

Syntax requirements of message sequence charts

Citation for published version (APA):
Mauw, S., & Reniers, M. A. (1995). Syntax requirements of message sequence charts. In R. Braek, & A. Sarma
(Eds.), SDL'95 with MSC in CASE (pp. 63-74). Elsevier.

Document status and date:
Published: 01/01/1995

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://research.tue.nl/en/publications/af81cbe8-5a2f-485c-a9e8-de9868d52110

�

Syntax Requirements of Message Sequence Charts

M�A� Reniers a

aDepartment of Mathematics and Computing Science� Eindhoven University of
Technology� P�O� Box ���� NL����� MB Eindhoven� The Netherlands

A set of syntax requirements of MSC is discussed and formalized� The treatment is
restricted to Basic MSCs without conditions� Syntax requirements of communication
events in Basic MSCs are discussed and formalized� The formalization is syntax	directed
and based on functions and predicates�

�� INTRODUCTION

Sequence Charts are a widespread means for the description and speci
cation of se	
lected system runs within distributed systems with asynchronous communication� espe	
cially telecommunication systems� Other areas for application of Sequence Charts are as
an overview language of a service o�ered by a number of entities� a requirements state	
ment for SDL �� speci
cations� simulation and validation� selection and speci
cation of
test cases� formal speci
cation of communication� and interface speci
cation� Within in	
dustry Sequence Charts are used mainly as a test case description language� Various
kinds of Sequence Charts are used although they di�er on minor points only� To enhance
tool support� feasibility of Sequence Chart exchange between tools� and harmonization
of the use of Sequence Charts within ITU Study Groups� a standardization of such Se	
quence Charts was proposed by the ITU �the former CCITT�� The recommended version
of Sequence Charts is called Message Sequence Charts �MSC��

Recommendation Z���� Messages sequence chart �MSC� �� contains a description of an
abstract syntax� a graphical syntax� and a textual syntax of the language MSC� Besides
these syntax descriptions also an informal semantics and an informal description of the
syntax requirements are given� The formal semantics of MSC is standardized in Annex
B to Recommendation Z���� ���

The purpose of this paper is to discuss the syntax requirements of MSC� The descrip	
tion of the syntax requirements as presented in �� is open to ambiguous interpretation
and should therefore be formalized� We restrict the treatment to the core language of
MSC without conditions� called Basic MSC� The reason for this restriction is� besides the
limited space available� that Basic MSCs are easily understood and so are their syntax
requirements� For the de
nition of a formal semantics of Basic MSC we refer to ��� For
a more elaborate treatment of the formalization of syntax requirements of MSC we refer
to ��� The syntax requirements we treat in this paper all concern the communication
events of MSCs� We formalize a reference rule� a uniqueness rule� a completeness rule�
and a causal dependency rule for communication events� As a starting point we take

�

the informal descriptions of these requirements from Recommendation Z����� The formal
syntax requirements are stated in terms of predicates and functions on the textual syntax
of Basic MSC� Advantages of the use of predicates and functions are that they are univer	
sally known and that they have applications in almost every area of computing science�
In general a translation of the formalization based on functions and predicate logic to
description methods as ASF�SDF� Z� VDM� PSF� etc� is straightforward� An implemen	
tation of the syntax requirements and formal semantics of Basic MSC is given in ��� A
disadvantage is the number of predicates and functions needed in formalizing even the
simplest syntax requirements� However� most of the auxiliary functions and predicates
are de
ned in order to obtain information from the textual syntax� When formalizing
syntax requirements for the complete language MSC� most of these are reused�

The paper is structured as follows� In Section � a short introduction to MSC is given�
In Section � we recapitulate some basic notions on relations and multisets� Those will be
used frequently in the formalization of the syntax requirements� In Section � the syntax
requirements of MSC are discussed and formalized�

Acknowledgements

I would like to thank Anders Ek� �ystein Haugen� and Ekkart Rudolph for their con	
tributions to the discussion on syntax requirements in Geneva� Without these discussions
this work would be far less interesting� not only to me but also to the formalization e�orts
of Study Group �� of the ITU� Special thanks go to Sjouke Mauw for his e�orts to have
me write �readable� papers and e�orts to keep up with my changes to the paper� The
anonymous reviewers are acknowledged for their comments and criticism�

�� BASIC MESSAGE SEQUENCE CHARTS

A Basic MSC is a
nite collection of instances� An instance is an abstract entity on
which message outputs and message inputs may be speci
ed� An instance is denoted by
a vertical axis� The time along each axis is running from top to bottom� The events
speci
ed on an instance are totally ordered in time� no notion of global time is assumed�
No two events on an instance are executed at the same time� An instance is labelled with
a name� the instance name� This name is placed above the axis representing the instance�

A message between two instances is represented by an arrow which starts at the sending
instance and ends at the receiving instance� A message is divided into a message output
and a message input� A message sent by an instance to the environment is represented by
an arrow from the sending instance to the exterior of the MSC� A message received from
the environment is represented by an arrow from the exterior of the MSC to the receiving
instance�

Example � Consider the messages m�� m�� m� and m� in Figure �� Message m� is sent
to the environment� The behaviour of the environment is not speci
ed�

The only dependencies between the timing of the instances come from the restriction
that a message must be sent before it is consumed� In Figure � this implies that message
m� is received by i� only after it has been sent by i�� and� consequently� after the con	
sumption of m� by i�� Thus the events concerning m� and m� are ordered in time� while
for the events of m� and m� no order is speci
ed apart from the requirement that the

�

msc example1

i1 i2 i3 i4

m0
m1

m2

m3
m4

msc example1

i1 i2 i3 i4

m0
m1

m2
m3

m4

Figure �� Example Basic MSCs

output of a message occurs before its input� The second Basic MSC in Figure � de
nes the
same Basic MSC �from a semantic point of view�� but in an alternative drawing� Because
of the asynchronous communication� it would even be possible to
rst send m�� then send
and receive m�� and
nally receive m��

Although the application of MSC is mainly focussed on the graphical representation�
they have a concrete textual syntax� This representation was originally intended for
exchanging MSCs between computer tools only� but in this document it is used for the
discussion and formalization of the syntax requirements�

The textual representation of a Basic MSC is instance oriented� This means that a
Basic MSC is de
ned by specifying the behaviour of all instances� A message output is
denoted by �out m� to i��� and a message input by �in m� from i���� The Basic MSCs
of Figure � have the following textual representation�

msc example��

instance i�� instance i��

out m� to env� in m� from i��

out m� to i�� out m� to i��

in m� from i�� endinstance�

endinstance� instance i��

instance i�� in m� from i��

in m� from i�� endinstance�

out m� to i�� endmsc�

out m� to i��

endinstance�

In the graphical representation the correspondence between message outputs and mes	
sage inputs is given by the arrow construction� In the textual representation this corre	
spondence is given by message identi�er identi
cation�

The grammar de
ning the textual syntax of Basic MSC is given in Table �� The non	
terminals �inst name�� �msc name�� and �msgid� represent identi
ers� The symbol ��
denotes the empty string� The following identi
ers are reserved keywords� endinstance�
endmsc� env� from� in� instance� msc� out� and to� The language generated by a non	
terminal X in the grammar of Table � will be denoted by L�X��

�

Table �
The concrete textual syntax of Basic MSC

�msc	 ��� msc �msc name	 � �msc body	 endmsc�

�msc body	 ��� �	
 �inst def	 �msc body	

�inst def	 ��� instance �inst name	 � �inst body	 endinstance�

�inst body	 ��� �	
 �event	 �inst body	

�event	 ��� �out	
 �in	

�out	 ��� out �msgid	 to �address	�

�address	 ��� �inst name	
 env

�in	 ��� in �msgid	 from �address	�

�� PRELIMINARIES

Before we turn to the discussion and formalization of the syntax requirements of MSC�
we
rst introduce some basic notions on relations and multisets� Those will be used
frequently in the formalization� A binary relation on a set A is a subset of A � A� In
this paper we will only consider binary relations� Therefore� the adjective binary is left
implicit in the remainder� Next� we introduce some special relations� These are all well
known from literature� Let R � A�A be a relation�

�� R is re�exive if for all a � A� �a� a� � R�
�� R is symmetric if for all a� b � A� if �a� b� � R� then �b� a� � R�
�� R is transitive if for all a� b� c � A� if �a� b� � R and �b� c� � R� then �a� c� � R�
�� R is strict if for all a � A� �a� a� �� R�
�� R is an equivalence relation if it is re�exive� symmetric� and transitive�

The transitive closure of R� notation R� is the smallest relation that satis
es for all
a� b� c � A�

�� if �a� b� � R� then �a� b� � R��
�� if �a� b� � R� and �b� c� � R�� then �a� c� � R��

Multisets are a generalization of sets� by allowing elements to have multiple occurrences�
A multiset is represented by listing its members in arbitrary order between the brackets
� and � For example� the multiset with two occurrences of a and one occurrence of b is
denoted by either one of �a� a� b� �a� b� a� or �b� a� a� The empty multiset is denoted by
�� The union of two multisets M and N is denoted by M t N � The membership test is
denoted by ��� For a set A� the set of all multisets over A is denoted by IM�A�� Let A be
a set and let a � A and � an equivalence relation on A� For M � IM�A�� �a

�
�M� denotes

the number of elements from M that are �	equivalent to a� and is de
ned inductively by

�a
�
��� � �

�a
�
��b tM� �

�
�a
�
�M� if a �� b�

� � �a
�
�M� if a � b�

�

Example � Suppose that we are given a multiset M � ��� �� �� �� �� � over the natural
numbers IN � Denote the equality relation on IN by �� Then we have� for n � IN � the
following equations�

����M� � � ����M� � � ����M� � � �n��� �M� � �

�� SYNTAX REQUIREMENTS FOR MESSAGES

The rules for messages which will be discussed in this section express properties such
as references to instances� the unambiguous connection of message outputs and message
inputs� the completeness of message speci
cation� and the absence of con�icts in the order
in which message sending and message reception must be dealt with� Before we turn to
these syntax requirements we will discuss messages�

���� Abstract messages

A message is completely determined by its sender instance� its receiver instance and its
message identi
er� Therefore� a message can be represented by a triple which consists of
these three identi
ers� Such a triple will be called an abstract message� A type Msg is
de
ned from which the elements represent abstract messages�

De�nition � The type Msg is de�ned by

Msg � L��address��� L��address��� L��msgid��

In case of a message output event� the sender instance name is the name of the instance
the message output is speci
ed on� In case of a message input event� the receiver instance
name is the name of the instance the message input is speci
ed on� To obtain the name
of an instance from its de
nition the function InstName is used� To obtain the address
speci
cation and the message identi
er from a given communication event the functions
Addr and MsgId are used� Their de
nitions can be found in Appendix A� Given the
instance a communication event is speci
ed on� it is possible to determine the abstract
message which corresponds with the communication event�

De�nition � Let i � L��instdef��� The function Message�i� � L��out� j �in���Msg
is for all out � L��out�� and in � L��in�� de�ned by

Message�i��out� � �InstName�i��Addr�out��MsgId�out��
Message�i��in� � �Addr�in�� InstName�i��MsgId�in��

Example � The abstract message associated to the communication m� between in	
stances i� and i� in Basic MSC example� from Figure � is given by �i�� i��m���

���� References to instances

The instances that are referenced by the communication events are given by the address
speci
cation parts of the communication events� The communication events which are sent
to or received from the environment do not reference an instance� These communication
events are called external� whereas communication events between instances are called

�

internal� Since the external communication events do not reference instances we only
need to consider internal communication events�

Only instances which are speci
ed within a chart may be referenced by the communi	
cation events of that chart� In order to formalize this requirement we de
ne functions
DeclInstNames and IntAddrSpec which determine the names of the declared instances and
the names of the instances referenced by the communication events respectively�

De�nition � The function DeclInstNames � L��msc�� � IP �L��instname��� is� for
all ch � L��msc��� de�ned by DeclInstNames�ch� � fInstName�i� j i��AllInsts�ch�g� The
function IntAddrSpec � L��msc��� IP �L��instname��� is� for all ch � L��msc��� de�ned
by IntAddrSpec�ch� � fAddr�com� j com��Outputs�ch� t Inputs�ch� 	 Addr�com� �� envg�

The functions Outputs and Inputs �see Appendix A� collect all message output events
and message input events from an instance in a multiset and the function AllInsts collects
all instance de
nitions of a Basic MSC in a multiset� Then the syntax requirement is
formulated as follows� IntAddrSpec�ch� � DeclInstNames�ch��

���� Uniqueness of messages

An internal message is divided into two events� a message output and a message input�
In this section a naming rule for communication events is considered which guarantees
that there is at most one way to connect message outputs to message inputs and vice
versa� Consider for example the following chart�

msc example�� instance j�

instance i� in m from i�

out m to j� in m from i�

out m to j� endinstance�

endinstance� endmsc�

Within this chart it is not clear which message output corresponds to which message
input� One could associate either one of the Basic MSCs shown in Figure � to this textual
description�

ji

m

msc example2

i j

m
m m

msc example2

Figure �� Two graphical versions of Basic MSC example�

To avoid this situation a syntax requirement is formulated which guarantees that there
are no two message outputs which refer to the same abstract message and that there

�

are no two message inputs which refer to the same abstract message� We will consider
message outputs only� The formalization of the requirement for message inputs follows
the same line� Two message output events which are de
ned on di�erent instances cannot
concern the same abstract message� Therefore� the syntax requirement is formulated as
follows�

On an instance there must not be two or more message outputs with the same
address speci�cation and the same message identi�er�

First� an equivalence relation � is de
ned on message output events� Two message
output events are output equivalent �or �	equivalent� if both the message identi
er and
the address speci
cation are identical�

De�nition � The relation �� L��out�� � L��out�� is for all o� o� � L��out�� de�ned
by o � o� i� MsgId�o� � MsgId�o�� 	 Addr�o� � Addr�o���

From the de
nition it is clear that this relation is an equivalence on message outputs�
Two message outputs which are speci
ed on the same instance refer to the same abstract
message if they are �	equivalent� Two message outputs which are speci
ed on di�erent
instances do not refer to the same abstract message�

De�nition � The predicate UMO � L��instdef�� � IB is for all i � L��instdef��
de�ned by UMO�i� �
out��Outputs�i	 �

out
�

�Outputs�i�� � ��

���� Completeness of messages

The syntax requirement on the uniqueness of messages from the previous section guar	
antees that there is at most one way to connect message outputs and message inputs� The
syntax requirement introduced in this section guarantees the existence of such a connec	
tion� Together the syntax requirements express that there is exactly one way to connect
message outputs and message inputs� Consider the following chart�

msc example�� instance j�

instance i� in m� from env�

out m� to env� in m� from i�

out m� to j� endinstance�

endinstance� endmsc�

Within this chart there are four communication events� Two of these specify a commu	
nication with the environment� The other two specify a communication between instances�
The syntax requirement for uniqueness of messages is satis
ed by this chart� Consider the
message m� sent by instance i to instance j� For this message only the message output is
speci
ed� there is no corresponding message input� For the message m� only the message
input is speci
ed� One could associate the graphical representation from Figure � to �Ba	
sic MSC� example�� However� this is not a Basic MSC� The following syntax requirement
is formulated�

To each message output that is sent to an instance there has to be a corre	
sponding message input speci�ed on that instance� To each message input that
is received from an instance there has to be a corresponding message output
speci�ed on that instance�

�

i j
msc example3

m1
m2

m3
m4

Figure �� Graphical representation of �Basic MSC� example�

Note that this requirement only applies to messages which are exchanged between
instances� Messages sent to and received from the environment need not be considered�

Next� a predicate CorOut is de
ned which determines whether there is a corresponding
message input for each message output� The correspondence the other way around� a
predicate very similar to CorOut� can also be de
ned� The uniqueness rule for messages
guarantees that such a correspondence� if it exists� is unique�

De�nition � The predicate CorOut � L��msc��� IB is for all ch � L��msc�� de�ned by

CorOut�ch� �
i�j��AllInsts�ch	
o��Outputs�i	�
Addr�o� � InstName�j�� in��Inputs�j	 Message�i��o� � Message�j��in�

�
���� Causal dependency of messages

A message is sent before it is consumed� Also with MSC� this convention is followed�
This means that it is not allowed that the partial ordering of the communication events
speci
ed by the chart states that a message input occurs �in time� before its corresponding
message output� Consider for example the charts shown in Figure ��

i

m

i j

m

n

msc ex4 msc ex5

Figure �� Charts ex� and ex�

It is clear that the
rst chart speci
es that the input of messagem is executed before the
output of message m� For the second chart� the observation that the output of message
n is preceded by the input of the same message is somewhat more di�cult� The syntax
requirement is formulated as follows�

�

It is not allowed that a message output is causally depending on its correspond	
ing message input� directly or via other messages�

A chart speci
es a partial ordering on the set of events being contained� This partial
ordering restricted to communication events is described in a minimal form by the connec	
tivity graph� We will formalize this notion which is already described in ��� The nodes of
the connectivity graph represent the message output and message input events� If a node
represents a message output event it is labelled with an exclamation mark ���� If a node
represents a message input event it is labelled with a question mark � �� Besides these
labels a node is also labelled by the triple that identi
es the abstract message that the
communication event references� The arrows between these nodes represent the partial
ordering of the communication events as speci
ed by the chart�

(?,(i,i,m))

(!,(i,i,m))

(?,(j,i,n))

(!,(i,j,m)) (!,j,i,n))

(?,(i,j,m))

ex4 ex5

Figure �� Connectivity graphs for the example charts

In Figure � the connectivity graphs of the example charts from Figure � are given� In
both cases it is clear that it contains a loop� For the labels of the nodes of the connectivity
graph the following type is introduced�

De�nition 	 The type MsgLabel is de�ned as follows
 MsgLabel � f�� g �Msg�

Next� a function MsgEvent is de
ned which� given an instance� associates to a commu	
nication event a message label� This function will be used in determining the label of the
node which represents a communication event�

De�nition
 Let i � L��instdef��� The function MsgEvent � L��out� j �in�� �
MsgLabel is for all out � L��out�� and in � L��in�� de�ned by

MsgEvent�i��out� � ���Message�i��out��
MsgEvent�i��in� � � �Message�i��in���

First� the ordering on communication events speci
ed by an instance is computed�
This is done by scanning the instance and relating those communication actions which
are speci
ed immediately adjoining� The function Graph associates to an instance a set of
label pairs� Such a pair represents an arrow in the connectivity graph� The
rst argument
of the auxiliary function Graph�i� acts as a �memory�� It records the communication
event immediately preceding the communication event under consideration� We extend

��

the message labels with an event � denoting the empty memory� This value is supposed
to act as an initial memory for Graph�

De�nition � Let i � L��instdef�� be an instance de�nition� The function Graph�i� �
MsgLabel� � L��instbody�� � IP �MsgLabel �MsgLabel� is� for all l � MsgLabel�� e �
L��event�� and ib � L��instbody��� de�ned inductively by

Graph�i��l� ��� � �

Graph�i��l� e ib� �

�
Graph�i��MsgEvent�i��e�� ib� if l � ��

f�l�MsgEvent�i��e�g � Graph�i��MsgEvent�i��e�� ib� if l �� ��

The function Graph � L��instdef��� IP �MsgLabel�MsgLabel� is for i � L��instdef��
de�ned by Graph�i� � Graph�i���� InstBody�i��� The function InstBody �See Appendix A�
associates to an instance de�nition its body�

Next� the set of pairs of labels is interpreted as a relation on labels� Besides the ordering
on communication events speci
ed explicitly by the instances� there is also the ordering

between corresponding message outputs and message inputs� The relation
ch
�� speci
es

both the ordering speci
ed by the instances of the chart �as expressed by Graph� and the
implicit ordering on corresponding message outputs and message inputs�

De�nition �� Let ch � L��msc��� The relation
ch
��� MsgLabel�MsgLabel is the small	

est relation such that
 for all t�� t�

�� if �t�� t�� � Graph�i� for some i��AllInsts�ch�� then t�
ch
�� t�

�� if Message�i��out� � Message�j��in� for some i� j��AllInsts�ch�� out��Outputs�i� and

in��Inputs�j�� then MsgEvent�i��out�
ch
��MsgEvent�j��in�

In terms of the connectivity graph the syntax requirement is formulated as� the con	
nectivity graph does not contain loops or� alternatively� there must not be a path from

a node to itself� Next� this formulation is translated in terms of the relation
ch
��� With

the notions of transitive closure and strictness of relations� as introduced in Section �� the

syntax requirement is formalized as follows�
ch
��

�

is strict�

�� CONCLUSIONS

We presented a formalization of four syntax requirements of MSC by de
ning predi	
cates and functions on the textual syntax of MSC� Although we needed many auxiliary
functions the formalization presented is straightforward and intuitive� Most of the aux	
iliary functions introduced were only necessary to obtain the information needed for the
veri
cation of a speci
c requirement from the complete MSC� Also� in formalizing the
syntax requirements of the language MSC they are reused�

The treatment of the formalization of the syntax requirements in this paper illustrates
the treatment of the syntax requirements of the complete language� As a result of the
formalization of syntax requirements there have been discussions on these requirements�
In several cases this has led to changes in the requirements�

��

Besides the discussions on the syntax requirements the chosen approach also enables
rapid prototyping� The generating of prototype tools implementing the syntax require	
ments is shown to be feasible in ���

REFERENCES

�� Z���� ������� CCITT Speci
cation and description language �SDL�� ITU	T Jun�
�����

�� Z���� ������� Message Sequence Chart �MSC�� ITU	T Sep� �����
�� Z���� B ������� Message Sequence Chart algebraic semantics� ITU	T Publ� sched��

May �����
�� S� Mauw and M�A� Reniers� An Algebraic Semantics of Basic Message Sequence

Charts� The Computer Journal� �������������� �����
�� S� Mauw and E� van der Meulen� Generating Tools for Message Sequence Charts�

Technical Report TD��� ITU	TS SG�� Interims Meeting� Geneva� Switzerland� �����
�� M�A� Reniers� Syntax Requirements of Message Sequence Charts� Technical Report

TD��� ITU	TS SG�� Interims Meeting� Geneva� Switzerland� �����

A� AUXILIARY FUNCTIONS AND PREDICATES

In this appendix the de
nitions of the following functions and predicates are given�
Addr � AllInsts� Inputs� InstBody� InstName� MsgId � Outputs� The de
nitions are pre	
sented in alphabetic order�

The function Addr � L��in���out�� � L��address�� is for all msgid � L��msgid�� and
address � L��address�� de
ned by

Addr�out msgid to address�� � address
Addr�in msgid from address�� � address

The function AllInsts � L��mscbody��� IM�L��instdef��� is for all i � L��instdef��
and mscbody � L��mscbody�� de
ned by

AllInsts���� � �

AllInsts�i mscbody� � �i t AllInsts�mscbody�

The function AllInsts � L��msc��� IM�L��instdef��� is for mscname � L��mscname��
and mscbody � L��mscbody�� de
ned by

AllInsts�msc mscname� mscbody endmsc�� � AllInsts�mscbody�

The function Inputs � L��instbody�� � IM�L��in��� is for all e � L��event�� and
ib � L��instbody�� de
ned by

Inputs���� � �

Inputs�e ib� �

�
Inputs�ib� if e � L��out��
�e t Inputs�ib� if e � L��in��

��

The function Inputs � L��instdef��� IM�L��in��� is for all i � L��instdef�� de
ned
by

Inputs�i� � Inputs�InstBody�i��

The function Inputs � L��mscbody�� � IM�L��in��� is for all i � L��instdef�� and
mscbody � L��mscbody�� de
ned by

Inputs���� � �

Inputs�i mscbody� � Inputs�i� t Inputs�mscbody�

The function Inputs � L��msc��� IM�L��in��� is for all mscname � L��mscname�� and
mscbody � L��mscbody�� de
ned by

Inputs�msc mscname� mscbody endmsc�� � Inputs�mscbody�

The function InstBody � L��instdef��� L��instbody�� is for iname � L��instname��
and instbody � L��instbody�� de
ned by

InstBody�instance iname� instbody endinstance�� � instbody

The function InstName �L��instdef��� L��instname�� is for iname �L��instname��
and instbody � L��instbody�� de
ned by

InstName�instance iname� instbody endinstance�� � iname

The function MsgId � L��in���out�� � L��msgid�� is for all msgid � L��msgid�� and
address � L��address�� de
ned by

MsgId�out msgid to address�� � msgid
MsgId�in msgid from address�� � msgid

The function Outputs � L��instbody�� � IM�L��out��� is for all e � L��event�� and
ib � L��instbody�� de
ned by

Outputs���� � �

Outputs�e ib� �

�
Outputs�ib� if e � L��in��
�et Outputs�ib� if e � L��out��

The function Outputs � L��instdef�� � IM�L��out��� is for all i � L��instdef��
de
ned by

Outputs�i� � Outputs�InstBody�i��

The function Outputs � L��mscbody�� � IM�L��out��� is for all i � L��instdef�� and
mscbody � L��mscbody�� de
ned by

Outputs���� � �

Outputs�i mscbody� � Outputs�i� tOutputs�mscbody�

The function Outputs � L��msc�� � IM�L��out��� is for all mscname � L��mscname��
and mscbody � L��mscbody�� de
ned by

Outputs�msc mscname� mscbody endmsc�� � Outputs�mscbody�

