servers, i.e., over domain
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Rγ
M = {s ∈ R | s > λM/µ}. In both cases, due to this optimization, the resource costs rep-

resent a non-additive part of the characteristic cost function, in contrast to FIX-queueing

games.

We emphasize that our main interest lies in the former game; it represents the exact

discrete optimization problem. The latter game will help in understanding the discrete

game: we will use the nice, mathematical results that we can obtain for the setting where

the optimization is taken over the real numbers to derive results for the setting where each

coalition picks an optimal integer number of servers.

Although a system with a non-integral number of servers does not lend itself to a

natural interpretation, we remark that one might view it as, e.g., an approximation of a

system with a part-time worker. We also point out that Borst et al. (2004), in dealing

with with the staffing problem of large call centers, have approximated costs based on the

continuous extension (3) to find an approximately optimal number of servers.

Now, we call the game (N, ĉγ) with

ĉγ(M) = min
s∈N γ

M

Kγ
M(s) (10)

for all M ∈ 2N− and ĉγ(∅) = 0 the associated OPTN queueing game. Consider any coalition

M ∈ 2N− . On domain N γ
M , the cost function Kγ

M(s) is strictly convex (due to Theorem 3.4)

and it achieves a minimum (since the costs grow unboundedly as the number of servers

tends to infinity). Hence, an optimal integer number of servers is given by the smallest

s ∈ N γ
M satisfying Kγ

M(s+ 1) ≥ Kγ
M(s), and we denote this optimizer by ŝ∗M .

Further, we call the game (N, cγ) with

cγ(M) = min
s∈Rγ

M

Kγ
M(s) (11)

for all M ∈ 2N− and cγ(∅) = 0 the associated OPTR queueing game. Consider again

any coalition M ∈ 2N− . By strict convexity of Kγ
M(s) in s and because lims→∞K

γ
M(s) =

lims↓λM/µK
γ
M(s) = ∞, the cost function Kγ

M(s) achieves a minimum on domain Rγ
M ,

implying that the game is well-defined. Now, the optimal real number of servers is unique

(due to the strict convexity), and we denote it by s∗M .

The following proposition states that cooperation is beneficial and establishes a link

between the two games.

Proposition 5.1. Let γ = (N, (λi)i∈N , µ, (hM)M∈2N−
, d) ∈ Γ be an OPT-queueing situation,

with associated OPTN queueing game (N, ĉγ) and OPTR queueing game (N, cγ).
(i) Both games (N, ĉγ) and (N, cγ) are strictly subadditive.

(ii) Let M ∈ 2N− be a coalition. Then, either ŝ∗M =
⌊
s∗M
⌋

or ŝ∗M =
⌈
s∗M
⌉
. Furthermore,

ĉγ(M) ≥ cγ(M), with equality if and only if s∗M ∈ N.
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5.3 Cost allocation: stability and population monotonicity

In this section, we investigate whether or not cost allocation can be carried out in a stable

and population monotonic way. We start by introducing two simple rules that allocate costs

proportional to arrival rates. The first rule, P̂, divides the costs of the grand coalition in

OPTN queueing games. The second rule, P, does this for OPTR queueing games.

Formally, they are defined, for any γ = (N, (λi)i∈N , µ, (hM)M∈2N−
, d) ∈ Γ and i ∈ N ,

by P̂i(γ) = ĉγ(N)λi/λN and by Pi(γ) = cγ(N)λi/λN , respectively. Extending this idea

to every coalition, we define the proportional allocation scheme rules P̂ and P , for any

γ = (N, (λi)i∈N , µ, (hM)M∈2N−
, d) ∈ Γ, M ∈ 2N− , and i ∈ M , by P̂i,M(γ) = ĉγ(M)λi/λM

and by Pi,M(γ) = cγ(M)λi/λM , respectively. Note that these rules result in an efficient,

genuine allocation (scheme) for their respective games. The following example illustrates

the rules for OPTR queueing games and simultaneously shows that OPTN queueing games

need not admit a stable cost allocation.

Example 5.1. Consider the OPT-queueing situation γ = (N, (λi)i∈N , µ, (hM)M∈2N−
, d) ∈ Γ

with player set N = {1, 2, 3}, arrival rates λ1 = λ2 = 0.2 and λ3 = 0.1, service rate µ = 1,

resource cost rate hM = 1 for all M ⊆ N , and delay cost rate d = 2.15. The cost function

for the grand coalition corresponds to the cost function displayed in Figure 2 on page 20.

The characteristic cost functions ĉγ of the associated OPTN queueing game (N, ĉγ) and cγ

of the associated OPTR queueing game (N, cγ) are represented in Table 4, along with the

optimal numbers of servers for each coalition in both settings. The table also specifies the

allocation scheme P(γ) for game (N, cγ).

Coalition M ŝ∗M ĉγ(M) s∗M cγ(M) P1,M(γ) P2,M(γ) P3,M(γ)

{1} 1 1 43
400

0.75878 1.01675 1.01675 * *

{2} 1 1 43
400

0.75878 1.01675 * 1.01675 *

{3} 1 1 43
1800

0.50511 0.70489 * * 0.70489

{1, 2} 1 1 43
75

1.17171 1.50706 0.75353 0.75353 *

{1, 3} 1 1 387
1400

0.97478 1.27524 0.85016 * 0.42508

{2, 3} 1 1 387
1400

0.97478 1.27524 * 0.85016 0.42508

N 2 2 43
600

1.35662 1.72219 0.68887 0.68887 0.34444

Table 4: The OPT-queueing games, optimal numbers of servers, and proportional allocation

scheme of Example 5.1. For the setting where the optimization is taken over the real numbers,

all values are rounded to 5 decimals.
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Notice that P1,{1,2}(γ) > P1,N(γ) and similarly P2,{1,2}(γ) > P2,N(γ), i.e., the amount

that player 1 or 2 has to pay does not increase when player 3 joins them. This population

monotonicity can be verified for the members of all other nested pairs of coalitions as

well, implying that P(γ) is population monotonic. Accordingly, the OPTR queueing game

(N, cγ) has a nonempty core containing P(γ).

In contrast, the OPTN queueing game (N, ĉγ) has an empty core! To see this, sup-

pose x is a stable allocation for game (N, ĉγ). Thus, x satisfies x1 + x2 + x3 = ĉγ(N),

x1 + x2 ≤ ĉγ({1, 2}), x1 + x3 ≤ ĉγ({1, 3}), and x2 + x3 ≤ ĉγ({2, 3}), which implies

2ĉγ(N) ≤ ĉγ({1, 2})+ĉγ({1, 3})+ĉγ({2, 3}). However, 2ĉγ(N) = 4 43
300

> 4 53
420

= ĉγ({1, 2})+

ĉγ({1, 3}) + ĉγ({2, 3}). This yields a contradiction. We conclude that no stable allocation

exists. ♦

It is worth pointing out that Yu et al. (2007) gave a (2-player) counterexample indicating

that their games corresponding to server optimization in Erlang delay systems need not

have a nonempty core. However, their counterexample included players with asymmetrical

delay costs, and as a result their game was not subadditive, i.e., complete pooling was

detrimental. In contrast, in our subadditive game (N, ĉγ), all customers are homogenous

in delay costs and full pooling is beneficial. Despite the subadditivity, a stable allocation

is lacking.

In Example 5.1, we observed that the proportional allocation scheme rule P accom-

plished a population monotonic allocation scheme for the OPTR queueing game. The

following theorem shows that this is not a coincidence.

Theorem 5.2. Let γ = (N, (λi)i∈N , µ, (hM)M∈2N−
, d) ∈ Γ be an OPT-queueing situation.

Then, P(γ) is a PMAS for the OPTR queueing game (N, cγ). Moreover, each sub-game of

(N, cγ) has a non-empty core, and P(γ) is in the core of (N, cγ).

The following theorem states sufficient conditions for OPTN queueing games to possess

a core allocation and to admit a PMAS.

Theorem 5.3. Let γ = (N, (λi)i∈N , µ, (hM)M∈2N−
, d) ∈ Γ be an OPT-queueing situation.

(i) If s∗N ∈ N, then the game (N, ĉγ) has a non-empty core that contains P̂(γ).

(ii) If s∗M ∈ N for all M ∈ 2N− , then P̂(γ) is a PMAS for game (N, ĉγ).

Several insights emerge from our analysis thus far. First, OPTR queueing games show

nice properties: they have nonempty cores and admit a population monotonic allocation

scheme. These properties are not satisfied by OPTN queueing games in general; the in-

tegrality requirement is the sole culprit, as clearly illustrated by the preceding theorem.
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Interestingly, the M/M/1 games where coalitions optimize service capacity to reduce their

customers’ system sojourn times — considered in González and Herrero (2004), Garćıa-

Sanz et al. (2008), and Yu et al. (2009) — as well as the M/G/s/s games where coalitions

pick optimal numbers of servers — analyzed by Karsten et al. (2011) and Özen et al. (2011)

— all had nonempty cores. As such, OPTN queuing games exhibit fundamentally different

behavior.

5.4 Approximate stability and population monotonicity

In the previous section, we showed that OPTN queueing games exhibit different behavior

than OPTR queueing games: games in the latter class always have a nonempty core,

whereas games in the former class may possess an empty core. Yet, the only difference

between the two games is the domain over which the number of servers is optimized.

To expand our understanding of potential instability in OPTN queueing games, we will

introduce approximate core and PMAS concepts, and we will use these concepts to derive

insights regarding the impact of integrality.

The first general concept for cooperative games that we introduce in this section can

be seen a generalization of the core. For any vector ε = (εi) ∈ RN , we define the (vector)

ε-core of game (N, c) as

Coreε(N, c) = {x ∈ RN |
∑
i∈N

xi = c(N) and
∑
i∈M

xi ≤ c(M) +
∑
i∈M

εi for all M ∈ 2N−}.

This ε-core is the set of all cost allocations where no coalition M can obtain lower costs

by leaving the grand coalition, if upon leaving it must pay a penalty of εi for member i.

Naturally, the core of a game coincides with its 0-core. For any game (N, c), an allocation

in Coreε(N, c) for some vector ε is called an ε-stable allocation. Our vector ε-core is

reminiscent of the weak ε-core introduced by Shapley and Shubik (1966), but differs from

it by associating a number with each player rather than a single number with all players.

We next introduce another new concept analogous to the (vector) ε-core. For any vector

ε = (εi) ∈ RN , we say that an allocation scheme y for a game (N, c) is an ε−PMAS if

yi,M + εi ≥ yi,L for all coalitions M,L ∈ 2N− with M ⊂ L and i ∈ M . Here, εi may be

interpreted as an exogenous bonus received by player i if the coalition to which he belongs

grows.

The following theorem uses these newly defined notions to capture the influence of the

integrality requirement.

Theorem 5.4. Let γ = (N, (λi)i∈N , µ, (hM)M∈2N−
, d) ∈ Γ be an OPT-queueing situation.
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(i) Fix ε by εi = hNλi/λN for all i ∈ N . Then, the game (N, ĉγ) has a non-empty

(vector) ε-core, and P̂(γ) is an ε-stable allocation.

(ii) Fix ε by εi = h{i} for all i ∈ N . Then, P̂(γ) is a ε-PMAS for the game (N, ĉγ).7

Part (i) of Theorem 5.4 constructively shows that any possible instability disappears

if coalitions would have to pay an amount, no greater than hN , to leave the grand coali-

tion. Part (ii) of this theorem states a similar conclusion regarding the effect of discrete

service capacity on population monotonicity. Altogether, our analysis suggests that OPTN

queueing games associated with realistic large service facilities have nonempty ε-cores and

an ε-PMAS for relatively small ε, as the resource cost incurred for a single server is small

relative to the total costs faced by any coalition if the optimal number of servers is large.

This is in line with the observation of Yu et al. (2007) that the core of OPTN queueing

games would be nonempty if the characteristic costs are approximated via the Halfin-Whitt

heavy traffic regime — an approximation that is asymptotically exact as the arrival rate

tends to infinity.

6 Concluding remarks

In this paper, we have applied concepts from cooperative game theory to study the problem

of fair allocation of shared costs in multi-server queueing systems with infinite waiting room.

Our model features several independent service providers, each associated with their own

customer populations. They can collaborate by sharing servers, which is beneficial from

the whole system point of view. In both cases considered, fixed and optimal numbers

of servers, we studied (existence of) stable allocations of the resource costs for common

servers and delay costs for waiting customers — stable in the sense that no subset of players

has an incentive to split off and form a separate pooling group. Our analysis reveals that

collaboration is always supportable by a stable allocation if players’ numbers of servers are

exogenously given (in line with the corresponding M/M/1 game of Anily and Haviv, 2010),

whereas a stable allocation need not exist in general if each coalition optimizes over integer

number of servers (in contrast to M/M/1 games considered in, e.g., Yu et al., 2009).

7If |N | > 1, our proof approach immediately reveals that a stronger, but less crisp, bound is
possible: P̂(γ) is also an ε̃-PMAS for game (N, ĉγ) if we set, for all i ∈ N , ε̃i to be equal to
max{hMλi/λM : M ∈ 2N− , |M | = 2, and i ∈M}. Note that ε̃i ≤ h{i}.
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6.1 Proportional cost allocations

A common theme in our study is that a proportional allocation, which simply divides joint

delay costs proportional to players’ arrival rates, is often stable and reachable through a

population monotonic allocation scheme. This is true for the case with fixed numbers of

servers under a symmetry condition. For the case with optimal numbers of servers, the

corresponding proportional allocation is close-to-stable in general and stable in absence of

the integrality requirement. These results imply that in a broad range of realistic settings,

especially for large service facilities, the allocation proportional to arrival rates is a “fair”

(or at least “close-to-fair”) way to divide joint costs (in accordance with Yu et al., 2009).

This is an important result, because a proportional allocation is easy to understand,

is computationally attractive, and would be easy to implement in practice. In fact, it

could even be implemented via a simple cost division per realization. Although our games

have been formulated in expected terms to investigate a priori attractiveness of resource

pooling, fair assignments of realized delay costs in any finite time period are needed to

sustain support for the cooperation in practice. For the specific case where the number

of servers is optimized, one seemingly fair process to fully assign actually realized costs in

any time period would be for every player to incur the actual delay costs for their own

customers and, upon arrival of any of its customers, to pay the resource costs incurred for

all servers until the next customer arrival of any player. Notice that the long-term average

costs assigned to each player under this process coincide with the proportional allocation

of expected costs! Additionally, a player may appreciate that, under the proposed process

of assigning realized costs, few customer arrivals for this player over some period of time

imply a correspondingly low cost charge. Moreover, the process eliminates the need for

transfer payments of delay costs, thereby avoiding disputes about the exact magnitude of

delay costs.

6.2 Future research

There are various directions in which our work may be extended. One interesting avenue

is to relax the assumption that delay costs and service times are symmetric across players.

Opposed to the setting considered in this paper, complete pooling of servers need not be

superior anymore if such asymmetries are allowed (see, e.g., Smith and Whitt, 1981). This

issue may be circumvented by preferential treatment of more critical classes via priority

disciplines, although this is far from a trivial extension.

Finally, we concede that completely pooling service systems is not always feasible, espe-

26



cially if service facilities of the players are operated at geographically dispersed locations.

Nevertheless, some degree of partial pooling may still be feasible. To study such a setting,

challenging as it may be, one may consider a model variation in which players partition

themselves into separate service groups, in line with Whitt (1999).
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A Appendix

A.1 Proofs for section 3.

Proof of Lemma 3.1. For notational ease, let C = C(s, a), B = B(s, a), C−1 = 1/C,

B−1 = 1/B, and ρ = a/s. (Note that C > 0 and B > 0.) Then,

C−1 − (1− ρ)B−1 =

∫ ∞
0

ae−ax(1 + x)s−1xdx−
∫ ∞

0

ae−ax(1 + x)s(1− ρ)dx

=

∫ ∞
0

ae−ax(1 + x)s−1[x− (1 + x)(1− ρ)]dx

=

∫ ∞
0

ae−ax(1 + x)s−1[ρ(1 + x)− 1]dx

= −ae−ax(1 + x)s/s
∣∣x=∞
x=0

= ρ.

This implies BC−1 − 1 + ρ = Bρ, which in turn implies BC−1 − 1 = −ρ(1−B), and thus

C = B/[1− ρ(1−B)]. This completes the proof.

Proof of Lemma 3.2. By Lemma 3.1, we have

C(ts, ta) =
1

1− a/s
B(ts, ta)

+ a/s

. (12)

Now, as shown in the appendix of Smith and Whitt (1981), B(ts, ta) is decreasing in t for

t > 0 (see also the clarifying remark in Karsten et al., 2009, Section 2.2). This result, in

combination with Equation (12), implies that C(ts, ta) is also decreasing in t for t > 0.

Proof of Theorem 3.3. Let t1, t2 > 0 with t1 < t2. Then,

Wq(t1s, t1λ, µ) = C(t1s, t1λ/µ)/[t1(sµ− λ)]

> C(t2s, t2λ/µ)/[t1(sµ− λ)]

> C(t2s, t2λ/µ)/[t2(sµ− λ)] = Wq(t2s, t2λ, µ),

where the first inequality holds by Lemma 3.2. We conclude that Wq(ts, tλ, µ) is decreasing

in t for t > 0.

In the process of proving the next property of the continuous extension of the Erlang

delay function, we will use the following lemma.
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Lemma A.1. Let f : D → R be a positive, non-increasing, convex function on an interval

D ⊆ R. Let g : D → R be a positive, decreasing, strictly convex function on the same

domain as f . Then the function h : D → R, defined by h(s) = f(s)g(s) for all s ∈ D, is

decreasing and strictly convex.

Proof. The case |D| = 1 is trivial. In the remainder of the proof, we will assume |D| > 1.

Let s1, s2 ∈ D with s1 < s2. We first show that h is decreasing. We have

h(s1) = f(s1)g(s1) ≥ f(s2)g(s1) > f(s2)g(s2) = h(s2),

where the first inequality holds because f is non-increasing while g(s1) > 0, and the second

inequality holds because f(s2) > 0 and g is decreasing. We conclude that h is decreasing.

Next, we show that h is strictly convex. Let x ∈ (0, 1). Then,

h(xs1 + (1− x)s2) = f(xs1 + (1− x)s2) · g(xs1 + (1− x)s2)

≤
[
xf(s1) + (1− x)f(s2)

]
· g(xs1 + (1− x)s2)

<
[
xf(s1) + (1− x)f(s2)

]
·
[
xg(s1) + (1− x)g(s2)

]
= x2h(s1) + (1− x)2h(s2) + x(1− x)f(s1)

[
g(s2)− g(s1) + g(s1)

]
+ (1− x)xf(s2)

[
g(s1)− g(s2) + g(s2)

]
= xh(s1) + (1− x)h(s2)

+ x(1− x)
[
f(s1)[g(s2)− g(s1)] + f(s2)[g(s1)− g(s2)]

]
≤ xh(s1) + (1− x)h(s2),

The first inequality holds because f is convex, while g is a positive function. The second

inequality holds because g is strictly convex and f is a positive function. The third in-

equality holds because x(1−x) > 0, g(s2)−g(s1) < 0, and f(s1)−f(s2) ≥ 0. We conclude

that h is indeed strictly convex.

Proof of Theorem 3.4. For the fixed choice of λ and µ, we denote a = λ/µ and we define,

for all s ∈ R with s > a, f(s) = C(s, a) and g(s) = 1/(sµ − λ). Thus, for all s ∈ R
with s > a, we have Wq(s, λ, µ) = f(s)g(s). Since, as shown by Jagers and Van Doorn

(1991), the continuous extension of the Erlang delay function is positive, non-increasing

and convex in the number of servers, f(s) has the same properties. Moreover, g(s) is

positive, decreasing in s, and convex in s. Hence, the assumptions in Lemma A.1 are

satisfied, and the theorem follows.
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Proof of Theorem 3.5. The subadditivity result follows from

Wq(s1 + s2, λ1 + λ2, µ) <
λ1

λ1 + λ2

Wq

(
λ1 + λ2

λ1

s1, λ1 + λ2, µ

)
+

λ2

λ1 + λ2

Wq

(
λ1 + λ2

λ2

s2, λ1 + λ2, µ

)
<

λ1

λ1 + λ2

Wq(s1, λ1, µ) +
λ2

λ1 + λ2

Wq(s2, λ2, µ),

where the first inequality holds by the convexity property of Theorem 3.4 and the second

inequality holds by Theorem 3.3. Multiplying both sides with λ1 + λ2 > 0 completes the

proof.

A.2 Proofs for Section 4.

Proof of Proposition 4.1. Let ψ = (N, (λi)i∈N , µ, (si)i∈N , h, d) ∈ Ψ be a FIX-queueing sit-

uation. Let M,L ∈ 2N− with M ∩ L = ∅. Then,

cψ(M ∪ L) = h(sM + sL) +Wq(sM + sL, λM + λL, µ) · (λM + λL)d

< hsM +Wq(sM , λM , µ) · λMd+ hsL +Wq(sL, λL, µ) · λLd
= cψ(M) + cψ(L),

where the inequality holds by Theorem 3.5.

To prove Theorem 4.2, we employ the notion of balancedness. For this, we first need

to define balanced maps and balanced collections for player set N . A map κ : 2N− → [0, 1]

is called balanced for N if
∑

M∈2N− :i∈M κ(M) = 1 for all i ∈ N . For each balanced map

κ for N , we define B(κ) = {M ∈ 2N− | κ(M) > 0}. Any collection B ⊆ 2N− of coalitions

is called balanced for N if there is a balanced map κ for N such that B = B(κ). As an

example, for N = {1, 2, 3}, B = {{1, 2}, {1, 3}, {2, 3}} is a balanced collection because the

map κ : 2N− → [0, 1], described by κ(M) = 1
2

if |M | = 2 and κ(M) = 0 otherwise, is a

balanced map satisfying B(κ) = B. Thus, balanced maps may be fractional-valued. In

the proof of Theorem 4.2, we will use balanced maps to construct queueing systems with

possibly fractional numbers of servers, which is a main reason for analyzing the continuous

extension of the Erlang delay function in Section 3.2.

A balanced collection B is called minimally balanced for N if N /∈ B and there does not

exist another balanced collection for N that is a proper subset of B. Correspondingly, a

balanced map κ is called minimally balanced for N if B(κ) is a minimally balanced collection

for N . Each minimally balanced collection is associated with a unique minimally balanced
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map (Shapley, 1967). Let BN denote the set of minimally balanced maps for N . Every

κ ∈ BN satisfies
∑

M∈B(κ) κ(M) ·
∑

i∈M f(i) =
∑

i∈N f(i) for all functions f : N → R.

Bondareva (1963) and Shapley (1967) showed that the core of a game (N, c) with two

or more players is non-empty if and only if for every minimally balanced map κ ∈ BN it

holds that
∑

M∈B(κ) κ(M)c(M) ≥ c(N). Using this result, we will be able to prove part (i)

of Theorem 4.2. To prove part (ii) of that theorem, we will exploit the following lemma.

Lemma A.2. Let (N, c) be a game with |N | > 1 and c(N) <
∑

M∈B(κ) κ(M)c(M) for each

κ ∈ BN . This game has infinitely many core allocations.

Proof. Let κ∗ ∈ argminκ∈BN{
∑

M∈B(κ) κ(M)c(M)}. Such a κ∗ exists because the number

of minimally balanced collections for N is no larger than the number of subsets of 2N− . Let

ε∗ =
∑

M∈B(κ∗) κ
∗(M)c(M)− c(N); note that ε∗ > 0. We will aim to identify two different

core allocations. To this end, we define the auxiliary game (N, c∗) by c∗(M) = c(M) for

all proper subsets M ⊂ N , and c∗(N) = c(N) + ε∗. Then, for any κ ∈ BN , we obtain

c∗(N) = c(N) + ε∗ =
∑

M∈B(κ)

κ∗(M)c(M)− ε∗ + ε∗ ≤
∑

M∈B(κ)

κ(M)c(M),

where the inequality holds by choice of κ∗ as a minimizer. Hence, the game (N, c∗) is

balanced as well, so the nucleolus ν(N, c∗) is in the core of (N, c∗).

Now, we let i, j ∈ N , i 6= j, be two different players, and we define two allocations for

the game (N, c): n(i) and n(j). The first allocation, n(i), is defined by n
(i)
k = νk(N, c

∗) for

all k ∈ N \{i} and n
(i)
i = νi(N, c

∗)− ε∗. The second allocation, n(j), is defined analogously,

now reducing player j’s allocation by ε∗. Clearly, n(i) 6= n(j). Note that n(i) is an efficient

allocation for game (N, c) since∑
k∈N

n
(i)
k =

∑
k∈N\{i}

νk(N, c
∗) + νi(N, c

∗)− ε∗ = c∗(N)− ε∗ = c(N),

where the second equality holds because ν(N, c∗) is an efficient allocation for the game

(N, c∗). Moreover, n(i) is a stable allocation for game (N, c) since, for any proper subset

M ⊂ N , it holds that ∑
k∈M

n
(i)
k ≤

∑
k∈M

νk(N, c
∗) ≤ c∗(M) = c(M),

where the second inequality is valid because ν(N, c∗) was a stable allocation for the game

(N, c∗). We conclude that ν(i) is in the core of game (N, c). The argument for core inclusion

of ν(j) goes analogously. Finally, as the core is a convex set, the existence of two different

core allocations implies that there are infinitely many core allocations.
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Proof of Theorem 4.2. We first prove part (i). If |N | = 1, then the proof is trivial. In case

|N | > 1, we let κ ∈ BN be an arbitrary minimally balanced map. Then, we have

cψ(N) = hsN +Wq (sN , λN , µ) · λNd

= h
∑

M∈B(κ)

κ(M)sM +Wq

 ∑
M∈B(κ)

κ(M)sM ·
λN
λM
· λM
λN

, λN , µ

 · λNd
≤ h

∑
M∈B(κ)

κ(M)sM +
∑

M∈B(κ)

κ(M)
λM
λN
·Wq

(
sM ·

λN
λM

, λN , µ

)
· λNd

=
∑

M∈B(κ)

κ(M)

[
hsM +Wq

(
sM ·

λN
λM

, λN , µ

)
· λMd

]
<

∑
M∈B(κ)

κ(M) [hsM +Wq (sM , λM , µ) · λMd]

=
∑

M∈B(κ)

κ(M)cψ(M).

The second equality holds because
∑

M∈B(κ) κ(M)sM = sN . The first inequality holds by

the convexity property of Theorem 3.4, and
∑

M∈B(κ) κ(M)λM/λN = 1; that is, we employ

this convexity by using that the nonnegative convex weights κ(M)λM/λN add up to 1. The

second inequality holds by Theorem 3.3. This inequality is strict because κ is minimally

balanced and thus, by definition, every M ∈ B(κ) is a proper subset of N .

We conclude that the game (N, cψ) is balanced. Noting that every sub-game of (N, cψ)

is a game associated with an element of Ψ itself completes the proof of part (i).

To show part (ii), we assume that |N | > 1. The inequality cψ(N) <
∑

M∈B(κ) κ(M)cψ(M)

is strict for each κ ∈ BN , as shown above in part (i). Thus, by Lemma A.2, the game (N, cψ)

has infinitely many core allocations. This completes the proof.

Proof of Theorem 4.3. Part (i). Let M,L ∈ 2N− with M ⊂ L. Then,

Wq(sM , λM , µ) > Wq

(
sM ·

sL
sM

, λM ·
sL
sM

, µ

)
= Wq(sL, λL, µ),

where the inequality follows by Theorem 3.3 and the equality holds because sM/λM =

sL/λL.

Part (ii). Let M,L ∈ 2N− with M ⊆ L, and let i ∈M . Then,

Pi,M(ψ) = hsi +Wq(sM , λM , µ) · λid
≥ hsi +Wq(sL, λL, µ) · λid = Pi,L(ψ),
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where the inequality follows by part (i). We conclude that P(ψ) is indeed a PMAS.

Finally, parts (iii) and (iv) immediately follow from Sprumont (1990) and from Theorem

1 in Benjaafar (1995), respectively.

A.3 Proofs for Section 5.

Proof of Proposition 5.1. Part (i). Let M,L ∈ 2N− with M ∩ L = ∅. To show strict

subadditivity of the OPTR game (N, cγ), we have

cγ(M ∪ L) = hM∪L · s∗M∪L +Wq(s
∗
M∪L, λM + λL, µ) · (λM + λL)d

≤ hM∪L(s∗M + s∗L) +Wq(s
∗
M + s∗L, λM + λL, µ) · (λM + λL)d

≤ hMs
∗
M + hLs

∗
L +Wq(s

∗
M + s∗L, λM + λL, µ) · (λM + λL)d

< hMs
∗
M +Wq(s

∗
M , λM , µ) · λMd+ hLs

∗
L +Wq(s

∗
L, λL, µ) · λLd

= cγ(M) + cγ(L),

where the first inequality holds because s∗M∪L is an optimal number of servers for coalition

M ∪ L, the second inequality is valid because hM∪L ≤ hM and hM∪L ≤ hL by assumption

on γ, and the third inequality holds by Theorem 3.5. We conclude that (N, cγ) is strictly

subadditive. The proof of strict subadditivity of the OPTN game (N, ĉγ) goes analogously.

Part (ii). First, the claim that ŝ∗M =
⌊
s∗M
⌋

or ŝ∗M =
⌈
s∗M
⌉

follows immediately from

strict convexity of Kγ
M(s). The relation between ĉγ(M) and cγ(M) follows from uniqueness

of s∗M and from the observation that in the OPTR game any coalition M ∈ 2N− optimizes

over a larger domain than in the OPTN game, which implies that ĉγ(M) = cγ(M) if and

only if s∗M = ŝ∗M , but that occurs if and only if s∗M ∈ N.

Proof of Theorem 5.2. Let M,L ∈ 2N− with M ⊆ L, and let i ∈M . Then,

Pi,L(γ) =
λi
λL
Kγ
L(s∗L)

≤ λi
λL
Kγ
L

(
s∗M

λL
λM

)
= hLs

∗
M

λi
λM

+Wq

(
s∗M

λL
λM

, λL, µ

)
· λid

≤ hLs
∗
M

λi
λM

+Wq(s
∗
M , λM , µ) · λid

≤ hMs
∗
M

λi
λM

+Wq(s
∗
M , λM , µ) · λid

=
λi
λM

Kγ
M(s∗M) = Pi,M(γ),
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where the first inequality holds because s∗L is the optimal number of servers for coalition

L, the second inequality is valid by Theorem 3.3, and the third inequality holds because

hL ≤ hM by assumption on γ. We conclude that P(γ) is indeed a PMAS for game (N, cγ).

By Sprumont (1990), this immediately implies that each sub-game of (N, cγ) has a non-

empty core and that P(γ) is a core element of game (N, cγ).

Proof of Theorem 5.3. Part (i). Let M ∈ 2N− be an arbitrary coalition. Assuming s∗N ∈ N,

it holds that ĉγ(N) = cγ(N) and ĉγ(M) ≥ cγ(M), by part (ii) of Proposition 5.1. Using this

in combination with Theorem 5.2, we obtain P̂(γ) = P(γ) ∈ Core(N, cγ) ⊆ Core(N, ĉγ).

Thus, P̂(γ) is a stable allocation for game (N, ĉγ).

Part (ii). Let M,L ∈ 2N− with M ⊆ L, and let i ∈ M . Note that s∗M and s∗L are, by

assumption, integer numbers. Using part (ii) of Proposition 5.1, we obtain

P̂i,L(γ) = ĉγ(L)
λi
λL

= cγ(L)
λi
λL

= Pi,L(γ) ≤ Pi,M(γ) = cγ(M)
λi
λM

= ĉγ(M)
λi
λM

= P̂i,M(γ),

where the inequality holds by Theorem 5.2. We conclude that P̂(γ) is indeed a PMAS for

game (N, ĉγ).

Proof of Theorem 5.4. Part (i). Let M ∈ 2N− . Then,∑
i∈M

P̂i(γ) = Kγ
N(ŝ∗N) · λM

λN

≤ Kγ
N

(⌈
ŝ∗M

λN
λM

⌉)
· λM
λN

=

(
hN

⌈
ŝ∗M

λN
λM

⌉
+Wq

(⌈
ŝ∗M

λN
λM

⌉
, λN , µ

)
· λNd

)
· λM
λN

≤
(
hN

⌈
ŝ∗M

λN
λM

⌉
+Wq

(
ŝ∗M

λN
λM

, λN , µ
)
· λNd

)
· λM
λN

≤
(
hN

⌈
ŝ∗M

λN
λM

⌉
+Wq

(
ŝ∗M , λM , µ

)
· λNd

)
· λM
λN

≤
(
hN

(
ŝ∗M

λN
λM

+ 1
)

+Wq

(
ŝ∗M , λM , µ

)
· λNd

)
· λM
λN

= hN ŝ
∗
M +

∑
i∈M

εi +Wq

(
ŝ∗M , λM , µ

)
· λMd

≤ hM ŝ
∗
M +

∑
i∈M

εi +Wq

(
ŝ∗M , λM , µ

)
· λMd = ĉγ(M) +

∑
i∈M

εi.

The first inequality holds because ŝ∗N is an optimal number of servers for the grand coalition.

The second inequality holds by the monotonicity property of Theorem 3.4. The third
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inequality is due to Theorem 3.3. The final inequality holds since hN ≤ hM by assumption

on γ. We conclude that P̂(γ) is an ε-stable allocation for game (N, ĉγ).

Part (ii). Let M,L ∈ 2N− with M ⊂ L, and let i ∈ M . Then, in line with the proof of

part (i) of this theorem,

P̂i,L(γ) ≤ Kγ
L

(⌈
ŝ∗M

λL
λM

⌉)
· λi
λL

≤
(
hL

⌈
ŝ∗M

λL
λM

⌉
+Wq(ŝ

∗
M , λM , µ) · λLd

)
· λi
λL

≤
(
hL

(
ŝ∗M

λL
λM

+ 1
)

+Wq(ŝ
∗
M , λM , µ) · λLd

)
· λi
λL

≤ hM ŝ
∗
M

λi
λM

+ h{i} +Wq(ŝ
∗
M , λM , µ) · λid = P̂i,M(γ) + εi,

where the last inequality holds since hL ≤ hM ≤ h{i} by assumption on γ and since

λi/λL ≤ 1. We conclude that P̂(γ) is an ε-PMAS for game (N, ĉγ).
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