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FLAT-CONTAINING AND SHIFT-BLOCKING SETS IN F
r
2

AART BLOKHUIS AND VSEVOLOD F. LEV

Abstract. For non-negative integers r ≥ d, how small can a subset C ⊆ F
r

2
be, given

that for any v ∈ F
r

2
there is a d-flat passing through v and contained in C ∪ {v}?

Equivalently, how large can a subset B ⊆ F
r

2
be, given that for any v ∈ F

r

2
there is a

linear d-subspace not blocked non-trivially by the translate B + v? A number of lower
and upper bounds are obtained.

1. Introduction

The well-known finite-field version of the Kakeya problem is to estimate the smallest

size of a subset of a finite vector space, containing a line in every direction. A natural dual

problem is to estimate the smallest size of a subset containing a line through every point

of the space, with the possible exception of the point itself. (The problem would become

trivial had we not excluded the anchor point from consideration. This can be considered

as an analogue of forbidding the zero difference in the definition of a progression-free

set.) More generally, given an integer d one can consider sets “essentially containing” a

d-flat through every point of the space. This motivates the following definitions.

Let V be a finite vector space and d an integer with 0 ≤ d ≤ dim V . We say that a

subset C ⊆ V is d-complete if for every v ∈ V there exists a d-subspace Lv ≤ V such

that

v + (Lv \ {0}) ⊆ C;

that is, through every point of V passes a d-flat entirely contained in C, save, perhaps,

for the point itself. Equivalently, C ⊆ V is d-complete if any translate of C contains all

non-zero vectors of some d-subspace. By γV (d) we denote the smallest possible size of a

d-complete subset C ⊆ V ; alternatively, γV (d) is the smallest possible size of a union of

the form
⋃

v∈V

(

v + (Lv \ {0})
)

,

for all families {Lv : v ∈ V } of d-subspaces.

Clearly, a subset C ⊆ V is d-complete if and only if its complement B := V \ C has

the property that for every v ∈ V there is a d-subspace Lv ≤ V with
(

v + (Lv \ {0})
)

∩B = ∅.
1
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We call sets with this property non-blocking ; quantitatively speaking, B ⊆ V is d-non-

blocking if through every point of V passes a co-d-flat disjoint with B, with the possible

exception of the point itself. Equivalently, B ⊆ V is d-non-blocking if for any translate of

B there is a co-d-subspace of V , avoiding all non-zero points of the translate. We denote

by βV (d) the largest possible size of a d-non-blocking subset B ⊆ V .

The significance of the quantity βV (d) lies in the fact that every subset B ⊆ V of size

|B| > βV (d) is guaranteed to have a translate blocking (that is, having non-zero and

non-empty intersection with) all co-d-subspaces of V .

Writing r := dimV , from the discussion above we have

βV (d) = |V | − γV (r − d) (1)

for all 0 ≤ d ≤ r. In view of this basic relation, our results can be equivalently stated

in terms of either of the quantities γV and βV . We do not follow any strong rule in

this respect, each time choosing whatever seems more natural to us. In some cases,

two restatements are given; in most other cases the result is stated in terms of γV if it

is of primary interest for flats of low dimension, and in terms of βV when it is mostly

interesting for flats of low co-dimension.

It is straightforward to verify that for every finite vector space V of dimension r :=

dimV ≥ 1 we have

0 = γV (0) < γV (1) ≤ · · · ≤ γV (r − 1) < γV (r) = |V |; (2)

equivalently,

0 = βV (0) < βV (1) ≤ · · · ≤ βV (r − 1) < βV (r) = |V |. (3)

In what follows we confine ourselves to the situation where V is a vector space over

the two-element field F2. We denote the r-dimensional vector space over this field by F
r
2,

and we abbreviate γFr
2
(d) as γr(d), and βF

r
2
(d) as βr(d).

We present our results in three blocks. In Section 3 we make some basic observations

and in particular, find γr(1) and βr(1) (hence also γr(r − 1) and βr(r − 1), cf. (1)), and

determine γr(2) up to a multiplicative factor; the very short proofs are also included in

Section 3. Non-existence results showing that complete sets are large (and accordingly,

non-blocking sets are small) are presented in Section 4. Section 5 lists a number of

upper-bound estimates for γr (hence, lower-bound estimates for βr), based on specific

constructions of complete and non-blocking sets.

The proofs of the results discussed in Sections 4 and 5 are given in Sections 6 and 7,

respectively.
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2. Motivation and acknowledgement

Our initial motivation came from the following problem raised by Ernie Croot (personal

communication with the second-named author). Suppose that to each v ∈ F
r
2 there

corresponds a subset Av ⊆ F
r
2, and write 2 · Av for the set of all non-zero elements of

F
r
2, representable as a sum of two elements of Av. Given that all sets Av are large, how

large must the union C := ∪v∈Fr
2
(v + 2 · Av) be? Does there exist a constant c > 1

such that if |Av| > 2r/rc, then C contains all but at most 2r/rc elements of Fr
2? In

the special case where all Av are actually affine subspaces of Fr
2, this question can be

restated in our present terms: is it true that if d < c log2 r, then βr(d) < 2r/rc? The

reader will easily check that Theorem 4 below yields much stronger estimates: say, we

have βr(d) < 20.85r whenever d < 0.15r. However, the general case where Av are arbitrary

sets (not necessarily affine subspaces) cannot be treated with our present approach.

We are grateful to Ernie Croot for bringing this problem to our attention.

3. Basic observations: lines, hyperplanes, and 2-flats

The quantities γr(1) and βr(1) and, consequently, γr(r − 1) and βr(r− 1), are easy to

determine.

Theorem 1. For every integer r ≥ 1 we have γr(1) = βr(1) = 2. Hence, βr(r − 1) =

γr(r − 1) = 2r − 2.

Proof. The equality γr(1) = 2 follows from the observation that a singleton set does

not contain a 1-flat passing through its unique element, whereas for any two-element set

C ⊆ F
r
2 and any v ∈ F

r
2, there is 1-flat passing through v and contained in C ∪ {v}.

To find βr(1) we first notice that for any two-element set B ⊆ F
r
2 there is a linear co-1-

subspace, disjoint from B \{0}; hence βr(1) ≥ 2. On the other hand, if B = {b1, b2, b3} ⊆
F
r
2 is a three-element set, then the translate (b1 + b2 + b3) +B = {b1 + b2, b2 + b3, b3 + b1}

blocks every linear co-1-subspace: for, the vectors b1 + b2, b2 + b3, and b3 + b1 add up

to 0, and therefore they are not simultaneously contained in the complement of a linear

co-1-subspace. Thus, βr(1) ≤ 2, and it follows that, indeed, βr(1) = 2. �

To estimate γr(2) we remark that if every element of Fr
2 is a sum of three pairwise

distinct elements of a set S ⊆ F
r
2, then

(

|S|
3

)

≥ 2r, whence |S| > 3
√
6 · 2r/3. On the other

hand, sets S of size |S| = O(2r/3), with the property just mentioned, are known to exist:

see, for instance, [CHLL97, Theorem 5.4.28], or consider a decomposition of Fr
2 into the

direct sum of three subspaces of roughly equal dimension and take S to be their union.
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Theorem 2. If r ≥ 2, then γr(2) is the smallest cardinality of a subset C ⊆ F
r
2 with

the property that every element of Fr
2 is representable as a sum of three pairwise distinct

elements from C. Consequently, γr(2) = Θ
(

2r/3
)

.

Proof. Just notice that for given vectors v, c1, c2, c3 ∈ F
r
2 to form a 2-flat it is necessary

and sufficient that v = c1 + c2 + c3 and c1, c2, c3 are pairwise distinct. �

An interesting property of the quantity γr(d) is that for any fixed value of d, it is

sub-multiplicative in r.

Lemma 1. For any integer r1, r2 ≥ d ≥ 0 we have

γr1+r2(d) ≤ γr1(d)γr2(d).

Proof. Let r := r1+ r2 and write Fr
2 = V1⊕V2, where dimV1 = r1 and dimV2 = r2. Find

C1 ⊆ V1 and C2 ⊆ V2 such that for i ∈ {1, 2} we have |Ci| = γri(d) and Ci is d-complete

in Vi. We claim that C1 + C2 is d-complete in F
r
2, so that

γr1+r2(d) ≤ |C1 + C2| = |C1||C2| = γr1(d)γr2(d).

To see this, fix v ∈ F
r
2, write v = v1 + v2 with v1 ∈ V1 and v2 ∈ V2, find d-flats F1 ⊆ V1

and F2 ⊆ V2 such that vi ∈ Fi ⊆ Ci ∪ {vi} for i ∈ {1, 2}, and select arbitrarily bases

{e1, . . . , ed} and {f1, . . . , fd} of the linear d-spaces v1+F1 and v2+F2, respectively. Then

all points of the d-flat v+〈e1+f1, . . . , ed+fd〉, other than v, are contained in C1+C2. �

Using a standard argument, it is easy to derive from Lemma 1 that to any fixed d ≥ 1

there corresponds some κd ∈ [0, 1] such that γr(d) = 2(κd+o(1))r as r → ∞. As it follows

from Theorems 1 and 2, we have κ1 = 0 and κ2 = 1/3. For d ≥ 3 the precise values of

κd are not known to us, but we will see that 3/8 ≤ κ3 ≤ 3/7 (Theorems 3 and 5), and

that κd < 1/2 for all d (Theorem 5).

4. Non-existence results: lower bounds for γr, upper bounds for βr

By Theorem 2 and (2), we have γr(3) = Ω(2r/3). The following theorem presents an

improvement of this estimate.

Theorem 3. If r ≥ 15 is an integer, then

γr(3) > c · 23r/8,
where c = (16464)1/8 ≈ 3.3656.

The argument employed in the proof of Theorem 3 (see Section 6) can also be used

to estimate γr(3) non-trivially for 3 ≤ r ≤ 14; say, it is easy to derive from (11) that
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γr(3) > 2r/2 for every such r. The only reason to confine to r ≥ 15 is that this allows us

to keep the coefficient c reasonably large.

Corollary 1. For integer r ≥ d ≥ 3, we have γr(d) = Ω(23r/8) with an absolute implicit

constant.

Recall, that the entropy function is defined by

H(x) := −x ln x− (1− x) ln(1− x), 0 < x < 1,

and that

1√
2r

erH(d/r) ≤
(

r

d

)

<
d

∑

j=0

(

r

j

)

≤ erH(d/r) (4)

for all integer 1 ≤ d ≤ r/2; this follows easily, for instance, from [McWS77, Ch. 10, §11,
Lemmas 7 and 8]. (Although this is not used below, we remark that the expression

in the right-hand side of (4) can be given a nice symmetrical form; namely, erH(d/r) =

rr/(dd(r − d)r−d).)

Using (4), it is easy to verify that our next theorem improves Corollary 1 for flats of

dimension d & 0.073r (by which we mean d > (κ + o(1))r with an absolute constant

κ ≈ 0.073).

Theorem 4. For integer r ≥ d ≥ 0 we have

γr(d) ≥
d−1
∑

j=0

(

r

j

)

. (5)

Equivalently,

βr(d) ≤
d

∑

j=0

(

r

j

)

. (6)

In Section 6, two proofs of Theorem 4 are given. Elaborating on one of them, we will

also establish the following slight refinement.

Theorem 4′. For integer r ≥ d ≥ 0 we have

(1− 2d−r)βr(d) ≤
d

∑

j=0

(

r

j

)

− 2d.

It is not difficult to derive from Theorem 4′, for instance, that βr(d) ≤
∑d

j=0

(

r
j

)

−2d−1

whenever d < r/2, or that βr(d) ≤
∑d

j=0

(

r
j

)

− 2d whenever d < 0.227r (for the latter

conclusion assume, for a contradiction, that βr(d) ≥
∑d

j=0

(

r
j

)

− 2d + 1, and use (4)).
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5. Constructions: upper bounds for γr, lower bounds for βr

All bounds listed in this section are constructive. We confine here to the resulting

estimates and comparison between them, with the underpinning constructions being

incorporated into the proofs (presented in Section 7). For the background material in

coding theory (simplex codes, dual-BCH codes, Greismer and Carlitz-Uchiyama bounds),

the reader can refer any standard textbook, such as [McWS77, vL98].

Theorem 5. For any integer r ≥ d ≥ 3 we have

γr(d) < Kd · 2(
1

2
−εd)r,

where εd =
1

2(2d−1)
and Kd = (2d − 1)22

d−1−(3/2)+εd .

As a particular case to be compared against Theorem 3, we have γr(3) = O(23r/7).

As the reader will see, the proof of Theorem 5 relies on the properties of simplex

codes. The reason to prefer simplex codes over other codes is that these codes have the

largest possible relative minimum distance among all codes of given dimension d (as the

Griesmer bound readily shows). The drawback of the simplex codes, on the other hand,

is that their length is exponential in the dimension, leading eventually to the double-

exponential dependence on d in the constant Kd of Theorem 5, and hence resulting in

very poor bounds as d grows. Indeed, the estimate of the theorem becomes trivial for

d ∼ log r. Using other codes one can produce non-trivial estimates for reasonably large

values of d. Specifically, the argument employed in the proof of Theorem 5 shows that

if n and µ are positive integers such that there exists a code S of length n, minimum

distance µ, dimension d, and the largest weight M satisfying (n−M) ⌊r/n⌋ ≥ d, then

γr(d) < 2(1−µ/n)r+n+d−µ.

Indeed, it suffices that the dimension of S be at least d, as it follows by considering any

subcode of S of dimension d. Choosing S to be the dual of a BCH code with appropriately

chosen parameters, we prove

Theorem 6. There exists an absolute constant K such that for any integer r ≥ d ≥ 3

we have

γr(d) < 20.5r+K(dr/ log2 r)
2/3

.

Hence, if d = o(
√
r log2 r), then γr(d) < 2(0.5+o(1))r.

We now turn to estimates which (unlike those of Theorems 5 and 6) are mostly of

interest for flats of low co-dimension.
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Theorem 7. For integer r and d with 2 ≤ d ≤ r/2, let ρ denote the remainder of the

division of r by 2d. Then

βr(d) =
∑

0≤i≤2d−ρ, 0≤j≤ρ
i+j=d

(

2d− ρ

i

)(

ρ

j

)

⌊ r

2d

⌋i (⌊ r

2d

⌋

+ 1
)j

Consequently,

βr(d) ≥
(

2d

d

)

⌊ r

2d

⌋d

.

We notice that Theorems 4 and 7 give βr(d) = Ωd(r
d). It follows, say, that γr(r− 2) =

2r − Ω(r2); compared with Theorem 2 this shows that γr, considered as a function of

d ∈ [0, r], exhibits a highly asymmetric behavior.

Theorem 8. For integer r ≥ d ≥ 2, let ρ denote the remainder of the division of r by

d. Then

βr(d) ≥
(⌊r

d

⌋

+ 1
)d−ρ (⌊r

d

⌋

+ 2
)ρ

.

Consequently,

βr(d) > (r/d)d,

and if d ≥ r/2, then

βr(d) ≥
(

3

2

)r (
4

3

)d

.

While the bounds of Theorems 7 and 8 may not be easy to compare analytically,

computations suggest that Theorem 7 gives a better estimate for all d ≤ r/2, save for a

finite (and small) number of exceptional pairs (d, r). For d > r/2 Theorem 7 yields

βr(d) ≥ βr(⌊r/2)⌋ ≥
(

2 ⌊r/2⌋
⌊r/2⌋

)

, (7)

which is superseded by Theorem 8 for d very close to r; namely, for r − d . 1.738 ln r.

We also notice that if, indeed, r − d . 1.443 ln r, then Theorem 8 itself is superseded by

Theorem 5.

Theorem 9. Suppose that r ≥ d ≥ 1, k ≥ 1, and ri ≥ di ≥ 0 (i = 1, . . . , k) are integers

such that r1 + · · ·+ rk ≤ r, d1 + · · ·+ dk ≤ d, and ri ≤ d+ di for i = 1, . . . , k. Then

βr(d) ≥
(

r1
d1

)

· · ·
(

rk
dk

)

.
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It is not difficult to see that for d ≥ r/2, Theorem 9 gives

βr(d) ≥
(

r

⌊r/2⌋

)

;

this is identical or marginally stronger than (7). For 1 ≤ d ≤ r/2, the maximum of the

product
(

r1
d1

)

· · ·
(

rk
dk

)

under the constrains ri ≥ di ≥ 0, r1+· · ·+rk ≤ r, and d1+· · ·+dk ≤ d

(with ri ≤ d + di not assumed!) is
(

r
d

)

; this is to be compared with Theorem 4 and also

with the following corollary.

Corollary 2. If r ≥ 1 and
√
r < d ≤ r/2 are integer, then

βr(d) > erH(d/r)−2(r/d) ln r.

Consequently, if d/
√
r → ∞ and d ≤ r/2, then

βr(d) >

(

r

d

)1+o(1)

.

A precise comparison between Theorems 7 and 9 is hardly feasible. However, the “main

terms” (cf. Corollary 2) are easy to compare, and it turns out that

erH(d/r) >

(

2d

d

)

( r

2d

)d

for all positive integer r and d ≤ r/2. We remark, on the other hand, that Theorem 9

fails to produce reasonable bounds if d is very small (as compared to r).

6. Proofs, I: non-existence results

Proof of Theorem 3. Suppose that C ⊆ F
r
2 is 3-complete; that is, every element v ∈ F

r
2

lies in a 3-flat Fv with the other seven elements in C. We want to show that if r ≥ 15,

then |C| > c · 23r/8.
Let S be the set of all those s ∈ F

r
2 representable as a sum of two distinct elements

of C, and for each s ∈ S denote by ν(s) the number of such representations, with

two representations that differ by the order of summands considered identical. Write

B := F
r
2 \ C, and for each s ∈ S let B(s) be the set of all those b ∈ B with s ∈ b + Fb.

(Notice, that b + Fb is the linear 3-subspace, parallel to the flat Fb.) Thus, every b ∈ B

belongs to exactly seven sets B(s), and hence
∑

s∈S

|B(s)| = 7|B|. (8)

For every s ∈ S and b ∈ B(s) there are three distinct representations s = c1 + c2 with

c1, c2 ∈ Fb ∩C. Since these representations uniquely determine Fb, and hence b itself, we
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have

|B(s)| ≤
(

ν(s)

3

)

<
1

6
(ν(s))3. (9)

Also,

|B(s)| ≤ |C| (10)

as b+ s ∈ Fb \ {b} for each b ∈ B(s), implying B(s) + s ⊆ C.

Averaging multiplicatively (9) and (10) with the exponent weights 1/3 and 2/3, re-

spectively, we get

|B(s)| < 1
3
√
6
|C|2/3ν(s),

and substitution into (8) yields

7(2r − |C|) < 1
3
√
6
|C|2/3

∑

s∈S

ν(s) =
1
3
√
6
|C|2/3

(|C|
2

)

. (11)

If |C| ≥ 2r/2, then we are done as 2r/2 > c · 23r/8 for r ≥ 15. If |C| < 2r/2, then

(2r − |C|)/(|C| − 1) > 2r/|C|; consequently, (11) gives

|C|8/3 > 14
3
√
6 · 2r

implying the result. �

Next, we give two proofs of Theorem 4. Both proofs rely on the fact that if Lr,d is

the vector space of all multilinear polynomials in r variables over the field F2 of total

degree at most d, then dimLr,d =
∑d

j=0

(

r
j

)

(which is immediate from looking at the

“monomial basis”). Nevertheless, the two proofs seem to differ significantly. We keep

using the notation Lr,d below.

Our first proof goes along the lines of Dvir’s proof [D09] of the finite field Kakeya

conjecture. We need two basic facts about polynomials over the field F2.

Fact 1. For integer d ≥ 1, a polynomial in d variables over F2 of degree smaller than

d cannot vanish on all, but at most one point of Fd
2. (To see this, observe that every

monomial of the polynomial in question is independent of at least one variable, hence

the sum of its values over Fd
2 is equal to 0.)

Fact 2. For integer r ≥ 1, a non-zero multilinear polynomial in r variables over F2

cannot vanish on all points of Fr
2. (For the proof, notice that every function from F

r
2 to

F2 can be represented by a multilinear polynomial, and that both the total number of

all functions and the total number of all multilinear polynomials are equal to 22
r
. Thus,

every function is uniquely represented by such a polynomial.)
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First proof of Theorem 4. Assuming that (5) is false, find a d-complete set C ⊆ F
r
2 with

|C| <
∑d−1

j=0

(

r
j

)

. Thus, for every v ∈ F
r
2 there exists a d-subspace Lv ≤ F

r
2 with v + (Lv \

{0}) ⊆ C. Since dimLr,d−1 =
∑d−1

j=0

(

r
j

)

, the evaluation map from Lr,d−1 to F
|C|
2 (sending

every polynomial to the |C|-tuple of its values at the points of C) is degenerate. Hence,

there is a non-zero polynomial P ∈ Lr,d−1 vanishing at every point of C. As a result, for

each v ∈ F
r
2 there exist v1, . . . , vd ∈ F

r
2 such that

P (v + t1v1 + · · ·+ tdvd) = 0, (t1, . . . , td) ∈ F
d
2 \ {0}.

This means that the polynomial

P (v + T1v1 + · · ·+ Tdvd) ∈ F2[T1, . . . , Td]

vanishes at every point of Fd
2\{0}. The degree of this polynomial is at most deg P ≤ d−1.

Hence, by Fact 1, we have P (v) = 0; that is, P vanishes at every point of Fr
2. This,

however, contradicts Fact 2. �

Second proof of Theorem 4. Aiming at (6), fix B ⊆ F
r
2 with |B| = βr(d) such that to

every b ∈ B there corresponds a co-d-flat Fb ⊆ F
r
2 with Fb ∩ B = {b}. For every such

flat, find a polynomial Pb ∈ Lr,d with Pb(z) = 1 whenever z ∈ Fb, and Pb(z) = 0

otherwise. (Such a polynomial can be constructed by taking the product of d linear

factors corresponding to d hyperplanes whose intersection is Fb.) These |B| polynomials

are linearly independent, as it follows by substituting the points b ∈ B into their linear

combinations. Consequently,

βr(d) = |B| ≤ dimLr,d =

d
∑

j=0

(

r

j

)

.

�

Proof of Theorem 4′. We elaborate on the second proof of Theorem 4. Fix a d-non-

blocking set B ⊆ F
r
2 with |B| = βr(d), and write C := F

r
2 \ B. For each v ∈ F

r
2 find

a co-d-flat Fv with v ∈ Fv ⊆ C ∪ {v} and, as above, let Pv ∈ Lr,d be an “indicator

polynomial” of Fv. Write PB := {Pb : b ∈ B} and PC := {Pc : c ∈ C}. Notice, that the

subspace of Lr,d generated by PB intersects trivially the subspace generated by PC : for

if
∑

b∈B

ε(b)Pb =
∑

c∈C

ε(c)Pc

with ε : Fr
2 → F2 then, evaluating at any specific b ∈ B, we get ε(b) = 0. Thus, denoting

by LC the subspace, generated by PC , we have

|B| ≤ dimLr,d − dimLC ,
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and we claim that dimLC ≥ 2−(r−d)|C|. To see this, we observe that for any subset

C0 ⊆ C with |C0| < 2−(r−d)|C|, we have
∣

∣

⋃

c∈C0
Fc

∣

∣ ≤ 2r−d · |C0| < |C|,
and that for any c′ /∈ ∪c∈C0

Fc, the polynomial Pc′ is not a linear combination of the

polynomials Pc with c ∈ C0. Consequently, we have

|B| ≤ dimLr,d − 2−(r−d)|C| = dimLr,d − 2−(r−d)(2r − |B|),
whence

(1− 2d−r)|B| ≤
d

∑

j=0

(

r

j

)

− 2d

implying the result. �

7. Proofs, II: constructions

Proof of Theorem 5. For r < 2d − 1 the assertion follows, by a straightforward computa-

tion, from the trivial estimate γr(d) < 2r. Suppose, therefore, that r ≥ 2d − 1.

Write n := 2d − 1 and let S < F
n
2 be the simplex code of length n. Thus, S is a

d-subspace of Fn
2 , generated by the rows of the d × n matrix whose columns are all the

non-zero vectors in F
d
2, and every non-zero element of S has weight 2d−1 with respect to

the standard basis of Fn
2 . Choose subspaces V1, . . . , Vn ≤ F

r
2 so that Fr

2 = V1 ⊕ · · · ⊕ Vn

and the dimension of each Vi is either ⌊r/n⌋ or ⌈r/n⌉, and consider the set

C :=
⋃

(s1,...,sn)∈S\{0}

⊕

i∈[1,n] : si=0 Vi.

We have

|C| <
∑

c∈S\{0}

2(n−2d−1)⌈r/n⌉

≤ (2d − 1) 2(2
d−1−1) ( r−1

n
+1)

= Kd · 2(
1

2
−εd)r,

and to complete the proof we show that for every v ∈ F
r
2 there is a d-flat passing through

v and contained in C ∪ {v}. To this end, we write v = v1 + · · · + vn with vi ∈ Vi for

= 1, . . . , n, and let

Fv :=
{

∑

i∈[1,n] : si=0
vi : (s1, . . . , sn) ∈ S

}

= v + {s1v1 + · · ·+ snvn : (s1, . . . , sn) ∈ S}.
Evidently, Fv is a flat with v ∈ Fv ⊆ C ∪ {v}. Moreover, the dimension of Fv is

at most d. If it is equal to d, then we are done. Otherwise, there exists an element
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(s1, . . . , sn) ∈ S \ {0} such that s1v1 + · · ·+ snvn = 0; equivalently, v is an element of the

subspace ⊕i∈[1,n] : si=0Vi ⊆ C, and we conclude the proof observing that the dimension of

this subspace is at least (2d−1 − 1) ⌊r/n⌋ ≥ d. �

As we have mentioned in Section 5 (and the reader can easily check now), the argument

employed in the proof of Theorem 5 shows that if n and µ are positive integers such that

there exists a code S of length n, minimum distance µ, dimension at least d, and the

largest weight M satisfying (n−M) ⌊r/n⌋ ≥ d, then

γr(d) < 2(1−µ/n)r+n+d−µ. (12)

This observation is used in the proof of Theorem 6 below.

Proof of Theorem 6. Consider the code dual to the BCH code with the parameters m

and e defined by

m :=

⌈

2

3

(

log2(dr)− log2 log2(dr)
)

⌉

, e :=

⌈

d

m

⌉

.

This is a code of length n := 2m − 1, with the weight of every non-zero code word in

the interval [0.5n− (e− 1)
√
n, 0.5n+ (e− 1)

√
n ] and consequently, having the minimum

distance

µ ≥ 0.5n− (e− 1)
√
n

and the maximum distance

M ≤ 0.5n+ (e− 1)
√
n

(the Carlitz-Uchiyama bound).

We notice that r ≥ d ≥ 3 implies rd ≥ 9, whence

m ≥ 0.25 log2(dr). (13)

Also,

1

2

(

dr

log2(dr)

)2/3

≤ n < 2

(

dr

log2(dr)

)2/3

(14)

(the first inequality following from n = 2m − 1 ≥ 2m−1).

Assuming now

d < c
√
r log2 r (15)

with a sufficiently small absolute constant c > 0 (as we clearly can, choosing K large

enough), by (14) we get

r > c−2/3

(

dr

log2(dr)

)2/3

> n (16)
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and, by (14), (15), and (13),

e− 1√
n

<
d

m
√
n
< 2

d

m

(

log2(dr)

dr

)1/3

< 2c2/3
log2(dr)

m
< 0.25.

As a result, and taking into account (16) and (15),

(n−M) ⌊r/n⌋ > (0.5n− (e− 1)
√
n)

r

2n
> 0.125r > d.

Furthermore, a straightforward computation confirms that (15) yields e ≤ 2⌈m/2⌉−1, which

is known to imply that the dimension of the code under consideration is em ≥ d. The

result now follows by applying (12) and observing that, by (14) and (13),

dr

m
√
n
=

n

m

dr

n3/2
< 3n

log2(dr)

m
≤ 12n,

whence
(

1− µ

n

)

r + n + d− µ <
(

1− µ

n

)

r + 2n

≤
(

0.5 +
e− 1√

n

)

r + 2n

< 0.5r +

(

dr

m
√
n
+ 2n

)

< 0.5r + 14n.

�

Proof of Theorem 7. Observing that

(2d− ρ)
⌊ r

2d

⌋

+ ρ
(⌊ r

2d

⌋

+ 1
)

=
⌊ r

2d

⌋

· 2d+ ρ = r,

choose subspaces V1, . . . , V2d ≤ F
r
2 with F

r
2 = V1 ⊕ · · · ⊕ V2d so that

dimV1 = · · · = dim V2d−ρ =
⌊ r

2d

⌋

and

dimV2d−ρ+1 = · · · = dimV2d =
⌊ r

2d

⌋

+ 1.

In every subspace Vi fix a basis ei. For v ∈ F
r
2 let supp v denote the support of v with

respect to the union of the bases ei, and for each i ∈ [1, 2d] let suppi(v) := supp(v) ∩ ei.

Also, let w(v) = | supp(v)| and wi(v) := suppi(v); that is, w(v) is the weight of v with

respect to the union of the bases ei, and wi(v) is the contribution of ei to w(v), so that

w = w1 + · · ·+ w2d. Finally, set

B := {v ∈ F
r
2 : w(v) = d and w1(v), . . . , w2d(v) ≤ 1};
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thus,

|B| =
∑

0≤i≤2d−ρ, 0≤j≤ρ
i+j=d

(

2d− ρ

i

)(

ρ

j

)

⌊ r

2d

⌋i (⌊ r

2d

⌋

+ 1
)j

,

and we show that through every v ∈ F
r
2 passes a flat Fv of co-dimension at most d,

disjoint with B \ {v}. We distinguish three cases.

If v ∈ B, then we let

Fv := {u ∈ F
r
2 : supp v ⊆ supp u}.

Evidently, we have v ∈ Fv and codimFv = w(v) = d; moreover, if u ∈ Fv \ {v}, then
w(u) > w(v) = d, implying u /∈ B.

If there exists i ∈ [1, 2d] with wi(v) ≥ 2, then we choose E ⊆ suppi(v) with |E| = 2

and set

Fv := {u ∈ F
r
2 : E ⊆ supp(u)}.

We have v ∈ Fv, Fv ∩ B = ∅, and codimFv = 2.

Finally, if v /∈ B and wi(v) ≤ 1 for each i ∈ [1, 2d], then there exists I ⊆ [1, 2d] with

|I| = d+1 such that for all i ∈ I, the weights wi(v) are equal to each other. In this case

we take Fv to be the co-d-flat (actually, a co-d-subspace) consisting of those u ∈ F
r
2 with

the property that for all i ∈ I, the weights wi(u) are of the same parity. It is immediately

verified that v ∈ Fv and Fv ∩ B = ∅. �

Proof of Theorem 8. Choose subspaces V1, . . . , Vd ≤ Fr with F
r
2 = V1 ⊕ · · · ⊕ Vd so that

dimV1 = · · · = dim Vd−ρ =
⌊r

d

⌋

and

dimVd−ρ+1 = · · · = dimVd =
⌊r

d

⌋

+ 1.

In every subspace Vi fix a basis ei, and define the sets supp, suppi, and the weight

functions w and wi as in the proof of Theorem 7. Let

B := {v ∈ F
r
2 : wi(v) ≤ 1, i ∈ [1, d]};

thus,

|B| =
(⌊r

d

⌋

+ 1
)d−ρ (⌊r

d

⌋

+ 2
)ρ

,

and we claim that through every v ∈ F
r
2 passes a flat Fv of co-dimension at most d,

disjoint with B \{v}. To show this we distinguish two cases, according to whether v ∈ B

or v /∈ B.
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If there exists i ∈ [1, d] with wi(v) > 1 (that is, v /∈ B), then we choose E ⊆ suppi(v)

with |E| = 2, and set

Fv := {u ∈ F
r
2 : E ⊆ supp(u)}.

Clearly, this is a flat of co-dimension 2, disjoint with B and passing through v.

If, on the other hand, we have wi(v) ≤ 1 for each i ∈ [1, d] (that is, v ∈ B), then we

consider the partition [1, d] = I0 ∪ I1 with

Iν := {i ∈ [1, d] : wi(v) = ν}; ν ∈ {0, 1}

and let Fv be the co-d-flat consisting of those vectors u ∈ F
r
2 with the property that wi(u)

is even for each i ∈ I0, and suppi v ⊆ suppi u for each i ∈ I1. It is immediately verified

that Fv ∩ B = {v}. �

Proof of Theorem 9. Letting K := r − (r1 + · · · + rk), rk+1 = · · · = rk+K = 1, and

dk+1 = · · · = dk+K = 0, we see that r1 + · · · + rk = r can be assumed without loss of

generality. With this extra assumption, we choose subspaces V1, . . . , Vk ≤ F
r
2 so that

F
r
2 = V1 ⊕ · · · ⊕ Vk and dimVi = ri for i = 1, . . . , k, in every subspace Vi fix a basis ei,

and define supp, suppi, w, and wi as in the proofs of Theorems 7 and 8. Finally, we set

B := {v ∈ F
r
2 : wi(v) = di, i ∈ [1, k]};

thus,

|B| =
(

r1
d1

)

· · ·
(

rk
dk

)

,

and we claim that through every v ∈ F
r
2 passes a flat Fv of co-dimension at most d,

disjoint with B \ {v}. To show this we distinguish several cases: the case where v ∈ B,

that where wi(v) ≥ di + 1 for some i ∈ [1, k], and that where wi(v) ≤ di − 1 for some

i ∈ [1, k], with the last two cases further splitting into two subcases each.

If v ∈ B, then we take Fv := {u ∈ F
r
2 : supp v ⊆ supp u}. Clearly, Fv ∩ B = {v}, and

the co-dimension of Fv is d1 + · · ·+ dk ≤ d.

If there exists i ∈ [1, k] with wi(v) ≥ di+1, then we find E ⊆ suppi(v) with |E| = di+1,

and set

Fv := {u ∈ F
r
2 : E ⊆ supp(u)} if di < d,

and

Fv := {u ∈ F
r
2 : E ⊆ supp(u) or E ∩ supp(u) = ∅} if di = d.
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Clearly, we have v ∈ Fv, and

codimFv =

{

|E| = di + 1 ≤ d if di < d,

|E| − 1 = di = d if di = d.

Furthermore, we have Fv ∩ B = ∅: for, if E ⊆ supp(u), then wi(u) ≥ |E| > di, and if

E ∩ supp(u) = ∅ and di = d, then

wi(u) ≤ ri − |E| ≤ (di + d)− (di + 1) < d = di.

In a similar way we treat the situation where wi(v) ≤ di− 1 for some i ∈ [1, k]. In this

case we find a set E ⊆ ei \ suppi(v) with |E| = ri − di + 1, and let

Fv := {u ∈ F
r
2 : E ∩ supp(u) = ∅} if ri < di + d,

and

Fv := {u ∈ F
r
2 : E ∩ supp(u) = ∅ or E ⊆ supp(u)} if ri = di + d.

Thus, v ∈ Fv, the co-dimension of Fv is

codimFv =

{

|E| = ri − di + 1 ≤ d if ri < di + d,

|E| − 1 = ri − di = d if ri = di + d,

and Fv is disjoint with B: for, if supp(u) ∩ E = ∅, then wi(u) ≤ ri − |E| = di − 1 < di,

and if E ⊆ supp(u) and ri = di + d, then wi(u) ≥ |E| = d + 1 > di, implying u /∈ B in

both cases. �

Proof of Corollary 2. Let

k :=
⌊r

d

⌋

, d1 :=

⌊

d

k

⌋

, and r1 :=

⌊

d1
d
r

⌋

;

thus,

2 ≤ k < d (17)

(as 2 ≤ r
d
< d), and

d

r
≤ d1

r1
≤ 1

2
(18)

(the first inequality following from r1 ≤ d1
d
r, the second from d1

d
r ≥ 2d1). Observing

also that

kd1 ≤ d, kr1 ≤ kd1
r

d
≤ r,

and

r1 − d1 =
⌊(r

d
− 1

)

d1

⌋

≤ kd1 ≤ d,
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we apply Theorem 9 with r2 = · · · = rk = r1 and d2 = · · · = dk = d1 to get

βr(d) ≥
(

r1
d1

)k

.

Consequently, (4) yields

lnβr(d) ≥ kr1H(d1/r1)− (k/2) ln(2r1). (19)

Now from

r1 + k ≥
⌊

r

d
+

d1
d
r

⌋

− 1 =
⌊

(d1 + 1)
r

d

⌋

− 1 ≥
⌊

d+ 1

k

r

d

⌋

− 1

=
⌊ r

k
+

r

kd

⌋

− 1 >
r

k
+

r

kd
− 2 ≥ r

k
− 1

and (17) we deduce

kr1 > r − k2 − k ≥ r − (3/2)k2,

from (18) and the fact that H is increasing on [0, 1/2] we conclude that

H(d1/r1) ≥ H(d/r),

and r1 ≤ d1
d
r ≤ r

k
along with (17) gives 2r1 ≤ r. Combining these observations with (19)

we obtain

ln βr(d) > (r − (3/2)k2)H(d/r)− (k/2) ln r.

To derive the first assertion of the corollary we now notice that the inequality

H(t) ≤ t ln(e/t), t ∈ [0, 1]

gives

(3/2)k2H(d/r) + (k/2) ln r ≤ 3

2

r

d
ln

er

d
+

1

2

r

d
ln r < 2

r

d
ln r

since d ≥ 3 by (17). For the second assertion just observe that if d/
√
r → ∞, then

rH(d/r) ≥ d ln r
d
whereas r

d
ln r = o(d ln r

d
), and use (4). �
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