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Summary

Huygens’ synchronization of dynamical systems: beyond
pendulum clocks

Synchronization is one of the most deeply rooted and pervasive behaviours in
nature. It extends from human beings to unconscious entities. Some familiar
examples include the fascinating motion of schools of fish, the simultaneous flash-
ing of fireflies, a couple dancing in synchrony with the rhythm of the music, the
synchronous firing of neurons and pacemaker cells, and the synchronized motion
of pendulum clocks. In a first glimpse to these examples, the existence of self-
synchronization in nature may seem almost miraculous. However, the main “se-
cret” behind this phenomenon is that there exists a communication channel, called
coupling, such that the entities/systems can influence each other. This coupling
can be, for instance, in the form of a physical interconnection or a certain chemical
process.
Although synchronization is a ubiquitous phenomenon among coupled oscillatory
systems, its onset is not always obvious. Consequently, the following questions
arise: How exactly do coupled oscillators synchronize themselves, and under what
conditions? In some cases, obtaining answers for these questions is extremely
challenging. Consider for instance, the famous example of Christiaan Huygens
of two pendulum clocks exhibiting anti-phase or in-phase synchronized motion.
Huygens did observe that there is a “medium” responsible for the synchronized
motion, namely the bar to which the pendula are attached. However, despite
the remarkably correct observation of Huygens, even today a complete rigorous
mathematical explanation of this phenomenon, using proper models for pendula
and flexible coupling bar, is still missing.
The purpose of this thesis is to further pursue the nature of the synchronized
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motion occurring in coupled oscillators. The first part, addresses the problem of
natural synchronization of arbitrary self-sustained oscillators with Huygens cou-
pling. This means that in the analysis, the original setup of Huygens’ clocks is
slightly modified in the sense that each pendulum clock is replaced by an ar-
bitrary second order nonlinear oscillator and instead of the flexible wooden bar
(called here Huygens’ coupling), a rigid bar of one degree of freedom is considered.
Each oscillator is provided with a control input in order to guarantee steady-state
oscillations. This requirement of having a control input to sustain the oscillations
can be linked to Huygens’ pendulum clocks, where each pendulum is equipped
with an escapement mechanism, which provides an impulsive force to the pendu-
lum in order to keep the clocks running. Then, it is shown that the synchronized
motion in the oscillators is independent of the kind of controller used to maintain
the oscillations. Rather, the coupling bar, i.e. Huygens’ coupling is considered as
the key element in the occurrence of synchronization. In particular, it is shown
that the mass of the coupling bar determines the eventual synchronized behaviour
in the oscillators, namely in-phase and anti-phase synchronization. The Poincaré
method is used in order to determine the existence and stability of these syn-
chronous motions. This is feasible since in the system there exists a natural small
parameter, namely the coupling strength, which value is determined by the mass
of the coupling bar.
Next, the synchronization problem is addressed from a control point of view. First,
the synchronization problem of two chaotic oscillators with Huygens’ coupling is
discussed. It is shown that by driving the coupling bar with an external periodic
excitation, it is possible to trigger the onset of chaos in the oscillators. The mass of
the coupling bar is considered as the bifurcation parameter. When the oscillators
are in a chaotic state, the synchronization phenomenon will not occur naturally.
Consequently, it is demonstrated that by using a master-slave configuration or a
mutual synchronization scheme, it is possible to achieve (controlled) synchroniza-
tion. Secondly, the effect of time delay in the synchronized motion of oscillators
with Huygens’ coupling is investigated. In this case, the wooden bar, is replaced
by a representative dynamical system. This dynamical system generates a suitable
control input for the oscillators such that in closed loop the system resembles a pair
of oscillators with Huygens’ coupling. Under this approach, the oscillators do not
need to be at the same location and moreover, the dynamical system generating
the control input should be implemented separately, using for instance a computer.
Consequently, the possibility of having communication time-delays (either in the
oscillators or in the applied control input) comes into play. Then, the onset of
in-phase and anti-phase synchronization in the coupled/controlled oscillators is
studied as a function of the coupling strength and the time delay.
In addition to computer simulations, the (natural and controlled) synchronized
motion of the oscillators is validated by means of experiments. These experiments
are performed in an experimental platform consisting of an elastically supported
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(controllable) rigid bar (in Huygens’ example the wooden bar) and two (control-
lable) mass-spring-damper oscillators (the pendulum clocks in Huygens’ case). A
key feature of this platform is that its dynamical behaviour can be adjusted. This
is possible due to the fact that the oscillators and the coupling bar can be actuated
independently, then by using feedback, specific desirable oscillators’ dynamics are
enforced and likewise the behaviour of the coupling bar is modified. This feature
is exploited in order to experimentally study synchronous behaviour in a wide
variety of dynamical systems.
Another question considered in this thesis is related to the modeling of the real
Huygens experiment. The models used in the first part of this thesis and the ones
reported in the literature are simplifications of the real model: the coupling bar
has been considered as a rigid body of one degree of freedom. However, in the
real Huygens experiment, the bar to which the clocks are attached is indeed an
infinite dimensional system for which a rigorous study of the in-phase and anti-
phase synchronized motion of the two pendula is, as far as is known, still never
addressed in the literature. The third part of the thesis focuses on this. A Finite
Element Modelling technique is used in order to derive a model consisting of a
(finite) set of ordinary differential equations. Numerical results illustrating all the
possible stationary solutions of the “true” infinite dimensional Huygens problem
are included.
In summary, the results contained in the thesis in fact reveal that the synchronized
motion observed by Huygens extends beyond pendulum clocks.
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Chapter 1
Introduction

The energy of the mind is the essence of life.

Aristotéles (384 B.C.E. - 322 B.C.E)

Abstract This chapter introduces the phenomenon of synchronization and
presents an historical account of Huygens’ synchronization. The chapter also
presents the motivation, objectives, contributions, and outline of this thesis.
Additionally, some definitions and mathematical tools, used later on this the-
sis, are presented.

1.1 Synchronization: the most pervasive behaviour in na-
ture

One of the most ubiquitous forms of motion in the universe is oscillatory motion.
Some examples that are common in everyday life are: the periodic motion of
the Earth, the alternating electric current necessary for the functioning of home,
office, and industrial devices, the ups and downs in economy, the swinging of
the pendulum of a clock, or the reader may start to generate numerous other
examples. When the oscillatory motion of a system is influenced by the oscillations
of (an)other oscillatory system(s), then the interacting systems may experience a
striking phenomenon called synchronization.

Synchronization, or as the Oxford advanced dictionary defines it, “agreement in
time” or “happening at the same time” [1], is one of the most deeply rooted and
pervasive behaviours in nature. It extends from human beings to unconscious en-
tities. Referring to synchronization in human beings we can mention, for instance,

1



2 1 Introduction

a couple dancing in synchrony with the rhythm of the music, synchronized swi-
mmers, or the violinists in an orchestra playing in unison. On the other hand,
synchronization of a starling flock in flight, the graceful motion of a school of fish
or the striking synchronized attack of killer whales, synchronous firing of neurons
and pacemaker cells, or synchronous rupturing of earthquake faults are some exam-
ples of subconscious and unconscious synchronization. These examples - amongst
others - are nicely described in [63, 64, 74, 78, 79]. From a careful analysis of
these examples, it is possible to notice that synchronization of oscillating objects
or bodies seems to happen in a natural way, i.e. if the bodies are programmed
in such way that a weak interaction between them will result in an adjustment of
their rhythms. In fact, it is not surprising that the synchronization phenomenon
is often perceived as miraculous, surprising, or fairly difficult to understand.

Hence, the natural question is, how exactly do coupled oscillators synchronize
themselves, and under what conditions? In some cases, obtaining answers for these
questions is extremely challenging. Notwithstanding this, something should be
clear: the main ‘secret’ behind this phenomenon is that there exists a medium (for
instance a physical interconnection or a certain chemical process), called coupling,
such that the entities/systems can influence each other.

1.2 Huygens’ synchronization: the sympathy of pendu-
lum clocks

Probably the earliest writing on inanimate synchronization is due to the Dutch sci-
entist Christiaan Huygens (1629-1695), who discovered that two pendulum clocks
hanging from a common support (a wooden bar supported by two chairs, see
Figure 1.1), kept in pace relative to each other such that the two pendulums al-
ways swung together (in opposite motion) and never varied. By Huygens this was
called “sympathy of two clocks”. After some systematic experiments he found the
source of the “sympathy”: the imperceptible motion of the bar to which the pendu-
lum clocks were attached, cf. [30, 37, 63]. Nowadays, the phenomenon described
by Huygens (pendulums approaching and receding in opposite motions) is called
anti-phase synchronization for obvious reasons. Note that the explanation given
by Huygens is on the one hand correct and on the other hand is amazingly simple.
He did manage to explain correctly the phenomenon even when he did not have at
hand the necessary mathematical tools for performing the analysis - at that time
differential calculus did not exist yet.

Half a century after Huygens’ observations, John Ellicott [18, 19] carried out si-
milar experiments with pendulum clocks. In a manuscript submitted to the Royal
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Figure 1.1 Original Huygens drawing cf. [30].

Society of London, he describes an ‘odd’ phenomenon: when two pendulums were
placed sideways to one another, one of them was always found to stop working
after 2 hours. He did conclude that the two pendulum clocks mutually did affect
each other.

In 1873, the sympathetic behaviour described by Huygens ‘struck’ again. This time
at the Royal Observatory of Greenwich. According to the observations of Williams
Ellis [20], two pendulum clocks placed on a wooden stand did show sympathetic
behaviour: during 9 consecutive days the times indicated by the clocks did remain
constant, day after day and moreover, the pendulum of one clock swung to the
left, whereas the other went to the right, i.e. they were synchronized in anti-phase.
Additionally, Ellis placed 9 pendulum clocks on the wooden stand and in this case
he did notice that the previous agreement in the pendulums did disappear and
instead, the rate of the clocks showed great variations. He also did suspect that
the clocks were communicating via the wooden stand.

Later, in the beginning of the 20th century, D.J. Korteweg did provide the first
theoretical explanation of the Huygens’ observations by using an undamped and
undriven three degrees of freedom model [37]. With this model he was able to
conclude that anti-phase motion is the most dominant mode.

After the work of Korteweg, there is a void space in the literature (at least to the
knowledge of the author) regarding Huygens’ synchronization.

However, by the end of the 20th century, the Huygens synchronization phenomenon
was revisited by I.I. Blekhman [7]. In his analysis, similar to Korteweg, he did use
a three degrees of freedom model but he did include the effect of damping. Addi-
tionally, this model takes into account the clock escapements, which are modelled
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by using a van der Pol term. Blekhman drew the conclusion that two synchroniza-
tion states can occur, namely in-phase and anti-phase synchronization, and that
they depend on the initial conditions of the system.

During the last decade, the study of Huygens’ synchronization has regained at-
tention. Several authors have contributed towards the study of the intriguing
Huygens’ synchronization problem. We can distinguish two approaches: the theo-
retical approach and the one oriented to obtain insight by experimental analysis.
Some works related to the theoretical approach are presented in [16, 17, 29, 31,
32, 33, 34, 52, 75, 86]. For the second approach several experimental setups have
been created by researchers in order to reproduce the observations made by Huy-
gens and find mathematical arguments for the synchronized motion of the clocks.
Some of these experimental setups are presented in [5, 54, 55]. All of them have a
common characteristic: the pendulum clocks are replaced by metronomes and the
supporting bar is free to oscillate. In these cases, besides the synchronized motion,
other kinds of motion have been reported, as for example, beating death (where
one of the metronomes stops its oscillations, whereas the other one keeps oscillat-
ing, just as reported by Ellicott) [5] and intermediate synchronization (metronomes
synchronize with constant phase difference but different amplitude) [54].

Besides the aforementioned attempts to better understand the true mechanism
behind the sympathy of pendulum clocks, nowadays there exist works where the
study of Huygens’ synchronization has been extended to the case of arbitrary
second order oscillators [59, 60, 70]. In such works, the pendulum clocks have
been replaced by arbitrary nonlinear oscillators.

Finally, it should be emphasized that even today the study of Huygens’ synchro-
nization is an open research problem. A further motivation for the study of this
exciting phenomenon is provided in the next section.

1.3 Thesis overview

This section presents a general overview of the thesis. First, a motivation for the
study of Huygens’ synchronization is provided. Then, the objectives of the project
are discussed and finally, the contributions and outline of the thesis are given.
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1.3.1 Motivation

Nowadays, there exists a large number of studies addressing the phenomenon of
synchronization in several fields like biology, chemistry, physics, and engineering.
However, further understanding of the complex synchronization phenomenon oc-
curring in pairs of arbitrary oscillators (not necessarily pendulum clocks) with
Huygens’ coupling is still necessary. This may be motivated by the fact that the
Huygens system has a certain degree of similarity with other systems (not neces-
sarily mechanical).

Consider for instance the case of two driven unbalanced rotors (a familiar example
of this kind of devices is a washing machine) mounted on an elastic support,
i.e. coupled through Huygens’ coupling. It has been found that, under certain
conditions, the rotors may synchronize either in-phase or in anti-phase [8]. Note
that the onset of anti-phase synchronization in this example is highly desirable,
since this will reduce or even eliminate the vibrations of the common support
during the operation of the rotors. However, the onset of in-phase synchronization
is not desired at all, since this will induce resonance and high amplitude vibrations
of the support ultimately resulting in harmful and undesirable effects.

Something similar happens in living organism. For instance, inside the human
body, there are several biological rhythms: respiration, heartbeat, and blood per-
fusion just to mention a few of them. It has been found that when some of these
rhythms synchronize with each other the energy consumption is minimal. Hence,
in this case the onset of synchronization is beneficial [45]. On the other hand,
synchronization can also be dangerous or detrimental. It is widely accepted, that
the process of seizure generation is closely associated with an abnormal synchro-
nization of neurons, see e.g. [44].

Note that in both cases, either unbalanced rotors or biological rhythms in the
human body, the synchronization phenomenon occurs naturally. Therefore, it is
necessary to determine under which conditions (maybe related to the coupling
structure) the synchronization phenomenon (in particular, in-phase or anti-phase)
may occur. This suggests that perhaps the (theoretical and/or experimental)
achievements in one area, say mechanics, can help to better understand the natural
synchronization phenomena occurring in for instance biological rhythms, where a
rigorous theoretical study is most of the time unfeasible because of the obvious
lack of good mathematical models.

Moreover, Huygens’ synchronization also finds interesting applications. For exam-
ple, in [76], it has been shown that an analogous phenomenon happens in acoustics:
two thermoacoustic engines are discussed, which have their cases rigidly welded



6 1 Introduction

together for vibration cancellation. Likewise, Huygens’ system may be used in
determining the behaviour of coupled transmission lines, cf. [80].

The reader should be convinced at this point that the Huygens’ setup of coupled
pendulum clocks is an exciting and challenging nonlinear dynamical system, whose
complex dynamical behaviour is far from being completely understood. Further
studies of this system will lead to unveiling more details about the complex yet
intriguing synchronization phenomenon.

1.3.2 Objectives

This thesis aims to provide new insights into the exciting field of synchronization by
means of analytical, numerical, and experimental analyses. Especially, the purpose
is to exploit the observations made by Huygens and to obtain explanations/results
that are beyond the current understanding.

The general objective of the thesis is to provide answers to the following questions:
given the Huygens system (two pendulum clocks coupled through a bar with an
elastic support), is it possible to replace the pendulum clocks by another type of
second order nonlinear oscillator and still to observe the synchronized motion? In
particular, what happens when the pendulum clocks are replaced by two arbitrary
nonlinear self-sustained oscillators or by a pair of chaotic oscillators? Addition-
ally, which is/are the key parameter/parameters in the coupled system for the
occurrence of synchronization?

One of the particular objectives is to analyze and to explain the onset of natural
synchronization occurring in oscillators that interact via Huygens coupling. On
the one hand, conditions under which the synchronized motion exists and whether
it is stable should be provided. On the other hand, it is desired to perform an ex-
perimental analysis in order to illustrate the synchronized motion in real oscillators
and validate theoretical results.

The second objective is to show that, for the case where the oscillators are not
physically connected via the coupling bar, it is still possible to observe synchronized
motion in the oscillators, provided that a suitable control input is designed, such
that, in closed loop, the oscillators resemble a pair of oscillators with Huygens’
coupling.

Last but not least, the third particular objective is related to the modelling and
analysis of the true Huygens setup of pendulum clocks linked via a wooden bar.
The goal is to show that, besides the ‘sympathetic’ behaviour observed by Huygens,
there exist more limit (synchronizing) solutions in the system of coupled pendula.
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It is desired to show that for a thorough understanding of Huygens’ synchronization
the coupling should be considered as a flexible structure. In the current models
available in literature, the coupling bar is considered as a rigid body. Hence, the
purpose is to construct a model, which incorporates the flexibility of the coupling
bar, i.e. to consider it as an infinite dimensional system.

In order to achieve the aforementioned objectives one can distinguish two ap-
proaches, the one used by Huygens, i.e. observation and experimentation and on
the other hand, a mathematical analysis related to the existence and stability of
the synchronous solutions. Therefore, the thesis requires a combination of the
world of physicians with the world of mathematicians, i.e. it requires the use of
tools from the field of Dynamics and Control.

1.3.3 Contributions and outline

Contributions

The research conducted in this PhD project is summarized in the upcoming chap-
ters and the contributions are highlighted at the end of each chapter.

In summary, it can be said that the results given here demonstrate that different
pairs of (nearly) identical oscillators interacting via Huygens coupling can syn-
chronize in a natural way, i.e. without the influence of a control signal. This is
extensively illustrated by means of experiments which, to the knowledge of the au-
thor, are one of the first successful experiments reported in the literature regarding
oscillators with Huygens’ coupling not being metronomes and/or pendulum clocks.
Additionally, conditions for the existence and stability of synchronous solutions are
derived by means of the Poincaré perturbation method. The obtained theoretical
results are supported by computer simulations and experimental results. Another
contribution is that it is shown that the use of Huygens coupling can be extended
to chaotic oscillators and likewise, to the case where there is a communication time
delay between the oscillators. Additionally, by using a Finite Element modelling
technique, a Huygens’ model has been derived, which closely approximates Huy-
gens’ original experiments. This model incorporates the flexibility of the coupling
bar. As a first step in the analysis, numerical results are obtained and these are
compared/validated against current models where the bar is modelled as a rigid
body.

The following list of publications summarizes the main results obtained during
this PhD project:
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Journal articles

• Pena Ramirez, J., Fey, R. H. B. and Nijmeijer, H. (2012). In-phase and anti-
phase synchronization of oscillators with Huygens’ coupling. Cybernetics
and Physics, 1(1), 58-66. [60].

• Pena Ramirez, J., Fey, R. H. B. and Nijmeijer, H. (2012). An experimental
study on synchronization of nonlinear oscillators with Huygens’ coupling.
Nonlinear Theory and Its Applications, IEICE 3(2), 128-142. [59].

Journal articles in preparation

• Pena Ramirez, J., Fey, R. H. B. and Nijmeijer, H. Synchronization of weakly
nonlinear oscillators interacting via Huygens’ coupling (Chapter 3).

• Pena Ramirez, J., Fey, R. H. B. and Nijmeijer, H. A new model for the
classical experiment on synchronization of pendulum clocks: what Huygens
did not see (Chapter 7).

Book chapters

• Pena Ramirez, J. and Nijmeijer, H. (2012). A study of the onset and stabi-
lization of parametric roll by using an electro-mechanical device. In Fossen,
T.I. and Nijmeijer, H. (Eds.), Parametric resonance in dynamical systems,
(pp. 287-304). Springer, New York. [62].

• Pena Ramirez, J., Fey, R. H. B. and Nijmeijer, H. (2012). An introduction to
parametric resonance. In Fossen, T.I. and Nijmeijer, H. (Eds.), Parametric
resonance in dynamical systems, (pp. 1-13). Springer, New York. [61].

• Pena Ramirez, J., Fey, R. H. B. and Nijmeijer, H. Controlled synchronization
of chaotic oscillators with Huygens’ coupling. In Chaos, CNN, Memristors
and beyond. In press. To appear on February, 2013.

Conference proceedings

• Pena Ramirez, J., Fey, R. H. B. and Nijmeijer, H. (2011). On phase syn-
chronization of oscillators mounted on a movable support. Proceedings of
the 7th European Nonlinear Dynamics Conference (ENOC 2011), July 24 -
July 29, 2011, Rome, Italy. [58].
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• Pena Ramirez, J., Alvarez Aguirre, A., Fey, R. H. B. and Nijmeijer, H.
(2012). Effects of time delay in the synchronized motion of oscillators with
Huygens’ coupling. 3rd IFAC Conference on Analysis and Control of Chaotic
Systems (3rd IFAC CHAOS Conference), Cancún, México, June 20 – 22,
2012. [57].

Outline

This thesis is divided in three parts preceded by an introductory part. The in-
troductory part consist of Chapters 1 and 2. In Chapter 1, some definitions and
mathematical tools that are used later in this thesis are presented. In particular,
this chapter introduces the mathematical apparatus that is used in order to deter-
mine the existence and stability of synchronous solutions in a particular class of
systems of coupled oscillators. Next, in Chapter 2, an experimental setup, which
can be seen as a modern and generalized version of the original Huygens system of
pendulum clocks is introduced. The main features of the setup are described and
it is explained how this experimental platform allows to further pursue the nature
of the synchronized motion occurring in a wide variety of dynamical oscillators.

The first part addresses the problem of natural synchronization of nonlinear self-
sustained oscillators interacting via Huygens coupling. First, in Chapter 3 the
onset of synchronization in pairs of weakly nonlinear self-sustained oscillators is
investigated. Sufficient conditions for the existence and stability of synchronous
solutions are derived using the Poincaré method and the obtained results are sup-
ported by experimental results. Additionally, it is emphasized that the mechanism
underlying the synchronized motion in the oscillators is the bar to which they are
attached. It is demonstrated that the mass of the bar is one of the key param-
eters on the onset of (in-phase and anti-phase) synchronous behaviour. Then,
in Chapter 4, a similar analysis is conducted for the case of strongly nonlinear
oscillators. In this case, the Poincaré method cannot be applied in determining
conditions for synchronization. Instead, some analytic conditions for the stability
of the anti-phase synchronized motion are derived under the assumption of small
oscillations in the system, i.e. by using linearization. Again, several experimental
results illustrating the synchronized motion of the coupled oscillators are provided.
Furthermore, a brief comparison between the results obtained in Chapter 3 and
the ones obtained in Chapter 4 is presented.

Next, in the second part of the thesis, the synchronization problem is addressed
from a control point of view. First, in Chapter 5, the synchronization problem
of two chaotic oscillators with Huygens’ coupling is discussed. It is shown that
when the oscillators are in a chaotic state, the synchronization phenomenon will



10 1 Introduction

not occur naturally. Consequently, it is demonstrated that by using a master-
slave configuration it is possible to achieve (controlled) synchronization. Then, in
Chapter 6, the effect of time delay in the synchronized motion of oscillators with
Huygens’ coupling is investigated. In the analysis, the Huygens coupling is replaced
by a representative dynamical system, which generates a suitable control input for
the oscillators such that in closed loop the system resembles a pair of oscillators
with Huygens coupling. The onset of in-phase and anti-phase synchronization in
the coupled oscillators is studied as a function of the coupling strength and the
time delay.

Then, in the third part of this thesis, the classical Huygens setup of pendulum
clocks is revisited. In Chapter 7, a Finite Element model of the original Huygens
setup is presented. In this model, the coupling structure for the two clocks, which
consists of two wooden chairs and a wooden bar, see Figure 1.1, is assumed to be
flexible. The pendulum clocks are considered as local nonlinearities attached to
the flexible structure. This model is an extension of the current models used in the
literature, where the beam is assumed to be rigid and the chairs are approximated
by a linear spring. The resulting coupled model consists of a (finite) set of ordinary
differential equations. Numerical results illustrating all the possible stationary
solutions (including in-phase and anti-phase synchronization) of the ‘true’ infinite
dimensional Huygens problem are included.

Finally, general conclusions and recommendations are provided in Chapter 8.

1.4 Preliminaries

This section introduces some definitions on synchronization and introduces the
mathematical machinery that is used later in Chapter 3 in order to determine the
existence and stability of synchronous solutions in systems of coupled oscillators.

1.4.1 Definitions

Throughout this thesis, the words in-phase synchronization and anti-phase syn-
chronization are mentioned several times. In consequence, it is worth to define a
priori what is meant by these words. To this end, consider the system

ẋ(t) = f(x(t), z(t)), (1.1)
ẏ(t) = f(y(t), z(t)), (1.2)
ż(t) = g(x(t), y(t), z(t)), (1.3)
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where x, y ∈ Rn, z ∈ Rm are state variables and the functions f : Rn×Rm −→ Rn
and g : Rn × Rn × Rm −→ Rm are locally Lipschitz. Note that the system under
consideration represents a pair of identical subsystems, described by (1.1) and (1.2),
interacting via the dynamics of subsystem (1.3). Throughout this thesis it will be
assumed that (1.1) and (1.2) describe the dynamics of two identical self-driven
nonlinear oscillators and (1.3) will be referred to as Huygens’ coupling. Moreover,
the case n = m = 2 is considered, except in Chapter 7 where m > n = 2.

The following definitions have been derived [9].

Definition 1.1. Subsystems (1.1)-(1.2) are said to be (asymptotically) synchronized
in-phase if the solutions x(t), y(t) of (1.1)-(1.3) with initial conditions x(0), y(0),
z(0) satisfy

lim
t−→∞

ein(t) := x(t)− y(t) = 0. (1.4)

Definition 1.2. System (1.1)-(1.3) is said to be (asymptotically) synchronized in
anti-phase if the solutions x(t), y(t) and z(t) with initial conditions x(0), y(0),
z(0) satisfy

lim
t−→∞

ean(t) := x(t) + y(t) = 0,

(1.5)
lim
t−→∞

z(t) = 0.

In this thesis, the synchronization phenomenon is largely investigated by means
of experiments. Since in practical applications it is impossible to have identical
subsystems (1.1)-(1.2), it is not possible to fulfill (1.4) or (1.5). For such cases, it is
convenient to introduce the concept of practical synchronization [9].

Definition 1.3. Subsystems (1.1)-(1.2) are said to be practically synchronized in-
phase if the solutions x(t), y(t) of (1.1)-(1.3) with initial conditions x(0), y(0), z(0)

satisfy
lim
t−→∞

|ein(t)| = |x(t)− y(t)| ≤ ε, (1.6)

for certain ε > 0.

Definition 1.4. System (1.1)-(1.3) is said to be practically synchronized in anti-
phase if the solutions x(t), y(t) and z(t) with initial conditions x(0), y(0), z(0)

satisfy

lim
t−→∞

|ean(t)| = |x(t) + y(t)| ≤ ε1,
(1.7)

lim
t−→∞

|z(t)| ≤ ε2,

for certain ε1, ε2 > 0.
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1.4.2 Poincaré method for quasilinear systems

The result presented here is due to Blekhman [7]. It is based on the Poincaré
perturbation method, cf. [4], and it provides conditions on the existence and
stability of periodic solutions of systems of the form

ẋs =

l∑
j=1

asjxj + µΦs(x1, . . . , xl), s = 1, . . . , l, (1.8)

where asj are real constants and µ > 0 is a “sufficiently small” real parameter.1

The following assumption is made on system (1.8)

A-1 The functions Φs(x1, . . . , xl) are analytical functions in x1, . . . , xl, i.e. they
can be expanded as a power series in x1, . . . , xl or they are polynomials.

When µ = 0, system (1.8) can be written as a set of linear differential equations
with constant coefficients, i.e.

ẋ = Ax, x = [x1, . . . , xl]
T . (1.9)

For the matrix A the following assumption is made

A-2 The characteristic equation associated to matrix A has an arbitrary number
(different from zero) of purely imaginary roots of any multiplicity2 and the
remaining roots are assumed to be either real or complex but with negative
real part.

Then, by using a nonsingular linear transformation, system (1.8) can be trans-
formed to the canonical form

ẏs = λsys + µfs(y1, . . . , yl) s = 1, . . . , l, (1.10)

Determining the transformation that leads to obtain the canonical form (1.10) is
not difficult, because for µ = 0, system (1.8) becomes a linear system with constant
coefficients, see (1.9). Hereinafter, the analysis is centered around system (1.10).
The fundamental or generating system, i.e. µ = 0, associated to (1.10) is

ẏs = λsys, s = 1, . . . , l, (1.11)
1Because µ is considered to be small, system (1.8) is often called quasilinear system.
2However, it is required that the algebraic multiplicity of these roots is equal to their geometric

multiplicity.
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which has the solution

y0
s = αse

λst, s = 1, . . . , l, (1.12)

where αs, s = 1, . . . , l, are arbitrary parameters determining the amplitude of the
solution.

A-3 In accordance with A-2, it is assumed that the characteristic exponents λs,
s = 1, . . . , l, are categorized as follows

λs =

{
insω, s = 1, . . . , k,

−as + ibs, s = k + 1, . . . , l,
(1.13)

where i is the imaginary unit, i.e. i =
√
−1, as > 0, ns is a positive or

negative integer, ω = 2π
T is the oscillation frequency associated to system

(1.11) and T is the period. It will also be assumed that only real solutions
xs of (1.8), are of interest (physical systems do not have complex solutions!).
Therefore, the characteristic exponents with purely imaginary part appear
as complex conjugate pairs and likewise the functions fs appear as complex
conjugate pairs. This implies that k is a positive even number.

From the above assumption it follows that system (1.11) will have periodic solutions
of period T , i.e. (1.12) can be written as

y0
s =

{
αse

λst = αse
insωt s = 1, . . . , k,

0 s = k + 1, . . . , l.
(1.14)

The problem now is to determine the values of αs, s = 1, . . . , k, such that the
periodic solutions of (1.10) reduce, for µ = 0, to the generating solutions (1.14) of
period T . Moreover, the periodic solutions of (1.10) will have a period different
from T , i.e. T ∗(µ) = T + τc(µ). Therefore, it is also necessary to determine the
“correction” τc(µ) of the period. The following theorem addresses these issues and
also provides conditions for the existence and stability of the periodic solutions of
(1.10).

Theorem 1.1. Periodic solutions (of period T ∗(µ) = T+τc(µ)) of the autonomous
set of equations (1.10) becoming at µ = 0 periodic (period T ) solutions (1.14) of
the fundamental system (1.11), can correspond only to such values of constants
α1, . . . , αk−2, αk−1 = αk, which satisfy equations

Qs(α1, . . . , αk) = αknkPs − αsnsPk = 0, s = 1, . . . , k − 1, (1.15)
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where

Ps(α1, . . . , αk) =

∫ T

0

fs(y
0
1 , . . . , y

0
l )e−insωtdt

(1.16)

=

∫ T

0

fs(α1e
in1ωt, . . . , αke

inkωt, 0, . . . , 0)e−insωtdt, s = 1, . . . , k.

(1.17)

If for a certain set of constants α1 = α∗1, . . . , αk−2 = α∗k−2, αk−1 = αk = α∗k which
satisfies equations (1.15), the real parts of all roots χ of the following algebraic
equation are negative3∣∣∣∣∂Qs∂αj

− αknkδsjχ
∣∣∣∣ = 0, s, j = 1, . . . , k − 1, (1.18)

then, for sufficiently small µ, this set of constants will indeed correspond to a
unique, analytical in relation to µ, stable periodic solution of the set (1.10) with
period T ∗(µ) = T + τc(µ). At µ = 0, it becomes a periodic (period T ) solution
(1.14) of the fundamental system (1.11). If the real part of at least one root of
equation (1.18) is positive, then the respective solution is unstable. With accuracy
up to terms of order µ, the period correction τc(µ) is determined by

τc(µ) = −µPk(α∗1, . . . , α
∗
k−2, αk−1, αk−1)

λkα∗k
. (1.19)

The proof of this theorem is sketched in [7](in Russian). To the knowledge of the
author of this thesis, the proof of this theorem is not published in any reference
in English. Hence, in order to make this thesis self-contained, the proof has been
derived following [4], [7], and [41] and it is presented in Appendix A. Note that
the proof is instrumental since it will facilitate the understanding of Theorem 1.1
and also of the results presented in Chapter 3.

3δsj is the Kronecker delta defined by

δsi =

{
1 for s = i,
0 for s 6= i.



Chapter 2
A generalized Huygens setup

An experiment is a question which Science poses to Nature, and a
measurement is the recording of Nature’s answer.

Max Karl Ernst Ludwig Planck (1858–1947)

Abstract This chapter introduces an experimental setup, which can be seen as
a modern and generalized version of the original Huygens system of pendu-
lum clocks. The main features of the setup are described and it is explained
how this experimental platform allows to further pursue the nature of the
synchronized motion occurring in a wide variety of dynamical oscillators with
Huygens’ coupling.

2.1 Introduction

On a quiet day in late February 1665, the Dutch scientist Christiaan Huygens
made a serendipitous discovery while being confined to his bedroom for several
days due to an illness: two pendulum clocks hanging from a common support (a
wooden bar supported by two chairs, see Figure 2.1(a) kept in pace relative to each
other such that the two pendulums always swung together (in opposite motion)
and never varied. It should be noted that not only the conditions, under which
the discovery of the synchronization phenomenon took place, are striking but also
the very particular characteristics of the setup, on which this phenomenon was
discovered.

15
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(a) Original drawing of Huygens cf. [30].

x3
k3

d3

x1 x2

φ1 φ2

d1, τ1 d2, τ2

m1 m2

gl1 l2

m3

(b) Simplified Huygens model.

Figure 2.1 Huygens’ original system of pendulum clocks and its simplification.

At first sight, the picture of Huygens’ setup depicted in Figure 2.1(a) may seem
very simple. However, even today, in an era where several modeling tools are
at hand, a proper model of the original Huygens system has not been derived!
Notwithstanding this fact, in the recent history, several authors have contributed
towards the study of Huygens’ synchronization by using simplified models. Con-
sider, for example, the model depicted in Figure 2.1(b). Note that the wooden bar
at the top of two chairs has been modelled by a single degree-of-freedom (dof) rigid
bar, which is attached to the fixed world via a spring and a damper. The pendulum
clocks have been replaced by two damped pendula, which are both driven.

In fact, the study of Huygens’ synchronization has gone beyond deriving mathe-
matical models. Several experimental setups mimicking the Huygens experiment
have been reported, see e.g. [5], [54], and [55], all aiming at demonstrating that in-
phase or anti-phase synchronization of a number of pendulum-like oscillators can
be achieved. Moreover, these setups have a common characteristic: the pendulum
clocks are replaced by metronomes and the supporting bar is free to oscillate, see
Figure 2.2. Experimental results have shown that, besides the synchronized mo-
tion, other kinds of motion may exist. In [5], for example, beating death, where one
of the metronomes stops its oscillations, whereas the other one keeps oscillating,
is reported. Intermediate synchronization, which happens when the metronomes
synchronize with constant phase difference but different amplitude, is found in
[54].

As mentioned in the introductory chapter, the purpose of the research reported
in this thesis is to further pursue the nature of the synchronized motion occurring
in arbitrary oscillators with Huygens’ coupling not only from a theoretical point
of view but also from an experimental point of view. Note that the importance
of conducting an experimental analysis relies among others on the fact that in
a real environment it is impossible to have two identical oscillators. Therefore,
the experiments may reveal that the synchronous motion is robust against distur-
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(a) Wiesenfeld’s setup [5].

(b) Pantaleone’s setup [55].

(c) Nijmeijer’s setup [54].

Figure 2.2 Experimental setups that mimic Huygens’ experiment.

bances and mismatches between the systems, just as in Huygens’ case, where the
clocks were far from being identical. Obviously, in order to create some freedom
in performing experiments on synchronization, it is required to have a suitable,
general experimental platform that allows to study synchronous behaviour in a
wide variety of dynamical systems.

This experimental setup will be introduced in the next section.
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2.2 Experimental setup and general model description

A generalized Huygens setup is presented. Here, generalized should be understood
in the sense that in this setup, each pendulum clock can be replaced by an arbitrary
second order oscillator. Only the main features of the system are discussed. For a
complete description of the setup the interested reader is referred to [83].

The electro-mechanical setup used in this research is depicted in Figure 2.3. It
consists of two oscillators mounted on an elastically supported rigid bar. The sys-
tem has 3 dofs corresponding to the horizontal displacements of the two oscillators
and the bar, respectively. Moreover, each dof is equipped with a voice coil actuator
and with a linear variable differential transformer (LVDT) position sensor.1

Figure 2.3 Photo of the experimental setup at the DCT lab at the TU/e.

Figure 2.4 shows a schematic representation of the experimental setup. The stiff-
ness and damping characteristics present in the system are assumed to be linear
with constant coefficients κi,βi ∈ R+, i = 1, 2, 3, respectively. The 3 dofs of the
system are indicated by xi ∈ R, i = 1, 2, 3, i.e. the absolute displacements of
both oscillators and the coupling bar, respectively. The control inputs U1, U2 of
the two oscillators may be used to guarantee self-sustained oscillations and/or to
modify the inherent dynamic properties of the oscillators, such as mass, stiffness,
and damping properties, in a desired way. Likewise, the control input U3 may be
used to modify, if desired, the behaviour of the coupling bar. The masses corre-
sponding to the oscillators are given by mi ∈ R+, i = 1, 2, and the mass of the
supporting bar is denoted by m3 ∈ R+. The latter mass may be varied hardware

1A video of this setup can be seen at http://www.wtb.tue.nl/horaest/website/index.html
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wise in the range [4.1 - 41] [kg] by means of addition or removal of steel plates2.
Note that this feature allows for mechanical adjustment of the coupling strength.
This feature is largely exploited through this research.

m3

m1 m2

κ1

β1

κ2

β2

U1 U2U3

κ3

β3

x3 x1 x2

Figure 2.4 Schematic representation of the setup.

Note that the schematic model depicted in Figure 2.4 can be seen as a simplified
though generalized version of Huygens’ setup of Figure 2.1(a). In this model,
the two pendulum clocks are now replaced by two (actuated) mass-spring-damper
oscillators. The wooden bar supported by the two chairs is (again) modelled by
a single dof suspended rigid bar. As may be noted, in this setup (and its model)
rotational angles are replaced by translational displacements. It comes natural to
relate the control inputs Ui, i = 1, 2 to the escapement mechanisms as used in the
pendulum clocks.

Using Newton’s 2nd law, it follows that the idealized - i.e. assuming that no
friction is present - equations of motion of the system of Figure 2.4 are

ẍ1 = −ω2
1s(x1 − x3)− 2ζ1sω1s(ẋ1 − ẋ3) + U1

ẍ2 = −ω2
2s(x2 − x3)− 2ζ2sω2s(ẋ2 − ẋ3) + U2 (2.1)

ẍ3 =

2∑
i=1

µi
[
ω2
is(xi − x3) + 2ζisωi(ẋi − ẋ3)− Ui

]
−ω2

3sx3 − 2ζ3sω3sẋ3 + U3,

where3 ωis =
√

κi
mi

[rad/sec], ζis = βi
2ωismi

[−] are respectively the angular eigen-
frequency and dimensionless damping coefficient present in subsystem i, i = 1, 2, 3,
and µi = mi

m3
[-], i = 1, 2 are the coupling strengths. The electric actuation for

subsystem i results in Ui [m/s2], i = 1, 2, 3. Since the actuators are not completely
identical, the difference in actuator strength is compensated by multiplying the

2Actually, this mass may also be varied software wise by a suitable design of U3.
3The subindex s is used to indicate that the given parameter corresponds to a parameter of

the model of the experimental setup.
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outgoing signals with an appropriate gain. The LVDT displacement sensors are
calibrated such that 1[V ] = 5 [mm].

In [69], the parameter values of model (2.1) have been identified experimentally
and these are provided in Table 2.1.

Table 2.1 Identified parameter values for model (2.1) of the experimental setup
for m3 = 4.1 [kg].

Parameter Oscillator 1 Oscillator 2 Coupling bar
ωis [rad/s] 12.5521 14.0337 9.7369
ζis [−] 0.3362 0.4296 0.0409
µi [−] 0.0411 0.0578 -

Note the differences in the properties of oscillators 1 and 2, whereas it was the
intention to design identical ones [83].

The inputs Ui are generated as depicted in Figure 2.5. Each input consists of
a feed forward part to cancel the original dynamics, plus compensation terms
accounting for differences between the model and the real plant, plus the desired
dynamics. The feed forward part is generated by using model (2.1) with parameter
values as given in Table 2.1. Since in an experiment only positions are measured,
the state vector is fully reconstructed by using a robust observer as presented in
[71]. Next, the differences (due, for instance, to unmodelled dynamics, external
disturbances and/or parameter uncertainties) between the real setup and its cor-
responding model (2.1) are estimated. According to [71], this can be achieved by
filtering the discontinuous term Lsign(x−x), see Figure 2.5. Finally, by using the
measured positions and the observed velocities (and, if appropriate, a coordinate
transformation), it is possible to generate the desired system dynamics.

In an experiment mimicking Huygens’ experiment the coupling bar is free to oscil-
late and, consequently, U3 = 0. However, in cases where the dynamical behaviour
of the coupling bar needs to be adjusted or controlled, then U3 is generated either
as described above or will correspond to an external signal, see e.g. Chapter 5.

2.3 The classical Huygens’ clocks experiment

In this section, the capabilities of the experimental setup to conduct experiments
with a wide variety of dynamical oscillators is illustrated by means of a specific
experiment. The example at hand corresponds to the simplified Huygens’ clocks
model depicted in Figure 2.1(b). In this model, the wooden bar on two chairs
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ẍ = f (x, ẋ) + u

SETUP

OBSERVER

¨̂x = O(x̂, ˙̂x, x) + u

FEED FORWARD

FILTER

ẍd = fd(x, ˙̂x)

PART

DESIRED DYNAMICS

Lsign(x− x̂)

f̄ (x, ˙̂x)

f (·)− f̄ (·)

x, ˙̂x

x, ˙̂x

fd(x, ˙̂x)

−
+

−

x u

Figure 2.5 Adjustment of the dynamical properties of the setup.

has been replaced by a rigid bar of mass m3 [kg], which is attached to the wall
via a linear spring with elasticity k3 [N/m] and a linear, viscous damper with
damping constant d3 [Ns/m]. The pendulum clocks in Huygens’ experiment have
been replaced by two identical pendula. Each pendulum is modelled by a point
mass of mass m = m1 = m2 [kg] attached at the lower end of a massless bar of
length l = l1 = l2 [m]. The damping in the pendula is also assumed to be viscous
and linear with damping constant d = d1 = d2, [Nms/rad].

The idealized, i.e. it is assumed that no dry friction is present, equations of motion
of the system are:

φ̈i = −g
l

sinφi −
d

ml2
φ̇i −

ẍ3

l
cosφi +

τi
ml2

, i = 1, 2,

(2.2)

ẍ3 =

∑2
i=1

((
d
l φ̇i + gm sinφi − τi

l

)
cosφi +ml sinφiφ̇

2
i

)
− d3ẋ3 − k3x3

(m3 + 2m−m cos2 φ1 −m cos2 φ2)
,

where g [m/s2] is the gravitational acceleration, φi ∈ S1, i = 1, 2, is the rotation
angle of pendulum i in [rad], x3 is the horizontal displacement of the bar in [m],
and τi, i = 1, 2, represents the so-called escapement mechanism of pendulum i in
[Nm].



22 2 A generalized Huygens setup

Intermezzo

The limit behaviour of the uncontrolled system (τ1 = τ2 = 0) with undamped
pendula (d1 = d2 = 0), can be analyzed as follows [66]. Consider the total energy
of the system as a candidate Lyapunov function:

V =
1

2
m3ẋ

2
3 +

m

2

2∑
i=1

(
ẋ2

3 + 2ẋ3lφ̇i cosφi + l2φ̇2
i

)
+mgl

2∑
i=1

(1− cosφi) +
k

2
x2

3 ≥ 0.

(2.3)
The time derivative of V along the trajectories of the uncontrolled system, with
undamped pendula (2.2) is equal to:

V̇ = −d3ẋ
2
3 ≤ 0. (2.4)

By using LaSalle’s invariance principle [35], it follows that all trajectories of system
(2.2) tend to the set where

φ1 = −φ2, φ̇1 = −φ̇2, x3 = ẋ3 = 0. (2.5)

Moreover, it should be noticed that if the pendula are released from identical initial
conditions, i.e. φ1(0) = φ2(0) and φ̇1(0) = φ̇2(0) = 0, the oscillations will decay
completely independent of the values of x3(0) and ẋ3(0).

Although the freely oscillating pendula also show a kind of “sympathy” observed
by Huygens, the limit amplitude of the oscillations will depend on the initial
conditions. The damper supporting the bar dissipates a part of the initial energy.
The closer to in-phase the pendula are released, the more energy is lost during the
process to reach the anti-phase motion.

Note that the idealized case discussed here (no control of the system, no damping in
pendula) can be related to Huygens’ pendulum clocks experiment in the sense that,
after transients, the energy loss due to damping is compensated by the escapement
mechanism.

In the original Huygens experiment, the clocks were driven by a verge-and-crown-
wheel escapement. In this analysis, however, the following energy-based escape-
ment is considered [66]
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τi = −γφ̇i (Hi −H∗) , for i = 1, 2, (2.6)

where γ ∈ R+ in [s], H∗ = mgl(1 − cosφref ) is a reference energy level, φref ∈(
0, π2

)
is the reference amplitude and Hi is the Hamiltonian for the uncoupled and

unforced pendulum i, which is defined as:

Hi =
1

2
ml2φ̇2

i +mgl (1− cosφi) , for i = 1, 2. (2.7)

2.3.1 Adjustment of the experimental setup to mimic Huygens’ sys-
tem

The experimental setup of Figure 2.3 can be adjusted to mimic Huygens’ system of
Figure 2.1(b) by using state feedback. This requires design of suitable controllers
Ui, i = 1, 2, 3, in (2.1), which are required to satisfy two objectives. Namely,
cancellation of the original dynamics of equation (2.1) and enforcing the dynamics
of equation (2.2) corresponding to Huygens’ clocks system. The cancellation part
is achieved by using feed forward compensation as already discussed in Section
2.2.

The adjustment is as follows.

First, the coordinate system of the experimental setup is transformed to a new
set of coordinates, in which translational displacements can be related to rotation
angles. From Figure 2.1(b) it is clear that the horizontal projection of the rotation
angle of pendulum i is given by

xi = x3 + l sinφi, i = 1, 2, (2.8)

with corresponding velocities

ẋi = ẋ3 + liφ̇i cosφi, i = 1, 2. (2.9)

Inversely, the translational coordinates xi, i = 1, 2, corresponding to the experi-
mental setup can be mapped to rotational coordinates φi, i = 1, 2, of the pendula
according to

φi = arcsin
∆xi
l

∀ |∆xi| ≤ l, i = 1, 2, (2.10)

with corresponding angular velocities

φ̇i =
1√

1−
(

∆xi
l

)2 ∆ẋi
l

∀ |∆xi| < l, i = 1, 2, (2.11)
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where ∆xi = xi − x3, i = 1, 2. Consequently, the “translational” version of the
Huygens system of Figure 2.1(b) is given by

ẍi =
(
1− cos2 φi

)
ẍ3 −

d

ml
φ̇i cosφi − g cosφi sinφi +

τi
ml

cosφi − l sinφiφ̇2
i , (2.12)

ẍ3 =

∑2
i=1

((
d
l
φ̇i + gm sinφi − τi

l

)
cosφi +ml sinφiφ̇

2
i

)
− d3ẋ3 − k3x3

(m3 + 2m−m cos2 φ1 −m cos2 φ2)
. (2.13)

Secondly, the actuations in (2.1) are defined as:

Ui = ω2
is (xi − x3) + 2ζisωi (ẋi − ẋ3) +

(
1− cos2 φi

)
ẍ3 −

d

ml
φ̇i cosφi

−g cosφi sinφi +
τi
ml

cosφi − l sinφiφ̇2
i , i = 1, 2, (2.14)

U3 =

2∑
i=1

µiẍi + ω2
3sx3 + 2ζ3sω3sẋ3 + ẍ3, (2.15)

where φi, φ̇i, i = 1, 2, are given in (2.10) and (2.11) respectively, ẍi, i = 1, 2, as
given in (2.12), ẍ3 as given in (2.13), and τi, i = 1, 2, as given in (2.6). In closed
loop, the dynamics of equation (2.1) with controllers (2.14)-(2.15) coincide with the
dynamics of system (2.12)-(2.13). Note that the first two terms on the right-hand
side of (2.14) and the first three terms on the right-hand side of (2.15) cancel the
original dynamics in equations (2.1). Clearly, the experimental setup has been
“converted” into the classical Huygens model.

Note that in the ideal case, a perfect cancellation of the original dynamics (2.1)
is achieved. However, in practice, the dynamics to be cancelled are not perfectly
known and therefore a perfect cancellation cannot be achieved. From a control
point of view this is not an issue because normally a controller should be robust
enough such that the unavoidable mismatches between models and plants can be
handled by the controller. In this case, an estimator of disturbances [71], i.e. the
filter depicted in Figure 2.5, has been used.

2.3.2 Experimental results

The experimental setup is adjusted in order to mimic the controlled system (2.2)
and (2.6). Here, only essential details are provided. For additional details regard-
ing this experiment the reader is referred to [59]. The following parameter values
are used: m = 1 [kg], m3 = 50 [kg], d1 = d2 = 0.01 [Nms/rad], d3 = 20 [Ns/m],
k3 = 1 [N/m], g = 9.81 [m/s2], and l = 0.2184 [m]. The reference energy level
H∗ = mgl(1−cosφref ) of controllers (2.6) corresponds to the reference amplitude



2.3 The classical Huygens’ clocks experiment 25

φref = 0.35 [rad] and γ = 5.3 [s]. The pendula are released from the initial condi-
tions φ1(0) = −0.32 [rad], φ2 = −0.02 [rad], and φ̇1(0) = φ̇2(0) = x(0) = ẋ(0) = 0.
These initial conditions for model (2.2) are related to the initial conditions in the
setup by means of (2.8)-(2.9).

Figure 2.6 shows the obtained results. Although the pendula are released from
initial conditions close to in-phase, as depicted in Figure 2.6(a), after a time in-
terval with transient behaviour, the pendula practically synchronize in anti-phase
as shown in Figure 2.6(b) and 2.6(d). As a consequence, the oscillations in the
coupling bar decay as illustrated in Figure 2.6(c).
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Figure 2.6 In this experiment, anti-phase synchronization is observed. In figures
a) and b) black line: x1, grey line: x2.
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2.4 Discussion

In conclusion, this chapter has introduced an adjustable experimental setup, which
can be used in order to analyze robustness of synchronous behaviour in a real
environment for a wide variety of dynamical oscillators. The research reported in
the remaining chapters is largely supported by experimental results obtained with
this experimental platform.



Chapter 3
Synchronization of nonlinear
oscillators with limitations

The painter who draws merely by practice and by eye, without any
reason, is like a mirror which copies everything placed in front of it

without being conscious of their existence.

Leonardo da Vinci (1952–1519)

Abstract In this chapter, the occurrence of synchronization in pairs of (lim-
ited) nonlinear, self-sustained oscillators that interact via Huygens’ coupling,
i.e. a suspended rigid bar, is treated. Sufficient conditions for the existence
and stability of synchronous solutions are derived using the Poincaré method.
The obtained results are supported by experimental results. Ultimately, it
is demonstrated that the mass of the coupling bar determines the limit syn-
chronous behaviour in the oscillators.

3.1 Introduction

As mentioned in the introductory chapter, oscillations are common almost every-
where, be it in biology, in engineering, in economics, in physics or in other fields.
These oscillations can occur naturally, as for example in the beats of the heart
and lungs, in the rhythm of the waves approaching and receding the shore, in
metronomes, in electrical circuits [84], and so on, or due to an external forcing,
like for instance in the case of oscillations in structures and machines or in the
case of chemical oscillations, like the ones produced by the Belousov-Zhabotinsky
reaction [88].

27
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Systems producing natural oscillations are called self-sustained oscillators. Es-
sentially, one can distinguish four main properties in a self sustained oscillator
namely:

• the system is nonlinear,

• there is an internal source of energy (in general this source is described by a
nonlinear function),

• the oscillations are robust against small disturbances, and

• the form of the oscillations is determined by the parameters of the system
and not by the initial conditions of the system.

Like other oscillatory systems, a pair or group of self-sustained oscillators may find
their rhythms adjusted, i.e. they may synchronize. But, under what conditions?
The famous example by Christiaan Huygens of two pendulum clocks exhibiting
anti-phase or in-phase synchronized motion as brought forward in his notebook
features exactly the crucial point: despite the lack of good modeling tools, Huy-
gens did realize that there is a “medium” responsible for the synchronized motion,
namely the bar to which both pendula are attached. This medium is referred to
as Huygens’ coupling.

In this chapter, the onset of synchronization in pairs of constrained nonlinear
self-sustained oscillators that interact via Huygens’ coupling is investigated. It is
assumed that the nonlinear self-sustained oscillators are subject to the following
limitations:

• small damping,

• weak nonlinearities and weak excitation forces, and

• small coupling strength.

Here, small has to be understood in the sense that the associated quantity is
weighted by a (dimensionless) parameter which value is much less than unity. The
term weak indicates that the influence of the nonlinear terms is almost negligible
when compared to the influence that the linear terms have in the limit response
of the system. In consequence, the dynamic behaviour of each nonlinear oscillator
is close to a harmonic oscillator.

The original Huygens system is slightly modified in the sense that each pendulum
clock is replaced by a constrained nonlinear oscillator. The coupling bar, i.e. the
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Figure 3.1 Schematic diagram of the generalized Huygens system.

Huygens coupling, is modeled as a one dof suspended rigid bar and it will be
considered as the key element in the occurrence of synchronization.

Consequently, the generalized Huygens system introduced in Chapter 2 and de-
picted in Figure 3.1 is considered. It is assumed that the oscillators are identical
and that the dynamic behaviour of the coupled system is, in general, described by
a set of equations of the form

ẍi = −ω2(xi − x3) + µF (xi, ẋi, x3, ẋ3), i = 1, 2, (3.1)

ẍ3 = −µ
2∑
i=1

ẍi − ω2
3x3 − 2ζ3ω3ẋ3, (3.2)

where xi ∈ R, i = 1, 2, denotes the displacement of oscillator i and x3 ∈ R de-
notes the displacement of the coupling bar, ω =

√
κ
m , κ ∈ R+, m ∈ R+ are the

angular eigenfrequency, the stiffness, and the mass of each oscillator, respectively.
The angular eigenfrequency of the coupling bar is denoted by ω3 =

√
κ3

m3
and

κ3 ∈ R+, m3 ∈ R+, ζ3 = β3

2ω3m3
, β3 ∈ R+ are the stiffness, the mass, the di-

mensionless damping coefficient, and the damping constant of the coupling bar,
respectively. The dimensionless small parameter 0 < µ = m

m3
<< 1 denotes the

coupling strength. The function F (xi, ẋi, x3, ẋ3) describes the damping character-
istic and the internal source of energy in each oscillator and is given by

F (xi, ẋi, x3, ẋ3) = f(xi, ẋi)− 2ζω(ẋi − ẋ3), i = 1, 2, (3.3)

where ζ = β
2ωm , β ∈ R+ are the dimensionless damping coefficient and the damping

constant of each oscillator, respectively. The nonlinear term f(xi(t), ẋi(t)) (rep-
resented by Ui, i = 1, 2, in Figure 3.1) represents an internal energy source and
compensates the energy loss in system (3.1)-(3.2). The need of having f(xi(t), ẋi(t))

in (3.3) can be linked to Huygens’ pendulum clocks where the energy loss due to
damping and friction is compensated by an escapement mechanism.
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The energy loss in the oscillators is assumed to be compensated by the Hamiltonian
escapement

Ui = f(xi, ẋi) = −λ (Hi −H∗) ẋi, i = 1, 2, (3.4)

as used earlier in Section 2.3 and by the van der Pol escapement

Ui = f(xi, ẋi) = −ν(ax2
i − 1)ẋi, i = 1, 2. (3.5)

It should be noted that these functions satisfy assumption [A-1] given in Section
1.4.

For the coupled system (3.1-3.3) together with either (3.4) or (3.5), it is possible
to analyze, to a large extent, the occurrence of in-phase and anti-phase synchro-
nization analytically. In fact, the natural existence of the small parameter µ (the
ratio between the mass of the oscillator and the mass of the coupling bar) in the
system and the aforementioned limitations on the oscillators, allow to describe the
synchronization problem in a suitable form to be analyzed analytically by means
of approximate methods of the theory of oscillations [4, 7, 41, 48].

Consequently, the Poincaré method described in Chapter 1 can be used in order to
derive conditions, under which synchronous solutions in the pair of nonlinear os-
cillators with Huygens’ coupling (3.1-3.2) exist and are stable. In particular, it will
be shown that the mass of the coupling bar, which is directly associated with the
coupling strength, determines the limit synchronized behaviour in the oscillators,
namely in-phase or anti-phase synchronization. Section 3.2 presents this analysis
for the case of constrained nonlinear oscillators driven by the Hamiltonian escape-
ment (3.4), whereas in Section 3.3, a similar analysis is performed for the case of
constrained nonlinear oscillators driven by the van der Pol escapement (3.5).

Finally, in Section 3.4, it is experimentally demonstrated for both types of escape-
ments (3.4) and (3.5) that two constrained nonlinear oscillators may synchronize
in-phase or in anti-phase without the influence of an explicit control action, i.e. in a
natural way, provided that the oscillators are coupled through Huygens’ coupling.
All experiments are conducted by using the electro-mechanical device described in
Chapter 2.

The chapter is concluded by a discussion of the obtained results.
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3.2 Synchronization of oscillators driven by a Hamilto-
nian escapement

Consider the schematic model depicted in Figure 3.1 where it has been assumed
that the oscillators are identical. Moreover, assume that the resupply of energy
into the oscillators is provided by the Hamiltonian escapement (3.4), i.e. Ui =

f(xi, ẋi) = −λ (Hi −H∗) ẋi. Under these assumptions, the dynamic behaviour of
the generalized Huygens system depicted in Figure 3.1 is described by the set of
equations

ẍi = −ω2(xi − x3)− 2ζω(ẋi − ẋ3)− λ (Hi −H∗) ẋi, i = 1, 2, (3.6)

ẍ3 = −µ
2∑
i=1

ẍi − ω2
3x3 − 2ζ3ω3ẋ3, (3.7)

where ω =
√

κ
m [rad/s], ω3 =

√
κ3

m3
[rad/s], ζ = β

2ωm [-], and ζ3 = β3

2ω3m3
[-] are

positive parameters, which have been defined in the previous section, µ = m
m3

[-] is
the coupling strength, λ [s/kgm2] is a positive parameter, H∗ = 1

2κx
2
ref [Nm] is a

reference energy level with xref [m] being a reference amplitude, the displacements
corresponding to the oscillators are denoted by xi, i = 1, 2, and x3 describes the
displacement of the coupling bar. The Hamiltonian Hi for the uncoupled and
unforced oscillator i is defined by

Hi =
1

2
mẋ2

i +
1

2
κx2

i , i = 1, 2. (3.8)

Rescaling the time by τ = ωt yields the system in the form

x′′i = − (xi − x3)− p(x′i − x′3)− λ
(
ax′i

2
+ κx2

i − γ
)
x′i, i = 1, 2, (3.9)

x′′3 = −µ
2∑
i=1

x′′i − qx3 − sx′3, (3.10)

where the primes denote differentiation with respect to the dimensionless time τ ,
p = 2ζ [-], λ = λ

2ω [s2/(kgm2rad)], a = mω2 [kgrad2/s2], γ = 2H∗ [Nm], q =
ω2

3

ω2

[-], and s = 2ζ3ω3

ω [-].

In order to bring this system into the form (3.1)-(3.2), it will be assumed that the
damping in the oscillators is small, i.e. p = µd and that the nonlinearity is small,
i.e. λ = µα.
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The above assumptions yield the system

x′′i = − (xi − x3)− µd(x′i − x′3)− µα
(
ax′i

2
+ κx2

i − γ
)
x′i, (3.11)

x′′3 = −µ
2∑
i=1

x′′i − qx3 − sx′3, i = 1, 2. (3.12)

In order to determine (the existence of) a periodic, synchronous solution in this
system and its local stability, Theorem 1.1, which is based on the Poincaré method,
is used. The analysis is as follows.

After neglecting quadratic terms in µ, (3.11-3.12) can be written in the form

x′ = Ax+ µΦ(x) (3.13)

with

A =



0 1 0 0 0 0
−1 0 0 0 1 0
0 0 0 1 0 0
0 0 −1 0 1 0
0 0 0 0 0 1
0 0 0 0 −q −s

 , Φ(x) =



0

−α
(
ax′1

2 + κx21 − γ
)
x′1 − d

(
x′1 − x′3

)
0

−α
(
ax′2

2 + κx22 − γ
)
x′2 − d

(
x′2 − x′3

)
0

x1 + x2 − 2x3


,

(3.14)

and x =
[
x1 x′1 x2 x′2 x3 x′3

]T
.

The next step is to determine the transformation that leads to the canonical form
(1.10). Since for µ = 0 system (3.13) becomes linear, then such transformation
can be easily obtained by diagonalizing A in the form A = V DV −1, where D is a
diagonal matrix containing the eigenvalues of A and V the matrix of corresponding
eigenvectors, which are stored columnwise. For A as defined in (3.14), the diagonal
matrix D verifies

D =



i 0 0 0 0 0

0 −i 0 0 0 0

0 0 i 0 0 0

0 0 0 −i 0 0

0 0 0 0 σ1 0

0 0 0 0 0 σ2

 (3.15)

where σ1 = 1
2

(
−s+

√
s2 − 4q

)
and σ2 = 1

2

(
−s−

√
s2 − 4q

)
. Note that since

s > 0 and q > 0, Re(σ1) < 0 and Re(σ2) < 0. Note further that k = 4 and l = 6

in (1.13).

By defining x = V y, system (3.13) takes the canonical form, see (1.10)1

1Note that this transformation is valid since the matrix of eigenvectors associated to (3.15)



3.2 Synchronization of oscillators driven by a Hamiltonian escapement 33

y′ = Dy + µV −1Φ (V y) . (3.16)

According to (1.14), the generating system (1.11) associated to (3.16) has solutions
of the form

y1 = α1e
iτ , y2 = α2e

−iτ y3 = α3e
iτ y4 = α4e

−iτ , y5 = y6 = 0. (3.17)

The amplitudes of these solutions are assumed to be complex, i.e. αi = rie
iφi ,

i = 1, 2, 3, 4, where αi ∈ C, ri ∈ R+, and φi ∈ S1. In this way, it is easy to analyze
phase synchronization by looking at the phase differences. At this point it is also
worth to note that four eigenvalues of A appear in complex conjugate pairs, see
(3.15). In order to have real solutions, it is necessary and sufficient that α2 = ᾱ1

and α4 = ᾱ3, i.e. φ2 = −φ1 and φ4 = −φ3 and correspondingly r1 = r2 and
r3 = r4. This yields

α1 = r1e
iφ1 , α2 = r1e

−iφ1 , α3 = r3e
iφ3 , α4 = r3e

−iφ3 . (3.18)

One can set φ3 = 0 without loss of generality since time can be shifted by a con-
stant, then synchronization is characterized by a single phase φ = φ1. Moreover, it
will be assumed that the amplitudes are the same, i.e. r = r1 = r3. Consequently,
the solutions (3.17) of the generating system become

y1 = rei(τ+φ), y2 = re−i(τ+φ), y3 = reiτ , y4 = re−iτ , y5 = y6 = 0. (3.19)

Next, the values of r and φ are determined. This can be done by writing conditions
(1.15) of Theorem 1.1 as a system of equations in terms of r and φ. This yields

eiφ
[
α
(
γ − (3a+ κ) r2

)
− d
]
− s

(
1 + eiφ

)
(−1 + q)

2
+ s2

= 0, (3.20)

α
(
γ − (3a+ κ) r2

)
− d− f(s, φ, q, i)

(q − 1)2 + s2
= 0, (3.21)

i
(
1− e−2iφ

)
−1 + q − is = 0, (3.22)

where

f(s, φ, q, i)

(q − 1)2 + s2
=

[
s+ s

2

(
eiφ + e−iφ

)
+ 1

2 (−1 + q)
(
eiφ + e−iφ

)
i

(−1 + q)
2

+ s2

]
. (3.23)

Equation (3.22) directly implies

φ = 0 or φ = π.2 (3.24)

has full rank. Eigenvalue i as well as eigenvalue −i have geometric and algebraic multiplicity
equal to 2.

2Actually, Equation (3.22) is satisfied for φ = ±nπ with n = 0, 1, 2, . . .
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Substituting these values into (3.20) or (3.21) yields the corresponding expressions
for the half-amplitudes r of the periodic solutions:

• φ = 0 (in-phase synchronization)

r =

√
γ −

(
σ+d
α

)
(3a+ κ)

, (3.25)

with σ = 2s
(−1+q)2+s2 . Note that (3.25) is defined if γ > σ+d

α .

• φ = π (anti-phase synchronization)

r =

√
γ −

(
d
α

)
(3a+ κ)

. (3.26)

In this case, (3.26) will be defined if γ > d
α .

Next, the stability of these solutions is investigated by using (1.18) in Theorem 1.1.
This requires the computation of a characteristic polynomial for both the in-phase
solution and the anti-phase solution.

• φ = 0 (in-phase synchronization)

After elaborated computations, one finds the following characteristic polynomial:

pin(χ) = [χ+ 2π(αγ − d− σ)]
[
((1− q)2 + s2)χ2 + 2π(αγ − d− 2σ)χ+ c

]
,

(3.27)
where

σ =
2s

(1− q)2 + s2
, c = 4π2 (1 + sσ − s (αγ − d)) . (3.28)

This polynomial will have roots with negative real part if and only if

C1 = γ −
(
σ + d

α

)
> 0, C2 = γ −

(
2σ + d

α

)
> 0, and C3 = −γ +

(
σ + d+ 1

s

α

)
> 0.

(3.29)
Note that condition C1 > 0 is the same condition for the existence of the in-
phase synchronous solution, see (3.25). Moreover, since σ > 0, condition C1 > 0

is weaker than condition C2 > 0. In other words, for (3.27) having negative roots,
it is necessary and sufficient that C2 > 0 and C3 > 0.
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By substituting the original parameters of (3.6)-(3.7) in (3.29), it is possible to
rewrite the conditions for C2 and C3 in terms of the original parameters including
m3, i.e. the mass of the coupling bar. This yields

C2 = 2H∗ − 16ζ3ω3mω
4

λm3 [ω4 − 2ω2
3ω

2 + ω4
3 + 4ζ23ω

2
3ω

2]
− 4ζω

λ
> 0, (3.30)

C3 = −2H∗ +
8ζ3ω3mω

4

λm3 [ω4 − 2ω2
3ω

2 + ω4
3 + 4ζ23ω

2
3ω

2]
+

4ζω

λ
+

ω2m

λζ3ω3m3
> 0.(3.31)

• φ = π (anti-phase synchronization)

Again, after elaborated computations, one finds the following characteristic poly-
nomial:

panti(χ) = [χ+ 2π (αγ − d)]
[
zχ2 +

(
2πz (αγ − d)χ+ 4π2 (1 + s (αγ − d))

)]
,

(3.32)
where z = (1− q)2 + s2. In this case the roots of panti(χ) will have negative real
parts if and only if

C4 = γ −
(
d

α

)
> 0, C5 = γ −

(
d− 1

s

α

)
> 0, (3.33)

Since σ and s are positive, it follows that panti(χ) is Hurwitz iff C4 > 0. Note that,
again, stability condition C4 > 0 coincides with the condition for the existence of
the solution, see (3.26).

Again, C4 can be rewritten in terms of the original parameters, i.e.

C4 = 2H∗ − 4ζω

λ
. (3.34)

Clearly, the condition for the existence and stability of the anti-phase regime does
not depend on m3, i.e. the mass of the coupling bar. Note that this coincides with
the fact that the coupling bar comes to standstill when the oscillators synchro-
nize in anti-phase, i.e. the coupling ‘disappears’ during the anti-phase motion.
Furthermore, it should be noted that condition (3.33) is “softer” than condition
(3.29) for in-phase synchronization because if (3.29) is satisfied, then (3.33) will be
satisfied too, whereas the opposite is not true.

Finally, the period of the synchronous solutions is computed. From Theorem 1.1
and (1.19) it follows that the in-phase synchronous solutions of system (3.13) which
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is in terms of dimensionless time τ have period

Tin = T + τc(µ) = 2π

[
1 + µ

q − 1

q2 − 2q + s2 + 1

]
+O(µ2), (3.35)

whereas the anti-phase synchronous solutions will have period

Tanti = T + τc(µ) = 2π +O(µ2). (3.36)

This result is very intuitive: when the oscillators synchronize in anti-phase, the
coupling bar has no influence because it will be in rest and the oscillation fre-
quency will closely approximate the eigenfrequency of the uncoupled, undamped,
oscillators. On the other hand, when the oscillators synchronize in-phase, the cou-
pling bar converges to an oscillatory motion, which will influence the oscillation
frequency of the oscillators.

As mentioned before, the coupling strength in a pair of oscillators with Huygens’
coupling is defined as the ratio of the mass of one oscillator over the mass of the
coupling bar, i.e. µ = m

m3
. For the application of the Poincaré method to be valid

µ should be a small parameter, i.e. µ << 1.

The above results are summarized in the following two theorems and corollary.

Theorem 3.1. Consider system (3.11)-(3.12). Assume µ << 1 and that the param-
eter values satisfy conditions (3.29). Then, in-phase synchronized solutions exist
in system (3.11)-(3.12) and these solutions are (asymptotically) stable, i.e.

lim
t−→∞

ein(t) := x1(t)− x2(t) = 0, lim
t−→∞

ėin(t) := ẋ1(t)− ẋ2(t) = 0. (3.37)

Moreover, the limit solutions corresponding to the oscillators have amplitude

Ain−phase(µ) = 2r = 2

√
γ −

(
σ+d
α

)
(3a+ κ)

= 2

√
2H∗ − µh1 − 4ζω

λ

3mω2 + κ
(3.38)

with h1 = 8ζ3ω3ω
4

λ[ω4−2ω2
3ω

2+ω4
3+4ζ2

3ω
2
3ω

2]
and period

Tin−phase = T + τc(µ) = 2π

[
1 + µ

q − 1

q2 − 2q + s2 + 1

]
+O(µ2). (3.39)

Theorem 3.2. Consider system (3.11)-(3.12). Assume that µ << 1 and that the
parameter values satisfy conditions (3.33). Then, anti-phase synchronized solutions
exist and are (asymptotically) stable, i.e.

lim
t−→∞

ean(t) := x1(t) + x2(t) = 0, lim
t−→∞

ėan(t) = ẋ1(t) + ẋ2(t) = 0, (3.40)

and lim
t−→∞

x3(t) = ẋ3(t) = 0. (3.41)
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Figure 3.2 Conditions (3.29) for in-phase synchronization plotted as a function of
the mass of the coupling bar, i.e. m3. Figures a) to d): C2. Figure e):
C3.

Moreover, the limit solutions corresponding to the oscillators have amplitude

Aanti−phase = 2r = 2

√
γ − d

α

(3a+ κ)
= 2

√
2H∗ − 4ζω

λ

3mω2 + κ
(3.42)

and period
Tanti−phase = T + τc(µ) = 2π +O(µ2). (3.43)

Corollary 3.1. If µ << 1 and condition (3.29) is satisfied then system (3.11)-(3.12)
admits both in-phase and anti-phase synchronized solutions and both solutions are
locally asymptotically stable.

Finally, the above analytical results are illustrated and supported by means of
numerical simulations.

Consider system (3.11)-(3.12) with the following parameter values: a = 37.1080 [-],
γ = 1.6× 10−3 [-], κ = 37.1080 [-], d = 1.43×10−2

µ [-], α = 1.99×101

µ [s2/(kgm2rad)],

q = 1.309 × 10−1 [-], s = 1.46 × 10−2 [-] and µ = 2.1×10−1

m3
[-]. It follows that for

these parameter values conditions (3.29) are satisfied if m3 > 5.68 [kg], see Figure
3.2. Here, a value of m3 = 16.8 [kg] is considered. Consequently µ = 0.0125 [-].

Figure 3.3 shows the obtained simulation results. The nonzero initial conditions are
x1(0) = 3× 10−3 [m], x2(0) = 2× 10−3 [m]. After initial transient behaviour, the
oscillators synchronize in-phase, as depicted in Figure 3.3. By using (3.38) the limit
amplitude of the synchronized solution is computed. It follows that for the given
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parameters Ain−phase = 4.713×10−3 [m]. This value and its negative counterpart
are denoted by the horizontal dotted lines in Figure 3.3b). The agreement between
the analytical and the numerical results is evident. In fact, the difference between
the actual amplitude and predicted amplitude is 2.256%. Additionally, the period
of the synchronous solution is computed by using (3.39). This yields Tin−phase =

6.1928 [−]. Again, this result is very close (with an error of 0.033%) to the obtained
result by numerical integration of (3.11)-(3.12) as depicted in Figure 3.3b) (vertical
dotted lines). Moreover, since for the given parameter values also condition (3.33),
see Theorem 3.2, holds with C4 = 8.487 × 10−4, it follows that also anti-phase
synchronization exists. This case is presented in Figure 3.3c) and Figure 3.3d).
These results have been obtained by using the same parameter values as used above
except for the initial condition of oscillator 2, which now is x2(0) = −5 × 10−4

[m]. Clearly, the oscillators are synchronized in anti-phase. The amplitude of the
anti-phase solution, computed by using (3.42) in Theorem 3.2, is Aanti−phase =

4.782× 10−3 [m]. Again, this value and its negative counterpart are indicated by
two horizontal lines in Figure 3.3d). The error in the predicted amplitude and the
actual amplitude of the solution is 0.083%. The period of the solution, indicated by
two vertical lines in Figure 3.3d), is Tanti−phase = 6.2827 [-], whereas the expected
value from (3.43) in Theorem 3.2 is T = 2π, i.e. there is a difference of 0.0063%.

In order to illustrate the influence of the coupling strength µ = m
m3

in the limit
synchronizing behaviour of the oscillators, system (3.11)-(3.12) is again numerically
integrated by using the same parameter values and initial conditions as used in
the first simulation presented above, except for the coupling strength, which is
increased by decreasing m3 to m3 = 4.1 [kg]. This yields µ = 0.0512 [-]. Con-
sequently, condition (3.29), see Theorem 3.1, is not fulfilled. However, condition
(3.33), see Theorem 3.2, is satisfied and consequently the only stable synchronous
solution is anti-phase synchronization, as depicted in Figure 3.4. It can be seen
that although the initial conditions of the system are very close to in-phase, after
initial transient behaviour, the system synchronizes in anti-phase. Next, the limit
amplitude of the synchronous solutions can be computed by using (3.42) and it
follows that Aanti−phase = 4.782 × 10−3 [m]. Again, this value and its negative
counterpart are shown by two horizontal lines in Figure 3.4b). The error between
the predicted amplitude and the real amplitude is 0.020%. The corresponding
period, according to (3.43) is Tanti−phase = 2π = 6.2832 [-] and this result again
is very approximated to the computer simulation result, see the vertical lines in
Figure 3.4b), which is 6.2824 [-], i.e. an error of 0.01%.
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Figure 3.3 For a small coupling strength (m3 large) and initial conditions close to
in-phase, system (3.11-3.12) synchronizes in-phase as depicted in figures
a) and b). For the same coupling strength and initial conditions far
from in-phase, the oscillators synchronize in anti-phase, as shown in
figures c) and d), where black line: x1, grey line: x2.



40 3 Synchronization of nonlinear oscillators with limitations

990 995 1000
−5

0

5
x 10

−3

τ [−]

x 1, x
2 [m

]

0 500 1000
−5

0

5
x 10

−3

τ [−]

(x
1+

x 2) 
[m

]

−5 0 5

x 10
−3

−5

0

5
x 10

−3

x
1
 [m]

x 2 [m
]a)

b) c)

Figure 3.4 When the coupling strength is increased (by decreasing m3) the only
synchronous solution in system (3.11-3.12) is anti-phase synchroniza-
tion. In b), black line: x1, grey line: x2. In c), black line: transient
behaviour, grey: long term behaviour.

3.3 Synchronization of oscillators driven by a van der Pol
term

A classical model of a nonlinear oscillator showing self-sustained oscillations is due
to van der Pol [85]. The key feature in the model is the presence of a nonlinear
damping term, which dissipates energy for large amplitudes - acting like ordinary
positive damping - and generates energy at low amplitudes - acting like negative
damping. It should be noticed that this term has more or less the same effect as an
escapement mechanism in a pendulum clock: energy is delivered to the system such
that the oscillations do not damp out. Consequently, it is not surprising that there
exist several works related to the classical Huygens system where the escapement
mechanism has been modelled by using the nonlinear damping term of the van
der Pol equation, see e.g. [8, 55, 82]. This facilitates the modelling of the real
escapement mechanism and allows to perform a fairly complete analytic analysis
of the in-phase and anti-phase synchronized motion, which becomes tremendously
involved if the escapement is modelled for instance by an impulsive function [43,
72].

This section investigates the occurrence of synchronization in the system of coupled
oscillators depicted in Figure 3.1 for the case where the resupply of energy into
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the oscillators is provided by the nonlinear term (3.5).

By again assuming identical oscillators, it can be shown that the dynamic be-
haviour of the coupled system is described by

ẍi = −ω2 (xi − x3)− 2ζω(ẋi − ẋ3)− ν(ax2
i − 1)ẋi i = 1, 2, (3.44)

ẍ3 = −µ
2∑
i=1

ẍi − ω2
3x3 − 2ζ3ω3ẋ3, (3.45)

where again as defined in Section 3.1, ω, ω3, ζ, ζ3 are positive parameters and
µ is the coupling strength. Parameter ν ∈ R+ in [1/s] determines the amount of
nonlinearity and the strength of the damping and a ∈ R+ in [1/m2] is a parameter,
which defines the switching between positive and negative damping. For xi < 1√

a
,

the velocity in oscillator i is increased and for xi > 1√
a
, it is decreased.

It is clear that the system under consideration resembles a pair of van der Pol
oscillators with Huygens’ coupling. In order to derive conditions for the onset
of in-phase and anti-phase synchronized motion in the coupled system (3.44)-
(3.45), the Poincaré method presented in Chapter 1 is used again. This requires to
transform the system into the form (1.10). By setting τ = ωt [-], p = 2ζ [-], q =

ω2
3

ω2

[-], s = 2ζ3ω3

ω [-], and λ̄ = ν
ω [-], and assuming that the damping in the oscillators

and the amplitude of the nonlinear van der Pol term are small, i.e. p = µd [-] and
λ̄ = µα, it is possible to rewrite (3.44)-(3.45) in the form

x′ = Ax+ µΦ1(x) + µ2Φ2(x) (3.46)

where the prime denotes differentiation with respect to the dimensionless time τ ,
x =

[
x1 x′1 x2 x′2 x3 x′3

]T
is the state vector, A is as given in (3.14), and

Φ1 =



0

−d(x′1 − x′3)− α(ax21 − 1)x′1
0

−d(x′2 − x′3)− α(ax22 − 1)x′2
0

x1 + x2 − 2x3

 , Φ2 =



0

0

0

0

0∑2
i=1

(
dx′i + α(ax2i − 1)x′i

)
− 2dx′3

 .
(3.47)

The following two theorems are derived for system (3.46). For simplicity, their
proof is omitted but it can be derived by following the procedure presented in
Section 3.2.

Theorem 3.3. Consider system (3.46). Assume µ << 1 and that the parameter
values satisfy the following conditions:

C1 = 1−
(

2σ + d

α

)
> 0, and C2 = −1 +

(
σ + d+ 1

s

α

)
> 0. (3.48)
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Then, in-phase synchronized solutions exist in system (3.46) and these solutions
are (asymptotically) stable, i.e.

lim
t−→∞

ein(t) := x1(t)− x2(t) = 0, lim
t−→∞

ėin(t) := ẋ1(t)− ẋ2(t) = 0. (3.49)

Moreover, the limit solutions corresponding to the oscillators have amplitude

Ain−phase(µ) = 2r = 2

√
α− (σ + d)

aα
= 2

√
1− µh1 − 2ζω

ν

a
(3.50)

with h1 = 4ζ3ω3ω
4

λ[ω4−2ω2
3ω

2+ω4
3+4ζ2

3ω
2
3ω

2]
and period

Tin−phase = T + τc(µ) = 2π

[
1 + µ

q − 1

q2 − 2q + s2 + 1

]
+O(µ2). (3.51)

Theorem 3.4. Consider system (3.46). Assume µ << 1 and that the following
condition holds

α− d > 0. (3.52)

Then, anti-phase synchronized solutions exist and are (asymptotically) stable, i.e.

lim
t−→∞

ean(t) := x1(t) + x2(t) = 0, lim
t−→∞

ėan(t) = ẋ1(t) + ẋ2(t) = 0, (3.53)

and lim
t−→∞

x3(t) = ẋ3(t) = 0. (3.54)

Moreover, the limit solutions corresponding to the oscillators have amplitude

Aanti−phase = 2r = 2

√
1− d

α

a
= 2

√
1− 2ζω

ν

a
(3.55)

and period
Tanti−phase = T + τc(µ) = 2π +O(µ2). (3.56)

These results again show that the coupling strength influences the limit synchro-
nizing behaviour as stated in the previous section.

Note that condition (3.52) is weaker than condition (3.48). Hence, when (3.48)
is satisfied, in-phase and anti-phase synchronous solutions exist and are locally
asymptotically stable. On the other hand, when (3.52) is satisfied and condition
(3.48) is not satisfied, then the only stable synchronous solution is anti-phase syn-
chronization. By means of numerical integration it is possible to show countless
examples. However, all of them will have the same essence as those depicted in
Figures 3.3 and 3.4, namely the occurrence of in-phase and anti-phase synchro-
nization being influenced by the mass of the coupling bar, i.e. by m3.



3.4 Experimental results 43

3.4 Experimental results

The obtained results in the previous sections have been derived under the as-
sumption that the oscillators are identical. Obviously, in a real physical system,
it is impossible to have two identical oscillators. A mathematical treatment, in
which external perturbations (like noise) and unmodelled dynamics are taken into
account, turns out to be complicated and the available mathematical tools are
limited. Therefore, in this section, an experimental analysis is performed in order
to get insight into the existence of synchronization in a real system where there
are unavoidable small mismatches/disturbances in the oscillators. The analysis is
conducted by using the experimental setup depicted in Figure 2.3. All parameter
values and initial conditions are fixed and the only parameter that is modified from
experiment to experiment is m3, the mass of the coupling bar, which influences
the coupling strength µ = m

m3
.

3.4.1 Hamiltonian escapement

In a first set of experiments, the inherent mechanical properties of the experimental
setup of Figure 2.3 are adjusted such that its dynamic behaviour is described by
the set of equations (3.11)-(3.12). This is achieved by defining the actuations Ui in
(2.1) as follows

Ui = ω2
is(xi − x3) + 2ζisωis (ẋi − ẋ3)− ω2(xi − x3)− µdω(ẋi − ẋ3)

− µαω
( a
ω2
ẋ2
i + κx2

i − γ
)
ẋi, i = 1, 2, (3.57)

U3 = 0. (3.58)

Clearly, the closed loop (2.1)-(3.57-3.58) coincides with the dynamics (3.11)-(3.12)
expressed in terms of the original time t. Consequently, the mass-spring-damper
oscillators in the experimental platform of Figure 2.3 have been converted into
a pair of constrained nonlinear self-sustained oscillators driven by a Hamiltonian
escapement.

The parameter values for the experiments are given in Table 2.1 and Table 3.1.
The nonzero initial conditions are x1(0) = 4 [mm], x2(0) = 3.5 [mm]. Note that in
the experiment the intention still is to make the oscillators identical but it should
be noted that it will be practically impossible to realize this.

In a first experiment, no extra mass is added to the coupling bar, hence m3 = 4.1

[kg] and, consequently, µ = 0.0512 [-]. For the given parameter values, condition
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Table 3.1 Parameter values for the experiments.

Oscillator 1 Oscillator 2 Coupling bar
m = 2.10× 10−1 [kg] m = 2.10× 10−1 [kg] m3 ∈ {4.1, 15.95} [kg]

κ = 3.7108× 101 [Nm ] κ = 3.7108× 101 [Nm ] κ3 = 3.8871× 102 [Nm ]

β = 5× 10−2 [Nsm ] β = 5× 10−2 [Nsm ] β3 = 3.2656 [Nsm ]

d = 1.791×10−2

µ [−] d = 1.791×10−2

µ [−] −
α = 2.241×101

µ [−] α = 2.241×101

µ [−] −
a = 3.7108× 101 [−] a = 3.7108× 101 [−] −
γ = 1.567× 10−3 [−] γ = 1.567× 10−3 [−] −

(3.33), see Theorem 3.2, is satisfied, whereas condition (3.29), see Theorem 3.1,
is not fulfilled3. Hence, anti-phase synchronization is expected to occur in this
experiment.

Figure 3.5 summarizes the main results. Although the oscillators are released
close to in-phase, as depicted in Figure 3.5, after initial transient behaviour, the
oscillators practically synchronize in anti-phase, as shown in Figures 3.5b) and
3.5d). Although initially the oscillations in the coupling bar are large due to the
nearly in-phase startup, in the limit, when the oscillators practically synchronize in
anti-phase, the amplitude of these oscillations becomes relatively small as depicted
in Figure 3.5c). Ideally, for identical oscillators, the oscillations in the coupling
bar should decay. However, in the experiment, the oscillators are not identical
as can be seen from Figures 3.5b),d). Roughly speaking, the “pushing force” of
one oscillator exerted to the coupling bar is larger than the “pulling force” exerted
by the other oscillator and, consequently, the coupling bar does not come to a
complete standstill.

In a second experiment, the mass of the coupling bar is increased by adding five
steel plates with a mass of approximately 2.370 [kg] each. This yields m3 ≈ 15.95

[kg], i.e. µ = 0.0131 [-]. The remaining parameter values and initial conditions
are the same as used in the previous experiment. Note that in this case, condition
(3.29) in Theorem 3.1 is satisfied. As a consequence of adding mass to the coupling
bar, the oscillators now practically synchronize in-phase as depicted in Figure 3.6.
The coupling bar converges to an oscillatory motion with fixed amplitude and
frequency, as shown in Figure 3.6c). Moreover, the frequency of the in-phase
synchronous solution is approximately the same as the frequency of the coupling
bar. The amplitude of the vibrations in the coupling bar is of the same order in
Figures 3.5 and 3.6. Note, however, that the mass of the coupling bar is about
four times higher in Figure 3.6.

3For the given parameters, condition (3.29) is satisfied if m3 > 6.1267 [kg].
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Figure 3.5 Experimental results. For relatively large coupling strength, the oscil-
lators practically synchronize in anti-phase. In figures a) and b), black
line: x1, grey line: x2. Figure d) does not contain transient behaviour.
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Figure 3.6 In this experiment, the mass of the coupling bar is increased to
m3 = 15.95 [kg] (coupling strength is decreased). As a consequence
the oscillators practically synchronize in-phase. In figures a) and b),
black line: x1, grey line: x2. Figure d) does not contain transient
behaviour.
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In both experiments, the amplitudes and frequencies of the synchronous solutions
differ from the analytical values given by Theorems 3.1 and 3.2 respectively. For
instance, in the case of the first experiment, the amplitude of the anti-phase syn-
chronous solution is 6.47 [mm] for the first oscillator and 6.31 [mm] for the second
one. If the parameter values used during the experiment are substituted in (3.42),
then the expected amplitude is 4.551 [mm]. Regarding the frequency of the syn-
chronous solution, the same experiment reveals that the oscillators synchronize in
anti-phase with a frequency of 2.1155 Hz, i.e. T = 0.4727 [sec], whereas (3.43)
in Theorem 3.2 yields T = 0.4726 [sec] (converting dimensionless time τ back to
the real time t). For the second experiment, the amplitude of the oscillations in
oscillator 1 is 5.166 [mm] and 4.939 [mm] for the second oscillator, whereas the pre-
dicted amplitude from Theorem 3.1 is 4.479 [mm]. The frequency of the in-phase
synchronous solution in the experiment is T = 0.4342 [sec], whereas the predicted
period from Theorem 3.1 is T = 0.4654 [sec]. These differences should not be
surprising since, as has been mentioned before, the oscillators in the experimen-
tal setup are not identical and moreover the original dynamics are not cancelled
perfectly.

Notwithstanding these quantitative rather than qualitative differences, the exper-
iments confirm that the mass of the coupling bar, which determines the coupling
strength µ, influences the type of limiting synchronous solutions in the system: in-
creasing the mass of the coupling bar (decreasing the coupling strength) facilitates
the onset of in-phase synchronization, whereas for a light coupling bar (increas-
ing the coupling strength) anti-phase synchronization is the only expected stable
synchronous mode.

3.4.2 van der Pol escapement

Similar experiments have been conducted for the case where the experimental
setup is adjusted to mimic the dynamics (in terms of the time t) of the coupled
system (3.46) analyzed in Section 3.3. In this case, the experimental setup is
adjusted by defining the actuations Ui in (2.1) as follows

Ui = ω2
is(xi − x3) + 2ζisωis (ẋi − ẋ3)− ω2 (xi − x3)− µdω(ẋi − ẋ3)

− µαω(ax2
i − 1)ẋi, i = 1, 2. (3.59)

U3 = 0. (3.60)

The parameter values for ωis and ζis are summarized in Table 2.1. Furthermore,
ω = 13.29 [rad/s], β = 8 × 10−3 [Ns/m], d = 2.865×10−3

µ [−], α = 7.522×10−3

µ [−],
and a = 1 × 105 [1/m2]. The nonzero initial conditions are x1(0) = 3 [mm] and
x2(0) = 2.8 [mm].
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Figure 3.7 Experimental results. For a light coupling barm3 = 4.1 [kg] (relatively
large coupling strength µ) practical anti-phase synchronization occurs.
In figures a) and b), black line: x1, grey line: x2. In figure d), transient
behaviour has been omitted.

Again, in the first experiment, a light coupling bar, i.e. m3 = 4.1 [kg], i.e. µ =

0.0512 [-], is used. For the given parameter values, condition (3.52) in Theorem
3.4 is satisfied, whereas condition (3.48) in Theorem 3.3 is not fulfilled4, Hence,
for this experiment anti-phase synchronization is expected to occur.

As becomes clear from Figures 3.7b) and 3.7d), the oscillators practically synchro-
nize in anti-phase, although they were released close to in-phase synchronization
as depicted in Figure 3.7a). The behaviour of the coupling bar is depicted in Fig-
ure 3.7c). Initially, the transient part of the displacement of the bar is relatively
large due to the nearly in-phase startup of the oscillators. Later, when the phase
difference between the oscillators tends to π [rad], the amplitude of the oscilla-
tions in the bar reduces to a small value. In the experiment, the amplitude of
the oscillations is 7.776 [mm] for the first oscillator and 6.09 [mm] for the second
oscillator. Furthermore, the period of the synchronous solution is T = 0.4729 [sec].
The amplitude and period of the synchronous solution when computed by using
(3.55) and (3.56) is 4.976 [mm] and 0.4726 [sec], respectively.

In a second experiment, the mass of the coupling bar is increased by adding ten
steel plates of approximately 2.370 [kg] each one. This yields m3 ≈ 27.8 [kg],
i.e. µ = 0.0075 [-]. The remaining parameters and initial conditions are the
same as used in the previous experiment. Note that in this case, condition (3.48)

4For the given parameters, condition (3.48) in Theorem 3.3 is satisfied if m3 > 8.8519 [kg].
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Figure 3.8 In this experiment, the oscillators practically synchronize in-phase.
The oscillators have been released from initial conditions close to in-
phase and the mass of the coupling bar has been increased tom3 = 27.8

[kg]. In figures a) and b), black line: x1, grey line: x2. In figure d),
transient behaviour has been omitted.

in Theorem 3.3 is satisfied. In fact, as a consequence of adding mass to the
coupling bar, the oscillators practically synchronize in-phase as depicted in Figure
3.8. The coupling bar converges to an oscillatory motion with fixed amplitude
and frequency, as shown in Figure 3.8c). Moreover, the frequency of the in-phase
synchronous solution is approximately the same as the frequency of the coupling
bar. The oscillations in the first oscillator have amplitude 5.871 [mm], whereas for
the second oscillator the amplitude of the oscillations is 5.603 [mm]. The in-phase
synchronous solution has period T = 0.4340 [sec]. For the given parameter values,
Theorem 3.3 predicts a synchronous solution with amplitude equal to 4.891 [mm]
and period T = 0.4687 [sec].

Finally, in order to illustrate the influence of the initial conditions in the limit
synchronizing behaviour of the system, experiment 2 is repeated by only changing
the initial condition of oscillator 2, which now is x2(0) = 0 [rad]. As can be seen
in Figure 3.9, the oscillators now synchronize in anti-phase.

Summarizing, the analytical results obtained in Section 3.2 and Section 3.3 are
qualitatively in large agreement with the experimental analysis conducted in this
section. Quantitative differences, as explained before, originate from the fact that
in the real physical system the oscillators are not identical and original dynamics
cannot be completely cancelled. However, analytical results and experimental
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Figure 3.9 For initial conditions far from in-phase the oscillators synchronize in
anti-phase.

results convey the same message: the mass of the coupling bar m3 (or rather the
coupling strength µ) influences the limit synchronizing behaviour in the oscillators.

3.5 Discussion

In this chapter, the occurrence of synchronized motion in pairs of constrained
nonlinear oscillators interacting via Huygens’ coupling has been investigated. Suf-
ficient conditions for the existence and stability of synchronous solutions have been
derived using the Poincaré method based on a small parameter. For the present
case, this small parameter appears naturally in the system and corresponds to the
coupling strength µ, i.e. the ratio between the oscillators’ mass m and the mass
of the coupling bar m3

5.

The analysis has revealed that the coupling strength influences the limit synchro-
nized behaviour in the system, namely anti-phase or in-phase synchronization.
Decreasing the coupling strength, i.e. increasing the mass of the coupling bar,
facilitates the onset of in-phase synchronization. On the other hand, when the
coupling strength is increased, i.e. by decreasing the mass of the coupling bar,
anti-phase synchronization is the only expected stable synchronous mode.

Moreover, Corollary 3.1 establishes that by decreasing the coupling strength µ, it
is possible to have two coexisting types of stable synchronous motion: in-phase
and anti-phase. Consequently, the limit behaviour in this case is determined by

5Clearly, the coupling strength may be affected by modifying m and/or m3. However, mod-
ifying m requires to modify the dynamics of the uncoupled oscillators, which is not intended in
the present study. Hence, in the analysis presented in this chapter, the coupling strength has
been modified by means of the mass of the coupling bar m3
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the initial conditions. Computer simulations have revealed that when the oscil-
lators are released close to in-phase then the limit behaviour of the system will
be in-phase synchronization, whereas for the remaining initial conditions the limit
behaviour is anti-phase synchronization, i.e. the region of attraction for anti-phase
is larger than the attraction region for in-phase.

Additionally, the onset of synchronization in the coupled oscillators has been in-
vestigated in a real system, i.e. by means of experiments. These experiments are
in large agreement with the theoretical investigations presented in Section 3.2 and
Section 3.3. In fact, the experiments have confirmed that a light coupling bar
yields to anti-phase synchronous motion in the oscillators, whereas with a heavier
coupling bar in-phase synchronization can be observed.

Note that the results obtained here are largely in agreement with other (experimen-
tal) results available in the literature. Consider for example the system described
in [54]. It consists of two metronomes attached to a bar that can move horizon-
tally, see Figure 2.2(c). The authors observed that anti-phase synchronization
was the ‘dominant’ synchronous solution. Moreover, the authors mention that in-
phase synchronization was observed only when the mass of the bar was increased.
Likewise, in [55], where the setup consists of a pair of metronomes placed on a
freely moving rigid bar, which rests on top of two soda cans, see Figure 2.2(b),
the author explains that anti-phase synchronization was observed only when the
coupling strength was increased.

The results presented in this chapter suggest that the occurrence of synchroniza-
tion is not influenced by the type of ‘escapement’ used to compensate the energy
loss in the oscillators. The escapement mechanism only guarantees self-sustained
oscillations but it does not determine how the oscillators synchronize. The mass
of the coupling bar, to which the oscillators are attached, is one of the possible
key parameters determining the limit behaviour.



Chapter 4
Synchronization of nonlinear
oscillators

... great difficulties are felt at first and these cannot be overcome
except by starting from experiments ... and then be conceiving

certain hypotheses ... But even so, very much hard work remains to
be done and one needs not only great perspicacity but often a degree

of good fortune...

Christiaan Huygens (1629–1695)

Abstract This chapter focuses on getting insight into the synchronized motion
of a pair of strongly nonlinear oscillators with Huygens’ coupling, mainly by
means of experiments. Some analytic conditions for the stability of the anti-
phase synchronized motion are also derived under the assumption of small
oscillations in the system. Additionally, a brief comparison between the ob-
tained results and the results derived in the previous chapter, is presented.
The results confirm that also in the strongly nonlinear case, the synchroniza-
tion observed by Huygens in his clocks is still observed even if the clocks are
replaced by different oscillators.

4.1 Introduction

In the previous chapter, it has been shown that a pair of limited nonlinear oscil-
lators with Huygens’ coupling may synchronize. Analytic conditions have been
derived for the occurrence of in-phase and anti-phase synchronization and exper-
imental analyses have been conducted. Moreover, it has been shown that the
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analytic results are in good agreement with the experimental results. The analytic
conditions have been derived by means of the Poincaré method. However, this
analytic method, and in general any perturbation method, is only valid for the
case that the nonlinearities in the system are “small” in some sense.

The problem addressed in this chapter is to determine, under which conditions a
pair of arbitrarily chosen nonlinear oscillators with Huygens’ coupling shows syn-
chronized behaviour. The limitations on the oscillators regarding small damping
and weak nonlinearities/excitation forces, considered in previous chapter, are dis-
regarded. In order to get a complete answer, one can distinguish two approaches.
The first approach consists of determining the existence of synchronous solutions
and their stability via a rigorous mathematical analysis, i.e. via a theoretical
approach. In the second approach, more insight in the synchronous motion of
the oscillators is obtained by means of experiments. This is in line with cur-
rent works about the study of Huygens’ synchronization occurring in metronomes.
For results regarding the theoretical approach, the reader may consider to study
[16, 17, 29, 31, 33, 52, 66, 75]. With respect to the second approach, several
experimental setups have been created by researchers in order to reproduce the
observations made by Huygens and find mathematical arguments for the synchro-
nized motion of the clocks. Some of these experimental setups are presented in
[5, 54, 55] and depicted in Figure 2.2.

For the present case (high damping and strong nonlinearities), if one attempts
to perform a theoretical analysis in order to derive conditions for the existence
and stability of synchronous solutions in the coupled system, then a mathematical
apparatus, or an ad hoc theoretical framework does not exist, as far as the author
knows. A Lyapunov-based analysis is not useful in most of the cases because
the system (in this case the synchronization error dynamics) cannot be written
in a suitable form. Then, in order to obtain analytic results, it is unavoidable
to make some simplifications and assumptions in the system under consideration.
Obviously, the obtained results may be conservative or only valid under some
idealized conditions.

This chapter focuses in getting insight into the synchronized motion of oscillators,
mainly by means of experiments. However, some analytic results (by using lin-
earization) are also given and it is shown that the obtained analytic results are in
agreement, to a large extent, with the experimental results. In fact, it is the belief
of the author that the experimental analysis presented here, provides important
and illuminating insight in the old and intriguing synchronization problem consid-
ered by Huygens. Moreover, these results may motivate the future derivation of
a suitable mathematical machinery in order to obtain a rigorous stability analysis
of the synchronous motion occurring in the oscillators.
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In the analysis, the generalized Huygens system depicted in Figure 2.4 is considered
and by means of three particular examples, it is demonstrated that two self-driven
oscillators with Huygens’ coupling may exhibit in-phase and anti-phase synchro-
nization. The first two examples are presented in Sections 4.2 and 4.3. These
examples correspond to the cases where the energy loss in the oscillators is com-
pensated by respectively the Hamiltonian escapement (3.4) and by the van der Pol
escapement (3.5). Then, in Section 4.4, a pair of nonlinear oscillators self-driven
by a discontinuous escapement is considered. It is shown that the synchronized
motion in the oscillators seems to be independent of the kind of escapement used
to maintain the oscillations. The mass of the coupling bar, however, appears to be
an important parameter, which determines the eventual synchronized behaviour
in the oscillators, namely in-phase or antiphase synchronization.

The chapter is concluded by a discussion about the influence of the coupling
strength in the onset of synchronization. In particular, the results obtained for
nonlinear oscillators with limitations, see Chapter 3, are compared against the
results for the case of nonlinear oscillators presented in this chapter.

4.2 Oscillators self-driven by a Hamiltonian escapement:
revisited

Consider the system depicted in Figure 2.4 consisting of two mass-spring-damper
oscillators linked via a one dof suspended rigid bar. As discussed in Chapter 2,
the equations of motion of the (idealized) system are given by

ẍ1 = −ω2(x1 − x3)− 2ζω(ẋ1 − ẋ3) + U1

ẍ2 = −ω2(x2 − x3)− 2ζω(ẋ2 − ẋ3) + U2 (4.1)

ẍ3 = µ

2∑
i=1

[ω2(xi − x3) + 2ζω(ẋi − ẋ3)− Ui]

−ω2
3x3 − 2ζ3ω3ẋ3 + U3.

Due to the damping present in the system, a control signal should be designed
such that the oscillations do not damp out. This requirement of having a control
input to sustain the oscillations can be linked either to Huygens’ pendulum clocks,
where each pendulum is equipped with an escapement mechanism, which provides
an impulsive force to the pendulum in order to keep the clocks running, or to the
case of a metronome, where the energy loss due to friction is compensated by an
escapement consisting of a spring, which loads a toothed wheel.

In this section, the control input Ui, i = 1, 2, to the oscillators is assumed to be
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given by the Hamiltonian escapement (3.4) and U3 = 0. Consequently, the system
under consideration is given by

ẍi = −ω2(xi − x3)− 2ζω(ẋi − ẋ3)− λ (Hi −H∗) ẋi, i = 1, 2, (4.2)

ẍ3 = −µ
2∑
i=1

ẍi − ω2
3x3 − 2ζ3ω3ẋ3. (4.3)

Note that this system coincides with (3.6)-(3.7). However, the limitations on the os-
cillators regarding small damping and weak nonlinearities/excitation forces, men-
tioned in the introduction of Chapter 3, are discarded.

4.2.1 Analysis of the anti-phase synchronization

The analysis is conducted under the assumption of small oscillations, i.e. by
linearizing system (4.2)-(4.3). This yields

ẍ1 = −ω2(x1 − x3)− 2ζω(ẋ1 − ẋ3) + λH∗ẋ1

ẍ2 = −ω2(x2 − x3)− 2ζω(ẋ2 − ẋ3) + λH∗ẋ2 (4.4)

ẍ3 = µ

2∑
i=1

[
ω2(xi − x3) + 2ζω(ẋi − ẋ3)− λH∗ẋi

]
− ω2

3x3 − 2ζ3ω3ẋ3.

Furthermore, it will be assumed that λH∗ > 2ζω. If system (4.2)-(4.3) syn-
chronizes in anti-phase, then all trajectories converge to the anti-phase manifold
Manti := {(x1, ẋ1) = (−x2,−ẋ2), x3 = ẋ3 = 0}. Therefore, it is quite natural to
define anti-phase synchronization errors and their time derivatives as

e1 = x1 + x2, ė1 = ẋ1 + ẋ2,

e2 = x3, ė2 = ẋ3. (4.5)

Writing the error dynamics as a set of first order differential equations yields

d
dt


e1

ė1

e2

ė2

 =


0 1 0 0

−ω2 −(2ζω − λH∗) 2ω2 4ζω

0 0 0 1
mω2

m3

(
2ζωm
m3
− λH∗m

m3

)
a b


︸ ︷︷ ︸

A


e1

ė1

e2

ė2

 . (4.6)

where a = −
(

2ω2m
m3

+ ω2
3

)
and b = −

(
4ζωm
m3

+ 2ζ3ω3

)
. It is well-known from

stability theory for linear systems that (4.6) is asymptotically stable, if and only
if the real parts of the eigenvalues of matrix A are negative. Then, the following
proposition holds.
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Proposition 4.1. System (4.4) will converge to the set where x1(t) = −x2(t),
ẋ1(t) = −ẋ2(t), x3(t) = 0, ẋ3(t) = 0 provided that the roots of the characteristic
polynomial:

p(χ) = χ4 + (2ζω − λH∗ + 2ζ3ω3 + 4ζω
m

m3
)χ3

+(4ζωζ3ω3 − 2λH∗ζ3ω3 + ω2
3 + ω2 + 2

m

m3
ω2)χ2

+(2ζωω2
3 − λH∗ω2

3 + 2ω2ζ3w3)χ+ ω2ω2
3 (4.7)

all have negative real parts.

For a given set of fixed parameters m,ω, ω3, λ,H
∗, ζ, and ζ3, the only way to

modify the roots of the characteristic polynomial (4.7) is by varying m3. Actually,
this is the situation in the experimental setup of Figure 2.4, where the masses
of the oscillators, denoted by m, are fixed but the mass of the supporting bar,
denoted by m3 may be varied by a factor 10, see Chapter 2.

Using computer simulations, Figure 4.1 is made in order to illustrate Proposition
4.1 using m3 as a design parameter. Consider the characteristic polynomial (4.7)
with parameter values given in Table 4.1. Furthermore, assume λ = 13.0268× 103

[s/kgm2] and H∗ = 7.8390 × 10−4 [Nm]. Note that for the given values, it holds
that λH∗ > 2ζω.

Table 4.1 Parameter values for system (4.1).

Oscillators Coupling bar

ω = 13.2930 [rad/s] ω3 =
√

388.71
m3

[rad/s]
ζ = 0.3829 [-] ζ3 = 0.0828√

m3
[-]

m = 0.210 [kg] m3 ∈ [0.1, 230] [kg]

Next, define the parameter ρ := max {Re {χ1} ,Re {χ2} ,Re {χ3} ,Re {χ4}}, which
corresponds to the largest real part of the roots of (4.7). From Figure 4.1, it is
clear that ρ is negative for 4.36 ≤ m3 ≤ 216.29] [kg]. Therefore, in this interval for
m3, Proposition 4.1 is applicable and the oscillators are expected to synchronize
in anti-phase. For small values of m3, i.e. 0 < m3 < 4.36 [kg], the polynomial
(4.7) has at least one root with positive real part, as can be seen again in Figure
4.1. In this interval, computer simulations have revealed that the oscillators may
synchronize in-phase. Also, for m3 > 216.29 [kg], it holds that ρ > 0 as can be
seen in Figure 4.1. It has been found, again by computer simulations, that in this
case the oscillators can show uncoupled behaviour, which is expected, since for
such large values of m3 it is as if the bar is fixed and the oscillators run uncoupled.



56 4 Synchronization of nonlinear oscillators

0.1 4.36 10
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

m
3
 [kg]

ρ

10 100 200
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

m
3
 [kg]

200 216.29 230
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

−3

m
3
 [kg]

Figure 4.1 Influence of m3 on the roots of (4.7).

Remark 4.1. When the oscillators reach anti-phase synchronization - i.e. x1 =

−x2, and ẋ1 = −ẋ2 - the displacement of the bar converges to zero, while for the
in-phase motion, where x1 = x2, and ẋ1 = ẋ2, the displacement of the bar con-
verges to a small periodic motion. Therefore, it is quite plausible that a relatively
light bar will facilitate the in-phase synchronization and for a relatively heavy bar
the anti-phase synchronization seems more feasible. Consequently, for relatively
small values of the mass m3, in comparison with the mass of the oscillators, (large
µ) in-phase synchronization is expected. For larger values of the mass m3, in com-
parison with the masses of the oscillators, (small µ) anti-phase synchronization is
expected, and for a really heavy bar (µ → 0) no coupling behaviour is expected.
This reasoning can be linked to the Huygens situation, where the coupling strength
µ (the ratio of the mass of the two clocks to the wooden bar mass) was small due
to the fact that Huygens had placed some extra mass (around 45 kg) in the cases
of the clocks (so this mass adds to the coupling bar mass and not to the pendula
mass) in order to keep them upright in stormy seas. In such situations (small
µ), Huygens always observed anti-phase synchronization [5]). Furthermore, the
case of a (very) heavy bar (µ→ 0) can also be linked to the Huygens experiment.
Based on his observations of two pendulum clocks, Huygens drew the conclusion
that the reason behind the sympathy of the pendulum clocks was the imperceptible
movements of the wooden beam, to which the pendula were connected. These im-
perceptible movements are rather negligible if the mass of the coupling bar is much
larger than the mass of the oscillators, i.e. µ→ 0, and as a consequence the pen-
dula cannot “communicate” with each other and synchronization is not possible.
This is also clear from (4.3), because if µ −→ 0, then the oscillators, described by
(4.2) run uncoupled.
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Finally, it should be noticed that the approach used for analyzing the anti-phase
motion does not lead to insight in the stability of the in-phase synchronized be-
haviour because the corresponding (linearized) error system is independent of m3.

4.2.2 Experimental analysis

In this Subsection, experimental results are presented in order to show different
synchronizing limit behaviours in the system described by equations (4.2-4.3). For
the experiments, the experimental setup of Figure 2.3 is used and its dynamic
behaviour is modified such that in closed-loop the setup mimics the dynamics of
system (4.2)-(4.3). The parameter values are assumed to be as given in Table 4.1
and the inputs of the setup, see (2.1), are defined as follows

Ui = −λ (Hi −H∗) ẋi = −λ
(

1

2
mẋ2

i +
1

2
κx2

i −
1

2
κx2

ref

)
, i = 1, 2, (4.8)

with λ = 13.244 · 103 [s/kgm2], m = 0.210 [kg], κ = 37.108 [N/m], and xref = 6.5

[mm].

In the experiments, only m3, the mass of the coupling bar, is varied. Two exper-
iments are presented: one corresponding to a light coupling bar, where in-phase
sync is observed, and a second experiment corresponding to a heavier bar, where
anti-phase synchronization occurs.

In the first experiment, no extra mass is added to the coupling bar, hencem3 = 4.1

[kg]. The oscillators are released from the initial conditions x1(0) = 2.7 [mm],
x2(0) = −2.9 [mm], ẋ1(0) = ẋ2(0) = x3(0) = ẋ3(0) = 0. Although the oscillators
are released close to anti-phase synchronization, as shown in Figure 4.2a) after a
transient behaviour the system practically synchronizes in-phase, as depicted in
Figures 4.2b) and 4.2d).

Initially, the displacement of the bar, i.e. x3, is very small due to the anti-phase
start-up. However, when the oscillators tends to the in-phase synchronized motion,
the oscillations in the coupling bar increase and once the oscillators are synchro-
nized in-phase, the bar keeps oscillating with a fixed frequency as depicted in
Figure 4.2c).

In a second experiment, the mass of the coupling bar is increased by adding two
steel plates of 2.359 [kg] each. This yields m3 = 8.818 [kg]. The oscillators
are released from initial conditions close to in-phase, x1(0) = 2.7 [mm], ẋ1(0) =

0, x2(0) = 2.9 [mm], ẋ2(0) = 0, and x3(0) = ẋ3(0) = 0. In this case, the
system practically synchronizes in anti-phase as can be seen in Figures 4.3b) and
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Figure 4.2 Experimental results. Practical in-phase synchronization occurs for a
light coupling bar (m3 = 4.1 [kg]), i.e. for a relatively large coupling
strength µ. In figures a) and b) black line: x1, grey line: x2. Figure
d) does not contain transient behaviour.
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consequence, the oscillators practically synchronize in anti-phase (in
figures a) and b) black line: x1, grey line: x2). Figure d) does not
contain transient behaviour.
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4.3d). Ideally, the displacement of the coupling bar denoted as x3 should go to
zero. However, due to the fact that the amplitudes of the oscillators differ by a
factor approximately equal to 1.2, the coupling bar does not come to a complete
standstill as depicted in Figure 4.3c). Nevertheless, the phase difference between
the oscillators is approximately π [rad].

Note that for the parameter values considered in experiment one, the eigenvalues
of matrix A in (4.6) have positive real parts, whereas for the parameter values
used in experiment two, all eigenvalues of A have negative real parts, i.e. the
anti-phase error system (4.6) is asymptotically stable.

4.3 Oscillators self-driven by a van der Pol term: revisited

Consider again the coupled system (3.44)-(3.45) given in Section 3.2

ẍi = −ω2 (xi − x3)− 2ζω(ẋi − ẋ3)− ν(ax2
i − 1)ẋi i = 1, 2, (4.9)

ẍ3 = −µ
2∑
i=1

ẍi − ω2
3x3 − 2ζ3ω3ẋ3. (4.10)

The small parameter limitations regarding damping and nonlinearities, considered
in Chapter 3, are again discarded.

By again assuming small oscillations, it is possible to analytically analyze the
(local) stability of the anti-phase synchronized motion by writing the anti-phase
error dynamics similar to (4.6) where λH∗ should be replaced by ν. Consequently,
Proposition 4.1 applies to the linearized system associated to (4.9)-(4.10) with
(4.7) replaced by

p(χ) = χ4 + (2ζω − ν + 2ζ3ω3 + 4ζω
m

m3
)χ3

+(4ζωζ3ω3 − 2νζ3ω3 + ω2
3 + ω2 + 2

m

m3
ω2)χ2

+(2ζωω2
3 − νω2

3 + 2ω2ζ3w3)χ+ ω2ω2
3 . (4.11)

At this point, it is also worth mentioning that for certain set of parameters and
moderate coupling strength, the limit synchronizing behaviour is also influenced
by the initial conditions as depicted in Figure 4.4, which has been obtained by
numerical integration of (4.9)-(4.10) with parameter values: ω = 11.1217 [rad/s],
ω3 = 9.7369 [rad/s], ζ = 0.3203 [-], ζ3 = 0.0409 [-], ν = 20 [1/s], a = 1×105 [1/m2],
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Figure 4.4 Projection of the limit behaviour onto the plane with initial condi-
tions (x01, x02) for a set of fixed parameters. Black points represent
initial conditions converging to anti-phase motion, while grey points
represent initial conditions converging to in-phase motion.

and µ = 0.0731 [-]. Only a subset of the possible initial conditions has been varied,
namely the ones corresponding to the initial positions of the oscillators. All other
initial conditions are zero. In Figure 4.4, black points represent initial conditions
that converge to anti-phase motion, i.e. e = x1 + x2 → 0, whereas grey points
represent initial conditions that converge to in-phase motion, i.e. e = x1−x2 → 0.
In other words, there exist values of the coupling strength, for which both in-phase
and anti-phase synchronization exist (see Corollary 3.1). In [26], a similar ‘arrow’
pattern as shown in Figure 4.4 has been observed for a system consisting of two
pendula.

4.3.1 Experimental results

The experimental setup depicted in Figure 2.3 is adjusted to mimic system (4.9)-
(4.10) by defining the actuator forces of system (2.1) as follows

Ui = −ν(ax2
i − 1)ẋi i = 1, 2. U3 = 0. (4.12)

The parameter values for the oscillators (4.9) are ω = 16.57 [rad/s] and ζ = 0.4775

[-], and the parameter values for the coupling bar (4.10) are given in Table 1 for
m3 = 4.1 [kg]. The parameter values of the input (4.12) are ν = 25 [1/s], a = 1×105

[1/m2].

In a first experiment, the oscillators are released from the initial conditions x1(0) =
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3 [mm], x2(0) = 1 [mm]. The remaining initial conditions are zero. The coupling
strength is µ=0.0329. After initial transient behaviour the system converges
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Figure 4.5 Experimental results: For a small coupling strength (µ = 0.0329), the
van der Pol oscillators practically synchronize in anti-phase. In figures
a) and b), black line: x1, grey line: x2. In Figure d) the transient
behaviour has been omitted.
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Figure 4.6 Numerical results for system (4.9)-(4.10) with parameter values as
used in experiment one. Compare this figure with Figure 4.5.

to anti-phase motion as becomes clear from Figure 4.5b) and as a consequence
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Figure 4.7 When the coupling strength is increased, the van der Pol oscillators
practically synchronize in-phase. In figures a) and b), black line: x1,
grey line: x2. Figure d) does not contain transient behaviour.

the oscillations in the coupling bar decay as shown in Figure 4.5c). The anti-
phase synchronization of the coupled van der Pol oscillators is illustrated further
by projecting the synchronized displacements corresponding to the oscillators in
the plane (x1, x2) as depicted in Figure 4.5d). Furthermore, these results are in
good agreement with the numerical results depicted in Figure 4.6, which has been
obtained by numerical integration of (4.9)-(4.10) with parameter values as used in
the experiment above discussed. In the experiment the oscillators are practically
synchronized in anti-phase with oscillation frequency f = 2.6226 [Hz] , whereas
the result obtained by computer simulations is f = 2.5986 [Hz]. Obviously, there
are (unavoidable) quantitative differences between the experimental results and
the numerical results. However, qualitatively, both results are comparable.

In a second experiment, the oscillators are released from initial conditions close to
anti-phase motion, i.e. x1(0) = −3 [mm] and x2(0) = 1 [mm], as depicted in Figure
4.7a). The remaining initial conditions are again zero. The coupling strength
is increased to µ = 0.1176 by increasing m to 0.4821 [kg]1, and ν = 20 [1/s].
As a result, the van der Pol oscillators converge to in-phase motion, as depicted
in Figures 4.7b) and 4.7d). The coupling bar, which is initially at rest, starts
moving until it reaches an oscillation with constant amplitude and frequency as
depicted in Figure 4.7c). Again, these experimental results are in good agreement
with numerical results, which are depicted in Figure 4.8. In the experiments, the

1Note that for the given value of m the eigenfrequency in the oscillators becomes ω = 8.77
[rad/s] and the dimensionless damping coefficient is ζ = 0.2527 [-].
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Figure 4.8 Numerical results for system (4.9)-(4.10) with parameter values as
used in experiment two. Compare this figure with Figure 4.7.

oscillators synchronize in-phase with frequency f = 1.12 [Hz] which is very close
to the frequency observed in the numerical analysis, which is f = 1.037 [Hz].

4.4 Oscillators self-driven by a discontinuous force

In this section, the following state dependent discontinuous control inputs for the
coupled oscillators (4.1) are considered

Ui = −αẋisign(|xi| − xref ), i = 1, 2, (4.13)
U3 = 0, (4.14)

where α ∈ R+ influences the amplitude of the force Ui, i = 1, 2, the constant
xref ∈ R+ represents a threshold displacement value, and

sign(x) =


1 x > 0,

0 x = 0,

−1 x < 0.

(4.15)

The input U3 is taken to be zero because it is desired that the bar oscillates freely.
The controllers (4.13)-(4.14) convert system (4.1) into a self-driven discontinuous
piecewise-linear system.



64 4 Synchronization of nonlinear oscillators

Obviously, in this case a linearization approach cannot be used due to the discon-
tinuous function (4.13). In order to derive an analytic result, a hybrid approach
seems in order. For the present case, only experimental results are provided.

4.4.1 Experimental results

In this subsection, experimental results are presented in order to show different syn-
chronizing limit behaviours in the system described by equations (4.1),(4.13),(4.14).
This requires to adjust the dynamics (2.1) of the experimental setup in order to
mimic the dynamics (4.1),(4.13),(4.14). All experiments are performed by using
the parameter values given in Table 4.1 and α = 10.187 [1/s]. Only m3, the mass
of the coupling bar, is varied. Three experiments are presented: one corresponding
to a light coupling bar (m3 = 4.1 [kg]), where in-phase synchronization is observed,
a second one corresponding to a heavier bar (m3 = 8.8 [kg]) where anti-phase syn-
chronization does occur, and a third experiment where a transition from in-phase
to anti-phase (due to a sudden change in the mass of the coupling bar from 4.1
[kg] to 8.8 [kg]) is observed.

0 1 2 3 4 5
−3

0

3
x 10

−3

time [s]

x 1, x
2 [m

]

80 81 82 83 84 85
−3

0

3
x 10

−3

time [s]

x 1,x
2 [m

m
]

−0.003 0 0.003
−0.003

0

0.003

x
1
 [m]

x 2 [m
]

5 25 45 65 85
−0.003

0

0.003

time [s]

x 3 [m
]

c) d)

a) b)

Figure 4.9 Experimental results: the oscillators synchronize in-phase. Solid line:
x1, dashed line: x2.

In the first experiment, no extra mass is added to the coupling bar, hencem3 = 4.1
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[kg]. The oscillators are released from the initial conditions x1(0) = 1.97 [mm],
ẋ1(0) = 0, x2(0) = −2.13 [mm], ẋ2(0) = 0, and x3(0) = ẋ3(0) = 0, and the
threshold displacement value of the control input (4.13) is taken to be xref = 2.65

[mm]. In Figures 4.9a) and 4.9b), this value and its negative counterpart are
indicated by two horizontal black dotted lines.

Although the oscillators are released close to anti-phase synchronization, see Fig-
ure 4.9a), in steady-state the oscillators synchronize in-phase as depicted in Figure
4.9b) with frequency f = 1.3007 [Hz]. Additionally, Figure 4.9c) shows the projec-
tion of the displacements corresponding to the oscillators onto the plane (x1,x2).
The transient behaviour has been omitted.

The behaviour of the coupling bar is depicted in Figure 4.9d). Initially, the dis-
placement of the bar is very small due to the anti-phase start-up. As long as
the phase difference between the oscillators tends to zero, the oscillation corres-
ponding to the displacement of the bar increases until the oscillators synchronize
in-phase. Then, the bar keeps oscillating with fixed frequency (f = 1.3007 [Hz])
and amplitude.
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Figure 4.10 In this experiment, the oscillators synchronize in anti-phase. Solid
line: x1, dash-dot line: x2.

In a second experiment, the mass of the coupling bar is increased by adding two
steel plates of 2.359 [kg] each. This yields m3 = 8.818 [kg]. As depicted in Figure



66 4 Synchronization of nonlinear oscillators

4.10a), the oscillators are released from initial conditions close to in-phase, x1(0) =

1.97 [mm], ẋ1(0) = 0, x2(0) = 2.13 [mm], ẋ2(0) = 0, and x3(0) = ẋ3(0) = 0. After
the transient behaviour, the oscillators synchronize in anti-phase as can be seen in
Figure 4.10b) with frequency f = 2.1208 [Hz]. Figure 4.10c) shows the projection
of the limit displacements corresponding to the oscillators onto the plane (x1,x2).
Ideally, the displacement of the coupling bar should go to zero. However, due
to the fact that the amplitudes of the oscillators differ slightly, because in the
experimental setup the oscillators are not completely identical, the coupling bar
does not come to a complete standstill as can be seen in Figure 4.10d). As a matter
of fact, the anti-phase synchronized motion observed in this experiment can also
be seen if the oscillators are released from the same initial conditions as used in
experiment one.

Finally, an experiment, in which there is a transition from in-phase to anti-phase
synchronization, due to a sudden change in the mass of the coupling bar, is pre-
sented. Actually, this experiment is a combination of experiment one with exper-
iment two. Initially, experiment one is repeated, i.e. the oscillators are released
from the initial conditions x1(0) = 1.97 [mm], ẋ1(0) = 0, x2(0) = −2.13 [mm],
ẋ2(0) = 0, and x3(0) = ẋ3(0) = 0, the threshold displacement value of the control
input (4.13) is again taken to be xref = 2.65 [mm], and the mass of the coupling
bar is m3=4.1 [kg]. The result is in-phase synchronization as depicted in Figure
4.11a). Then, at t ≈ 91 [s], two additional steel plates (the same ones as used in
experiment two) are suddenly added to the coupling bar in order to increase its
mass from 4.1 [kg] to 8.818 [kg]. As a result, the in-phase synchrony is lost as
depicted in Figure 4.11b). After a short transient, anti-phase synchronization is
observed as shown in Figure 4.11c). The transition from in-phase to anti-phase
motion is evident.

In addition, Figure 4.12 shows the time series corresponding to the displacement of
the coupling bar. When the motion of the oscillators is in-phase, the bar oscillates
with fixed amplitude and frequency. After adding the extra mass, the oscillations
in the bar (almost) damp out.

This section is concluded with a short discussion. The experimental results show
that when the system synchronizes in anti-phase, the oscillation frequency is
approximately the same as the natural frequency ω

2π = 2.1156 [Hz] of the (un-
damped/undriven) oscillators, whereas for the in-phase synchronization case, the
oscillation frequency is approximately ω3

2π = 1.5467 [Hz], i.e. the natural frequency
of the coupling bar.

As stated above, and as shown in Figure 4.10b), when the oscillators synchronize
in anti-phase, their amplitudes are (slightly) different. The most probable cause of
this is again the fact that in the experiment the oscillators and their actuators are
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not completely identical. This means that for the same input force their amplitude
responses are expected to be (slightly) different. However, in the case where the
oscillators synchronize in-phase, their amplitudes are almost equal (see Figure 4.9).
The cause seems to be the “additional” harmonic excitation provided by x3.

4.5 Discussion

This chapter has illustrated, mainly by means of experiments, that a pair of non-
linear oscillators that interact via Huygens’ coupling may show in-phase and anti-
phase synchronized behaviour. The experimental analyses have revealed that when
the coupling strength is large (small mass of the coupling bar) the oscillators syn-
chronize in-phase. On the other hand, when the coupling strength is small (rela-
tively large mass of the coupling bar) the oscillators show anti-phase motion. For
this, an intuitive and quite physical interpretation can be given, as presented in
Remark 4.1. Some analytic conditions related to the stability of the anti-phase
synchronous motion have been derived by assuming small amplitudes in the dis-
placements of the oscillators. Notwithstanding these assumptions, the obtained
analytic conditions are in good agreement with computer simulations and with
the experiments.

Regarding the stability of the in-phase synchronous motion the following should
be noted. The natural choice is to define the in-phase synchronization error e =

x1−x2, obtain the error dynamics and analyze its stability. However, this will not
lead to any insight into the stability of the in-phase synchronized motion in terms
of the coupling strength µ. The reason is because both oscillators receive the same
“input” (the influence of the bar on them is the same) and, therefore, the obtained
error dynamics ë = (ẍ1− ẍ2) is independent of m3. Therefore, only focusing in the
stability of ë and ignoring the dynamics of the dynamic coupling is a conceptual
flaw. Further research is needed in order to derive a global stability analysis of
the in-phase and anti-phase synchronized motion of the oscillators (without the
assumption of small amplitude in the oscillations) and some recommendations on
this issue are provided in Chapter 8.

The results presented in this chapter are largely in agreement with Huygens ob-
servations. In Huygens’ original experiment, the coupling strength µ (the ratio
between the clocks’ masses and the mass of the wooden bar) was small due to the
fact that Huygens had placed some extra mass in the cases of the clocks in order
to keep them upright in stormy seas. In such situations (of small µ), Huygens
only observed anti-phase synchronization [30]. The experiments presented here
reveal the same: when the mass of the coupling bar is increased, the oscillators



4.6 The influence of the coupling strength 69

synchronize in anti-phase. The obtained results regarding in-phase synchroniza-
tion suggest that if Huygens’ would have removed the extra load at the bottom2

then he would also had reported the existence of the in-phase synchronous motion.

In conclusion, this chapter has exploited and extended the serendipitous observa-
tions made by Huygens, who correctly explained that the sympathy of his clocks
was due to the small vibrations of the wooden bar. In fact, it has been shown that
Huygens’ coupling can be used to synchronize several dynamical oscillators and
likewise it has been demonstrated (via experiments) that the properties of this
coupling determine the limit synchronizing behaviour in the oscillators, namely
in-phase or anti-phase synchronization.

4.6 The influence of the coupling strength

In this final section, a brief discussion related to the influence of the coupling
strength on the onset of synchronization in second order, self-sustained, nonlinear
oscillators is presented.

On the one hand, the results presented in Chapter 3 have shown that in order to
observe in-phase synchronization, the coupling strength should be decreased (by
increasing the mass of the coupling bar), and anti-phase synchronization occurs
for the cases where the coupling strength is increased (by reducing the mass of the
coupling bar). On the other hand, the results presented in this chapter, reveal the
contrary: in-phase synchronization is only observed when the coupling strength
is increased and correspondingly, anti-phase synchronization has been observed
when the coupling strength is decreased. Hence, a natural question is what is the
reason behind this seemingly “opposite” effect of the coupling strength?

Note that there is a subtle but key difference between the systems analyzed in
Chapter 3 and the ones analyzed here: the amount of damping and energy resup-
plied to the oscillators. In Chapter 3, the damping in the oscillators is assumed
to be small (of the order µ) and consequently, the system only requires a small
amount of energy to compensate the effect of damping. On the other hand, the
results presented in this chapter correspond to systems where the damping in the
oscillators is larger (at least one order greater than µ) and obviously, in this case
the amount of energy that needs to be resupplied to the system is larger.

2In order to determine the origin of the ‘sympathy’ in his clocks, Huygens’ did try several
things like placing them far away from each other, placing them transversally to each other, etc
[63]. However, as far as the author knows, experiments where the extra masses in the clocks are
removed are not reported.
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Moreover, from the experimental results (presented in Chapter 3 and here) it can
be concluded that the energy required to achieve in-phase synchronization is larger
than the energy required for anti-phase synchronization. This follows from the
fact that during an in-phase motion of the oscillators, the coupling bar converges
to a small oscillatory movement, whereas in anti-phase motion the vibrations in
the coupling bar are rather negligible. In consequence, for the case discussed in
Chapter 3 (small resupply of energy), by increasing the mass of the coupling bar,
it is possible to keep more energy in the system (since the effective damping in
the suspended bar is decreased) and in consequence the in-phase motion is likely
to occur.

In conclusion, the limit synchronizing behaviour of the coupled oscillators not only
depends on the magnitude of the coupling strength but also the amount of damping
in the system has an important influence on the type of synchronized behaviour.

If the reader reflects on the broad picture resulting from Chapter 3 and this chap-
ter, then the following must be clear: given a pair of arbitrary self-driven oscilla-
tors (with large or small damping/nonlinearities) it is possible to observe in-phase
and anti-phase synchronization when they interact via Huygens’ coupling. In other
words, the synchronization phenomenon observed by Huygens more than 300 years
ago in a pair of pendulum clocks can also be observed if the pendulums are replaced
by other second order, self-driven, nonlinear oscillators.



Chapter 5
Controlled synchronization of
chaotic oscillators with Huygens’
coupling

Does the flap of a butterfly’s wings in Brazil set off a
tornado in Texas?

Edward Lorenz (1917–2008)

Abstract In this chapter, synchronization of chaotic oscillators interacting via
Huygens’ coupling is studied from a control point of view. The synchroniza-
tion phenomenon does not occur naturally but it is induced by means of a
suitable controller. Two well-known nonlinear oscillators are used in the anal-
ysis, namely Duffing and van der Pol oscillators. The controlled synchronized
motion of the oscillators is validated by means of experiments.

5.1 Introduction

There are oscillating systems where synchronization occurs naturally, like for ex-
ample biological systems, where it has been found that two or more cells, indepen-
dently of their nature, or functioning, can show sympathetic behaviour, i.e. they
synchronize by using signaling messengers (as for example light) as the coupling
signal [36]. This is also the case of nonlinear self-driven oscillators interacting via
Huygens’ coupling, as already discussed in Chapters 3 and 4.

In other cases, the synchronization phenomenon is artificially induced by for in-
stance a control law. This kind of synchronization is called, for obvious reasons,

71
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controlled synchronization [49, 51]. As an example, the reader may consider the
synchronization of wireless network terminals, which are of vital importance in
communication systems [87].

Synchronized behavior can also be observed in chaotic systems. Due to their
sensitivity to initial conditions, these systems are not expected to synchronize in
a natural way. However, it is possible to find suitable couplings/controllers such
that two (or more) chaotic systems may synchronize, see e.g. [2, 27, 56], and more
recently [10].

In this chapter, a pair of identical chaotic oscillators linked via Huygens’ coupling
is considered. Since self-synchronization does not occur, a suitable controller is
designed in order to induce controlled synchronized motion in the chaotic oscil-
lators. Two well-known oscillators are used in the analysis, namely the (forced)
Duffing and van der Pol oscillators.

The outline of this chapter is as follows. In Section 5.2, the synchronization of two
Duffing oscillators with Huygens’ coupling is analyzed. It is shown that by driving
the coupling bar with a periodic signal, it is possible to induce chaotic behaviour
in the oscillators. Then, a nonlinear controller is designed such that (in-phase and
anti-phase) synchronization is achieved in the oscillators when they behave in a
chaotic fashion. This is experimentally validated. Next, in Section 5.3, a similar
analysis is conducted for a pair of van der Pol oscillators. Finally, a discussion of
the obtained results is presented in Section 5.4.

5.2 Synchronization of two chaotic Duffing oscillators

The first objective of this section is to show that, by driving the coupling bar
with an external periodic excitation it is possible to trigger the onset of chaos in
two second order nonlinear oscillators coupled through a suspended rigid bar (i.e.
with Huygens’ coupling). When the oscillators are behaving chaotically, the phase
synchronization phenomenon will not occur naturally. Consequently, the second
objective is to show that by using the well known master/slave configuration, cf.
[46], it is possible to achieve (controlled) synchronization, i.e. the slave system
will be forced to follow the chaotic dynamics of the master oscillator. Figure 5.1
visualizes this. Notice that, a mutual synchronization scheme can be considered
as an alternative [65], but this is not worked out here.
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Figure 5.1 Two oscillators with Huygens’ coupling and master/slave configura-
tion. The slave control input is indicated by us.
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Figure 5.2 Schematic representation of two oscillators with Huygens’ coupling.

Consider the system depicted in Figure 5.2 and assume that the nonlinear spring
force is given by:

Fsi = k (xi − xh) + k3 (xi − xh)
3
, i = m, s, (5.1)

where k3 ∈ R+ and k ∈ R− (negative linear stiffness). Subscripts i = m, s refer to
the master and slave oscillator, respectively. Furthermore, assume linear damping
force

Fdi = β(ẋi − ẋh), i = m, s, (5.2)

where β ∈ R+. Then, the equations of motion of the system become

ẍm = − β
m

(ẋm − ẋh)− k

m
(xm − xh)− k3

m
(xm − xh)3

ẍs = − β
m

(ẋs − ẋh)− k

m
(xs − xh)− k3

m
(xs − xh)3 +

1

m
us (5.3)

ẍh = − m

mh
(ẍm + ẍs)−

kh
mh

xh −
βh
mh

ẋh +
uh
mh

,

where us is the slave control input to be designed. Note that this set of equations
describes a pair of identical Duffing oscillators, with a double potential well, linked
via Huygens’ coupling.

The rigid coupling bar is externally excited with the periodic force

uh = q cosωt, (5.4)
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where q is the amplitude of the force and ω = 2πf is the angular frequency of the
external excitation.
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Figure 5.3 Left: bifurcation diagram for xm as a function of mh. Center: enlarge-
ment of plot a) in the interval mh ∈ [4.1, 30] [kg]. Right: chaotic time
histories of the oscillators.

The following parameter values are considered (compare with [11]): β = 0.0840

[Ns/m], k = −0.2310 [N/m], k3 = 0.210 [N/m3], ω = 1.2 [rad/s], q = 89 [N],
kh = 388.71 [N/m], βh = 3.2656 [Ns/m], and m = 0.210 [kg]. The slave control
input is not active yet, i.e. us = 0 [N].

Different to other works, where chaotic behaviour of the Duffing equation is
observed by varying the amplitude or frequency of the external periodic exci-
tation, see e.g. [11, 28, 38], here, the mass of the coupling bar mh is con-
sidered as a bifurcation parameter taking values in the range mh ∈ [4.1, 45]

[kg]. The coupling strength µ = m
mh

is therefore considered in the range µ ∈[
4.667× 10−3, 5.12× 10−2

]
[-]. The bifurcation diagram is depicted in Figures

5.3a) and 5.3b). A cascade of period-doubling bifurcations ultimately resulting in
a chaotic response can be observed. Starting from xm(0) = 0.5, xs(0) = −0.3, and
other initial conditions equal zero, Figure 5.3c) shows the chaotic time histories of
both oscillators for mh = 42 [kg].

5.2.1 Case A: in-phase synchronization

When the synchronized motion of the oscillators is in-phase, the following equa-
tions should be satisfied:

e = xs − xm = 0, ė = ẋs − ẋm = 0. (5.5)
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Writing down the error dynamics for system (5.3) yields:

ë =
1

m

[
−βė− ke− k3e

3 − f(e+ xm, xm, xh)e+ us
]
. (5.6)

where f(e+xm, xm, xh) = 3k3 (xm − xh) (e+ xm − xh). Similar to [50], the control
input us is defined:

us = −kpe− kv ė+ η, (5.7)

where kp, kv are the controller gains, and η a is a compensation term to be designed.
Substitution of this control in (5.6) yields the following closed-loop error dynamics

ë =
1

m

[
−(β + kv)ė− (k + kp)e− k3e

3 − f(e+ xm, xm, xh)e+ η
]
. (5.8)

Proposition 5.1. If the gains kp, kv satisfy

kp > −k, kv > −β, (5.9)

and the compensation term η is designed such that

η = 3k3e (xm − xh) (e+ xm − xh) , (5.10)

then, system (5.8) is asymptotically stable, i.e.

lim
t−→∞

e = 0, lim
t−→∞

ė = 0. (5.11)

Proof. The closed-loop (5.6)-(5.7), with η as given in (5.10) is described by

ë =
1

m

[
−(β + kv)ė− (k + kp)e− k3e

3
]
. (5.12)

Now, consider the candidate Lyapunov function

V =
1

2
(ė+ αe)

2
+

1

2

[(
k + kp
m

)
+ α

(
β + kv
m

)
− α2

]
e2 +

k3

4m
e4, (5.13)

where α ∈ R+ is a constant. Function (5.13) is positive definite if α satisfies

α <
(β + kv)

m
. (5.14)

The time derivative of (5.13) along the solutions of system (5.12) is given by

V̇ = −
(
β + kv
m

− α
)
ė2 − α (k + kp)

m
e2 − αk3

m
e4. (5.15)

Next, assume that α satisfies (5.14). If the gains of the controller (5.7) are chosen
according to (5.9) then the closed-loop system (5.12) is asymptotically stable and
therefore

lim
t−→∞

(xs − xm) = 0, lim
t−→∞

(ẋs − ẋm) = 0. (5.16)
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5.2.2 Case B: anti-phase synchronization

Now, a control input is designed (in analogy with the in-phase synchronization
case) to realize anti-phase synchronization of the slave oscillator with respect to
the chaotic motion of the master oscillator.

The anti-phase synchronization errors are defined by

e1 = xs + xm = 0, e2 = ė1 = ẋs + ẋm = 0. (5.17)

Then, the error dynamics of the coupled Duffing oscillators (5.3) are

ė1 = e2

ė2 =
1

m

[
−βe2 − ke1 − k3e

3
1 + γ(e1 − xm, xm, xh) + us

]
, (5.18)

where

γ(·) = −k3
[
3e1
(
(xm − xh)e1 + (xm + xh)2 − 2x2m

)
− 6xhx

2
m − 2x3h

]
+ 2kxh + 2βẋh.

(5.19)
As before, the control input us is defined as:

us = −γ(xm, xs, e1)− kpe1 − kve2. (5.20)

Note that the closed-loop dynamics (5.18)-(5.20) coincides with the closed-loop
dynamics (5.12) with e = e1 = (xs + xm) and ė = e2 = (ẋs + ẋm). Now, by
following the same reasoning as used in Proposition 5.1, it is possible to show that
system (5.18)-(5.20) with kp and kv satisfying (5.9) is asymptotically stable, i.e.
the oscillators will asymptotically synchronize in anti-phase.

5.2.3 Experimental validation

The synchronized motion of the chaotic Duffing oscillators with Huygens’ coupling
is experimentally verified in this section. As a testbed, the electro-mechanical
setup schematically depicted in Figure 2.3 is used. By means of feedback control
(see Section 2.2) , the inherent mechanical properties are adjusted such that the
dynamical behaviour of the setup is described by the set of equations1 (5.3). In all
experiments, the following parameter values are considered: β = 0.0840 [Ns/m],
k = −0.2310 [N/m], k3 = 0.210 [N/m3], ω = 1.2 [rad/s], q = 89 [N], kh = 388.71

[N/m], βh = 3.2656 [Ns/m], m = 0.210 [kg], and mh = 42 [kg].

1For the experiments, equations (5.3) have been escaled. The reason is due to the fact that, in
the experimental setup, the maximum displacement of each oscillator is approximately 5 [mm].
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In the first experiment, the in-phase synchronized motion of oscillators (5.3) is
investigated. The nonlinear feedback controller (5.7) is implemented for the slave
oscillator. For this experiment, the oscillators are released from the initial condi-
tions xm(0) = 5 [mm] , xs(0) = −3 [mm], and xh(0) = ẋh(0) = ẋm(0) = ẋs(0) = 0.
The values of the gains in the controller are kp = 1.3 [N/m] and kv = 0.5 [Ns/m].
With this choice, (5.9) is satisfied.
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Figure 5.4 Experimental result: oscillators synchronize in-phase.

The corresponding experimental results are depicted in Figure 5.4. The transient
responses for the displacements, the synchronization error, and the control input
are shown in Figures 5.4a), 5.4c), and 5.4e), respectively.

For t ∈ [0, 20), the controller is not activated and the behaviour in the oscillators is
uncorrelated as depicted in Figure 5.4a). At t = 20 [s], the controller is activated
and as a consequence, the slave oscillator synchronizes in-phase with the chaotic
trajectory of the master. This can be seen in Figure 5.4b), where the complete
time series corresponding to the displacements of the oscillators is depicted and
synchronized chaotic behaviour is achieved. The synchronization error e = xs −
xm obviously is large when the control action is not applied yet, but once the
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controller is activated, this error becomes practically zero as illustrated in Figure
5.4c) and Figure 5.4d), respectively. In theory, this error should become exactly
zero. However, in practice the oscillators are not exactly equal and consequently in
the experimental result there is a small error. Figure 5.4e) shows that the control
effort stays very small once in-phase synchronization is realized. Figure 5.4f)
presents a projection of the displacements corresponding to the oscillators onto
the (xm, xs) plane. The light grey part of the curve corresponds to the transient
behaviour, whereas the dark grey part of the curve indicates the synchronized limit
behaviour.
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Figure 5.5 Anti-phase synchronization is achieved in two chaotic Duffing oscilla-
tors with Huygens’ coupling.

In a second experiment, anti-phase synchronization is investigated. In this case,
the control input (5.20) is used with kp = 1.1 [N/m] and kv = 0.5 [Ns/m]. In order
to better illustrate the effect of the control action, the controller is again activated
at t = 20 [s]. After this time, the displacement and velocity of the slave oscilla-
tor synchronize in anti-phase with the trajectories of the master, so the control
objective is achieved. Figure 5.5 summarizes the main results of this experiment.
Figures 5.5a) and 5.5c) correspond to the initial transient responses, whereas plots
5.5b), 5.5d), and 5.5e) show the limit behaviour for the displacements xm and xs
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of the oscillators, the synchronization error e = xm + xs, and the control input
us, respectively. The anti-phase synchronization of the coupled Duffing oscillators
becomes immediately clear by drawing the projection of the displacements cor-
responding to the oscillators onto the (xm, xs) plane as depicted in Figure 5.5f).
As before, the light grey part of the curve corresponds to the transient behaviour,
whereas the dark grey part of the curve indicates the synchronized limit behaviour.

Note that in contrast to Figure 5.4e), the control force in Figure 5.5e) does not
converge to zero.

5.3 Synchronization of two chaotic van der Pol oscillators

Consider again the system depicted in Figure 5.2 and assume that the nonlinear
damping force corresponding to both oscillators is given by

Fdi = −b
(
1− ax2

i

)
(ẋi − ẋh), i = m, s, (5.21)

where a, b ∈ R+. Furthermore, assume that the linear spring force is given by:

Fsi = k(xi − xh), i = m, s, (5.22)

where k ∈ R+. Then, the equations of motion of the system become

ẍm =
b

m

(
1− ax2

m

)
(ẋm − ẋh)− k

m
(xm − xh)

ẍs =
b

m

(
1− ax2

s

)
(ẋs − ẋh)− k

m
(xs − xh) +

1

m
us (5.23)

ẍh = − m

mh
(ẍm + ẍs)−

kh
mh

xh −
bh
mh

ẋh + +
1

mh
uh.

This set of equations describes a pair of van der Pol oscillators with Huygens’
coupling. The case uh = 0 is considered.

It has been found that (5.23) shows chaotic behaviour for b = 18.3135 [Ns/m],
bh = 3.2656 [Ns/m], k = 6.315 [N/m], kh = 388.71 [N/m], a = 55 · 105 [1/m2],
m = 4.210 [kg], and mh = 5 [kg]. Similar to the case of Duffing oscillators
discussed before, the ratio µ = m

mh
is an important parameter in the onset of

chaotic behaviour. Note, however, that now the coupling bar is not driven.

Also here, in the chaotic regime, the coupled van der Pol oscillators may show
synchronized behaviour provided that a control action is applied to one of them.
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5.3.1 In-phase synchronization

By defining in-phase synchronization errors (5.5), the corresponding error dynamics
for system (5.23) can be written as

ë =
1

m

[
bė− ba

(
x2
mė+ (2xm + e)(ẋm + ė− ẋh)e

)
− ke+ us

]
. (5.24)

In order to achieve in-phase synchronized motion in the chaotic oscillators, the
following controller may be considered

us = −kpe− kv ė+ η, (5.25)

where kp, kv are the controller gains and η can be chosen as

η = ba
(
x2
mė+ (2xm + e)(ẋm + ė− ẋh)e

)
. (5.26)

Following the approach used in Proposition 5.1, it can be proven that the controller
(5.25)-(5.26) yields global asymptotic stability for system (5.24), i.e. the coupled
oscillators asymptotically synchronize in-phase, provided that kv > b and kp > −k.

5.3.2 Anti-phase synchronization

If the two van der Pol oscillators with Huygens’ coupling show in-phase synchro-
nized chaotic behaviour, the coupling bar will vibrate. However, when anti-phase
synchronization is induced in the oscillators, the oscillations in the coupling bar
will die out, i.e. xh → 0 and the coupling bar converges to a standstill as in
the original Huygens system, see also the third equation in (5.23). Therefore, if
anti-phase synchronization is achieved, the originally chaotic motion will change
to periodic motion in both (now uncoupled) van der Pol oscillators. An uncoupled,
unforced van der Pol oscillator can not show chaotic behaviour according to the
Poincaré-Bendixon theorem [28]. To avoid this scenario and maintain chaotic mo-
tion for anti-phase synchronization, the external periodic excitation (5.4) is applied
to the coupling bar.

The anti-phase synchronized motion in the chaotic oscillators is achieved by con-
sidering controller (5.25) with e = (xm + xs), ė = (ẋm + ẋs), and η(·) chosen
as

η(·) = ba
(
x2
mė+ (e− 2xm)(ė− ẋm − ẋh)e− 2x2

mẋh
)
− 2kxh + 2bẋh. (5.27)

As before, the control gains are chosen according to kv > b and kp > −k.
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5.3.3 Experimental results

The synchronized chaotic motion of two van der Pol oscillators is validated by
means of experiments. System (5.23) is implemented in the experimental setup
with the following parameter values: b = 18.3135 [Ns/m], bh = 3.2656 [Ns/m],
k = 6.315 [N/m], kh = 388.71 [N/m], a = 55 · 105 [1/m2], m = 4.210 [kg], and
mh = 5 [kg].

In a first experiment, the oscillators are synchronized in-phase by applying to
one of them the control input (5.25)-(5.26) with kp = 25 [N/m] and kv = b + 10

[Ns/m]. The controller is activated at t = 20 [s]. The oscillators are released from
the initial conditions xm(0) = 1 [mm] and xs(0) = −1.5 [mm]. The remaining
initial conditions are set to zero. The obtained experimental results are presented
in Figure 5.6. When the controller is off, the chaotic trajectories of the oscilla-
tors are not synchronized and consequently the error e = (xs − xm) is large, but
once the controller is activated, this error becomes practically zero as depicted in
Figures 5.6a) and 5.6c). Although theoretically this error should asymptotically
converge to zero, in practice the error signal keeps showing small vibrations caused
by measurement noise and (slight) differences in the oscillators. The control ef-
fort is depicted in Figure 5.6d) and becomes practically zero once the in-phase
synchronization is achieved.
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Figure 5.6 In-phase synchronization of two chaotic van der Pol oscillators with
Huygens’ coupling.

Next, it is desired to experimentally synchronize the coupled oscillators (5.23) in
anti-phase. Therefore, control law (5.25),(5.27) with e = (xm + xs), ė = (ẋm + ẋs)

is applied. Moreover, in this experiment, the coupling bar is not externally driven,
i.e. uh = 0.
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To better illustrate the influence of the control law, the controller is now switched
on at t = 115 [s]. As can be seen from Figure 5.7, when the control action is not
active, the system behaves chaotically and unsynchronized. When the controller
is activated, the oscillators asymptotically synchronize in anti-phase but in a pe-
riodic regime. As discussed above, the chaotic behaviour disappears because the
coupling bar comes to a standstill and as a consequence the unforced oscillators
run uncoupled. And It is well-known that an unforced van der Pol oscillator can
not show chaotic motion.
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Figure 5.7 Although in this experiment the oscillators synchronize in anti-phase,
the chaotic behaviour disappears.

To avoid the disappearance of the chaotic behaviour, the external periodic force
(5.4) is applied to the coupling bar, i.e. uh = q cosωt with q = 0.5 [N] and ω = 3.5

[rad/s]. The remaining structural and control parameter values are identical to
the first and second experiment. The non-zero initial conditions are xm(0) = 2.5

[mm] and xs(0) = 2 [mm]. The control action (5.25),(5.27) with e = (xm + xs),
ė = (ẋm + ẋs) is applied from t = 10 [s]. As observed in Figure 5.8, the chaotic
trajectories of the oscillators asymptotically synchronize in anti-phase. The control
input (not shown here) does not converge to zero.
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Figure 5.8 Chaotic anti-phase synchronization is experimentally achieved.
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5.4 Discussion

The contributions of this chapter can be summarized as follows:

• It has been shown that the onset of chaotic behaviour in a pair of nonlinear
oscillators coupled through a suspended rigid bar (i.e. with Huygens’ cou-
pling) can be triggered by driving the coupling bar with a periodic excitation.
The mass of the coupling bar, which determines the coupling strength, has
been considered as the bifurcation parameter leading to chaos.

• Huygens’ coupling can be used to synchronize not only pendulum clocks as in
the original experiment of Huygens, but also to synchronize other type of os-
cillators like van der Pol and piecewise linear oscillators as shown in Chapters
3 and 4. However, it is important to emphasize that if the oscillators behave
chaotically, then Huygens’ coupling will not lead to self-synchronization.

• The experimental results presented here validate that it is possible by adding
a control input to induce synchronized behaviour in a pair of chaotic oscil-
lators with Huygens’ coupling.

It should be noted that the nonlinear controllers used to synchronize the oscillators,
see e.g. (5.7), require inclusion of a compensation term η in order to deal with the
nonlinearities and/or to cancel the influence of the coupling bar, see e.g. (5.10).
Sometimes, however, it is desired to have a controller that on the one hand is as
simple as possible, but on the other hand should be robust enough to guarantee
that the stability is not compromised [6, 50]. In other words, it should be assured
that the error dynamics at least remains ultimately uniformly bounded. For these
reasons, the following simple feedback controller may be used

us = −kpe− kv ė. (5.28)

This control law has the advantage that it does not require knowledge of the pa-
rameters of the oscillator to be controlled. Computer simulations and experimental
results have revealed that in some cases, by using (5.28), the oscillators numeri-
cally (asymptotically) synchronize, whereas experimentally the so-called practical
synchronization will appear. The stability proof of this turns out to be involved
but it will be worthwhile to address this problem in the future also because expe-
rimental results and computers simulations have revealed that the control effort
needed is small. This has several (beneficial) implications. First, the probability
to have saturation effects in the actuators is considerably reduced. Secondly, small
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Figure 5.9 Experimental in-phase synchronization induced in system (5.3) by us-
ing controller (5.28).

control signals result in low energy consumption. For the sake of illustration, an
experimental result corresponding to system (5.3) with parameter values as given
in Subsection 5.2.3 and with controller (5.28), with kp = 1.2 and kk = 0.5 is
presented in Figure 5.9.



Chapter 6
Synchronization of oscillators with
time-delayed Huygens’ coupling

Time flees away without delay

Abstract In this chapter, the influence of time delay on the onset of synchroniza-
tion in pairs of nonlinear oscillators interacting via Huygens’ coupling is exam-
ined, numerically and experimentally, from a control point of view. Namely,
a suitable control input is applied to a pair of self-driven oscillators such that
the closed-loop system resembles a pair of oscillators with Huygens’ coupling,
where the interaction between the oscillators and the control input is subject
to a time delay. In particular, the occurrence of in-phase and anti-phase syn-
chronization in the coupled/controlled oscillators is studied as a function of
the coupling strength and the time delay. An eigenvalue-based numerical test
is used as a first step to investigate the stability of the anti-phase synchronized
motion and experimental validation is provided.

6.1 Introduction

As already mentioned in the introductory chapter, synchronization is a phe-
nomenon that can be observed in a wide class of (oscillating) systems. An interest-
ing situation occurs when the interaction between the systems is not instantaneous
but occurs after some (small) time delay. This is the case in for example biolog-
ical oscillators [36], neurosystems [73], and remote synchronization of mechanical
systems [3, 22].

85
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Several studies have analyzed the influence of time delay in the synchronization of
coupled systems, see e.g. [11], [53], and [77]. In particular, in [67, 68], it has been
found that the synchronized motion of two oscillators with coupling with time
delay may experience a phase-flip bifurcation, i.e. an abrupt change from in-phase
to anti-phase synchronization due to a variation in the time delay. This phase-
flip may find application in for instance coupled laser systems where transition
from in-phase to anti-phase synchronization may lead to a high degree of constant
output [68].

In this study, the Huygens’ experiment on synchronization is examined from a
control point of view. The pendulum clocks (see Figure 2.1(a)) are replaced by
two self-driven oscillators and the coupling structure, i.e. the wooden bar on two
chairs, is replaced by a representative dynamical system. This dynamical system
generates a suitable control input for the oscillators such that in closed loop the
system resembles a pair of oscillators with Huygens’ coupling. Note that in this
case, the oscillators do not need to be at the same location in contrast to previous
chapters and moreover, the dynamical system generating the control input should
be implemented separately, using for instance a computer. Consequently, the
possibility of having communication time-delays (either in the oscillators or in the
applied control input) comes into play.

Hence, this chapter will focus in determining the influence of time delay in the
limit behaviour of the (controlled) oscillators. The study is conducted for three
different pairs of self-driven oscillators: oscillators self-driven by a Hamiltonian
escapement (Section 6.3), van der Pol oscillators (Section 6.4), and oscillators
self-driven by a discontinuous force (Section 6.5). For each of these pairs, two
cases are considered: delayed unidirectional coupling, where only the input to the
oscillators is time-delayed and delayed bidirectional coupling where both the input
and output of the oscillators are time-delayed.

6.2 Preliminaries

Consider a pair of identical oscillatory systems of the form:

ẍi(t) = F (xi(t), ẋi(t)) + u(t), i = 1, 2, (6.1)
yi(t) = h(xi(t), ẋi(t)) i = 1, 2, (6.2)

with xi(t), ẋi(t) ∈ R, input u(t) ∈ L∞ (R,R) 1, and output yi(t) ∈ R. The function
F : R2 → R is locally Lipschitz in (xi(t), ẋi(t)) and is assumed to be given by

F (xi(t), ẋi(t)) = f(xi(t), ẋi(t))− ω2xi(t)− 2ζωẋi(t), i = 1, 2, (6.3)
1L∞ (X,Y ) is the space of bounded functions that map elements of X into elements of Y .
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where ω ∈ R+ is the angular eigenfrequency of the unforced oscillators and ζ ∈
R+ is the dimensionless damping coefficient. The nonlinear term f(xi(t), ẋi(t))

represents an internal energy source and compensates the energy loss in oscillator
i. Furthermore, the output of each oscillator is assumed to be given by

yi(t) = 2ζωẋi(t) + ω2xi(t)− f(xi(t), ẋi(t)), i = 1, 2. (6.4)

Let the systems (6.1) interact via the dynamic system

η̈(t) =
1

γ

2∑
i=1

yi(t) + g(η(t), η̇(t)), (6.5)

where η(t), η̇(t) ∈ R, 1/γ ∈ R+ is the coupling strength (here, 1
γ plays the same

role as µ in (2.1)) and the function g : R2 → R is given by

g(η(t), η̇(t)) = −α1η(t)− α2η̇(t), (6.6)

where α1, α2 ∈ R+.

The control input u(t), which is the same for each oscillator, is constructed as
follows

u(t) = ω2η(t) + 2ζωη̇(t). (6.7)

Hence, the closed-loop system (6.1),(6.3),(6.5)-(6.7) is given by

ẍi(t) = −ω2(xi(t)− η(t))− 2ζω(ẋi(t)− η̇(t)) + f(xi(t), ẋi(t)), i = 1, 2, (6.8)

η̈(t) =
1

γ

2∑
i=1

yi(t)− α1η(t)− α2η̇(t). (6.9)

with yi(t) as given in (6.4).

Note that system (6.8)-(6.9) resembles a pair of identical oscillators with Huygens’
coupling (compare (6.8)-(6.9)) with (2.1). This terminology is explained as fol-
lows. In the generalized Huygens system depicted in Figure 2.4 the oscillators are
physically coupled via the suspended rigid bar. In the analysis presented in this
chapter, the coupling bar has been removed and the possibly remote oscillators
interact via the dynamics (6.9) with coupling strength 1/γ. The influence of the
coupling bar in the oscillators is represented by the control input (6.7). However,
the behaviour of the closed-loop system (6.8)-(6.9) coincides with the behaviour
of the physically coupled system of Figure 2.4.

In the following, the influence of time delay in the limit behaviour of the (con-
trolled) coupled system (6.8)-(6.9) is studied. Two cases are considered: delayed
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unidirectional coupling, where only the control input (6.7) to the oscillators is de-
layed, and delayed bidirectional coupling where both the control input (6.7) and
the output (6.4) of each oscillator are delayed, as schematically depicted in Figures
6.1(a) and 6.1(b) respectively.
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(a) Delayed unidirectional coupling.
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(b) Delayed bidirectional coupling.

Figure 6.1 Two time-delayed coupling schemes. Time delay is indicated by τ .

6.3 Oscillators self-driven by a Hamiltonian escapement

Consider system (6.1) and assume that the nonlinear function in the oscillators is
given by (3.4), i.e.

f(xi(t), ẋi(t)) = −λ (Hi −H∗) ẋi(t), i = 1, 2, (6.10)

where λ ∈ R+, H∗ = 1
2κx

2
ref ∈ R+ is a reference energy level with xref being a

reference amplitude, and κ ∈ R+. Hi is the Hamiltonian for the uncoupled and
unforced oscillator i and is defined by Hi = 1

2mẋ
2
i + 1

2κx
2
i , i = 1, 2.



6.3 Oscillators self-driven by a Hamiltonian escapement 89

6.3.1 Delayed unidirectional coupling

In the case of delayed unidirectional coupling, only the input to the oscillators is
delayed, hence

u(t) = ω2η(t− τ) + 2ζωη̇(t− τ). (6.11)

The resulting closed-loop system (6.1),(6.3)-(6.6),(6.10),(6.11) is given by:

ẍi(t) = −ω2(xi(t)− η(t− τ))− 2ζω(ẋi(t)− η̇(t− τ))

−λ (Hi −H∗) ẋi(t), i = 1, 2, (6.12)

η̈(t) =
1

γ

2∑
i=1

yi(t)− α1η(t)− α2η̇(t). (6.13)

Limit behaviour for varying γ and τ .

Next, the dynamic behaviour of the coupled system (6.12)-(6.13) is studied as a
function of the coupling strength 1/γ and the time delay τ . The system’s response
is simulated for τ ∈ [0, 2.5] [s] (in steps of ∆τ = 0.01), γ ∈ [0.04, 100] [−] (in
steps of ∆γ = 1), and parameter values: ω = 13.29 [rad/s], ζ = 0.3829 [-],
λ = 13.244× 103 [s/kg·m2], m = 0.210 [kg], κ = 37.108 [N/m], H∗ = 7.83× 10−4

[Nm], α1 = 2204.4095γ−1 [1/s2], α2 = 35.9104γ−1 [1/s], and initial conditions
x1(0) = 0.0027 [m] and x2(0) = −0.0023 [m]. The remaining initial conditions are
set to zero2.

The simulation results are illustrated in Figure 6.2(a), where different colors have
been used to indicate when the system reaches anti-phase synchronization (cyan),
in-phase synchronization (orange), or unstable behaviour (brown). Clearly, the
time delay is a parameter that influences the limit behaviour of the coupled oscil-
lators.

For very small values of τ (τ < 10 [ms]), see Figure 6.2(c), the qualitative behaviour
of the coupled oscillators is unaffected, i.e. the behaviour is as described in [60] and
in Section 4.2: increasing γ (decreasing µ) results in a transition from in-phase
synchronization to anti-phase synchronization. However, when τ increases, the
synchronized behaviour of the system switches from in-phase to anti-phase and vice
versa, i.e. the coupled system (6.12)-(6.13) experiences a phase-flip bifurcation. It
should also be noticed that there are intermediate values of τ , for which the coupled

2In the particular case considered here, parameters α1 and α2 are depending on γ because it
is desired to mimic Huygens’ system, see (2.1), in which the angular eigenfrequency ω3 and the
dimensionless damping coefficient ζ3 of the coupling bar are dependent on m3.
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system will exhibit unstable oscillations, i.e. each oscillator becomes unstable. As
depicted in Figure 6.2(a), for small values of γ (γ < 15.51 [-]), unstable behaviour
does not seem to occur.

Analysis of the anti-phase motion

An initial step in the stability analysis of the anti-phase synchronized motion in
the coupled self-driven oscillators (6.12)-(6.13) is conducted under the assumption
of small oscillations. Then, the closed-loop system (6.12)-(6.13) becomes

ẍi(t) = −ω2(xi(t)− η(t− τ))− 2ζω(ẋi(t)− η̇(t− τ))

+ λH∗ẋi(t), i = 1, 2, (6.14)

η̈(t) =
1

γ

2∑
i=1

yi(t)− α1η(t)− α2η̇(t), (6.15)

with yi(t) = (2ζω − λH∗)ẋi(t) + ω2xi(t), i = 1, 2.

Note that if the oscillators synchronize in anti-phase, then the coupling vanishes,
i.e. x1(t) = −x2(t) implies that y1(t) = −y2(t) and consequently η(t) and η̇(t) in
(6.15) tend to zero.

The anti-phase synchronization errors are defined as follows

e1(t) = x1(t) + x2(t), ė1(t) = ẋ1(t) + ẋ2(t), (6.16)
e2(t) = η(t), ė2(t) = η̇(t). (6.17)

The error dynamics can be written in the form

ė(t) = A0e(t) +A1e(t− τ), (6.18)

where the error state is given by e=[e1 e2 ė1 ė2]T and

A0 =


0 0 1 0

0 0 0 1

−ω2 0 a 0
1
γω

2 −α1 b −α2

 , A1 =


0 0 0 0

0 0 0 0

0 2ω2 0 4ζω

0 0 0 0

 , (6.19)

with a=−(2ζω − λH∗) and b= 1
γ (2ζω − λH∗). It is well-known that the stability

of a system like (6.18) is determined by the rightmost roots of the characteristic
equation [42]

p(χ) = det(χI −A0 −A1e
−χτ ) = 0. (6.20)
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(a) Limit behaviour as a function of γ and τ .
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Figure 6.2 Hamiltonian escapement and delayed unidirectional coupling: numer-
ical results. In figures (a),(c) cyan: anti-phase synchronization, or-
ange: in-phase synchronization, and brown: unstable behaviour. In
figures (b),(d) dark blue: stable anti-phase synchronization calculated
by DDE-BIFTOOL, green: stable anti-phase synchronization accord-
ing to the simulations presented in figure (a).

Here, the rightmost roots of (6.20) are computed (for a certain combination of pa-
rameter values) using DDE-BIFTOOL, a Matlab package for numerical bifurcation
and stability analysis of delayed differential equations [21].

In the analysis, matrices A0 and A1 with the same parameter values as used earlier
in this subsection are considered. The obtained results are shown in Figure 6.2(b).
The plot shows the different regions where stable anti-phase synchronization occurs
according to the linearized stability analysis based on (6.20) (dark blue areas) and
compares these regions with the green areas, which were obtained in the numerical
simulations based on (6.12)-(6.13). These green areas were presented by the cyan
areas in Figure 6.2(a). As can be seen, the region where anti-phase motion is stable,
according with the numerical stability test, forms a subset of the anti-phase region
obtained by numerical integration of (6.12)-(6.13).
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6.3.2 Delayed bidirectional coupling

Consider again the closed-loop system (6.1), (6.3), (6.5)-(6.6), (6.10), (6.11), i.e.

ẍi(t) = −ω2(xi(t)− η(t− τ))− 2ζω(ẋi(t)− η̇(t− τ))

−λ (Hi −H∗) ẋi(t), i = 1, 2, (6.21)

η̈(t) =
1

γ

2∑
i=1

yi(t)− α1η(t)− α2η̇(t). (6.22)

but now with yi(t), i = 1, 2, defined by

yi(t) = 2ζωẋi(t− τ) + ω2xi(t− τ)− f(xi(t− τ), ẋi(t− τ)). (6.23)

Limit behaviour for varying γ and τ .

The response of system (6.21)-(6.22) is numerically investigated as a function of γ
and the time delay τ . The same parameter values are used as in the unidirectional
case discussed in Subsection 6.3.1. The simulation results are depicted in Figure
6.3(a). Among others, transitions from in-phase to anti-phase synchronization and
vice versa, i.e. a phase-flip bifurcation, again can be clearly seen. An important
difference between the results obtained for the unidirectional delayed coupling
and for the present coupling is that the regions where the in-phase or anti-phase
synchronized motion of the oscillators are stable, are smaller and therefore, the
instability region is larger.

Analysis of the anti-phase motion

An initial step in the stability analysis of the anti-phase synchronized motion is
again carried out under the assumption of small oscillations.

The anti-phase error dynamics are the same as defined in (6.18) but now with

A0 =


0 0 1 0

0 0 0 1

−ω2 0 a 0

0 −α1 0 −α2

 , A1 =


0 0 0 0

0 0 0 0

0 2ω2 0 4ζω
1
γω

2 0 b 0

 , (6.24)

where a=−(2ζω − λH∗) and b= 1
γ (2ζω − λH∗).

Next, the same eigenvalue-based stability test for the linearized system as already
used for the delayed unidirectional coupling case is carried out. The results are
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shown in Figure 6.3(b). Also for the delayed bidirectional coupling, the stability
regions for anti-phase synchronization identified by DDE-BIFTOOL are subsets
of the stability regions resulting from the simulations.
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Figure 6.3 Hamiltonian escapement and delayed bidirectional coupling: numer-
ical results. In figures (a),(c), cyan: anti-phase synchronization, or-
ange: in-phase synchronization, and brown: unstable behaviour. In
figure (b),(d), dark blue: stable anti-phase synchronization calculated
by DDE-BIFTOOL, green: stable anti-phase synchronization accord-
ing to the simulations presented in figure (a).

6.4 Oscillators self-driven by a van der Pol term

In this section, a similar analysis as presented in the previous section is conducted
but now for the case where the loss of energy in the oscillators due to dissipation
is compensated by the van der Pol term (3.5), i.e,

f(xi(t), ẋi(t)) = −ν(ax2
i (t)− 1)ẋi(t), i = 1, 2. (6.25)
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where ν ∈ R+ determines the amount of nonlinearity and the strength of the
damping and a ∈ R+ is a parameter, which defines the switching between positive
and negative damping.

For the delayed unidirectional coupling, numerical integration of the coupled sys-
tem (6.1), (6.3)-(6.6), (6.11), (6.25) is carried out with parameter values ν = 10.49

[s−1] and a = 100000 [m−2] . Other parameter values and initial conditions are as
discussed in Subsection 6.3.1. For the considered ranges of γ and τ , this yields the
results depicted in Figure 6.4(a). The regions where the oscillators synchronize in
anti-phase are denoted by the cyan color, the in-phase regions by the orange color,
and the regions where the oscillators behave unstable are denoted by the brown
color.
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(a) Limit response for varying τ and γ.
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Figure 6.4 Van der Pol escapement. Numerical results for the delayed unidirec-
tional case. In figures (a),(c) cyan: anti-phase synchronization, orange:
in-phase synchronization, and brown: unstable behaviour. In figures
(b),(d), dark blue: stable anti-phase synchronization calculated by
DDE-BIFTOOL, green: stable anti-phase synchronization according
to the simulations presented in figure (a).



6.4 Oscillators self-driven by a van der Pol term 95

γ [−]

τ 
[s

]

0.01 20 40 60 80 100
0

0.5

1

1.5

2

2.5

(a) Limit behaviour as a function of γ and
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(b) Anti-phase stability regions.
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Figure 6.5 Van der Pol escapement. Numerical results for the delayed bidirec-
tional case. In figure (a),(c), cyan: anti-phase synchronization, or-
ange: in-phase synchronization, and brown: unstable behaviour. In
figure (b),(d), dark blue: stable anti-phase synchronization calculated
by DDE-BIFTOOL, green: stable anti-phase synchronization accord-
ing to the simulations presented in figure (a).

The stability of the anti-phase synchronized motion can again be studied by as-
suming small oscillations. This yields a linearized error system that coincides with
(6.18) after replacing λH∗ by ν in (6.19). Figure 6.4(b) shows the stability regions
for the anti-phase motion. The dark blue color denotes a stable region calculated
by DDE-BIFTOOL and the green color denotes a stable region according to the
simulations presented in Figure 6.4(a).

Finally, a similar analysis is conducted for the delayed bidirectional coupling, where
(6.4) is replaced by (6.23). Figure 6.5(a) shows the obtained simulations results
with parameter values and initial conditions identical to the unidirectional case.
Again, the synchronization regions (in-phase and anti-phase) are considerably re-
duced. The corresponding stability analysis for anti-phase synchronization is de-
picted in Figure 6.5(b).
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6.5 Oscillators self-driven by a discontinuous force

Consider again system (6.1) and assume that the nonlinear function in the oscil-
lators is given by (4.13), i.e.

f(xi(t), ẋi(t)) = −αẋi(t)sign(|xi(t)| − xref ), i = 1, 2, (6.26)

where α ∈ R+ and the constant xref ∈ R+ represents a threshold displacement
value.

Again, the limit behaviour of the coupled system is investigated as a function of
the coupling strength γ and the time delay τ . For the case of delayed unidirectional
coupling, the limit response of the coupled system (6.1), (6.3)-(6.6), (6.11), (6.26)
is as depicted in Figure 6.6(a). In this numerical analysis, the system’s response
has been simulated for α = 10.1866 [1/s] and xref = 0.0025 [m]. Other parameter
values and initial conditions for the oscillators are the same as in Subsection 6.3.1.

The obtained results are very close to the results obtained in Figure 6.2(a) and Fig-
ure 6.4(a) for the Hamiltonian and van der Pol escapements respectively. Namely,
the time delay induces a phase-flip bifurcation and also induces unstable behaviour.

Regarding the delayed bidirectional coupling where (6.4) is replaced by (6.23), the
numerical analysis reveals that the regions with in-phase and anti-phase synchro-
nization are considerably smaller, as depicted in Figure 6.6(b). Parameter values
and initial conditions are as mentioned above for the unidirectional case.

Note that the stability of the anti-phase motion can not be analyzed by following
the assumption of small oscillations, as already mentioned in Section 4.4. For the
present case, the stability of the anti-phase motion is demonstrated by means of
experiments.

6.6 Experimental validation

The effect of time delay in the synchronized motion of self-driven nonlinear os-
cillators with delayed Huygens’ coupling is experimentally studied by using the
electro-mechanical system depicted in Figure 2.3. The original mechanical cou-
pling bar has been mechanically fixed, such that the setup is reduced to two
isolated oscillators, which can only interact via their control input,
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(a) Delayed unidirectional coupling.
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Figure 6.6 Self-driven discontinuous oscillators. Limit response as a function of
γ and τ : numerical results. In these figures , cyan: anti-phase syn-
chronization, orange: in-phase synchronization, and brown: unstable
behaviour.

In the first experiment, the controllers of the oscillators in the experimental setup
are adjusted such that the oscillator’s dynamic behaviour is approximately de-
scribed by (6.12)-(6.13), i.e. the case of delayed unidirectional coupling is consid-
ered for the oscillators self-driven by a Hamiltonian escapement discussed in Sec-
tion 6.3. Obviously, the experimental set-up introduces some uncertainty in the
dynamics intended by the model. The dynamical system (6.13) is implemented
in software. The parameter values for the oscillators are as given in Table 2.1,
the parameter values of (6.11) are assumed to be ω = 13.29 [rad/s], ζ = 0.3829

[-], and the remaining parameter values are λ = 13244 [s/kg·m2], m = 0.210 [kg],
κ = 37.108 [N/m], H∗ = 7.83×10−4 [Nm], α1 = 2204.4095

γ [1/s2], α2 = 35.9104
γ [1/s],

and initial conditions x1(0) = 2.4 [mm] and x2(0) = 2.15 [mm]. The remaining
initial conditions are set to zero. The coupling strength is computed for γ = 60

[-].
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Initially, the interaction between the oscillators and the control input is free of
delay3, i.e. τ = 0. Although the oscillators are released from initial conditions
close to in-phase, after transient behaviour the oscillators practically synchronize
in anti-phase, see Figure 6.7(a). At t = 250 [s], a delay τ = 0.15 [s] is induced
in the control input to the oscillators, see Figure 6.7(a). As a consequence, the
synchronized behaviour switches from anti-phase to in-phase as shown in Figure
6.7(b). Likewise, the synchronization frequency of the oscillators increases as de-
picted in Figure 6.7(c). Once the oscillators are synchronized in-phase, the control
input, see Figure 6.7(d) becomes periodic with constant amplitude. These exper-
imental results are in agreement with the numerical results presented in Figure
6.2(a). Moreover, it should be noted the limit amplitude of the oscillators differs.
This is directly related to the differences in the oscillators, see Table (2.1).

A second experiment is conducted for the case of self-driven discontinuous oscilla-
tors discussed in Section 6.5. The case of delayed unidirectional coupling is con-
sidered. For the nonlinear function (6.26), the parameter values are: α = 10.1866

[1/s] and xref = 2.5 [mm]. Other parameter values and initial conditions in the
experiment are the same as used in experiment one. The coupling strength is
computed for γ = 50 [-].

Again, in order to better appreciate the influence of the time delay in the synchro-
nized motion of the oscillators, the experiment is started by considering τ = 0 [s].
Figure 6.8(a) shows the time series of the oscillators for this experiment. After
a short time interval of transient behaviour, the oscillators synchronize in anti-
phase as depicted in Figure 6.8(b). At t = 35 [s], a unidirectional time delay of
τ = 0.155 [s] is induced and as a consequence the oscillators synchronize in-phase,
as illustrated in Figure 6.8(c).

Note that besides the change from anti-phase to in-phase synchronization, the
oscillation frequency f (measured from peak to peak) also changes as shown in
Figure 6.8(d). This is further explained in Section 6.7. Figure 6.8(e) shows the
control input (6.11) applied to the oscillators. It can be seen that the control
input (almost) vanishes when anti-phase synchronization is achieved, whereas for
the in-phase case, the control input becomes periodic.

The numerical results presented in Section 6.5 are in agreement with these results.
Note that for γ = 50 [-] and τ = 0 [s], the numerical results presented in Fig-
ures 6.6(a) and 6.6(c) indicate that anti-phase synchronization is likely to occur,
whereas for τ = 0.155 [s], in-phase synchronization is expected to occur.

In a third experiment, the case of self-driven discontinuous oscillators is considered
again but now for the case of bidirectional delayed coupling. The parameter values

3The actual time delay in the set-up is negligible.
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are the same as used in the second experiment, except for the coupling strength,
which now is computed for γ = 10 [-]. The nonzero initial conditions are chosen
as follows: x1(0) = 2.45 [mm] and x2(0) = −2.3 [mm].

Again, at the beginning of the experiment, the time delay is assumed to be zero.
The time series corresponding to x1 and x2 are depicted in Figure 6.9(a). From
Figure 6.9(b) it can be observed that after the transient behaviour the oscillators
synchronize in-phase. Then, at t = 15 [s], a time delay of τ = 0.043 [s] is induced
in the oscillators. As a result, the synchronized motion switches from in-phase
to anti-phase as depicted in Figure 6.9(c). Note that now the transition is slower
in comparison with the transition observed in the first experiment. This result
is in agreement with the numerical results presented in Figure 6.6(b) and 6.6(d).
Figure 6.9(d) shows the oscillation frequency f , which increases to the value of
the frequency of the individual self-driven oscillators. In theory, the interaction
between the oscillators should vanish and consequently the control u(t), see (6.11),
should also vanish, but due to the small differences between the oscillators in
the experiment, the control input remains oscillating with small amplitude as
illustrated in Figure 6.9(e).

Note that in experiment one, the differences in the limit amplitude of the oscillators
are larger than in experiments two and three. The reason is due to the fact that
in the first experiment, the Hamiltonian escapement only keeps a certain amount
of energy in each oscillator without forcing the oscillations to reach a certain
reference value. On the other hand, in experiments two and three, the oscillators
are forced by the discontinuous escapement mechanism to reach a certain reference
amplitude.

The experimental results presented here confirm that the delay can be seen as a
bifurcation parameter leading to a phase-flip bifurcation.

6.7 Discussion

In this final section, a discussion of the obtained results is presented.

• The influence of time delay in the appearance of transitions from in-phase
to anti-phase synchronization and vice versa, i.e. a phase-flip bifurcation,
occurring in delayed coupled oscillators, has already been studied for the case
of diffusive couplings, see e.g. [68]. However, to the best of our knowledge,
this is the first time that these transitions are studied in the context of
Huygens’ coupling.
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Figure 6.7 Oscillators driven by the Hamiltonian escapement: delayed unidirec-
tional coupling. Experimental results. x1 (black line) and x2 (gray
line).
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Figure 6.8 Self-driven discontinuous oscillators with delayed unidirectional cou-
pling: experimental results. The oscillators synchronize in-phase. x1
(black line) and x2 (gray line).
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Figure 6.9 Self-driven discontinuous oscillators with delayed bidirectional cou-
pling: experimental results. The oscillators synchronize in anti-phase.
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• For the three types of oscillators considered in this section there is a striking
similarity in the limit behaviour of the oscillators as shown in Figures 6.2(a),
6.4(a), and 6.6(a) for the unidirectional case and 6.3(a), 6.5(a), and 6.6(b) for
the bidirectional case. These results suggest that in a qualitative sense the
limit behaviour of the system is independent of the type of escapement used
to resupply energy into the system. The behaviour is strongly influenced by
the size of time delay and the magnitude of the coupling strength.

• The synchronization problem addressed here may seem artificial, but it may
find interesting industrial applications like for example in the control of vibra-
tions during the start-up phase of two generators/industrial motors, cf. [8],
which are placed close to each other. Initially, the generators/motors can be
forced to synchronize in anti-phase, this will reduce the amount of vibrations
in the supporting structure and when the generators/motors are operating
at nominal speed, they can be forced to synchronize in-phase in order to
reduce the consumption of energy. According to the results presented here,
this can be done by using the same control law and just varying one param-
eter, e.g. the time delay. Moreover, further studies of the proposed delayed
Huygens’ coupling may lead to understand similar phenomena occurring in
other fields. For example in neurosystems, where it has been found that time
delay induces transitions from in-phase to anti-phase synchronization in two
coupled excitable neurons [73].

• The analysis presented here focused mainly on the in-phase or anti-phase
synchronizing limit behaviour of the oscillators. However, it is worthwhile
mentioning that for our system, other dynamical limit behaviours exist. For
instance, amplitude death [24], where the oscillations of both oscillators de-
cay. This has not only been observed in computer simulations but also in
experiments (not included here).

• The experimental results have revealed that when the oscillators synchro-
nize in anti-phase, the oscillation frequency corresponds to the frequency
of the uncoupled self-driven oscillators. This results from the fact that in
anti-phase, the coupling vanishes (as in the original Huygens’ experiment)
and, consequently, the oscillators run uncoupled (in the ideal case). When
the oscillators synchronize in-phase, it has been found that the oscillation
frequency can be tuned by properly choosing parameter α1 in (6.6). This
follows from the fact that α1 can be seen as a kind of eigenfrequency of the
‘virtual’ coupling bar (6.5).
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Chapter 7
Huygens’ coupling: more than a
rigid bar

Science is built up of facts, as a house is built of stones; but an
accumulation of facts is no more a science than a heap of stones is a

house.

Henri Poincaré (1854–1912)

Abstract This chapter presents numerical results related to the “true” infinite
dimensional Huygens’ coupling of pendulum clocks. The coupling structure,
on which the clocks are hanging (a wooden bar on top of two chairs) is as-
sumed to be flexible, i.e. the coupling structure is considered as an infinite
dimensional system. A linear model is derived for this structure by using the
Finite Element method. The pendula are considered as local nonlinearities
and consequently the resulting coupled model consists of a finite set of nonlin-
ear ordinary differential equations. Next, this model is used in order to obtain
numerical results illustrating the possible limit behaviours of the system, like
in-phase and anti-phase synchronization of the pendula. Finally, a discussion
of the obtained results is presented.

105
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7.1 Introduction

In order to derive a mathematical model of a real system it is unavoidable to make
some simplifications, i.e. to idealize the system under consideration. In the case
of the Huygens system of pendulum clocks, depicted in Figure 7.1(a), the model
used in Chapter 2 of this thesis and the ones reported in the literature, see e.g.
[5, 8, 54, 55, 75], are simplifications of the real situation: the coupling structure
has been modelled as a single dof suspended rigid bar, each pendulum clock has
been modelled by a driven and damped pendulum, and these pendula are both
attached to the rigid coupling bar. However, in the real Huygens experiment, the
bar, to which the clocks are attached, is indeed an infinite dimensional system
(since the bar is flexible), for which, as far as is known, a rigorous study of the
in-phase and anti-phase synchronized motion of the two pendula has never been
carried out, although there are some related works were the coupling bar has been
considered as a flexible beam, see e.g. [14, 33].

Note that the wooden coupling in Huygens’ experiment can be modelled by a
partial differential equation (pde) with suitable boundary conditions, whereas for
each pendulum a simple ordinary differential equation may suffice. Deriving an
analytic or numerical solution for such a model is not a trivial task. This can be
circumvented by discretizing the pde by using the Finite Element (FE) method.

This chapter introduces a new model for the original Huygens experiment on syn-
chronization. The model takes into account the flexibility of the coupling structure,
on which the pendulums are hanging, and is derived by using the FE method and
a component mode synthesis technique in order to reduce the number of dofs of
the FE model.

The structure of the chapter is as follows. Section 7.2 presents the modeling of
the system. Next, in Section 7.3, a numerical analysis is conducted in order to
determine all the possible limit behaviours (like in-phase and anti-phase synchro-
nization) of the coupled system. Then, in Section 7.4, a set of key parameters
for the onset of synchronization is identified. Finally, a discussion of the obtained
results is presented in Section 7.5.

7.2 Modeling of the system

In this section, a mathematical model for the classical Huygens setup of pendulum
clocks, depicted in Figure 7.1(a), is derived. The coupling bar is modelled by a
flexible horizontal beam, the chairs are modelled by two flexible vertical beams and
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it is assumed that all beams can experience bending and axial stretching. First, in
Subsection 7.2.1, a linear FE model is derived for this flexible structure. Secondly,
in Subsection 7.2.2, each pendulum clock is modelled as a driven and damped
swinging pendulum consisting of a small bob (modelled by a point mass) attached
to the bottom side of a massless rigid bar, see Figure 7.1(b). The escapement
mechanism that keeps each clock running is replaced by a control input, which is
generated by using the angular displacement and angular velocity of each simple
pendulum. Then, in Subsection 7.2.3, the pendula are coupled to the flexible
structure.

7.2.1 Modeling of the supporting structure

Consider the flexible coupling structure depicted in Figure 7.1(b), i.e. the complete
structure without the pendula. The horizontal beam, as well as both vertical
beams, are discretized, as depicted in Figure 7.1(c), by using two node Euler
beam elements1. At each node, there are three dofs namely axial displacement,
transversal displacement, and rotation. Note that only 2D in-plane deformation of
the system is considered. At the two contact points between the horizontal beam
and the two vertical beams, the rotational dof corresponding to the horizontal
beam is uncoupled from the rotational dof corresponding to the vertical beam
similar to the situation of Huygens’ experiment. The coupling structure is assumed
to have geometrical and material properties as given in Table 7.1. Some of the
parameter values (length and thickness of the horizontal beam) have been taken
from the details provided by Huygens in his lab notebook cf. [63]. The parameter
values for the vertical beams have been estimated based on a standard chair.
Furthermore, it has been assumed that all beams are made of (parana) pine wood.

The horizontal beam is discretized by 99 beam elements and the vertical beams
by 100 beam elements each. This yields, after assembling all beam elements and
after imposing the displacement boundary conditions2, a FE model with n = 896

dofs given by
Mq̈ +Bq̇ +Kq = f (7.1)

where q ∈ Rn×1 is a column with dofs (labeled as D′is in Figure 7.1(c)). Matrices
M ∈ Rn×n, B ∈ Rn×n, and K ∈ Rn×n, and column f ∈ Rn×1 are the (global)
mass, damping, and stiffness matrix, and the column with external loads and
coupling loads from both pendula, respectively.

1The mass and stiffness matrices for a single Euler beam element are provided in Appendix
B.

2The vertical beams are fixed to the world at their bottom sides, hence 6 dofs are constrained
to be zero.
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Figure 7.1 (a) Classical Huygens setup. (b) Idealized model. (c) Discretized
model.
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Table 7.1 Geometrical and material (wood) properties of the coupling structure.

Property Horizontal beam Each vertical beam
Length lh = 2.4 [m] lv = 1 [m]
Width bh = 0.55 [m] bv = 0.03 [m]
Thickness hh = 0.0762 [m] hv = 0.03 [m]
Density ρh = 560 [kg/m3] ρv = ρh [kg/m3]

Young’s modulus Eh = 8.963 · 109 [N/m2] Ev = Eh [N/m2]

Other dimensions, see Figure 7.1b).
l1 = 0.0242 [m]
l2 = 1.0667 [m]

Next, a modal analysis is performed in order to determine the undamped eigenfre-
quencies and corresponding eigenmodes of the coupling structure. This is achieved
by solving the eigenvalue problem[

K − ω2
iM
]
ϕi = 0, i = 1, . . . , n, (7.2)

where ωi = 2πfi is the ith undamped angular eigenfrequency in [rad/s] and ϕi is
the corresponding mode shape.

Table 7.2 shows the five lowest eigenfrequencies in Hz. Clearly, for the considered
geometrical and material properties, see Table 7.1, the eigenfrequency f1 of the
first mode almost coincides with the oscillation frequency of a standard pendulum
clock (1 Hz).

Table 7.2 Lowest eigenfrequencies of the coupling structure.

i fi [Hz]
1 1.2749
2 24.1724
3 85.0168
4 85.1116
5 86.8341

The corresponding modeshapes are depicted in Figure 7.2. Note that in eigen-
modes 1,3, and 4, the vertical beams experience bending, whereas the deforma-
tions in the horizontal beam are almost negligible. In contrast, eigenmodes 2 and
5 show bending of the horizontal beam, whereas the deformations in the vertical
beams are imperceptible.

The eigenmodes are normalized on the mass matrix, i.e. ϕTMϕ = I where ϕ
contains the eigenmodes ϕi, which are stored columnwise and I is an identity



110 7 Huygens’ coupling: more than a rigid bar

−1 0 1
0

0.5

1

[m]

 [m
]

(a) f1 = 1.0825 Hz.

−1 0 1
0

0.5

1

[m]

[m
]

(b) f2 = 24.7265 Hz.

−2 −1 0 1 2
0

0.5

1

[m]

[m
]

(c) f3 = 85.0168 Hz.

−1 0 1 2
0

0.5

1

[m]

[m
]

(d) f4 = 85.1116 Hz.

−1 0 1
0

0.5

1

[m]

[m
]

(e) f5 = 86.8341 Hz.

Figure 7.2 Modeshapes corresponding to the five lowest eigenfrequencies.

matrix of appropriate dimensions. When this normalization is combined with the
eigenvalue problem (7.2), it can easily be shown that ϕTKϕ = Ω, where Ω is a
diagonal matrix containing the angular eigenfrequencies ωi.

Now, assuming proportional damping, the damping matrix B in (7.1) is computed
according to B = 2ϕTZΩϕ−1, where Z is a diagonal matrix with dimensionless
damping coefficients ζi for eigenmode i.

In Appendix C, a static analysis is conducted. It is shown that the influence of
the gravity in the coupling structure is negligible and it is demonstrated that the
vertical beams are not close to buckling.
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Reduction of the model

As seen earlier, in the equations of motion (7.1) describing the linear dynamic
behaviour of the wooden coupling structure many hundreds of dofs are involved.
It is well-known that numerical solution of this kind of systems (many dofs) may
become computationally costly. This is especially true when the final model is
nonlinear and parameter studies need to be carried out as is the case in the current
study. In order to prevent this, a dynamic model reduction technique for linear
systems is used [12, 25]. The technique belonging to the class of component mode
synthesis techniques is based on free-interface eigenmodes and residual flexibility
modes and allows deriving a reduced model, which is accurate within a certain
frequency range of interest. The method is as follows.

First, column q , see (7.1), is partitioned as

q =

[
qB
qI

]
, (7.3)

where qB ∈ RnB×1 contains the boundary dofs and qI ∈ RnI×1 contains the
internal dofs. The boundary dofs are the dofs that are coupled to the pendula.

Next, a transformation from original (physical) dofs to generalized dofs is per-
formed

q = T1p1, T1 = [ φB φK ]; p1 =

[
pB
pK

]
, (7.4)

where matrix φK ∈ Rn×nK contains the kept elastic eigenmodes, which are the
mass normalized solutions ϕi of the undamped eigenproblem (7.2) for ωi ∈ (0, ωc]

for i = 1, . . . , nK . The angular cut-off frequency ωc is chosen by the user.

The matrix φB ∈ Rn×nB contains residual flexibility modes (they provide a static
correction for the deleted higher frequency eigenmodes) and is defined as follows

φB =
[
K−1 − φKΩ−2

KKφ
T
K

]
[ IBB 0BI ]T , (7.5)

where ΩKK ∈ Rnk×nk is a diagonal matrix with the kept angular eigenfrequencies
lower than or equal to ωc.

For the sake of easy coupling later in Subsection 7.2.2, the generalized dofs p1

described in (7.4) are transformed according to

p1 = T2p, p =

[
qB
pK

]
, (7.6)

with

T2 =

[
φ−1
BB −φ−1

BBφBK
OKB IKK

]
. (7.7)
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Finally, the total transformation matrix verifies (by combining (7.4) and (7.6))

T = T1T2 (7.8)

and the reduced equations of motion for the wooden flexible coupling structure
become

TTMT︸ ︷︷ ︸
Mr

p̈+ TTBT︸ ︷︷ ︸
Br

ṗ+ TTKT︸ ︷︷ ︸
Kr

p = TT f︸︷︷︸
fr

. (7.9)

where fr =
[
fx1 fy1 fx2 fy2 fint

]T
, fxi, i = 1, 2, is the horizontal force

exerted by pendulum i at the horizontal boundary dof where pendulum i is at-
tached, fyi, i = 1, 2, is the vertical force exerted by pendulum i at the vertical
boundary dof where pendulum i is attached and fint is a zero row of appropriate
dimensions.

For the present application only the lowest eigenfrequencies are of interest. The
reason behind this is that the structure is assumed to only be excited by the pen-
dula, which operate near 1 Hz. Therefore, only the first 5 lowest eigenmodes are
kept and, consequently, the resulting reduced model is accurate up to approxi-
mately fc = 90 Hz (see Table 7.2). The reduced model (7.9) will have 9 dofs: 4
boundary dofs and 5 dofs corresponding to kept dynamic eigenmodes.

7.2.2 Modeling of the pendula

Each pendulum is modelled by a point mass of mass mi [kg] attached at the lower
end of a massless rigid bar of length li [m]. The damping in each pendulum is
assumed to be viscous, linear, and concentrated in the revolute joint, which couples
the pendulum to the coupling structure. The rotational damping coefficient is di
[Nms/rad]. The dynamic behaviour of each (uncoupled) pendulum is described by
the (idealized) set of equations

θ̈i = − g
li

sin θi −
di
mil2i

θ̇i +
ui
mil2i

, i = 1, 2, (7.10)

where g [m/s2] is the gravitational acceleration, θi ∈ S1 is the rotation angle of
pendulum i in [rad], and ui, i = 1, 2, represents the so-called escapement mecha-
nism of pendulum i in [Nm].

The modelling of an escapement mechanism is not a trivial task [72]. For this
reason, in literature, usually the escapement mechanism is replaced by a (non-
linear) function, which depends on the angular displacement and velocity of the
pendulum [17, 26]. In the present case, the escapement mechanism is modelled by
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the nonlinear function [54]

ui =



−σ
(

1−cos( 2πθ−φ
∆φ )

2∆φ

)
for (θi ≤ φ) ∧ (θi ≥ φ−∆φ) ∧

(
θ̇ < 0

)

σ

(
1−cos( 2πθ−φ

∆φ )
2∆φ

)
for (θi ≥ −φ) ∧ (θi ≤ −φ+ ∆φ) ∧

(
θ̇ > 0

)
0 otherwise,

(7.11)
where θi, i = 1, 2, is the rotation angle of pendulum i and σ > 0, φ < 0, and
∆φ > 0 are design parameters. The operation of the escapement is depicted in
Figure 7.3, where the time series for the exerted torque and angular displacement
are shown. Basically, a ‘kick’ is delivered to the pendulum each time that the
pendulum reaches a threshold angle3.

0 1
time [s]

 

 

rotation angle
angular velocity
torque

Figure 7.3 The torque on the pendulum exerted by the escapement mechanism.
The quantities have been scaled by using their corresponding infinity
norm.

7.2.3 Coupling of the pendulums to the structure

In order to derive the coupled model the free body diagram depicted in Figure
7.4 is considered. The horizontal and vertical displacements corresponding to the
boundary node i (the node, at which pendulum i is attached to the structure) are

3Note however that other state dependent nonlinear functions can be considered as well, as
for example the ones discussed in Chapters 3 and 4.
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given by xi and yi, respectively. The horizontal motion of the pendulum’s bob is
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Figure 7.4 Free body diagram at each boundary node.

described by

mi
d2

dt2
(xi + li sin θi) = Hi, i = 1, 2, (7.12)

where Hi = −fxi is the horizontal force exerted by the structure to the upper side
of the pendulum. The vertical motion is described by

mi
d2

dt2
(yi − li cos θi) = Vi −mig i = 1, 2, (7.13)

where Vi = −fyi is the vertical force exerted by the structure to the upper side of
the pendulum.

Equilibrium of moments with respect to an axis in z-direction going through point
mass mi results in

0 = −Hili cos θi − Vili sin θi − diθ̇i + ui, i = 1, 2. (7.14)

By combining (7.12)-(7.14), the following equation can be determined

mil
2
i θ̈i = −miliẍi cos θi −miÿili sin θi −migli sin θi − diθ̇i + ui i = 1, 2. (7.15)

After coupling of the pendula to the structure, the dynamic model of the idealized
Huygens setup of synchronization, depicted in Figure 7.1(b), consists of 11 dofs
and is described by the following set of equations

Mrp̈ = −Krp−Brṗ+ fr (7.16)

mil
2
i θ̈i = −miliẍi cos θi −miÿili sin θi −migli sin θi − diθ̇i + ui, i = 1, 2 (7.17)

where p =
[
x1 y1 x2 y2 p1 p2 p3 p4 p5

]T
is the column of boundary

dofs and modal dofs, θi ∈ S1 is the rotation angle of pendulum i, andMr, Br, and
Kr are matrices as described in (7.9). The force column of the flexible structure is
given by fr =

[
−H1 −V1 −H2 −V2 fint

]T
where Hi, i = 1, 2, is as given

in (7.12), Vi, i = 1, 2, as given in (7.13), and fint is a zero row of appropriate
dimensions.
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7.3 Numerical analysis

In this section, numerical analyses will be carried out in order to determine all
potential synchronizing limit solutions of system (7.16)-(7.17). In particular, the
dependence of the synchronized motion of the pendula on system parameters and
initial conditions is studied by means of computer simulations.

Since in system (7.16)-(7.17) there are quite a number of parameters, for a manage-
able parameter study it is necessary to choose those parameters, which dominantly
influence the occurrence of and type of synchronized motion. At this point, it is
worth to remember that in previous chapters and in the literature, see e.g. [5, 17],
it has been shown that (in a simpler model) the “critical parameters” determin-
ing the occurrence and type of synchronization are: the ratio of the mass of each
pendulum and the mass of the coupling bar, and the amount of damping in the
system. Furthermore, the initial conditions also may play a role in the occurring
type of synchronized behaviour.

This section presents three numerical parameter studies based on numerical inte-
gration of (7.16)-(7.17), in which different (combinations of) parameters are varied.

First, the synchronized motion of the coupled system is studied as a function of
the mass of each pendulum and the initial angle of pendulum two. The parameter
values of the structure are as given in Table 7.1 with damping coefficients ζi = 0.01

[-]. The parameter values for the pendula, see (7.17), are l1 = l2 = 0.22864 [m],
d1 = d2 = 0.01 [Nms/rad], and the mass of each pendulum is (simultaneously)
varied from 0.2 to 7 [kg] in steps of 0.05 [kg], i.e. m1 = m2 ∈ [0.2, 7] [kg]. For
the escapement mechanism (7.11), the parameter values are σ = 8 × 10−3 [Nm],
φ = −∆φ = −0.06 [rad]. The nonzero initial conditions are θ1 = 0.2 [rad] and θ2

is varied in the interval [−0.2, 0.2] [rad] in steps of 0.02 [rad].

The obtained results are depicted in Figure 7.5. When the mass of each pendulum
is lower than approximately 0.65 [kg], the pendula synchronize in-phase (green
area) for most of the initial conditions. Note, however, that there is a region
around the origin, denoted by the brown area, where the initial condition of the
second pendulum is not large enough to “engage” this pendulum to its escapement
mechanism. As a consequence, the second pendulum never gets energy from its
escapement mechanism. However, due to the vibrations of pendulum one, the
second pendulum shows small oscillations and the phase difference between the
pendula remains constant but is neither 0 degrees nor 180 degrees, as depicted in
Figure 7.6. When the mass of each pendulum is slightly increased, then the only
existing regime is in-phase synchronization, as can be seen in Figure 7.5 for the

4This value is taken from Huygens’ laboratory notebook, see [63].
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interval m1 = m2 ∈ [0.65, 0.8] [kg]. The anti-phase synchronized motion appears
when the mass of each pendulum is further increased (blue area). From Figure
7.5 it is clear that in the interval m1 = m2 ∈ [0.8, 7] [kg], the in-phase region
shrinks and the anti-phase region grows. Between the boundaries of the in-phase
and anti-phase synchronization regions, there are small areas, denoted by a dark
blue color, where the pendula show unsynchronized behaviour (or have not come
to a ‘steady-state’ yet).

mass of pendulum [kg]

θ 2 (
0)

 [r
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]
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Figure 7.5 Limit response of the coupled system (7.16)-(7.17) as a function of
the mass of each pendulum and the initial condition θ2(0) [rad]. The
colors indicate the type of behaviour the system exhibits after 1500
[s]; blue for anti-phase, green for in-phase, brown for the case where
the oscillations of pendulum 2 are due to the influence of pendulum
1 and not due to the escapement (phase difference is constant), and
dark blue for unsynchronized behaviour.

In the second parameter study, the limit behaviour of system (7.16)-(7.17) is in-
vestigated as a function of the damping in the flexible structure and again the
initial angle of pendulum two. The parameter values are almost the same as used
in the previous simulation except for the mass of each pendulum, which now is
m1 = m2 = 0.8267 [kg] and the damping coefficient ζ = ζi, which is varied now in
the interval ζ ∈ [0.01, 0.4] [-] in steps of 0.005 [-]. The initial conditions are also
the same as used in the first parameter study.

As can be seen in Figure 7.7, for small damping the pendula may synchronize either
in-phase (green area), in anti-phase (blue area) or run unsynchronized (dark blue
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Figure 7.6 The initial condition θ2(0) of pendulum two is not enough to engage the
pendulum to the escapement mechanism. Nevertheless, pendulum two
(grey line) shows small oscillations due to the vibrations of pendulum
one (black line).

area). For larger damping, the in-phase synchronized motion disappears. For
certain initial conditions around the origin, the escapement of pendulum two will
never work. However, the vibrations of pendulum one, transmitted via the flexible
structure, will keep pendulum two oscillating, although with small amplitude.
Again, there is a constant phase difference between the two oscillators, but they
are oscillating neither in-phase nor in anti-phase and have different amplitude, as
already shown in Figure 7.6.

Again, the anti-phase synchronized motion is the dominant limit behaviour.

Finally, the influence of the width of the horizontal beam and the initial angle of
pendulum two on the synchronized motion of the coupled pendula is studied. It
is clear that, by varying the width of the horizontal beam, not only its mass but
also its stiffness is modified. The parameter values for the flexible structure are
(see Table 7.1 for definition of the parameters): hh = 0.1876 [-], bv = bv = 0.04

[m], hv = hv = 0.03 [m] and ζ = 0.2 [-]. For the pendula (7.17) the following is
assumed: m1 = m2 = 1.1226 [kg], l1 = l2 = 0.2286 [m], d1 = d2 = 0.01 [Nms/rad];
the parameter values in the escapement mechanism (7.11) are : σ = 6×10−3 [Nm],
φ = −0.05 [rad] and ∆φ = 0.05 [rad].

Figure 7.8 shows the obtained results. For a narrow horizontal beam (light beam),
the in-phase motion is more dominant than the anti-phase motion. When the
width increases (heavier beam) the in-phase motion disappears and the pendula
eventually synchronize in anti-phase for all the initial conditions. The results for
the latter case are in line with the observations made by Huygens. In his case, the
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Figure 7.7 Limit response of the coupled system (7.16)-(7.17) as a function of the
damping coefficient ζ [-] and the initial condition θ2(0) [rad]. The
colors indicate the type of behaviour the system exhibits after 1500
[s]; blue for anti-phase, green for in-phase, brown for the case where
the oscillations of pendulum 2 are due to the influence of pendulum
1 and not due to the escapement (phase difference is constant), and
dark blue for unsynchronized behaviour.

extra mass placed at the bottom of the cases of the pendulum clocks (around 45
[kg]), increased the total mass of the horizontal beam, i.e. Huygens setup had a
heavy horizontal beam.

Other limit behaviours

Besides the aforementioned (synchronizing) limit solutions, other limit behaviours
can be observed in system (7.16)-(7.17). In particular, three additional ‘station-
ary’ solutions of the pendula have been observed: quenching (oscillations death),
beating death, and seemingly chaotic motion. These limit solutions are explained
in what follows. The numerical results are obtained by numerical integration of
(7.16)-(7.17) with parameter values: l1 = l2 = 0.2286 [m], d1 = d2 = 0.0106

[Nms/rad], m1 = m2 = 0.4226 [kg], σ = 4 × 10−3 [Nm rad], φ = −0.06 [rad] and
∆φ = 0.06 [rad]. The parameter values of the coupling structure are given in Table
7.1, except bh = 0.25 [m], bv = 0.100 [m] and hv = 0.012 [m].



7.3 Numerical analysis 119

width of the horizontal beam [m]

θ 2(0
) 

[r
ad

]

 

 

0.1 0.2 0.3 0.4 0.5
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Figure 7.8 Limit response of the coupled system (7.16)-(7.17) as a function of the
width bh [m] of the coupling bar and the initial condition θ2(0) [rad].
The colors indicate the type of behaviour the system exhibits after
1500 [s]; blue for anti-phase, green for in-phase, and dark blue for
unsynchronized behaviour.

• Quenching. Sir John William Strutt, Lord Rayleigh (1842-1919) observed
mutual synchronization in two (similar) organ tubes, but also he observed
the effect of quenching (oscillation death), i.e. when the coupling results
in suppression of oscillations of the interacting systems. The derived model
(7.16)-(7.17) also shows this behaviour as depicted in Figure 7.9. The pendula
are released from the initial conditions θ1(0) = 0.26 [rad] and θ2(0) = 0.26

[rad]. Other initial conditions are zero. The time series of the pendula is
depicted in Figure 7.9. The quenching (oscillation death) phenomenon is
evident.

• Beating death. Figure 7.10 shows a peculiar behaviour: the escapement
mechanism of one pendulum stops working. Notwithstanding this, the pen-
dulum remains oscillating (with small amplitude) due to the influence, ex-
erted via the coupling structure, of the other pendulum. The nonzero initial
conditions used in this case are θ1(0) = 0.21 [rad] and θ2(0) = 0 [rad]. The
escapement mechanism of pendulum 2 stops working after t = 10.71 [s] as
depicted in Figure 7.10(d).

• Chaotic motion. When the damping in the pendula is slightly decreased,
it is possible to observe chaotic behaviour in the coupled pendula as shown
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Figure 7.9 Quenching (oscillation death).

in Figure 7.11. The initial conditions of the pendula are the same as the one
used in the previous case (beating death) but the damping in the pendula is
decreased to d1 = d2 = 0.0106 [Nms/rad].

7.4 Key parameters for the onset of synchronization

From the numerical study presented in the previous section, it is possible to draw
some conclusions regarding key parameters that have a large influence in the limit
behaviour of the system. These parameters are listed as follows:

• the ratio of the mass of each pendulum and the coupling beam mass. Given a
flexible structure with certain fixed parameters, the onset of in-phase or anti-
phase synchronized motion may be triggered by increasing or decreasing the
mass of the pendula while keeping the effective mass of the coupling structure
constant, or vice versa. In particular, from the results presented in Figure
7.5, it follows that for a slightly damped structure, the pendula synchronize
in anti-phase (for almost all initial conditions) when their mass is increased.

• the amount of damping in the system. If damping is neglected in the flexible
structure, then synchronization will not occur because transient behaviour
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Figure 7.10 Beating death. a) Transient behaviour. b) Limit behaviour. c) Time
series for θ2 in the interval 0 ≤ t ≤ 15. d) Time response of the
escapement mechanism of pendulum two in the interval 0 ≤ t ≤ 15.
In figures a) and b), black line: θ1, grey line: θ2.
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Figure 7.11 Chaotic motion. a) Transient behaviour. b) Limit behaviour. Black
line: θ1, grey line: θ2.



122 7 Huygens’ coupling: more than a rigid bar

will not disappear. When small damping is included in the model of the
structure, both in-phase and anti-phase regimes exist. When the damping in
the structure is large, anti-phase synchronized motion seems to be dominant.

• the cross-sectional area ratio between the horizontal beam and the vertical
beams. The vertical beams, on which the horizontal beam is placed, should
be more flexible than the horizontal beam. With this choice, it is guaran-
teed that the first eigenmode of the structure corresponds to a horizontal
displacement of the horizontal beam. One way of achieving this is by tak-
ing vertical beams with relatively small cross-sectional area compared to the
cross-sectional area of the horizontal beam. In [15], the authors were not able
to carry out successful experiments possibly due to the fact that they used
a structure where the horizontal/vertical beam cross-sectional area ratio is
nearly one.

• the escapement mechanism. Due to the damping in the flexible structure and
in the revolute joints by which the pendula are attached to the structure,
initial energy in the system will be partly dissipated. Therefore, in order
to have sustained oscillations of the pendula with a certain desired ampli-
tude, an escapement mechanism should be included. Note, however, that
the escapement mechanism does not affect directly the occurrence of phase
synchronization, but is a necessary element in the system. In this chap-
ter, escapement (7.11) was used. However, other escapement mechanisms
can/may be used as for example the ones presented in previous chapters.

7.5 Discussion

This chapter has presented a new model for the original Huygens setup of pendu-
lum clocks. The model incorporates the flexibility of the coupling structure and it
has been derived by using the FE method in combination with a component mode
synthesis technique. By means of numerical analysis, the possible limit behaviours
of the system, for certain combinations of parameter values and initial conditions,
have been determined. It has been found that the coupled pendula may show
in-phase and anti-phase synchronized motion.

On the one hand, the obtained results are comparable to the results obtained with
more simplified models, as the ones considered in previous chapters. For instance,
the results for a slightly damped bar, presented in Chapter 3, are in good agreement
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with the results presented in Figure 7.5, whereas the results presented in Figure 7.8
for a flexible structure with large damping are in line with the analysis presented
in Chapter 4. On the other hand, other limit behaviours have been observed in
the coupled pendula, namely quenching (oscillation death), beating death, and
seemingly chaotic motion. As far as is known, these ‘stationary’ solutions were
not reported by Huygens.

Hence, it should be clear that the derived model for the Huygens setup of coupled
pendulum clocks is more complete, not only in the sense that it takes into account
more properties of the coupling structure, but also because it reveals that there
are more limit solutions besides in-phase and anti-phase synchronization.

Finally, note that there is still a challenge: a study of the stability of the ‘station-
ary’ or limit solutions presented in the previous section. However, this stability
study turns out to be complicated, in part, due to the impulsive nature of the
escapement mechanism. A recommendation for addressing this issue is provided
in the next chapter.
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Chapter 8
Conclusions and Recommendations

I think and think for months and years. Ninety-nine times, the
conclusion is false. The hundredth time I am right.

Albert Einstein (1879 - 1955)

Abstract In this chapter, conclusions of this thesis are given. In addition,
recommendations for future research directions are provided.

8.1 Conclusions

In this thesis, the occurrence of synchronization in pairs of nonlinear oscillators
interacting via Huygens’ coupling has been investigated. By means of analytic
results, computer simulations, and experimental results it has been demonstrated
that the “sympathy” observed by Huygens more than 3 centuries ago in a pair of
pendulum clocks, can also be observed even if the pendulums are replaced by other
nonlinear oscillators. Although Huygens’ experiment has been revisited several
times, in literature, the analysis always centers on a specific type of oscillators,
namely metronomes. Consequently, the objective of this thesis is to extend the
study of Huygens’ experiment on synchronization to other second order self-driven
oscillators with Huygens’ coupling.

In the first part of this thesis, the problem of natural, i.e. unforced synchroniza-
tion of coupled second order nonlinear oscillators has been addressed. It has been
shown that two self-sustained nonlinear oscillators linked via Huygens’ coupling,
i.e. a single dof suspended rigid bar, may synchronize in-phase or in anti-phase
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depending on the amount of coupling strength, i.e. the ratio between the oscil-
lators’ mass and the mass of the coupling bar. Two cases have been considered,
namely oscillators with small coupling strength, small damping, weak excitation
forces, and weak nonlinearities and oscillators without these limitations.

The first case has been studied in Chapter 3. Sufficient conditions for the existence
and stability of synchronous solutions in the coupled oscillators have been derived
by using the Poincaré perturbation method based on a small parameter. This
small parameter appears naturally in the system and corresponds to the coupling
strength. The theoretical results are supported by means of computer simulations
and experimental results. It has been found that when the coupling strength is in-
creased (but still weak), i.e. by decreasing the mass of the coupling bar, anti-phase
synchronization is the only expected stable synchronous mode, whereas when the
coupling strength is decreased, i.e. by increasing the mass of the coupling bar, it is
possible to have two stable synchronous solutions, namely in-phase and anti-phase
synchronized motion, depending on the initial conditions. Once the oscillators
have synchronized in anti-phase, the coupling bar no longer influences the oscilla-
tors because it has come to rest and, consequently, the oscillation frequency will
be determined by the uncoupled oscillators. However, when the oscillators have
synchronized in-phase, the coupling bar converges to an oscillatory motion, which
will influence the oscillation frequency of the oscillators.

The second case, i.e. coupled oscillators without the above mentioned limitations
has been studied in Chapter 4. Since it is much more difficult to study this case an-
alytically, the synchronized motion in these oscillators has been largely illustrated
by means of experiments. In addition, some conditions related to the stability
of the anti-phase synchronous motion have been derived. These conditions are
in good agreement with computer simulations and with the experiments. Similar
to the case studied in Chapter 3, it has been found that the synchronized limit
behaviour in the oscillators is influenced by the mass of the coupling bar, i.e. by
the coupling strength. Furthermore, from a comparison of the obtained results
in Chapter 3 and Chapter 4, it has been concluded that the limit synchronizing
behaviour of the coupled oscillators not only depends on the magnitude of the
coupling strength but also the amount of damping in the system has an important
influence on the type of synchronized behaviour.

The second part of the thesis has presented a study of controlled synchronization
of oscillators with Huygens’ coupling.

First, in Chapter 5, the problem of (controlled) synchronization of chaotic oscil-
lators has been considered. It has been shown that by driving the coupling bar
with an external periodic excitation, it is possible to trigger the onset of chaos
in the oscillators. The mass of the coupling bar has been considered as the bi-
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furcation parameter. When the oscillators behave chaotically, the synchronization
phenomenon does not occur naturally. Consequently, it has been demonstrated
that by using a master/slave configuration, it is possible to achieve (controlled)
synchronization in the chaotic oscillators. Additionally, it has been shown that
the chaotic behaviour may disappear when the oscillators are synchronized in
anti-phase.

Secondly, the effect of time delay in the synchronized motion of possibly remote
oscillators with Huygens’ coupling has been investigated in Chapter 6. It has been
assumed that the oscillators are not physically connected via the coupling bar.
Rather, a suitable control input is created and applied to each oscillator, such
that, in closed loop, the oscillators resemble a pair of oscillators with Huygens’
coupling. In this approach, the oscillators do not need to be at the same location
and moreover, the mechanism generating the control input should be implemented
separately, using for instance a computer. Consequently, the possibility of hav-
ing communication time-delays (either in the oscillators or in the applied control
input) comes into play. The onset of in-phase and anti-phase synchronization in
the coupled/controlled oscillators has been studied as a function of the coupling
strength and the time delay. It has been found that the synchronized motion of
the oscillators with delayed coupling may experience a phase-flip bifurcation, i.e.
an abrupt change from in-phase to antiphase synchronization and vice versa due
to a variation in the time delay and/or due to a variation in the magnitude of
coupling strength. For the three types of oscillators considered there is a strik-
ing similarity in the limit behaviour of the oscillators. These results suggest that
the limit behaviour of the system is independent of the type of controller used to
resupply energy into the system.

In the third part of this thesis, a new model for the original Huygens setup of
pendulum clocks has been derived and presented in Chapter 7. The model of the
classical Huygens experiment on synchronization used in Chapters 2 to 6, and
the ones reported in the literature are simplifications of the real setup of coupled
pendulum clocks used by Huygens: the coupling bar has been considered as a single
dof rigid body. However, in the real Huygens experiment, the coupling structure,
to which the clocks are attached, is indeed an infinite dimensional system, since
the structure is flexible.

In the derived model, the coupling bar is considered as a horizontal flexible beam
and the chairs are replaced by two flexible vertical beams. It has been assumed
that all three beams can experience bending and axial stretching. The model of
the coupling structure has been derived by using the FE method and a component
mode synthesis technique in order to reduce the number of dofs in the FE model.
Each pendulum clock has been modelled as a self-driven, damped pendulum con-
sisting of a small bob attached to the bottom of a massless rigid bar. Suitable
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control inputs for both pendula have been included in order to mimic the escape-
ment mechanism that keeps a pendulum clock running. By means of a numerical
analysis, the possible limit behaviours of the system, for certain combinations of
parameters and initial conditions, have been determined. It has been found that
important parameters that influence the limit behaviour are the mass of each pen-
dulum, the mass of the horizontal coupling bar, the damping in the system, and
the cross sectional area of the vertical supports, on which the horizontal coupling
bar is placed. The numerical analysis has revealed that in many situations the cou-
pled pendula show in-phase and anti-phase synchronized motion. However, there
exist other limit behaviours not reported by Huygens, like quenching (oscillation
death), beating death, seemingly chaotic motion, and unsynchronized behaviour.

8.2 Recommendations

Based on the results of this thesis, some recommendations and directions for future
research are given below.

• In Chapter 3, analytical conditions for existence and stability of in-phase and
anti-phase synchronized motion in a pair of nonlinear oscillators have been
derived under the assumption that the oscillators are identical. However,
in the experimental analysis it has been shown that the oscillators show
synchronized behaviour even when there are unavoidable differences between
them. Hence, a natural extension of the analytic results presented in Chapter
3 is to derive existence and stability conditions for the case of nonidentical
oscillators. The machinery of the Poincaré method may not be helpful in
this case and consequently, a different mathematical tool should be used in
the analysis.

• The analytic stability conditions (only for the case of anti-phase synchro-
nization) presented in Chapter 4 have been derived under the assumption of
small oscillations. Consequently, further research is needed in order to prove
the global stability of the in-phase and anti-phase synchronized motion of
the oscillators. At this point it is worth to note that in a pair of oscillators
interacting via Huygens’ coupling, both oscillators receive the same “input”
(the influence of the bar on them is the same). Hence, in order to study the
in-phase motion, some kind of converge criterion cf. [65], may be used.

• The nonlinear controllers used in Chapter 5, require inclusion of a compen-
sation term in order to deal with the nonlinearities and/or to cancel the
influence of the coupling bar. Sometimes, however, it is desired to have a
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controller that on the one hand is as simple as possible, but on the other
hand should be robust enough to guarantee that the stability is not com-
promised. Hence, it would be interesting to perform a stability analysis of
the (in-phase and/or anti-phase) synchronization error dynamics when the
simple controller presented at the end of the chapter is used. Note that
this control law has the advantage that it does not require knowledge of the
parameters of the oscillators to be controlled.

• The analysis presented in Chapter 6 has focused mainly on determining the
influence of the time delay and the magnitude of the coupling strength in
the limit behaviour of a pair of coupled oscillators. However, it has been as-
sumed that the time delay is constant and is the same for all communication
channels. Hence, future work may focus on considering different time delays
in the communication channels. Additionally, the analysis of the phase-flip
bifurcation for the case of n oscillators with Huygens’ coupling seems to be
the next step.

• In Chapter 7, a new model for the classical Huygens’ experiment on syn-
chronization has been derived and numerical results illustrating the limit
behaviour of the system, including in-phase and anti-phase synchronized
motion of the pendula, have been presented. Future research may focus on
performing a rigorous stability study of these limit solutions. This of course
requires having a suitable model consisting of a partial differential equa-
tion, describing the behaviour of the flexible structure, plus two ordinary
differential equations, describing the motion of the pendula. Furthermore,
it is interesting to investigate the influence of the distance that exists be-
tween the connection points of pendula in the limit behaviour of the coupled
pendula. In other words, to determine how the synchronized behaviour is
affected when the pendula are close each other and when they are further
apart. Note that the FE model presented in Chapter 7 allows to perform
such an analysis.

• In general, this thesis focuses on pairs of self-sustained nonlinear oscilla-
tors. A direction for future research is to extend the analysis to the case
of n arbitrary oscillators interacting via Huygens coupling, cf. [16]. One
can distinguish two challenges in this case. One challenge is the issue of de-
termining all the limit synchronous solutions in the system of n oscillators.
Furthermore, there is the problem of determining the global stability of these
solutions.

• Another extension of the results of this research is related to the class of
oscillators used in the analysis. Here, only second order oscillators have
been considered. This is in part due to the fact that each pendulum clock
in Huygens’ classical experiment on synchronization may be casted into this
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class of oscillators. However, there are several interesting oscillatory systems
that do not belong to the class of second order oscillators. For example the
Lorenz system, the Chua circuit, and neural models like the Hindmarsh-
Rose model. Consequently, future work on synchronization of these kinds of
systems by using the Huygens’ coupling may form the next step. This may
require to consider Huygens’ coupling not as a physical coupling but rather
as a suitable control input.

This thesis has focused on the analysis of oscillatory systems interacting via Huy-
gens’ coupling. Next to the recommendations given above, it is interesting to
continue this research from a control point of view, i.e. to synthesize controllers
based on Huygens coupling. In order to motivate the reader, three potential ex-
amples are discussed.

• Control of humanoid robots Consider the problem of controlling and sta-
bilizing a humanoid robot. Controlling the walking motion may require to
force the two legs of the robot to move synchronously in opposite directions,
i.e. in anti-phase, see for instance [89]. Furthermore, in [23], it has been
suggested that the head of a humanoid may be stabilized during locomotion
by ‘synchronizing’ the head pitch rotation and the trunk pitch rotation in
anti-phase. In general, in a humanoid robot one can distinguish both in-
phase and anti-phase correlations in the motions of its components (arms,
legs, knees, hips, antiphase rotation of upper and lower body, etc.). Hence
the problem to be considered for future research is how to synthesize a con-
troller (based on Huygens’ coupling) such that synchronized locomotion of
a humanoid robot is achieved.

• Control of parametric roll As a second example consider the case of
stabilization of parametric roll. Parametric roll - heavy roll motion in a ship
- is an undesired phenomenon because it may produce cargo damage or loss,
delay or even suspension of the activities performed by the crew, seasickness
of passengers and crew, and in the worst case it can lead to the capsizing of
the ship. In order to prevent the onset of parametric roll and/or to reduce
the effects of this phenomenon, some ships are equipped with active U-tanks.
When the ship is experiencing heavy roll motion, the water in the U-tank is
forced to move in anti-phase (via a pump) with respect to the roll motion. As
a result, the weight of the water provides a counteracting force to the force
exerted by the waves. The challenge in this example is again to synthesize
a suitable controller (inspired by Huygens coupling), such that the pump
is controlled to force the water in the U-tank to move in anti-phase with
respect to the roll motion.
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• Controlled transmission in a wireless sensor network Consider the
problem of reliable data transmission (collision-free messages) in a wireless
sensor network. In [47], it has been found that this can be achieved by anti-
phase synchronization of the transmission scheduling of the nodes. Moreover,
given two neighboring nodes in the network, by using anti-phase synchro-
nization it may be possible to organize sleep cycles for the nodes, such that
while one node is transmitting (awake), its neighbor is sleep and therefore
the latter will consume less energy. Obviously, a possible mechanism for real-
izing anti-phase synchronization at the nodes is again the Huygens coupling.
Hence, future work should focus on determining the conditions, under which
a controller or algorithm, based on Huygens’ coupling, may lead to robust
wireless transmission and at the same time reduction in the consumption of
energy at the nodes.

Summarizing, the results presented in this thesis confirm that the observations
made by Huygens extend beyond pendulum clocks. Further research of this excit-
ing topic is required but it is the belief of the author that the results presented here
have provided new insight in understanding the synchronized motion of coupled
oscillators.

When one looks at the intriguing order that exists in the cosmos, one can easily
reach the conclusion that

synchronization

is one of the most pervasive behaviours in the universe.
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Appendix A
Proof of Theorem 1.1

Proof. Denote by βs, s = 1, . . . , l, the deviations from the initial values between
solution of system (1.10) and the solution of the generating system (1.11), i.e.

βs = ys(0)− y0
s(0), s = 1, . . . , l. (A.1)

The Poincaré method searches for solutions ys(t, β1, . . . , βl, µ), s = 1, . . . , l, of
(1.10) in the form of power series in µ and βs, s = 1, . . . , l, i.e.

ys(t, β1, . . . , βl, µ) = ys(t, 0, . . . , 0, 0)︸ ︷︷ ︸
y0
s(t)

+

l∑
i=1

∂ys(t, 0, . . . , 0, 0)

∂βi
βi

+
∂ys(t, 0, . . . , 0, 0)

∂µ
µ+

1

2

l∑
i=1

l∑
j=1

∂2ys(t, 0, . . . , 0, 0)

∂βiβj
βiβj

+
1

2

∂2ys(t, 0, . . . , 0, 0)

∂µ2
µ2 +

1

2

l∑
i=1

∂2ys(t, 0, . . . , 0, 0)

∂βi∂µ
βiµ+ . . . .

(A.2)

This solution can be rewritten in the form

ys(t, β1, . . . , βl, µ) = y0s(t)+
l∑
i=1

Asiβi+Bsµ+
l∑
i=1

l∑
j=1

Csijβiβj +
l∑
i=1

Dsiβiµ+Esµ
2 + . . . ,

(A.3)
where s = 1, . . . , l, y0

s(t) is as given in (1.14) and Asi, Bs, Csij , Dsi, and Es are
so far unknown functions of time (if one compares (A.2) with (A.3) then it is easy
to see that Asi = ∂ys(t,0,...,0,0)

∂βi
, Bs = ∂ys(t,0,...,0,0)

∂µ , and so on).

Likewise, functions fs(y1, . . . , yl), s = 1, . . . , l in equation (1.10) are expanded as
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a Taylor series around y0
s , s = 1, . . . , l. This yields

fs(y1, . . . , yl) = fs(y
0
1 , . . . , y

0
l ) +

l∑
p=1

∂fs(y
0
1 , . . . , y

0
l )

∂yp
(yp − y0p)

+
1

2

l∑
p=1

l∑
q=1

∂2fs(y
0
1 , . . . , y

0
l )

∂yp∂yq
(yp − y0p)(yq − y0q) + . . . . (A.4)

By using (1.14), (A.1), and (A.3), expression (A.4) is rewritten as

fs(y1, . . . , yl) = fs
(
α1e

λ1t, . . . , αke
λkt, 0, . . . , 0

)
+

l∑
p=1

∂fs
(
α1e

λ1t, . . . , αke
λkt, 0, . . . , 0

)
∂yp

a

+
1

2

l∑
p=1

l∑
q=1

∂2fs
(
α1e

λ1t, . . . , αke
λkt, 0, . . . , 0

)
∂yp∂yq

ab+ . . . , (A.5)

where a =
[∑l

i=1Apiβi +Bpµ+
∑l
i=1

∑l
j=1 Cpijβiβj +

∑l
i=1Dpiβiµ+ Epµ

2
]

and b =
[∑l

i=1Aqiβi +Bqµ+
∑l
i=1

∑l
j=1 Cqijβiβj +

∑l
i=1Dqiβiµ+ Eqµ

2
]
.

The unknown functions Asi, Bs, Csij , Dsi, and Es in (A.3) can be obtained by
substitution of the expressions for ys and fs in the original equation (1.10) and
equating the coefficients of similar terms in βs and µ. This is done as follows.
First, (A.3) and (A.5) are substituted in (1.10). This yields (after neglecting terms
in µ and βi of order greater than two)

ẏ0
s +

l∑
i=1

Ȧsiβi + Ḃsµ+

l∑
i=1

l∑
j=1

Ċsijβiβj +

l∑
i=1

Ḋsiβiµ+ Ėsµ
2 = λsy

0
s

+λs

l∑
i=1

Asiβi + λsBsµ+ λs

l∑
i=1

l∑
j=1

Csijβiβj + λs

l∑
i=1

Dsiβiµ+ λsEsµ
2

+µfs
(
α1e

λ1t, . . . , αke
λkt, 0, . . . , 0

)
+

l∑
p=1

l∑
i=1

∂fs
(
α1e

λ1t, . . . , αke
λkt, 0, . . . , 0

)
∂yp

Apiβiµ

+

l∑
p=1

∂fs
(
α1e

λ1t, . . . , αke
λkt, 0, . . . , 0

)
∂yp

Bpµ
2, s = 1, . . . , l. (A.6)

Next, by equating terms depending on βs, s = 1, . . . , l, and µ yields the following
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set of first order linear equations

Ȧsi − λsAsi = 0, s = 1, . . . , l (A.7)

Ḃs − λsBs = fs
(
α1e

λ1t, . . . , αke
λkt, 0, . . . , 0

)
, s = 1, . . . , l. (A.8)

Ċsij − λsCsij = 0, s, i, j = 1, . . . , l. (A.9)

Ḋsi − λsDsi =

l∑
p=1

∂fs
(
α1e

λ1t, . . . , αke
λkt, 0, . . . , 0

)
∂yp

Api, s, i = 1, . . . , l.(A.10)

Ės − λsEs =

l∑
p=1

∂fs
(
α1e

λ1t, . . . , αke
λkt, 0, . . . , 0

)
∂yp

Bp, s = 1, . . . , l. (A.11)

The values at t = 0 for the above set of equations can be obtained from (A.1) and
(A.3) and it follows that

Asi(0) = δsi, Bs(0) = Csij(0) = Dsi(0) = Es(0) = 0, (A.12)

where δsi is the Kronecker delta as defined in (1.18).

Integration of (A.7) to (A.11) and considering (A.12) yields the solutions

Asi(t) = δsie
λst, s = 1, . . . , l. (A.13)

Bs(t) = eλst
∫ t

0

fs
(
α1e

λ1u, . . . , αke
λku, 0, . . . , 0

)
e−λsudu, s = 1, . . . , l. (A.14)

Csij(t) = 0, s, i, j = 1, . . . , l. (A.15)

Functions Dsi and Es do not play a significant role in the upcoming analysis (this
is shown later in the proof) and therefore, their explicit solution is not computed.
Expressions (A.13)-(A.15) can now be substituted in (A.3).

At this point, it is worth to remember that we are looking for periodic solutions
among the solutions (A.3) of (1.10) when µ is a small parameter. Then, let the
period of a certain periodic solution be equal to T̃ = T + τc(µ) with τc −→ 0 when
µ −→ 0. A solution of (1.10) will be called periodic (of period T̃ ) if the following
condition is satisfied

ys(t+ T̃ )− ys(t) = 0, s = 1, . . . , k. (A.16)

or by considering the initial value of (A.16) at t = 0

ys(T̃ )− ys(0) = 0, s = 1, . . . , k. (A.17)

Note that subindex k is used instead of subindex l because for s = k + 1, . . . , l

condition (A.17) is trivially satisfied. Actually, (A.17) provides necessary and suf-
ficient conditions for the periodicity of the solution ys(t) of (1.10). For a theorem
on this, the reader is referred to [13] and [41].
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Next, since τc(µ) is assumed to be a small parameter (τc(µ) = 0 for µ = 0), it is
possible to expand ys(T̃ ) around τc(µ) = 0. This yields

ys(T̃ ) = ys(T + τc(µ)) = ys(T ) + τc(µ)ẏs(T ) +
τ2
c (µ)

2
ÿs(T ) + . . . , s = 1, . . . , k.

(A.18)
The values ys(T ), ẏs(T ), etc, can be determined from (A.3) by replacing the func-
tions Asi, Bs, Csij , etc by their respective values at t = T .

Just before doing this, it is convenient to remember that

λs = insω = ins
2π

T
, s = 1, . . . , k, (A.19)

and consequently
λsT = 2πnsi, s = 1, . . . , k. (A.20)

Taking this into account in (A.13) to (A.15), yields the following expressions

Asi(T ) = δsi, s, i = 1, . . . , k, (A.21)

Bs(T ) =

∫ T

0

fs
(
α1e

λ1t, . . . , αke
λkt, 0, . . . , 0

)
e−λstdt, s = 1, . . . , k. (A.22)

Substitution of these expressions in (A.3) up to second order yields

ys(T ) = y0s(T )+βs+µ

∫ T

0

fs
(
α1e

λ1t, . . . , αke
λkt, 0, . . . , 0

)
e−λstdt+

l∑
i=1

Dsi(T )βiµ+Esµ
2

(A.23)
and the time derivative of (A.3) up to second order verifies1

ẏs(T ) = ẏ0
s(T )+

l∑
i=1

Ȧsi(T )βi+Ḃs(T )µ+

l∑
i=1

l∑
j=1

Ċsij(T )βiβj+

l∑
i=1

Ḋsi(T )βiµ+Ėsµ
2.

(A.24)
Then, the first order approximation of (A.18) is written as

ys(T̃ ) = y0s(T ) + βs + µ

∫ T

0

fs
(
α1e

λ1t, . . . , αke
λkt, 0, . . . , 0

)
e−λstdt

+

l∑
i=1

Dsi(T )βiµ+ Esµ
2 + τc(µ)ẏ0s(T ) + τc(µ)

l∑
i=1

Ȧsi(T )βi + τc(µ)Ḃs(T )µ

+τc(µ)

l∑
i=1

l∑
j=1

Ċsij(T )βiβj + τc(µ)

l∑
i=1

Ḋsi(T )βiµ+ τc(µ)Ės(T )µ2, s = 1, . . . , k. (A.25)

1Note that for convenience the explicit expressions for Ȧsi, Ḃs, and so on, have not been
included. Actually, these expressions will be irrelevant as will be shown later in this proof.
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From equation (1.12) and (A.20) it follows that

y0
s(T ) = αse

λsT = αs and ẏ0
s(T ) = λsαse

λsT = λsαs, s = 1, . . . , k. (A.26)

At this point, it should be noted that for µ −→ 0, it should hold that τc(µ) −→ 0

and βs −→ 0. Hence, τ and βs are now written as power series in µ. Note that in
the expansions of τc(µ) and βs the zero order terms must be absent. The expansion
of τ and βs verify

τc(µ) = µτ1 + µ2τ2 + . . . (A.27)
βs = µβs1 + µ2βs2 + . . . , s = 1, . . . , k. (A.28)

Then, by substitution of (A.26-A.28) in (A.25) the following is obtained

ys(T̃ ) = αs + βs + µ

∫ T

0

fs
(
α1e

λ1u, . . . , αke
λku, 0

)
e−λstdt

+

l∑
i=1

Dsi(T )[µβi1 + µ2βi2]µ+ Esµ
2 + λsαs[µτ1 + µ2τ2]

+[µτ1 + µ2τ2]

l∑
i=1

Ȧsi(T )[µβi1 + µ2βi2] + [µτ1 + µ2τ2]Ḃs(T )µ

+[µτ1 + µ2τ2]

l∑
i=1

l∑
i=1

Ċsij(T )[µβi1 + µ2βi2][µβj1 + µ2βj2]

+[µτ1 + µ2τ2]

l∑
i=1

Ḋsi(T )[µβi1 + µ2βi2]µ+ [µτ1 + µ2τ2]Ės(T )µ2, s = 1, . . . , k. (A.29)

Neglecting terms of order ≥ 2 in µ yields

ys(T̃ ) = αs+βs+µ

∫ T

0

fs
(
α1e

λ1t, . . . , αke
λkt, 0, . . . , 0

)
e−λstdt+λsαsτ1µ. (A.30)

Consequently, the periodicity condition (A.17) can be written as

ys(T̃ )−ys(0) = αs+βs+µ

∫ T

0
fs
(
α1e

λ1t, . . . , αke
λkt, 0, . . . , 0

)
e−λstdt+λsαsτ1µ−ys(0) = 0.

(A.31)

Finally, by using (A.1) in the above equation it follows that

ys(T̃ )− ys(0) = µ

∫ T

0

fs
(
α1e

λ1t, . . . , αke
λkt, 0, . . . , 0

)
e−λstdt+ λsαsτ1µ = 0.

(A.32)
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According to (1.14), there will be k equations like (A.32), i.e.

y1(T̃ )− y1(0) = µ

∫ T

0

f1

(
α1e

λ1t, . . . , αke
λkt, 0, . . . , 0

)
e−λ1tdt+ λ1α1τ1µ = 0,

... (A.33)

yk(T̃ )− yk(0) = µ

∫ T

0

fk
(
α1e

λ1t, . . . , αke
λkt, 0, . . . , 0

)
e−λktdt+ λkαkτ1µ = 0.

The value of τ1 can (for example) be obtained from the last equation of (A.33)

τ1 = − 1

λkαk

∫ T

0

fk
(
α1e

λ1t, . . . , αke
λkt, 0, . . . , 0

)
e−λktdt. (A.34)

This value is then used in the first k − 1 equations of (A.33).

y1(T̃ )− y1(0) = µ

∫ T

0
f1
(
α1e

λ1t, . . . , αke
λkt, 0, . . . , 0

)
e−λ1tdt

− µ
λ1α1

λkαk

∫ T

0
fk

(
α1e

λ1t, . . . , αke
λkt, 0, . . . , 0

)
e−λktdt = 0,

... (A.35)

yk−1(T̃ )− yk−1(0) = µ

∫ T

0
fk−1

(
α1e

λ1t, . . . , αke
λkt, 0, . . . , 0

)
e−λk−1tdt

− µ
λk−1αk−1

λkαk

∫ T

0
fk

(
α1e

λ1t, . . . , αke
λkt, 0, . . . , 0

)
e−λktdt = 0.

Define

ψs := ys(T̃ )− ys(0) = 0 and
(A.36)

Ps :=

∫ T

0

fs
(
α1e

λ1t, . . . , αke
λkt, 0, . . . , 0

)
e−λstdt, s = 1, . . . , k − 1.

Then, (A.35) is rewritten as

ψs = µPs − µ
λsαs
λkαk

= 0, s = 1, . . . , k − 1, (A.37)

and multiplying both sides of (A.37) by λkαk
µ yields

ψ̄s = λkαkPs − λsαsPk = 0, s = 1, . . . , k − 1. (A.38)

Finally, by using (1.13) and dividing both sides of (A.38) by iω it follows that

Qs =
ψ̄s
iω

= nkαkPs − nsαsPk = 0, s = 1, . . . , k − 1. (A.39)
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Note that in (A.39), the number of unknowns α1, . . . , αk is one larger than the
number of equations. Therefore, one of the α’s can be chosen arbitrarily and
according to the conditions of Theorem 1,

αk−1 = αk. (A.40)

Thus, the question about the existence of periodic solutions of system (1.10) re-
duces to the question of solvability of (A.39)-(A.40) with respect to α1, . . . , αk.

On the basis of the well-known theorem on the existence of implicit functions, see
for instance [39], equation (A.39) will have, for sufficiently small µ, one and only
one solution αs, s = 1, . . . , k, if and only if the Jacobian matrix associated to
(A.39) is invertible, i.e.

det




∂Q1

∂α1
. . . ∂Q1

∂αk−1

...
. . .

...
∂Qk−1

∂α1
. . . ∂Qk−1

∂αk−1


∣∣∣∣∣∣∣∣
α1=α∗

1 ,...,αk−1=α∗
k−1

 6= 0, (A.41)

where the set of constants α∗s , s = 1, . . . , k − 1 satisfy (A.39).

The partial derivatives of the function Qs are computed according to (A.39). This
yields

∂Qs(α1, . . . , αk)

∂αj
= nkαk

∂Ps
∂αj
− nsαs

∂Pk
∂αj

− δsjnsPk s, j = 1, . . . , k − 1. (A.42)

From this equation, it is clear that the rows/columns of the Jacobian matrix are
linearly independent and consequently (A.41) holds and the computed solution will
be unique.

Finally, a proof for the stability condition/criteria presented in equation (1.18) is
presented.

In virtue of (1.14) it follows that the system only has k periodic solutions. For
investigating the stability of these periodic solutions it is convenient to obtain the
so called equations in variations [40].

It is possible to show that the characteristic equation, obtained when writing
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system (1.10) as a set of equations in variations, is given by∣∣∣∣∣∣∣∣∣
y11(T̃ )− ρ y12(T̃ ) · · · y1k(T̃ )

y21(T̃ ) y22(T̃ )− ρ · · · y2k(T̃ )
...

...
...

...
yk1(T̃ ) yk2(T̃ ) · · · ykk − ρ(T̃ )

∣∣∣∣∣∣∣∣∣ = 0. (A.43)

The values of ysj s, j = 1, . . . , k can be determined by using a property of the
equations in variations presented in [41]. It should be noticed that in the present
case, the periodic solution ϕs(T̃ ) = ys(T̃ ), s = 1, . . . , k, can be obtained from
(A.36), i.e.

ϕs(T̃ ) = ψs(T̃ ) + ys(0). (A.44)

By using (A.1) it follows that

ϕs(T̃ ) = ψs(T̃ ) + βs + y0
s(0) = ψs(T̃ ) + βs + αs, s = 1, . . . , k, (A.45)

where βs is a constant. Then, the elements ysj of (A.43) are given by [41]

ysj =
∂ψs(T̃ )

∂αj
+ δsj , s, j = 1, . . . , k, (A.46)

where δsj denotes the Kronecker delta. Consequently, (A.43) is rewritten as∣∣∣∣∣∣∣∣∣∣∣

∂ψ1(T̃ )
∂α1

+ 1− ρ ∂ψ1(T̃ )
∂α2

. . . ∂ψ1(T̃ )
∂αk

∂ψ2(T̃ )
∂α1

∂ψ2(T̃ )
∂α2

+ 1− ρ . . . ∂ψ2(T̃ )
∂αk

...
...

...
...

∂ψk(T̃ )
∂α1

∂ψk(T̃ )
∂α2

. . . ∂ψk(T̃ )
∂αk

+ 1− ρ

∣∣∣∣∣∣∣∣∣∣∣
= 0. (A.47)

It should be noted that equations (A.37) only hold under the assumption that
ψk = 0 (see last equation of (A.33)). Using this fact in (A.47), it follows that the
characteristic equation becomes∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ψ1(T̃ )
∂α1

+ 1− ρ ∂ψ1(T̃ )
∂α2

· · · ∂ψ1(T̃ )
∂αk

∂ψ2(T̃ )
∂α1

∂ψ2(T̃ )
∂α2

+ 1− ρ · · · ∂ψ2(T̃ )
∂αk

...
...

...
...

∂ψk−1(T̃ )
∂α1

· · · ∂ψk−1(T̃ )
∂αk−1

+ 1− ρ ∂ψk−1(T̃ )
∂αk

0 0 · · · 1− ρ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (A.48)

Therefore, one of the roots is ρ = 1. From the stability criteria for periodic motion,
cf. [40], it follows that the stability of the periodic solutions will be determined
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by the remaining roots of (A.48), which are determined from∣∣∣∣∣∣∣∣∣∣∣

∂ψ1(T̃ )
∂α1

+ 1− ρ ∂ψ1(T̃ )
∂α2

· · · ∂ψ1(T̃ )
∂αk−1

∂ψ2(T̃ )
∂α1

∂ψ2(T̃ )
∂α2

+ 1− ρ · · · ∂ψ2(T̃ )
∂αk−1

...
...

...
...

∂ψk−1(T̃ )
∂α1

∂ψk−1(T̃ )
∂α2

· · · ∂ψk−1(T̃ )
∂αk−1

+ 1− ρ

∣∣∣∣∣∣∣∣∣∣∣
= 0. (A.49)

In order to continue, it should be noted that for µ = 0, it follows that ρs = eλsT .
In (A.27), it has been assumed that the period when µ is small becomes T̃ =

T + τ = T + µτ1. Therefore, we can look for the roots of (A.49) in the form

ρs(µ) = eλsT̃ = eλsT eµλsτ1 = eλsT (1 + χµ+ h.o.t.) s = 1, . . . , k. (A.50)

By using this expression and the fact that eλsT = 1 for s = 1, . . . , k − 1 it follows
that ∣∣∣∣∣∣∣∣∣∣∣

∂ψ1(T̃ )
∂α1

− µχ ∂ψ1(T̃ )
∂α2

· · · ∂ψ1(T̃ )
∂αk−1

∂ψ2(T̃ )
∂α1

∂ψ2(T̃ )
∂α2

− µχ · · · ∂ψ2(T̃ )
∂αk−1

...
...

...
...

∂ψk−1(T̃ )
∂α1

∂ψk−1(T̃ )
∂α2

· · · ∂ψk−1(T̃ )
∂αk−1

− µχ

∣∣∣∣∣∣∣∣∣∣∣
= 0. (A.51)

Now the condition of having all the roots of (A.49) satisfying |ρi| < 0, i = 1, . . . , k−
1 is satisfied if Re {χ} < 0. Finally, by factorizing the term µ

λkαk
from the above

equation (see (A.38)-(A.39)), it follows that the characteristic equation determining
the stability of the periodic solutions is given by:

iωµ

λkαk

∣∣∣∣∣∣∣∣∣∣

∂Q1

∂α1
− nkαkχ ∂Q1

∂α2
· · · ∂Q1

∂αk−1
∂Q2

∂α1

∂Q2

∂α2
− nkαkχ · · · ∂Q2

∂αk−1

...
...

...
...

∂Qk−1

∂α1

∂Qk−1

∂α2
· · · ∂Qk−1

∂αk−1
− nkαkχ

∣∣∣∣∣∣∣∣∣∣
= 0. (A.52)
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Appendix B
Euler beam element matrices

The Euler element stiffness matrix is given by

ke =
EI

l3



Al2

I 0 0 −Al2I 0 0

0 12 6l 0 −12 6l

0 6l 4l2 0 −6l 2l2

−Al2I 0 0 Al2

I 0 0

0 −12 −6l 0 12 −6l

0 6l 2l2 0 −6l 4l2


, (B.1)

where A is the area of the cross-section of the beam element in [m2], I is the second
moment of area in [m4], E is the Young’s modulus in [N/m2], and l is the length
of the beam element in [m]. The Euler beam element consistent mass matrix is
given by

me =
ρAl

420



140 0 0 70 0 0

0 156 22l 0 54 −13l

0 22l 4l2 0 13l −3l2

70 0 0 140 0 0

0 54 13l 0 156 −22l

0 −13l −3l2 −22l 4l2

 , (B.2)

where ρ is the mass density of the beam material in [kg/m3].
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Appendix C
Static analysis for the flexible
coupling structure

In this Appendix, a static analysis for the coupling structure depicted in Figure
7.1 is conducted.

First, the influence of gravity on the structural deformation of the coupling struc-
ture is investigated. This requires to solve the following equation for q

Kq = fg = −Mḡ (C.1)

where ḡ = g
[

0 1 0 0 1 0 · · ·
]T

and g = 9.81 [m/s2] is the gravitational
acceleration. Non-zero entries of column ḡ refer to dofs representing displacements
in vertical direction. The resulting static mode (magnified by a factor 1000) q = ϕg
is depicted in Figure C.1. The maximum transversal displacement is 5.38× 10−4

[m]. It is verified that the influence of the gravity in the coupling structure is
negligible in the upcoming analysis, namely in the results presented in Section 7.3
and consequently, this effect is not taken into account.

Secondly, since the vertical beams must carry the weight of the horizontal beam
and the pendula, these may be prone to experience buckling. Hence, a buckling
analysis is performed. For this analysis it is assumed that each vertical beam has
its lower end fixed and its upper end pinned. For a beam of this type the critical

−1 0 1
0

0.5

1

[m]

[m
]

Figure C.1 Static mode due to gravity.
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load (or Euler load) Pc, for which static buckling occurs is given by [81]

Pc =
20.187 EI

l2
. (C.2)

Each vertical beam is at its upper end vertically loaded with half the weight of the
horizontal beam and the weight of one pendulum. Then, the total vertical load
applied to each vertical beam is given by

P =
1

2
mbg +mpg, (C.3)

where mb = 56.3 [kg] is the mass of the horizontal beam (see Table 7.1) and the
mass of one pendulum is assumed to be at most mp = 10 [kg]. Hence,

P = 3.743× 102 [N]. (C.4)

The critical load is obtained by substituting the parameter values given in Table
7.1 into equation (C.2). This yields

Pc = 1.221× 104 [N]. (C.5)

Since P << Pc, it is concluded that the vertical beams are not close to buckling.
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Samenvatting

Synchronisatie is één van de meest diep gewortelde en alomtegenwoordige fenome-
nen in de natuur. Het kan worden waargenomen bij mensen en andere levende
wezens, maar ook bij onbewuste entiteiten. Een aantal bekende voorbeelden
zijn de synchrone beweging van een school vissen, het synchroon oplichten van
vuurvliegjes, een danspaar dat samen danst op het ritme van de muziek, syn-
chrone activering van neuronen en pacemakercellen en de synchrone beweging
van pendule klokken. Op het eerste gezicht lijkt het bestaan van synchronisatie
in de natuur wonderbaarlijk. Het belangrijkste "geheim" achter dit fenomeen
is echter dat er communicatie (dit wordt aangeduid met koppeling) is tussen de
entiteiten/systemen, waardoor deze elkaar beïnvloeden. Deze koppeling kan bi-
jvoorbeeld worden gerealiseerd via een fysische verbinding of een chemisch proces.

Hoewel synchronisatie een veel voorkomend fenomeen is bij gekoppelde oscillerende
systemen, ligt de verklaring waarom synchronisatie optreedt niet altijd voor de
hand. Dit geeft aanleiding tot de volgende vragen: hoe synchroniseren gekoppelde
oscillatoren precies en onder welke voorwaarden? In sommige gevallen is het zeer
uitdagend om antwoorden te formuleren op deze vragen. Beschouw bijvoorbeeld
het fameuze voorbeeld van Christiaan Huygens, waarbij twee pendule klokken
gesynchroniseerde beweging vertonen, die in fase, maar ook in tegenfase kan zijn.
Huygens nam waar dat er een "medium" is, dat verantwoordelijk is voor de het
optreden van gesynchroniseerde beweging, namelijk de verbindingsbalk, waarmee
de twee pendule klokken gekoppeld zijn. Ondanks deze opmerkelijk correcte ob-
servatie ontbreekt echter tot op de dag van vandaag een volledige mathematis-
che verklaring (gebaseerd op geschikte modellen voor de pendules en de flexibele
verbindingsbalk) van dit fenomeen.

De doelstelling van dit proefschrift is om de mechanismen achter het optreden van
gesynchroniseerde beweging verder te onderzoeken. Het eerste deel van het proef-
schrift richt zich op de analyse van natuurlijke synchronisatie van willekeurige,
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identieke oscillatoren met Huygens koppeling. De originele experimentele set-up
van Huygens is hierbij enigszins aangepast, doordat iedere pendule klok wordt ver-
vangen door een (willekeurige) niet-lineaire oscillator. Bovendien wordt de flexibele
balk (de originele Huygens koppeling) vereenvoudigd tot een massa-demper-veer
system met één graad van vrijheid. De identieke oscillatoren worden beide aan de
massa gekoppeld. Iedere oscillator wordt aangestuurd door een kracht om steady-
state oscillaties te garanderen. De noodzaak van deze regelkracht komt voort uit
het feit dat beide pendule klokken, die Huygens gebruikte, voorzien waren van een
zogenaamd escapement mechanisme, dat periodiek een kortdurende kracht leverde
om iedere klok te laten lopen. Getoond wordt dat het optreden van synchronisatie
van de oscillatoren onafhankelijk is van het type regelkracht/energiebron. De
sleutel tot het optreden van synchronisatie wordt eerder gevonden in de Huygens
koppeling. Meer specifiek wordt aangetoond dat de massa van de koppeling in
hoge mate de uiteindelijke vorm van gesynchroniseerd gedrag, namelijk in fase
synchronisatie of tegenfase synchronisatie, bepaalt. De methode van Poincaré
wordt gebruikt om het bestaan van deze gesynchroniseerde bewegingen aan te to-
nen en de locale stabiliteit ervan te bepalen. Deze analytische methode kan worden
toegepast omdat het systeem een natuurlijke kleine parameter bevat, namelijk de
sterkte van de koppeling, die wordt bepaald door de ratio van de massa van een
oscillator en de massa van de koppeling.
Vervolgens wordt het synchronisatie probleem vanuit regeltechnisch oogpunt bekeken.
Allereerst wordt het synchronisatie probleem van twee oscillatoren die chaotisch
gedrag vertonen besproken. Het optreden van chaotisch gedrag in beide oscil-
latoren wordt geïnitieerd door de koppeling periodiek te exciteren. De massa
van de koppeling wordt beschouwd als de bifurcatie parameter. Als de oscilla-
toren chaotisch gedrag vertonen zal synchronisatie niet op een natuurlijke manier
optreden. Geregelde synchronisatie van chaotisch gedrag is echter wel mogelijk
door toepassing van een master-slave configuratie of een wederzijds synchronisatie
schema. Hierna wordt het effect van tijdsvertraging op de synchronisatie van de
oscillatoren met Huygens koppeling onderzocht. In dit geval wordt de mechanische
koppeling vervangen door een representatief dynamisch systeem. Dit dynamische
systeem genereert dusdanige regelsignalen voor de oscillatoren, zodat het totale
systeem in gesloten lus een paar oscillatoren met Huygens koppeling representeert.
De beide oscillatoren hoeven zich nu niet fysiek op dezelfde plaats te bevinden.
Het dynamische systeem dat de regelkrachten genereert wordt afzonderlijk op een
computer geïmplementeerd. Het moge duidelijk zijn dat bij deze opzet tijdver-
traging in de communicatie tussen oscillatoren en koppeling/regelsysteem relevant
kan worden. Het ontstaan van in fase en tegenfase synchronisatie in de gekop-
pelde/geregelde oscilatoren wordt vervolgens bestudeerd als een functie van de
sterkte van de koppeling en de tijdsvertraging.
In aanvulling op theoretische en numerieke analyse wordt natuurlijke en geregelde
synchronisatie van de oscillatoren gevalideerd door middel van experimenten, die
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worden uitgevoerd met behulp van een experimentele opstelling. Deze bestaat uit
een elastisch ondersteunde starre balk, die de Huygens koppeling representeert, en
twee daaraan bevestigde oscillatoren (massa-demper-veer systemen met één graad
van vrijheid), die de pendule klokken representeren. Zowel de starre balk als de
twee oscillatoren kunnen onafhankelijk worden geactueerd door regelkrachten. Een
belangrijke eigenschap van de opstelling is dat het dynamisch gedrag van zowel
de starre balk als de beide oscillatoren kan worden gemodificeerd door gebruik
te maken van terugkoppeling. Deze eigenschap is erg nuttig, omdat het hierdoor
mogelijk is om synchronisatie experimenten uit te voeren voor een brede klasse
van dynamische systemen.

Het laatste onderwerp van dit proefschrift behelst de modelvorming en analyse van
het originele experiment van Huygens. De modellen die in het eerste deel van het
proefschrift en in de literatuur gebruikt worden zijn sterke vereenvoudigingen van
de werkelijkheid: de koppeling wordt hier beschouwd als een elastisch ondersteund
star lichaam met één graad van vrijheid. In het originele experiment van Huygens
was de verbindings balk (de koppeling), waaraan de twee pendule klokken waren
bevestigd, in principe een elastisch continuüm. Resultaten van een rigoureuze
studie van in fase en tegenfase synchronisatie van de twee pendules gebaseerd op
een koppeling via een elastisch continuüm zijn, voor zover bekend nooit in de liter-
atuur besproken. Van de koppeling is een Eindige Elementen model gemaakt dat
na reductie geassembleerd is met de modellen van de twee pendules, resulterend in
een model bestaande uit een stelsel gekoppelde gewone differentiaalvergelijkingen.
Numerieke resultaten worden getoond, die mogelijke steady-state oplossingen van
het "werkelijke" Huygens experiment illustreren.

Samenvattend kan worden gesteld dat de resultaten van dit proefschrift laten zien
dat de gesynchroniseerde beweging geobserveerd door Huygens niet alleen optreedt
bij gekoppelde pendule klokken maar in veel algemenere zin.
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Resumen

Sincronización tipo Huygens de sistemas dinámicos: más
allá de los relojes de péndulo

La sincronización es uno de los comportamientos más dominantes en la naturaleza.
Este comportamiento puede ser observado en los seres vivos y en objetos inanima-
dos. Algunos ejemplos de sincronización que pueden ser conocidos para el lector
son: el fascinante movimiento de un cardumen o banco de peces, la emisión si-
multánea de luz en enjambres de luciérnagas, una pareja bailando en sincronía
con el ritmo de la música, neuronas y células del corazón produciendo impulsos
nerviosos sincronizados o el movimiento sincronizado de relojes de péndulo. A
primera vista, estos ejemplos sugieren que la existencia de sincronizacón en la na-
turaleza es algo milagroso. Sin embargo, el principal “secreto” detrás del fenómeno
de sincronización es que existe un canal de comunicación, llamado acoplamiento,
el cual permite la interacción de los seres, sistemas u objetos. Algunos ejemplos
de acoplamientos son: una interconexión física, un proceso químico.

Si bien es cierto que el fenómeno de sincronización es omnipresente, su origen
no siempre es perceptible. Debido a esto, es natural que surjan las siguientes
preguntas: ¿ cómo es que sistemas (osciladores) acoplados pueden sincronizarse?
¿bajo qué condiciones? Las respuestas a estas preguntas en la mayoría de los casos
no son sencillas de obtener y representan un reto científico. Considere por ejemplo
el famoso ejemplo de Christiaan Huygens de dos relojes de péndulo colgando de una
tabla de madera, la cual estaba colocada sobre dos sillas. Huygens observó que a
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partir de cierto instante, los péndulos de los relojes oscilaban en sincronía, ya fuese
en la misma dirección (en fase) o en direcciones opuestas (anti-fase). Basado en sus
observaciones, Huygens concluyó que hay un “medio” responsable del movimiento
sincronizado observado en sus relojes. Dicho medio es la tabla de madera de la
cual colgaban los relojes. A pesar de la simple –pero exacta– explicación dada por
Huygens, hoy en día no existe una explicación matemática y bien fundamentada de
este fenómeno. Puede decirse que esta carencia de una explicación formal se debe
a la falta de un modelo matemático adecuado del sistema de relojes de péndulo de
Huygens.

El propósito de esta tesis es continuar con la investigación del origen del movimiento
sincronizado que ocurre en sistemas, específicamente osciladores, que están acopla-
dos. La primera parte de la tesis considera el problema de sincronización natural
de osciladores que per se generan oscilaciones y que están acoplados a través de
un acoplamiento tipo Huygens. Esto significa que en el análisis aquí presentado,
el experimento realizado por Huygens es ligeramente modificado en el sentido que
cada reloj de péndulo es reemplazado por un oscilador (arbitrario) de segundo
orden y que tiene una respuesta no lineal. La tabla (flexible) de madera usada
por Huygens (esta tabla de madera es lo que en esta tesis se llama acoplamiento
de Huygens) es reemplazada por una barra rígida de un grado de libertad. Cada
oscilador es provisto con una entrada de control, la cual garantiza que las oscila-
ciones no se amortiguan. De hecho, esta entrada de control tiene la misma función
que el mecanismo de escape en los relojes de péndulo (este mecanismo produce el
peculiar sonido tic tac), el cual mantiene el péndulo del reloj oscilando. Los re-
sultados presentados en esta tesis muestran que el movimiento sincronizado de los
osciladores es independiente del tipo de mecanismo de escape usado para mantener
las oscilaciones. Mas bien, la barra rígida que acopla a los osciladores es considera-
da como el elemento clave que influye en la aparición de movimiento sincronizado
en los osciladores. En particular, la masa de la barra de acoplamiento determina
el tipo de sincronización que puede llegarse a observar en los osciladores, ya sea
sinchronización en fase o sincronización en anti-phase. El método de Poincaré es
usado como herramienta matemática para determinar la existencia y estabilidad
del movimiento sincronizado. El uso de este método es factible debido a que en
el sistema de osciladores con acoplamiento de Huygens aparece de manera natural
un parámetro pequeño. Este parámetro es la fuerza de acoplamiento, la cual está
determinada por la masa de la barra que acopla los osciladores.

En la segunda parte de esta tesis se estudia el problema de sincronización contro-
lada. Primero se considera el problema de sincronizar dos osciladores caóticos con
acoplamiento de Huygens. Se muestra que el comportamiento caótico en los os-
ciladores es iniciado al aplicar una excitación periódica a la barra de acoplamiento.
La masa de la barra se considera como parámetro de bifurcación. Cuando los
osciladores se comportan de manera caótica, el fenómeno de sincronización no
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aparecerá de manera natural. Por lo tanto es demostrado que al usar una configu-
ración de maestro-esclavo es posible forzar a los osciladores a que se sincronicen.
Después se investiga el efecto que un retardo en tiempo tiene en la aparición del
fenómeno de sincronización. En este caso la tabla de madera es reemplazada por
un modelo dinámico. Este sistema dinámico genera una entrada de control para
los osciladores de tal manera que en lazo cerrado el sistema se asemeja a un par
de osciladores con acoplamiento de Huygens. Se debe recalcar que bajo este en-
foque no es necesario que los osciladores estén ubicados en el mismo lugar y más
aún, el sistema dinámico que genera la señal de control para los osciladores debe
ser implementado de manera separada usando por ejemplo una computadora. En
consecuencia, existe la posibilidad de tener retardos en la comunicación (ya sea
en las señales de los osciladores o en la señal de control). La aparición del com-
portamiento sincronizado en los osciladores acoplados es analizada tomando como
parámetros de estudio la fuerza de acoplamiento y la magnitud del retardo.
El movimiento sincronizado (ya sea natural o controlado) de los osciladores es va-
lidado por medio de simulaciones en computadora y por medio de experimentos.
Los experimentos son ejecutados en una plataforma experimental la cual consiste
de dos osciladores (controlables) del tipo masa-resorte-amortiguador (en lugar de
los relojes de péndulo usados por Huygens) que están acoplados por medio de
una barra rígida controlable que esta soportada en los extremos por medio re-
sortes (esta representa la tabla de madera en el caso del experimento de Huygens).
Una característica esencial de esta plataforma experimental es que su compor-
tamiento dinámico puede ser ajustado. Esto es posible ya que los osciladores y la
barra de acoplamiento pueden ser actuados/controlados de manera independiente.
Entonces, por medio de realimentación es posible imponer un comportamiento
dinámico deseado en los osciladores y de la misma manera es posible modificar el
comportamiento dinámico de la barra de acoplamiento. Gracias a esta caracterís-
tica ha sido posible realizar un estudio experimental para una variedad amplia de
sistemas dinámicos.
En la tercer parte de esta tesis se considera una cuestión relacionada con el mode-
laje del experimento original de Huygens. Los modelos usados en la primeras dos
partes de esta tesis y los modelos reportados en la literatura son simplificaciones
del modelo real porque la tabla de madera que acopla a los relojes de péndulo ha
sido modelada como un objeto rígido de un grado de libertad. Sin embargo, en el
experimento real realizado por Huygens, la tabla de la cual cuelgan los relojes debe
ser modelada como un sistema de dimensión infinita. Hasta ahora y de acuerdo con
la investigación realizada por el autor, no existe un estudio riguroso que considere
esto. Por lo tanto, la tercera parte de la tesis considera este problema. Una técnica
del método del Elemento Finito es usada para obtener un modelo el cual consiste
de un conjunto (finito) de ecuaciones diferenciales ordinarias. Resultados numéri-
cos ilustrando todas las posibles soluciones límite del “verdadero” experimento de
Huygens (dimensión infinita).
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En resumen, los resultados contenidos en esta tesis revelan que el fenómeno de
sincronización observado por Huygens se extiende más allá de los relojes de pén-
dulo.
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