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Abstract—Process mining techniques can be used to effectively
discover process models from logs with example behaviour. Cross-
correlating a discovered model with information in the log can
be used to improve the underlying process. However, existing
process discovery techniques have two important drawbacks. The
produced models tend to be large and complex, especially in
flexible environments where process executions involve multiple
alternatives. This “overload” of information is caused by the fact
that traditional discovery techniques construct procedural models
explicitly showing all possible behaviours. Moreover, existing
techniques offer limited possibilities to guide the mining process
towards specific properties of interest.

These problems can be solved by discovering declarative mod-
els. Using a declarative model, the discovered process behaviour
is described as a (compact) set of rules. Moreover, the discovery
of such models can easily be guided in terms of rule templates.

This paper uses DECLARE, a declarative language that pro-
vides more flexibility than conventional procedural notations such
as BPMN, Petri nets, UML ADs, EPCs and BPEL. We present
an approach to automatically discover DECLARE models. This
has been implemented in the process mining tool ProM. Our
approach and toolset have been applied to a case study provided
by the company Thales in the domain of maritime safety and
security.

I. INTRODUCTION

More and more event data become available as informa-

tion technology becomes more pervasive. The tight coupling

between processes and supporting information systems is gen-

erating unprecedented amounts of data. Logs provide detailed

information about systems and human behaviour. Therefore,

it is possible to evaluate whether observed behaviour is con-

sistent with pre-defined standards or not.

A log consists of a set of process instances, and each

process instance is described by a sequence of events. Often

a log also contains further information. It can specify, for

instance, a timestamp to indicate the time when an event has

been recorded, an originator, i.e., the agent (human or system

application) triggering the event, and other additional data.

Over the last decade, a variety of techniques and algorithms

has been proposed for mining process models from logs [1].

These methods demonstrate that logs can be used to construct

models underlying a process execution from scratch (i.e.,

process discovery [2] [3] [4] [5]), or to identify discrepancies

between logs and a given predefined process model (i.e.,

conformance testing [6]).

Traditional discovery techniques focus on the extraction of

procedural models where all possible orderings of events must

be specified explicitly. A consequence of this characteristic

is that when applying them to real life logs (especially if

generated in environments with a lot of variability), they

often produce spaghetti-like models that tend to be completely

unreadable.

In the literature, several approaches are described [4] [7]

to filter the information contained in a log and to simplify

less-structured processes. However, they do not allow analysts

to guide the discovery process to specific properties they are

interested in, e.g., events that cannot occur in sequence, events

that always coexist in the same process instance, events that

must eventually occur when a given event “a” occurs etc.

These properties are simple and help to compactly represent

complex behaviours by focusing on specific aspects.

Constraint-based process modeling aims at representing

process models in a declarative way. Instead of explicitly

specifying all the allowed sequences of events in a business

process, the possible ordering of events is implicitly specified

with constraints, i.e., rules that must be followed during

execution. Anything that does not permanently violate these

constraints is possible.

In this paper, we use the declarative language DECLARE

[8] [9] [10], which is characterised by templates and which

is based on LTL semantics. We propose an approach for the

discovery of DECLARE models allowing analysts to specify

which kinds of templates they are interested in. This feature

allows analysts to shape the discovery process to extract the

properties that are most relevant for them.

Recent publications [11] [12] [15] introduce other tech-

niques for declarative process discovery. In these works,

SCIFF, an extension of logic programming, is used to specify

declarative process models. In particular, the algorithm from

[15] repeatedly performs a beam search on all candidate con-

straints. Each iteration of the algorithm produces a constraint

that best fits both the positive traces and the negative traces that

are not excluded by the previously discovered constraints. The

main difference between these techniques and our approach is

that process discovery using SCIFF is based on the assumption

that both compliant and non-compliant traces of execution are

provided. In contrast, our approach can also be applied when

only positive interpretations are available. This represents an

advantage of our discovery technique, since, in real life, logs

hardly provide clearly-marked negative information.

Apriori-like approaches such as sequence mining [13] and

episode mining [14] can discover local patterns in a log,

but they cannot generate an overall process model from it.
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Using such approaches, it is not possible to discover rules

representing negative behaviours (what should not happen)

and choices. In general, the LTL rules underlying DECLARE

templates have more expressive power than the sequences used

in sequence mining and the partial orders used in episode

mining.

Our proposed approach has been implemented as a plug-in

in the process mining tool ProM. This plug-in has been applied

to a case study in the domain of maritime safety and security.

In this case study, we discover the behaviour of several types of

vessels starting from the data recorded by electronic sensors.

Based on practical experiences in this case study, we devel-

oped a new mechanism to deal with the noise. Moreover, these

experiences also triggered adaptations to the algorithm in order

to provide a good performance. The case study also showed

that, in order to obtain significant results, it is necessary to

address two additional requirements.

First of all, a log is often composed of prefixes of larger

process instances. This characteristic can affect the discovered

DECLARE models because some constraints can be temporar-

ily violated on the available part of a process instance but

satisfied on its continuation. To solve this problem we propose

to apply the truncated semantics introduced in [19] to discover

significant DECLARE constraints also from truncated process

instances.

Secondly, using the standard LTL semantics, a DECLARE

constraint is discovered when it is non-violated so that it is

also discovered when it is trivially valid, i.e., it is independent

of the process instances in the log. In this case, the discov-

ered constraint does not capture the desired behaviour. We

propose to use techniques for LTL vacuity detection [21] [22]

[20] to discriminate between instances where a constraint is

generically non-violated and instances where the constraint is

non-trivially valid.

This paper is organised as follows. Section II introduces the

DECLARE formalism. Section III describes the main features

of our approach and its implementation in ProM. Section IV

explains how truncated LTL semantics and LTL vacuity detec-

tion can be used to improve the discovery process. Section V

provides an illustrative case study. Section VI concludes the

paper.

II. PRELIMINARIES

DECLARE is a declarative language proposed by Pesic and

Van der Aalst in [8] [9]. The language has been developed to

fulfill two important criteria for a process modeling language:

it must be understandable for end-users and it must have a

formal semantics in order to be verifiable and executable.

A DECLARE model consists of a set of constraints which,

in turn, are based on templates. Templates are abstract entities

that define parameterised classes of properties, and constraints

are their concrete instantiations. Templates have a user-friendly

graphical representation understandable to the user and their

semantics are specified through LTL formulas (see TABLE I

for the semantics of the LTL operators). Each constraint

inherits the graphical representation and semantics from its

template. These features allow DECLARE to meet both crite-

ria mentioned before.

TABLE I
LTL OPERATORS SEMANTICS

operator semantics
©ϕ ϕ has to hold in the next position of a path.
�ϕ ϕ has to hold always in the subsequent positions of a path.
♦ϕ ϕ has to hold eventually (somewhere) in the subsequent positions of a path.

ϕ Uψ
ϕ has to hold in a path at least until ψ holds. ψ must hold in the current or
in a future position.

DECLARE is a declarative language, because instead of

explicitly specifying the flow of the interactions among process

events, it describes a set of constraints which must be satisfied

throughout the process execution. In comparison with proce-

dural approaches that produce “closed” models, i.e., all what

is not explicitly specified is forbidden, DECLARE models are

“open” and tend to offer more possibilities for execution. In

this way, DECLARE supports flexibility.

The DECLARE templates characterise the language and

highlight different features which are worth being specified

in a process model. In particular, the templates are classified

according to four groups: existence, relation, negative relation
and choice. The first three groups are described in the follow-

ing subsections. For sake of brevity, we do not describe the

choice templates and refer to [10] for more information about

the DECLARE templates.

A. Existence Templates

The existence templates involve only one event (unary rela-

tionship) and define the cardinality or the position of an event

in a process instance. Templates of the type existence(n,A)
specify that A should occur at least n times in a process

instance. In contrast, templates of the type absence(n+1, A)
specify that A should occur at most n times. Templates

exactly(n,A) indicate that A should occur exactly n times.

Finally, init(A) specifies that each process instance should

start with event A. The graphical notation and LTL semantics

are shown in TABLE II.

TABLE II
EXISTENCE TEMPLATES

name of template LTL semantics graphical representation
existence(1, A) ♦A
existence(2, A) ♦(A ∧©(existence(1, A)))

... ...
existence(n,A) ♦(A ∧©(existence(n− 1, A)))

absence(A) ¬existence(1, A)

absence(2, A) ¬existence(2, A)
absence(3, A) ¬existence(3, A)

... ...
absence(n+ 1, A) ¬existence(n+ 1, A)

exactly(1, A) existence(1, A) ∧ absence(2, A)
exactly(2, A) existence(2, A) ∧ absence(3, A)

... ...
exactly(n,A) existence(n,A) ∧ absence(n+ 1, A)

init(A) A

B. Relation Templates

Whereas an existence template describes the cardinality of

one event, a relation template defines a dependency between



two events. The responded existence(A,B) template speci-

fies that if event A occurs, event B should also occur (either

before or after event A). The co-existence(A,B) template

specifies that if one of the events A or B occurs, the other one

should also occur.

If event B is the response of event A, then when event

A occurs, event B should eventually occur after A. In con-

trast, the precedence(A,B) template indicates that event B
should occur only if event A has occurred before. Finally, the

succession(A,B) template requires that both response and

precedence relations hold between the events A and B.

Templates alternate response, alternate precedence and alter-

nate succession strengthen the above templates by specifying

that events must alternate without repetitions of these events

in between. Even more strict ordering relations are specified

by templates chain response, chain precedence and chain

succession. These templates require that the occurrences of the

two events (A and B) are next to each other. See TABLE III

for notation and semantics.

TABLE III
RELATION TEMPLATES

name of template LTL semantics graphical representation

responded existence(A,B) ♦A ⇒ ♦B

co-existence(A,B) ♦A ⇔ ♦B

response(A,B) �(A ⇒ ♦B)

precedence(A,B) (¬B UA) ∨ �(¬B)

succession(A,B)
response(A,B) ∧
precedence(A,B)

alternate response(A,B) �(A ⇒ ©(¬A UB))

alternate precedence(A,B)
precedence(A,B) ∧

�(B ⇒ ©(precedence(A,B)))

alternate succession(A,B)
alternate response(A,B) ∧
alternate precedence(A,B)

chain response(A,B) �(A ⇒ ©B)

chain precedence(A,B) �(©B ⇒ A)

chain succession(A,B) �(A ⇔ ©B)

C. Negative Relation Templates

The not co-existence(A,B) template indicates that event A
and B cannot occur together in the same process instance. Ac-

cording to the not succession(A,B) template any occurrence

of A cannot be followed eventually by B. Finally, according

to the not chain succession(A,B), A cannot be directly

followed by B. Negative relation templates are summarised

in TABLE IV.

TABLE IV
NEGATIVE RELATION TEMPLATES

name of template LTL semantics graphical representation

not co-existence(A,B) ¬(♦A ∧ ♦B)

not succession(A,B) �(A ⇒ ¬(♦B))

not chain succession(A,B) �(A ⇒ ©(¬B))

III. APPROACH

The starting point of our work was a case study concerned

with the monitoring of vessel behaviour in the domain of

maritime safety and security. Fig. 1 shows how our approach

to mining DECLARE models is embedded in the general

approach used for the case study.

Fig. 1. DECLARE Mining within a general approach for vessel monitoring

Our proposed approach for the discovery of DECLARE

models is used in the first phase of the case study to build

a declarative reference model (representing the normal be-

haviour of vessels) starting from historical logs. In this phase,

users can specify which DECLARE templates will be used to

generate the DECLARE constraints in the discovered model.

Accordingly, they can choose which aspects of the vessel be-

haviour they want to highlight through the discovery process.

The discovered DECLARE constraints can be validated and

improved by domain experts to completely fit their needs and

build a proper reference model.
In a second phase (LTL constraints generation), the resulting

DECLARE constraints are translated into LTL constraints. In

the last phase (LTL conformance checking), live logs from

vessels are checked w.r.t. the obtained LTL constraints by

applying approaches for static or run-time LTL checking [16]

[17].
In the remainder of this section, we present our approach for

the DECLARE mining. First, we introduce a core algorithm

to discover DECLARE models, then we extend it with some

additional parameters and describe the implementation in

ProM.



A. Core Discovery Algorithm
For discovering DECLARE models we need (1) a set T of

DECLARE templates and (2) a (historical) log W . The first

step of our discovery algorithm is to generate a DECLARE

model Dcandidates consisting of candidate DECLARE con-

straints. Let E = {e1, .., en} be the set of event classes

belonging to W . Dcandidates is generated by instantiating each

DECLARE template t(a1, .., ak) in T with all the possible

dispositions of length k of the n event classes e1, .., en. Each

template with k parameters produces nk potential constraints

in the model so that the number of constraints in Dcandidates

is h =
∑

t∈T nkt where kt is the number of parameters of t.
In the second step of the discovery algorithm, Dcandidates

is translated into an LTL model Lcandidates. This model is

composed of a list of LTL rules corresponding to Dcandidates.
Each rule l in Lcandidates is then checked w.r.t. W (we

use the algorithm described in [17]) to decide whether it is

satisfied in W or not. If l is not satisfied, it is removed from

the model. At the end of the checking phase, a filtered LTL

model L including the remaining LTL rules is available.
Finally, the model L is translated into a DECLARE model

D which is the result of the discovery process.

B. Additional Mining Parameters
To apply the algorithm from subsection III-A to real life

logs, we need to deal with the time complexity of the algorithm

and the noise in the logs. To address these issues, we introduce

some additional parameters to tune the discovery process.
The parameter Percentage of Events (PoE) can be used to

avoid the discovery of less-relevant constraints referring to

event classes which rarely occur in the log. This parameter

specifies the percentage of the event classes to be used to

generate the candidate constraints. For instance, if PoE = 50%
the discovered constraints will only involve 50% of the event

classes in the log (the most frequent ones). This parameter

has also a positive effect on the time complexity of the

algorithm. The number of candidate constraints in Dcandidates,

as explained in subsection III-A, can be very large. For

instance, for a log including 30 event classes and a single

template with 4 parameters, 810.000 candidate constraints are

generated and checked. Using PoE = 50%, the number of event

classes is reduced to the 15 most frequently-occurring ones;

thus, we only need to consider 50.625 candidate constraints,

16 times less than before.
The parameter Percentage of Instances (PoI) can be used

to specify that a DECLARE constraint can still be discovered

even if it does not hold for all process instances of the log.

For instance, if PoI = 80%, a constraint will be discovered

if at least 80% of the process instances satisfy the constraint.

This parameter is useful in case of noisy logs, where rules are

violated in exceptional cases, but hold for most cases.

C. Implementation
All phases of the approach shown in Fig. 1 are supported

by ProM plug-ins1.

1http://www.win.tue.nl/declare/declare-miner/

The DECLARE mining phase is implemented as the DE-

CLARE Miner. The DECLARE Miner takes as input two

ProM objects representing the (historical) log and the set of

available DECLARE templates. Before starting the discovery,

the DECLARE miner allows users to specify which templates

will be used to generate the DECLARE constraints in the

discovered model. Moreover, users can set (for each template)

the parameters described in subsection III-B to tune the

discovery process according to their specific needs (Fig. 2).

The DECLARE Miner generates a DECLARE model object

by using the algorithm described in subsection III-A.

Fig. 2. GUI of the DECLARE Miner

The LTL constraints generation phase is supported by the

DECLARE2LTL plug-in. It takes as input a DECLARE model

object and generates the corresponding LTL model object. This

object can be used as an input of the LTL Checker to check

the conformance of live logs w.r.t. the discovered model (LTL

conformance checking phase).

IV. ADVANCED MINING TECHNIQUES

In this section, we introduce two advanced techniques to

support the discovery of DECLARE models: the truncated
semantics for LTL formulas and the LTL vacuity detection.

These techniques are typically applied in the field of model

checking, but we have modified them for process discovery.

A. Truncated Semantics

In our core algorithm, a (candidate) constraint is discovered

if it is satisfied in a given percentage of the process instances.

However, often the available logs are extracted from larger

logs and the process instances are prefixes of larger process

instances. This affects the discovered constraints.

For instance, the semantics of the chain response template

is defined as:

�(A ⇒ ©B).

This means that, for every occurrence of A, a next event

exists and this event is B. If A is the last event of the



process instance, there is no next event and this LTL formula

is, in any case, not satisfied. If the process instance is a

prefix of a larger process instance, using this semantics a

constraint can be temporarily violated on the available part

of the process instance but satisfied on its continuation. As a

result, when partial logs are used as input, some constraints

remain undiscovered.

The problem of deciding the truth value of an LTL formula

on a truncated path is addressed in [19]. In a truncated path

the truth value of an LTL formula can be non-definitive (i.e.,

temporarily violated or temporarily satisfied). For instance, the

formula �A is either violated or temporarily satisfied in any

truncated path; similarly, the formula ♦A is either satisfied or

temporarily violated. To address this problem, [19] introduces

a strong semantics and a weak semantics for LTL formulas

where a formula is evaluated to false and true respectively if its

truth value is non-definitive. In the traditional LTL semantics

(called neutral semantics), a formula is evaluated to true if

it is temporarily satisfied and it is evaluated to false if it is

temporarily violated.

Using the weak semantics for the chain response template

instead of the neutral one, a chain response constraint is

considered satisfied in a process instance also if its truth

value is non-definitive. In this way, it is possible to weaken

the acceptance criterion used to filter the list of candidate

constraints in our discovery algorithm which results in an

increased number of discovered constraints.

According to the strength relation theorem [19], the strong

semantics implies the neutral semantics, which, in turn, implies

the weak semantics. From this theorem it follows that using

the strong semantics we have maximal reliability about the

satisfaction of a constraint; on the other hand, using the weak

semantics, we have more flexibility in the discovery process.

The weak LTL semantics seems to give more significant results

when using logs containing truncated process instances.

B. Vacuity Detection

A constraint is vacuously satisfied for an instance, if the

constraint is not really “activated”. Formally, a formula ϕ is

vacuously satisfied in a path π, if π satisfies ϕ and there is

some sub-formula of ϕ that does not affect the truth value

of ϕ in π [21]. A typical example of a vacuously satisfied

constraint is given by the formula “every request is eventually

acknowledged” in a process instance that does not contain

requests.

In [22], Kupferman and Vardi propose a general method for

detection of vacuity and generation of interesting witnesses for

specifications in LTL. A path π is an interesting witness for

a formula ϕ if π satisfies ϕ non-vacuously [21]. Interesting

witnesses are identified by checking the formula witness(ϕ)
defined in [22]. In particular, a path π is an interesting witness

for ϕ, if π satisfies witness(ϕ).
In the process discovery context, interesting witnesses are

process instances where a constraint is non-vacuously satisfied.

We need to be careful when combining this with the weak

LTL semantics. For instance, using weak LTL semantics the

formula “every request is eventually acknowledged” is non-

vacuously satisfied in a process instance that contains only

one request and that does not contain acknowledgements. To

combine the discovery of non-vacuously satisfied constraints

with the benefits gained using the weak LTL semantics, we

call a (truncated) process instance an interesting witnesses for

a constraint ϕ if:

• using the weak LTL semantics, the process instance

satisfies ϕ, and

• using the neutral LTL semantics, some prefix of the

(truncated) process instance satisfies ϕ non-vacuously

(i.e., it satisfies witness(ϕ)).

A truncated process instance is an interesting witness for

the formula “every request is eventually acknowledged” if it

contains at least a request followed by an acknowledgement.

V. CASE STUDY

In this section, we present the results of the DECLARE

mining phase of a larger case study on the monitoring of

vessel behaviour. The case study has been provided by Thales,

a global electronics company delivering mission-critical infor-

mation systems and services for the Aerospace, Defense, and

Security markets. In our experiments, we use a (historical) log

describing the behaviour of different types of vessels. The log

is recorded through maritime AIS (Automatic Identification

System, [18]) receivers. Every vessel has an on-board AIS

transponder that uses several message types and reporting

frequencies to broadcast information about the vessel. An

AIS receiver collects these broadcasted AIS messages, and

produces a TCP/IP stream of messages.

In the considered log, each process instance corresponds

to a specific vessel. An event is a change in the navigational

status of a vessel (e.g., moored, under way using engine, at
anchor, under way sailing, not defined). The log is an extract

of a larger log and corresponds to a period of one week.

Vessels are expected to behave differently depending on

their type. Therefore, the first step of our experimentation con-

sists of splitting the log by vessel type (e.g., passenger ship,

fishing boat, cargo/hazard pollutant A vessel, cargo/hazard
pollutant C vessel, pilot boat, tanker). The result of this

pre-processing phase is a set of sub-logs where each sub-

log contains the instances for one vessel type. Starting from

each sub-log, the DECLARE miner is used to construct a

DECLARE model representing the observed behaviour of the

related vessel type.

A. Dealing with Truncated Process Instances

1) Passenger Ships: TABLE V shows the settings for an

experiment aimed at discovering chain response constraints for

vessel type passenger ship with a PoI of 100% (i.e., constraints

satisfied by all instances).

TABLE V
EXPERIMENT 1: EXPERIMENTAL SETTINGS

experiment number template PoI PoE
1 chain response 100% 100%



According to the traditional LTL semantics of the chain

response template, this experiment produces no results. How-

ever, if we look at the log, it is composed of a regular

alternation of events under way using engine and moored.

Yet no chain response constrains are discovered due to the

phenomenon described in subsection IV-A; process instances

are truncated.

In Fig. 3, the results for experiment 1 (with the same ex-

perimental settings) using the weak LTL semantics are shown.

These results reflect the alternation of events under way using
engine and moored characterizing the sub-log. In the following

experiments, we always use the weak LTL semantics.

Fig. 3. Experiment 1: discovered chain response constraints

B. Discovery of Non-Vacuously Satisfied Constraints

1) Fishing Boats: In TABLE VI, the settings for an exper-

iment to discover chain response constraints for a fishing boat
is shown. TABLE VII shows the results for this experiment.

TABLE VI
EXPERIMENT 2: EXPERIMENTAL SETTINGS

experiment number template PoI PoE
2 chain response 100% 100%

TABLE VII
EXPERIMENT 2: RESULTS

discovered constraint PoI
chain response(not defined, not defined) 100%

chain response(not defined, under way using engine) 100%
chain response(not defined, under way sailing) 100%

chain response(not defined, moored) 100%
chain response(not defined, at anchor) 100%

chain response(under way sailing, under way sailing) 100%
chain response(under way sailing, under way using engine) 100%

chain response(under way sailing, not defined) 100%
chain response(under way sailing, moored) 100%

chain response(under way sailing, at anchor) 100%
chain response(at anchor, under way using engine) 100%
chain response(moored, under way using engine) 100%

In this case, we have a very unusual result because, for

instance, if chain response(not defined, not defined) is satisfied

in 100% of the instances, you would not expect that also

chain response(not defined, under way using engine), chain
response(not defined, under way sailing), chain response(not
defined, moored), and chain response(not defined, at anchor)
can be satisfied in 100% of the instances. Moreover, event

under way sailing has the same behaviour.

If we look at the log, it contains, for this vessel type, a

process instance consisting of only one event not defined and

a process instance consisting of only one event under way
sailing. In the remaining instances, these events never occur.

For this reason, using the weak LTL semantics for the chain

response template, events not defined and under way sailing
can be associated to every other event.

As explained in subsection IV-B, the problem in this case

is that a constraint is discovered also when it is vacuously
satisfied. According to [22], for the LTL semantics of the chain

response template

ϕ = �(A ⇒ ©B),

witness(ϕ) = ϕ ∧ ♦A.

Therefore, using the definition given in subsection IV-B, a

(truncated) process instance is an interesting witnesses for

chain response(A, B) if at least once A is directly followed

by B. In the following experiments, we always refer to this

definition.

If we discover the chain response constraints for which

interesting witnesses exist, we obtain the results shown in

TABLE VIII. In this table, we specify the percentage of non-

vacuously satisfied instances, i.e., interesting witnesses, and

also the PoI parameter, i.e., the percentage of process instances

where the constraint is (vacuously or non-vacuously) satisfied.

TABLE VIII
EXPERIMENT 2: INTERESTING WITNESSES

discovered constraint interesting witnesses PoI
chain response(under way using engine, moored) 14% 95%
chain response(moored, under way using engine) 10% 100%

chain response(at anchor, under way using engine) 5% 100%

For example, constraint chain response(moored, under way
using engine) is satisfied for 100% of the process instances,

but only 10% of them is an interesting witness. This percentage

can be used to select the most interesting constraints.

C. User-Guided Discovery of DECLARE Constraints

In this subsection, we show how our approach allows

users to guide the discovery process towards a wide range

of properties.

1) Cargo/Hazard Pollutant C Vessels: TABLE IX shows

the settings for an experiment aimed at discovering which

events do not co-exist in the same process instance for vessel

type cargo/hazard pollutant C.

TABLE IX
EXPERIMENT 3: EXPERIMENTAL SETTINGS

experiment number template PoI PoE
3 not co-existence 100% 100%

In experiment 3, we discover all the constraints derived from

the not co-existence template with a PoI of 100%. The results

for experiment 3 are shown in Fig. 4.

For the LTL semantics of the not co-existence template

ϕ = ¬(♦A ∧ ♦B),

witness(ϕ) = ϕ ∧ ¬ϕ



Fig. 4. Experiment 3: discovered not co-existence constraints

which is never satisfied. Therefore, not co-existence con-

straints are never non-vacuously satisfied.

The results of experiment 3 suggest the existence of two

sub-types for vessel type cargo/hazard pollutant C: one com-

posed of sailing boats which are never moored and another

one composed of motorboats which never stop at anchor. This

is confirmed by inspecting the log.

2) Pilot Boats: TABLE X shows the settings for an experi-

ment aimed at discovering alternate response constraints using

the sub-log associated to vessel type pilot boat. The results for

experiment 4 are shown in Fig. 5

TABLE X
EXPERIMENT 4: EXPERIMENTAL SETTINGS

experiment number template PoI PoE
4 alternate response 100 100%

Fig. 5. Experiment 4: discovered alternate response constraints

For the LTL semantics of the alternate response template

ϕ = �(A ⇒ ©(¬A UB)),

witness(ϕ) = ϕ ∧ ¬(�(A ⇒ ©B)).

The term ¬(�(A ⇒ ©B)) indicates that, to be non-vacuously

satisfied, an alternate response constraint cannot be reduced to

a chain response. This term is equivalent to ♦(A ∧ ¬(©B)),
and hence it can also be interpreted as that at least once an

event A is not directly followed by an event B.

As shown in TABLE XI, 13% of the instances of the sub-log

associated to vessel type pilot boat correspond to interesting

witnesses for alternate response(at anchor, moored). Con-

straints alternate response(at anchor, under way using engine)
and alternate response(moored, under way using engine) are

trivially satisfied because events at anchor and moored are

always (directly) followed by under way using engine.

TABLE XI
EXPERIMENT 4: INTERESTING WITNESSES

discovered constraint interesting witnesses PoI
alternate response(at anchor, moored) 13% 100%

The constraint alternate response(at anchor, moored) indi-

cates that when a pilot boat stops at anchor it does not stop

at anchor anymore before getting moored.

3) Cargo/Hazard Pollutant A: TABLE XII shows the set-

tings for an experiment to discover not chain succession

constraints for vessel type cargo/hazard pollutant A.

TABLE XII
EXPERIMENT 5: EXPERIMENTAL SETTINGS

experiment number template PoI PoE NoC
5 not chain succession 100% 100% −

For the LTL semantics of the not chain succession template

ϕ = �(A ⇒ ©(¬B)),

witness(ϕ) = ϕ ∧ ♦A.

The results for this experiment are shown in Fig. 6. These

results show that when this type of ship is not under command
the next navigational status cannot be moored or at anchor.

Fig. 6. Experiment 5: discovered not chain succession constraints

TABLE XIII shows the percentage of interesting witnesses

for the discovered constraints. Since event not under command
rarely happens in the sub-log, this percentage is extremely low.

TABLE XIII
EXPERIMENT 5: INTERESTING WITNESSES

discovered constraint interesting witnesses PoI
not chain succession(not under command, moored) 1% 100%

not chain succession(not under command, at anchor) 1% 100%

D. Discovery of Branched Constraints

1) Tanker: The sub-log associated to vessel type

tanker/unknown cargo type D is composed of an alternation

of event under way using engine followed by moored or at
anchor. Therefore, this vessel type represents a good example

where we can discover the chain response template where

the second parameter is branched. In the LTL semantics of a



branched template, the branched parameters are replaced by

the disjunction of two or more parameters. In this case, the

semantics of the chain response template becomes:

ϕ = �(A ⇒ ©(B ∨ C)).

For this semantics we have

witness(ϕ) = ϕ ∧ ¬(�(A ⇒ ©B)) ∧ ¬(�(A ⇒ ©C)).

This means that this type of constraint is non-vacuously

satisfied in all the process instances where at least once an

event A is not directly followed by a B, and at least once an

event A is not directly followed by a C.

One of the discovered constraints is a chain response

constraint where the first parameter is under way using engine
and the second one is the disjunction of moored and at
anchor. A further experiment (experiment 6) has shown that

this constraint can be discovered for different types of tankers.

However, in some cases we need to remove noisy process

instances by tuning the parameter PoI. In TABLE XIV, for

each type of tanker, we list the PoI parameter, indicating

the percentage of instances where the discovered constraint

is (vacuously or non-vacuously) satisfied, and the percentage

of interesting witnesses.

TABLE XIV
EXPERIMENT 6: RESULTS

vessel type PoI interesting witnesses
tanker/unknown cargo type A 94% 9%

tanker/hazard pollutant A 91% 11%
tanker/hazard pollutant B 91% 6%
tanker/hazard pollutant C 100% 13%
tanker/hazard pollutant D 100% 8%

tanker/unknown cargo type B 100% 13%
tanker/unknown cargo type C 100% 13%
tanker/unknown cargo type D 100% 13%
tanker/unknown cargo type E 100% 33%
tanker/unknown cargo type F 91% 12%

VI. CONCLUSION

In this paper, we have introduced a novel approach to

discover declarative models from logs that allows users to

guide the discovery process towards specific properties.

Moreover, we have shown how results on truncated seman-

tics can be used to obtain significant results in the case that

only partial logs are available. We have also applied results on

vacuity detection to identify, for each discovered constraint,

the percentage of interesting witnesses, i.e., process instances

where the constraint is non-trivially valid.

In the near future, we want to extend our approach by

providing users with the possibility to discover strongly, neu-

trally or weakly satisfied constraints depending on the level

of reliability or flexibility they need in the discovery process.

Given a constraint and a process instance where it is non-

vacuously satisfied, it could also be useful to provide further

information about how many times the constraint has been

“activated” in the process instance (counting the number of

violations for ¬witness(ϕ)). Also, given a constraint and a

process instance where it is violated, the level of “healthiness”

of the process instance can be evaluated based on the number

of violations.
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