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Chapter1
Introduction

1.1 Corrugated pipes and the problem

In thin walled pipes, corrugations provide local stiffness while keeping global flexi-
bility, see figure 1. The local rigidity prevents the collapse of the pipe during bend-
ing. This unique characteristic makes corrugated pipes suitable for a broad range
of industrial applications. The main drawback of corrugated pipes is that the flow
through these pipes can cause self sustained oscillations, which produce high am-
plitude whistling sounds. This problem has been reported in applications such as
ventilation systems, domestic appliances and heat exchangers [Petrie and Huntley,
1980; Elliott, 2004]. Whistling is an environmental nuisance. For applications at ele-
vated operating pressures such as offshore natural gas transportation systems, self-
sustained oscillations can also induce severe structural vibrations leading in extreme
circumstances to mechanical failure [Ziada and Bühlmann, 1991; Belfroid et al., 2007;
Kristiansen and Wiik, 2007; Popescu and Johansen, 2008; Goyder, 2010]. Corrugated
pipes are also used as musical toys. The musical instrument called Hummer, is a
flexible plastic corrugated pipe of approximately 75 cm length and 3 cm diameter.
Holding one end of the tube while swinging the tube above the head, various tones
can be produced. This chorus like sound is musically interesting [Silverman and
Cushman, 1989; Serafin and Kojs, 2005; Debut et al., 2007]. The underlying physical
phenomenon investigated in the present study is closely related to a broader range
of applications including, mufflers, wall perforations, side branches, orifices, com-
plex pipe systems and even shallow water flows in rivers [Martínez-Lera et al., 2009;
Aurégan and Leroux, 2008; Tonon et al., 2010; Meile et al., 2010; Lacombe et al., 2011].
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Figure 1.1: A short seg-
ment of a typical corrugated
pipe, showing a longitudi-
nal cross section of the corru-
gated wall

1.2 Overview of the literature

A brief overview of the literature on whistling in corrugated pipes is given below.
More detailed accounts of the literature specific to the particular problems of interest
are provided in the introduction sections of the corresponding chapters.

The study of whistling corrugated pipes has been initiated by Burstyn [1922] and
Cermak [1922]. Fundamental results were obtained by Binnie [1961] concerning the
effect of pipe geometry on the frequency of whistling (f ). He also noticed that the
velocity of the acoustic waves inside a corrugated pipe (ceff ) is smaller than the ve-
locity of sound (c0). In the following decades the research has been focused on the
prediction of the frequency of whistling for relatively short corrugated pipes with
open terminations, such as the Hummer [Crawford, 1974; Nakamura and Fuka-
machi, 1984; Cadwell, 1994]. Whistling was associated to a specific value of the
Helmholtz number He = fL/c0 based on the pipe length (L); as well as a specific
value of the Strouhal number (Sr = fLc/U ) based on a characteristic length (Lc) and
the grazing flow velocity (U ). The corrugation pitch i.e. the wavelength of the corru-
gation [Binnie, 1961; Crawford, 1974; Nakamura and Fukamachi, 1991; Serafin and
Kojs, 2005; Popescu and Johansen, 2008] and the cavity length in streamwise direc-
tion (W ) [Elliott, 2004; Belfroid et al., 2007; Kristiansen and Wiik, 2007] are two ex-
tensively used dimensions for Lc. A commonly observed phenomenon in the Hum-
mer, is the absence of whistling at the fundamental mode, He ≈ 0.5, [Cermak, 1922;
Crawford, 1974; Silverman and Cushman, 1989; Nakamura and Fukamachi, 1991;
Cadwell, 1994; Elliott, 2004]. This has been associated to the low Reynolds number
(Re) of the flow through the pipe at the fundamental mode [Crawford, 1974; Cadwell,
1994]. The conclusion of Cadwell [1994] was that turbulence is an essential factor that
promotes whistling. This conclusion, however, was not firmly established.

Nakamura and Fukamachi [1991] have shown that the flexibility of the tube is
not necessary for the sound generation in corrugated tubes. However, a mechan-
ical vibration induced by the unsteady forcing on the walls can have a significant
influence on the whistling. For water flow, Ziada and Bühlmann [1991] observed a
strong coupling of the whistling with the pipe wall vibration modes. Elliott [2004]
showed that for short corrugated pipe segments the resonant frequencies could be
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predicted as multiples of a half-wave length along the pipe using an effective speed
of sound (ceff ) for plane wave propagation in the pipe. Tonon et al. [2010] and Gol-
liard et al. [2010] reported for multiple side branch systems and corrugated pipes,
respectively, that the acoustic sources are localized around the pressure nodes of the
standing acoustic wave along the tube. This indicates a dipolar nature of the sound
source. The sound is generated by the reaction force of the wall on the flow due to
the unsteady vortex shedding [Gutin, 1948; Curle, 1955].

1.3 Aim and scope

While the literature has provided some crucial information, until now it has not been
attempted to develop a method for the quantitative prediction of the whistling of
corrugated tubes. The main objective of the thesis is to develop a physical under-
standing of aeroacoustic sound generation due to self sustained flow oscillations in
ducted cavities and to provide a quantitative prediction method for the whistling of
corrugated pipes.

The work presented here is kept limited to relatively low flow speeds such that
the acoustic wave length is large compared to the pipe diameter (D) and the cavity
width (W). Transverse acoustic resonances observed at very high velocities [Kriesels
et al., 1995; Dequand et al., 2003a; Meile et al., 2010] are excluded. The focus of the
project is gas transport pipes in which the coupling between flow instabilities and
wall vibrations is expected to be weak [Nakamura and Fukamachi, 1991]. Therefore,
wall vibrations are not considered in the current work.

1.4 Outline of this thesis

The thesis consists of five main chapters, which correspond to three published and
two submitted journal papers. This unavoidably implies some repetitions in sub-
sequent chapters. In chapter 2, experimental data obtained by TNO on corrugated
pipes are used together with original experimental data on multiple side branch sys-
tem. The aim of this chapter is to demonstrate the similarities between the whistling
behavior of these two geometrically periodic systems and to address the effect of
some geometrical parameters, e.g. the cavity edge radius and the side branch depth,
on the whistling. The chapter also provides a brief introduction to the Vortex Sound
Theory of Howe [1975, 1998]. In chapter 3, a numerical methodology that combines
incompressible flow simulations and Vortex-Sound Theory is proposed to estimate
the acoustic source power produced by a single corrugation. This approach is used to
predict the ranges of Strouhal numbers with acoustic energy production and explain
the nonlinear saturation mechanism responsible for the stabilization of the shear
layer to a limit cycle oscillation. This saturation explains the finite whistling am-
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plitude of corrugated pipes. The proposed numerical method is also used to explore
the effect of the main flow velocity profile on the whistling. Chapter 4 discusses the
aeroacoustics of the Hummer. The first part of this chapter is dedicated to sound
generation, while the second part is devoted to sound radiation. This should pro-
vide understanding of the musical quality of this instrument. Chapters 5 and 6 focus
on the whistling of axisymmetric cavities. Corrugated pipes can be considered, in
first approximation, as a series of axisymmetric cavities placed along a duct coupled
by the longitudinal standing wave along the tube. In fact, the corrugated pipe can be
considered as a Sound Amplification by Stimulated Emission of Radiation (SASER), be-
cause the longitudinal acoustic wave triggers and coordinates the radiation of sound
by individual cavities. Chapter 5 focuses on the whistling of a single axisymmetric
cavity and addresses the effect of the depth of the cavity on the whistling. Chapter
6 is dedicated to the hydrodynamic interference between cavities. Each chapter pro-
vides detailed conclusion on its own; in chapter 7 emerging pervasive conclusions
and future research directions are presented.

1.5 The framework of the project and the contribution

of the author

This thesis has been carried out within the frame work of STW project on “Aeroa-
coustics of corrugated pipes” (Project No. 08126) supported by the industrial part-
ners: TNO, ASML, Shell, Philips and KEMA.

During the project there has been a close collaboration with TNO, in particular
with J. Golliard and S. P. C. Belfroid involving many discussions on the application
of the proposed numerical prediction to practical problems in industry. In chap-
ter 2 and 3 some data from the experimental database of TNO on corrugated pipes
[Bastiaansen, 2005; Tummers, 2006] are used. This data base has been created in a
framework of a Joint Industrial Project (JIP) involving BP, UK Health and Safety Ex-
ecutive, Bureau Veritas, Exxon Mobil, Statoil and TNO. The technical support for
experiments at TU/e was provided by J. F. H. Willems, H. B. M. Manders, F. M. R.
van Uittert, E. de Cocq and A. Holten. In chapter 4, O. Rudenko has collaborated
in the study on the sound radiation of the Hummer. A. Hirschberg has mainly pro-
vided theoretical feedback. These supports are recognized by including some of the
above mentioned individuals as co-authors of the published, submitted journal pa-
pers and conference papers, see List of Publications. In accordance with regulations
governing the conferral of the doctor’s degree at Eindhoven University of Technol-
ogy (Chapter 6, Art.15.), the author hereby declares that except for the above men-
tioned contributions, all the experiments, numerical simulations and the analysis
presented in this thesis have been performed by the author.



Chapter2
Whistling behavior of periodic systems:

corrugated pipes and multiple side
branch system

2.1 Abstract

Whistling behavior of two geometrically periodic systems are investigated: corru-
gated pipes and a multiple side branch system. In both systems frequency is a
non-decreasing piecewise constant function of the Mach number, whose increase
on average is approximately linear. The plateaus, lock-in frequencies, of this piece-
wise constant function correspond to the longitudinal acoustic pipe modes. In both
systems fluctuation amplitude changes non-monotonically with Mach number with
local maxima that correspond to the lock-in frequencies. A characteristic length,
equal to cavity width plus upstream edge radius, yields the smallest scatter in the
measured peak-whistling Strouhal number for both systems. For both systems the
upstream edge radius of the cavity/side branch has a strong effect on pressure fluc-
tuation amplitudes. Whistling amplitudes increase by a factor of 3 to 5 upon round-
ing off the upstream cavity/side branch edges. The radius of the downstream edge
has a less pronounced effect on the sound amplitude and frequency. The geometric
parameters of the multiple side branch system can easily be modified. This makes
the multiple side branch system a convenient tool for making experiments on the ef-
fects of various geometric parameters. A number of aspects are addressed with the
multiple side branch system such as the effect of pipe termination geometry, source
localization, side branch depth to diameter ratio, a gradient in cavity depth along
the pipe and hysteresis upon change in flow velocity.
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2.2 Introduction

Pipes with transversally corrugated walls are used in many industrial applications
because they are globally flexible and locally rigid. At critical conditions, the flow
through corrugated pipes cause severe noise problems, called whistling. It is known
that geometric parameters of these pipes can have significant effects on the whistling
phenomenon. But there are a number of geometric parameters and each may vary
within a fairly large range [Belfroid et al., 2007; Binnie, 1961]. Thus, a systematic
investigation for all possible values of these geometric parameters seems rather time
consuming and costly. For this reason, we consider another periodic system, which
shows whistling behavior similar to that of corrugated pipes, namely: the multi-
ple side branch system. The main advantage of doing fundamental research on the
multiple side branch system over corrugated pipes is that geometric parameters can
easily be modified. Furthermore, the multiple side branch system is an interesting
system on its own right.

The cross section of a generic corrugated pipe and multiple side branch system is
shown in figure 2.1. In both systems the cross sectional area of the pipe (Sp) is peri-
odically oscillating along the pipe of length (L). The wave length of this variations
in pipe diameter is called pitch (Pt). In corrugated pipes the variation in the cross
section is due to axisymmetric slit shaped cavities with a width (W ) and depth (H).
Whereas in multiple side branch system, the side branches along the main pipe cause
this spatial variation of the pipe cross section. The depth and diameter of the side
branches are denoted as H and Dsb, respectively. Depending on the flow direction,
the edge radius of cavities and side branches denoted as rup or rdwn. The constant
diameter (D) part between two cavities or side branches is called plateau (Lp).

In this paper we first briefly discuss the acoustic analogy developed by Howe [1975,
1980] by particularly emphasizing the acoustic resonance (Sec. 2.3.1), the local spatial
distribution of the acoustic field (Sec. 2.3.2) and non-linear saturation phenomenon
(Sec. 2.3.3), all which are essential for the interpretation of the results. In the follow-
ing section (Sec. 2.4), we describe the experimental setups (Sec. 2.4.1)together with
the data analysis method (Sec. 2.4.2)that was employed. In Sec. 2.5, we present the
experiments performed with corrugated pipes on the determination of the optimal
characteristic length for the Strouhal number [Belfroid et al., 2007] and the effect of
the shape of the cavity edge on whistling phenomenon, which is known to be impor-
tant in pipe systems with deep resonant side branches [Bruggeman et al., 1991]. In
Sec. 2.6, we first highlight the similarities in the whistling behavior of multiple side
branch system and corrugated pipes, then we discuss the following aspects for the
multiple side branch system:
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Figure 2.1: The geometric parameters of the corrugated pipes and multiple side
branch system.

• We investigate the effects of pipe termination geometry on whistling ampli-
tude, which is expected to be strong [Hirschberg et al., 1989], in Sec. 2.6.1.

• We discuss the effect of the position of sound sources relative to the acoustic
standing wave pattern, which has been a subject of controversy [Kristiansen
and Wiik, 2007; Tonon et al., 2010; Golliard et al., 2010], in Sec. 2.6.2

• In parallel to the experiments with corrugated pipes (Sec. 2.5), we address the
effect of edge shape on the whistling phenomenon in Sec. 2.6.3.

• We present our results on the effect of cavity depth, which is a parameter that is
relatively easy to investigate with a multiple side branch system, in Sec. 2.6.4.

• We investigate the impact of a gradient in depth of the side branches along the
pipe in Sec. 2.6.5, as a model for a temperature gradient.

• We explore Hysteresis, which is a frequently mentioned phenomenon in the
literature on corrugated pipes [Petrie and Huntley, 1980; Nakamura and Fuka-
machi, 1991], in Sec. 2.6.6.

In the last section we state our conclusions on the whistling behavior of these two
periodic systems.
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2.3 Vortex Sound Theory and Whistling

The intrinsic instability of separated flows, such as wakes and free jets, acts as a
source of unsteadiness for flows at high Reynolds numbers. An unsteady flow in-
duces an unsteady force on the walls bounding the flow. The reaction force of the
walls to this hydrodynamic force is a source of sound [Gutin, 1948; Curle, 1955]. A
familiar example of this effect is the aeolian tone generated by a cylinder. Strouhal
[1878] found that, when a uniform flow of velocity U passes along a cylinder of di-
ameter Dc the frequency f of the sound radiated satisfies, Sr = fDc/U where Sr is
a constant known as Strouhal number. Rayleigh [1896] recognized that the produc-
tion of the sound is connected with the instability of the vortex sheets in the cylinder
wake, which results into the formation of a von Kármán vortex street.

It is essential to realize that the cylinder walls do not need to vibrate in order to
generate the sound. However, if a mechanical vibration of the cylinder is induced
by the oscillating lift force, this can significantly enhance the spatial coherence and
result into a stronger tone with a frequency which is a compromise between the “nat-
ural” Strouhal vortex shedding frequency and the mechanical resonance frequency.
A similar lock-in can occur with an acoustic standing wave at resonant mode when
the cylinder is confined to a duct [Blevins, 2001]. This enhances the sound radia-
tion even more because the acoustic standing wave provides an improved radiation
impedance. In such a case the system behaves as an unstable feedback-loop with the
flow as the amplifier (source of energy) and the acoustic mode as the filter. Such a
coupling with a structural mode has been observed by Ziada and Bühlmann [1991]
for a corrugated pipe.

Powell [1964] established the first formal relationship between vortex shedding and
the sound generation which is limited to free-space conditions and low Mach num-
bers. Howe [1975] generalized this relation to arbitrary homentropic flows. Later,
Howe [1980] proposed to use a Helmholtz decomposition of the flow field u to de-
fine the acoustic field as:

u = ∇(φ0 + φ′) +∇×Ψ, (2.1)

where φ0 and φ′ are the steady and unsteady component of the scalar potential, re-
spectively and Ψ is the stream function. The acoustic velocity field (u′) is defined
as the unsteady component of the potential flow, u′ = ∇φ′ For low Mach numbers
(Ma = U/c0 � 1 where c0 is the speed of sound), Howe [1980] proposed to estimate
the time average acoustic power 〈Psource〉 by using the following approximation:

〈Psource〉 = −ρ0

〈∫

V

(ω × u) ·u′dV

〉

(2.2)
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where ρ0 is the fluid density, ω is the vorticity

ω = ∇× u

V is the volume in which the ω is non vanishing and < · > is the time average.

The amplitude of steady-periodic self-sustained oscillations, i.e. whistling, described
above can be estimated using the following energy balance equation:

〈Psource〉 = 〈Pvisc〉+ 〈Prad〉 (2.3)

in which 〈Pvisc〉 is the term for thermal-viscous losses and 〈Prad〉 is the term for the
radiation losses at the boundaries of the system. The wall vibrations are neglected.

The remainder of this section is devoted to discussion of three subjects, which are
important in understanding of the whistling behavior of periodic systems, namely,
passive resonance frequencies of a corrugated pipe/multiple side branch system,
local behavior of acoustic velocity (u′) depending on the geometry and non-linear
saturation.

2.3.1 Acoustic resonance

Consider a corrugated pipe or a multiple side branch system of length L with pitch
length Pt and cavity/side branch volume Vc. As a first approximation, the pipe is
described as a tube of uniform cross section Sp in which acoustic waves are prop-
agating at a modified speed of sound ceff . Assuming that the acoustic compliance
is determined by the pitch volume, PtSp + Vc, and the inertia is determined by the
mass in the main pipe, ρ0PtSp; the propagation of low frequency, fPt/U � 1, acous-
tic waves along the tube has an effective speed ceff [Elliott, 2004]:

ceff =
c0

√

1 + Vc/(SpPt)
(2.4)

where Vc = πDHW for corrugated pipes and Vc = πDsbH/4 for multiple side
branch systems. In the above formula the convection by the main flow is neglected.
Then the resonance frequencies (fn) for an open-open pipe termination are given by

fn = n(ceff/2L) n = 1, 2, 3, . . .

Tonon et al. [2010] showed for a multiple side branch system with sharp edges and
H/Dsb = 1.15 that the predicted resonance frequencies are in agreement with mea-
sured frequencies within 3% accuracy, which is confirmed for other geometries in
Sec. 2.6.4. The discussion here is limited to low frequencies, fH/c0 � 1 so that the
acoustic flux into the cavities/side branches can be neglected. This simplified model
describe the global behavior, however a local description of the acoustic field u

′ is
needed in order to apply the analogy of Howe [1975].
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2.3.2 Local spatial distribution of the acoustic field and sound sources

Following the definition of the acoustic field [Howe, 1980] given in Eq. 2.1, the acous-
tic flow grazing along a cavity of a corrugated pipe or a side branch, is a potential
flow. At low frequencies it is locally an incompressible potential flow. This flow
can be calculated analytically for a two dimensional cavity with sharp edges using
conformal mapping [Milne-Thomson, 1968]. The acoustic streamlines are sketched
qualitatively in figure 2.2-a. The flow bends as it passes along the edges and the

y

x

U

0

W

x
0

W

u’y

a) b)

Figure 2.2: a) The acoustic streamlines ( ) grazing over a cavity, b) y component
of the acoustic velocity at the moment when the vortex detached along an acoustic
streamline ( ) passing close to the edges of the cavity.

flow velocity increases as we approach to edge. This acceleration corresponds to a
pressure gradient which is responsible for the bending of the stream lines. A sharp
edge implies a singularity in pressure and a locally infinitely large acoustic velocity.
At the upstream edge of the cavity, the actual flow separates due to viscous effects
so that vorticity is shed and a shear layer is formed. This shear layer separates the
main flow from the almost stagnant fluid in the cavity.

The earlier studies [Bruggeman, 1987a; Hourigan et al., 1990; Nelson et al., 1983;
Peters, 1993; Welsh et al., 1984] showed that a vortex is shed from the upstream edge
at the moment when the acoustic velocity near the upstream edge turns from -x di-
rection to +x direction (main flow direction), see figure 2.2-a. From Eq. 2.2 it is seen
that −ρ0(ω×u) ·u′ is negative and large near the upstream edge because u

′ is locally
normal to the convective velocity u and u

′ is locally singular. As the vorticity is con-
vected away from the upstream edge in the main flow direction, the acoustic field u

′

bends in the direction of the convective velocity u, see figure 2.2-b, so that absolute
value of −ρ0(ω × u) ·u′ is reduced and vanishes halfway in the cavity opening. As
the vorticity perturbation approaches to the downstream edge, the acoustic flow ve-
locity becomes again normal to the convective velocity u. Sound can now produced
if the sign of the acoustic field is such that −ρ0(ω × u) ·u′ is positive. This occurs
if the travel time of the vorticity across the cavity is less than the half of an oscilla-
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tion period plus an integer number of oscillation period. For critical flow conditions
the balance between the initial absorption and the later production results into a net
sound production, so that whistling is possible. Bruggeman et al. [1991] showed
that, if the vorticity is assumed to be concentrated in a point vortex and convected
along a straight line parallel to the main pipe axis with a velocity Uc = 0.4U . Then
for consecutive hydrodynamic modes the peak-whistling Strouhal numbers, where
the maximum amplitude in pressure fluctuations are registered, is given by:

Srp−w =
fnW

U
= 0.13 + n 0.40 n = 0, 1, 2... (2.5)

Later, more realistic calculations by Hofmans [1998] and Martínez-Lera et al. [2009]
showed that the first hydrodynamic mode (n = 0) is rather weak. They have also in-
dicated that for the second hydrodynamic mode (n = 1) the peak-whistling Strouhal
number (Srp−w) is around 0.6. This Strouhal number is larger than the prediction of
Bruggeman et al. [1991].

The singularity at the edges can be reduced by rounding. This implies that rounding
off the upstream edge decreases the initial absorption which leads to an increase in
the net sound production 〈Psource〉. This has been observed in the case of deep side
branches by Bruggeman et al. [1991]. They also concluded that the characteristic
length used in the Strouhal number definition should be the sum of the cavity width
and the upstream edge radius, W + rup, because the travel distance of the vorticity
perturbation is increased by rounding the upstream edge off. The downstream edge
is less critical [Bruggeman et al., 1991; Nakiboğlu et al., 2009] because the vorticity
(the shear layer) is less localized as it approaches the downstream edge than when it
is shed from the upstream edge. The vortex core near the downstream edge is typi-
cally large compared to the edge radius. This effect will be demonstrated in Sec. 2.5,
Sec. 2.6.1 and Sec. 2.6.3.

2.3.3 Non-linear saturation

The aeroacoustic behavior of corrugated pipes and the multiple side branch system
depends strongly on the ratio of acoustic velocity to main flow velocity, |u′|/U =

|p′|/(ρ0c0U), where |u′| is the acoustic velocity at a pressure node and |p′| is the pres-
sure amplitude at a pressure anti-node, of the standing wave. This was explained
by Bruggeman et al. [1991] for the case of deep side branches. The instability of the
shear layer at low amplitudes can be described by linear theory. At resonance, for
low frequencies linear theory predicts an amplification of the perturbation by a fac-
tor e2π ≈ 500 over one hydrodynamic wave length [Bruggeman et al., 1986]. For a
grazing flow along shallow cavities the peak-whistling Strouhal numbers described
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by Eq. 2.5 correspond to an integer number n of hydrodynamic wave length plus a
quarter hydrodynamic wave length matching the cavity width (W ). Hence the first
mode, n = 0 has only an amplification (e2π)1/4 ≈ 5 while the second mode, n = 1,
has an amplification of (e2π)5/4 ≈ 2500. The exponential growth of the amplitude
clearly imposes a limit condition for the use of linear theory because the pertur-
bations should remain small. A non-linear saturation has to occur [Fletcher, 1979]
which is the formation of the discrete vortices, where most of the vorticity of an hy-
drodynamic wave length is concentrated into a vortical structure [Bruggeman et al.,
1991]. The recent numerical calculation of Martínez-Lera et al. [2009] on a single side
branch at moderate Reynolds numbers, Re = O(103), which globally agrees with the
earlier studies [Bruggeman et al., 1991; Hofmans, 1998], showed that for the second
hydrodynamic mode in the case of grazing acoustic velocity (Fig. 2.2-a), the non lin-
ear saturation of perturbations already appears around |u′|/U ≈ 10−2.

It is important to note that whistling at low amplitudes, in the range |u′|/U ≈ 10−3, is
an extremely unstable phenomenon which correspond to an almost neutrally stable
oscillation cycle where the net acoustic source power (〈Psource〉) and losses (〈Pvisc〉+
〈Prad〉), which are both proportional to |u′|2, are in equilibrium. A very small in-
crease in losses will make the system stable and suppress the oscillations. Indeed,
in Sec. 2.6.1 it is demonstrated that the low amplitude oscillations are very sen-
sitive to small modifications in the system. Moderate amplitude oscillations with
|u′|/U ≈ 10−1 are much more stable.

2.4 Experimental Setup & Data Analysis

In the first part of this section the experimental setups for corrugated pipes and the
multiple side branch system are introduced. In the second part, the processing of the
experimental data is briefly explained.

2.4.1 Experimental setups

The schema of the experimental setup that was employed in corrugated pipe exper-
iments is shown in figure 2.3-a. From upstream to downstream the setup is com-
posed of: a pressure vessel, a turbine flow meter, a flow control valve, a constant
diameter (D = 50.8 mm) measurement section of 1.6 m long, a corrugated pipe seg-
ment, which is 3 m long, a second measurement section identical to the first one and
a pressure vessel. Upstream and downstream measurement sections are equipped
each with five flush mounted microphones (PCB 116A), which allow the reconstruc-
tion of traveling acoustic plane waves using the multi microphone method [Åbom
and Bodén, 1988; Banks-Lee and Peng, 1989]. The amplitude of the pressure fluctua-
tions at a pressure anti-node (|p′|) is calculated from the plane wave’s amplitude and
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phase. By means of a back pressure control valve, the system can be pressurized to
operational pressures up to 12 bar which allows us also to study the Reynolds num-
ber dependency of the system [Belfroid et al., 2007].

The multiple side branch system is made of 19 equal T-joints that are connected

Figure 2.3: Experimental setups for corrugated pipes (a) and multiple side branch
system (b).

to one another forming a row of equally spaced side branches along a main pipe, as
demonstrated in figure 2.1-b. The T-joints (vacuum system ISO-KF) are cast in alu-
minum. The main pipe of the T-joint has an internal diameter (D) of 33 mm which
is equal to the the inner diameter of the side branch (Dsb). The length of the main
pipe of each T-joint is 100mm and the side branch is located half way of this seg-
ment. Using plugs at each side branch and changing their penetration depth the
side branch depth was varied. One of the edges (rup or rdwn, depending on the flow
direction) that connect the side branch to the main pipe is rounded and the other
edge is sharp. The edge radius of curvature is 3 mm, which is approximately one
tenth of the side branch diameter (r/Dsb ≈ 0.1). T-joints are connected to each other
using standard ISO-KF clamps which incorporate O-rings for sealing. The end walls
of four side branches are supplied with flush mounted microphones (PCB 116A). By
using these microphones the standing wave pattern, which corresponds to a longi-
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tudinal pipe mode, is reconstructed and the amplitudes of pressure fluctuations at a
pressure anti-node (|p′|) is calculated. Typical reproducibility of data are 1% for the
whistling frequency and 5% for the pressure fluctuation amplitude.

The downstream end of the multiple side branch system is open to the laboratory
(a large room of 15×4×4 m). The upstream end is connected to the high pressure
air supply system which is composed of, from upstream to downstream, a compres-
sor, a vessel, a control valve, a buffer vessel, a turbine flow meter and an expansion
chamber muffler as shown in figure 2.3-b.

The microphones (PCB 116A) are connected to charge amplifiers (Kistler 5011). These
amplifiers are connected to a PC through a AC/DC converter acquisition board (Na-
tional Instruments NI SCXI-1000). A turbine flow meter (Instromet SM-RI-X-KG250)
is used to measure the mean flow velocity. The turbine flow meter is connected to a
pulse shaper and a counter. The acquisition system of the setup has been improved
after a first series of experiments described in [Nakiboğlu et al., 2009] using a trigger
system which allows simultaneous measurement of volume flow from turbine flow
meter and pressure from the piezo-electric pressure transducers. The temperature of
the air is measured inside the expansion chamber muffler, with an accuracy of 0.1◦C,
by a digital thermometer (Eurotherm 91e).

It should be noted that due to the presence of different elements upstream of the test
sections, the inflow velocity profiles for corrugated pipes and multiple side branch
system are not the same. In corrugated pipe setup the upstream measurement sec-
tion is long enough to have a fully developed turbulent flow before the corrugated
pipe segment. Whereas, for multiple side branch system, the contraction from the
expansion chamber to the inlet of the multiple side branch section imposes a uniform
flow at the inlet of the pipe section. However, at these Reynolds numbers, O(104),
the momentum thicknesses of the boundary layers in both configurations are very
small compared to the cavity width and side branch diameter, respectively. Thus, an
essential alteration in the whistling behavior of the systems is not expected due to
this difference in the inlet velocity profiles [Bruggeman, 1987a].

2.4.2 Data analysis

In this subsection we present the way we have used experimental data to detect the
frequency and amplitude of the whistling. The frequencies of whistling that of in-
terest are in the range of 100-300 Hz and the sampling rate (fsamp = 1/Tsamp) of the
experiments was 5000 Hz. Thus the sampling rate is large enough to satisfy Nyquist
criteria, so as to avoid any aliasing.
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Evidently the sampling duration is finite, so the Fourier Transform of the contin-
uous signal actually can not be calculated. However by sampling for long enough
time, a discrete time signal can be obtained whose Discrete Fourier Transform (DFT)
roughly represents the Fourier Transform of the continuous time signal [Bracewell,
1986]. For that purpose a sampling duration, Ts, of 6 seconds has been used.

The sampled values of the continuous signal, forms a discrete time signal:

x[k ] = x (kTsamp) for k = 0, 1, 2, . . . (n− 1)

where n = Ts/Tsamp. Total energy of this discrete time signal1 is given by

Et =

n−1
∑

i=0

x[k ]2. (2.6)

As a result of the Parseval’s theorem [Bracewell, 1986] Et is equal to the total energy
Ef of the DFT of x[k ], X[j ].

Ef =

n−1
∑

k=0

||x[k ]||2 =

n−1
∑

j=0

||X[j ]||2 (2.7)

where,

X[j ] =

n−1
∑

k=0

x[k ]
e−i2πj k

n

√
n

(2.8)

To calculate the amplitude of the whistling mode, the frequency (fp−w) with the
largest energy in the frequency domain is chosen. Then the total energy in an interval
(Efp−w

) of fp−w ± 1Hz is calculated and converted to an equivalent amplitude for a
harmonic signal (x(t) = A sin(2πfp−w t+ θ)) through:

A =

√

2Efp−w

Ts
(2.9)

This method is checked with several test signals which are similar to actual exper-
imental signals. The frequency and the amplitude of this artificial signals are re-
trieved with in an accuracy better than 1%. The energy content of the whistling
mode (Efp−w

) is compared with the total energy of the signal (Ef ). This ratio is used
as an identification for whistling which is an alternative to the method based on the
quality factor proposed by Rockwell et al. [2003].

The simultaneous measurement of flow velocity and pressure allows a waterfall rep-
resentation of the data, in which the frequency spectrum of the whistling at different
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Figure 2.4: Waterfall representation of a typical result that is obtained with mul-
tiple side branch system (time resolution is nine times higher in the actual data,
intermediate values are skipped for ease of representation).

flow velocities are presented in a single graph, figure 2.4. This interpretation can
capture consecutive modes that appear simultaneously with the dominant mode,
as observed in the literature for single axisymmetric cavities [Rockwell et al., 2003;
Oshkai et al., 2005]. During the experimental campaign secondary modes were not
observed. Hence for quantitative interpretation throughout the paper the data is pre-
sented separately as dimensionless fluctuation amplitude and Helmholtz number as
a function of the Mach number.

2.5 Corrugated Pipes

Corrugated pipes manufactured from Polyvinyl chloride (PVC) were used in the ex-
periments which allowed controlled variation in edge radii, depth and width of the
corrugations. Geometric parameters of 11 different corrugated tubes that were tested
at 14 different configurations are given in table 2.1. The pipes with asymmetric cav-
ity geometries are tested in both flow directions and corresponding samples named
configuration A and configuration B of the same pipe. For all geometries, the length
of the pipe (L) is 3 m and the inner diameter of the pipe (D) is 49 mm, except for the
Geo 11 which is a commercially available corrugated pipe with D of 53 mm.

In figure 2.5, a typical result of a corrugated pipe (Geo 1) is presented. The other
geometries showed also similar characteristics. It is seen that in average there is a
linear increase of frequency with increasing velocity which corresponds to a peak-

1Because of our high sampling rate and long sampling duration, total energy of the continuous time
signal

∫
Ts

0
x(t)2dt, in the interval T = [0, Ts], is roughly equal to the EtTsamp.
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Table 2.1: Geometric parameters of tested corrugated pipes and peak-whistling
Strouhal numbers.

Sample W H rup rdwn Lp Srp−w Sample W H rup rdwn Lp Srp−w

Geo 1 8.0 4.0 2.0 2.0 0 0.42 Geo 6B 4.0 4.0 0.0 4.0 4.0 N/A
Geo 2 4.0 4.0 2.0 2.0 4.0 0.36 Geo 7 4.0 4.0 0.0 0.0 8.0 0.41
Geo 3A 4.0 4.0 3.0 1.0 4.0 0.35 Geo 8A 2.0 2.0 2.0 0.5 5.5 0.33
Geo 3B 4.0 4.0 1.0 3.0 4.0 N/A Geo 8B 2.0 2.0 0.5 2.0 5.5 N/A
Geo 4 4.0 4.0 2.0 2.0 0 0.38 Geo 9 2.0 4.0 2.0 2.0 4.0 0.32
Geo 5 4.0 4.0 2.0 2.0 8.0 0.40 Geo 10 2.0 2.0 2.0 2.0 4.0 0.32
Geo 6A 4.0 4.0 4.0 0.0 4.0 0.36 Geo 11 7.0 5.0 1.5 1.5 0 0.49

Figure 2.5:

Dimensionless fluctuation
amplitude and correspond-
ing Helmholtz number as a
function of Mach number
for Geo 1.

whistling Strouhal number, which can be determined through a linear least square
fit of consecutive excited modes with an uncertainty of ±0.03. A closer look at the
Helmholtz number reveals that the frequencies are not increasing continuously with
increasing velocity. There are some plateaus (as stressed by the dashed lines) corre-
sponding to lock-in of whistling to the longitudinal pipe modes. It is also observed
that the whistling amplitude is not a monotonous function of the velocity. It displays
local maxima at each lock-in with a pipe mode, when the oscillation frequency coin-
cides with a passive acoustic resonance of the system.

Determination of the optimal characteristic length (Lc) for the Strouhal number
(Sr = fLc/U ) is an essential point. Three different characteristic lengths are investi-
gated. Figure 2.6, shows the Strouhal numbers for Geo 1, Geo 2 and Geo 3A based
on pitch length, Pt = rup +W + rdwn + Lp, which is 12 mm for all three geometries.
These geometries have different gap widths, rup+W+rdwn, and different width plus
upstream edge radii, W + rup, which we call the modified gap widths. Holding the
pitch constant and varying other geometrical parameters results in a considerable
range of Strouhal numbers 0.45 ≤ SrL ≤ 0.8. This indicates that the pitch is not the
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Figure 2.6: Comparison
of pitch length and modi-
fied gap width (W + rup)
based Strouhal numbers
for two sets of corrugated
pipes.
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suitable length scale for the Strouhal number.

Comparison of Geo 4, Geo 5, Geo 3A and Geo 6A, suggests another way of defin-
ing Strouhal number, which is based on gap width. These four geometries have the
same gap width of 8 mm with pitch lengths of 8 mm, 16 mm, 12 mm and 12 mm,
respectively. They also have different modified gap width, which are 6 mm, 6 mm,
7 mm and 8 mm. Using the gap width as characteristic length, limits the variation
of Strouhal numbers to 0.30 ≤ SrL ≤ 0.55. However, a much smaller scatter in
the Strouhal numbers is observed, for the same four geometries when modified gap
width is used as characteristic length in the expression for Strouhal number. It is seen
(Fig. 2.6) that the variation is limited to the range 0.32 ≤ SrL ≤ 0.42. This optimal
choice of characteristic length agrees with the results of Bruggeman et al. [1991] for
deep side branches.

Experiments were performed in order to investigate the effect of edge radius of cor-
rugations on the whistling amplitude. Configurations Geo 5 and Geo 7 have the
same value for all the geometric parameters except the edge radius. Geo 5 has
rounded edges with a radius of 2 mm which leads to a relative edge radius with
respect to cavity width (r/W ) of 0.5, whereas Geo 7 has sharp edges. Experiments
performed at atmospheric pressure showed that for the sharp edge geometry (Geo 7)
the whistling is hardly noticeable. Then, the same experiment was performed at a
static pressure of 4 bar, to decrease the viscous losses through an increase in density.
Dimensionless fluctuation amplitudes as a function of Strouhal number is presented
in figure 2.7. As expected, an increase in |u′|/U is observed due to decrease in vis-
cous losses. The maximum dimensionless fluctuation amplitudes are around 10−1
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Figure 2.7:

Dimensionless fluctua-
tion amplitude as a function
of Strouhal number at a
static pressure of 4 bar for
sharp and rounded edge
configurations.

for round edges (Geo 5) and 2 × 10−2 for sharp edges (Geo 7). It is concluded that
rounding the edges does increase the pressure fluctuations by a factor 5. This is in
agreement with the experimental results obtained for deep side branches [Brugge-
man et al., 1991]. Qualitatively this can be predicted by Vortex Sound Theory, as
explained in Sec. 2.3.2.

2.6 Multiple Side Branch System

In this section experiments performed on the multiple side branch system are pre-
sented. First, the similarities that are observed between the corrugated pipes and
multiple side branch system are highlighted. In the following subsections; the effect
of downstream pipe termination geometry, source localization, the effect of edge ge-
ometry, the effect of side branch depth, the effect of a gradient in side branch depth
and finally the effect of flow acceleration or deceleration are discussed.

It should be noted that a main geometric difference between corrugated pipes and
multiple side branch system is that the cross section of corrugation cavity is a slit
whereas the side branches have circular cross sections (Fig. 2.1). Thus, the side
branch diameters are converted to effective cavity width (W eff = πDsb/4) as pro-
posed by Bruggeman et al. [1991], which is the average width of the side branch
cross section.

As mentioned in the introduction and demonstrated in figure 2.5, in corrugated
pipes the whistling frequency does not vary continuously with a monotonically in-
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Figure 2.8:

Dimensionless fluctu-
ation amplitude and
corresponding Helmholtz
number as a function of
Mach number for (H/Dsb)
ratio of 1.15 (19 side
branches, round upstream
edge-sharp downstream
edge configuration).
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creasing flow rate, but rather in distinct steps. This characteristic is also observed in
the multiple side branch system. In figures 2.8 and 2.9 measured whistling frequen-
cies, in terms of Helmholtz number, are given as a function of Mach number for two
values of cavity depth to side branch diameter ratio (H/Dsb). Here it can be noticed
that Helmholtz numbers of 1, 1.5, 2... corresponds to 2nd, 3rd, 4th... acoustic modes
of the multiple side branch system, respectively. These observations agree with the
observations on corrugated pipes.

A closer look to the Helmholtz numbers reveals an additional feature which is the
slight, but discernible, increase in whistling frequency within the same mode which
is in agreement with the observation in literature [Sarohia, 1977; Ziada et al., 2003].
For both deep and shallow side branches there exist a global constant slope between
Helmholtz number and Mach number. This indicates a peak-whistling Strouhal
number (Srp−w) for the system where the peak-whistling Strouhal numbers of con-
secutive modes coincide, within a discrepancy band of approximately 5%. This is
another typical corrugated pipe attribute. For the deep and the shallow cases the
peak-whistling Strouhal numbers (Srp−w) are 0.6 and 0.5, respectively which corre-
sponds to 2nd hydrodynamic mode for a grazing acoustic flow [Bruggeman et al.,
1991; Hofmans, 1998; Martínez-Lera et al., 2009]. The whistling amplitude displays
local maxima at each lock-in with a longitudinal pipe mode. For the deep cavity case
(Fig. 2.8) a global increase in whistling amplitude with an increasing Mach number
can also be mentioned, with an exception of a dip at the 4th and the 5th acoustic
mode. This dip is due to an acoustic resonance of the upstream muffler (Fig. 2.3-b)
around 360Hz [Tonon et al., 2010].
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Figure 2.9:

Dimensionless fluctu-
ation amplitude and
corresponding Helmholtz
number as a function of
Mach number for (H/Dsb)
ratio of 0.24 (19 side
branches, round upstream
edge-sharp downstream
edge configuration).

For the deep cavities (H/Dsb = 1.15, figure 2.8) above a critical Mach number
(Ma ≈ 0.1), a mode with a different Strouhal number is excited. This study is kept
limited to the regime where the whistling behavior is similar to that of corrugated
pipes. Thus, we are only interested in Mach numbers below this limit. Whereas for
the shallow cavities (H/Dsb = 0.24, figure 2.9) it is seen that even for Mach numbers
higher than Ma ≥ 0.15 the whistling frequencies corresponds to a constant Strouhal
number.

The corrugated pipes that are used in this study have typically 2 × 102 corruga-
tions, whereas the multiple side branch system composed of only 19 T-joints. How-
ever, whistling frequencies that are observed with corrugated pipes are rather high
(Fig 2.5) compared to the ones in the multiple side branch system. Thus, the typi-
cal number of corrugations per wave length in corrugated pipes at high frequencies
(fL/ceff = O(10)) is close to that of multiple side branch system at low frequencies
(fL/ceff = O(1)). Consequently, in the multiple side branch system the attention is
given to the lowest modes.

Whistling has not been observed for the 1st acoustic mode in any of the experiments.
This is, probably, due to the fact that viscous and radiation losses are higher than
the sources of sound. In literature it has also been reported that for corrugated pipes
the first acoustic mode does not whistle [Binnie, 1961; Nakamura and Fukamachi,
1991; Petrie and Huntley, 1980]. Maximum dimensionless fluctuation amplitude at
the first whistling mode, which is the 2nd acoustic mode, is |u′|/U = 2.5 × 10−2 for
the deep cavity and |u′|/U = 2.5×10−3 for the shallow cavity. These fluctuation am-
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plitudes correspond to rather low amplitude levels. As explained in Sec. 2.3.3, the
system is extremely sensitive to small perturbations at this low amplitude regime.
For the 3rd acoustic mode, dimensionless fluctuation amplitude for deep and shal-
low cavities are |u′|/U = 3.7×10−2 and |u′|/U = 7.5×10−3, respectively. Since these
amplitudes are higher, whistling is more stable than the 2nd acoustic mode. For this
reason, in the rest of the paper the discussion is based on the 3rd acoustic mode. As
a consequence throughout the Sec. 2.6.1 to Sec. 2.6.6, where the multiple side branch
system is investigated, instead of making a linear least square fit to all the acoustic
modes, the peak-whistling Strouhal number is determined based on the 3rd acoustic
mode. The peak-whistling Strouhal number is calculated by taking average of two
Strouhal numbers, which are corresponding to 80% of the maximum amplitude.

2.6.1 Effect of pipe termination

It is expected that the edge geometry of the pipe termination has a strong effect on
the sound absorption there. To investigate this phenomena, we performed experi-
ments with sharp and “whistler nozzle” type [Hirschberg et al., 1989] pipe termina-
tions, see figure 2.10. The sharp terminations has D = 33 mm and Dt = 34 mm.
Whistler nozzle type termination has a step wise increase in the pipe diameter from
D = 33 mm to Dn = 34 mm over a nozzle length (Ln) of 3 mm upstream of the pipe
termination with a termination diameter (Dt) of 54 mm.

When there is a sharp pipe termination, there exists a strong absorption of sound

Figure 2.10: Sharp and “whistler nozzle” type pipe terminations.

due to vortex shedding at the outlet of the multiple side branch system. This could
be explained again on the basis of Vortex Sound Theory [Howe, 1975]. Replacing the
sharp edges with “whistler nozzle”, we decrease the singularity of the acoustic flow
at the separation point. Furthermore the acoustic velocity shortly downstream of
the separation point is almost directed along the pipe axis, which will also strongly
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Figure 2.11:

Dimensionless fluctuation
amplitude for the 2nd and
3rd acoustic mode as a func-
tion of Strouhal number for
sharp and “whistler noz-
zle” type pipe terminations.
(H/Dsb = 0.79, 19 side
branches, round upstream
edge-sharp downstream
edge configuration).

decrease the scalar triple product 〈Psource〉. Therefore initial sound absorption be-
comes quite low. In this respect, the whistler nozzle is shifting the balance of initial
absorption and later production, in favor of the production [Hirschberg, 2001]. In
the current study for the Strouhal numbers considered, based on the nozzle length
(Ln = 3 mm) which are in the order of 0.06, the whistler nozzles creates a reduction
of absorption but no net sound production. This nozzle is expected to whistle only
for a Strouhal number in the order of 0.2 or higher [Hirschberg et al., 1989].

Measured dimensionless fluctuation amplitude for the 2nd and the 3rd acoustic modes
as a function of Strouhal number is shown in figure 2.11. Due to a decrease in the
initial sound absorption with the whistler nozzle, maximum amplitudes for the 3rd

mode are 3.7 × 10−2 for the whistler nozzle and 1.4 × 10−2 for the sharp pipe ter-
mination. For the 2nd mode the effect is even more pronounced due to the fact that
dimensionless fluctuation amplitude levels correspond to a lower amplitude regime.
At lower amplitudes the whistling is less stable, as explained in Sec. 2.3.3. The ampli-
tude decreases almost by a factor 5. To avoid this strong absorption the experiments
presented in this paper are performed with a whistler nozzle termination.

2.6.2 Source localization

In the literature [Kristiansen and Wiik, 2007], it has been suggested that the regions of
sound production in corrugated pipes are at velocity nodes. The study of Tonon et al.
[2010] with multiple side branches demonstrated that the sound is produced mainly
in pressure nodes where the grazing acoustic velocity is maximum. That study was
done for a system of 15 side branches with sharp edges and H/Dsb = 1.15. Here an
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Figure 2.12:

Dimensionless fluctua-
tion amplitude for the 3rd

acoustic mode as a func-
tion of Strouhal number
for the cases where none
of the side branches are
plugged, side branches
near the pressure nodes are
plugged and side branches
near the velocity nodes are
plugged.(H/Dsb = 1.15,
19 side branches, round
upstream edge-sharp
downstream edge configu-
ration).
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experiment with rounded upstream edges and 19 side branches with H/Dsb = 1.15

is considered.

Three experiments were performed, as shown in figure 2.12. In the first test none of
the side branches were plugged for reference. In the second one, four side branches
(6, 7, 13, 19) close to the pressure nodes were plugged thus the contribution to the
sound production from those side branches were suppressed. In the third test, three
side branches (3, 10, 16) close to the velocity nodes were plugged.

It is seen from figure 2.12 that the contribution of the side branches to the sound
production which are close to the velocity nodes is negligible. Whereas when the
side branches close to the pressure nodes are suppressed, almost an order of magni-
tude drop, from 3.6× 10−2 to 4.0× 10−3 is observed in the dimensionless fluctuation
amplitude. Experiments performed for the 2nd acoustic mode lead to the same con-
clusion that sound is mainly produced by the grazing acoustic flow at the cavities
close to the pressure nodes of the longitudinal standing waves along the pipe. This
can be justified through Vortex Sound Theory [Howe, 1975],

2.6.3 Effect of edge shape

Following the experiments with corrugated pipes, the effect of edge geometry is also
investigated with the multiple side branch system. In figure 2.13, measured dimen-
sionless fluctuation amplitude for the 3rd acoustic mode as a function of Strouhal
number for round upstream-sharp downstream case and sharp upstream-round down-
stream case are given. The radius of the rounded edge is 3 mm which is approxi-
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Figure 2.13:

Dimensionless fluctua-
tion amplitude for the 3rd

acoustic mode as a function
of Strouhal number for
round upstream-sharp
downstream case and sharp
upstream-round down-
stream case (H/Dsb = 1.15,
19 side branches).

mately 10% of the cavity width (Weff = πDsb/4). As explained in Sec. 2.3 through
Vortex Sound Theory [Howe, 1975], higher pressure fluctuation amplitudes were
expected from round upstream-sharp downstream case than sharp upstream-round
downstream case. Indeed, maximum dimensionless fluctuation amplitudes are |u′|/U =

3.7 × 10−2 for rounded upstream edge and |u′|/U = 1.4 × 10−2 for sharp upstream
edge. As for corrugated pipe results, using the modified gap (Weff + rup) as the char-
acteristic length for the Strouhal number decreases the discrepancy in the Strouhal
numbers observed, see figure 2.13.

2.6.4 Effect of cavity depth

Using plugs at each side branch and changing their penetration depth the effect of
side branch depth to side branch diameter ratio (H/Dsb) was investigated. Increas-
ing the side branch depth (H) decreases the effective speed of sound (ceff ), this de-
crease can be predicted by using the model of Elliott [2004], as explained in Sec. 2.3.1.
For the 3rd acoustic mode, if ceff was known exactly then the whistling frequency
would provide a Helmholtz number of 1.5. In figure 2.14 Helmholtz numbers are
presented as a function of Mach number for 10 different H/Dsb ratios, for the 3rd

acoustic mode. The variation around He = 1.5 is 3% which confirms the proposed
acoustical model of Tonon et al. [2010]. A closer look to the collapse of data, indicates
that for very shallow cavities the effective speed of sound definition is less succesful.
This is due to a difficulty in estimating the effective acoustical volume Vc for very
shallow cavities [Nederveen, 1998].

In figure 2.15 and 2.16 the dimensionless fluctuation amplitudes as a function of
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Figure 2.14: Helmholtz
number as a function of
Mach Number for various
cavity depth to side branch
diameter ratios: 0.18 ≤

H/Dsb ≤ 1.15 (3rd acous-
tic mode, 19 side branches,
round upstream edge-sharp
downstream edge configu-
ration).
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the Strouhal number are presented. Two distinct ranges of H/Dsb are distinguished.
In the first range (Fig. 2.15), 0.61 ≤ H/Dsb ≤ 1.15, a saturation behavior is observed
in the amplitude of pressure fluctuations with an almost constant peak-whistling
Strouhal number. The difference in the pressure fluctuation amplitude in this range
is less then 10% and the shift in peak-whistling Strouhal number is less than 5%. In
this range (relatively “deep cavity”), the whistling is very stable. For all the H/Dsb

ratios a ±1 Hz window around the whistling frequency contains more than 90% of
the total energy of the whole frequency spectrum.

A closer look to figure 2.16 reveals different sub-regimes for the shallow side branch
range. For the side branches with a H/Dsb ratio less then 0.25, an increase in the side
branch depth leads to an increase in peak-whistling Strouhal number which is par-
allel to the observations of Heller and Bliss [1975]; Ethembabaoglu [1973] and Ziada
et al. [2003] for shallow cavities (H/W ≤ 0.5). Increase in cavity depth in this range
does also increase the amplitude of oscillations. More than 80% of the energy con-
tent of the whole frequency spectrum is concentrated in a ±1 Hz window around the
whistling frequency which is an indication of coherent oscillations [Charwat, 1961].
In the range 0.25 ≤ H/Dsb ≤ 0.5 dimensionless fluctuation amplitudes are relatively
low, usually less than 3 × 10−3. In this range a frequency window of ±1 Hz around
the whistling frequency contains at most 50% of the total energy of the spectrum,
which indicates less coherent oscillations. Finally a transitional regime can be dis-
tiguised between 0.50 ≤ H/Dsb ≤ 0.60. Here it is observed that the amplitude of
oscillations increases an order of magnitude from 3× 10−3 to 3× 10−2 as the H/Dsb

ratio increases from 0.48 to 0.61. Also a shift in the peak-whistling Strouhal number
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Figure 2.15: Dimensionless fluctua-
tion amplitude for the 3rd acoustic
mode as a function of Strouhal num-
ber for different H/Dsb ratios ranging
between 0.61-1.15 (19 side branches,
round upstream edge-sharp down-
stream edge configuration).
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Figure 2.16: Dimensionless fluctua-
tion amplitude for the 3rd acoustic
mode as a function of Strouhal num-
ber for different H/Dsb ratios ranging
between 0.18-0.61 (19 side branches,
round upstream edge-sharp down-
stream edge configuration).

from 0.67 to 0.60 is recorded in the same interval. This transition regime could be
related to the change in the flow patterns observed in rectangular cavities, refered as
open and closed flow [Gloerfelt, 2009].

In figure 2.17 an overview of the peak-whistling Strouhal numbers is given and com-
pared with the data obtained for corrugated pipes (Table 2.1). For the multiple side
branch experiments two groups,namely, the moderate amplitude and the low ampli-
tude, can be distinguished. For the moderate amplitude range (≈ 2.5×10−2) there is
hardly any dependence of the peak-whistling Strouhal number on the H/Dsb ratio.
For the low amplitude regime (≈ 5 × 10−3) there is a pronounced shift in peak-
whistling Strouhal number with varying H/Dsb ratio. It should be mentioned that
among the corrugated pipes that are tested, there are only two configurations (Geo 9
and Geo 10) for which all the parameters are kept constant except the depth. As
pointed out in figure 2.17 a shift in peak-whistling Strouhal number is not observed
between these two corrugated pipes. Also it can be highlighted that experiment
performed with a commercially available corrugated pipe (Geo 11) give a peak-
whistling Strouhal number (Srp−w ≈ 0.49) between the multiple side branch system
and the other corrugated pipes that are tested in this study.

It is interesting to note that the range of the peak-whistling Strouhal numbers found
for corrugated pipes (0.32 ≤ Srp−w ≤ 0.49) are much larger than the one predicted
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Figure 2.17: Peak-
whistling Strouhal num-
ber as a function of
H/(Weff + rup) for mul-
tiple side branch and
H/(W + rup) for corru-
gated pipes.
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for the first hydrodynamic mode (Sr ≤ 0.13) but lower than the one predicted for
the second hydrodynamic mode (Sr ≈ 0.60) [Bruggeman et al., 1991; Hofmans, 1998;
Martínez-Lera et al., 2009]. This is an essential difference between the multiple side
branch system and corrugated pipes. A possible explanation is that we observe here
an effect of the relative size of corrugations compared to the momentum thickness
of the main pipe flow. Another explanation, as observed by Binnie [1961], could
be the influence of pipe diameter (D) to cavity width (W ) ratio, where a shift in
Strouhal number from 0.4 up to 0.7 was observed with a decrease in D/W ratio. Un-
fortunately, Binnie [1961] did not specify the length scale used to define the Strouhal
number.

2.6.5 Effect of a gradient in side branch depth

In this subsection the effect of a gradient in the side branch depth is considered. This
is a linearly changing cavity depth where the side branches at the upstream end of
the system have deeper cavities than the ones at the downstream end. This can be a
model for a temperature gradient along the pipe which causes a change in speed of
sound.

To investigate this approach an experiment was performed with 19 side branches.
The depth of the side branches decreased in three steps where the first five have a
H/Dsb ratio of 0.79. The next two sets of five side branches have H/Dsb ratio of
0.66 and 0.55, respectively. The last four side branches have a H/Dsb ratio of 0.42. In
figure 2.18, the whistling frequency in terms of Helmholtz number is given as a func-
tion of Mach number for the linearly decreasing cavity depth and for the correspond-
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Figure 2.18: Helmholtz
number as a function of
Mach number for linearly
decreasing side branch
depth and equivalent uni-
form side branch depth
configurations (3rd acoustic
mode, 19 side branches,
round upstream edge-
sharp downstream edge
configuration).

ing equivalent uniform side branch depth (H/Dsb = 0.61) configurations. It is seen
that the two configurations have almost the same whistling frequencies. However
the dimensionless fluctuation amplitude of linearly decreasing side branch depth is
2.5× 10−2 whereas it is 3.4× 10−2 for equivalent uniform side branch depth, see fig-
ure 2.19. In Sec. 2.6.2 it is showed that sound is produced mainly at the side branches
which are close to the pressure nodes. For the 3rd acoustic mode there are four pres-
sure nodes along the pipe. One node, closest to the downstream pipe termination,
is in a region where the H/Dsb ratio corresponds to a depth in which low ampli-
tude pressure fluctuations was observed (Fig. 2.16). The other nodes correspond to
H/Dsb ratios producing moderate amplitude pressure fluctuations (Fig. 2.15). As-
suming that individual contributions (to the sound production) of pressure nodes at
the ends of the pipe are half as much as the other pressure nodes, a 15% drop in am-
plitude is expected from the linearly decrasing side branch configuration compared
to the equivalent uniform depth configuration. This estimation is reasonably close
to the actual drop which is 25%.

2.6.6 Hysteresis

Hysteresis is reported in corrugated pipe whistling [Petrie and Huntley, 1980; Naka-
mura and Fukamachi, 1991] state that a jump to the next acoustic mode occurs for
an increasing airspeed at a slightly lower air velocity than for a decreasing one. A
similar effect is also observed with the multiple side branch system. In figure 2.20,
an experiment that is performed with first an increasing flow velocity and then with
a decreasing flow velocity is presented. The trends are similar for the 2nd and the
3rd acoustic modes. From figure 2.20-a it is seen that, with an increasing velocity the
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Figure 2.19:

Dimensionless fluctua-
tion amplitude for the 3rd

acoustic mode as a func-
tion of Strouhal number
for linearly decreasing
side branch depth and
equivalent uniform side
branch depth configura-
tions (19 side branches,
round upstream edge-
sharp downstream edge
configuration).
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jump from 2nd mode to 3rd mode occurs around Ma = 0.025 whereas with decreasing
velocity it is around Ma = 0.028. On the other hand, from figure 2.20-b displaying
the amplitude of the 3rd acoustic mode, it is seen that the hysteresis does not have a
pronounced effect on the maximum amplitude.

The above experiment on the hysteresis was already performed very slowly (Fig. 2.20-
a). The time interval for each acoustic mode before jumping to the next one is in the
order of 104 oscillation periods. But as shown in figure 2.20-b, a hysteresis could
still be observed. The hysteresis effect vanished only when the acceleration & decel-
eration rates are lowered down to 105 periods for each mode. Corresponding data
points are indicated as “neutral” in figure 2.20-b.

2.7 Conclusion

In this study whistling behavior of corrugated pipes and a multiple side branch sys-
tem are compared. In both systems, it is observed that frequency (Helmholtz num-
ber) is a non-decreasing piecewise constant function of the Mach number, whose in-
crease on average is approximately linear. The plateaus, lock-in frequencies, of this
piecewise constant function correspond to the longitudinal acoustic pipe modes. In
both system non-monotonic behavior in whistling amplitude as a function of flow
velocity is observed with local maxima that correspond to lock-in frequencies.

Various characteristic lengths were considered in the definition of the Strouhal num-
ber. It appears that the cavity width plus the upstream edge radius, W + rup, yields
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Figure 2.20: a) Acceleration and deceleration rates during the experiment for the
2nd and 3rd mode. b) Dimensionless fluctuation amplitude and corresponding
Strouhal number for increasing velocity, decreasing velocity and neutral cases (19
side branches, round upstream edge-sharp downstream edge configuration).

the smallest scatter of the Strouhal number data for corrugated pipes as well as for
the multiple side branch system.

The upstream edge of the cavity has a significant effect on pressure fluctuation am-
plitudes for both corrugated pipes and the multiple side branch system. Rounding
the upstream edges of the cavities increases the amplitude of the pressure fluctua-
tion up to 5 times compared to the sharp edges. The radius of the downstream edge
does not have such a pronounced effect on the sound production.

While corrugated pipes and multiple side branch systems have very similar whistling
behaviors, the peak-whistling Strouhal numbers, where the maximum amplitude in
the dimensionless fluctuation amplitudes are registered, are different for these two
periodic systems. It is found that 0.32 ≤ Sr ≤ 0.5 for corrugated pipes whereas with
multiple side branches, in agreement with the theory, it is observed that 0.5 ≤ Sr ≤
0.6. The difference in the peak-whistling Strouhal numbers of these two systems is
not yet understood.

A number of geometric parameters and their respective effects are addressed in mul-
tiple side branch system. Exact geometry of the downstream pipe termination ap-
pears to be very important for pressure fluctuation amplitudes. With a “whistler
type” pipe termination pressure fluctuation amplitudes increase more than a factor
two compared to the sharp pipe termination.

Experiments confirm the source localization close to the pressure nodes as proposed
by Tonon et al. [2010]. This demonstrate that the whistling is due to vortex shedding
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induced by the grazing acoustic flow at cavities around pressure nodes.

The effect of side branch depth to side branch diameter ratio (H/Dsb) was investi-
gated. Using the effective speed of sound (ceff ) as defined by Elliott [2004], whistling
frequencies can be estimated with in an error of ±3%. Considering the change of
Strouhal number and amplitude with H/Dsb ratio, two intervals with qualitatively
different behaviours are determined. Between 0.61 ≤ H/Dsb ≤ 1.15 a saturation be-
havior is observed in the amplitude of pressure fluctuations with an almost constant
peak-whistling Strouhal number. In the range of 0.18 ≤ H/Dsb ≤ 0.55, which can be
considered as relatively shallow compared to cavities in common corrugated pipes,
a strong dependence of pressure fluctuation amplitude and peak-whistling Strouhal
number on H/Dsb ratio is observed. In the range 0.25 ≤ H/Dsb ≤ 0.5 rather weak
and incoherent oscillations is observed. Also a transition regime is distinguised be-
tween 0.50 ≤ H/Dsb ≤ 0.60, where the amplitude of oscillations increased an order
of magnitude with a shift in peak-whistling Strouhal number from 0.67 to 0.60.

The effect of a gradient in cavity depth along the multiple side branch system is
considered. A decrease of H/Dsb from 0.79 upstream to 0.42 downstream result into
a whistling behavior which is an average of the whistling behaviors of individual
side branches. The gradient does not induce a pronounced new behavior.

In the literature hysteresis during the transition from one to the next acoustic mode
has been reported for corrugated pipes. For the multiple side branch system a simi-
lar effect observed, but it depends on the rate of change in flow velocity. At very low
rate of change no hysteresis has been observed.

Note :

This chapter is based on the publication:
Nakiboğlu, G., Belfroid, S. P. C., Willems, J. F. H. and Hirschberg, A. Whistling behavior of

periodic systems: Corrugated pipes and multiple side branch system, International Journal

of Mechanical Sciences, Vol 52: 1458-1470, 2010

In the conclusion it is stated that “The difference in the peak-whistling Strouhal
numbers of these two systems (corrugated pipes and close side branch systems) is
not yet understood.” This difference has later been understood and explained in
chapters 3 and 4.



Chapter3

On the whistling of corrugated pipes:
effect of pipe length and flow profile

3.1 Abstract

Whistling behavior of two geometrically periodic systems, namely corrugated pipes
and multiple side branch systems, are investigated both experimentally and numer-
ically. Tests are performed on corrugated pipes with various lengths and cavity ge-
ometries. Experiments show that the peak-whistling Strouhal number, where the
maximum amplitude in pressure fluctuations is registered, is independent of the
pipe length. Experimentally a decrease of the peak-whistling Strouhal number by a
factor of two is observed with increasing confinement ratio, i.e the ratio of pipe diam-
eter to cavity width. A numerical methodology that combines incompressible flow
simulations with Vortex Sound Theory is proposed to estimate the acoustic source
power in periodic systems. The methodology successfully predicts the Strouhal
number ranges of acoustic energy production/absorption and the non-linear satu-
ration mechanism responsible for the stabilization of the limit cycle oscillation. The
methodology predicts peak-whistling Strouhal numbers in agreement with experi-
ments and explains the dependency of the peak-whistling Strouhal number on the
confinement ratio. Combined with an energy balance the proposed methodology is
used to estimate the acoustic fluctuation amplitudes.
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Figure 3.1: Schematic representation of a corrugated pipe, shear layers at the cavity
openings and acoustic field for the 2nd longitudinal standing wave.

3.2 Introduction

In thin walled pipes corrugations make the structure locally stronger while keeping
its global flexibility. This unique characteristic makes corrugated pipes convenient
for various industrial utilizations. However, at critical conditions, the flow through
these pipes causes self-sustained oscillations that lead to high amplitude sound gen-
eration, called whistling. These noise problems are encountered in applications e.g.
domestic appliances, ventilation systems and heat exchangers [Petrie and Huntley,
1980; Elliott, 2004]. For applications at elevated operating pressures e.g. offshore
natural gas transportation systems, self-sustained oscillations also lead to danger-
ous structural vibrations [Belfroid et al., 2007; Goyder, 2009].

In corrugated pipes sound generation is due to an oscillation driven by a flow-
acoustic interaction as pointed out by Burstyn [1922] and Cermak [1922]. Flow sep-
aration occurring at the upstream edge of each cavity generates a shear layer, see
figure 3.1, which is a source of unsteadiness. This unsteady flow induces an un-
steady force on the walls bounding the flow. The reaction force of the walls to this
hydrodynamic force is the source of sound [Gutin, 1948; Curle, 1955].

It is important to note that the flexibility of the tube is not a necessary facet for
the sound generation in corrugated tubes as shown by Nakamura and Fukamachi
[1991]. However a mechanical vibration induced by the unsteady forcing on the
walls can have a significant effect. For water flow, Ziada and Bühlmann [1991] ob-
served a strong coupling of whistling with pipe wall vibrations.

A more frequently observed coupling of shear layers occurs with longitudinal
acoustic standing waves in the pipe, see figure 3.1 [Petrie and Huntley, 1980; Naka-
mura and Fukamachi, 1991; Kristiansen and Wiik, 2007; Kop’ev et al., 2008; Naki-
boğlu et al., 2010]. The resulting high amplitude oscillations control the vortex shed-
ding [Rockwell, 1983; Bruggeman et al., 1991]. These kinds of flow pulsations are
called self-sustained oscillations, which can be explained through a feedback loop
composed of a hydrodynamic and an acoustic subsystem [Nakamura and Fuka-
machi, 1991; Tonon et al., 2010]. The shear layer instability, which is the hydrody-
namic subsystem, acts as an amplifier and supplies acoustic energy to the system.
Longitudinal standing wave, which is the acoustic subsystem, acts as a band pass
filter and maintains the synchronization in this feedback mechanism. This band pass
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Figure 3.2: Typical cross-sections of corrugated pipes with geometric parameters
[Tonon et al., 2010; Nakiboğlu et al., 2010] (a), [Binnie, 1961; Elliott, 2004](b).

filter is the reason of stepwise increase of the whistling frequency at certain flow ve-
locities, which has been pointed out in numerous experimental studies [Binnie, 1961;
Crawford, 1974; Silverman and Cushman, 1989; Cadwell, 1994; Elliott, 2004; Kris-
tiansen and Wiik, 2007; Kop’ev et al., 2008]. Each step corresponds to the resonance
frequency of an acoustic mode. Another widely observed characteristic is that for
each corrugated pipe the whistling frequencies are close to a single non-dimensional
frequency, called Strouhal number, which is discussed in detail in section 3.3.3.

Depending on the application, geometric parameters of corrugated pipes may
vary in a fairly large range and it is known that these parameters have a significant
effect on the whistling phenomena [Petrie and Huntley, 1980; Nakiboğlu et al., 2010].
Thus, in the course of designing silent corrugated pipes, it is an asset for industry to
be able to estimate quantitatively the effect of modifications in geometric parameters
on the whistling. In figure 3.2, relevant geometric parameters are shown for two
generic corrugated pipe cross-sections. Corrugations form a periodic variation of
the inner diameter of the pipe. The wave length of a corrugation is called pitch
(Pt). Depending on structural requirements and manufacturing technique the cavity
geometries of corrugated pipes can also vary in complexity. In the simplest case, see
figure 3.2-a, each corrugation is a slit shaped cavity with a width (W ) and a depth
(H). The radius of the edges are denoted rup and rdwn for upstream and downstream
edges, respectively. The plateau (Lp) is defined as the length of the constant inner
diameter (D) part between two cavities. Another commonly used corrugated pipe
with a simple cavity geometry, is shown in figure 3.2-b [Binnie, 1961]. There is no
plateau between cavities and since the cavity width is changing continuously with
the cavity depth, width (W ) is defined at the mid-depth of the cavity [Elliott, 2004].

It should be noted that axisymmetry of the cavities is not a necessary feature for
the whistling phenomenon observed in corrugated pipes. Experiments performed
with multiple side branch system, which is a non-axisymmetric system with a pe-
riodically changing cross-section area along the pipe length, exhibit a whistling be-
havior similar to that of corrugated pipes [Nakiboğlu et al., 2009; Tonon et al., 2010;
Nakiboğlu et al., 2010]. Another important result obtained by Nakiboğlu et al. [2010]
is that the whistling amplitude is independent of the depth (H) for 1.2 ≥ H/W ≥ 0.5.
For shallow cavities (H/W ≤ 0.5), on the other hand, the whistling amplitude de-
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pends on the depth. In this study only the H/W ≥ 0.5 range is addressed.

Experiments on the localization of the region of sound production in periodic
systems have shown that the contribution of each cavity or side branch on the sound
production is not the same [Tonon et al., 2010; Nakiboğlu et al., 2010; Golliard et al.,
2010]. Their individual contributions depend on their positions with respect to the
shape of the coupling acoustic standing wave. It was demonstrated that the sound
production is dominant within the regions of high grazing acoustic velocities, which
are located around the acoustic pressure nodes of the coupling standing wave along
the main pipe.

Another outcome of earlier studies [Elliott, 2004; Tonon et al., 2010; Nakiboğlu
et al., 2010] is that acoustic waves in periodic systems propagate at an effective speed
of sound (ceff ), which is lower than the speed of sound (c0). Assuming that the
acoustic compliance is determined by the pitch volume, πD [(PtD/4) +HW ], and
the inertia is determined by the mass in the main pipe, ρ0 PtπD2/4, the effective
speed of sound for low frequency, fPt/c0 � 1, acoustic waves along the pipe can be
estimated as follows:

ceff = c0/
√

1 + Vc/(SpPt) (3.1)

where Sp = πD2/4 is the cross-sectional area of the tube and Vc = πDHW is the
cavity volume.

In this paper both experimental and numerical investigations of whistling in peri-
odic systems are reported. The first part of the paper is dedicated to the experimental
results. In Sec. 3.3.1, experimental setups are presented, followed by Sec. 3.3.2 where
the periodic systems that have been tested are introduced with the respective geo-
metric details. Before presenting the experimental results, a section is devoted to a
detailed discussion of Strouhal numbers in periodic systems (Sec. 3.3.3). In subse-
quent three sections the effects of system length (Sec. 3.3.4), helical configuration
(Sec. 3.3.5) and confinement ratio (Sec. 3.3.6) on whistling are addressed, respec-
tively. In the second part of the paper a numerical methodology is proposed and
appraised for the investigation of the aeroacoustic response of whistling periodic
systems (Sec. 3.4.1 - Sec. 3.4.3). Later in Sec. 3.4.4, using the proposed methodology,
the reason of the broad range of Strouhal numbers observed in periodic systems is
clarified. In Sec. 3.4.5 and Sec. 3.4.6 the capability of the method in predicting di-
mensionless fluctuation amplitudes in whistling periodic systems is explored. In
Sec. 3.4.7, the limitations of the proposed approach and the possible improvements
are reviewed. In the last section, the conclusions are stated.
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3.3 Experiments

3.3.1 Experimental setups

Different experimental setups were employed to test corrugated pipes and multiple
side branch systems. Pressure fluctuations could easily be measured in the multiple
side branch system by means of flush mounted microphones placed at the end of
side branches. For corrugated pipes, however, positioning microphones directly on
the walls is very difficult. Consequently, for a reliable installation of flush mounted
microphones, straight pipe segments were used both upstream and downstream of
the corrugated pipes under investigation. These two experimental setups are shortly
described below [Tonon et al., 2010; Nakiboğlu et al., 2010].

The schema of the experimental setup that was employed in corrugated pipe
experiments is shown in figure 3.3-a. From upstream to downstream the setup is
composed of: a pressure vessel, a turbine flow meter, a flow control valve, a mea-
surement section, a corrugated pipe segment, a second measurement section and a
pressure vessel. Using the downstream pressure control valve the system can be
pressurized up to 12 bar, which allows for the testing of the Reynolds number de-
pendency of the system [Belfroid et al., 2007]. The constant diameter, D = 50.8 mm
(2 Inches), upstream and downstream measurement sections are each 1.6 m long and
equipped with five flush mounted microphones. By means of a multi-microphone
method [Åbom and Bodén, 1988; Peters et al., 1993] traveling acoustic plane waves
were reconstructed. Corrugated pipe segments with various cavity geometries and
lengths were tested between the two measurement sections. To calculate the flow
velocity in the test section from the volume flow measurement, pressure (p) and
temperature (T ) measurements were recorded at three different locations, the first
one close to the turbine flow meter (pmeter, Tmeter), the second one upstream (pup,
T up) and the third one downstream (pdown, T down) of the text section. By doing so
the pressure drop and the change in temperature through the pipe are taken into
account. This becomes essential for corrugated pipes longer than 10m. The flow
velocities at the upstream and downstream terminations of the test section are deter-
mined as follows:

Uup =
Qmeter

Sp

T up

Tmeter

pmeter

pup
Udown =

Qmeter

Sp

T down

Tmeter

pmeter

pdown
(3.2)

where Qmeter is the volumetric flow rate measured by the turbine flow meter and Sp

is the minimum cross sectional area of the corrugated pipe. The flow velocity in the
test section is taken as the arithmetic average of the upstream and downstream flow
velocities, U = (Uup + Udown)/2.

The setup used for the multiple side branch system experiments is shown in
figure 3.3-b. The upstream termination of the multiple side branch system is con-
nected to the high pressure air supply system which is composed of, from upstream
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Figure 3.3: Experimental setups for corrugated pipe (a) and for multiple side
branch system (b).

to downstream, a compressor, a vessel, a control valve, a buffer vessel, a turbine flow
meter and an expansion chamber muffler. The downstream termination is open to
the laboratory, a large room of 15 × 4 × 4 m. Even the longest multiple side branch
system, that was employed in the experiments (≈ 2 m), is short enough to neglect
changes in flow velocity through the system due to pressure drop. Thus, it was not
necessary to make pressure and temperature measurements at multiple locations as
in corrugated pipe experiments.

In both setups, the microphones (PCB 116A) are connected to charge amplifiers
(Kistler 5011). These amplifiers are connected to a PC through a AC/DC converter
acquisition board (National Instruments NI SCXI-1000). A turbine flow meter (In-
stromet SM-RI-X-KG250) is used to measure the volumetric flow rate. The turbine
flow meter is connected to a pulse shaper and a counter. In the setup for multi-
ple side branch system the turbine flow meter and the piezo-electric pressure trans-
ducers are synchronized by means of a trigger. The simultaneous measurement of
flow velocity and pressure allows a waterfall representation of the data, in which
the frequency spectra of the whistling at different flow velocities are presented in a
single graph. This interpretation can capture consecutive modes that appear simul-
taneously with the dominant hydrodynamic mode, as observed in the literature for
single axisymmetric cavities [Rockwell et al., 2003; Oshkai et al., 2005]. However,
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Figure 3.4: Samples of corrugated pipes manufactured from PVC (a), multiple side
branch system (b).

Sample W H rup rdwn Lp Sample W H rup rdwn Lp

(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm)

Geo 1 8.0 4.0 2.0 2.0 0 Geo 7 4.0 4.0 0.0 0.0 8.0
Geo 2 4.0 4.0 2.0 2.0 4.0 Geo 8A 2.0 2.0 2.0 0.5 5.5
Geo 3A 4.0 4.0 3.0 1.0 4.0 Geo 8B 2.0 2.0 0.5 2.0 5.5
Geo 3B 4.0 4.0 1.0 3.0 4.0 Geo 9 2.0 4.0 2.0 2.0 4.0
Geo 4 4.0 4.0 2.0 2.0 0 Geo 10 2.0 2.0 2.0 2.0 4.0
Geo 5 4.0 4.0 2.0 2.0 8.0 Com 1 0.6 1.7 1.1 1.4 5.2
Geo 6A 4.0 4.0 4.0 0.0 4.0 Com 2 0.6 1.8 1.6 1.3 4.7
Geo 6B 4.0 4.0 0.0 4.0 4.0 Com 3 7.0 5.0 1.5 1.5 0

Table 3.1: Geometric parameters of tested corrugated pipes (Geo: PVC corrugated
pipes and Com: commercial corrugated pipes).

during the experimental campaign secondary modes were not observed.

3.3.2 Corrugated pipes and multiple side branch system

Throughout the experimental campaign both commercially available corrugated pipes
and corrugated pipes manufactured from Polyvinyl chloride (PVC) tubes were used,
see figure 3.4-a. The geometric parameters of the tested pipes are specified in ta-
ble 3.1. The pipes with asymmetric cavity geometries are tested in both flow direc-
tions and corresponding samples denoted configuration A and B of the same pipe.
The cavity geometries of the commercial corrugated pipes (Com 1 and Com 2) are
quite different from those of PVC pipes (Geo), see figure 3.5-a. The technical spec-
ifications of those pipes obtained from the manufacturers are also presented in the
table 3.1. Com 3 is another commercially available corrugated pipe. It has a rela-
tively simple cavity shape, see figure 3.5-b, similar to that of the PVC corrugated
pipes. For all geometries, the inner diameter of the pipe (D) is 50±1 mm.

The multiple side branch system is made of a series of identical T-joints connected
to each other, forming a row of equally spaced side branches along a main pipe, see
figure 3.4-b. The T-joint elements are standard vacuum appliances (ISO-KF) cast in
aluminum. The main pipe of the T-joint has a diameter (D) of 33 mm which is equal
to the diameter of the side branch (Dsb). The length of the main pipe of each T-joint
is 100 mm and the side branch, located half way of this segment, has a length (Lsb)
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Figure 3.5: Schematic drawing of commercially available corrugated pipes: Com1
& Com2 (a) and Com3 (b) in table 1.

of 33 mm. The upstream edge of the side branch, which is connected to the main
pipe, has a radius of curvature of rup = 3 mm, which is approximately one tenth of
the side branch diameter (rup/Dsb ≈ 0.1). T-joints are connected to each other using
standard ISO-KF clamps which incorporate O-rings for sealing.

3.3.3 Definition of Strouhal number for whistling periodic systems

The Strouhal number is a commonly used dimensionless parameter for oscillating
flows, as in the case of whistling. The Strouhal number is defined as:

Sr =
fLc

U
(3.3)

where f is the frequency of the oscillation, Lc is the characteristic length and U is the
average flow speed inside the corrugated pipe. Average flow speed U is defined in
terms of the volumetric flow rate (Q) and inner diameter of the pipe as:

U = 4Q/(πD2) (3.4)

The wavelength of the corrugations, the pitch, has been a commonly used character-
istic length [Binnie, 1961; Crawford, 1974; Nakamura and Fukamachi, 1991; Serafin
and Kojs, 2005; Popescu and Johansen, 2008]. However, testing pipes with more
marked differences between cavity width and pitch showed that the peak-whistling
Strouhal number depends on the cavity width rather than on the pitch [Elliott, 2004;
Belfroid et al., 2007; Kristiansen and Wiik, 2007; Tonon et al., 2010; Nakiboğlu et al.,
2010]. It was also concluded that the characteristic length used in the Strouhal num-
ber definition should include the upstream edge radius (rup) because of the increase
in the distance traveled by the vorticity perturbation due to rounding off the up-
stream edge. The downstream edge radius is less critical because vortical perturba-
tions at the upstream edge of the cavity diffuse as they are swept along the cavity
mouth. When they reach the downstream edge, they are less localized than when
they are close to the upstream edge. As a consequence, the radius of the down-
stream edge (rdwn) does not effect the travel time of the perturbations [Bruggeman



On the whistling of corrugated pipes 41

et al., 1991; Belfroid et al., 2007; Nakiboğlu et al., 2009] as significantly as the one of
the upstream edge. Following this, the sum of the cavity width and the upstream
edge radius, W + rup appears to be the most suitable characteristic length, which is
used in the remainder of this paper.

It is important to realize that since the peak-whistling Strouhal number is inde-
pendent of pitch length, the distance between the cavities, plateau length (Lp), is not
important for the sound production [Nakiboğlu et al., 2010]. This implies that sound
production is a local effect which can be, in a first order approximation, studied for a
single cavity. In the present analysis the possible hydrodynamic interaction between
successive cavities is neglected.

Another point that should be highlighted is that within a specific resonant mode
with increasing flow velocity, the whistling frequency shows a slight increase [Saro-
hia, 1977; Bruggeman et al., 1991; Ziada et al., 2003]. Thus, within the same res-
onant mode, as the flow velocity in the main pipe increases, the Strouhal number
decreases. As a result, for each resonant mode there is a range of Strouhal numbers
where the whistling phenomenon is observed. The highest Strouhal number for a
resonant mode is called critical Strouhal number (Srcr), because it indicates the on-
set of oscillations for that particular acoustic mode. After the onset of resonance,
within the same resonant mode, increasing the flow velocity increases the amplitude
of pressure oscillations till it reaches a peak value. Further increase of the flow ve-
locity decreases the amplitude of acoutic fluctuations. The Strouhal number which
corresponds to the maximum pressure fluctuation amplitude for a given acoustical
mode is called the peak-whistling Strouhal number (Srp−w). The former is crucial
to develop design charts to avoid acoustic resonances by predicting the critical flow
velocities [Ziada and Shine, 1999]. The latter is also important in the estimation of
the maximum amplitudes that the system will experience [Tonon et al., 2010]. The
peak-whistling Strouhal number of a corrugated pipe is determined through a linear
least square fit of consecutive excited acoustic modes [Nakiboğlu et al., 2010].

The definition of the Strouhal number in multiple side branch systems is similar
to that of corrugated pipes. Instead of using the sum of cavity width and upstream
edge radius (W + rup) as characteristic length, the sum of the effective cavity width
and upstream edge radius (Weff + rup) is used. This distinction in the characteris-
tic length is due to a geometric difference between corrugated pipes and multiple
side branch systems. The cross section of a corrugation cavity is a slit whereas the
side branches have circular cross sections, see figure 3.4-b. Thus, the side branch di-
ameters are converted to an effective cavity width (Weff = πDsb/4) as proposed by
Bruggeman et al. [1991], which is the average width of the side branch cross section.

There is also a difference in the determination of the peak-whistling Strouhal
number between corrugated pipes and multiple side branch systems. The corru-
gated pipes (Geo, Table 3.1) used in this study have typically 2 × 102 corrugations,
whereas the multiple side branch systems used in the experiments are composed of
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14 to 19 T-joints. Whistling frequencies that are observed with corrugated pipes are
rather high compared to the ones in the multiple side branch system. Thus, the typi-
cal number of corrugations per wave length in corrugated pipes at high frequencies
(fL/ceff = O(10)) is close to that of the multiple side branch systems at low frequen-
cies (fL/ceff = O(1)) [Tonon et al., 2010; Nakiboğlu et al., 2010]. Correspondingly, in
the multiple side branch systems the attention is only given to the lowest acoustical
modes.

3.3.4 Effect of pipe length on the whistling behavior of periodic

systems

Though there is an extensive study on corrugated pipes, in many instances it is lim-
ited to short pipe segments [Binnie, 1960, 1961; Cadwell, 1994; Crawford, 1974; El-
liott, 2004; Popescu and Johansen, 2008]. Ziada and Bühlmann [1991] investigate the
long corrugated pipes with water flow. They observed a strong coupling between
whistling and pipe wall vibrations. For gas flows such an effect of wall vibration has
not been observed. Here the effect of pipe length (L) on the whistling phenomenon
is addressed, which has been a subject of limited consideration. Experiments have
been performed with commercially available corrugated pipes (Com 3 - Table 3.1)
with lengths of 20, 40, 60, 100 and 200 pipe diameters. The whistling frequencies are
plotted as a function of Mach number (Ma) in figure 3.6-a. Linear least square fits
used for the determination of peak-whistling Strouhal numbers for L/D = 20 and
L/D = 200 are also shown. It is seen that the peak-whistling Strouhal number is
independent of the length of the pipe segment with the value Srp−w = 0.49±0.04. In
figure 3.6-b the dimensionless fluctuation amplitude as a function of Mach number
is given for the same five corrugated pipe segments. The dimensionless amplitude,
|p′|/(ρ0c0U) = |u′|/U , is defined as the amplitude of the standing pressure wave
at a pressure anti-node inside the main pipe |p′|, divided by the air density ρ0, the
speed of sound c0 and the main flow velocity U ; it is equal to the amplitude of the
acoustic velocity at a pressure node inside the main pipe |u′| divided by main flow
velocity U . An increase in dimensionless fluctuation amplitude is observed with in-
creasing corrugated pipe length until L/D of 100. Further increase of the pipe length
to L/D = 200 does not change the amplitude. A saturation of dimensionless fluctu-
ation amplitude is observed at |u′|/U ≈ 0.1.

Experiments were performed also with corrugated pipe segments (L/D) of 400,
600 and 800, as shown in figure 3.7. It is clear that also for these long corrugated
pipe segments (up to 4000 pitch lengths) the peak-whistling Strouhal number does
not depend significantly on the length of the pipe segment. It is evident that the
saturation level of fluctuation amplitude |u′|/U ≈ 0.1 is also independent of the pipe
length.

The saturation in dimensionless fluctuation amplitude is observed also with cor-
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Figure 3.6: Experiments performed with a commercial corrugated pipe (Com 3 -
Table 3.1) with 5 different pipe lengths between L/D = 20 & L/D = 200. Whistling
frequency plotted against Mach number (a), dimensionless fluctuation amplitude
|u′|/U plotted against Mach number (b).
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Figure 3.7: Experiments performed with a commercial corrugated pipe (Com 3 - Ta-
ble 3.1) with 4 different pipe lengths between L/D = 200 & L/D = 800. Whistling
frequency plotted against Mach number (a), dimensionless fluctuation amplitude
|u′|/U plotted against Mach number (b).
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Figure 3.8:

Dimensionless fluctua-
tion amplitude |u′|/U

plotted against Mach num-
ber for a PVC corrugated
pipe (Geo 4 - Table 3.1) with
4 different pipe lengths
between L/D = 40 &
L/D = 100.

rugated pipes manufactured from PVC, with simple cavity geometries. As demon-
strated in figure 3.8 for Geo 4 (Table 3.1), acoustic velocity fluctuations reach a sat-
uration amplitude of |u′|/U ≈ 0.1 already with a L/D of 60. Testing longer pipes
L/D = 80 and L/D = 100 does not further increase the fluctuation amplitude. This
saturation amplitude in corrugated pipes is considerably lower than the ones that
are observed for deep closed side branches in cross flow direction |u′|/U ≈ O(1)

[Kriesels et al., 1995; Ziada and Shine, 1999; Dequand et al., 2003a] and along the
main flow direction |u′|/U ≈ 0.6 [Bruggeman et al., 1991] as well as Helmholtz res-
onators |u′|/U ≈ 0.6 [Dequand et al., 2003b].

Multiple side branch systems with different numbers of T-joints were constructed
for the study, from 14 for the shortest system to 19 for the longest. In figure 3.9, mea-
sured dimensionless fluctuation amplitudes for the 3rd acoustic mode are plotted
as a function of Strouhal number. Similarly to corrugated pipes the peak-whistling
Strouhal number remains unaltered with changing system length, and is 0.62± 0.01.
Also a saturation in dimensionless fluctuation amplitude at |u′|/U ≈ 0.035 is reached
for 19 side branches. This is close to the level found for corrugated pipes of equal
length (L/D = 40).

3.3.5 Effect of helical corrugations

Experiments have been performed to investigate the whistling behavior of helical
(spiral wound) corrugated pipes. A corrugated pipe is manufactured with the same
cavity geometry as Geo 4 (Table 3.1) but with a helical configuration, instead of a
periodic arrangement of cavities as shown in figure 3.2. The pitch, which is the
width of one complete helix, is also the same as the pitch length of Geo 4.

Introducing helical corrugations has no significant effect on the whistling behav-
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Figure 3.9: Dimensionless
fluctuation amplitude |u′|/U

plotted against Strouhal num-
ber Sr for the 3rd acoustic mode
for multiple side branch sys-
tems that are composed of dif-
ferent numbers of T-joints.

ior. Observed fluctuation amplitudes and respective saturation level remains the
same. A slightly lower peak-whistling Strouhal number Srp−w = 0.34 is recorded
with the helical configuration compared to the periodic configuration Srp−w = 0.38.
Experiments on helical corrugated pipes reported by Kop’ev et al. [2008] indicate
also a behavior analogous to that of non-helical (periodic) corrugated pipes.

3.3.6 Effect of confinement ratio on Strouhal number in periodic

system

In periodic systems a broad range of peak-whistling Strouhal numbers has been ob-
served. For corrugated pipes a range between 0.3 ≤ Srp−w ≤ 0.5 has been found
[Binnie, 1961; Petrie and Huntley, 1980; Nakamura and Fukamachi, 1991; Nakiboğlu
et al., 2010]. For multiple side branch systems, however, a relatively high peak-
whistling Strouhal number Srp−w = 0.6 has been recorded [Tonon et al., 2010]. Bin-
nie [1961] explained this wide range of Strouhal numbers as an outcome of confine-
ment ratio which is defined as the ratio of pipe diameter to cavity width (D/W ). He
used a single corrugated pipe but by using rods of different diameters (Dr) placed
coaxially inside the pipe, he was able to vary the confinement ratio. In the pres-
ence of a rod, the confinement ratio is defined as ((D − Dr)/W ). As mentioned in
section 3.3.3 in the case of rounded cavity edges, it is essential to include the value
of rup in the characteristic length. Thus, here the confinement ratio is modified as
(D − Dr)/(W + rup). Unfortunately, Binnie [1961] did not provide any explicit in-
formation on the edge geometry of the cavities. However, by comparing similar
commercial corrugated pipes (see, figure 3.2-b) to the ones mentioned in his paper,
the edge radius is estimated as 25% of the cavity width. Then it is concluded that
Binnie observed a shift in the peak-whistling Strouhal number from 0.53 to 0.34 with



46 3.4 Numerical Methodology

Figure 3.10: Peak-whistling
Strouhal number plotted against
confinement ratio, (D−Dr)/(W +

rup), for various periodic systems
(Binnie [1961]; Elliott [2004]).

(D - Dr) /(W+rup)
P

ea
k-

w
hi

st
lin

g
S

tro
uh

al
nu

m
be

r(
S

r
p-

w
)

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Geo 1- Geo 10 (PVC)
Com 1 - Com 3 (Commercial)
Multiple side branch system
Binnie
Elliot

an increasing confinement ratio (D − Dr)/(W + rup) from 2.8 to 9.6. In figure 3.10
peak-whistling Strouhal number data is presented as a function of confinement ratio
for the corrugated pipes (Table 3.1) and the multiple side branch system, together
with the measurements of Binnie [1961] and Elliott [2004]. A decrease in the peak-
whistling Strouhal number with increasing confinement ratio is found. Though these
experiments clearly demonstrate the shift of the peak-whistling Strouhal number
due to the confinement ratio, the reason of the shift remains evasive. In experiments
with a tandem side branch configuration, Ziada and Shine [1999] observed a similar
shift in the peak-whistling Strouhal number with increasing ratio of main pipe di-
ameter to side branch diameter (D/Dsb). Ziada and Shine [1999] suggested the shift
in peak-whistling Strouhal number was due to a decrease in the ratio of cavity width
to gradient length of the velocity profile of the approach flow. This will be addressed
in detail in section 3.4.4.

3.4 Numerical Methodology

In this section a new numerical technique is introduced to investigate the whistling
in periodic systems. As mentioned in section 3.2, the self-oscillations observed in
periodic systems are due to a feedback loop, in which the shear layer instability and
the longitudinal standing wave act as an amplifier and a filter, respectively. The pro-
posed technique is developed to study only the amplifier of this feedback loop and
the velocity fluctuations controlling the shear layer oscillations are imposed as inlet
boundary conditions. As explained in section 3.3.3, by neglecting a possible hydro-
dynamic interaction between successive cavities sound generation in periodic sys-
tems can be studied, in a first order approximation, on a single cavity. The method
combines incompressible flow simulations with Vortex Sound Theory to estimate the
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Figure 3.11: The domain and the relevant geometric parameters, axis of symmetry
(cylindrically symmetric flow) or upper wall (plane flow) (— - —).

strength of an acoustic source due to the interaction of a single cavity in a pipe flow
at high Reynolds number with a low frequency acoustic field. In the following two
sections, these two parts of the approach are explained. Then, the proposed numer-
ical methodology is used to explain some of the phenomena observed in whistling
periodic systems such as the non-linear saturation of the amplitude, and the effect of
the confinement ratio on the peak-whistling Strouhal number.

3.4.1 Incompressible simulations

In corrugated pipes the cavity width of the corrugations and respectively in multiple
side branch systems the diameter of the side branches are usually small compared
to the wave length (λ) of the standing waves (Pt/λ < 10−1). The flow in such a
cavity/side branch can be assumed to be locally incompressible. Accordingly, un-
steady incompressible flow simulations are performed [Martínez-Lera et al., 2009]
for a single cavity in a confined flow. All the simulations are performed in 2D do-
mains. The domain and the relevant geometric parameters are shown in figure 3.11.
In some simulations, cylindrical symmetric domains are used to mimic a circumfer-
ential cavity as found in corrugated pipes. In those simulations, the upper wall of
the confining pipe is replaced by an axis of symmetry. The inner diameter of the pipe
is denoted by D, the depth of the cavity by H , the width of the cavity by W and the
radius of curvature of the upstream cavity edge by rup. The inlet is located at 0.5W
upstream of the cavity, such a short inlet pipe section is chosen to make sure that the
imposed inlet velocity profiles do not evolve significantly before reaching the cavity.
The outlet is placed at a reasonably far location, 9W downstream, from the cavity. In
all the simulations, the cavity depth is taken equal to the cavity width. A previous
experimental study [Nakiboğlu et al., 2010] showed that H/W = 1 is in the range
(0.5 ≤ H/W ≤ 1.2) where a saturation behavior is observed in the dimensionless
fluctuation amplitude. In this range, variations in H/W ratio neither influence the
amplitude nor the peak-whistling Strouhal number. Unless mentioned otherwise in
all the simulations the upstream cavity edge radius is taken as rup = 0.25W , which



48 3.4 Numerical Methodology

is a typical value for corrugated pipes, see figure 3.2-b.
A finite volume commercial code, Fluent 6.3, is used. A pressure-based segre-

gated solution algorithm, SIMPLE [Patankar and Spalding, 1972] is employed. The
second-order implicit time discretization scheme together with the second-order up-
wind space discretization for convective terms is chosen. No turbulence modeling
is applied. For each simulation, initially a steady flow solution is performed with
an unexcited fully developed turbulent velocity profile u(y, t) = u(y) which has an
average velocity of U . These inlet velocity profiles are determined through RANS
simulations at a Reynolds number of 5 × 104 for each different pipe diameter (D).
The iterations are continued until all the residuals drop below 10−12. Then a velocity
perturbation u′(t) with a frequency (f ) and an amplitude (|u′

cav|):

u′(t) = |u′
cav| sin(2πft). (3.5)

is superposed on the inlet velocity profile (u(y, t) = u(y) + u′(t)), where |u′
cav| is

the amplitude of the acoustic velocity induced by the longitudinal standing wave
at the position of the cavity considered. This amplitude can be much lower than
|u′|, if the cavity considered is close to a velocity node of the standing wave. The
outlet boundary condition ∂ux/∂x = 0 is used. After checking different computation
times, a typical time of 5 periods of the excitation frequency appeared to be sufficient,
simulations with longer computation times provide the same results. The time step
size is chosen as ∆t = 0.01W/U .

The computational domain contains approximately 70000 quadrilateral cells which
are clustered close to the opening of the cavity and to the walls, where there are
high gradients of velocity due to shear layer and boundary layer, respectively. In
the domain between 6W and 9W downstream of the cavity, shown as sponge zone
in figure 3.11, cells with high aspect ratio (∆x/∆y � 1) are employed. By doing so
problems that can arise due to reverse flow at the outlet boundary condition are min-
imized. A study on mesh dependency has been carried out. The same computation
was performed with 2 times and 4 times more densely meshed domains, producing
differences in the calculated acoustic source power of less than 5%.

3.4.2 Calculation of acoustic source power

Using the Theory of Vortex Sound, the strength of the acoustic source for high Reynolds
number flows is calculated from enthalpy differences, which are acquired from rela-
tively low Reynolds number simulations (Re = O(103)). This is achieved by means
of an extrapolation method. The effect of friction on the enthalpy losses is estimated
considering a reference flow through a straight smooth pipe (without cavity). In this
subsection this approach is explained in detail.

The acoustic field can be defined by using a Helmholtz decomposition of the flow



On the whistling of corrugated pipes 49

field u, as proposed by Howe [1980]:

u = ∇(φ0 + φ′) +∇×Ψ (3.6)

where Ψ is the stream function, φ0 and φ′ are the steady and unsteady components
of the scalar potential, respectively. Recognizing that the solenoidal vector field is in-
compressible ∇ · (∇×Ψ) = 0, the acoustic field corresponds to the unsteady poten-
tial component of the flow ∇φ′, which is compressible. The acoustical flow velocity
(u′) is defined by Howe [1980] as:

u
′ = ∇φ′. (3.7)

For a subsonic flow with sufficiently high Reynolds number the effect of friction can
be neglected in the bulk of the flow. Assuming a homentropic flow, the momentum
equation (Crocco’s equation) can be written as follows:

∇B = −∂u

∂t
− ω × u (3.8)

where ω = ∇× u is the vorticity and B is the total enthalpy:

B =
1

2
|u| 2 + i, (3.9)

where i is the specific enthalpy. Here it can be noted that the first term in the right
hand side of the momentum equation Eq. 3.8, is related to the potential flow solution
and the second term corresponds to the Coriolis force density, f c = −ρ0(ω × u), ex-
perienced by an observer moving with the flow velocity (u). The latter is interpreted
as the source of the sound.

Using the energy corollary of Howe [1998], the time average acoustic source
power 〈Psource〉 due to the Coriolis force can be estimated for low Mach number
flows as follows:

〈Psource〉 = −ρ0

〈∫

V

(ω × u) ·u′ dV

〉

(3.10)

where V is the volume in which ω is non vanishing and < · > is the time averaging.
Combining Eq. 3.10 with Eq. 3.8, 〈Psource〉 can be determined as follows:

〈Psource〉 = −ρ0

〈∫

V

∇B′ ·u′ dV

〉

+ ρ0

〈∫

V

∂u

∂t
·u′ dV

〉

(3.11)

where B′ is the fluctuating total enthalpy. Knowing that in a compact source region
∇ ·u′ is negligibly small, the source term, ∇B′ ·u′, can be replaced by ∇ · (u′B′).
Neglecting the contribution of the second integral in Eq. 3.11 and using the diver-
gence theorem 〈Psource〉 reads:

〈Psource〉 = ρ0

〈∫

S

(B′
u
′) ·n dS

〉

(3.12)
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It is seen from Eq. 3.12 that the acoustic source power generated in a control volume
can be calculated through the surface integral of fluctuating total enthalpy over the
boundary of the control volume.

In this derivation attention should be drawn to two points. Firstly, it is assumed
in the momentum equation Eq. 3.8 that the effect of friction in the bulk of the fluid
is small enough to be neglected. Secondly, it is assumed that the second integral in
Eq. 3.11 has no contribution to the sound generation. The same conclusion can be
deduced using as starting point the exact energy corollary of Myers [1986, 1991]:

〈Psource〉 =
〈∫

S

(B′
m

′) ·n dS

〉

(3.13)

where

B′ =
p′

ρ0
+ u0 · (u′ + u

′
h), m

′ = ρ0(u
′ + u

′
h) + ρ0

′
u0

where u0 is the time averaged velocity and the fluctuations are split into the acous-
tical (potential) part u′ and the hydrodynamical (rotational) part u′

h. When ρ0
′ is ne-

glected (in agreement with the use of incompressible flow model) and the contribu-
tion of the hydrodynamic velocity fluctuations (u′

h) to the integral is also neglected,
Eq. 3.12 is recovered. The contribution of the hydrodynamic velocity fluctuations is
expected to depend on the spatial location of the control surface. It has been verified
that by choosing a large enough control volume such a dependency can be avoided.

The recent study of Martínez-Lera et al. [2009] showed that after the time aver-
aging, what they called the potential term, the second integral in Eq. 3.11 could still
have a non-zero contribution to 〈Psource〉. These authors concluded that it is essen-
tial to remove the term (−∂u/∂t) from the enthalpy difference (∆B′) before taking
the time averaging. Their technique is based on successive linear least-square fits
of the total pressure jumps considering many measuring planes both upstream and
downstream of the cavity. This procedure provides promising results. However, the
drawback is that the bounds of the source region cannot be determined. Due to the
uncertainty in the spatial linear fit, 〈Psource〉 appears to depend significantly on the
arbitrary choice of the position of the measuring planes. This is an indication that
this approach is not able to completely remove the contribution of the hydrodynamic
velocity fluctuations to the source power.

Here an alternative method is proposed where the contribution of hydrodynamic
velocity fluctuations effectively removed from the source power. This is done by
means of a reference flow simulation in a straight pipe with identical boundary con-
ditions with the respective cavity simulation and using the same measurement sec-
tions in the duct, e.g. x1 and x2, see figure 3.12. Then 〈Psource〉 can be estimated as
follows:

〈Psource〉 = ρ0

〈

1

4

[

(B′
x2

−B′
x1
)cav − (B′

x2
−B′

x1
)ref

]

.u′πD2

〉

(3.14)
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Figure 3.12: Normalized vorticity contours for a confined cavity flow and a refer-
ence flow in a straight pipe (Re = 4000, Sr = 0.6 and |u′|/U = 0.2). White lines
represent the measurement sections where area averaged total enthalpy is recorded.

The proposed approach is an extrapolation method for high Reynolds number
flows, where the solution is expected to be Reynolds number independent. For a
simulation with a perturbation amplitude of |u′|/U = 0.1, from figure 3.13 it is seen
that calculated average acoustic source powers are converging to a Reynolds num-
ber independent limit. Other simulations that are considered here have also similar
characteristics in which above a certain Reynolds number 〈Psource〉 can be assumed
weakly depend on Reynolds number. Within the accuracy of the proposed approach
(5%) this limit is determined as Re = 4000, which is used in all the simulations. By
increasing the number of cells in the computational domain, simulations with higher
Reynolds numbers can be achieved, which will increase the Reynolds number inde-
pendency of the results.

Using this approach the extent of the source region in the duct can be determined.
All the numerical simulations independent of the Strouhal number and perturbation
amplitude have a similar bound for the source region, which is between 0.5W up-
stream of the cavity and W downstream of the cavity, shown as Zone 1 in figure 3.12.
〈Psource〉 remains constant within 5% when the bounds of the control volume are
extended to include the zones 2, 3 and 4. In some calculations the reference flow so-
lution for smooth pipes are carried out with slip boundary condition for the section
of the wall, which corresponds to the cavity location. The results are almost identical
to the results presented here.

Simulations have been performed to check the capability of the proposed ap-
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Figure 3.13:

Convergence to high
Reynolds number limit:
1/Re is plotted against
dimensionless average
acoustic source power
〈Psource〉/(ρ0USp|u

′|2) for
D/W = 2 and |u′|/U = 0.1.
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proach in predicting the Strouhal number range where there is sound production. In
figure 3.14, the dimensionless average acoustic source power 〈Psource〉/(ρ0USp|u′|2)
is displayed as a function of Strouhal number for a cavity with sharp edges and for a
perturbation amplitude of |u′|/U = 0.2. The results are presented together with the
data obtained by Hofmans [1998], using an inviscid two-dimensional vortex blob
method for a T-joint with the same geometry and perturbation amplitude for a con-
figuration similar to corrugated pipes, where there is a grazing flow in the main pipe.
Two ranges of Strouhal number with positive dimensionless average acoustic source
power are distinguished where there is sound production. The lower (Sr < 0.1) and
the higher (0.52 < Sr < 0.74) Strouhal number ranges correspond to the first and the
second hydrodynamic modes, respectively. In the first hydrodynamic mode there
exist a single vortex in the cavity mouth and the traveling time of the vortex across
the opening is 0.25 oscillation period. Whereas for the second hydrodynamic mode
two vortices are present at the same moment in the cavity mouth. A vortex takes
1.25 oscillation period to travel across the cavity [Bruggeman et al., 1991]. It is clear
that the second hydrodynamic mode is stronger than the first one, explaining why
the experimentally observed peak-whistling Strouhal numbers belong to the second
hydrodynamic mode. Acoustic source powers predicted by the present methodol-
ogy are in agreement with the data of Hofmans [1998]. A peak whistling Strouhal
number Srp−w of 0.6 is estimated. This is close to the experimental observation with
multiple side branch systems which is Srp−w = 0.62 ± 0.02, figure 3.9. The peak-
whistling Strouhal number will be further discussed in Section 3.4.4.
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Figure 3.14: Strouhal
number plotted against
dimensionless average
acoustic source power
〈Psource〉/(ρ0USp|u

′|2) for a
cavity (present study) and a
T-joint [Hofmans, 1998] with
rup/W = 0 and |u′|/U = 0.2.

3.4.3 Nonlinear saturation of the shear layer

The aeroacoustic behavior of corrugated pipes and the multiple side branch system
depends strongly on the perturbation amplitude, |u′|/U . At low perturbation am-
plitudes the instability of the shear layer can be described by linear stability theory
[Rayleigh, 1896], where the acoustic source power 〈Psource〉 grows quadratically with
perturbation amplitude [Bruggeman et al., 1991]. In this regime, the vorticity distur-
bances are amplified by a factor e2π over one hydrodynamic wave length in the shear
layer [Bruggeman et al., 1986]. For the 2nd hydrodynamic mode this corresponds to
an amplification of e5π/2 ≈ 2.6 × 103. Evidently, this imposes a perturbation ampli-
tude limit around 10−3 to the validity of the linear theory above which nonlinearities
become essential [Tam and Block, 1978]. In this range the amplitude of the oscilla-
tions is determined by nonlinearities, such as roll-up of the shear layer into discrete
vortices [Fletcher, 1979; Keller, 1984; Bruggeman et al., 1991; Rowley et al., 2006].

The proposed approach predicts the linear range and the nonlinear saturation of
the shear layer, as demonstrated in figure 3.15 for a simulation with D/(W + rup) =

3.2. For small perturbation amplitudes |u′|/U ≤ 10−3, the shear layer behaves lin-
early. Therefore, the acoustic source power grows quadratically with |u′|/U , making
the dimensionless average acoustic source power 〈Psource〉/(ρ0USp|u′|2) constant.
Eventually, around |u′|/U ≈ 10−2 nonlinearities become dominant and dimension-
less acoustic source power 〈Psource〉/(ρ0USp|u′|2) starts to decrease with |u′|/U .

This amplitude dependency test of 〈Psource〉 is performed for Strouhal numbers
of 0.5, 0.56 and 0.63. Similarly to the simulations discussed in the previous sec-
tion, initially simulations have been performed at a constant perturbation amplitude
(|u′|/U ) with various Strouhal numbers to determine the peak-whistling Strouhal
number for a confinement ratio of D/(W + rup) = 3.2. The peak-whistling Strouhal
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Figure 3.15: Perturbation
amplitude |u′|/U plotted
against dimensionless aver-
age acoustic source power
〈Psource〉/(ρ0USp|u

′|2) for
D/(W + rup) = 3.2 and for
Strouhal numbers of 0.5, 0.56
and 0.63.
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number Srp−w is estimated as 0.56. Then two other Strouhal numbers close to the
peak-whistling Strouhal number, are also studied to investigate whether there is
a dependency of the peak-whistling Strouhal number on perturbation amplitude.
From figure 3.15, it is seen that the peak-whistling Strouhal number does not alter
significantly with the perturbation amplitude.

3.4.4 Peak-whistling Strouhal number difference in periodic sys-

tems

Previous studies on whistling periodic systems showed that there is a difference in
the peak-whistling Strouhal numbers between multiple side branch systems and
corrugated pipes [Tonon et al., 2010; Nakiboğlu et al., 2010]. As demonstrated in
figure 3.10, the peak-whistling Strouhal number observed in multiple side branch
systems Srp−w = 0.62, is higher than the ones observed in most corrugated pipes
0.3 < Srp−w < 0.6. To investigate the reason of this variation in Srp−w, two sets of
simulations have been performed. In multiple side branch system simulations, a 2D
domain is used with a confinement ratio of D/(W + rup) = 0.8, close to the experi-
mental value. For corrugated pipe simulations, a cylindrical symmetric 2D domain
is used to mimic a circumferential cavity. Also a larger confinement ratio is chosen
for corrugated pipe simulations D/(W + rup) = 3.2. Taking the confinement ratio of
actual corrugated pipes 2 ≤ D/(W + rup) ≤ 30 (Table 3.1) into account, the pipe that
is simulated has a rather small confinement ratio. In both set of simulations, a per-
turbation amplitude |u′|/U of 0.05 is used. This particular perturbation amplitude is
a typical dimensionless fluctuation amplitude observed in experiments as shown in
figures 3.6-3.8 and 3.9 [Nakiboğlu et al., 2010; Belfroid et al., 2007]. The results for
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Figure 3.16: Strouhal
number plotted against
dimensionless average
acoustic source power
〈Psource〉/(ρ0USp|u

′|2) for a
multiple side branch system
(MSBS) with a confinement
ratio of D/(W + rup) = 0.8

and for a corrugated pipe
with a confinement ra-
tio D/(W + rup) = 3.2.
(|u′|/U = 0.05)

these two set of simulations are presented in figure 3.16. In parallel to the experi-
mental data, for the multiple side branch system a higher peak-whistling Strouhal
number Srp−w = 0.65 is observed than for the corrugated pipe Srp−w = 0.55. Al-
though these simulations show that the proposed numerical approach can predict
the difference in peak-whistling Strouhal numbers between these two periodic sys-
tems, the reason of this difference remains unexplained.

As discussed in section 3.3.6, experiments indicate that there is a dependence of
the peak-whistling Strouhal number on the confinement ratio D/(W + rup). To ad-
dress this effect of confinement, three sets of numerical simulations have been per-
formed, which correspond to the experiments of Binnie [1961]. The result of the first
set of simulations is already presented in figure 3.16, where a cavity in a cylindrical
symmetric configuration is solved for a D/(W+rup) ratio of 3.2. In the other two sets
of simulations, the same cylindrical symmetric domain is used together with rods of
diameter Dr = 2W or Dr = 3W respectively, which are placed coaxially inside the
pipe to vary the confinement ratio. As explained in section 3.3.6, in the presence of a
rod, the confinement ratio is defined as (D−Dr)/(W + rup). Dimensionless average
acoustic source power 〈Psource〉/(ρ0USp|u′|2) for these configurations are presented
as a function of Strouhal number in figure 3.17. It is seen that in accordance with the
experimental observations as the confinement ratio decreases, the peak-whistling
Strouhal number increases. For confinement ratios (D − Dr)/(W + rup) of 3.2, 1.6
and 0.8, peak-whistling Strouhal numbers Srp−w of 0.55, 0.67 and 0.73 are estimated,
respectively.

Ziada and Shine [1999] explained the shift in the peak-whistling Strouhal number
by a change in the velocity profile. To investigate this argument, the same sets of
simulations that are presented in figure 3.17 are repeated. But instead of using a
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Figure 3.17: Strouhal
number plotted against
dimensionless average
acoustic source power
〈Psource〉/(ρ0USp|u

′|2)

for a corrugated pipe
with D/(W + rup) = 3.2

and for rod diameters of
Dr/W = 0, Dr/W = 2 and
Dr/W = 3. (|u′|/U = 0.05,
θ/D = 3× 10−2)
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fully developed turbulent velocity profile, in all the simulations the same boundary
layer profile which was also used by Martínez-Lera et al. [2009] is considered: a
uniform velocity profile in the core of the flow with a boundary layer of momentum
thickness δ2 = 0.0065D. The momentum thickness [Eggels et al., 1994] is defined
here as:

δ2(D − δ2) = 2

∫ D/2

0

r
u(r)

Uaxs

(

1− u(r)

Uaxs

)

dr (3.15)

where u(r) is the radial profile of the axial velocity, Uaxs is the velocity at the center-
line of the duct and for coordinates see figure 3.11. The dimensionless average acous-
tic source powers 〈Psource〉/(ρ0USp|u′|2) for these three configurations are presented
as a function of Strouhal number in figure 3.18. It is seen that the peak-whistling
Strouhal number Srp−w = 0.68 remains constant with changing confinement ratio
(D −Dr)/(W + rup), if the same velocity profile is used at the inlet. Thus, in agree-
ment with the interpretation of Ziada and Shine [1999] the observed shift in the peak-
whistling Strouhal number can be attributed to a change in the velocity profile due
to an alteration in confinement ratio, rather than a pure confinement effect.

To evaluate the capability of the proposed numerical approach in predicting the
peak-whistling Strouhal number, simulations with larger confinement ratios are also
carried out. In figure 3.19, the available experimental data (figure 3.10) is compared
with the numerical estimations. Although estimated peak-whistling Strouhal num-
bers are somewhat larger than the measured values, using the proposed numerical
approach the dependency of the peak-whistling Strouhal number on confinement
ratio is successfully captured.

For grazing flows along wall-mounted cavities in presence of turbulent boundary
layers, a dependency of the convection velocity of shear layer perturbations (Uc) on
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Figure 3.18: Strouhal
number plotted against
dimensionless average
acoustic source power
〈Psource〉/(ρ0USp|u

′|2) for
a corrugated pipe with
D/(W + rup) = 3.2 and for
rod diameters of Dr/W = 0,
Dr/W = 2 and Dr/W = 3.
Same approach velocity
profile Eq. 3.15 is used in all
simulations. (rup/W = 0.25,
|u′|/U = 0.05, θ/D =

6.5× 10−3)

the non-dimensional boundary layer thickness (Γ = δ2/W ) has been reported by
Elder et al. [1982]. Later for orifices subjected to a grazing turbulent boundary layer
flow, Golliard [2002] proposed an empirical formula for the convection velocity as a
function of non-dimensional boundary layer thickness as follows:

Uc

U∞
= 0.4Γ−0.2 (3.16)

where U∞ is the free stream velocity. Associating the convection velocity [Kooijman
et al., 2008], the peak-whistling Strouhal number can be stated as follows:

Srp−w =

(

f(Weff + rup)

Uc

)(

Uaxs

U

)(

Uc

Uaxs

)

(3.17)

Here (Weff+rup)/Uc is the time that it takes a vortex to cross the cavity mouth, which
is 1.25 oscillation periods for the 2nd hydrodynamic mode [Bruggeman et al., 1991].
The second term is the ratio of maximum velocity (Uaxs) to the average velocity (U )
in the duct, which is taken as 1.23 considering the fully developed turbulent profiles
(Re = 5 × 104) used in the simulations [Schlichting, 1979]. For the last term an em-
pirical formula similar to Eq. 3.16 is employed. The free stream velocity (U∞) and
dimensionless boundary layer thickness (Γ) are replaced by the maximum velocity
in the duct (U∞ = Uaxs) and the confinement ratio (Γ = (D − Dr)/(W + rup)), re-
spectively. Finally, an empirical formula for the peak-whistling Strouhal number as
a function of confinement ratio is obtained for fully turbulent flows as:

Srp−w = 0.63

(

D −Dr

W + rup

)−0.2

, (3.18)

A power-law fit of the experimental data yields 0.58 instead of 0.63, which is shown
in figure 3.19. It is seen that this rather simple empirical formula explains the broad
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Figure 3.19: Measured
and estimated peak-
whistling Strouhal numbers
plotted against confinement
ratio together with the
proposed formula, Srp−w =

0.58 [(D −Dr)/(Weff + rup)]
−0.2.
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range of peak-whistling Strouhal numbers observed in periodic systems as an effect
of changing velocity profile due to changing confinement ratio.

3.4.5 Time averaged acoustic source power in periodic systems

Up to now the attention was given to the peak-whistling Strouhal number. In this
section, the time averaged acoustic source power produced in periodic systems is
addressed. From figure 3.17, it is seen that the non-dimensional time averaged
acoustic source power 〈Psource〉/(ρ0USp|u′|2) is decreasing almost linearly with in-
creasing confinement ratio ((D − Dr)/(W + rup)) for the 2nd hydrodynamic mode.
Thus, if the non-dimensional averaged acoustic source power is normalized with
the confinement ratio as (D − Dr)/(W + rup)〈Psource〉/(ρ0USp|u′|2), then a univer-
sal graph of source power for periodic systems with various confinement ratios can
be obtained. In figure 3.20 normalized non-dimensional average acoustic source
power is shown as a function of Strouhal number based on the convection veloc-
ity (Src = f(W + rup)/Uc). Considering the convection velocity Uc, instead of the
mean flow velocity U in the Strouhal number definition, collapses the peak-whistling
Strouhal numbers into a single peak (Src = 1.4). From figure 3.20, it is seen that
for the 3rd hydrodynamic mode (Src = 2.5) as the confinement ratio increases the
normalized dimensionless averaged acoustic source power decreases. This decrease
could be explained on the basis of the linear theory of Michalke [1965] on the effect of
finite momentum thickness (δ2) on spatial amplification of the shear layer instability.
Following the theory above a critical value of fδ2/U = 0.04 the amplification van-
ishes [Bruggeman et al., 1991]. It should be noted that the 3rd hydrodynamic mode
has not been reported in any experimental study on corrugated pipes. It is therefore
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Figure 3.20: Strouhal
number based on convective
velocity Src = f(W+rup)/Uc

plotted against normal-
ized dimensionless av-
erage acoustic source
power (D − Dr)/(W +

rup)〈Psource〉/(ρ0USp|u
′|2)

for confinement ratios,
(D − Dr)/(W + rup) of 3.2,
1.6 and 0.8.

difficult to verify this result. Another consequence of the theory is that Eq. 3.18 has a
limited range of validity. Above a critical ratio of D/W whistling will not occur also
for the 2nd hydrodynamic mode.

3.4.6 Estimation of the dimensionless fluctuation amplitude in a

periodic system

To estimate the amplitude of a self sustained oscillations, i.e. whistling, in a periodic
system an energy balance model is required, where the acoustic sources and the
acoustic losses are equalized:

〈Psource〉 = 〈Pvisc〉+ 〈Pconv〉+ 〈Prad〉 (3.19)

where 〈Psource〉 is the time averaged acoustic source power. 〈Pvisc〉, 〈Pconv〉 and 〈Prad〉
are the time averaged power losses due to visco-thermal, convective and radiation
effects, respectively. In contrary to the acoustic sources which are calculated spatially
local as explained in section 3.4, acoustic losses are estimated for the whole system.
Here, first the estimation of acoustic losses are considered [Tonon et al., 2010], and
then the prediction of dimensionless fluctuation amplitudes are discussed for two
periodic systems: namely, a corrugated segment in a smooth pipe and a unit length
of a long corrugated pipe.

In order to calculate the acoustic power dissipated by the visco-thermal damping
of acoustic waves in a periodic system, a standing wave built up of right p+ and left
p− traveling waves of equal amplitude is assumed. Then the visco-thermal losses
are given by

〈Pvisc〉
ρ0USp|u′|2 =

1

2

c0
2αL

ceffU
(3.20)
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Figure 3.21: A corrugated segment in a smooth pipe as described in Elliott [2004].

where c0 is the speed of sound, ceff is the effective speed of sound in the pipe, L is
the pipe length and α is the acoustic damping coefficient.

To determine the acoustic losses due to convective effects, vortex shedding at
the downstream pipe termination is considered. Instead of describing the flow in
detail, a quasi-steady free jet formed at the outlet of the pipe is assumed. Using the
acoustic energy reflection coefficient of Ingard and Singhal [1975] and assuming the
incompressible limit, the acoustic power loss due to vortex shedding at the outlet of
the system is determined as follows:

〈Pconv〉
ρ0USp|u′|2 =

1

2

c0
ceff

(3.21)

It should be noted that this approximation is limited to low frequencies. At high fre-
quencies the approximation proposed by Munt [1977, 1990] should be used [Peters
et al., 1993].

Furthermore, compared to the acoustic losses due to visco-thermal dissipation
and convective effects, the radiation losses at the pipe terminations are rather small.
Thus, they are neglected in the calculations.

A corrugated segment in a smooth pipe

A corrugated segment in a smooth pipe is technologically useful as it allows bend-
ing the pipe. When appropriately designed it should not whistle. Elliott [2004] per-
formed tests with a corrugated segment composed of 10 corrugations in a smooth
pipe as shown in figure 3.21. The pipe has a length (L) of 1031 mm and an inner
diameter (D) of 10.65 mm. The pitch length of corrugations is Pt = 2.13 mm. Un-
fortunately, rup is not explicitly mentioned by Elliott [2004]. Thus, rup is taken as
0.25W , which is a typical value for this type of corrugated pipes, see figure 3.2-b,
which leads to a confinement ratio of D/(W + rup) = 5.8. It is reported that when
the corrugated segment is placed at the beginning of the pipe, Lent = 0, the system
just whistles at U = 8.6 m/s with a frequency of 1488Hz, which corresponds to the
9th axial mode.

Since the corrugated segment is 21.3 mm, which is only 2% of the total pipe
length, while calculating 〈Pvisc〉 and 〈Pconv〉, effective speed of sound ceff is taken
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equal to the speed of sound c0. For the same reason, the theory of Kirchhoff [Pierce,
1989; Peters et al., 1993] for smooth pipes is used to estimate the damping coefficient
α, as follows:

α =
Lper

2Spc0

√

πfµ

ρ0

(

1 +
cp/cv − 1√

Pr

)

(3.22)

where Lper is the perimeter of the pipe, f is the sound wave frequency, µ is the
dynamic viscosity, cp/cv is the ratio of specific heat capacities and Pr is the Prandtl
number. Then, using Eq. 3.20 and Eq. 3.21 the total acoustic loss is determined as
(D/(W + rup))〈Ploss〉/(ρ0USp|u′|2) = 28.4. Here the interaction between the acoustic
boundary layer and the turbulent main flow is neglected. This is justified by the
relatively low Reynolds numbers prevailing in the experiments [Peters et al., 1993;
Howe, 1998].

To estimate the source power of the system, first the location of the corrugated
segment with respect to the standing wave should be appraised. The average acous-
tic source power of a corrugation presented in figure 3.15 is valid only for cavities
that are located in the vicinity of pressure nodes of the standing wave, where the
sound production is maximum. Considering the fact that the system whistles at
9th acoustic mode, the wave length of the standing wave pattern is approximately
λ = 230 mm. Thus, compared to the wave length, a segment of 21.3 mm at the be-
ginning of the pipe is small enough to assume that all the corrugations are close to
the pressure node.

In figure 3.22, the normalized dimensionless average acoustic source power is
presented as a function of perturbation amplitude for a fully developed turbulent ve-
locity profile and a thin boundary layer velocity profile Eq. 3.15. The proposed model
predicts whistling with 15 corrugations instead of 10 corrugations as found in the ex-
periments. The acoustic loss per corrugation, (D/(W +rup))〈Psource〉/(ρ0USp|u′|2) =
1.89, is indicated with a horizontal line in figure 3.22 (Acoustic Losses - corrugated
segment) and the respective predicted amplitude |u′|/U = 1.1× 10−2 with a vertical
line. It should be noted that since the corrugated segment is located at the beginning
of the pipe, the velocity profile is not yet developed. Consequently, the source calcu-
lated for a thin boundary layer is used to predict the whistling and its amplitude.

Elliott [2004] reported that when the corrugated segment is shifted such that
Lent > 100 mm, no oscillations could be produced. This can be explained by the
change of the velocity profile upstream from the corrugated segment. When the cor-
rugated segment is shifted such that Lent > 10Dp, instead of a thin boundary layer
profile, a developed turbulent velocity profile will enter the corrugated segment. As
shown in figure 3.22, the normalized dimensionless average acoustic source power
is much smaller for the fully developed turbulent velocity profile than for the thin
boundary layer velocity profile. Consequently, the system which is just whistling for
Lent = 0, stops whistling when it is shifted to the next pressure node of the standing
wave.
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Figure 3.22:

Maximum perturba-
tion amplitude |u′|/U

is plotted against nor-
malized dimension-
less average acoustic
source power (D/(W +

rup))〈Psource〉/(ρ0USp|u
′|2)

for a fully developed tur-
bulent velocity profile
(Turbulent B. L.) and
a thin boundary layer
velocity profile (Thin B.
L.).
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Figure 3.22 also indicates that in the transition region (10−3 < |u′|/U < 10−2)
a small increase in the acoustic losses can suppress the whistling. As a result, it is
difficult to predict whistling in this amplitude zone.

A fully corrugated pipe

In this section the whistling amplitude for a long corrugated pipe is estimated for a
unit length. A typical corrugated pipe geometry (Com 3 - Table 3.1) with a confine-
ment ratio of D/(W + rup) = 5.9 is used for the calculations. The pitch length of the
corrugations is Pt = 10 mm meaning that there is 100 corrugations in a unit length
segment. For systems with such a high number of cavities, it can be assumed that the
cavities are uniformly distributed along the standing wave. Thus, to estimate the av-
erage acoustic sound production per a cavity, the maximum acoustic sound produc-
tion per cavity (see, figure 3.22) should be multiplied by (2/π), which is the average
of the absolute value of a cosine function. This factor corresponds to the assumption
of a moderate amplitude behavior [Bruggeman et al., 1991; Tonon et al., 2010]. This
assumption is only reasonable for high oscillation amplitudes |u′|/U > 0.05. Since
the pipe is long, it can also be assumed that the convective losses are small compared
to the viscous losses 〈Pconv〉 � 〈Pvisc〉 so that they can be neglected in Eq. 3.19.

As a first approximation, similar to the calculations in the previous section, the
theory of Kirchhoff Eq. 3.22 is used to estimate the damping coefficient, α = 5.3 ×
10−2. Following Eq. 3.19 and Eq. 3.20 the normalized dimensionless acoustic loss per
corrugation (D/(W + rup))〈Psource〉/(ρ0USp|u′|2) = 2.8 × 10−2 is determined. This
leads to a maximum perturbation amplitudes, which are a factor 5 higher than the
experimentally observed |u′|/U = 0.1.
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As a second approach, assuming a quasi-steady flow [Ingard and Singhal, 1975]
and linearizing the pressure gradient, the fluctuating pressure drop is stated as fol-
lows:

dp′

dx
= ρ0Uu′ 4cf

D
(3.23)

where cf is the experimentally determined resistance coefficient. For the corrugated
pipe investigated (Com 3 - Table 3.1) cf ≈ 0.025. The damping coefficient for acoustic
waves is given by:

α =
Uaxs

ceff

4cf
D

(3.24)

Similarly following Eq. 3.19 and Eq. 3.20, this approach leads to a maximum per-
turbation amplitude (|u′|/U ) of 0.4, which is a factor 4 larger than the measured
values (see figure 3.22, Acoustic Losses - fully corrugated pipe). However, it should
be noticed that although the predicted fluctuation amplitude is rather close to the
experimental observations, this approach has a fundamental drawback. While cal-
culating the source power 〈Psource〉, the losses due to flow separation at each cavity
are implicitly included in the simulations. By introducing the experimentally mea-
sured resistance coefficient (cf ) to calculate the damping coefficient, this non-linear
effect is again taken into account in the quasi-steady approximation. Also the model
neglects heat transfer losses. Thus, some of the loss terms are over estimated and
some are excluded in this prediction. Finally, it should be noted that a quasi-steady
approach is only valid at very low frequencies.

3.4.7 Discussion

In this study, a methodology which combines incompressible numerical simulations
and the Theory of Vortex Sound is introduced to estimate the acoustic source power
in periodic systems. Comparison with the experimental measurements and the ear-
lier studies indicates that the proposed method is promising in many aspects for the
physical understanding of the whistling behavior of periodic systems. However, the
methodology has certain limitations.

First of all, it is assumed that the cavities are only acoustically coupled. Thus,
any hydrodynamic interaction between cavities is neglected. Derks and Hirschberg
[2004] showed that hydrodynamic interaction can be important for Helmholtz res-
onators if the plateau length between successive openings is smaller than the open-
ing width (Lp ≤ W ). Similarly, for corrugated pipes with short plateau lengths,
hydrodynamic interaction is expected to play a role.

Secondly, the approach does not include any turbulence modeling. This brings a
limit to the cavity depth to cavity width ratio (H/W ) that can be studied with this
method. For shallow cavities (H/W ≤ 0.5), where turbulence plays a significant
role [Gloerfelt, 2009; Nakiboğlu et al., 2010], the approach is not applicable. How-
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ever, most of the corrugated pipes used in industrial applications have deep cavities
(H/W ≥ 0.5).

Another point that can be improved is the inlet boundary condition for incom-
pressible simulations. As demonstrated in sections 3.4.4 and 3.4.6, the velocity pro-
file is essential for both the peak-whistling Strouhal number and the fluctuation am-
plitude. Instead of using a fully developed turbulent velocity profile for smooth
pipes at the inlet boundary, for each corrugated pipe geometry respective fully de-
veloped velocity profiles can be estimated using RANS calculations. Preliminary
calculations using this approach indicate a shift in predicted peak-whistling Strouhal
numbers towards the proposed empirical power-law formula Eq. 3.18. Such an ap-
proach, however, will also be limited because whistling at large amplitudes is ex-
pected to affect the main flow profile, which cannot be predicted by RANS simula-
tions.

It should be noted that using the theory of Kirchhoff for the estimation of the
damping coefficient leads to over predicted fluctuation amplitudes in long corru-
gated pipes. The quasi-steady approximation is not a satisfactory alternative ei-
ther. Further research is needed on the estimation of visco-thermal losses of acoustic
waves propagating in corrugated pipes.

Our standing wave model is only reasonable when the resonator has a large qual-
ity factor. For the investigation of very long corrugated pipes, a traveling wave
model could be employed rather than a standing wave model.

3.5 Conclusions

Experiments performed on corrugated pipe segments of various lengths and cavity
geometries show that the peak-whistling Strouhal number, based on cavity width
plus upstream edge radius as characteristic length, is independent of the pipe length.

The experiments on corrugated pipes revealed a saturation behavior in the am-
plitude of fluctuation |u′|/U ≈ 0.1. Although the segment length, where this satura-
tion level is reached, varies depending on the type of corrugated pipe, the saturation
amplitude remains about the same.

The broad range of peak-whistling Strouhal numbers in corrugated pipes, 0.3 ≤
Srp−w ≤ 0.6, that has been reported in the literature, is observed experimentally.

There exist a decrease in the peak-whistling Strouhal number with increasing con-
finement ratio, which is defined as the ratio of pipe diameter to cavity width plus
upstream edge radius D/(W + rup).

The proposed numerical methodology predicts Strouhal number ranges of acous-
tic energy production and absorption, which are in agreement with earlier studies
about periodic systems. The non-linear saturation of the shear layer, responsible for
the stabilization of the limit cycle oscillation, is also successfully captured with the
current approach.
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It is explained that the variation observed in the peak-whistling Strouhal num-
ber is due to a change in the confinement ratio, results from a different main flow
velocity profile. Assuming a fully developed turbulent velocity profile for a smooth
channel flow at the inlet, the proposed methodology predicts the decrease of the
peak-whistling Strouhal number with increasing confinement ratio. The estimated
peak-whistling Strouhal numbers are in a reasonable agreement with the experimen-
tally measured values. An empirical formula for the peak-whistling Strouhal num-
ber as a function of confinement ratio is proposed, which relates this effect to earlier
observations from literature on cavities [Elder et al., 1982; Golliard, 2002; Kooijman
et al., 2008] and deep resonant side branches [Ziada and Shine, 1999].

Combined with an energy balance, the proposed model is used to explain qualita-
tively the difference observed in acoustic fluctuation amplitudes in periodic systems
due to variations of cavity geometry and flow parameters. However, it should be
improved before being a quantitative tool for the prediction of the pulsation ampli-
tude.
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Chapter4

Aeroacoustics of the swinging
corrugated tube: Voice of the Dragon

4.1 Abstract

When one swings a short corrugated pipe segment around his head, it produces a
musically interesting whistling sound. As a musical toy it is called Hummer and
as a musical instrument the Voice of the Dragon. The fluid dynamics aspects of the
instrument are addressed, corresponding to the sound generation mechanism. Ve-
locity profile measurements reveal that the turbulent velocity profile developed in a
corrugated pipe differs notably from the one of a smooth pipe. This velocity profile
appears to have a crucial effect both on the non-dimensional whistling frequency
(Strouhal number) and on the amplitude of the pressure fluctuations. Using a nu-
merical model based on incompressible flow simulations and Vortex Sound Theory,
excellent predictions of the whistling Strouhal numbers are achieved. The model
does not provide an accurate prediction of the amplitude. In the second part of
the paper the sound radiation from a Hummer is discussed. The acoustic measure-
ments obtained in a semi-anechoic chamber, are compared with a theoretical radia-
tion model. Globally the instrument behaves as a rotating (Leslie) horn. The effects
of Doppler shift, wall reflections, bending of the tube, non-constant rotational speed
on the observed frequency and amplitude are discussed.
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Figure 4.1: A schematic drawing of a Hummer

4.2 Introduction

In thin walled pipes corrugations provide local stiffness while allowing for a global
flexibility. This makes corrugated pipes convenient for various industrial applica-
tions ranging from vacuum cleaners to offshore natural gas transportation [Belfroid
et al., 2007]. Flow through this type of pipes can sustain high amplitude whistling
tones, which do not occur in smooth pipes. This whistling is an environmental an-
noyance and associated vibration can lead to mechanical failure [Ziada and Bühlmann,
1991].

Short corrugated pipe segments are also used as musical toys and instruments.
The Hummer [Crawford, 1974] is a flexible plastic corrugated pipe of approximately
75 cm length and 3 cm diameter, as shown in figure 4.1. While holding one end by
swinging the tube around the head, various tones can be produced. This chorus like
sound is musically interesting. The instrument has received the names Voice of the

Dragon [Silverman and Cushman, 1989; Serafin and Kojs, 2005] and Lasso d’Amore

[Schickele, 1976].

A more extensive review of the literature on corrugated pipes is given in the
earlier papers of the authors [Nakiboğlu et al., 2010, 2011a]. Physical modelling of
corrugated pipes by means of simple source models placed along a tube has been
proposed by Debut et al. [2008] and Goyder [2010]. A Large eddy simulation has
been attempted by Popescu and Johansen [2009], but results seem to be in contradic-
tion with the experimental studies [Nakiboğlu et al., 2010; Tonon et al., 2010; Golliard
et al., 2010].

In the present paper the physical modeling of this instrument is discussed. In the
next section (Sec. 4.3), an overview of the basic principles is given. The following
two sections (Sec. 4.4 and Sec. 4.5) focus on the flow and the associated sound pro-
duction within the tube. In Sec. 4.6 the radiation of the sound from the open pipe
terminations is explained. Sec. 4.7 covers some of the the mystery that is removed
and remaining open questions. The last section concludes the study (Sec. 4.8).
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4.3 Basic Principles

The whistling of the Hummer is induced by the flow through the pipe driven by
its rotation. This can be demonstrated by closing the stationary pipe termination,
which is held with the hand. Placing the thumb in the tube or covering the entrance
with the palm are convenient ways to do so. This suppresses the whistling. Another
way to demonstrate that it is the flow through the corrugated pipe that sustains the
whistling, is to blow through the pipe. Our lung capacity is not sufficient to make
a typical Hummer whistle. However, one can take a narrower corrugated pipe and
make it whistle. A corrugated pipe with a diameter of D = 1 cm and a length of
L = 1 m used as a protection jacket for electrical cables in buildings, whistles nicely
at a rather high pitch.

In flows producing sound the fluid velocities are so high that the pressure forces
are mainly balanced by the inertia of the fluid. The viscous forces are negligible in
the bulk of the flow. They only become important within thin boundary layers close
to the wall. The pressure in these boundary layers is imposed by the main flow
[Schlichting, 1979]. In the boundary layer due to viscous losses a fluid particle does
not have enough kinetic energy to travel against an adverse pressure gradient, as it
would do in the bulk of the flow. This results in a back flow along the wall opposite
to the main flow direction and ultimately a separation of the boundary layer from
the wall at an abrupt pipe widening . This forms a so called shear layer, separating
the high speed bulk flow region from the low speed flow region close to the walls.
This separation occurs at each corrugation, leaving almost a stagnant fluid in the
cavities. These shear layers are quite unstable and the resulting unsteadiness of the
flow is a source of sound [Curle, 1955]. Furthermore the flow separation is also very
sensitive to acoustical perturbations. These perturbations trigger the roll-up of the
shear layer into vortices. This receptivity of the shear layer to acoustic perturbations
is essential in the whistling process. It couples the vortex shedding developing at
each corrugation with the global standing acoustical wave in the tube. As a con-
sequence, the unsteadiness of the flow within each cavity (corrugation) along the
pipe is synchronized with a global acoustic oscillation of the pipe. Actually, it is a
feedback system in which the flow instability at each cavity is a power supply and
the pipe is a filter, selecting a specific tone corresponding to a standing longitudinal
wave (resonance mode). This is a SASER device: Sound Amplification by Stimulated

Emission of Radiation analogous to a LASER. Such a feedback system can produce a
periodic oscillation only if there is a non-linear saturation mechanism, which limits
the amplitude [Fletcher and Rossing, 1991].
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4.4 Fluid Dynamics

4.4.1 Frictionless model

The average flow velocity U through the swinging pipe can be estimated by assum-
ing a steady frictionless flow. As the velocities are low compared to the speed of
sound, the pressure difference across the pipe is very small compared to the atmo-
spheric pressure. One can therefore neglect the density variation in the steady com-
ponent of the flow. The fact that the air is almost incompressible implies that, in a
steady flow, the volume flux Q along the tube must be independent of the position x

along the tube, measured from the fixed open end. If we neglect changes in the shape
of the velocity profile U(r), with r is the distance from the pipe axis, the flow veloc-
ity remains constant along the pipe. This velocity is defined by U = 4Q/

(

πD2
)

.
Because of the swinging motion, the tube is rotating with an angular velocity Ω.
A fluid particle, corresponding to a slice of the tube of length dx, will undergo a
centrifugal force ρ0

(

π dx D2/4
)

Ω2x, where ρ0 = 1.2 kg/m3 is the air density. As
the fluid velocity is constant, this force should be balanced by the pressure forces
− [p (x+ dx)− p (x)]πD2/4 = −dp

(

πD2/4
)

. This yields the differential equation for
the pressure p:

dp = ρ0Ω
2xdx. (4.1)

Integration between the stationary tube inlet x = 0 and the moving tube outlet x = L

yields:

p (L)− p (0) =
1

2
ρ0Ω

2L2. (4.2)

Note that this equation has the opposite sign from the equation used by Silverman
and Cushman [1989] and Serafin and Kojs [2005]. This is due to the fact that Sil-
verman and Cushman [1989] ignored the impact of the centrifugal force on their
measurement of the pressure difference and made the erroneous assumption that
the inlet pressure p (0) should be equal to atmospheric pressure patm. In fact, as a
result of flow separation, a free jet is formed at the swinging outlet of the pipe. Like
in the plume flowing out of a chimney, the pressure p (L) in this free jet is equal to
the surrounding atmospheric pressure patm [Shapiro, 1953]. The low pressure at the
inlet,

p (0) = patm − 1

2
ρ0Ω

2L2, (4.3)

is actually sucking the surrounding air into the pipe. This explains the observation of
Silverman and Cushman [1989] that small bits of tissue paper placed in the palm will
be sucked up into the tube and discharged from the rotating end. Assuming a steady
incompressible frictionless flow around the inlet, one finds from the conservation of
mechanical energy (Bernoulli):

patm = p (0) +
1

2
ρ0U

2, (4.4)
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which combined with Eq. 4.3 yields the very simple result:

U = ΩL. (4.5)

In this simple model the friction is neglected (except for flow separation at the out-
let), which leads to a uniform velocity profile in the pipe. In reality, however, as a
result of friction the velocity in the pipe will be lower near the walls than in the mid-
dle, so that a non-uniform velocity profile will develop. The shape of the velocity
profile is expected to be important in corrugated pipes both for the frequency and
the amplitude of the whistling [Nakiboğlu et al., 2011a]. In the Sec. 4.4.3, the velocity
profile in a Hummer is addressed.

4.4.2 Experimental setup

The velocity profile in a Hummer was determined by means of hotwire measure-
ments. Figure 4.2 shows the experimental setup. An aluminum pipe with a diameter
of 33 mm and a length of 60 mm was inserted to the conical section at the inlet of
the Hummer (Fig. 4.1). Using a clamp for standard vacuum appliances (ISO-KF), the
aluminum pipe was attached to the settling chamber of the wind tunnel in an airtight
manner. The settling chamber is a wooden box of 0.5 m×0.5 m×1.8 m. The flow is
driven by a centrifugal ventilator. A 8 cm thick layer of acoustic foam on the inner
walls of the settling chamber prevents acoustical resonances of the box. The Hum-
mer lays on a horizontal table and passed through two rigid metal pipe segments
with a diameter of 33 mm and length of 100 mm. Using these rigid pipe segments
the Hummer was fixed on the table without pressing on the elastic plastic walls. Also
by changing the position of the second rigid pipe, the Hummer could be bend in the
horizontal plane. The effect of the bending is addressed in Sec. 4.7.2, all the other re-
sults that are presented were obtained with a straight Hummer. The average velocity
(U ) was calculated from the pressure difference across the inlet contraction using the
equation of Bernoulli (Eq. 4.4). The pressure difference is measured by means of a
Betz micromanometer. The velocity profile at the end of the Hummer was measured
with a hotwire probe (Dantec probe type 55P11). The hotwire anemometer used in
this study was a Dantec 90C10 CTA module installed within a Dantec 90N10 frame.
The signal was amplified and low-pass filtered through a low-noise pre-amplifier
(Stanford Research Systems, Model SR560) and sent to the computer via a National
Instrument BNC-2090 data acquisition board with a 12-bit resolution at a sampling
rate of 10 kHz. A sampling duration of 10 second was used for each position. All
the data were obtained using the Dantec StreamWare software. The hotwire signals
were compensated for variations in the flow temperature.

Experiments were performed on a Hummer manufactured by Jono Toys b.v. Hol-
land. The Hummer has a corrugated length of Lcor = 700 mm, a smooth length of
Lcon = 30 mm, a conical section length of Lcor = 10 mm and an entrance diame-
ter Dent = 33 mm, as shown in figure 4.1. The remaining geometric parameters are
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Figure 4.3: Cross-section of a segment of Hummer with geometric parameters.

shown in figure 4.3, where only a few corrugations are sketched. The wave length of
a corrugation is (pitch) Pt = 7 mm. The depth of the cavity is H = 2.7 mm. Since the
cavity width is changing continuously with the cavity depth, width is determined at
the mid-depth of the cavity [Elliott, 2004] as W = 5 mm. The radius of the curvature
for the edges inside the cavity is rup−(in) = rdwn−(in) = 1 mm. The radius of the cur-
vature for the edges at the cavity mouth is rup = rdwn = 0.5 mm. The inner diameter
is D = 26.5 mm. The plateau, which is the length of the constant inner diameter part
between two cavities, is Lp = 1 mm.

4.4.3 Results

Average velocity profile and turbulence intensity

All the velocity profiles that are presented were measured along an axis normal to the
axis of hummer at a distance of 1 mm downstream from the pipe termination. Some
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measurements were also taken inside the corrugated pipe, the results are identical
with the presented data. It is convenient to measure the profile outside the pipe,
because when the probe is in the pipe it is difficult to make measurements close to
the wall.

In figure 4.4 a measured velocity profile for a straight Hummer is presented to-
gether with a turbulent velocity profile for a smooth pipe and a profile that is ob-
tained by Reynolds-averaged Navier Stokes (RANS) simulation of the Hummer. The
velocity profile that is developed in the Hummer is rather different than the one of
a smooth pipe. It is also seen that the RANS simulations can provide a reasonable
estimation of the velocity profile. The RANS simulations were performed with the
commercial finite volume code Fluent 6.3. The computational domain had the same
geometry as the Hummer but composed of only 5 cavities, as shown in figure 4.3. A
cylindrical symmetric 2D domain was used to mimic a circumferential cavity. The
computational domain contained approximately 180000 cells, which were clustered
close to the cavity mouth where there are high gradients of velocity due to the shear
layer. The pressure-based segregated solution algorithm SIMPLE [Patankar and
Spalding, 1972] was employed. A second-order upwind space discretization was
used for convective terms. A k − ε turbulence model was used together with stan-
dard wall functions as near wall-treatment. The iterations were terminated when
all residuals had dropped at least 8 orders of magnitude. In the first simulation a
fully developed turbulent velocity profile for a smooth pipe was used as an inlet
boundary condition. Then the converged velocity profile at the outlet was extracted
and used as the inlet velocity profile for the next simulation. This procedure was re-
peated until a fully developed velocity profile was obtained, namely 11 times, such
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that the imposed inlet velocity profile remained unaltered till the outlet. Thus, it took
50 corrugations for the flow to fully develop.

In figure 4.5, the measured turbulence intensity (TI = u′
h/U × 100) profile for a

straight Hummer is presented. This rather high turbulence level hides the acoustic
perturbations u′ under the broadband hydrodynamic perturbations (u′

h) in a signal
in the time domain.

The dimensionless fluctuation/perturbation amplitude, |p′|/(ρ0c0U) = |u′|/U , is
defined as the amplitude of the standing pressure wave at a pressure anti-node in-
side the main pipe |p′|, divided by the air density ρ0, the speed of sound c0 and
the average flow velocity U ; which is equal to the amplitude of acoustic velocity
at a pressure node inside the main pipe |u′| divided by the average flow velocity
U . In figure 4.6 a power spectrum obtained from a typical hotwire measurement is
presented. In the Fourier domain the whistling frequency can easily be identified
among the broadband hydrodynamic perturbations by the distinct peak in the spec-
trum. The corresponding perturbation amplitude (|u′|/U ) is determined as follows:

|u′|
U

=

√

∫

P (f) df

U
, (4.6)

where P (f) is the power density.
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Friction factor

The frictional pressure loss along a pipe of length (L) is defined by:

p(0)− p(L) = 4cf
1

2
ρ0U

2 L

D
, (4.7)
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where cf is the friction factor [Blevins, 1984]. Measuring the settling chamber pres-
sure (p0) as a function of average flow velocity U , the friction factor is determined as
cf = 1.78 × 10−2 independent of the Reynolds number for 8 × 108 ≤ Re ≤ 4 × 104

(Re = UD/ν with ν = 1.5 × 10−5). The pressure at the pipe inlet, p(0), is calculated
from the settling chamber pressure p0 as follows p(0) = p0 + 1/2ρ0U

2.
Knowing the friction factor cf , a better estimation of the average flow velocity (U )

can be proposed than the frictionless model as:

U =
ΩR

√

1 + 4cf
L
D

, (4.8)

where R is the rotation radius. As it is explained in Sec. 4.6.1, R ≤ L.

Effective speed of sound

The acoustic field in a Hummer, in a first order approximation, can be described in
terms of plane waves propagating along the pipe axis. Sound propagates along the
Hummer at an effective speed of sound (ceff ) [Elliott, 2004], which is lower than the
speed of sound in the air c0. As a first order approximation, the Hummer can be
described as a tube of uniform cross section with a diameter of D. The inertia is
determined considering the mass in this tube. The air in the cavities has a limited
contribution to the inertia [Nederveen, 1998], however, they behave like an extra
volume of air, which has the effect of lowering the frequency of each resonance.
Thus, the acoustic compliance is determined by the total volume of the Hummer.
Then, for the propagation of low frequency acoustic waves along the tube, f Pt/c0 �
1, the effective speed of sound is estimated as follows:

ceff = c0

√

Vin

Vtot
, (4.9)

where Vin = πD2/4L is the inner volume of the Hummer and Vtot is the total volume
of the Hummer. To determine the total volume of the Hummer, a section composed
of 20 pitches (140 mm) was cut and one of the termination was closed by gluing it
to a plastic plate. Using a syringe, starting from the bottom the tube was slowly
filled to avoid air bubble formation. Then the difference in the weight of the empty
corrugated segment and the corrugated segment filled with water was measured by
means of a balance with an accuracy of 0.01g. The ratio of inner volume to total
volume is found as Vin/Vtot = 0.83, which leads to an effective speed of sound ceff =

310 m/s at room temperature (c0 = 340 m/s).

Whistling frequencies and Strouhal number

In corrugated pipes the whistling frequency does not vary continuously with a mono-
tonically increasing flow rate, but rather in distinct steps, corresponding to open-
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open resonant acoustic longitudinal modes of the pipe:

fn =
n ceff
2 Leff

, n = 1, 2, 3... , (4.10)

where Leff is the effective length of the pipe. Considering the experimental setup
presented in figure 4.2, Leff corresponds to the combined length of the following
elements: corrugated segment of the Hummer, the smooth segment of the Hum-
mer, the connection piece to the wind tunnel and the end corrections [Bruggeman,
1987b; Nederveen, 1998]. Knowing the effective speed of sound and the whistling
frequency of a given mode from an experiment, using Eq. 4.10 Leff is determined as
822 mm.

In figure 4.7 whistling frequencies, obtained from spectra as demonstrated in fig-
ure 4.6, in terms of Helmholtz number (He = fLeff/ceff ), are given as a function
of Mach number (Ma = U/c0) for the Hummer. Integer and half integer values of
Helmholtz number correspond to the even and odd longitudinal resonant modes,
respectively. There is a global linear relationship between Helmholtz number and
Mach number, which indicates a constant Strouhal number:

Sr = f Lc/U, (4.11)

where Lc is the characteristic length. Experiments have shown that the sum of the
cavity width and the upstream edge radius (Lc = W + rup) is the most suitable char-
acteristic length for Strouhal number [Belfroid et al., 2007; Nakiboğlu et al., 2010].
The Strouhal number is determined as Sr = 0.44 for the Hummer. Furthermore, it is
seen that above a critical Mach number, Ma = 0.085, a mode with a different Strouhal
number is excited. The first mode above the critical Mach number corresponds to the
first transversal pipe mode, He = fLeff/ceff = 7, based on the outer diameter Dout.
This study is limited to the velocities below this critical Mach number.

The coupling of the flow instability at each cavity to the longitudinal standing
wave can be described as a feedback loop which leads to a self-sustained oscillation.
In self-sustained oscillations the flow perturbations should undergo a total phase
shift, when traveling along the feedback loop, matching an integer number of 2π.
The total phase shift is mainly composed of a phase shift due to the convection of
vortices from the upstream edge toward the downstream edge and due to the acous-
tical response of the pipe. The convection time of the vortices over the cavity mouth
is (W + rup)/Uc, where the convection velocity is about half the main flow velocity
Uc = U/2. Around a pipe resonance there is a rapid change in the phase of the acous-
tical response with a maximum of π (change of sign). When the flow velocity in the
pipe is increased the convection time of the vortices decreases so that the system in-
creases the oscillation frequency f to match the phase oscillation condition [Fletcher
and Rossing, 1991]. The slope df/dU is inversely proportional to the quality factor
of the resonator. If the quality factor of the resonator is large a small change in fre-
quency is sufficient to provide a large acoustical contribution to the compensation of



Aeroacoustics of the swinging corrugated tube 77

Mach Number (U / c 0)

H
el

m
ho

ltz
N

um
be

r(
fL

ef
f
/c

ef
f
)

0 0.02 0.04 0.06 0.08 0.1
0

1

2

3

4

5

6

7

Sr = 0.44

Missing 2 nd mode

Onset of whistling

Missing fundamental

Figure 4.7: Helmholtz number (He = fLeff/ceff ) plotted against Mach number
(Ma = U/c0).

the convective phase shift. A closer look at the figure 4.7 reveals this feature. There
is a slight, but discernible, increase in the whistling frequency within each resonant
pipe mode (fn). Since the increase in the velocity is large compared to the corre-
sponding increase in the frequency within the same acoustic resonant mode there
is a range of Strouhal numbers, where the whistling is observed rather than a fixed
Strouhal number [Sarohia, 1977; Ziada et al., 2003; Nakiboğlu et al., 2010]. However,
the response of the resonator has a maximum at the passive resonance frequency fp
and therefore a maximum of the whistling amplitude at f = fp. At this point the
convection time of the vortices is close to a multiple of an oscillation period Tp plus
a quarter (m+1/4)Tp = (m+1/4)/f (m = 1, 2, 3...) [Bruggeman et al., 1991]. This is
further discussed in Section 4.4.3.

In figure 4.8 normalized Helmholtz number (He = 2fLeff/(nceff)) is plotted against
Strouhal number (Sr) for acoustic modes of 3rd-11th. It is seen that using the effec-
tive speed of sound (ceff ) definition of Elliott [2004], the whistling frequencies (fn) in
a corrugated pipe can be predicted within 4%.

Onset of the Whistling

The onset of the whistling in corrugated pipes has been observed at different lon-
gitudinal modes in the literature. In most of the studies the onset of whistling has
been detected at the 2nd acoustic longitudinal mode [Crawford, 1974; Silverman and
Cushman, 1989; Nakamura and Fukamachi, 1991]. Kristiansen and Wiik [2007] have
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recorded an excited fundamental mode. Elliott [2004] obtained the whistling first
for the 9th mode. In the current study, the 3rd mode (He = 1.5) is recorded as the
first whistling mode. It is suggested in the literature that turbulence triggers the
whistling [Crawford, 1974; Cadwell, 1994; Angus and Lyon, 2008]. The absence of
whistling at the fundamental mode is explained by the lack of turbulence.

At high flow rates the velocity field inside the pipe can display a complex un-
steady chaotic motion called turbulence. The transition from a laminar (smooth-
stationary) velocity field toward a turbulent (chaotic) flow is determined by the ratio
of inertial to viscous forces. A measure for this is the Reynolds number. For a smooth
pipe below Re = 2300 turbulence cannot be maintained. Depending on the inflow
conditions, a laminar flow can, however, be maintained in a smooth pipe up to very
high values of Re [Blevins, 1984]. In the case of rough walls (such as for a corrugated
pipe) turbulence is commonly observed for Re ≥ 4000 [Blevins, 1984]. Transition can
occur for Re ≥ 2300.

In figure 4.7 the expected Mach number ranges are indicated for the fundamen-
tal and the 2nd mode, if they had been observed. The fundamental and 2nd mode,
would start whistling at Ma = 0.004 (Re ≈ 2400) and Ma = 0.012 (Re ≈ 7200), respec-
tively. The 2nd mode corresponds to a fully turbulent flow, however it still does not
sound. This experiment indicates that the absence of turbulence is not likely to be
the essential factor determining whether a mode does not whistle. As it is explained
later in Sec. 4.5.2 - Sec. 4.5.4, turbulence has an effect on the whistling through its
effect on the average velocity profile.
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Peak-whistling Strouhal number and whistling amplitude

In figure 4.9 the perturbation amplitude |u′|/U is plotted against the Strouhal num-
ber for all the whistling modes (3rd − 11th). It is seen that all the modes appear in a
narrow Strouhal number range between 0.4 ≤ Sr ≤ 0.5. The highest Strouhal num-
ber for a resonant mode indicates the onset of oscillations for that particular acoustic
mode. It is called the critical Strouhal number [Ziada and Shine, 1999] (Srcr). It is
also seen from figure 4.9 that within the same resonant mode after the onset of res-
onance, increasing the flow velocity increases the amplitude of pressure oscillations
until reaches a peak value. Further increase of the flow velocity decreases the ampli-
tude of pressure fluctuations. The Strouhal number, which corresponds to the maxi-
mum pressure fluctuation amplitude for a given acoustical mode, is called the peak-
whistling Strouhal number (Srp−w) [Tonon et al., 2010; Nakiboğlu et al., 2011a]. The
peak-whistling Strouhal number of a corrugated pipe is determined through a linear
least square fit of consecutive excited acoustic modes [Nakiboğlu et al., 2010]. The
peak-whistling Strouhal number of the Hummer is determined to be Srp−w = 0.44,
which is actually presented as the Strouhal number Sr = 0.44 in figure 4.7.

Experiments performed on commercial corrugated pipes of various lengths have
shown that there exist a saturation in dimensionless fluctuation amplitude around
|u′|/U ≈ 0.1 when the pipe length (L) reaches L/D of 100. Further increase of the
pipe length does not change the amplitude of fluctuations [Nakiboğlu et al., 2011a].
The Hummer produces a perturbation amplitude of |u′|/U ≤ 0.08, which is lower
than the observed saturation value. However, considering the length of a Hummer
L/D = 28, it is reasonable that the observed perturbation amplitude is weaker.

4.5 Numerical Methodology

In the previous study [Nakiboğlu et al., 2011a] of the authors, a numerical method-
ology was proposed to investigate the aeroacoustic response of low Mach number
confined flows to acoustic excitations. That study applied to corrugated pipes re-
vealed the crucial importance of the velocity profile in the estimation of both the
peak-whistling Strouhal number and the fluctuation amplitude. Experiments and
RANS simulations carried out in the current study (Fig. 4.4), to provide a better
prediction of the flow profile in corrugated pipes. Thus, the proposed numerical
methodology is revisited with more realistic flow profiles. In the first part of this
section the methodology is briefly summarized and in the second part the improve-
ments in the estimations are presented.

4.5.1 An Overview of the methodology

The hydrodynamic instability, which is the driving force of the acoustic oscillations,
is assumed to be a local phenomenon at each cavity [Nakiboğlu et al., 2010; Tonon
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et al., 2010]. This implies that sound production is a local effect, which can be stud-
ied for a single cavity. Thus, one can try to describe the phenomenon by carrying
out a numerical simulation of the flow within a single cavity instead of modeling
the whole corrugated pipe. In this approach the possible hydrodynamic interactions
between cavities are neglected and the oscillations are coupled through the longitu-
dinal acoustical standing wave. Furthermore, knowing that pitch Pt is much smaller
than the acoustic wavelength ceff/fn of the produced sound wave, one can assume
that wave propagation time is locally negligible. This corresponds to the assumption
that the flow is locally incompressible [Martínez-Lera et al., 2009].

Following these ideas, incompressible 2D axisymmetric simulations were per-
formed for a single cavity. The inlet of the computational domain is located at 0.5W
upstream of the cavity; such a short inlet pipe section is chosen to make sure that the
imposed inlet velocity profiles do not evolve significantly before reaching the cavity.
The outlet is placed at a reasonably far location, 9W downstream, from the cavity.
The computational domain contains approximately 70 000 quadrilateral cells which
are clustered close to the opening of the cavity and to the walls, where there are high
gradients of velocity due to shear layer and boundary layer, respectively. A study
on mesh dependence has been carried out. The same computation was performed
with 2 times and 4 times more densely meshed domains, producing differences in
the calculated acoustic source power of less than 5%.

The simulations were carried out at low Reynolds numbers (Re ≈ 4000) with-
out turbulence modeling. The oscillating pressure differences ∆p′ induced along
the pipe by the cavity oscillation are extracted from these simulations. At the inlet
a uniform acoustic oscillating velocity in the axial direction u′ is imposed in addi-
tion to the time averaged inlet velocity profile U(r). As the viscous effects are not
accurately described, the simulations are corrected by subtracting the pressure dif-
ferences ∆p′visc obtained from simulations of the flow in a uniform pipe segment
with the same boundary conditions as the cavity simulation. This correction can
be interpreted as an extrapolation method for high Reynolds number flows, where
the solution becomes Reynolds number independent [Nakiboğlu et al., 2011a]. The
acoustic power produced by the source is calculated as follows:

〈Psource〉 = Sp u′ (∆p′ −∆p′visc) , (4.12)

where Sp is the cross-sectional area. Finally, by taking the time average 〈.〉 of the
calculated acoustic energy 〈Psource〉 over a sufficient number of oscillation periods,
the spurious contribution due to the inertia is eliminated [Nakiboğlu et al., 2011a].

4.5.2 Effect of flow profile

In the study of Martínez-Lera et al. [2009] on T-joints in pipe systems, a top hat
velocity profile with a thin boundary layer was used as an inlet boundary condi-
tion. Later Nakiboğlu et al. [2011a] showed that a fully turbulent velocity profile
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profiles given in figure 4.10.

of a smooth pipe is a better approximation for corrugated pipes. Experiments dis-
cussed in Sec. 4.4.3 demonstrate that the turbulent velocity profile developed in a
Hummer is noticeably different than that of smooth pipe (Fig. 4.4). Therefore, a se-
ries of RANS simulations was performed with a generic corrugated pipe geometry
[Nakiboğlu et al., 2011a] to obtain a more realistic velocity profile to employ as an
inlet boundary condition. The parameters for the RANS simulations are same as the
ones used for the Hummer simulation. The geometric parameters of the generic
corrugated pipe is as follows: Pt = 2.25W , H = W , D = 4W , rup = 0.25W ,
rdwn = rup−(in) = rdwn−(in) = 0. These three velocity profiles, namely top hat pipe
profile used by Martínez-Lera et al. [2009], fully turbulent pipe profile for a smooth
pipe and profile that is obtained by RANS simulation of a generic corrugated pipe
are compared in figure 4.10.

For a confinement ratio of D/(W+rup) = 3.2, in figure 4.11 estimated dimension-
less average acoustic source power 〈Psource〉/(ρ0USp|u′|2) is presented as a function
of Strouhal number for these velocity profiles. A negative 〈Psource〉 indicates that in
that range of Strouhal numbers (Sr) the cavities act as acoustic sinks, which suppress
the whistling. A positive 〈Psource〉 indicates that the cavities act as acoustic sources,
which is a necessary condition for whistling. Here two ranges of Strouhal numbers
(Sr) are observed for which 〈Psource〉 is positive. The lower (0.4 < Sr < 0.8) and the
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higher (0.8 < Sr < 1.4) Strouhal number ranges with positive average acoustic source
power correspond to the second and the third hydrodynamic modes, respectively. In
the second hydrodynamic mode there exist two vortices in the cavity mouth and the
traveling time of the vortex across the opening is 1.25 oscillation period. Whereas
for the third hydrodynamic mode three vortices are present at the same moment in
the cavity mouth and a vortex takes 2.25 oscillation period to travel across the cavity
[Bruggeman et al., 1991]. Experimentally observed Strouhal numbers (Fig. 4.9) corre-
spond to the second hydrodynamic mode. It is clear that the peak-whistling Strouhal
number, where the highest acoustic source power is registered, depends strongly on
the velocity profile. With increasing boundary layer thickness, the peak-whistling
Strouhal number shifts to lower Strouhal numbers.

4.5.3 Estimation of peak-whistling Strouhal number

Considering the experimental data on corrugated pipes [Binnie, 1961; Elliott, 2004;
Nakiboğlu et al., 2010], a correlation between confinement ratio D/(W + rup) and
the measured peak-whistling Strouhal number Srp−w has been proposed [Nakiboğlu
et al., 2011a]:

Srp−w = 0.58

(

D

W + rup

)−0.2

. (4.13)

In figure 4.12 the proposed empiric formula (Eq. 4.13) is presented. The peak-
whistling Strouhal number obtained with the Hummer (Fig. 4.9) also follows this
trend.

In the earlier study by the authors [Nakiboğlu et al., 2011a], using the numerical
methodology summarized in Sec. 4.5.1 with a fully turbulent velocity profile of a
smooth pipe (Fig. 4.10 - Smooth Turb.), the peak-whistling Strouhal numbers were
over-estimated by 10% as shown in figure 4.12. As demonstrated in Sec. 4.4.3, by
performing RANS simulation of a corrugated geometry, a better estimation of the
measured velocity profile can be obtained compared to a profile of a fully turbulent
smooth pipe. Using the average velocity profile obtained from the RANS simulation
of a generic corrugated pipe (Fig. 4.10- RANS), the same simulations have been re-
peated in this study. The predicted peak-whistling Strouhal number as a function of
confinement ratio D/(W + rup) is also shown in figure. 4.12. The numerical model
predicts the peak-whistling Strouhal number within an accuracy of 2%. It is evident
that by using a more realistic flow profile, the numerical methodology produce much
better estimations of the peak-whistling Strouhal number. This excellent agreement
between the experiments and the numerical model confirms the significance of the
effect of mean flow profile on the whistling behavior.
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bers plotted against
confinement ratio,
D/(W + rup). Power
law fit (Eq. 4.13) [Naki-
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4.5.4 Estimation of whistling amplitude in a long corrugated pipe

In figure 4.13 estimated normalized dimensionless average acoustic source power
(D/(W+rup))〈Psource〉/(ρ0USp|u′|2)) for a single corrugation is given as a function of
perturbation amplitude |u′|/U for the three different average velocity profiles given
in figure 4.10 for a single cavity. The simulations were performed at respective peak-
whistling Strouhal number of each profile, namely: Srp−w = 0.65 for Thin, Srp−w =

0.55 for Smooth Turb. and Srp−w = 0.50 for RANS.
It is seen that for all the profiles |u′|/U ≈ 5 × 10−3 is the saturation point of

the shear layer. For perturbations smaller than this the shear layer behaves linearly.
Therefore, acoustic source power grows quadratically with |u′|/U , making the di-
mensionless average acoustic source power 〈Psource〉/(ρ0USp|u′|2) constant. Above
the saturation point, nonlinearities become dominant and 〈Psource〉/(ρ0USp|u′|2) starts
to decrease with |u′|/U . To estimate the amplitude of the whistling in a long cor-
rugated pipe an energy balance model is required. In a first order approximation
radiation losses at the pipe terminations and convective losses due to vortex shed-
ding are small compared to the visco-thermal losses and can be neglected in a long
corrugated pipe. Then the energy balance is simplified to:

2

π
〈Psource〉 = 〈Pvisc〉, (4.14)

where 〈Psource〉 is the time averaged acoustic source power and 〈Pvisc〉 is the time
averaged power loss due to visco-thermal losses, which is estimated for a single



84 4.5 Numerical Methodology

 u’  / U

(D
/(

W
+

r up
))

〈P
so

ur
ce

〉/
(ρ

U
S

p
u

’
2 )

10-4 10-3 10-2 10-1 100
0

0.5

1

1.5

2 Thin
Smooth Turb.
RANS

Acoustic Losses
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cavity as follows:
〈Pvisc〉

ρ0USp|u′|2 =
1

2

ceffαPt

U
. (4.15)

The factor (2/π) in Eq. 4.14 takes into account the spatial dependency of the acousti-
cal velocity (u′) along a standing wave [Nakiboğlu et al., 2011a]. Assuming a quasi-
steady flow [Ingard and Singhal, 1975], the fluctuating pressure drop is stated as
follows:

dp′

dx
= ρ0Uu′ 4cf

D
, (4.16)

where cf = 1.78 × 10−2 is the experimentally determined resistance coefficient and
related to the damping coefficient for acoustic waves by:

α =
U

ceff

4cf
D

. (4.17)

Combining Eq. 4.15 - Eq. 4.17, the normalized dimensionless visco-thermal losses is
estimated as (π/2)(D/(W + rup))〈Pvisc〉/(ρ0USp|u′|2) = π cf Pt/(W + rup) = 0.065.
Which leads to a maximum perturbation amplitude of |u′|/U ≈ 0.45 (Fig. 4.13). Con-
sidering the experimental data of |u′|/U = 0.1, all the profiles lead to an over esti-
mated value.

It should be noticed that this approach has a fundamental drawback [Nakiboğlu
et al., 2011a]. The losses due to flow separation at each cavity are implicitly included
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in the simulations. By introducing the experimentally measured resistance coeffi-
cient (cf ) to calculate the damping coefficient, this non-linear effect is again taken
into account in this approach. Also the model neglects heat transfer losses.

4.6 Radiation

Up to now the the flow inside the Hummer has been described. In this section the
wave propagating from the open ends of the tube towards a listener is considered.
First the theory is discussed, secondly the acoustic measurements are presented and
in the last part the measured sound pressure levels are compared with the predic-
tions from the theory.

4.6.1 Theory

The radiation from a Hummer can be modeled as a two pulsating spheres (monopoles)
at the two open extremities of the tube. Depending on the acoustic mode (standing
wave, n = 1, 2, 3...) they pulsate in phase or in opposite phase. The strength of these
monopoles is estimated for a given acoustic mode as:

Qn = u′
n Sp =

u′
n

U
USp =

u′
n

U

ΩnR
√

1 + 4 cf
L
D

Sp, (4.18)

where u′
n/U ≈ 0.05 is determined from the measurements (Fig. 4.9) and the average

velocity is estimated from Eq. 4.8. Here Sp and R are cross-sectional area and the
radius of the rotation of the Hummer, respectively. As shown schematically in fig-
ure 4.14, because of the swinging motion the Hummer bends. Thus, the radius of the
rotation of the Hummer is smaller than the length of the Hummer (R ≤ L). Know-
ing the Strouhal number from figure 4.9, the rotation speed Ωn can be estimated as
follows:

Ωn =
fn(W + rup)

Sr R

√

1 + 4 cf
L

D
. (4.19)

As indicated in figure 4.14 the location of the fixed monopole (S1), the hand hold
side of the Hummer, is taken as the origin of the space ~xs1 = (0, 0, 0). Then the
location of the rotating source (S2) is defined as ~xs2 = (R cos(Ωnte), R sin(Ωnte), hs).
Here te is the emission time of the rotating source, S2, and it is related to the time t

at which the wave reaches the listener by:

t = te +
|~x− ~xs2(te)|

c0
, (4.20)

and hs is the vertical distance between the rotating and fixed sources.
Experiments have been performed in a semi-anechoic chamber, where the floor is

reflecting. Reflections from the ground can be modeled by method of images [Pierce,
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Figure 4.14: The schematic drawing of a Hummer in action with a listener.

1989]. The location of the fixed image source is (S1img) is ~xs1img = (0, 0,−2h0). The
position of the rotating image source (S2img) as a function of emission time of the
rotating image source (t∗e ) is given as ~xs2img = (R cos(Ωnt

∗
e), R sin(Ωnt

∗
e),−(2h0+hs)).

Please note that the emission time of the rotating image source is different than the
emission time of the real source te 6= t∗e . Emission time of the rotating image source
is related to the time t at which the wave reaches the listener by:

t = t∗e +
|~x− ~xs2img(t

∗
e)|

c0
, (4.21)

The listener will hear a superposition of the direct waves from sources S1, S2

and the reflected waves, coming from the image sources S1img, S2img. Using a quasi-
steady approach, in which the position of the moving sources (S2 and S2img) are
parametrized as a function of retarded times (te and t∗e ), the pressure field at the
listener position can be calculated, using the complex notation with eiωt convention
as [Pierce, 1989]

p̂(~x, ωn) =ρ0
iωnQn

4π

((

e−ikn|~x−~xs1|

|~x− ~xs1|
+

e−ikn|~x−~xs1img|

|~x− ~xs1img|

)

+(−1)n+1

(

e−ikn|~x−~xs2(te)|

|~x− ~xs2(te)|
+

e−ikn|~x−~xs2img(t
∗

e )|

|~x− ~xs2img(t∗e)|

))
(4.22)

Here the wave number is estimated as

kn =
ωn

c0
=

2πfn
c0

=
πceff
c0 n L

, (4.23)

where n is the mode number, c0 is the speed of sound, ceff is the effective speed of
sound (Eq. 4.9) and L is the length of the Hummer.
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In the previous statement (Eq. 4.22) for the pressure field at the listener position,
the effect of the Doppler shift due to the rotating source is not incorporated. As ex-
plained by Dowling and Williams [1983]; Rienstra and Hirschberg [2004], the sound
field including the Doppler shift that is generated by a moving monopole source is
given by:

p′(~x, t) = ρ0
∂

∂t

(

Q(te)

4π |~x− ~xs(te)| |1− Mas(te)|

)

, (4.24)

where ~x is the listener position, te is the retarded time, Q(te) is the source strength
and c0Ms(te) is the component of the source velocity in the direction of the observer.
In the case of the Hummer, by a superposition of the four sources of sound, the
following expression is obtained in the time domain:

p′(~x, t) =
−ωnρ0Qn

4π





sin
(

ωn

(

t− |~x−~xs1|
c0

))

|~x− ~xs1|
+

(−1)n+1 sin(ωnte)

(1− Mas2(te)) 2 |~x− ~xs2(te)|





+





ρ0Qn

4π

(~x− ~xs2(te))
~as2(te)

c0
+ c0 Mas2(te)− |~vs2(te)|

2

c0

|~x− ~xs2(te)|2 (1− Mas2(te)) 3





+
−ωnρ0Qn

4π





sin
(

ωn(t− |~x−~xs1img|
c0

)
)

|~x− ~xs1img|
+

(−1)n+1 sin(ωnt
∗
e)

(1− Mas2img(t∗e))
2 |~x− ~xs2img(t∗e)|





+





ρ0Qn

4π

(~x− ~xs2img(t
∗
e)

~as2img(t
∗

e )
c0

+ c0 Mas2img(t
∗
e)−

|~vs2img(t
∗

e )|
2

c0

|~x− ~xs2img(t∗e)|2 (1− Mas2img(t∗e))
3



 , (4.25)

where the following definitions are used for the velocity of the moving source and
its image:

~vs2(te) =
∂~xs2(te)

∂te
, ~vs2img(t

∗
e) =

∂~xs2img(t
∗
e)

∂t∗e
, (4.26)

the acceleration of the moving source and its image:

~as2(te) =
∂2~xs2(te)

∂te2
, ~as2img(t

∗
e) =

∂2~xs2img(t
∗
e)

∂t∗e
2

, (4.27)

and the Mach number of the moving source and its image:

Mas2(te) =
~x− ~xs2(te)

|~x− ~xs2(te)|
~vs2(te)

c0
,

Mas2img(t
∗
e) =

~x− ~xs2img(t
∗
e)

|~x− ~xs2img(t∗e)|
~vs2img(t

∗
e)

c0
. (4.28)

The first model (Eq. 4.22), which does not incorporate the Doppler shift, is compared
with the second model (Eq. 4.25) in figure 4.15. Estimated pressure amplitudes from
these two models p̂wout and p̂with for a listener position of ~x = (0.8m, 0, 0) are given
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Figure 4.15: Estimated
pressure amplitudes
for a listener position
of ~x = (0.8m, 0, 0) for
the fifth mode n = 5

for a single period of
rotation for two mod-
els: without Doppler
shift (p̂wout, Eq. 4.22)
and with Doppler shift
(p̂with, Eq. 4.25). Relative
Difference is (p̂wout −

p̂with)/(p̂with)max × 100.
Radius of rotation is
R = 0.8L.
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as a function of time for a single period of rotation for the fifth mode (n = 5). The
first model can capture all the amplitude modulations. As shown in the combined
deviation plot the relative difference, (p̂wout − p̂with)/(p̂with)max × 100, between the
predicted amplitudes is around 10% at maximum. (p̂with)max is the maximum of
p̂with over a rotation period.

In figure 4.16 estimated pressure amplitudes are presented for two different lis-
tener positions namely, ~x = (0.8m, 0, 0) and ~x = (3m, 0, 0), with and without floor
reflections. The calculations are performed for the third mode (n = 3) using the sim-
ple model (Eq. 4.22). It is seen that for the listener position of ~x = (0.8m, 0, 0) the
effect of the reflections on the amplitude is not pronounced. In particular, reflections
have no effect on the maximum amplitude experienced by the listener at the mo-
ment when the Hummer reaches the closest position to the listener (t = 0, t = 0.325).
This is simply because the rotating source (S2) dominates all the other sources (S1,
S1img and S2img) at such a close distance from the listener. At a listener position of
~x = (3m, 0, 0) the effect of the reflections is notable. Reflections increase the pres-
sure amplitudes by 50% at the listener position. This is due to the fact that at such
a listener position, the distance between the real sources (S1, S2) and the listener be-
comes comparable to the distance between the imaginary sources (S1img, S2img) and
the listener.

From figure 4.15 and figure 4.16 it is concluded that the the Doppler shift does
not have an essential role on the amplitude modulation. It is primarily controlled by
the interference of the fixed (S1) and moving (S2) sources. Depending on the listener
position the image sources (S1img, S2img) can also have a very strong affect on the
amplitude modulation.

There is an essential difference in the amplitude modulation mechanism between
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Figure 4.16:

Estimated pressure
amplitudes at lis-
tener positions of
~x = (0.8m, 0, 0) and
~x = (3m, 0, 0) for the
third mode n = 3

for two periods of
rotation: with (With
images) and without
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from the floor into
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a Hummer and a Leslie horn. In a Leslie horn there exist only one monopole source
[Smith et al., 2002]. Thus, the amplitude modulation depends on the presence of
reflections [Kronland-Martinet and Voinier, 2008]. In the Hummer, however, as dis-
cussed the reflections are not a necessary condition for the interference pattern.

4.6.2 Experiments

Experiments were performed in a semi-anechoic room with a reflecting floor. The
chamber has a volume of 100 m3 and a cut-off frequency of 300 Hz. As schematically
shown in figure 4.14, the Hummer was played by swirling it in a circular motion
above the head of the performer roughly keeping the moving termination in a hori-
zontal plane. The sound pressure level was recorded by means of two microphones
(Brüel & Kjær type 4133 and 4165). One of the microphones was held by the Hummer
player close to the pipe termination by holding the microphone and the Hummer to-
gether in the same hand. The microphone was placed against the tube 3 cm from the
opening. This microphone will be referred as hand microphone. The second micro-
phone was held by the listener at various distances from the performer, which will
be referred as the distant microphone. The performer played approximately 15 sec-
onds at each mode, while it was recorded simultaneously by the two microphones.
The performer was also recorded by means of a video camera, which was used to
estimate the rotation speed Ωn, the radius of the rotation R and the vertical distance
hs between the rotating and the fixed sources.

In figure 4.17 the signals obtained from the hand and the distant microphone are
shown when the performer was playing the 3rd acoustic mode for a duration of two
periods of rotation. The distant microphone was 0.8 m from the performer. The sig-
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Figure 4.17: Signals from the distant microphone (0.8 m) and the hand microphone
for the 3rd acoustic mode for two periods of rotation.

Figure 4.18:

Frequency spec-
trum plotted against
the sound pressure
level both for the
distant microphone
(0.8 m) and the hand
microphone for the 3rd
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nal from the distant microphone shows a very strong amplitude modulation while
the hand microphone displays a weak modulation. The amplitude modulations ob-
served at the hand microphone is an indication of non-constant rotation velocity Ωn

during the performance. The amplitude modulation of the distant microphone is
discussed in the next section.

In figure 4.18 the same signals (Fig. 4.17) are presented in the Fourier domain.
The sound pressure level (SPL) recorded in the vicinity of the fixed source was
around 115 dB and 70 dB at a distance of 0.8 m from the performer. It is clear that
the spectrum is dominated by the fundamental oscillation frequency fn = 637 Hz,
corresponding to the third acoustic mode (n = 3) and its exact multiples at m fn
(m = 1, 2, 3...). These higher harmonics are due to the non-linear saturation mech-
anism, which limits the amplitude of the oscillations [Fletcher and Rossing, 1991]
(Sec. 4.5.4).
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Figure 4.19: Frequency spectrum plotted against sound pressure level for the 3rd

and 5th acoustic modes both for the hand and the distant (0.8m) microphones.

In figure 4.19 frequency spectra are plotted against sound pressure levels for the
3rd and 5th acoustic modes around their respective fundamental oscillation frequen-
cies (whistling) both for the hand and the distant microphones (0.8 m). An obvious
difference between the pressure recorded by the hand microphone and the distant
microphone is the width of the peaks in the spectrum. The signal from the hand
microphone has a sharp peak. The signal from the distant microphone, however,
has a rather broad peak. This is due to the Doppler shift and is also observed for
the Leslie horn [Kronland-Martinet and Voinier, 2008; Smith et al., 2002]. During a
rotation when the Hummer is moving toward the microphone it creates a side peak
at a higher frequency than recorded at the hand microphone, and vice versa when it
is moving away from the microphone. It is also evident that these two side peaks are
not exactly symmetric with respect to the center peak, particularly for the 3rd mode,
which indicates that the rotation velocity towards and away from the microphone is
not the same. The width of the broad peaks are 40 Hz and 120 Hz for the 3rd and 5th

acoustic modes, respectively. The relative Doppler broadening reaches ∆f/f = 6%

which corresponds to half a tone. Therefore it is perceptually quite important.

4.6.3 Comparison

In this section the signals that are obtained from the experiments are compared with
the estimated signals from the theory (Eq. 4.25). In figure 4.20 and figure 4.21 mea-
sured and estimated pressure amplitudes for the listener positions of ~x = (0.8m, 0, 0)

and ~x = (3m, 0, 0) are given as a function of time during two periods of rotation for
the modes of n = 3, 4 and 5, respectively. For ease of comparison the peaks in the
pressure modulation are indexed.

Firstly, it should be mentioned that for the same mode (n) the period lengths
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Figure 4.20: Measured pressure amplitudes for listener positions of ~x =

(0.8m, 0, 0) and ~x = (3m, 0, 0) as a function of time during two periods of rotation
for the modes of n = 3, 4 and 5.
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Figure 4.21: Estimated pressure amplitudes from the theory (Eq. 4.25) for listener
positions of ~x = (0.8m, 0, 0) and ~x = (3m, 0, 0) as a function of time during two
periods of rotation for the modes of n = 3, 4 and 5.
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of the signals are not the same for the listener positions of 0.8 m and 3 m. This
is due to the fact that the signals were obtained from two different experiments.
As demonstrated in figure 4.7, the whistling occurs for a range of velocity within a
specific mode. Thus during the experiments, although the Hummer was whistling
at the same mode, the rotation speeds (Ωn) were not the exactly the same. Secondly,
it should be noted that for the calculation of the signals from the theory, the rotation
speeds (Ωn) obtained from the respective experiments are used instead of the ones
obtained from the theory (Eq. 4.19). Theory overestimates Ωn by ≈ 30%.

An apparent difference between the measured and the estimated signals is the
lack of symmetry between the first and the second half of the rotation period. Due
to the non-constant rotation velocity (Ωn) during the performance, recorded as small
fluctuations in the signal from the hand microphone (Fig. 4.17), there exist an asym-
metry between the first and the second half of the rotation period for all the mea-
sured signals.

The Hummer produces radiation patterns similar to the ones observed in flue
organ pipes as explained by Fletcher and Rossing [1991]. This is due to the fact that
ceff ≤ c0, so that the two radiating monopoles are at a distance from each other
smaller than (nλ/2), where n is the acoustic longitudinal mode and λ is the wave
length. In organ pipes the same effect (end correction) is due to the inertia of the
flow through the pipe mouth [Fletcher and Rossing, 1991]. During the performance
Hummer creates an amplitude modulation at a listener position due to the rotation
of these radiation patterns. It is seen that the estimated signals from the theory
globally resembles the measured signals. The model captures most of the modu-
lations. It is noticeable that the estimations of the model for the listener position of
~x = (0.8m, 0, 0) is better than the ~x = (3m, 0, 0) considering both the shape of the
signal and the levels of the pressure fluctuation amplitudes. This is probably due
to the fact that at such a close distance from the source the radiation is dominated
by the real sources (S1, S2). At a further distance, however, the reflections from the
walls which are not included in the model can be substantial.

In figure 4.22 the frequency spectra are plotted against sound pressure levels for
the 3rd and 5th acoustic modes around their respective fundamental oscillation fre-
quencies for a microphone position of ~x = (0.8m, 0, 0) (presented in Fig. 4.19) to-
gether with the estimation of the theory. For the 3rd acoustic mode, the theory agrees
very well with the experiment except that there exist a stronger central peak in the
theory. Since the theory assumes constant rotation speed Ωn, a central peak appears
which is symmetric with respect to the side peaks appearing due to Doppler shift.
The energy of the central peak comes from the fixed source (S1) and from the rotating
source (S2) when its trajectory is not dominated by motion either toward nor away
from the microphone. For the 5th acoustic mode the theory slightly underestimates
the whistling frequency (≈ 10 Hz) and the width of the peak (≈ 115 Hz) compared
to the experimental values.
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Figure 4.22: Frequency spectrum plotted against sound pressure levels for the 3rd

and 5th acoustic modes for a microphone position of ~x = (0.8m, 0, 0) both measured
and estimated from the theory.

4.7 Discussion

4.7.1 Missing fundamental

A commonly observed phenomenon in short corrugated segments, e.g. Hummer, is
the absence of whistling for the fundamental mode [Cermak, 1922; Crawford, 1974;
Silverman and Cushman, 1989; Nakamura and Fukamachi, 1991; Cadwell, 1994; El-
liott, 2004]. As addressed in Sec. 4.4.3, the flow is probably already turbulent for
the velocities where the fundamental mode is expected. Thus, it is concluded that
the absence of the missing fundamental is not related to the lack of turbulence as
suggested in the literature [Crawford, 1974; Cadwell, 1994].

Experiments on the localization of the region of sound production in corrugated
pipes have shown that the contribution of each cavity is not the same [Tonon et al.,
2010; Nakiboğlu et al., 2010; Golliard et al., 2010]. It was demonstrated that the sound
production is dominated by the cavities which are in the proximity of the acoustic
pressure nodes of the standing wave along the main pipe. Considering the funda-
mental mode, there exist only two pressure nodes: one at the inlet and one at the
outlet. Furthermore, a Hummer often has a smooth pipe segment of a few centime-
ters at its inlet, used to hold the pipe (Fig. 4.1), thus considerably decreasing the
sound production capacity of the inlet section.

The developing velocity profile is another aspect that hinders the whistling for
the fundamental mode. At the inlet of the Hummer a rather flat velocity profile
(Fig. 4.10 - Thin) approaches to the corrugations, whereas at the outlet of the pipe a
fully developed velocity (Fig. 4.10 - RANS) reaches the corrugations. As explained
in Sec. 4.5.2, different velocity profiles promotes different peak-whistling Strouhal
numbers (Srp−w). For these two velocity profiles a difference of 50% in peak-whistling
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Figure 4.23: Measured velocity profiles for the bent and straight Hummer.

Strouhal number is predicted by the theory, as shown in figure 4.11. Thus, the source
region at the inlet does not cooperate with the source region at the exit.

For these reasons the total sound source is rather weak for the fundamental mode
compared to the higher modes. As a consequence the losses (Eq. 4.15) become large
compared to the acoustic sources and the system remains silent. This corresponds to
an overshoot in figure 4.13, where the acoustic losses (horizontal line) do not inter-
sect with an acoustic source line.

4.7.2 Effect of bending

One of the marked advantage of corrugated pipe is its ability to bend while keeping
its rigidity. Thus, in various industrial application corrugated pipes are used in a
bent form. An experiment was performed with a Hummer to explore the effect of
bending. The Hummer was strongly bent in a horizontal plane such that α = 35◦,
as shown in figure 4.2. The length of the first and the second straight segments were
410 mm and 185 mm, respectively. In figure 4.23 measured velocity profiles for the
bent and straight Hummer are presented.

It is clear that bending has a significant effect on the velocity profile even after a
straight segment of 26 corrugations (185 mm). This is in agreement with the numer-
ical simulations mentioned in Sec. 4.4.3, from which it is concluded that it takes 50
corrugations for the flow to reach a fully developed velocity profile.

A surprising result is that the Hummer, which was whistling (3rd acoustic mode)
when it was straight, became silent in the bent configuration. A possible explanation
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could be found in the effect of the velocity profile on the whistling. Different ve-
locity profiles promotes different peak-whistling Strouhal numbers as explained in
Sec. 4.5.2. Due to bending, the velocity profile approaching cavities of the Hummer is
different on each side of the bend. Consequently they have different peak-whistling
Strouhal numbers and might not cooperate. Thus, they can not produce the neces-
sary acoustic source power for the whistling.

Although the Hummer bends during a performance due to the swinging motion,
it keeps whistling. This suggest that there are more parameters involved, e.g. the
angle of bending, the radius of bending, the source location with respect to the bend,
etc. The importance of bending in corrugated pipe has, to the authors knowledge,
not yet been addressed in the literature.

4.7.3 Uncertainties in the radiation model

In Sec. 4.6.1 an acoustic model is proposed to estimate the radiation from a Hummer
at a given listener position. The model, Eq. 4.25, uses a number of parameters with
a noticeable range of uncertainty. Here these parameters are listed with respective
values and the way that are estimated or assumed. It should be noted at this point
that these parameters were not modified intuitively from one case to another to force
a better agreement with the experimental data. The aim of the radiation study is
to see how much a simple model can explain the phenomena appearing in a real
performance.

The radius of rotation (R), as shown in figure 4.14, is not the same as the length
of the Hummer (L). By using camera recordings, the radius was estimated as 80%
of the pipe length for all the modes. This is a rather crude approximation. It is
evident from the movies that with increasing mode number the radius of rotation
was increasing. It was, however, not included in the model.

The vertical distance between the fixed source (S1) and the moving source (S2)
was taken as hs = 20 cm for all the modes, again based on the camera recordings.
Similar to the determination of radius of rotation (R), this is a first order approxima-
tion and the change with the mode number is not included.

The hand holding the tube forms a flange for one of the pipe termination. This
can affect the sound radiation of the fixed source, resulting in an asymmetry between
the two sources. This is not included in the radiation model and is a subject for
further research.

It was assumed in the model that the rotating source (S2) remains in a horizontal
plane during all the performance. Yet it was apparent from the video recordings that
the plane of rotation was tilted from the horizontal plane and did not preserve the
same angle throughout the performance. Besides the non-constant rotation veloc-
ity (Ωn), this is another cause of the asymmetry observed between the first and the
second half of the period for the measured signals.
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The listener positions ~x = (0.8m, 0, 0) and ~x = (3m, 0, 0) are simply the position
of the audience holding the microphone at the level of the fixed source (S1) during
the performance of the Hummer player. As a consequence the spatial position of the
microphones are also prone to a uncertainty (±10 cm).

It is interesting to note that Kristiansen et al. [2011] observed a hysteresis in sound
production of a corrugated tube upon low frequency (10 Hz) modulation of the flow.
In their experiment, at a single flow velocity, the corrugated pipe produced a higher
pulsation amplitude upon decreasing flow velocity than upon increasing flow veloc-
ity. This memory effect is also not included in the radiation model.

4.8 Conclusion

In this study the sound generation in short corrugated segments used as a musical
toy, e.g. Hummer, and the associate sound radiation is investigated experimentally,
numerically and analytically.

Using the effective speed of sound (ceff ) definition [Elliott, 2004], the whistling
frequencies (fn) in a corrugated pipe can be predicted within 4% (Fig. 4.8).

Velocity profiles measurements reveal that the fully turbulent velocity profile de-
veloped in a Hummer has a noticeably different shape than the one of a smooth pipe
(Fig. 4.4).

Applying a numerical methodology [Nakiboğlu et al., 2011a] based on incom-
pressible flow simulations and Vortex Sound Theory together with a representative
velocity profile in a corrugated pipe, excellent predictions of the whistling Strouhal
numbers are achieved (Fig. 4.12). The numerical approach combined with an energy
balance can be used to to estimate the acoustic fluctuation amplitudes in corrugated
pipe segments, however, it should be improved before being used as a quantitative
tool for the prediction of the pulsation amplitude. An accurate prediction of the
whistling amplitude remains as a challenge.

Experiments indicate that the Hummer can remain silent even if the flow is tur-
bulent. Thus, it is concluded that the absence of whistling is not related to the lack
of turbulence as it has been suggested in the literature. The reason for the absence
of the fundamental mode in short corrugated pipes is likely due to the lack of coop-
eration between the acoustic sources at the inlet and the outlet of the pipe resulting
from the difference in the mean velocity profile.

An analytical radiation model is proposed in which the Hummer is modeled as
two pulsating spheres: one is fixed and the other one is following a circular pattern in
a horizontal plane. The model takes the reflections from the floor into account, which
appears to be essential (Fig. 4.16). The acoustic model can predict the sound pressure
level within 3dB and the observed frequency at the listener position. The model
can also predict qualitatively the amplitude modulation observed in the experiments
(Fig. 4.21). It is also concluded that the amplitude modulation is mainly due to the
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interference between the sources.
The Doppler shift due to the rotation of the pipe outlet has a minor effect on the

amplitude modulation. It has, however, a pronounced effect on the frequency, which
is increasing with the increasing mode number (Fig. 4.22). This effect is comparable
to that observed in a Leslie horn and is expected to be perceptually important.

A strong effect of bending on the whistling of a corrugated pipe has been ob-
served, which calls for further research.

Note :

This chapter is based on the publication:
Nakiboğlu, G., G., Rudenko, O. and Hirschberg, A. Aeroacoustics of swinging corrugated

tube: Voice of the Dragon, Journal of Acoustic Society of America, Vol 131, Issue 1, pp.

749-765, 2012.

In the original publications there has been an error in the emission time of the
rotating image source (t∗e ), which has now been corrected. This correction slightly
modifies Fig. 4.15 and Fig. 4.22. These changes however do not change any of the
conclusions that has been drawn in the original publication.
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Chapter5

Aeroacoustic power generated by a
compact axisymmetric cavity:

prediction of self-sustained oscillation
and influence of the depth

5.1 Abstract

Aeroacoustic power generation due to a self-sustained oscillation by an axisymmet-
ric cavity exposed to a grazing flow is studied both experimentally and numerically.
The feedback effect is produced by the velocity fluctuations resulting from a cou-
pling with acoustic standing waves in a coaxial pipe. A numerical methodology
that combines incompressible flow simulations with Vortex Sound Theory is used to
predict the time averaged acoustic source power generated by the cavity. The effect
of cavity depth on the whistling is addressed. It is observed that the whistling oc-
curs around a peak-whistling Strouhal number which depends on the cavity depth
to width ratio. The proposed numerical method provides excellent predictions of
the peak-whistling Strouhal number as a function of cavity depth. The numerical
method predicts the average acoustic source power within a factor of two. For deep
cavities the time averaged acoustic source power appears to be independent of the
cavity depth.
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5.2 Introduction

This paper studies the aeroacoustic power generation associated with a self-sustained
oscillation by an axisymmetric cavity exposed to a grazing flow. Flow-excited acous-
tic oscillations in cavities have been of interest both for industrial and academic re-
search starting around 1950 [Krishnamurty, 1955; Roshko, 1955]. There has been a
number of reviews on the topic which present the state of knowledge for different
flow regimes and cavity configurations including Rockwell and Naudascher [1978];
Rockwell [1983]; Blake [1986]; Howe [1997, 1998]; Rowley and Williams [2006] and
Gloerfelt [2009]. Despite the geometric simplicity of axisymmetric cavity-pipe con-
figurations, the self-sustained cavity oscillations in such systems involve several
complex fluid mechanics phenomena. Rockwell and Naudascher [1978] classified
these oscillations into three categories based on the nature of the feedback: fluid dy-
namic, fluid-resonant and fluid-elastic oscillations. The current work deals with a
fluid-resonant mechanism in which the feedback is produced by the velocity fluctu-
ations at the upstream edge of the cavity. This results from a coupling of vortex shed-
ding with a longitudinal acoustic pipe mode. This is similar to the experimental con-
ditions in the studies of Schachenmann and Rockwell [1980]; Davies [1981]; Huang
and Weaver [1991]; Geveci et al. [2003]; Oshkai et al. [2005] and English and Holland
[2010]. In such a feedback loop, the shear layer instability at the mouth of the cav-
ity and the longitudinal acoustic pipe modes can be considered as the amplifier and
the filter of the feedback system, respectively [Blevins, 2001]. This results into sta-
ble self-sustained oscillations at discreet frequencies, which is called whistling. The
motivation of the current study is the prediction of whistling in corrugated pipes,
which can be considered, in first approximation, as a series of axisymmetric cavities
placed along a duct. In view of this application, cavities which are small compared
to the acoustic wave length, so-called compact cavities, are studied.

Previous work on multiple side branch systems [Tonon et al., 2010; Nakiboğlu
et al., 2010] and corrugated pipes [Golliard et al., 2010] has shown that the spatial
position of the cavity with respect to the coupling longitudinal standing wave is
important for the sound production. The sound production is maximized when the
cavity is placed in the vicinity of a pressure node.

Another parameter which has a strong effect on the sound production is the ge-
ometry of the upstream edge of the cavity. Experiments with side branches have
shown that using rounded upstream cavity edge instead of sharp edge can increase
the whistling amplitude by almost an order of magnitude [Bruggeman et al., 1991;
Nakiboğlu et al., 2010]. In the design of the current experimental setup appropriate
attention has been given to these considerations, see Sec. 5.3.1.

The early work on corrugated pipes [Binnie, 1961] has shown that the ratio of
pipe diameter (D) to cavity mouth width in the streamwise direction (W ) is an es-
sential parameter for the sound production. Later Ziada and Shine [1999] and Ziada
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et al. [2003] recorded in their experiments with side branches and axisymmetric cav-
ities a similar dependency of the whistling frequency as a function of pipe diameter
to cavity width ratio (D/W ), which they called the confinement ratio. They sug-
gested that this dependency is an effect of the velocity profile. Recently, Nakiboğlu
et al. [2011a, 2012] reported a similar dependency and showed numerically that this
dependency can be explained in terms of a change in the grazing mean flow velocity
profile with D/W .

The aim of the current work is to investigate the potential of a numerical method
introduced in an earlier paper [Nakiboğlu et al., 2011a] further, in predicting:

• the maximum of the time averaged aeroacoustic source power, 〈Psource〉, at-
tained during whistling,

• the Strouhal number at which the maximum aeroacoustic source power is ob-
tained, i.e. the peak-whistling Strouhal number, Srp−w,

• the variation of these two parameters, 〈Psource〉 and Srp−w, as a function of
cavity depth to width ratio (H/W ), which is known to be important from liter-
ature.

During the experiments attention is given to the accurate determination of the hy-
drodynamic (i.e. mean flow velocity profile) and acoustic boundary conditions (i.e.
reflection coefficients) which are essential for the quantitative comparison of experi-
mental results and predictions obtained by means of the numerical method.

The following section, Sec. 5.3, is dedicated to the description of the experiments
and the analysis methods used on the experimental data. In subsections 5.3.1 and
5.3.2 the experimental setup, different configurations that were tested and the re-
spective boundary conditions are introduced. Later in Sec. 5.3.3 the method for the
determination of the time averaged aeroacoustic source power of the cavity is pre-
sented. In Sec 5.4 the numerical methodology developed in [Nakiboğlu et al., 2011a]
is summarized. The last section, Sec. 5.5, covers the experimental and numerical
results in three subsection: effect of velocity profile and hydrodynamic modes in
Sec. 5.5.1, limit cycle amplitude due to nonlinear saturation in Sec. 5.5.2 and effect of
cavity depth in Sec. 5.5.3.

5.3 Experiments

5.3.1 Experimental setup

An experimental setup has been constructed to investigate self-sustained oscillations
due to a coupling of vortex shedding in an axisymmetric cavity exposed to grazing
flow with a longitudinal standing wave. The test section is composed of a single ax-
isymmetric cavity and two identical straight pipe sections. The cavity can be placed
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close to the downstream (Configuration A) or upstream (Configuration B) termina-
tion of one of the straight pipe sections, see figure 5.1-a and 5.1-b, respectively. It can
also be placed in the middle (Configuration C) of two straight pipe sections, see fig-
ure 5.1-c. Configuration A is similar to the one used by Schachenmann and Rockwell
[1980] and Rockwell and Schachenmann [1982].

For configurations A and B, all the experiments are carried out at the first longi-
tudinal acoustic mode. This is a standing wave of half-wave length in the pipe (L ≈
λ/2). The system whistles also for the higher acoustic modes (i.e. L ≈ λ, 3/2λ, · · · ).
Experiments are performed at the lowest possible whistling mode to keep the sound
source as compact as possible (W � λ), allowing an incompressible model for the
flow in the cavity. Rockwell and Schachenmann [1982] reported, for configuration
A, that the first whistling mode is obtained at the third longitudinal acoustic mode
L ≈ 3/2λ. This is because in their experiments a cavity with sharp edges was used to-
gether with a relatively long pipe. In the current study, cavities have rounded edges
which promotes the sound production considerably and a relatively short pipe seg-
ment is used to limit the viscous losses [Bruggeman et al., 1991; Nakiboğlu et al.,
2010]. The experiments for configuration C are performed at the second coupling
longitudinal acoustic mode, for which there is a complete standing wave in the pipe
(L ≈ λ). However, the system length L is approximately two times longer for con-
figuration C than for configurations A and B. Thus, the system whistles around the
same frequency in each of the three configurations.

The mean flow velocity profile that is approaching the cavity is essential for the
whistling phenomenon [Nakiboğlu et al., 2011a, 2012]. The cavity in configurations
A and C experiences the same turbulent approach velocity profile while for configu-
ration B the cavity experiences a top-hat velocity profile with a thin boundary layer.
A sand paper strip with a width of 5 mm and a ISO/FEPA grid designation of P40 is
placed on the inner pipe wall at the inlet of the pipe to trip the boundary layer such
that it transits from laminar to turbulent. This avoids uncertainties due to the transi-
tion from laminar to turbulent flow. The velocity profiles are discussed in Sec. 5.3.2.
In all configurations the cavity has approximately the same spatial position with re-
spect to the coupling standing wave, which is close to a pressure node in order to
maximize the sound production [Tonon et al., 2010; Nakiboğlu et al., 2010; Golliard
et al., 2010].

The notation for the relevant geometrical parameters are shown in figure 5.2
for configuration A. The same notation is used for all configurations. The inner
diameter and the length of the main straight pipe section are D = 44 mm and
L1 = 850 mm, respectively. The pipe is made of steel with a roughness height
of ε ≤ 4.0 × 10−5 m (European Standard EN 10305-1) and has a wall thickness of
6 mm. Such a thick-walled pipe is used to avoid wall vibrations. Measurements
of the reflection coefficient for a closed pipe have confirmed that there is no signif-
icant effect of pipe wall vibrations on the results of the measurements. The width
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Figure 5.1: Schematic drawing of the three different configuration that have been
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of the cavity is W = 40 mm. The depth of the cavity (H) is varied by inserting
rings of different thickness in the cavity. Experiments have been performed for 8
different cavity depth to width ratios namely, H/W = 0.2, 0.25, 0.3, 0.4, 0.5, 0.675,
0.925, 1.175. The radii of the curvatures for the upstream and downstream edges are
rup = rdwn = 5 mm. There is also a small straight pipe section of L2 = 15 mm, which
is placed downstream of the cavity for configuration A and upstream of the cavity
for configuration B, see figure 5.1. For configurations A and B the total length of the
system is L = L1 + W + rup + rdwn + L2 = 915 mm and for configuration C it is
L = L1 +W + rup + rdwn + L1 = 1750 mm. All the components of the experimental
setup have been built with an accuracy of 0.1 mm.

The set-up used for the experiments is shown in figure 5.3. The upstream termi-
nation of the test section is connected to a high-pressure air supply system, which
is composed of, from upstream to downstream, a compressor, a constant pressure
vessel, a control valve, a buffer vessel, a turbine flow meter and an expansion cham-
ber muffler. The expansion chamber muffler has a length of 1.5 m and a diameter
of 0.6 m. It is covered internally with sound absorbing foam with a thickness of
100 mm in order to avoid cavity resonances. The downstream termination is open to
the laboratory, a large room of 15 m×4 m×4 m (not an anechoic chamber).

The acoustic pressure in each straight pipe segment (L1) is measured by means
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Figure 5.3: Schematic of the experimental setup and instrumentation.

of seven acceleration compensated piezo-electric pressure transducers (PCB 116A
- PCB Piezotronics Inc.). These gauges have a diameter of 10.3 mm and they are
flush mounted. These microphones have a separation distance of 108.33 mm in axial
direction and an angular position difference of 30◦ from each other in azimuthal
direction, see figure 5.3. The first and the last transducer are positioned 100 mm from
the pipe terminations. The signals from the microphones are amplified by means of
charge amplifiers (5007 - Kistler Instruments AG). These amplifiers are connected
to a combined data acquisition-PC system (NI PXIe-1062Q - National Instruments
Inc.) using two data acquisition boards (NI PXI-4472 - National Instruments Inc.)
each holds 8 port. The frequencies of whistling are in the range of 150−250 Hz and
the sampling rate of the experiments was 5 kHz. Thus the sampling rate is large
enough to satisfy the Nyquist criteria. By sampling for long enough time, a discrete
time signal can be obtained whose discrete Fourier transform (DFT) approximately
represents the Fourier transform of the continuous time signal [Bracewell, 1986]. For
that purpose a sampling duration of 10 seconds has been used for each data point
for acoustic pressure measurements. For the multi-microphone method one of the
pressure signal was filtered around the peak frequency to obtain a reference signal.
This reference signal was used for a lock-in method from which the amplitude and
relative phases of all the pressure signals was obtained [Kooijman et al., 2008]. The
gauges are calibrated together with their adapter pieces in a closed pipe both for the
relative amplitude and relative phase difference.

A turbine flow meter (SM-RI-X-KG250 - Instromet) is used to measure the aver-
age velocity (U ) through the volumetric flow rate. The turbine flow meter is con-
nected to a pulse shaper (FC 120 - Yokogawa Electric Corporation) and a counter
(NI SCB68 - National Instruments Inc.). The acquisition system of the turbine flow
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meter and the piezo-electric pressure transducers are synchronized by means of a
trigger pulse. The simultaneous measurement of flow velocity and pressure fluctua-
tions allows a waterfall representation of the data, in which the frequency spectra of
the whistling at different flow velocities are presented in a single graph. Using this
waterfall diagram consecutive modes that appear simultaneously with the domi-
nant hydrodynamic mode can easily be detected [Rockwell et al., 2003; Oshkai et al.,
2005]. Such secondary modes were not observed for the flow range that has been
studied in the current work. The temperature of the air is measured at the pipe ter-
mination with an accuracy of 0.1◦C by means of a digital thermometer (HH309A -
Omega Engineering Inc.).

Mean flow velocity profile measurements has been performed with a hotwire
probe (55P11 - Dantec Dynamics). The probe is connected to a hotwire anemometer
module (90C10 CTA - Dantec Dynamics) which is installed within a frame (90N10 -
Dantec Dynamics.) The signal was amplified and low-pass filtered through a low-
noise pre-amplifier (SR560 - Stanford Research Systems) and sent to the computer
via a data acquisition board (BNC-2090 - National Instruments Inc.) with a 12-bit
resolution at a sampling rate of 10 kHz. A sampling duration of 20 seconds was
used for each location for the hotwire measurements. Using such a long sampling
time decreases the error due to the fluctuations in the volumetric flow. The hotwire
data is processed using the Dantec StreamWare c© software. The hotwire signals were
compensated for variations in the flow temperature.

5.3.2 Mean flow conditions

Mean velocity profile measurements were carried out to determine the approach
flow profiles for different cavity positions. The profiles were measured along an axis
normal to the axis of the straight pipe at 2 mm upstream of the cavity both for config-
urations A and B, see figure5.1 for the measurement planes. During the flow profile
measurements the parts of the setups, which are downstream of the measurement
planes, are removed to provide an easy access for the hotwire probe. The measured
profiles are presented in figure 5.4. The legend Turbulent Exp. corresponds to config-
uration A and C and the legend Top-Hat Exp. corresponds to configuration B. Profile
measurements were performed at a Reynolds number (Re = UD/ν) of 3.5×104. This
corresponds to a mean flow speed at which the system is whistling at the first acous-
tic mode. Piecewise third order polynomial curves are fitted to the experimental data
for both configurations. These fits are also shown in figure 5.4.

It is clear that the cavity in configuration A experiences a much thicker bound-
ary layer compared to the cavity in configuration B. The ratio of the average veloc-
ity (U ) to the axis velocity, u(0) = Uaxs, is U/Uaxs = 0.85 for configuration A and
U/Uaxs = 0.96 for configuration B. Displacement (δ1) and momentum (δ2) thick-
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Figure 5.4: Measured
approach velocity profiles
u(r) for configurations A
and C (Turbulent Exp.) and
for configuration B (Top-

Hat Exp.). (1/2) and (2/2)
are the 1st & 2nd half of
the profile. Turbulent Fit

and Top-Hat Fit are the fit-
ted curves to the exper-
iments. Turbulent Num.

is the estimated turbulent
velocity profile for config-
uration A obtained using
RANS. r / R
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nesses are calculated from the following equations,

(R− δ1)
2 =

2

Uaxs

∫ R

0

urdr (5.1)

(R− δ1 − δ2)
2 =

2

Uaxs
2

∫ R

0

u2rdr (5.2)

where R is the pipe radius and the integrals on the right hand sides of the equalities
are carried out numerically using the experimental data. For configuration A, the
displacement thickness (δ1) and the momentum thickness (δ2) are δ1 = 1.7× 10−3 m
and δ2 = 1.2× 10−3 m, respectively. For configuration B, the displacement thickness
is δ1 = 3.9× 10−4 m and the momentum thickness is δ2 = 2.0× 10−4 m.

The fitted velocity profile curves (Turbulent Fit and Top-Hat Fit) are used in the
numerical simulations, see Sec. 5.4, as inlet boundary conditions. Note that the Tur-

bulent Exp. is not a fully developed turbulent pipe flow profile. The last profile that
is presented in figure 5.4 is the predicted turbulent velocity profile for configuration
A using a numerical simulation based on Reynolds-averaged Navier Stokes (RANS)
equations, which will be discussed in the next section.

5.3.3 Theory of plane wave propagation with a mean flow

In a cylindrical duct of radius R for a quiescent fluid, the first circumferential acous-
tic mode with wavenumber k that propagates corresponds to a Helmholtz number
(He = kR) of 1.84. The first radial mode will propagate when He exceeds 3.8. With
a mean flow at Mach number Ma = U/c0, with U the mean flow velocity and c0 the
speed of sound, these critical Helmholtz numbers are approximately reduced by the
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Figure 5.5:

Schematic of
plane wave prop-
agation with a
mean flow for
configuration A.

factor (1 − Ma2) [Davies, 1988]. In the current study, recorded frequencies (f ) for
the first whistling mode ranges between 150-200 Hz and the corresponding mean
flow velocity ranges between 4-15 m/s. Thus, the current work is limited to low
Helmholtz numbers (He ≤ 0.08) and low Mach numbers (Ma ≤ 0.05). Hence there is
only plane wave propagation. Since the acoustic pressure (p′) in a plane wave is uni-
form over the cross-section, they can be measured at the duct surface, as described
in Sec. 5.3.1.

In the current setup there is a standing wave along the duct, which results from
the interference between the wave traveling away from the cavity (acoustic source)
and the wave reflected back at the pipe termination, see figure 5.5. The acoustic
conditions everywhere within the pipe can be described in terms of the incident
pressure wave and the reflected pressure wave traveling inside the pipe in positive
and negative directions.

Conditions within the duct are determined by the pressure, density and the flow
velocity. The pressure at any point in the pipe is the sum of the ambient time aver-
aged pressure p0 and the fluctuating acoustic pressure p′, i.e. p = p0 + p′. Similarly
the density ρ = ρ0 + ρ′ and the velocity u = U + u′, where u′ is the acoustic parti-
cle velocity. The main flow is assumed to be uniform outside the acoustic boundary
layer, while the acoustic flow is assumed to be isentropic. Thus, the acoustic pressure
and density are related following

ρ′ =
p′

c02
. (5.3)

The fluid motion associated with the isentropic plane wave propagation in a pipe at
a mean flow velocity U can be described using the linearized conservation laws for
mass and momentum for frictionless flow, per unit volume, as:

(

∂

∂t
+ U

∂

∂x

)

ρ′ = −ρ0
∂
∂xu

′, (5.4)

ρ0

(

∂

∂t
+ U

∂

∂x

)

u′ = − ∂
∂xp

′, (5.5)

Combining Eq. 5.3, Eq. 5.4 and Eq. 5.5; and eliminating velocity and density fluctu-
ations, one obtains the one dimensional plane wave propagation equation for pres-
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sure fluctuations in the presence of a steady mean flow U as:

1

c02

(

∂

∂t
+ U

∂

∂x

)2

p′ − ∂2p′

∂x2
= 0. (5.6)

Note that similar one dimensional wave propagation equations can be obtained for
velocity, u′, and density fluctuations, ρ′. Here only the analysis for pressure fluc-
tuation is presented. Wave equation (Eq. 5.6) has two solutions one corresponding
to incident and one corresponding to reflected acoustic pressure waves. The up-
stream traveling wave, corresponding to the incident acoustic pressure wave, and
the downstream traveling wave, corresponding to the reflected acoustic pressure
wave, are given for a harmonic wave of frequency (ω = 2πf ) by

p+(x, t) = <
[

P+ei(ωt−k+x)
]

(5.7)

p−(x, t) = <
[

P−ei(ωt+k−x)
]

(5.8)

where k+ and k− are real-valued wave numbers given by k+ = ω/(c0 − U) and
k− = ω/(c0 + U) and P+ and P− are the complex-valued constants.

Note that both incident and reflected waves described in Eq. 5.7 and Eq. 5.8, re-
spectively, can be thought of as the real part of a complex-valued pressure wave. The
time dependence of both incident and reflected waves are given by the same mul-
tiplicative factor eiωt hence the time dependence of the cumulative complex-valued
pressure wave is also given by the same multiplicative factor eiωt. Hence the pres-
sure at any point in the tube at any time can be described using complex-valued
pressure waves as follows,

p′(x, t) = <
[

P+ei(ωt−k+x) + P−ei(ωt+k−x)
]

= <
[(

P+e−ik+x + P−e+ik−x
)

eiωt
]

= <
[

Pxe
iωt

]

where
Px = P+e−ik+x + P−e+ik−x. (5.9)

When the propagating waves are subject to viscous forces, wave equation (Eq. 5.6)
becomes nonhomogeneous. In order to take into account the visco-thermal attenua-
tion in the thin acoustical boundary layer, real-valued wave numbers k+ and k− are
replaced by complex-valued wave numbers

k+ =
ω

c0 − U
+ (1− i)α+ and k− =

ω

c0 + U
+ (1− i)α−. (5.10)

where α+ and α− are the real-valued damping (attenuation) coefficients for up-
stream and downstream traveling waves.
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The visco-thermal attenuation coefficient for plane wave propagation in a circu-
lar pipe has been studied extensively [Kirchhoff, 1868; Tijdeman, 1975; Ronneberger
and Ahrens, 1977; Howe, 1984; Kergomard, 1985; Pierce, 1989; Peters et al., 1993].
For acoustic waves propagating in a quiescent medium for low Helmholtz numbers
(He � 1) and for high shear numbers Sh = R(ω/ν)1/2 � 1, where ν is kinematic
viscosity, viscothermal losses in the bulk of the flow can be neglected because dissi-
pation is dominated by the viscothermal losses at the walls. The damping coefficient,
α0 then can be approximated by:

α0 =
ω

c0

(

1√
2Sh

(

1 +
γ − 1√

Pr

))

(5.11)

where γ is the ratio of the specific heats (Poissons’s ratio) and Pr is the Prandtl num-
ber. For air at room temperature γ = 1.4, Pr = 0.71 and ν = 1.5× 10−5 m2/s. For the
experiments presented in this paper the upper bound for the Helmholtz number is
He ≤ 0.08 � 1 and the lower bound for the Shear number is Sh ≥ 174 � 1.

In the presence of a mean flow the damping coefficient for the waves traveling
upstream and downstream (α+, α−) deviate from the value (α0) for a quiescent fluid.
An important parameter in the determination of the damping coefficient in the pres-
ence of a mean flow is the ratio of acoustic boundary layer thickness (δac) to viscous
sublayer thickness (δl) [Ronneberger and Ahrens, 1977; Howe, 1984; Peters et al.,
1993]:

δac
δl

=

√

2ν/ω

10ν/v∗
(5.12)

where v∗ is the friction velocity,

v∗ =

√

τ0
ρ0

. (5.13)

where τ0 is the wall shear stress [Schlichting, 1979]. In the current experiment how-
ever, as shown in figure 5.4, the turbulent flow along the pipe is not fully developed
and τ0 is not known. Hence, a Reynolds-averaged Navier Stokes (RANS) simulation
has been carried out to determine the wall shear stress τ0 along the pipe.

The Reynolds-averaged Navier Stokes (RANS) simulations were performed with
a commercial finite volume code FLUENT 6.3. The computational domain is the inte-
rior of the straight pipe segment between the exit of the expansion chamber muffler
and the cavity, see figure 5.5. A 2D axisymmetric computational domain is used with
50× 850 cells. The cells are clustered close to the wall such that the non-dimensional
wall grid cell size is y+ < 1 throughout the pipe. The pressure-based segregated
solution algorithm (SIMPLE) is employed. A second-order upwind space discretiza-
tion was used for the convective terms. A standard k − ω turbulence model was
utilized. As inlet boundary condition the curve fitted to the velocity profile mea-
surements at the exit of the expansion chamber muffler is used (see figure 5.4, Top-

Hat Fit). The numerical simulation was terminated when all residuals had dropped
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at least eight orders of magnitude. In figure 5.4 the velocity profile that is obtained
at the outlet of the computational domain (Turbulent Num.) is compared with the
hotwire measurement at the same location (Turbulent Exp.). It is seen that the RANS
simulation predicts accurately the velocity profile.

Using Eq. 5.12 and Eq. 5.13 with the numerically determined wall shear stress,
the ratio of acoustic boundary layer thickness to viscous sublayer thickness is esti-
mated to be in the range 0.49 < δac/δl < 0.97 for the current study. When the acoustic
boundary layer is thinner than the viscous sublayer (δac/δl < 1), the acoustic effect of
the turbulent mixing can be neglected [Peters et al., 1993]. Thus, the quasi-laminar
theory is expected to describe the damping of the acoustic waves quite accurately.
Using a two dimensional flow model of Howe [1984] the damping coefficient is esti-
mated as a function of the mean flow Mach number as:

α+

α−
=

[1/(1− Ma)2] + (γ − 1)/
√

Pr

[1/(1 + Ma)2] + (γ − 1)/
√

Pr
, (5.14)

for the regime δac/δl < 1. The upper bound of the Mach number that was reached
in the experimental campaign is Ma ≤ 0.05 and in average it is around Ma = 0.03.
At such low Mach numbers the deviation in the damping coefficient of the upstream
and downstream traveling waves (α+ α−) from the damping coefficient of the qui-
escent flow (α0) is very small 0.02 < |α+ − α0| /α0 < 0.05. Furthermore the devia-
tions of the upstream and downstream traveling wave from α0 have opposite signs,
thus they largely compensate each other. Thus, in the current work the damping
coefficient of the quiescent flow (α0) given in Eq. 5.11 is used in both upstream and
downstream traveling waves.

Determination of the maximum fluctuation amplitude

Knowing the pressure fluctuations at seven different spatial positions, x1, x2, . . . , x7,
with a lock-in method [Kooijman et al., 2008] the equivalent complex-valued pres-
sures at these positions Pm

x1, P
m

x2, . . . , P
m

x7 can be obtained. Using the analysis
given in Sec. 5.3.3, i.e. Eq. 5.9, an overdetermined system of equations can be written
as
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Pm
x2

...
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x7
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e−ik+x1 eik
−x1

e−ik+x2 eik
−x2
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e−ik+x7 eik
−x7













·
(

P+

P−

)

. (5.15)

Using linear regression based on a least squares approach P+ and P− are deter-
mined [Åbom and Bodén, 1988]. Using the calculated complex-valued wave ampli-
tudes, the least squares fit of the pressure fluctuations at each transducer position can
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be determined (Pxi). A maximum relative error bound for the least squares approach
is given by:

Emax =
|Pxi − Pm

xi|
|Pmax|

, i = 1, 2, ..., 7 (5.16)

where |Pmax| is the largest pressure fluctuation estimated in the standing wave. For
all the data presented here Emax < 4%. Test of the setup by measurement of the
reflection coefficient at a closed wall termination indicates an accuracy of the order
of 1%.

In the rest of the paper the term fluctuation amplitude is used to specify the max-
imum dimensionless sound amplitude that is attained in the standing wave. The
fluctuation amplitude is defined as

|p′max|
ρ0c0U

=
|u′

max|
U

(5.17)

where |p′max| is the amplitude of the standing pressure wave at a pressure anti-node
inside the pipe and |u′

max| is the amplitude of acoustic velocity at a pressure node.
Since the term fluctuation amplitude always refers to this maximum dimensionless
sound amplitude; the subscript max will be dropped for convenience.

Determination of the acoustic energy flux

The time averaged acoustic source power (〈Psource〉) of the cavity can be estimated
from the acoustic energy intensities going upstream, Iup, and downstream, Idwn as:

〈〈Psource〉〉 = Sp [〈Iup〉+ 〈Idwn〉] . (5.18)

The upstream energy flux can be determined just upstream of the cavity at xup, see
figure 5.5, for the plane wave propagation using the intensities of the incident and
reflected waves as [Morfey, 1971]:

〈Iup〉 =
1

2

(1− Ma)2
∣

∣P+
up

∣

∣

2 − (1 + Ma)2
∣

∣P−
up

∣

∣

2
.

ρ0c0
(5.19)

The distance between the downstream of the cavity, xdwn, and the pipe termina-
tion, xtrm, is only 15 mm. The viscous losses in this segment of the pipe are neglected.
Thus, the downstream acoustic energy flux of the cavity is assumed to be equal to
the acoustic energy flux of the unflanged pipe termination, 〈Idwn〉 = 〈Itrm〉.

The acoustic energy flux of the downstream pipe termination is calculated using
the theory of Munt [1977, 1990] for unflanged pipe opening at low Helmholtz num-
bers (He � 1) and low Mach numbers (Ma � 1), which has been derived by Cargill
[1982] and Rienstra [1983]. The maximum values attained during the experiments
He ≤ 0.08 and Ma ≤ 0.05 are inside the validity limits of this theory. Later there
has been a number of experimental studies [Peters et al., 1993; Allam and Åbom,
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2006] which support the theory. Following the theory of Munt [1977], the pressure
reflection coefficient can be calculated as:

|Rtrm| = (1 + Ma∗A)(1− 1

2
He2) (5.20)

where A is the amplification factor, which is a function of Strouhal number Sr0 =

He/Ma defined in Cargill [1971]. Ma∗ could be the average Mach number (Ma∗ =

Ma) following Peters et al. [1993] or the axis Mach number (Ma∗ = Maaxs) of the duct
as proposed by Allam and Åbom [2006] and da Silva et al. [2009], which is discussed
later. Assuming that the source region is compact,

∣

∣u′
up

∣

∣ = |u′
dwn| . (5.21)

Combining Eq. 5.20 and Eq. 5.21, the downstream acoustic energy flux of the cavity
is estimated as:

〈Idwn〉 =
1

2

(1 + Ma)2
∣

∣P+
dwn

∣

∣

2 − (1− Ma)2
∣

∣P−
dwn

∣

∣

2

ρ0c0
(5.22)

where,
∣

∣P+
dwn

∣

∣ =

∣

∣u′
up

∣

∣ ρ0c0

1− |Rtrm|
∣

∣P−
dwn

∣

∣ =
∣

∣P+
dwn

∣

∣ |Rtrm| . (5.23)

Configuration C, see figure 5.1, is actually designed as a test case to assess the
accuracy of the calculated acoustic intensity at the downstream termination 〈Itrm〉
in configuration A. In configuration C, 〈Itrm〉 can be directly measured using the
microphone array downstream of the cavity, similar to the upstream acoustic inten-
sity 〈Iup〉 for configuration A (Eq. 5.19). Comparison of this directly measured 〈Itrm〉
with the 〈Itrm〉 which is calculated using the acoustic velocity measured by upstream
microphone array together with the theory of Munt and the compact source region
assumption (Eq. 5.19-Eq. 5.22) provides a measure of accuracy, see table 5.1. As
proposed by Allam and Åbom [2006] based on the work of Freymunt [1966] on the
growth of disturbances at the outlet of a circular jet, using the axis Mach number
Ma∗ = Maaxs rather than the average Mach number Ma∗ = Ma of the duct in the
theory Munt provides acoustic intensity predictions at the downstream termination,
which are closer to the experiments. Later da Silva et al. [2009] also reported in their
numerical work that better agreement with the theory is achieved with Ma∗ = Maaxs.
Thus, in the current work the theory of Munt with Ma∗ = Maaxs is used, see Eq. 5.20.

As explained for configuration A, the downstream acoustic intensity 〈Idwn〉 is es-
timated from the theory of Munt. This approach systematically overestimates the
〈Itotal〉 /(ρ0U |u′|2) by approximately 15%. This provides an upper bound for our ex-
perimental error in the energy balance. By using configuration C, this systematic er-
ror in 〈Idwn〉 can be avoided. Configuration C, however, has the second downstream
pipe section which introduces extra viscous losses. As a consequence, the cavities
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Methods 〈Itrm〉 /(ρ0U |u′|2) 〈Itotal〉 /(ρ0U |u′|2) Error in 〈Itotal〉

Direct Measurement 0.1587 0.8123 N/A
Munt’s Theory (Ma∗ = Ma) 0.3018 0.9721 +19.7%
Munt’s Theory (Ma∗ = Maaxs) 0.2666 0.9339 +14.9%

Table 5.1: Comparison of different methods for the calculation of the downstream
termination acoustic energy flux 〈Itrm〉 and its error on the total acoustic energy
flux of the cavity 〈Itotal〉, for configuration C for H/W = 0.675.

whistles at lower amplitudes, which makes the source power prediction more dif-
ficult as explained in Sec. 5.5.2. Thus the effect of cavity depth on the whistling,
understanding of which is the main objective of this paper, is investigated using
configurations A and B.

5.4 Numerical Method

In a previous work of the authors Nakiboğlu et al. [2011a], a numerical method-
ology was proposed to investigate the aeroacoustic response of low Mach number
confined flows to acoustic excitations. The method combines incompressible flow
simulations with Vortex Sound Theory to estimate the strength of an acoustic source
due to the interaction of a single cavity in a pipe flow at high Reynolds number
with a low Helmholtz number acoustic field. This numerical approach is used in the
present study for the investigation of two features. Firstly, to explore the capacity of
the method in estimating the whistling amplitude for a system for which the acous-
tic losses can be accurately determined. Secondly, to explore whether the method
can predict the influence of the cavity depth on the whistling behaviour i.e. peak-
whistling Strouhal number and produced time averaged acoustic source power. In
the first part of this section, the numerical simulations are briefly explained. In the
second part, the calculation of the average acoustic source power is described.

5.4.1 Incompressible simulations

Knowing that the cavity width W (40 mm) is much smaller than the wavelength of
the longitudinal standing wave λ (1750 mm), one can assume that the wave propaga-
tion time is locally negligible. Furthermore only low Mach numbers (Ma ≤ 0.05) are
considered. This corresponds to the assumption that the flow is locally incompress-
ible [Martínez-Lera et al., 2009]. Therefore incompressible 2D-axisymmetric flow
simulations were performed. The simulations were carried out at low Reynolds
numbers (Re = 4 × 103) without turbulence modeling. The diameter of the pipe
(D) and the geometry of the cavity (W,H, rup, rdwn) are identical to the ones in the
experiments. The inlet is located at 0.175W upstream of the cavity; such a short in-
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let pipe section is chosen to make sure that the imposed inlet mean velocity profiles
do not evolve significantly before reaching the cavity. The outlet of the numerical
domain is placed at a reasonably far location, 9W downstream, from the cavity.

The finite volume commercial code FLUENT 6.3 is used. A pressure-based seg-
regated solution algorithm is employed, the details of the simulation parameters are
provided in Nakiboğlu et al. [2011a]. At the inlet a uniform acoustic oscillating ve-
locity in the axial direction with a frequency, f , and an amplitude, |u′|:

u′(t) = |u′| sin(2π f t). (5.24)

is imposed in addition to the time averaged inlet velocity profile, u(r):

u(r, t) = u(r) + u′(t) (5.25)

where |u′| is the amplitude of the acoustic velocity induced by the longitudinal
standing wave at the position of the cavity. In all the experiments performed, the
cavity is placed close to a pressure node. Thus, through out the paper |u′| stands for
the maximum amplitude of the acoustic oscillation velocity in the standing wave,
see Sec 5.3.3. The mean velocity profile u(r) is determined experimentally. These
profiles correspond to two different cavity positions: at the end of the straight pipe
Turbulent Fit (configuration A) and at the inlet of the straight pipe Top-Hat Fit (con-
figuration B), see figure 5.4. The outlet boundary condition ∂ux/∂x = 0 is used.
After checking different simulation times, for the majority of the simulations, a typ-
ical time of 30 periods of the excitation frequency appeared to be sufficient to reach
steady periodic results. For some simulations, however, steady periodic results are
achieved only after 70 periods of the excitation frequency. After the solution has
reached a steady periodic state, the simulation is continued for 10 more periods,
which are used to calculate the time-averaged acoustic source power. The time step
size is chosen as ∆t = 0.01W/U .

The computational domains contain 8×104 to 1.2×105 quadrilateral cells depend-
ing on the cavity depth. The cells are clustered close to the opening of the cavity and
to the walls, where there are high gradients of the velocity due to the shear layer and
the boundary layer, respectively. In the domain between 6W and 9W downstream
of the cavity, cells with high aspect ratio (∆x/∆y � 1) are employed. By doing
so problems that can arise due to reverse flow at the outlet boundary condition are
avoided. A study on mesh dependency has been carried out. The same computation
was performed with 2 times and 4 times more densely meshed domains, producing
differences in the calculated acoustic source power of less than 5%.

5.4.2 Time-averaged acoustic source power

Both the Vortex Sound Theory of Howe [1975, 1998] and the exact energy corollary of
Myers [1986, 1991] asserts that for high Reynolds number flows, in which the effect



Aeroacoustic power generated by a compact axisymmetric cavity 117

of friction in the bulk of the fluid is small enough to be neglected, the time averaged
acoustic source power generated in a control volume, 〈Psource〉, is equal to the surface
integral of the product of fluctuating total enthalpy, B′, and mass flux, m′, through
the boundary of the control volume:

〈Psource〉 =
〈∫

S

(B′
m

′) ·ndS
〉

(5.26)

where

B′ =
p′

ρ0
+ u · (u′ + u

′
h
),

m
′ = ρ0(u

′ + u
′
h
) + ρ′u

where u = (U, 0, 0) is the time averaged velocity and the fluctuations are split into
the acoustical (potential) part u

′ and the hydrodynamical (rotational) part u
′
h

. In
further calculations ρ′ is neglected, in agreement with the use of incompressible
flow simulations. The contribution of the hydrodynamic velocity fluctuations (u′

h
)

to Eq. 5.26 is also neglected. The contribution of the hydrodynamic velocity fluc-
tuations is expected to depend on the spatial location of the control surface. It has
been verified that by choosing a large enough control volume, such a dependence is
avoided [Nakiboğlu et al., 2011a], so that there is no hydrodynamic contribution to
the integral in Eq. 5.26.

Since the simulations are performed at low Reynolds numbers the viscous flow
effects are not accurately described, the simulations are corrected by subtracting the
total enthalpy differences (∆B′)ref obtained from simulations of the flow in a uni-
form reference pipe segment with the same upstream and downstream boundary
conditions as the numerical simulation of the duct with the cavity. This correction
can be interpreted as an extrapolation method to high Reynolds numbers, in which
the solution becomes Reynolds number independent. This has been demonstrated
by Nakiboğlu et al. [2011a]. The acoustic power produced by the source is calculated
in practice as follows:

〈Psource〉 = ρ0

〈

1

4

[

(B′
x2

−B′
x1
)cav − (B′

x2
−B′

x1
)ref

]

u′πD2

〉

(5.27)

in which x1 and x2 denote any two measurement sections in the computational do-
main, where the area-averaged total enthalpy, B′, is recorded at every time step.

5.5 Results

5.5.1 Effect of velocity profile and hydrodynamic modes

The mean velocity profile is known to have a strong effect on the whistling of cor-
rugated pipes, which can be considered as a series of axisymmetric cavities along a
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Figure 5.6:

Measured dimen-
sionless pressure
fluctuation amplitude
|u′|/U plotted against
Strouhal number
Sr = f(W + rup)/U

for configurations A
and B.
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pipe [Nakiboğlu et al., 2011a, 2012]. In the current work, this aspect is briefly consid-
ered for a single axisymmetric cavity. In figure 5.6 measured fluctuation amplitude
|u′|/U is plotted against Strouhal number Sr = f(W + rup)/U for the cases for which
the cavity is placed close to the downstream pipe termination (configuration A) and
upstream pipe termination (configuration B). It should be noted that the cavity po-
sition with respect to the standing wave remains invariant for configurations A and
B. Although there is a minor difference between the two configurations due to the
vortex shedding at the upstream edge of the cavity, considering the acoustics they
are almost identical. Thus, the variation in the whistling behaviour of these two con-
figurations is mainly due to the difference in the velocity profile that the cavities are
experiencing, see figure 5.4.

There are four points that can be highlighted from figure 5.6. Firstly, in config-
uration A there exist only one range of Strouhal numbers, 0.65 ≤ Sr ≤ 0.80, for
which the whistling is observed, whereas for configuration B there exist two dis-
tinct ranges of whistling, 0.74 ≤ Sr ≤ 0.92 and 1.30 ≤ Sr ≤ 1.50. The fact that the
whistling does not occur for the higher Strouhal number range (1.30 ≤ Sr ≤ 1.50)
for configuration A can be explained through the difference in the mean flow ve-
locity profiles for these two configurations. For low amplitudes the hydrodynamic
growth of the perturbation along the shear layer at the cavity opening can be cal-
culated by using the linearized theory of an inviscid quasi-parallel free shear layer
[Michalke, 1965; Elder, 1980]. According to this theory the hydrodynamic growth
of the perturbation along the shear layer will occur only at frequencies with suffi-
ciently small Strouhal numbers, Srδ2 < 4.0 × 10−2 where Srδ2 = fδ2/U and δ2 is
the initial shear layer momentum thickness. Above this critical Strouhal number the
shear layer is linearly stable. Using the profile measurements, see Sec. 5.3.2, Strouhal
numbers based on the boundary layer momentum thickness (δ2) are calculated at
Sr = 1.4 as Srδ2 = 3.8 × 10−2 and Srδ2 = 6.2 × 10−3 for configurations A and
B, respectively. Although both of the calculated Srδ2 are in the favorable range for
the growth of unstable waves, for configuration A it is very close to limit value of
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Figure 5.7: Predicted dimensionless average acoustic source power
〈Psource〉/(ρ0USp|u

′|2) plotted against Strouhal number Sr = f(W + rup)/U

for configurations A and B for a fluctuation amplitude of |u′|/U = 0.05.

Srδ2 = 4.0 × 10−2. Hence the hydrodynamic amplification for the higher Strouhal
number range (1.30 ≤ Sr ≤ 1.50) will be considerably weaker for configuration
A than for configuration B. Given that the acoustic losses are comparable for these
two configurations, it is not surprising that whistling does not occur at the higher
Strouhal number range for configuration A.

Secondly, it is clear that the whistling is stronger in the lower Strouhal number
range compared to the whistling in higher Strouhal number range. These differ-
ent range of Strouhal numbers correspond to different hydrodynamic modes, where
different numbers of vortices appear simultaneously at the mouth of the cavity, see
Peters [1993]. The present work is kept mostly limited to the lower Strouhal num-
ber range, in which the system whistles stronger. The Strouhal number in which the
maximum amplitude in pressure fluctuations is attained, is called peak-whistling
Strouhal number Srp−w. Thirdly, within the lower range of Strouhal numbers in
which the system whistles, configuration B whistles at higher Strouhal numbers than
configuration A. This shift is expected to be linked to the difference in the momen-
tum thickness of the boundary layer [Nakiboğlu et al., 2011a]. The last point is that
there is not a large difference between the two configurations in the maximum fluc-
tuation amplitudes for the lower range of Strouhal numbers.

Using the numerical method summarized in Sec. 5.4, the dimensionless average
acoustic source power 〈Psource〉/(ρ0USp|u′|2) is calculated for configurations A and
B. Experimentally determined profiles are used as inlet velocity profile, see figure 5.4.
The simulations have been performed with a perturbation amplitude of |u′|/U =

0.05, which is the maximum amplitude attained during the experiments. In figure 5.7
the predicted dimensionless average acoustic source power is plotted as a function
of Strouhal number for both configurations.

Similarly to the experimental observations, the numerical method predicts a pos-
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itive acoustic source power 〈Psource〉/(ρ0USp|u′|2) at higher Strouhal numbers for
configuration B (Top-Hat) compared to configuration A (Turbulent). The predicted
peak-whistling Strouhal numbers (Srp−w), at which the maximum average acous-
tic source power 〈Psource〉 is registered, are Srp−w = 0.76 and Srp−w = 0.82 for
configurations A and B, respectively. These values are very close to the measured
peak-whistling Strouhal number in the experiments which are Srp−w = 0.73 and
Srp−w = 0.82, respectively. It can also be noted that similar to the experiments, the
maximum average acoustic source powers reached for the two configurations are
close to each other.

In parallel to the experiments, in figure 5.7 there exist distinct ranges of Strouhal
numbers, in which the average acoustic source power 〈Psource〉 is positive. In fig-
ure 5.8 normalized vorticity contours are given at the cavity mouth for configuration
A for a perturbation amplitude of |u′|/U = 0.05 at three different Strouhal numbers
which belong to three different ranges of positive acoustic source power, namely,
Sr = 0.76, 1.12 and 1.5. It is seen that the number of vortices appearing simulta-
neously at the cavity mouth differs in these three cases. The first positive Strouhal
number range, around Sr = 0.76, is identified by Bruggeman et al. [1991] as the sec-
ond hydrodynamic mode, at which there exist two vortices at the same moment in
the cavity mouth: one traveling and one forming. Similarly, the positive Strouhal
number ranges around Sr = 1.12 and Sr = 1.5 are the third and the fourth hydro-
dynamic modes, respectively. It should be pointed out that a positive time averaged
acoustic source power is a necessary condition for whistling but not a sufficient one.
A negative time averaged acoustic source power, however, is a sufficient condition
for silence. Thus, Strouhal number ranges with negative source power remain silent.
To determine the occurrence of the whistling for the positive source power range,
the produced acoustic source power should be compared with the acoustic losses by
means of an energy balance. This also quantifies the amplitude comparison between
experiments and simulations, which will be explained in the next section.

5.5.2 Limit cycle amplitude due to nonlinear saturation

The aeroacoustic behaviour of cavities and side branches depends strongly on the
fluctuation amplitude |p′|/(ρ0c0U) = |u′|/U . For low amplitudes, |u′|/U ≤ O(10−3),
the instability of shear layers corresponding to the second hydrodynamic mode can
be explained by using the linear theory for frictionless parallel flows [Michalke,
1965]. In the linear range the acoustic source power 〈Psource〉 grows quadratically
with the perturbation amplitude. Above |u′|/U ≥ O(10−3) the nonlinearities be-
come essential [Tam and Block, 1978]. In this range, the amplitude of the oscillations
is determined by nonlinearities, such as roll-up of the shear layer into discrete vor-
tices [Fletcher, 1979; Keller, 1984; Bruggeman et al., 1991; Rowley et al., 2006].

In figure 5.9 estimated dimensionless average acoustic source power is plotted
against fluctuation amplitude |u′|/U for configuration A at Strouhal number Sr =
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Figure 5.8: Predicted
normalized vorticity con-
tours are given in the
proximity of the cavity for
configuration A for three
different Strouhal numbers:
Sr = 0.76 (a); Sr = 1.12 (b);
Sr = 1.5 (c) for a fluctuation
amplitude of |u′|/U = 0.05.

0.76. As expected from the linear theory for low amplitudes |u′|/U ≤ O(10−3), the
numerical method predicts a quadratic increase of 〈Psource〉 so that dimensionless av-
erage acoustic source power 〈Psource〉/(ρ0USp|u′|2) remains approximately constant.
The fluctuation amplitudes that are recorded in the experiments are in the range
5× 10−3 ≤ |u′|/U ≤ 6× 10−2, which is in the nonlinear regime.

Using figure 5.9, experimental and numerical data can be quantitatively com-
pared in two ways. In the first approach, all the possible acoustic losses, e.g., visco-
thermal, convective and radiative, in the system are estimated. Equalizing the sum
of time averaged acoustic power losses to the time averaged acoustic source power,
a horizontal line can be drawn in figure 5.9 (shown in dashed line measured acoustic

losses). The intersection point of this horizontal line and the predicted time averaged
acoustic source power curve determines at which fluctuation amplitude this energy
balance equilibrates (shown in dashed vertical line predicted fluctuation amplitude). It
can happen that the calculated acoustic losses are so high that the corresponding hor-
izontal line stays above the source curve, then the system will not whistle. It is seen
from figure 5.9 that just below this non-whistling zone, in the linear range, a small
change in the acoustic losses results in a large variation in the limit cycle fluctuation
amplitude. This is demonstrated in Sec. 5.5.3. The second approach is in fact the in-
verse of the first approach. Thus, the measured fluctuation amplitude is taken from
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Figure 5.9:

Predicted di-
mensionless time
averaged acous-
tic source power
〈Psource〉/(ρ0USp|u

′|2)

plotted against fluc-
tuation amplitude
|u′|/U at Strouhal
number Sr = 0.76 for
configuration A for a
depth to width ratio
of H/W = 0.675.
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the experiment and a vertical line is drawn in figure 5.9 (shown in continuous line
measured fluctuation amplitude) and the intersection with the source curve determines
the time averaged acoustic source power necessary to produce this fluctuation am-
plitude (shown in continuous horizontal line predicted source power). The predicted
time averaged source power can be compared with the measured one obtained by
means of the multi-microphone method, see Sec. 5.3.3.

It should be noted that figure 5.9 is only valid for a single Strouhal number
(Sr = 0.76) at which the simulations have been performed. Thus, to compare all of
the experimental data with the numerical data a separate set of simulations with var-
ious perturbation amplitudes |u′|/U should be carried out at each relevant Strouhal
number. Such an approach is computationally heavy and does not provide further
insight to the phenomenon than a comparison based on the peak amplitude. There-
fore the current analysis is limited to the peak-Strouhal number of the second hydro-
dynamic mode. In the next section, the effect of the cavity depth on the whistling
is discussed, including the quantitative comparison of the experimental data with
theory is presented.

5.5.3 Effect of cavity depth

The effect of cavity depth on the whistling is investigated for acoustically compact
cavities i.e. cavities in which the acoustics is dominated by the longitudinal stand-
ing wave in the pipe to which the cavity is attached. A broad range of cavity depth
to cavity width ratios 0.2 ≤ H/W ≤ 1.175 has been investigated both for config-
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Figure 5.10: Measured dimensionless pressure fluctuation amplitude |u′|/U plot-
ted against Strouhal number Sr = f(W + rup)/U for configuration A (experiencing
a turbulent approach velocity profile, see figure 5.4), with depth to width ratio of
H/W = 0.2, 0.25, 0.3, 0.4, 0.5 (a) and H/W = 0.675, 0.925, 1.175 (b).

uration A (turbulent profile) and configuration B (top-hat profile). In this section
first the salient features of the experimental data are listed. Physical phenomena
behind those features will be explained later together with the predictions from the
numerical method. In figure 5.10 and figure 5.11 measured dimensionless fluctua-
tion amplitude |u′|/U is plotted against Strouhal number Sr = f(W + rup)/U for
cavities with depth to width ratios of H/W = 0.2, 0.25, 0.3, 0.4, 0.5 (a) and H/W =

0.675, 0.925, 1.175 (b) for configuration A and for configuration B, respectively.
The first aspect, that is recognized from figure 5.10-a and figure 5.11-a is that, in

the range 0.2 ≤ H/W ≤ 0.5, as the cavity gets deeper the cavity whistles at higher
Strouhal numbers and at higher amplitudes for both configurations. The second
notable feature of figure 5.10-a is the sudden decrease of whistling amplitude from
|u′|/U = 3× 10−2 to |u′|/U = 5× 10−3 with a relatively small decrease in the depth
of the cavity from H/W = 0.25 to H/W = 0.2. A similar sudden drop is observed
for configuration B when H/W decreases from 0.3 to 0.25, as shown in figure 5.11-
a. Note that the peak amplitude does not vary much in the deep cavity range of
0.675 ≤ H/W ≤ 1.175 for both configurations, see figures 5.10-b and 5.11-b. This
is highlighted in figure 5.12 where the peak fluctuation amplitude |u′|/U is plotted
against cavity depth to width ratio (H/W ) for both configurations. It is also seen
that the recorded peak amplitudes are close to each other for the two configurations
and their responses to a change in the cavity depth are similar.

In figure 5.13 predicted acoustic source power 〈Psource〉/(ρ0USp|u′|2) is plotted
against Strouhal number Sr = f(W + rup)/U for configuration A for a perturbation
amplitude |u′|/U = 0.05 with depth to width ratio of H/W = 0.2, 0.25, 0.3, 0.4, 0.5

(a) and H/W = 0.675, 0.925, 1.175 (b). It is seen that similar to the experiments
(see, figure 5.10) for the shallow cavity range (H/W < 0.5) as the cavity gets deeper
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Figure 5.11: Measured dimensionless pressure fluctuation amplitude |u′|/U plot-
ted against Strouhal number Sr = f(W + rup)/U for configuration B (experiencing
a top-hat approach velocity profile, see figure 5.4), with depth to width ratios of
H/W = 0.2, 0.25, 0.3, 0.4, 0.5 (a) and H/W = 0.675, 0.925, 1.175 (b).

Figure 5.12:

Measured dimensionless
pressure fluctuation am-
plitude |u′|/U is plotted
against cavity depth to
width ratio (H/W ) for
the peak amplitudes for
configurations A and B.
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the positive acoustic source power range shifts to higher Strouhal numbers and the
estimated acoustic source power increases. In the deep cavity range 0.675 ≤ H/W ≤
1.175 similar to the experimental observations the estimated peak-whistling Strouhal
number and the acoustic source power do not vary considerably.

In figure 5.14 measured and estimated peak-whistling Strouhal numbers (Srp−w),
that are extracted from figures 5.10, 5.11 and 5.13, are plotted against the cavity width
to depth ratio (W/H). It can be noted that there is almost a constant shift between
configuration A and B for peak-whistling Strouhal number independently of the cav-
ity depth. This suggests that the effect of velocity profile on the Strouhal number,
which is discussed for a single cavity depth in Sec. 5.5.1, is independent of the cav-
ity depth. The second point is that in the range 0.5 ≤ W/H ≤ 1.5 (corresponding
to 0.2 < H/W < 0.675) there is a linear relationship between the peak-whistling
Strouhal number and the cavity width to depth (W/H) ratio. This effect can be ex-
plained as a reduction of the convection speed of the vortex at the cavity mouth
(Uc) due to the presence of the image vortex at the bottom of the shallow cavity (see
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Figure 5.13: Predicted dimensionless average acoustic source power
〈Psource〉/(ρ0USp|u

′|2) plotted against Strouhal number Sr = f(W + rup)/U

for configuration A at a perturbation amplitude of |u′|/U = 0.05, with depth to
width ratio of H/W = 0.2, 0.25, 0.3, 0.4, 0.5 (a) and H/W = 0.675, 0.925, 1.175 (b).

figure 5.15) as

Uc =
U

2
− Γ

4πH
. (5.28)

The first term of the Eq. 5.28 is simply the average between the main flow velocity
(U ) and the low velocity of the fluid within the cavity. The second term is the velocity
induced by the image vortex with a circulation of Γ at a distance of 2H from the
cavity mouth. The image vortex has the same magnitude of the circulation as the
real vortex. Following the model of Nelson et al. [1983], in which all the vorticity of
the shear layer is concentrated into a point vortex, at moderate amplitudes 10−2 ≤
|u′|/U ≤ 10−1 the rate of vorticity shed (dΓ/dt) remains equal to its steady value
dΓ/dt = U Uc [Bruggeman et al., 1991; Dequand et al., 2003a]. Thus, the average
circulation obtained in a period is

Γ = U (W + rup)/2. (5.29)

Rewriting the Strouhal number as

Sr =
f(W + rup)

U
=

f(W + rup)

Uc

Uc

U
(5.30)

and combining with Eq. 5.28 and Eq. 5.29, gives

Sr =
f(W + rup)

2Uc

(

1− W + rup
4πH

)

. (5.31)

The first term of Eq. 5.31 is constant because the travel time of the vortex through
the cavity mouth, Ttravel = (W + rup)/Uc, should be a fixed fraction of the acous-
tic oscillation period, Tperiod = 1/f , [Bruggeman et al., 1991]. This constant can be
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Figure 5.14: Measured and numerically and analytically predicted peak-whistling
Strouhal numbers Srp−w plotted against the cavity width to depth ratio (W/H)
for configurations A and B. Simulations were performed at a typical perturbation
amplitude of |u′|/U = 0.05.

Figure 5.15: Schematic draw-
ing of a concentrated vortex core at
the cavity mouth and its image at
the bottom of the cavity.
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considered as a limiting Strouhal number (Srlim) for an infinitely deep cavity, i.e. the
image vortex at the bottom of the cavity has no effect on the convection speed of
the vortex at the cavity mouth. The limiting Strouhal number is determined through
an extrapolation of the experimental data to W/H = 0, as Srlim = 0.81, see fig-
ure 5.14. The second term of Eq. 5.31 is the cavity width to depth dependency (W/H)
of the peak-whistling Strouhal number (Srp−w). The predicted Srp−w from Eq. 5.31
is shown in figure 5.14 (with label Analytical). It is seen that for the shallow cavity
range 0.5 ≤ W/H ≤ 1.5 this analytical model, which takes only the image vortex
at the bottom of the cavity into account, provides reasonable predictions. The mea-
sured slope of the Srp−w as a function of W/H is dSr/d (W/H) = −5.5× 10−3 while
the analytically predicted slope is dSr/d (W/H) = −7.2× 10−3. For W/H < 1.5 this
linear relation does not hold anymore. For such deep cavities the effect of the im-
age vortex in the bottom becomes negligible compared to the effect of the side walls.
This can be studied more systematically by means of a single vortex model using
conformal mapping as proposed by Howe [1998].

As it is seen in figure 5.14, the proposed numerical method produces excellent
predictions of the peak-whistling Strouhal number. It also captures the relationship
for the deep cavities, although the predictions are not as good as the ones for the
shallow cavities. Systematic simulations for configuration B (top-hat profile) were
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not performed. A point obtained from figure 5.7 is shown in the figure 5.14.

Note that in figure 5.14 the depth to width ratio of H/W = 0.2 for configura-
tion A and H/W = 0.25 for configuration B are not included. As it is seen from
figure 5.10 and figure 5.11, respectively these two cases whistle at low amplitudes
|u′|/U ≤ 5 × 10−3. At such low amplitudes, the shear layer does not roll up into
discrete vortices. Hence the image at the bottom of the cavity does not have a strong
influence on the convection speed. This effect is illustrated in figure 5.16-a where the
predicted peak-whistling Strouhal number Srp−w is plotted against the perturbation
amplitude |u′|/U for cavity depth to width ratios of H/W = 0.2, H/W = 0.675 and
H/W = 1.175 for configuration A. Note that every point in this figure corresponds
to a peak of a set of simulation at various Strouhal numbers with the same perturba-
tion amplitude |u′|/U . It is seen that for a shallow cavity, H/W = 0.2, there are two
distinct regions. For moderate amplitudes 10−2 ≤ |u′|/U ≤ 10−1 there is a strong
dependency of perturbation amplitude on the peak-whistling Strouhal number. The
peak-whistling Strouhal number shifts from Srp−w = 0.64 to Srp−w = 0.48 when
increasing the perturbation amplitude from |u′|/U = 10−2 to |u′|/U = 10−1. In the
low amplitude range |u′|/U ≤ 10−2 the peak-whistling Strouhal number remains
independent of the amplitude as predicted by the linear theory. For deep cavities,
i.e. H/W ≥ 0.675, the peak-whistling Strouhal number remains almost constant
independently of the depth and the perturbation amplitude. For deep cavities it is
expected that the image vortex at the bottom of the cavity does not play a significant
role.

In figure 5.16-b the predicted average acoustic source power that is obtained
at the respective peak-whistling Strouhal number Srp−w is plotted against the per-
turbation amplitude |u′|/U for the same depths (H/W = 0.2, H/W = 0.675 and
H/W = 1.175) for configuration A. Deep cavities H/W ≥ 0.675 produce almost
equivalent amplitudes independent of the depth. The theory predicts that deep
cavities produce higher average acoustic source power than shallow cavities at all
perturbation amplitudes but at moderate amplitude range |u′|/U ≥ 10−2, as the per-
turbation amplitude increases, the difference in the average acoustic source power
is becoming smaller. Furthermore for the deep cavities the nonlinearities appear al-
ready around |u′|/U ≥ 10−3, i.e. the nondimensional average acoustic source power
starts to decrease with increasing amplitude, see Sec. 5.5.2. For shallow cavities this
transition is predicted at higher perturbation amplitudes |u′|/U ≥ 10−2.

In figure 5.17 measured and predicted average acoustic source power are plot-
ted against the cavity depth to cavity width ratio (H/W ) for configuration A. It is
noted that the measured average acoustic source power, see Eq. 5.18, remains almost
the same in the whole range 0.2 ≤ H/W ≤ 1.175 tested. The measured fluctuation
amplitude, however, decreases considerably for cavities in the range H/W ≤ 0.5 as
the cavity gets shallower, see figure 5.10-a. As explained the acoustic source power
should be balanced with the losses through an energy balance, see Sec. 5.5.2, to de-
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Figure 5.16: Predicted peak-whistling Strouhal number Srp−w (a) and aver-
age acoustic source power 〈Psource〉/(ρ0USp|u

′|2) at the respective peak-whistling
Strouhal numbers (b) plotted against the perturbation amplitude |u′|/U for cavity
width to depth ratios of H/W = 1.175, H/W = 0.675 and H/W = 0.2 configura-
tions A.

termine the perturbation amplitude. The shallow cavities whistle at lower Strouhal
numbers, see figure 5.14, (corresponding to higher Mach numbers), which increases
the acoustic losses at the downstream termination predicted by Eq. 5.20-Eq. 5.23. As
a consequence, although the cavities with various depths have almost the same di-
mensionless acoustic source power, the shallow cavities whistle at lower amplitudes
as a result of the increased downstream acoustic convective losses.

In accordance with the experimental observations numerically predicted aver-
age dimensionless acoustic source powers are independent of the cavity depth for
the range 0.4 ≤ H/W ≤ 1.175, see figure 5.16. The numerical method, however,
overestimates the acoustic source power by a factor of two. The numerical method
estimates a decreasing acoustic source power for decreasing cavity depths for very
shallow cavity range (0.2 ≤ H/W ≤ 0.3), which is much stronger than the decrease
observed in the experiments, see figure 5.17.
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Figure 5.17: Measured and numerically predicted dimensionless average acous-
tic source power 〈Psource〉/(ρ0USp|u

′|2) for configuration A. Simulations are per-
formed at respective peak fluctuation amplitude observed in the experiments, see
figure 5.10.

5.6 Conclusions

Aeroacoustic power generation due to a self-sustained oscillation by an axisymmet-
ric cavity exposed to a grazing flow has been studied both experimentally and nu-
merically. The feedback effect is produced by the velocity fluctuations resulting from
a coupling of the vortex shedding at the upstream cavity edge with acoustic standing
waves in the pipe.

The peak-whistling Strouhal number Srp−w, at which the maximum amplitude in
pressure fluctuations is registered, is decreasing linearly with cavity width to depth
ratio W/H for shallow cavities (1.5 ≤ W/H ≤ 4) at high amplitudes |u′|/U ≥ 10−2.
This is due to the image vortex at the bottom of the cavity. For the deeper cavities a
limit value of Srp−w is reached which is independent of W/H .

The proposed numerical approach provides excellent predictions of Srp−w as a
function of H/W both for shallow cavities for which there is a linear relation and for
the deeper cavities. The method successfully captures the effect of the incoming flow
profile on the peak-whistling Strouhal number. It is found that at high perturbation
amplitudes (|u′|/U ≥ 10−2) for shallow cavities the peak-whistling Strouhal number
depends on the perturbation amplitude, while for deep cavities there is not such a
dependence.

For both approach velocity profiles that have been considered, the peak-whistling
amplitude |u′|/U remains constant in the range 0.5 ≤ H/W ≤ 1.175. For shallower
cavities, H/W < 0.5, the peak-whistling amplitude decreases as a result of the in-
crease in convective acoustical energy losses at the downstream open end of the pipe,
associated with the decrease of the peak-whistling Strouhal number.

Dimensionless acoustic source power of the cavity is found to be independent of
the depth for deep cavities H/W ≥ 0.675. For shallower cavities the acoustic source
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power depends on the cavity depth. The proposed numerical method overestimates
the dimensionless time averaged acoustic source power 〈Psource〉/(ρ0USp|u′|2) by a
factor of 2 and overstates the effect of the cavity depth on the acoustic source power
for shallow cavities.



Chapter6
Aeroacoustic power generated by

multiple compact axisymmetric cavities:
effect of hydrodynamic interference on

the sound production

6.1 Abstract

Aeroacoustic sound generation due to self-sustained oscillations by a series of com-
pact axisymmetric cavities exposed to a grazing flow is studied both experimentally
and numerically. The driving feedback is produced by the velocity fluctuations re-
sulting from a coupling of vortex sheddings at the upstream cavity edges with acous-
tic standing waves in the coaxial pipe. When the cavities are separated sufficiently
from each other, the whistling behavior of the complete system can be determined
from the individual contribution of each cavity. When the cavities are placed close to
each other there is a strong hydrodynamic interference between the cavities which
affects both the peak-amplitude attained during whistling and the corresponding
Strouhal number. This hydrodynamic interference is captured successfully by the
proposed numerical method.

6.2 Introduction

Pipe systems with axisymmetric cavities are often used in engineering applications.
However, at critical conditions, the flow through such an axisymmetric cavity-pipe
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system causes self-sustained oscillations that lead to high-amplitude sound gener-
ation and associated mechanical vibration. Grazing flow over axisymmetric cavi-
ties in ducted flows have been investigated for a wide range of applications such as
control valves [Ziada and Bühlmann, 1989], piping systems [Lafon et al., 2003] and
impedance walls [Aurégan and Leroux, 2003; Lange and Ronneberger, 2003].

Despite the geometric simplicity of axisymmetric cavity-pipe configurations, self-
sustained cavity oscillations in such systems involve several complex fluid mechan-
ics phenomena. The oscillations can be classified into three categories based on the
nature of the feedback: fluid dynamic, fluid-resonant and fluid-elastic oscillations
[Rockwell and Naudascher, 1978]. The current work deals with a fluid-resonant
mechanism in which the feedback is produced by the velocity fluctuations at the
upstream edge of the cavity resulting from a coupling of vortex shedding with a lon-
gitudinal acoustic pipe mode. In such a feedback loop, the shear layer instability in
the mouth of the cavity and the longitudinal acoustic pipe modes can be considered
as the amplifier and the filter of a feedback system, respectively [Blevins, 2001]. This
results in stable self-sustained oscillations at discreet frequencies, which is called
whistling.

A single cavity in a pipe line with an acoustic feedback due to a longitudinal
standing wave has been the focus of a considerable number of experimental studies
[Tam and Block, 1978; Schachenmann and Rockwell, 1980; Rockwell and Schachen-
mann, 1982; Ziada et al., 2003; Geveci et al., 2003; Oshkai et al., 2005; English and
Holland, 2010], in which the effect of various geometric parameters such as the depth
of the cavity and the width of the cavity are addressed.

On the other hand, there has been only a limited number of studies in the lit-
erature in which the sound generation/absorption characteristics of series of ax-
isymmetric cavities adjacent to each other, i.e. there is hydrodynamic interference
between them, have been addressed [Derks and Hirschberg, 2004; Aurégan and Ler-
oux, 2008]. Such multiple axisymmetric cavity configurations are mostly considered
for mufflers, in which the cavities are acoustically deep i.e. the cavity depth is of
the order of the acoustic wave length [Lange and Ronneberger, 2003; Aurégan and
Leroux, 2003, 2008].

The authors have recently been interested in the sound generation in corrugated
pipes [Tonon et al., 2010; Nakiboğlu et al., 2010, 2011a, 2012]. In corrugated pipes
the width and the depth of the cavities are much smaller than the wavelength of
the longitudinal acoustic pipe mode i.e. the cavities are acoustically compact sound
sources. One approach is to model a corrugated pipe as a system composed of a
series of acoustically coupled axisymmetric cavities connected to each other with
straight pipe segments. Neglecting a possible hydrodynamic interference between
the individual elements of the series of cavities, such a system can be investigated by
simulating a single cavity with appropriate boundary conditions. In an earlier work
[Nakiboğlu et al., 2011a], the authors had proposed a numerical methodology to in-
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vestigate the aeroacoustic response of a single confined compact cavity, exposed to
a low Mach number grazing flow, to acoustic excitations. The method combines in-
compressible simulations with Vortex Sound Theory [Howe, 1975, 1998]. Although
this so-called hybrid method is a highly simplified approach compared to the cur-
rent computational aeroacoustic algorithms [Colonius and Lele, 2004; Brès and Colo-
nius, 2008], it has been quite successful in predicting the Strouhal number ranges of
acoustic energy production/absorption and the nonlinear saturation mechanism re-
sponsible for the stabilization of the limit cycle oscillation [Nakiboğlu et al., 2011a].
This computationally low cost numerical method also predicts the peak-whistling
Strouhal number, at which the maximum amplitude in pressure fluctuations is reg-
istered, in close agreement with experiments and explains the dependency of the
peak-whistling Strouhal number on the momentum thickness of the velocity profile
that the cavity is subjected to [Nakiboğlu et al., 2011a, 2012]. There is, however, an
inaccuracy in this approach due to the neglected hydrodynamic interference, partic-
ularly when the distance between successive cavities is small.

Hydrodynamic interference considered here has some similarity with the phe-
nomena observed in heat exchanger pipe bundles placed in cross flow. Coupling of
vortex shedding with acoustic standing waves is strongly influenced by the hydro-
dynamic interference between successive cylinders. Flow-excited acoustic behavior
of tandem cylinder configuration in a resonating duct is considerably different than
that of a single cylinder. A strong effect of spacing ratio has been recorded both on
the amplitude of the maximum acoustic pressure and the Strouhal number range of
the resonance [Hall et al., 2003; Mohany and Ziada, 2005; Finnegan et al., 2009]. This
stresses the need of an assessment for the effect of the hydrodynamic interference,
between successive cavities in corrugated pipe, on whistling.

The aim of the present work is to investigate the aeroacoustic sound generation
by double and triple axisymmetric cavity configurations exposed to a grazing flow,
as a model for the whistling behavior of multiple axisymmetric cavity systems, e.g.
corrugated pipes, and to assess the effect of hydrodynamic interference between suc-
cessive cavities on the whistling. The following section, Sec. 6.3, is dedicated to the
experiments. The experimental setup (Sec. 6.3.1), sound generation in hydrodynam-
ically separated cavities (Sec. 6.3.2), hydrodynamic interference among the cavities
in close vicinity of each other (Sec. 6.3.3) and effect of plateau length on the hy-
drodynamic interference (Sec. 6.3.4) is covered in this part. In Sec. 6.4 the numeri-
cal methodology is summarized and the predictions of hydrodynamic interference
(Sec. 6.4.2) is discussed. In the last section, Sec. 6.5, the conclusions are stated.
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Figure 6.1: The tested cavity configurations. The dotted line in configuration A,
indicates the spatial distribution of the pressure amplitude (p′) in the standing wave
at the first longitudinal acoustic mode.

6.3 Experiments

6.3.1 Experimental setup

An experimental setup has been constructed to investigate self-sustained oscillations
due to the coupling of vortex sheddings in a series of axisymmetric cavities exposed
to grazing flow with a longitudinal standing wave. The test section is composed of
a straight pipe section and a number of axisymmetric cavities, which can be placed
at either end of the pipe. The cavity configurations considered in this paper are
presented in figure 6.1, each configuration is referred with a letter e.g. double cavity
downstream of the pipe is configuration D.

All the experiments have been carried out at the first longitudinal acoustic mode.
This is a standing wave of a half-wave length in the pipe (L ≈ λ/2). The system
whistles also for the higher acoustic modes (i.e. L ≈ λ, 3/2λ, · · · ). Experiments have
been performed at the lowest possible whistling mode in order to keep the sound
source as compact as possible (W � λ), allowing an incompressible model for the
flow in the cavity. Configuration A (single cavity at the downstream termination)
is similar to the one used by Schachenmann and Rockwell [1980]; Rockwell and
Schachenmann [1982]. In their work the first whistling mode was obtained at the
third longitudinal acoustic mode L ≈ 3/2λ. This is due to their configuration com-
bining a cavity with sharp edges with a relatively long pipe. In the current study,
cavities have rounded edges which promotes the sound production considerably
[Bruggeman et al., 1991; Nakiboğlu et al., 2010]. Furthermore a relatively short pipe
segment is used to limit the viscous losses. It should also be noted that in all the
configurations the cavities are placed close to a pressure node in order to maximize
the sound production [Tonon et al., 2010; Nakiboğlu et al., 2010; Golliard et al., 2010].
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The mean flow velocity profile of the flow that is approaching the cavity has a
strong influence on the whistling phenomenon [Nakiboğlu et al., 2011a, 2012]. A
sand paper strip (ISO/FEPA grid designation - P40) with a width of 5 mm is placed
on the inner pipe wall at the inlet of the pipe in order to trip the boundary layer
from laminar to turbulent flow. This avoids uncertainties due to the natural tran-
sition from laminar to turbulent flow. The cavity in configuration A experiences
a developed turbulent approach velocity profile with a displacement thickness of
δ1 = 1.7 × 10−3 m and a momentum thickness of δ2 = 1.2 × 10−3 m. The cavity in
Configuration B, however, experiences a top-hat velocity profile with a thin boundary
layer i.e. δ1 = 3.9× 10−4 m and δ2 = 2.0× 10−4 m. These velocity profiles and their
effects on the whistling of single cavity configurations A and B have been discussed
in an earlier paper [Nakiboğlu et al., 2011b]. In the current work attention is given
to the multiple axisymmetric cavities. Yet the same two different velocity profiles,
turbulent and top-hat, are experienced by cavities in other configurations considered
here e.g. the upstream and downstream cavities of configuration C experience top-

hat and turbulent, velocity profiles, respectively.

The notation for the relevant geometric parameters are shown in figure 6.2 for
configuration D. The same notation is used for all the other configurations as well.
There are two straight pipe sections, the long one is L1 = 850 mm and the short
one is L2 = 15 mm. Depending on the configuration, see figure 6.1, the positions
of these pipes interchange e.g. for configuration E, L1 is downstream of the cavities
and L2 is upstream. The inner diameter of the pipe sections is D = 44 mm. The
pipe is made of steel with a roughness height of ε ≤ 4.0 × 10−5 m (European Stan-
dard EN 10305-1) and has a wall thickness of 6 mm. Such a thick pipe is used to
avoid wall vibrations. Measurements of the reflection coefficient for the closed pipe
have confirmed that there is no significant effect of pipe wall vibrations on the mea-
surements. The depth of the axisymmetric cavity is H = 27 mm and the width of
the cavity is W = 40 mm, hence height to width ratio is H/W = 0.675. For such
a deep cavity the whistling characteristics i.e. Strouhal number and the amplitude
of the fluctuations are independent of the depth [Nakiboğlu et al., 2010, 2011b]. The
setup allows the placement of a second cavity and to vary the plateau (Lp) length,
the constant diameter part between the two cavities. It is also possible to mount a
third cavity. The radii of curvature of the upstream and downstream cavity edges are
denoted by rup and rdwn, respectively. The upstream edge radius of the first cavity
and the downstream edge radius of the last cavity is 5 mm, all the other edge radii
are 2.5 mm. Experiments have been performed for seven different plateau length
to width ratios, namely Lp/W =0, 0.375, 0.625, 0.750, 0.875 and 1.375. It should
be noted that the plateau length does not include the edge radii of the cavities, see
figure 6.2. Thus, when the plateau length is Lp = 0 mm there, still, exists a wall
thickness (rdwn + Lp + rup) between the cavities, which is 5mm. The total length
of the system is denoted by L, which varies in the range 915 mm ≤ L ≤ 1115 mm
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Figure 6.2: The relevant geometric parameters, shown for configuration D.
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Figure 6.3: Schematic of the experimental setup and instrumentation.

depending on the configuration. All the components of the experimental setup have
been manufactured with an accuracy of 0.1 mm.

The set-up used for the experiments is shown in figure 6.3. The upstream termi-
nation of the test section is connected to the high-pressure air supply system, which
is composed of, from upstream to downstream, a compressor, a constant pressure
vessel, a control valve, a buffer vessel, a turbine flow meter and an expansion cham-
ber muffler. The expansion chamber muffler has a length of 1.5 m and a diameter
of 0.6 m. It is covered internally with sound absorbing foam with a thickness of
100 mm in order to avoid cavity resonances. The downstream termination is open to
the laboratory, a large room of 15 m×4 m×4 m (not an anechoic chamber).

The acoustic pressure in the long straight pipe segment (L1) is measured using
seven acceleration compensated piezo-electric pressure transducers, which are flush
mounted. The transducers are calibrated together with their adapter pieces at the
end-wall of a closed pipe both for the relative amplitude and relative phase differ-
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ence. These microphones have a separation distance of 108.33 mm in axial direction
and an angular position difference of 30◦ from each other in azimuthal direction,
see figure 6.3. The first and the last transducer are positioned 100 mm from the
pipe terminations. The signals from the microphones are amplified by charge am-
plifiers. These amplifiers are connected to a combined data acquisition-PC system.
The frequencies of whistling are in the range of 150−250 Hz and the sampling rate of
the experiments was 5 kHz. Thus the sampling rate satisfies the Nyquist criteria. By
sampling for long enough time, a discrete time signal can be obtained whose discrete
Fourier transform (DFT) roughly represents the Fourier transform of the continuous
time signal [Bracewell, 1986]. For that purpose a sampling duration of 10 s has been
used for each data point.

Knowing the pressure fluctuations at seven different spatial positions using the
multi-microphone method [Åbom and Bodén, 1988] traveling acoustic plane waves
were reconstructed. The term fluctuation amplitude is used to specify the maximum
dimensionless sound amplitude that is attained in the standing wave. The fluctuation

amplitude is defined as

|p′max|
ρ0c0U

=
|u′

max|
U

(6.1)

where |p′max| is the amplitude of the standing pressure wave at a pressure anti-node
inside the pipe and |u′

max| is the amplitude of acoustic velocity at a pressure node.
Since the term fluctuation amplitude always refers to this maximum dimensionless
sound amplitude; the subscript max will be dropped for convenience. The details of
the data processing is provided in an earlier work [Nakiboğlu et al., 2011b].

The temperature of the air is measured at the pipe termination with an accuracy
of 0.1◦C using a digital thermometer. A turbine flow meter is used to measure the
average velocity (U ) through the volumetric flow rate. The turbine flow meter is con-
nected to a pulse shaper and a counter. The acquisition system of the turbine flow
meter and the piezo-electric pressure transducers are synchronized by means of a
trigger pulse. The simultaneous measurement of flow velocity and pressure fluctua-
tions allows a waterfall representation of the data, in which the frequency spectra of
the whistling at different flow velocities are presented in a single graph. Using this
waterfall diagram consecutive modes that appear simultaneously with the dominant
hydrodynamic mode can easily be identified [Rockwell et al., 2003; Oshkai et al.,
2005]. Such secondary modes were not observed for the flow range studied in the
current work and unlike the case of wall cavities, such as the ones studied by Delprat
[2006], nonlinear interaction between modes has not been observed. The details of
the instrumentation are provided in an earlier paper [Nakiboğlu et al., 2011b].
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Figure 6.4:

Dimensionless acous-
tic velocity fluctuation
amplitude |u′|/U plotted
against Strouhal number
Sr = f(W + rup)/U for
configurations A, B and C,
see figure 6.1.
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6.3.2 Sound generation in hydrodynamically separated multiple cav-

ities

In figure 6.4 measured dimensionless fluctuation amplitude |u′|/U is plotted against
Strouhal number Sr = f(W + rup)/U for configurations A, B and C. Considering
the acoustics there is only a minor difference between configurations A (single cav-
ity downstream) and B (single cavity upstream). This difference is caused by cavity
having a finite width and the upstream and downstream edge of the cavity not being
acoustically symmetric in the sense that the vortex is shed from the upstream edge
of the cavity. Thus, the spatial position of the vortex core with respect to the stand-
ing wave is not identical for these two configurations. The cavity width is, however,
much smaller than the wavelength of the standing wave W � λ. Hence this differ-
ence between configurations A and B is very small. The variation in the whistling
behavior of these two configurations is mainly due to the difference in the velocity
profile that the cavities are subjected to, which is discussed in an earlier work of the
authors [Nakiboğlu et al., 2011b].

It is seen from figure 6.4 that the peak-whistling Strouhal number Srp−w, the
Strouhal number at which the maximum amplitude in pressure fluctuations is reg-
istered, is Srp−w = 0.73 and Srp−w = 0.82 for configuration A and configuration B,
respectively. For configuration C, where there is a cavity both at the upstream and
downstream termination, the system whistles at a peak-whistling Strouhal number
of Srp−w = 0.77, which is a compromise between the peak-whistling Strouhal num-
bers obtained in configurations A and B.

In configuration A there exist only one range of Strouhal numbers, 0.65 ≤ Sr ≤
0.80, for which the whistling is observed, whereas for configuration B there exist
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two distinct ranges of Strouhal numbers with whistling, 0.74 ≤ Sr ≤ 0.92 and
1.30 ≤ Sr ≤ 1.50. The lower and the higher ranges of whistling Strouhal num-
bers, around Sr = 0.76 and Sr = 1.40 belong to the second and third hydrody-
namic modes, respectively. At the second hydrodynamic mode there exist two vor-
tices at the same moment inside the cavity mouth: one traveling and one forming.
Similarly for the third hydrodynamic mode there are three vortices appearing si-
multaneously at the cavity opening: one forming and two traveling [Bruggeman
et al., 1991; Nakiboğlu et al., 2011b]. The disappearance of the whistling for the
higher Strouhal number range (1.30 ≤ Sr ≤ 1.50) for configuration A is explained
[Nakiboğlu et al., 2011b] by using the linearized theory of an inviscid quasi-parallel
free shear layer [Michalke, 1965; Elder, 1980]. Configuration C has also two dis-
tinct ranges of Strouhal numbers in which the system whistles. It is evident from
figure 6.4 that for the second hydrodynamic mode the range of whistling for config-
uration C, 0.66 ≤ Sr ≤ 0.89, is almost equal to the combined range of whistling for
configurations A and B, 0.65 ≤ Sr ≤ 0.92. For the third hydrodynamic mode the
whistling range of configuration C is identical to the range of whistling of configura-
tion B, 1.30 ≤ Sr ≤ 1.50, because configuration A is silent for the third hydrodynamic
mode.

Considering the dimensionless fluctuation amplitude |u′|/U a parallel behavior
with the Strouhal number is observed for configuration C. The peak-whistling am-
plitude obtained in configuration C for the second hydrodynamic mode is |u′|/U =

9.3×10−2, which is almost equal to the summation of the peak-whistling amplitudes
obtained with configuration A, |u′|/U = 4.7 × 10−2 and B, |u′|/U = 4.3 × 10−2. For
the third hydrodynamic mode the peak-whistling amplitude of configuration C is
identical to that of configuration B, |u′|/U = 2.1 × 10−2. This is expected because
configuration A is not whistling at the third hydrodynamic mode.

It is concluded from this set of experiments that when two cavities are placed
at different pressure nodes such that there is no hydrodynamic interference, the
whistling behavior of the system can be determined from the individual contribu-
tions of each cavity.

6.3.3 Hydrodynamic interference

In this section a possible hydrodynamic interference between cavities, which are ad-
jacent to each other, is investigated. In figure 6.5 the dimensionless acoustic velocity
fluctuation amplitude |u′|/U is plotted against Strouhal number Sr = f(W + rup)/U

for configuration D (double cavity downstream) and for configuration E (double
cavity upstream) with a plateau length of Lp = 0 (see figure 6.2) together with
configuration C, which has already been discussed in the preceding section. It is
seen that for the second hydrodynamic mode (0.65 ≤ Sr ≤ 0.91) the difference in
the peak-whistling Strouhal number between configuration D, Srp−w = 0.77, and E,
Srp−w = 0.79, is not as large as between configuration A and B, which are the single
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Figure 6.5:

Dimensionless acous-
tic velocity fluctuation
amplitude |u′|/U plotted
against Strouhal number
Sr = f(W + rup)/U for
configurations C, D and E,
see figure 6.1.
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cavity versions of the same configurations. This is expected to be due to the fact that
the downstream cavities in configuration D and E are experiencing similar velocity
profiles.

Configuration D has the same peak-whistling Strouhal number, Srp−w = 0.77, as
configuration C for the second hydrodynamic mode. This can be explained through
the different velocity profiles that the two cavities of configuration D are subjected
to. The upstream cavity of configuration D experiences a turbulent velocity profile,
as in configuration A (turbulent, see Sec. 6.3.1). Assuming that the velocity profile is
redeveloping on the plateau between the cavities, the downstream cavity of configu-
ration D experiences a velocity profile with a thin boundary layer as in configuration
B (top-hat, see Sec. 6.3.1). Thus in configurations C and D each of the two cavities ex-
perience similar velocity profiles. As a consequence, it is not surprising that the
peak-whistling Strouhal numbers of these two configuration are the same. A weak
third hydrodynamic mode is observed for configuration D between 1.23 ≤ Sr ≤ 1.30.
The appearance of the third hydrodynamic mode also indicates that the downstream
cavity in configuration D experiences a boundary layer thinner than that in configu-
ration A.

For configuration E, the third hydrodynamic mode has a dimensionless ampli-
tude of |u′|/U = 4.4 × 10−2, which is two times higher than that of the third hy-
drodynamic mode observed in configurations B and C |u′|/U = 2.1 × 10−2. As dis-
cussed in preceding section, only cavities experiencing a top-hat approach velocity
profile contribute to the third hydrodynamic mode. This also indicates that both the
downstream and the upstream cavities of configuration E experiences a thin bound-
ary layer. This also supports the idea that the velocity profile is redeveloping on
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the plateau. The focus in this work is, however, given to the second hydrodynamic
mode, at which the peak-whistling is observed. Thus, the rest of the paper will be
limited to the second hydrodynamic mode.

It is seen that both configuration C and D whistle in the same Strouhal number
range so the convective acoustic losses at the downstream open pipe termination
are similar for these two configurations. The acoustic boundary conditions both up-
stream and downstream are also identical in these configurations. Thus, the total
acoustic losses are comparable for configuration C and D. In earlier papers [Naki-
boğlu et al., 2011a, 2012] it has been explained that the dimensionless fluctuation am-
plitude obtained in a system can be determined through an energy balance between
the acoustic sources and acoustic losses. Since configuration C and D have compara-
ble acoustic losses and configuration D has a 30% higher dimensionless fluctuation
amplitude |u′|/U = 1.2 × 10−1 than configuration C, it can be concluded that the
acoustic source power produced in configuration D with cavities in close proximity
is higher than the one produced by configuration C.

It has been shown that the spatial position of the cavity with respect to the cou-
pling longitudinal standing wave is important for the sound production. The sound
production is maximized when the cavity is placed close to a pressure node [Tonon
et al., 2010; Nakiboğlu et al., 2010; Golliard et al., 2010]. It is already known that the
difference in acoustic source power produced by a cavity at the downstream pipe
termination (configuration A) and at the upstream pipe termination (configuration
B), due to a difference in the velocity profile, is rather small, see figure 6.4. Ne-
glecting a possible hydrodynamic interference in configuration D, one would expect
configuration C to produce more acoustic source power than configuration D, be-
cause in configuration C both cavities at the upstream and downstream termination
are very close to pressure nodes. In configuration D, however, both of the cavities are
placed at the downstream pipe termination. Thus, in configuration D, the upstream
cavity is further away from the pressure node than the downstream cavity. As a
consequence the upstream cavity is expected to be less efficient for acoustic power
generation than the downstream cavity. It is observed, however, that in the experi-
ments configuration D produces a higher acoustic source power than configuration
C. This suggests that in configuration D there exists a constructive hydrodynamic in-
terference between the cavities for the plateau length of Lp = 0 mm. This also holds
for configuration E, for which the double cavity is placed at upstream termination.

6.3.4 Effect of plateau length

To assess the extent of this hydrodynamic interference and its dependence on the
plateau length Lp a series of experiments were performed with configuration D with
various plateau lengths. In figure 6.6 the dimensionless acoustic velocity fluctuation
amplitude |u′|/U is plotted against Strouhal number Sr = f(W + rup)/U for config-
uration D with plateau length to cavity width ratios of Lp/W = 0, 0.375, 0.625, 0.750,
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Srp−w |u′|/U × 10−2

Lp/W Primary Secondary Primary Secondary

0 0.77 N/A 11.5 N/A
0.375 0.74 N/A 12.3 N/A
0.625 0.72 0.82 9.8 2.2
0.750 0.71 0.79 6.4 5.6
0.875 0.67 0.78 3.7 7.4
1.375 N/A 0.77 N/A 10.7

Table 6.1: Peak-whistling Strouhal numbers Srp−w and the peak-whistling ampli-
tudes |u′|/U for primary and secondary peaks for configuration D at all the plateau
length to cavity width ratios Lp/W .

0.875 and 1.375.
As shown already in figure 6.5 when the two cavities are very close to each other,

i.e. Lp/W = 0, there is a single peak (primary peak). With increasing plateau length
this peak shifts to lower Strouhal numbers and decreases in amplitude. At a plateau
length of Lp/W = 0.675 a secondary peak appears at a higher Strouhal number. As
the plateau length is further increased the secondary peak shifts to lower Strouhal
numbers with increasing amplitude. At a plateau length of Lp/W = 1.375 the sec-
ondary peak replaces the primary peak at the same Strouhal number and almost
at the same amplitude as found for Lp/W = 0. In figure 6.6 the primary and the
secondary peaks are indicated with open and solid arrows, respectively. The peak-
whistling Strouhal numbers Srp−w and the peak-whistling amplitudes |u′|/U for pri-
mary and secondary peaks for configuration D for all plateau length to cavity width
ratios Lp/W are summarized in table 6.1.

Considering the two extremes of the plateau length Lp/W = 0 and Lp/W =

1.375, the two configurations whistle at the same peak-whistling Strouhal number
and almost at the same amplitude. The small decrease in the dimensionless ampli-
tude in the case of Lp/W = 1.375 is expected to be due to the fact that the upstream
cavity has been moved further away from the pressure node compared to the case of
Lp/W = 0. In between these two extremes of the plateau length, however, there is
a range of plateau lengths around Lp/W = 0.750, such that the peak-whistling am-
plitude of the system is half the peak-whistling amplitude recorded at the extremes
(Lp/W = 0 and Lp/W = 1.375). Thus, the strength of the hydrodynamic interference
depends strongly on the plateau length.

As explained in the introduction one of the motivations of the current study is
to understand the whistling behavior in corrugated pipes, which can be considered,
in first approximation, as a series of axisymmetric cavities placed along a resonat-
ing duct. As a consequence it is important to assess whether the hydrodynamic
interference observed for double cavities can be scaled up to many cavity configu-
rations. In figure 6.7 dimensionless acoustic velocity fluctuation amplitude |u′| /U
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Figure 6.6: Dimensionless acoustic velocity fluctuation amplitude |u′|/U plotted
against Strouhal number Sr = f(W + rup)/U for plateau length to cavity width
ratios of Lp/W = 0 (a), 0.375 (b), 0.625 (c), 0.750 (d), 0.875 (e) and 1.375 (f) for
configuration D, see figure 6.1.
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Figure 6.7:

Dimensionless acous-
tic velocity fluctuation
amplitude |u′|/U plotted
against Strouhal number
Sr = f(W + rup)/U

for plateau length to
cavity width ratios of
Lp/W = 0, 0.875 and
1.375 for configuration F,
see figure 6.1.

Strouhal number - Sr = f (W+r up)/U

D
im

en
si

on
le

ss
flu

ct
ua

tio
n

am
pl

itu
de

-
u

’
/U

0.6 0.7 0.8 0.9
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Lp/W = 0
Lp/W = 0.875
Lp/W = 1.375

is plotted against Strouhal number Sr = f(W + rup)/U for configuration F, a triple
cavity placed close to the downstream termination, see figure 6.1, for plateau length
to cavity width ratios of Lp/W = 0, 0.875 and 1.375.

In the experiments with a triple cavity, similar to the ones with a double cavity,
the plateau length to width ratios of Lp/W = 0 and Lp/W = 1.375 have a single peak
with the same peak-whistling Strouhal number, seen in figure 6.7. The difference in
the dimensionless fluctuation amplitude, |u′|/U , between the cases Lp/W = 0 and
Lp/W = 1.375 is higher in Configuration F then in configuration D as expected. Be-
cause using a longer plateau length (Lp/W = 1.375) pushes the cavities further away
from the pressure node, thus decreasing the acoustic source power. For the configu-
rations with three cavities this effect is more pronounced than for two cavities. For
the case of Lp/W = 0.875, again similar to the double cavity configuration, there is
a primary peak at a low Strouhal number, Srp−w = 0.65 with a lower amplitude and
a secondary peak at a high Strouhal number, Srp−w = 0.78 with a higher amplitude.
Thus, the hydrodynamic interference observed in double cavity configurations can
be scaled up to triple cavity configurations and a similar phenomenon is expected to
appear in corrugated pipes.

6.4 Numerical Predictions

6.4.1 Numerical method

In an earlier work Nakiboğlu et al. [2011a] had proposed a numerical methodol-
ogy to investigate the aeroacoustic response of low Mach number confined flows



Aeroacoustic power generated by multiple compact axisymmetric cavities 145

to acoustic excitations. The method combines incompressible flow simulations with
Vortex Sound Theory to estimate the strength of an acoustic source due to the in-
terference of a single cavity in a pipe flow at high Reynolds number with a low
Helmholtz number acoustic field [Martínez-Lera et al., 2009]. This numerical ap-
proach is used in the present study to investigate the hydrodynamic interference
observed in the experiments with cavities which are in close proximity of each other.

Incompressible simulations

Since the cavity width W (40 mm) is much smaller than the wavelength of the lon-
gitudinal standing wave (λ ≥ 1750 mm), one can assume that the wave propagation
is locally negligible. Furthermore only low Mach numbers (Ma ≤ 0.05) are consid-
ered. These correspond to the assumption that the flow is locally incompressible
[Martínez-Lera et al., 2009]. Therefore incompressible 2D-axisymmetric flow simu-
lations were performed. The simulations were carried out at low Reynolds numbers,
Re = 4 × 103, without turbulence modeling. The diameter of the pipe (D) and the
geometry of the cavity (W,H, rup, rdwn, Lp) are identical to the ones in the experi-
ments. The inlet is located at 0.175W upstream of the first cavity; such a short inlet
pipe section is chosen to insure that the imposed inlet mean velocity profile does not
evolve significantly before reaching the cavity. The outlet of the numerical domain
is placed at a reasonably distant location, 9W downstream, from the cavity.

The finite volume commercial code FLUENT 6.3 is used. A pressure-based seg-
regated solution algorithm is employed, the details of the simulation parameters are
provided in [Nakiboğlu et al., 2011a]. At the inlet, a fluctuating acoustic axial veloc-
ity is imposed, u′(t), uniformly over the time-averaged velocity profile, u(r), at the
inlet. The acoustic velocity is a sinusoid with frequency f and amplitude |u′|:

u′(t) = |u′| sin(2π f t). (6.2)

where |u′| is the amplitude of the acoustic velocity induced by the longitudinal
standing wave at the position of the cavity, respectively.

Note acoustic velocity fluctuation, u′(t), changes with time but it is uniform over
the profile of the inlet. Time-averaged inlet velocity profile u(r) on the other hand
is fixed over time but it changes with the distance from the axis of the pipe. Thus,
it has been implicitly assumed that the radial change of velocity and the temporal
acoustic fluctuation of the velocity can be decoupled as follows:

u(r, t) = u(r) + u′(t) (6.3)

In all experiments performed, the cavity is placed close to a pressure node. Thus,
through out the paper |u′| stands for the maximum amplitude of the acoustic velocity
in the standing wave. The mean velocity profile u(r) is determined experimentally



146 6.4 Numerical Predictions

by means of hotwire measurements, as explained in Sec. 6.3.1. The outlet boundary
condition of ∂ux/∂x = 0 is used. For the majority of simulations 30 periods of the
excitation frequency turns out to be enough to dissipate transient repose due to com-
putational methods and initial conditions. For some simulations, however, a steady
periodic state is reached only after 70 periods. In each simulation after the steady pe-
riodic state is reached, simulations were continued for 10 additional periods. These
10 periods were then used to calculate the time-averaged acoustic source power. The
time step is chosen as ∆t = 0.01W/U .

The computational domains contain around 1.5×105 quadrilateral cells. The cells
are clustered close to the opening of the cavity and to the walls, where there are high
gradients of velocity due to the shear layer and boundary layers, respectively. In the
domain between 6W and 9W downstream of the cavity, cells with high aspect ratio
(∆x/∆y � 1) are employed. By doing so problems that can arise due to reverse flow
at the outlet boundary condition are avoided. A study on mesh dependency has been
carried out. In a test case the same computation was performed with two times more
densely meshed domains, producing differences in the calculated acoustic source
power of less than 5%.

Time-averaged acoustic source power

Following the Vortex Sound Theory of Howe [1975, 1998] and an exact energy corol-
lary of Myers Myers [1986, 1991] for a high Reynolds number flow, the time-averaged
acoustic source power produced by a single or series of axisymmetric cavities, 〈Psource〉,
can be determined by a surface integral of the product of fluctuating total enthalpy
and the mass flux through the boundary of the control volume, provided that the
control volume encloses the compact source region. The details of this procedure is
explained in [Nakiboğlu et al., 2011a, 2012].

6.4.2 Prediction of hydrodynamic interference

In this section, the hydrodynamic interference observed in configuration D, double
cavity downstream configuration corresponding to measurement data in figure 6.6,
is addressed numerically. In figure 6.8 the predicted dimensionless time-averaged
acoustic source power 〈Psource〉/(ρ0USp|u′|2) is plotted against the Strouhal number
Sr = f(W + rup)/U for six different plateau length to cavity width ratios, namely,
Lp/W = 0 (a), 0.375 (b), 0.625 (c), 0.750 (d), 0.875 (e) and 1.375 (f) for configuration
D, for a fluctuation amplitude of |u′|/U = 0.05.

It should be noted that the numerical method provides an time-averaged acous-
tic source power. To predict the dimensionless fluctuation amplitude |u′|/U , which
is measured in the experiments, an energy balance is necessary in which the time-
averaged acoustic losses of the system are balanced against the predicted time-averaged
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Figure 6.8: Numerically predicted dimensionless time-averaged acoustic source
power 〈Psource〉/(ρ0USp|u

′|2) is plotted against Strouhal number Sr = f(W +

rup)/U for plateau length to cavity width ratios of Lp/W = 0 (a), 0.375 (b), 0.625
(c), 0.750 (d), 0.875 (e) and 1.375 (f) for configuration D at a fluctuation amplitude
of |u′|/U = 0.05.
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acoustic source power [Nakiboğlu et al., 2011a, 2012]. This approach requires a con-
siderable amount of additional simulations in order to cover the full range of possi-
ble dimensionless fluctuation amplitudes. In an earlier work of the authors [Naki-
boğlu et al., 2011b] an attempt was made to predict the peak-whistling dimensionless
fluctuation amplitude for a single cavity at the downstream termination (configura-
tion of A). The numerical method over estimates the dimensionless fluctuation am-
plitude by a factor of 2. This approach is not repeated in the current study for the
double cavity configurations.

For all the cases considered here for configuration D, the system whistles in the
same range of Strouhal numbers 0.6 ≤ Sr ≤ 0.9. Thus, given that the system has the
same upstream and downstream acoustic boundary conditions, the time-averaged
acoustic losses of the system remain more or less the same for all the plateau lengths
considered. As a consequence, the predicted time-averaged acoustic source powers
can be used on a qualitative basis for comparison with the measured dimensionless
fluctuation amplitude |u′|/U in the experiments. The numerical predictions, shown
in figure 6.8 capture most of the aspects observed in the corresponding experiments,
see figure 6.6. As in the experiments:

• The two extreme values of the plateau lengths, Lp/W = 0 and Lp/W = 1.375,
display a single peak, at the same peak-whistling Strouhal number and at the
same time-averaged acoustic source power.

• With increasing plateau length a secondary peak appears at a higher Strouhal
number than Strouhal number of the primary peak. As the plateau length fur-
ther increases both the primary and the secondary peak shift to lower Strouhal
numbers. However, the primary peak does this with decreasing acoustic power
whereas the secondary peak with increasing acoustic power.

• In between these two extremes of the plateau lengths, Lp/W = 0 and Lp/W =

1.375, there is a critical plateau length around Lp/W = 0.625, for which the
time-averaged acoustic source power of the system is about half of the value
recorded at the extremes.

The predicted peak-whistling Strouhal numbers Srp−w and the peak-whistling
time-averaged acoustic source powers 〈Psource〉/(ρ0USp|u′|2) for the primary and the
secondary peaks for configuration D at all the plateau length to cavity width ratios
Lp/W considered are summarized in table 6.2. It is seen by comparison of tables
6.1 and 6.2 that the numerical method predicts the peak-whistling Strouhal number
Srp−w for both the primary and the secondary peaks with an accuracy of 3%.

In figure 6.9 normalized vorticity contours given for four different points in time
within a single oscillation period in the region around the cavities for configuration
D for Lp = 0, Srp−w = 0.77 and |u′|/U = 0.05. The moment in time is indicated for
each frame in terms of the corresponding acoustic velocity period. The origin of time
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Srp−w 〈Psource〉/(ρ0USp|u
′|2)

Lp/W Primary Secondary Primary Secondary

0 0.77 N/A 3.86 N/A
0.375 0.73 0.86 3.43 0.29
0.625 0.72 0.82 2.25 1.98
0.750 0.71 0.81 1.69 2.51
0.875 0.70 0.80 1.04 3.05
1.375 N/A 0.77 N/A 3.46

Table 6.2: Numerically predicted peak-whistling Strouhal numbers Srp−w and the
peak-whistling time-averaged acoustic source powers 〈Psource〉/(ρ0USp|u

′|2) for
primary and secondary peaks for configuration D at all the plateau length to cavity
width ratios Lp/W at a fluctuation amplitude of |u′|/U = 0.05.

(the first frame) corresponds to the change in the sign of the acoustic grazing velocity
from upstream to downstream. Following the Vortex Sound Theory of Howe [1975],
as explained in detail in [Tonon et al., 2010; Nakiboğlu et al., 2010], the spatial po-
sition of the vortex core at the cavity mouth and the moment in time with respect
to the period of the coupling standing wave determine whether the vortex core pro-
duces or absorbs sound. Thus in a system of multiple cavities which are close to each
other as in configuration D, a synchronization of the motion of the vortex core at the
cavity openings among the consecutive cavities amplifies the respective sound pro-
duction and absorption process. It is seen from figure 6.9 that the vortex cores for the
upstream and the downstream cavity have a perfect synchronization, which results
in an amplification of sound production, see figure 6.8-a.

In figure 6.10 and figure 6.11, instantaneous normalized vorticity contours are
given for four different moments in time within a single oscillation period in the
region around the cavities for configuration D for Lp/W = 0.750, |u′|/U = 0.05 at
Strouhal numbers of Sr = 0.75 and Sr = 0.82, respectively. It appears that for the
case of Sr = 0.75 the hydrodynamic interference suppresses the vortex shedding in
the downstream cavity. This strong negative hydrodynamic interference results in a
local minimum in the produced time-averaged acoustic source power, see figure 6.8-
d.

As seen in figure 6.11 for a Strouhal number of Sr = 0.82, although the plateau
length is same as in the previous case, there is some synchronization of the vor-
tex motions in the two cavities. This increases the time-averaged acoustic source
power, as seen in figure 6.8-d, as a matter of fact this point corresponds to a local
maximum. The respective movies for the three cases presented in figure 6.9, 6.10
and 6.11, are provided as supplementary material. It is concluded that the hydrody-
namic interference between the adjacent cavities is due to an increased or decreased
synchronization of the vortex motion in the two cavities.
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Figure 6.9: Instantaneous normalized vorticity contours given for four different
moments in time within a single oscillation period in the region around the cavities
for configuration D for Lp = 0, Srp−w = 0.77 and |u′|/U = 0.05.
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Figure 6.10: Instantaneous normalized vorticity contours given for four different
moments in time within a single oscillation period in the region around the cavities
for configuration D for Lp/W = 0.750, Srp−w = 0.75 and |u′|/U = 0.05.
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Figure 6.11: Instantaneous normalized vorticity contours given for four different
moments in time within a single oscillation period in the region around the cavities
for configuration D for Lp/W = 0.750, Srp−w = 0.82 and |u′|/U = 0.05.
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6.5 Conclusions

Aeroacoustic sound generation due to a self-sustained oscillations, whistling, by a
series of axisymmetric cavities exposed to a grazing flow has been studied both ex-
perimentally and numerically. The feedback effect is produced by the velocity fluc-
tuations resulting from a coupling of vortex sheddings at the upstream cavity edges
with acoustic standing waves in the coaxial pipe.

When the acoustic sources, i.e. the axisymmetric cavities, are placed at different
pressure nodes, which are hydrodynamically separated from each other, the total
acoustic source power of the system can be determined from the addition of the
individual contributions of each cavity.

When the cavities are placed adjacent to each other i.e. around the same pressure
node, a strong hydrodynamic interference between the cavities can be observed for
Lp/W = O(1). The hydrodynamic interference depends strongly on the distance
between the cavities, i.e. Lp/W . This affects both the dimensionless peak amplitude,
|u′|/U , and the Strouhal number, Srp−w, at which this peak amplitude is observed.

The proposed numerical method successfully captures the observed hydrody-
namic interference between adjacent cavities. It provides excellent predictions of the
values of Srp−w (an accuracy of 3%). The numerical method shows that for adjacent
cavities the synchronization of the travelling vortex cores at the cavity openings can
increase or decrease due to hydrodynamic interference. The synchronization ampli-
fies the sound production of the multiple cavity system. The numerical method also
demonstrates that the hydrodynamic interference can be so strong that it can even
suppress the vortex shedding for the downstream cavity, which decreases the sound
production/absorption considerably.
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Chapter7
Conclusions and Perspectives

In thin walled pipes corrugations provide local stiffness while allowing a global flex-
ibility. This unique characteristic makes corrugated pipes convenient for applica-
tions ranging from domestic appliances to natural gas transport. At critical condi-
tions, however, the flow through these pipes drives self-sustained flow oscillations
that lead to high-amplitude sound generation, called whistling. The presented work
combined experimental, numerical and analytical approaches to provide a solid un-
derstanding of the whistling in corrugated pipes. In this chapter the global conclu-
sions emerging from the analysis presented in previous chapters and the perspec-
tives for future research are presented.

7.1 Conclusions

Multiple shallow side branch system as an acoustic analog of a corrugated pipe

Experiments performed with multiple shallow side branch systems and corrugated
pipes have shown that these two systems have similar whistling characteristics. In
both systems the frequency displays a stepwise increase with increasing Mach num-
ber, where the increase on average is approximately linear, which corresponds to a
Strouhal number (Sr). The lock-in to longitudinal acoustic pipe modes explains the
plateaus in the whistling frequency as a function of the flow velocity. The experi-
ments with multiple side branch systems also show that axisymmetry of the cavi-
ties is not a necessary feature for the whistling phenomenon observed in corrugated
pipes. (Chapter 2)

The work on multiple side branch systems also confirms that similar to corru-
gated pipes [Belfroid et al., 2007] a characteristic length, equal to the cavity width
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(W ) plus the upstream edge radius (rup), minimizes the scatter in the measured
Strouhal number (Sr), for different cavity geometries. (Chapter 2)

Hysteresis has been reported in corrugated pipe whistling [Petrie and Huntley,
1980; Nakamura and Fukamachi, 1991; Kristiansen et al., 2011] in which the jump to
the next acoustic mode occurs for an increasing flow velocity at a slightly lower flow
velocity than for a decreasing flow velocity. A similar hysteresis has been observed
also for multiple side branch systems. (Chapter 2)

The peak-whistling Strouhal number

The peak-whistling Strouhal number (Srp−w), the Strouhal number at which the
maximum amplitude in acoustic fluctuations is registered, is independent of the
length of the corrugated pipe, however it depends on the ratio of the momentum
thickness of the grazing flow boundary layer to the cavity width (δ2/W ). The smaller
the momentum thickness the higher the peak-whistling Strouhal number. There is
a critical value of Strouhal number based on momentum thickness (Srδ2 = δ2f/U ),
above which a hydrodynamic mode does not whistle. This value is accurately pre-
dicted by the theory of linear stability of parallel shear flows, proposed by Michalke
[1965]. (Chapters 3, 4 and 5)

Influence of geometry of corrugations

The shape of the upstream edge of the corrugation has a strong effect on the am-
plitude of the acoustic fluctuations. A rounded upstream cavity edge promotes the
sound production considerably. (Chapter 2)

The cavity depth to width ratio has a strong effect on the whistling for shallow
cavities (H/W ≤ 0.5) both for the limit cycle amplitude and for the peak-whistling
Strouhal number (Srp−w). For deeper cavities (H/W ≥ 0.5) both the peak-whistling
Strouhal number and the acoustic source power are independent of the cavity depth.
For shallow cavities (H/W ≤ 0.5) it appears that there is a difference in the whistling
behavior of side branch systems and axisymmetric cavities, indicating a limitation
to the similitude of the acoustics of multiple side branch systems and corrugates
pipes. This difference is expected to be due to the difference in pulsation amplitudes
between these two systems. Since the amplitude of pulsations recorded in multiple
side branch systems are much lower than the one of corrugated pipes, the former
system is more sensitive to small variations in damping. (Chapters 2 and 5)

Numerical method

Experiments performed with corrugated pipes and multiple side branch systems
showed that sound generation in such systems is a local effect and can be under-
stood in first order approximation by focusing on the flow at a single corrugation.
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Judicious choice of both hydrodynamic and acoustic boundary conditions, which
will prevail in a corrugated pipe, is crucial for accurate numerical predictions for the
sound generation. (Chapters 3, 4, 5 and 6)

If in corrugated pipes the corrugation depth (H) and width (W ) are small com-
pared to the wavelength of the longitudinal standing wave (λ), the wave propaga-
tion is locally negligible, i.e. each cavity is acoustically compact. This corresponds
to the assumption that the flow in the source region is locally incompressible. Thus,
it is possible to study the response of the shear layer instability at the corrugation
mouth to an imposed acoustic velocity perturbation using an incompressible flow
method. (Chapters 3, 4, 5, 6)

Combining the incompressible flow solution with the Vortex Sound Theory, the
time averaged acoustic source power produced by single or multiple corrugations
can be determined by a surface integral of the product of the fluctuating total en-
thalpy and the mass flux through the boundary of a control volume, enclosing the
compact source region. The key idea in this method is to define the source of sound
as the difference between the total enthalpy difference calculated across the cavity
and the total enthalpy difference in a reference flow without cavity. (Chapters 3, 4,
5, 6)

The proposed numerical method involves 2D-axisymmetric incompressible flow
simulations without turbulence modeling, which makes the method a computation-
ally efficient approach. Thus, it was possible to use it extensively to address almost
all aspects that have been investigated experimentally.

The proposed numerical method successfully predicts the Strouhal number ranges
of acoustic energy production/absorption and the nonlinear saturation mechanism
responsible for the stabilization of the limit cycle oscillation. (Chapters 3, 4, 5, 6)

The numerical method predicts peak-whistling Strouhal numbers in close agree-
ment with experimental results and explains the dependency of the peak-whistling
Strouhal number on the momentum thickness δ2. (Chapters 3)

The numerical method predicts accurately the dependency of the peak-whistling
Strouhal number on the depth to width ratio H/W of the cavities. For shallow cav-
ities H/W ≤ 0.5, a linear dependency of the peak-whistling Strouhal number on
cavity depth to width ratio is observed. This is explained analytically by using a
point-vortex method. (Chapters 5)

The numerical method predicts the average acoustic source power produced by
a corrugation within a factor of two. The prediction of the whistling amplitude by
means of an energy balance involves calculation of the sound source power as a func-
tion of Strouhal number (Sr) within a broad range of acoustical amplitudes (|u′|/U ).
Such a large number of numerical simulations would not be practical for 3-D Direct
Numerical Simulations (DNS) or Large Eddy Simulations (LES) when using recently
available computational power. (Chapters 4)
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Hydrodynamic interference

Extending the single corrugation modeling approach to the neighboring corrugation
provides insight into the hydrodynamic interference between successive corruga-
tions. This interference has a significant impact on the whistling behavior, which
can be constructive or destructive depending on the separation distance (plateau
length, Lp) between the corrugations. (Chapters 6)

The numerical method explains the hydrodynamic interference appearing be-
tween successive cavities as a synchronization of the traveling vortex cores at corru-
gation mouths. The numerical method and experiments on double cavities demon-
strates that the hydrodynamic interference can even suppress the vortex shedding
at the downstream corrugation. This reduces the sound production considerably.
(Chapters 6)

The numerical method accurately predicts the energy production/absorption ranges
of Strouhal number (Sr) and peak-whistling Strouhal numbers (Srp−w) in energy pro-
ducing range even in the presence of a strong hydrodynamic interference. Further-
more it successfully explains the dependency of the hydrodynamic interference on
the separation distance between the consecutive cavities. (Chapters 6)

Musical aspects

The sound radiation from a short corrugated pipe segment (Hummer) used as a mu-
sical instrument has been investigated. An analytical radiation model is proposed
which can accurately predict the observed frequency at the listener position as well
as the sound pressure level within 3dB. The model predicts qualitatively the ampli-
tude modulation which is essential for the musical quality of the chorus like sound
of the Hummer. (Chapters 4)

7.2 Global conclusions

As an overview of the conclusions the work presented in the thesis provides,

• a physical understanding of the aeroacoustic sound generation due to self-
sustained oscillations observed in corrugated pipes.

• an extensive accurate set of experimental data for various corrugation geome-
tries and information on the effect of a number of dimensionless geometrical
parameters on the whistling namely, pipe length to pipe diameter ratio (L/D),
cavity depth to width ratio (H/W ), cavity edge radii to width ratio (rup/W ,
rdwn/W ), plateau length to cavity width ratio (Lp/W ).

• a numerical methodology for the prediction of
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– the range of Strouhal number (Sr) for which self-sustained oscillations
lead to sound generation,

– the maximum dimensionless time averaged acoustic source power pro-
duced by a corrugation (〈Psource〉/(ρ0USp|u′|2)) and the limit cycle acous-
tic oscillation amplitude (|u′|/U ) that can be attained in a corrugated pipe
during whistling,

– the variation in these two parameters Sr and 〈Psource〉/(ρ0USp|u′|2) due to
variation in dimensionless geometrical parameter of corrugations, such as
H/W , Lp/W , δ2/W .

7.3 Perspectives

It is possible to design corrugated pipes composed of corrugations with different
cavity widths or depths and with various plateau lengths such that the acoustic and
hydrodynamic interference between the cavities will counteract and reduce the pro-
duced acoustic source power.

It should also be noted that although the main consideration in the present study
is the corrugated pipes, some of the conclusions of the study are applicable to various
other ducted flows e.g. mufflers, wall perforations, pipe systems with side branches,
axisymmetric cavity-pipe configurations and orifices [Lacombe et al., 2011].

In chapter 4 it has been shown that a corrugated segment can remain silent even
if the flow is turbulent. Thus, it has been concluded that the absence of whistling is
not related to the lack of turbulence as it has been suggested in the early literature
[Crawford, 1974; Cadwell, 1994]. Turbulence, however, is expected to be important
for a more accurate prediction of the generated acoustic source power by corruga-
tions. The next step might be employing Reynolds-averaged Navier-Stokes (RANS)
turbulence modeling, which can improve the predictions of the numerical method
while keeping the computational cost of the method relatively low [Lacombe et al.,
2011].

This work is limited to cases in which the feedback effect is produced by the
velocity fluctuations resulting from a coupling with a longitudinal acoustic standing
wave in a corrugated pipe. At very high velocities, however, transverse modes will
occur in corrugated pipes. Although the transverse mode is not an effective sound
radiating source, it leads to very high fluctuation amplitudes inside the cavity. Also
as a result of nonlinear wave propagation a strongly radiating second harmonic of
the oscillation frequency can occur [Kriesels et al., 1995].

Bending a corrugated pipe can have a significant effect on the whistling behavior.
In chapter 4, it has been demonstrated that bending can suppress the whistling at
some specific conditions. A systematic study, however, has not been performed.

Experiments on Hummer indicated a non-constant rotation velocity during the
performance, which leads to accelerations and decelerations in the flow. Thus hys-
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teresis are expected to appear (see, chapter 2) in the whistling behaviour, which can
have an important effect on the musical quality of the Hummer. This phenomenon
has not been investigated in this thesis.
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Nakiboğlu, G., S. P. C. Belfroid, D. Tonon, J. Willems, and A. Hirschberg, 2009: A
parametric study on the whistling of multiple side branch system as a model for
corrugated pipes, Prague, Czech Republic. ASME-PVP, PVP2009-77754.
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• Nakiboğlu, G., Manders, H. B. M. and Hirschberg, A. Aeroacoustic power
generated by a compact axisymmetric cavity: Prediction of self-sustained os-
cillation and influence of the depth, Journal of Fluid Mechanics, Submitted, 2011.
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Summary

Aeroacoustics of corrugated pipes

In thin walled pipes corrugations provide local stiffness while allowing global flexi-
bility. This unique characteristic makes corrugated pipes convenient for applications
ranging from domestic appliances to natural gas transportation. At critical condi-
tions, however, the flow through these pipes drives self-sustained flow oscillations
that lead to high-amplitude sound generation, called whistling.

While the literature provides crucial information on the whistling of corrugated
pipes, there has been no attempt until now to develop a quantitative prediction
method for the whistling of corrugated tubes. The main objective of the thesis is
to develop a physical understanding of aeroacoustic sound generation due to self
sustained flow oscillations in ducted cavities and to provide a quantitative predic-
tion method for the whistling in corrugated pipes. The presented work combines
experimental, numerical and analytical approaches to achieve this goal.

Experiments have been performed not only for corrugated pipes but also for
multiple side branch systems and axisymmetric cavities in a pipe. These differ-
ent setups are designed to address different aspects of the whistling in corrugated
pipes. During experiments the emphasis has been on an accurate determination of
the acoustic and hydrodynamic boundary conditions, which is essential for the nu-
merical method. The extensive set of experimental data provides information on the
effect of a number of geometrical parameters on the whistling namely, the length of
the pipe, the cavity depth, the cavity width, the cavity edge radius and the separa-
tion distance between the cavities. Experiments also provide an understanding of
the nature of the acoustic sources and the effect of velocity profile on the whistling.

In corrugated pipes the cavities are small compared to the wave length of the
acoustic waves, which allows the use of a simplified approach. A numerical method
that combines 2D-axisymmetric incompressible flow simulations with Vortex-Sound

Theory is proposed to determine the time averaged acoustic source power produced
by single or multiple axisymmetric cavities. The proposed numerical method is
a computationally efficient approach. Thus, it was possible to use it extensively
to address most of the aspects that have been investigated experimentally. Once
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equipped with realistic acoustic and hydrodynamic boundary conditions, the nu-
merical method appears to be very successful in predicting many aspects of the
whistling including: Strouhal number ranges of acoustic energy production and
absorption, the Strouhal number of maximum acoustic energy production (peak-
whistling Strouhal number), the nonlinear saturation mechanism responsible for the
stabilization of the limit cycle oscillation, the effect of the velocity profile on the
whistling, the hydrodynamic interference observed between successive cavities. Us-
ing an energy balance whistling amplitude can be predicted within a factor two for
moderate-high pulsation amplitude range.

The sound radiation from a short corrugated pipe segment (Hummer), used as
a musical instrument, has been investigated. An analytical radiation model is pro-
posed for the prediction of the observed frequency and the sound pressure level at
the listener position. The radiation model also qualitatively explains the amplitude
modulation, which provides the chorus like sound quality of this instrument.
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