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Summary

In comparison to fixed filters, adaptive filters use extra complexity to update
the weights according to some specific algorithm. With such an algorithm
it becomes possible to perform satisfactory in an environment where com-
plete knowledge of the relevant signal characteristics is not available. The
performance is, among other things, measured by the speed and accuracy of
convergence. In many practical cases at least some a priori information is
available about the environment and/or the relevant signal characteristics.
This thesis explores some methods fo use the available a priori information
to reduce complezity, while maintaining convergence properties.

The acoustic echo canceller, a typical application of an adaptive filter,
was one of the research subjects of the Radio and Data Transmission group
at Philips Research Laboratories in the period 1984-1989. In this application
a speech signal is reflected via an acoustic echo path of 100-200 msec. as
an undesired echo into a microphone. The task of the adaptive filter is to
produce an estimate of the unknown acoustic echo sigual. The main problems
of this application are besides the length of the acoustic echo path (modelled
with a transversal structure of 1000-2000 coefficients), the non-stationarities
in the speech signal and the time variant character of the echo path, Although
not a subject of research in this thesis, the acoustic echo canceller has served
as a motivation for most parts of this report. Almost all material has been
published in [49]-[60] and [14].

In Chapter 1 a general introduction of adaptive filters is given and the
used symbols and definitions are explained.

Since block processing techniques play a central role in this thesis, Chap-
ter 2 gives a derivation and analysis of the well known and robust Block
Normalized Least Mean Square (BNLMS) algorithm. The BNLMS algo-
rithm makes one update of all N adaptive coefficients every L samples, with
L the processing delay. In literature it 1s often stated that this, low complex-
ity, algorithm has bad convergence properties when a coloured input signal is
applied to the adaptive filter. However, from the analytical and experimental
results it follows that both the input signal statistics and the mitialization
of the adaptive weights influence the convergence properties. This implies
that convergence properties can become both better and worse for a coloured
input signal. A priori knowledge about the "matching” of the signal charac-
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teristics and the "unknown” system can be used to initialize the algorithm
as good as possible.

In Chapter 3 it is shown that for large filters (the acoustic echo canceller
needs an adaptive transversal filter with 10002000 coefficients) the BNLMS
algorithm can be implemented very efficiently in frequency domain. For the
transformation between time- and frequency domain Fast Fourier Transforms
(FFTs), with length B = N+ /[ —1, are used. This efficient implementation is
one of the first reasons to implement the acoustic echo canceller in frequency
domain. Furthermore it s known that two well known procedures to carry
out this efficient implementation for fixed filters are given by the overlap-
save and the overlap-add method. In literature [8] it is asserted that, for
complexity reasons, in adaptive filler econfigurations the overlap—save method
is to be preferred to the overlap-add method. This statement is contradicted
in this chapter, and it is shown that both methods can be implemented in
adaptive fillers with equivalent complexity.

Statistical properties of a speech signal are time dependent. When using
such a non-stationar input signal, and applying the BNLMS algorithm for
the updating of the adaptive coefficients, convergence properties can change
very much during adaptation. For this and many other practical situations
it is desirable to change the update algorithm in such a way that conver-
gence properties of the adaptive filter become independent of the input sig-
nal statistics. Since it is known from literature that decorrelation can be
accomplished relatively easy with frequency domain techniques, this is the
second motivation to implement the acoustic echo canceller in frequency do-
main. It is shown in Chapter 4 that in frequency domain decorrelation is
petformed by normalizing the spectrum of each separate frequency compo-
nent. With this method an approximation is made of the required time
domain decorrelation. First it is shown under what conditions this approxi-
mation is acceptable. Applying this speciral normalization to the efficiently
implemented BNLMS algorithm in frequency domain, leads to the Block Fre-
quency Domain Adaptive Filter (BFDAF). Roughly there are two variants
of the BFDAF known in literature. The first one, with five FFTs, was in-
troduced as the constrained BFDAF since it requires a window that forces
a constraint in adjusting the frequency domain weights based on overlap-
save sectioning. The second method is the unconstrained BEDAF, since it
removes the window. This unconstrained structure only needs three FFTs.
An analysis is given of a generalized BFDAF structure, suitable for both
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structures. From this it follows thal, in general, the constrained method
(5FFTs) has bettter convergence properties than the unconstrained method
(3FFTs). Furthermore it is known that many practical systems, such as the
acoustic echo canceller, have a global decaying function as impulse response.
When this a priori information is available, an efficient, inplementation of the
BFDAF is introduced, using 3 FFTs, with convergence properties equivalent
to the constrained BFDAF (5FFTs).

One of the main problems of block processing techniques is the large
processing delay of L samples (usually L is in the order of the filter length
N). Furthermore, when performing decorrelation in frequency domain by
spectral normalization, the resolution of the spectrumn equals the number B
of frequency components. However, the statistical properties of the input
signal, and thus the required number of divisions, have no resemblance at
all with the segment length B. By partitioning the original BFDAF into K
smaller parts, with 1 < K < N, and implementing this in an efficient way
leads to the Partitioned Block Frequency Domain Adaptive Filter (PBFDAF)
as dicussed in Chapter 5. This structure has, in comparison with the BFDAF,
a redoced processing delay. Furthermore, when some a priori information is
available of the input signal spectrum, this information can be used to reduce
complexity, since decorrelation is performed with less than B divisions in the
PBFDAF approach.

In Chapter 6 the adaptive filtering problem is described in a geometri-
cal way. Generalizing this approach leads to a Block Orthogonal Projection
(BOP) method. With this method it is possible to decorrelate the input sig-
nal of an adaptive filter with the inverse of an [ x L autocorrelation matrix
with L > 1. This in contrast o the Recursive Least Squares (RLS} method,
that uses an V x N (inverse) autocorrelation matrix (with N the length of
the adaptive filter). When some a priori information of the input signal is
available, 1t is possible to match the dimension L of the required autocorre-
lation matrix more properly to decorrelate the input signal. Both BOP and
PBFDAF methods reduce the required number of degrees of freedom for the
decorrelation of the input signal of the adaptive filter. For this reason the
relationship between these two methods 1s also discussed in Chapter 6. Fur-
thermeore it is known from literature that a speech signal can be modelled by
an auto regressive (ar) process. An Efficient Orthogonal Projection (EOP)
algorithm is introduced that can decorrelate ar-signals.
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Chapter 1

General Introduction to
Adaptive Filters

When designing a Wiener filter a priori knowledge about the actual statistical
properties of the data to be processed is required. Only when the properties
match the a priori information on which the design of the filter is based,
the filter is optimurn, It may impossible to design the Wiener filter becanse
this information is not known completely and an appropriate design may no
longer be optimum. A possible solution to this problem is to first estimate
the statistical parameters of the relevant signals and then compute the filter
parameters. For real-time operation this procedure may require costly hard-
ware. A more efficient method is to use an adaptive filter. Such a device is
self-designing in that the adaptive filter relies for its operation on a recursive
algorithm, which makes it possible for the filter to perform satisfactorily in
an environment where complete knowledge of the relevant signal statistics is
not available, or when the statistics slowly vary in time. The algorithm starts
with a set of initial conditions, representing all information available about
the environment. In a stationary environment, after successive iterations of
the algorithm it converges, in average, to the optimum Wiener solution in
somne statistical sence. In a nonstationary environment, the algorithm offers
tracking capability, whereby it can track the varations in the statistics of
the relevant signals yielding some local solution, provided that the variations
are sufficiently slow. From textbooks [21,27,38,68,10,1,26,7] it follows that
adaptive digital filters are extremely usefu] devices in many applications of
digital signal processing.



As a direct consequence of the application of a recursive algorithm, by
which the parameters of an adaptive filier are updated from one iteration to
the next, the parameters become time dependent. Since this time dependence
18 caused by the relevant signals an adaptive filter is a nonlinear device. Note
that one iteration of the adaptive filter hfm not necessarily to be performed
between two succesive samples. -

In another context, an adaptive filter is often referred to as linear in the
senge that the output of the filier is obtained as a linear combination of
the available set of observations applied to the filter input. This report is
restricted to linear, finite impulse response adaptive filters. Furthermore all
used signals are discrete in time.

In Section 1.1 of this chapler some adaptive filtering applications ate
given in order to establish the connection between the material presented
in later sections and the application of intercst. From these examples a
generic form of an adaptive filter is derived in Section 1.2, while in addition
general assumptions are given used further on in this report. Section 1.3 gives
the main definitions and notations used in later chapters, while Section 1.4
describes the used symbols, Finally in Section 1.5 different factors, describing
adaplive filters, are given.

1.1 Applications of adaptive filters
This section describes different applications of adaptive filters.

1. Signal Estimation (Fig. 1.1);

The input signal r is leaked through an unknown system with impulse
response h as signal ¢ together with signat s, that is uncorrelated with
z, into the measurable signal &, The main task of the adaptive filter is
to make an estimate € of the unknown signal e.

Some examples that belong to this ¢lass are:

(a) Echo cancellation [25):
There are roughly two different types of echo cancellers:
o Voice, acoustic [63,28] (Fig. 1.2):
In Fig. 1.2 only the near—end acoustic echo canceller is given.
An eqguivalent system will be present at the far-end. Possible
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applications of the acoustic echo canceller are: audio—video
teleconferencing and loudspeaking telefony systems. In these
applications the far-end speech signal z enters the near-end
acoustic room through a loudspeaker. Here signal x is re-
flected, via an acoustic echo path of 100-200 msec, as an
undesired echo ¢ into a microphone, together with the near-
end specch signal s. Without the acoustic echo canceller the
echo signal e will enter the far-end system, where it will be
reflected again. The result will be an unacceptable roundsing-
g or ringing effect.

The task of the near—end acoustic echo canceller is to pro-
duce an estimate € of the unknown acoustic echo signal e,
resulting from the far—end speech signal 2. The main prob-
lems here are besides the length of the acoustic echo path, the
pon-stationarities in the input signal z and the time variant
character of the echo path. Adaptation is typically carried
out inn the absence of the near—end speech signal. When dou-
ble talk is detected (both near- and far-end signals present),
updating of the echo canceller coefficients is inhibited.

Data [67,18] (Fig. 1.3):

In Fig. 1.3 only the near-end echo canceller is given. An
equivalent system is present at the far-end. In a modem,

L_._...._., hybrid
transmigsion
Updole ——

/‘",][" medium
T T
~tr

e
e

Figure 1.3: Data echo canceller

containing (among other things) a transmitter and a receiver
for data signals, the near-end data signal x has to be trans-
mitied while the far-end data signal s has to be received. An



hybrid directs signal z to, and signal s from a transmission
medium. Since the hybrid is not perfect, it will produce an
undesired ’echo’ signal e of the near-end signal & in the re-
ceiver. In practical situations e can be up to 20 dB stronger
than the desired signal s.

The near—end echo canceller has to produce an estimate é of
the echo e, resulting from the 'near—end’ signal z. Filter adap-
tation is typically required to be continued in the presence of
a large echo signal e which is correlated with the near—end
transmitted data signal z.

(b) Noise cancellation [43)]:

An unknown system with impulse response kb coloures the mea-
surable noise source z. The adaptive filter produces an estimate &
of the signal ¢ (Fig. 1.1). One example is that of cancelling noise
from the pilot’s speech signal in the cockpit of an aircraft. In this
case € may be the pickup from a microphone in the pilot’s hel-
met and 2 is the ambient noise picked up by another microphone
placed in the cockpit.

(c) Adaptive Arrays {5 (Fig. 1.4):
In this application a number of input signals, e.g. from an array
of receiving antennas or microphones, are processed through an
array of adaptive filters whose outputs are summed together. The
radiation diagram of the array can be adjusted by adjusting the
amplitude and phase of each array element with an adaptive filter.
In practice the filters ecan consist of only one coefficient. The
adaptation can be done to create a null in the direction of an
interfering travsmitter {adaptive null steering) or to generate a
maximum output for a desired signal from an unknown direction
(adaptive beam forming [66]).

2. Signal Correction (Fig. 1.5):

The desired signal e is distorted by an unknown channel with impulse
response k. Together with a noise signal n, the output of this channel
is available as input signal z of the adaptive filter. The adaptive filter
has to correct this signal 2 in such a way that the channel distortion is
removed and the desired signal e can be estimated.
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The most important example of this class is the linear equalizer [41].
After the initial training period (if there is one), the coefficients w of the
adaptive equalizer may be continually adjusted in a decision—directed
manner. In this mode, the residual signal r is derived from the final
(not necessarily correct) receiver estimate € of the transmitted sequence
e. In normal operation, the receiver decisions are correct with high
probability, so that the error estimates are correct often enough to allow
the adaptive equalizer to maintain precise equalization. Moreover, a
decision—directed adaptive equalizer can track slow variations in the
channel characteristics or linear perturbations in the receiver front end,
such as slow jitter in the sampler phase.

. Signal Prediction (Fig. 1.6):
The original signal & consists of a predictable and an unpredictable

—— T ] :

|
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Figure 1.6: Signel Prediction

part. The adaptive filter has to produce an estimate ¢ of the predictable
part. The residual signal » = & — é will equal the unpredictable part
of & An example is the Adaptive Line Enhancer (ALE) [44,19]. The
ALE can be used to detect a low level sine wave s embedded in a
background additive noise n with a broadband spectrum (é = s 4+ n).
The main function of the delay Tp is to remove correlation that may
exist between the noise component n in the original input signal & and
the noise component in the delayed predictor input x. An ALE must
be viewed as an adaptive filter that is designed to suppress broadband
components (e.g. white noise) contained in the input signal, while
at the same time passing narrowband components (e.g. sine wave)
with little attenuation. In other words, it can be used to enhance the



presence of sine waves (whose spectrum consists of harmonic lines) in
an adaptive manner.

Another well known example is linear predictive coding (LPC) of speech
where the end result is the sel of estimated LPC coeflicients [44,19].
Due to the nonstationary nature of the speech signal, LPC coeflicients
are typically obtained separately for each new frame (10 to 25 ms) of
the speech signal.

1.2 Generic formm and general assump-
tions

There 15 no unique solution te the adaptive filtering problem. For
the purpose of further development a generic form is given (Fig. 1.7),
which is based on Wiener filter theory. It is assumed that the unknown
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Figure 1.7: Generic form of adaptive filler

systemn function Wopts Can be modelled with a Finite lmpulse Response
(FIR) filter. For the adaptive filter also an FIR structure is used as the
structural basis for implementing the adaptive filter, from which the
order is assumed to be greater than (but at least equal to) the order of
the unknown optimum Wiener filter. For the case of stationary inputs,
the mean -squared ervor J (i.e. the mean-squared value of the difference
between the signal & and the FIR filter output &) is precisely a quadratic
function of the adaptive weights w in the FIR filter. The dependence of
the mean—squared error J on the unknown weights may be visualized
in the form of a multidimensional paraboloid with a uniquely defined



bottom or minimum point Ji ;. The weights corresponding to this
minimum point define the optimum Wiener solution vector Wopt- It
can be shown that the gradient vector 7 = .J/6w always points away
from the minimum Jy;, as depicted for a single adaptive weight in
Fig. 1.8. The coeflicient vector w of the adaptive filter is updated in

‘W,,M w

Figure 1.8: J as function of a single adaptive weight w

such a way that after convergence the adaptive weights will equal, in
average, the unknown optimal FIR Wiener solution vector w,n;. This
can be reached by using a steepest-descent update, from which the
update scheme looks like:

W=w—-o-V (1.1)

where « is the adaptation constant (o > 0). In general this will result
im an update algorithm for the adaptive weights which will have the
following general form:

new old adaptation input residual
coefficient | = | coefficient |+| constant |-| signal |.| signal
vector vector (o) vector

Generally it is assumed in this report that the reference signal € con-
sists of two components € = e 4+ s. The first signal ¢ is the result of
a linear convolution of the input signal r with the unknown optimal

9



FIR Wiener filter w,,¢, while the second signal s is uncorrelated with
x. Furthermore it is assumed that both z and s have zero mean. In
practical applications, e.g. for the acoustic echo canceller as described
in Section 1.1, a double talk detector 1s needed: the result 1s that, dur-
ing adaptation, signal s may be approximated as a white noise signal.
This approximation will be used for all analytical calculations. In or-
der to make analysis of some adaptive algorithms more tractable, the
assumnption 1s made that the adaptation constant « is sufficiently small.

As mentioned before an adaptive filter offers tracking capabilities in
nonstationary environments, It can track variations in the unknown
optimum Wiener filter. Furthermore the tracking quality is dependent
of the nonstationarity of the input signal. Since tracking is not the
main topic in this report it 1s assumed that the signals are stationary
and that the environment, the unknown Wiener solution, is not time
variant.

1.3 Definitions and notations

For the purpose of further development in this section some frequently
used definitions and notations are listed.

All signals in {ime domain are assumed to be real and discrete in time
(denoted by square brackets). Thus k] denotes signal = at discrete
time k, corresponding to k- T in continuous time.

Furthermore, with N denoting the order of the adaptive filter, signals
and weights are represented in vectors as follows:

x[k] = (zlk—N+1),-- zlk - 1], 2[k])*
wlk] = (wy-1[k] -, wn k] welk])
¥opt (wo;)t,N_p s Wapt e wc)pt,,n:v)12

dlk] = Wopt — wlk]
where ¢ denotes transpose. In general a bold-face and underlined char-

acter is used for a vector, while a bold-face not underlined letter denotes
a matrix. In some cases it is necessary to denote the dimension of a

10



vector or matrix explicitly. For example when it is not obvious that the
dimension of vector x[k] is B then it is denoted with a capital subseript
aET

xplH] = (el — B+ 1], -+, 2lk - 1}, z[R]) (12)
The N x N identity matrix is given by Ix, while a circular shift of the
data over L positions in an N dimensional vector is carried out by the

matrix:
0 Iy_
I":(IL f\jDL) (13)

in which the zero matrices 0 have appropriate dimensions. Note that
I, = Iy. The data of an N dimensional vector can be mirrored with
the N x N mirrored matrix Jpy that is defined as:

JIn

It

(1.4)

A reverse cireular shift over L positions, in opposite direction to I%,, is
carried out by the matrix

JE = ( 0 Ins ) (1.3)

Note that I = Jy.

When an N dimensional vector xy[k] is changed to a B dimensional
vector y ., [k] (with B = N+ L —1) by adding L —1 zeros, this is denoted
by the following vector matrix product:

altd= () -l (16)

On the other hand when a B dimensional vector x[%] is changed to an
N dimensional vector y, [k] by throwing away the last L — 1 elements,
this is carried out hy

vyl = (Iy 0) - xplk. (1.7)

11



In the last part of this report the stochastic signal z[k], that is repre-
sented in the N dimensional vector x(k|, is considered in a geometrical
way. For this the innerproduct between two real vectors x[k] and Wopt
is defined as:

Ne-1
< X[k}, wopt >= x*{k} - Yopt = > wopt.&-’”[k — 1] (1.8)
i=0

and the L? porm of the real vector x[£] is defined as:

X[k = /< x[k], x[k] > (1.9)

Furthermore, with £{-} denoting the mathematical expectation, the
variances of the stationary stochastic signals x[k] and s[k] , both having
zero mean, are defined as E{z*[k]} = o? and E{s?[k]} = o For
stationary real signals z[k] the autocorrelation function p[7] is defined
as {37):

plr] = E{z(k]xk — 7]} (1.10)

This autocorrelation function can be represented with an N x N real
symmetric Toeplitz autocorrelation matrix R that is defined as:

R = E{x[+] - x'[k]} = R

whose (k, 1)** element is given by:

(R)es = p[ik = 1] (1.11)
or in matrix form:
p[0] Al - N =-1]
Pl pl0] - - PN -2
R = : e (1.12)
AN -1 AN=2 o o)

With Q" denoting the hermetian (=complex conjugate (*) and traps-
pose (#)) of matrix Q, the {ollowing unitary or similarity transformation
15 often useful:

Q"RQ = A (1.13)
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where A = diag{}o, -+, \y-1} is a diagonal matrix containing the
eigenvalues of R and Q = (q,---,4,_,) is an orthonormal matrix
containing the eigenvectors. The following properties of Q and R are
used (see also [26]):

h, - R . 1 ifl=m
Q@-Q=1 & g ﬂm‘{o if I £ m
-

QQ=1 & QQ'=I
N-1
S N = trace{A} = trace{Q"RQ} = trace{RQQ"}
=0 .
= trace{R} = Ng?
M 2 0 for [=0,1,--- N—1. (1.14)

while furthermore the "relative eigenvalue™ J; is defined as:

- A J\;
= =2 (1.15)
N Eflv—nl A 0’5
The Eigenvalue Ratio (ER) is defined as the ratio of the maximum and
minimum eigenvalue:
Mmnax
ER =
A

Both the autocerrelation function p[r] and the autocorrelation matrix
R represent a time—domain description of the second order statistics
of a stationary discrete-time stochastic signal. The power spectral
density function (psdf) P(el®), that is a real and positive function, is
related to this autocorrelation function via the Fourier Transformation
for Discrete signals (FTD) as follows:

(1.16)
min

Z plT -J*f'—p[o]+zzp[r Jcos(07). (1.17)

T =1
When comparing theoretical and experimental results different types
of input signals are used. These signals are gencrated by signal mod-
els. All these models derive signal [k from a while noise signal n[k]

through appropriate filtering {colouring). The signal n[k] has zero mean
JE{n[k]} = 0, and variance E{n?[k]} = oZ. In the sequel for each

13



separate model the difference equation, describing the model, and the
autocorrelation function pir] are given. Furthermore an expression is
given for the psdf P(el?). From literature [26] it is known that the
eigenvalues are bounded by the maximum and minimum of the psdf
[22], and this bound for the FR is also given. In order to be able to
make correct comparisons between convergence properties of an adap-
tive filter with different kind of input siguals, different signal models
are chosen in such a way that their total power 1s the same for all these
models. This implies that the model parameters are chosen in such a

way that

[

5 ), P(el®)d0 = pio] = o2 (1.18)
White nowse signal model:
Each sample of the white noise signal n[k] has no relation (correlation)

with all other samples n{k — 1} for 7 5 0.

Model : z[k] = n[k] {1.19)
o forr=0

0 elsewhere,

Spectrum P(ejﬂ) =gl
Eigenvalue Ratio : ER =1

Autocorrelation @ p[r] =

st —

Moving Average signal model of order 1 (ma):

A typical example of a signal that belongs to this class is an "AMI”
{(Alternative Mark Inversion) code [13]. This code possesses several
characteristics that are desirable in baseband pulse transmission. It has
no DC component and contains only a small amount of low-frequency
components. Timing information can easily be recovered from the re-
cerved line signal.

The ma-signal model of order 1 is defined as:

Maodel @ 2[k] = (nfk] + an[k — 1) (1.20)

I+ a?

o2 for r =10
Autocorrelation : pir] = { fmon for 7=l

0 clsewhere.
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i 2a
Spectrum : P(el?) = (1 + T o ms(&')) al.

a

2
Eigenvalue Ratio : FR < (i + a)
— @

Auto Regressive signal model of order 1 (ar):
The vocal tract of a speech signal ean typically be described by an ar
signal of higher order [48].

The ar—signal model of order 1, with |e| < 1, is defined as:

Model : z[k] = (V1 — a?) n[k] + axk = 1] (1.21)
7l 3
(1 - a?)o?
1+ a? — 2a cos(8)

1+a)
1l ~a

Autocorrelation : p[r] =«

Spectrum : (e]a)

Eigenvalue Ratioc : ER < (

An N dimensional discrete-time vector x[k] is transformed to the fre-
quency domain vector X[k] via the Discrete Fourier Transform (DFT),
by using the N x N Fourier matrix F. Thus:

X[H = (Xo[t), -, Xy [kl = F - x[¥] (1.22)

with the (p, q)th element of F given by:
2m
N

Note that the indices p, qare defined in the range 0,1,-+-, N = 1. This
Fourier matrix has symmetrical and unitary propertiea, namely:

(Flpg = € P with Oy = =2 (1.23)

1
Ft=F Fi= WF". (1.24)

In this repart two types of circulant matrices, that can be constructed
by a circular shift of the first row, arc used. These are the "I-circulant”™
matrix, that is defined as
[0] gl « - N —1]
eN—1] ¢[0] - - N-12]
C= . - . (1.25)

c[ll] c[.Z] - [1]
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and the "J—circulant” matrix

e0] - - N =2] N -=1]
e[1] s N =] ¢[0]
C = . . . . . (1.26)
c:[N-—- 1] N - 3] N _ 2]

Since the DFT has a circular property, the Fourier matrix F diagonal-
izes the l-circulant matrix C as follows {12]:

1
FCF™* = NFCF" =P =diag{Fo, -+, Py} (1.27)

When C is an J—circulant matrix, this is diagonalized by the Fourier
matrix F as follows:
1
N
When the autocorrelation function pfr] is restricted p{r] = 0 for |7} =
Tmax, With Tmmax € N, it is possible to construct the l-circulant au-

tocorrelation matrix C out of the Toeplitz matrix R. A possibility is
to define the first row of the circulant matrix C as follows:

FCF =P = diag{Fy,- -+, Pv_1}. (1.28)

P[T] for =0, Tmax
cr]=4¢ p[N =71} for 7= N = mmax,--. N —1 (1.29)
0 elsewhere .

Some important similarities, extensively treated in [22,23], between the
autocorrelation R and the I-circulant autocorrelation matrix C, con-
structed as in (1.29), are used in this report. The most important ones
are listed below:

e With the [-circulant antocorrelation matrix C, as constructed in
(1.29), the eigenvalues Fy of C are approximated as:

(1.30)

2]y

B P ooty with Oy =
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» The eigenvalues of the autocorrelation matrix R are bounded by
the minimum and maximurn of the psdf:

Amax < m;"‘ {P()} and Ay 2 "’;“ {P(®)}.
(1.31)

o The eigenvalues A; of the Toeplitz autocorrelation matrix R and
the sampled psdf P(el?}|§ = [ - Oy are asymptotically equally dis-
tributed. This result can easily be shown for the given models,
gince each of these models have monotonuously increasing/decreasing
psdf. The result is plotted in Fig. 1.9. The signals are generated

Spectrum (drawn lines) and eigenvalues (point-type)
T T T 4 T T T

-2 P and lambda

4] 10 20 30 40 A0 ] 70 80 90 1040
- theta [pi/106]

Figure 1.9: Spectrum and eigenvalues for different signal models

with the above mentioned models with ¢ = 1 and |e| = 0.8182
(ER = 100). The same figure shows in point—type the ordered
eigenvalues of the 32 % 32 autocorrelation matrix R, at a distance
of Oy = 2. From this figure it follows that for these simple mod-

els the ordered eigenvalues are almost equal to the sampled values
of the psdf:

M = P(el®)|omrey for 1=0,1,---,N —1. (1.32)
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This similar behaviour of Toeplitz and circulant matrices should seem
reasonable since the nornal equations R-q = A-qand C.q = P . g for
N = 2myax + 1 are essentially the same cllmﬂmcc e:-quatmns of order
Tmax. With different boundary conditions. In fact the "nice” boundary
conditions make F easy to find cxactly, by using a DFT, while exact
solution for A are usually more complicated.

In general different [requency components Xj[k] and X,.[k] are corre-
lated with each other (see for an an exact description of this interbin
corrclation the course books [32] (part of B. Picinbono)). Here however
it is assumed that different frequency components X,[k] arc approxi-
mately uncorrelated, thus:

F o forl=m

I ] - - “
NE{JM[A X m} {0 elsewhere, (1.33)

This approximation makes use of the circulant approximation as de-
scribed above. This can be visualized 1n the following expression:

1 1
mE{X{ IXE]} = NFE{;{A:];‘:[H}F" = NFRF"
R—-C 1
—FCF" =
e N P
deag{Fo,-++, Pn_1}- (1.34)

1.4 Symbols

All experiments with the adaptlive filter structures and algorithms in
this report have been carried out on a PC in which a DSP board
(T'MS3320C30) was mounted. The used symbols, listed below, are such
that it 15 straightforward to implement them on this PC/DSP combi-
nation.

A signal is denoted by a single line arrow (—) while a vector, containing
more signals, is indicated by a double line arrow (=). When a vector
v = (v, -, vny_1)" contains signal samples then always element zero
will equal the sample with the lowest time index. Thus vp = z[k— N+
1],---,vx—1 = z[k]. In Fig. 1.10 the first two symbols are introduced
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x[k] x[k=N+1) x[k] x[k=N+1]}
T - N
(a)
x[x] . x[k])

z[k])

>

T -
() _x_[k]

x[k—1] ' x{k=N+1]

Figure 1.10: Symbols for cascading deley elements (a) and delay line (b)

on the right-hand side of the figure. The first symbol, having one input
and one output, denotes the cascading of (N — 1) delay elements T,
containing N samples of signal z[k]. The second symbol is used for a
delay line with one input signal sample z[k] and a length N vector x[k]|
of output samples.

Different symbols to reorder elements of a vector v are depicted in Fig.
1.11. The first symbol denotes a mirroring of all elements in a vector.
Mathematically this is denoted as

y=dJdn-x (1.35)

The second symbol is used to shift the elements of vector x in a circular
way over L positions or mathematically:

y =Ikx (1.36)
In some cases it is necessary to change the dimension of a vector by

adding zeros. This is carried out, for B = N+ L =1, in the first symbol
of Fig. 1.12, or mathematically:

va= (5 ) (137)

The second symbol in this figure is used to switch from an B dimen-
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Figure 1.11: Rrordering symbols
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Figure 1.12: Symbols to change the dimension of a vector
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sional vector xg to an N dimensional vector Y by discarding L — 1

elements, or mathematically:

XN=(IN D)EB-

(1.38)

Fig. 1.13 shows some addition and multiplication symbols. These are

|

I
}
N

L

Ire

(@) (%)

(B

Figure 1.13: Addition and multiplication symbols

defined as:
N-1
(a) y= 2 (xk
(b) (zhi= (x)i+4(y) fo
() {yhi= o-(x) for :
(d) (zh= (x)-(yh for

sy

SN =1

N-—-1

|2

1]

When using block processing techniques the input signal z[A] has to
be segmented into overlapping blocks. This way of processing is 1m-
plemented in this report by using up- and down-samplers {11]. When
a signal z[k] is down-sampled by a factor N, it is denoted as z[EN].
For this example a delay element, in the down-sampled domain, cor-
responds to Ty = N - T seconds. Fig. 1.14 shows an example of a
down-sampler followed Ly one delay element Ty and an up-sampler.
The output signal y[k] of this example is given by:
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x{k] x[kN}  x[(k-1)N] ylk]
lN Ty

TNj—

Figure 1.14: Down-sampler, up-sampler and deley element symbol

y[k) = { zlk — N] for k=0,N,2N,-.. (1.39)

0 elsewhere.

Finally Fig. 1.15 shows an example of arranging the input signal
samples in such a way that block processing techniques can be ap-
plied. The input signal z{k] iz split into segments with B samples
zfk — B +1],---,2[k — 1],z[k]. With B = N + L — 1 these segments
have an ovetlap of ¥ — 1 samples with the previous segment. This
splitting and overlapping is performed in the delay line followed by a
down sampler. These down samplers all shift the data at the same mo-
ment. Now the block processing can take place, denoted in the dashed
area in the figure. Using circular techniques, the block processing is
often in such a way thai for the caleulation of L output signal samples
y[k], -+, y[krL+ 1], all B = N + L — 1 input signal samples are needed.
The result of such block processing techniques is usually a vector from
which only a part is needed. A window throws away the first N — 1
elements of the vector y[kL]. Returning to the original sampling rate
is carried out by an upsampler, that shifts all the data at the same
moment, and a transposed delay line. Block processing techniques will
always introduce a processing delay. In this example the first output
sample is y[k — L + 1], and thus the processing delay is L — 1 samples.

1.5 Various measures describing adaptive
filter qualities

A wide variety of recursive algorithins has been developed in the liter-
ature for the operation of adaptive filters. In most practical cases the
choice of one algorithm in favour of another is determined by various
factors, depending on the exchange between complexity requirements
and convergence properties of the adaptive filter. In practice the main
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goal in designing an adaptive filter is to reach a certain accuracy "as
soon as possible” with the least amount of complexity. As a rough
measure for complexity the number of real multiplications, needed to
calculate one output sample, is used. Furthermore in this report the
main emphasis concerning convergence properties of adaptive filters
will be on the following points:

o Misedjustment (J):

A guantity of interest, describing the convergence properties of an

adaptive filter, is the mean—squared error of the residual signal
J = E{r*} with minimum J;;, = E{s*}. For an algorithm
of interest, this parameter J provides a quantitative measure of
the amount by which the final value of the mean—squared error,
averaged over an ensemble of adaptive filters, deviates from the
minimum mean—-squared error that produces the unknown Wiener
filter.

o Relative Misadjustiment (J):
The "relative” misadjustment is defined as:

Je= E{(e “‘35)2} " J = Jhin — Jex ] (1.40)
E{s*} Jmin Jmin

o Final Misadjustment (J):
The fractional amount by which the steady state misadjustment
exceeds the minimum attainable misadjustment Ji.;, defined as:
T=J..

o Rate of convergence (va):
In signal estimation problems, such as echo cancellation, this rate
of convergence 15 defined as a quantity which is related to the
number of iterations required for an algorithm, in response to sta-
tionary signals, to decrease the quantity 10log(J) by 20 dB. A
fast rate of convergence allows the algorithm to adapt rapidly to a
stationary environment of unknown statistics. Furthermore, it en-
ables the algorithm to track statistical variations when operating
in a nonstationary environment.

Although not a subject of research in this report some other points of
interest when describing and comparing adaptive filters are:



o Convergence region (omax):
This is the region of allowed values for the adaptation constant e,
for which the algorithm converges. Most of the times this region
is given by
0 < o < rmax

where amax 1s the largest value of the adaptation constant o that
yields a stable algorithm,

» Numerieal propertics:
When an algorithm is implemented numerically, inaccuracies are
produced due to round-off noise and representation errors in the
computer.,

» Structure:
This refers to the structure of nformation flow in an algorithm,
determining the manner in which it is implemented in hard-ware
form. For example, an algorithm whose structure exhibits hugh
modularity, parallelism or concurrency is well-suited for imple-
mentation using Very Large Scale Integration (VLSI).

* Robustness:
This refers to the ability of the algorithm to operate satisfactorily
with ill conditioned imput data.

o Chip arca:
The ultimate area needed to implement the algorithm on a chip.



Chapter 2

The Block Normalized Least
Mean Square Algorithm

In literature often the suggestion is made that the Normalized Least
Mean Square (NLMS) algorithm always requires a large number of
iterations to converge when the Eigenvalue Ratio (ER) is large [7]. The
main goal of this chapter is to show that also the squared magnitude
of the system function (smf) of the initial difference vector (i.e. the
difference between the optimal Wiener solution and the initial adaptive
weights) plays an important role too. In order to do so first the NLMS
algorithm is derived in Section 2.1. This algorithm makes one updating
of all adaptive weights after every sampling period (= T time units).
The Block Normalized Least Mean Square (BNLMS) algorithm, that
is described in Section 2.2, makes this updating only once every L
samples (= L - T time units), Obviously with L > 1 the BNLMS
algorithm is as a generalization of the NLMS algorithm. The analysis
of the BNLMS algorithm 1s presented in Section 2.3. The results of this
section are used to derive the most important convergence properties of
the BNLMS algorithm. In Section 2.4 these results are interpreted in a
physical way and are verified by experiments in Section 2.5. In Section
2.6 the main results are discussed. Literature with more information
about the BNLMS algorithm is given iy [46,15,17].
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2.1 NLMS algorithm

In this section first the Normalized Least Mean Square {(NLMS) al-
gorithm is derived, as given in [68]. The popularity of the (N)LMS
algorithm is largely due to the simplicily of its computational strue-
ture, low storage requirements, and the relative ease with which it may
be mathematically analyzed. Fig. 2.1 shows an adaptive filter that uses
the NLMS algorithm for the updating od the coefficients. As stated in

x[k] .
x[x—i] ’[k—N+1]
i T T——— T o T T - T
- - A WNM[k]x
28 (i
IS
. k] o G0
Update
l x[k=i] x[k=i]
) w; [k] Pl W;[k'ﬁ"] w|[k]
A — * + T —
r'[k] rx]

Figure 2.1: Adaptive filter using the NLMS algorithm

Chapter 1 it is assumed that €k} is a sum of the convolution of signal
x[k] with an unknown optimum Wiener filter (wopt) and a signal s[k]
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that is uncorrelated with signal z[k]. Thus:

N-1
k] = > zfk ~ ilwopt ; + $[k] = x![k] - Went + s[k]. (2.1)
i=0
As shown i Fig. 2.1 a transversal structure is choosen for the adaptive
filter and for this reason the residual signal r[k] can be written as
follows:
r[k] = x*(k] - d[k] + s[k] (2.2)
with the difference vector d[k] = wqp¢ ~ wik].

The LMS algorithm (without normalization) basically adapts, in aver-
age, to the unknown Wiener solution. This is done by minimizing the
mean—squared error of the residual signal, that is given by:

J[K] = E{r[k} = E{(x'[k]- d[¥] + s[k]) '} (2.3)

This expression is a quadratic function of the adaptive filter coefficients
having an absolute minimum J,:,. To calculate this minimum the

gradient of J[k] with respect to the vector w[k] is considered, that is
defined as:

§Jk] 8J1K) ) | 24)

vik] = (w= 7 Swek]

Evaluation of this expression leads to:
TIK = —2E{x [kl [k]}. (25)

The LMS algorithm is based on the steepest—descent method, that is
given in the updating scheme

wik + 1] = w[k] — a[4] (2.6)

where o is an adaptation constant (a > 0). As already stated in the
introduction (Fig. 1.8), the gradient $7[k] always points away from the
minimum J;,,- The steepestwdesce_lﬁ: method therefore simply goes
apposite to the gradient direction to find the minimum. In the LMS
algorithm the gradient (2.5) is now approximated by:

Vrmslk] = —2x[k]r[k]. (2.7)
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Since this is a very rough (or noisy) estimate, the LMS algorithm is also
referred to as the noisy gradient or gradient approximation algorithm.
Using this estimate in the steepest-descent update equation (2.6) it
leads to the LMS algorithm:

wik + 1] = wlk] + 20x(k]r{k]. (2.8)

The residual signal r[k] contains delayed signal samples z[k — ], and
from this it follows that the quantity E{2ax[k]r[k]} is depending on
E{2z*[k]} = o2. Thus the convergence properties of the LMS algorithm
are dependent on the variance o, This effect can be cancelled by nor-
malizing the adaptation constant o by an estimate §2[k] of the variance
ol of the input signal z[k]. This results in the NLMS algorithm:

2o
wlk + 1] = w[k] + mim’[k] (2.9)
A possible estimate for the variance is:
G2k]) = A&tk — 1)+ (1 = A)2®[k] with 0< <1, {2.10)

Unless stated otherwise it is assumed that a perfect estimator for this
variance is available, thus 62 = o2, As a rough measure for complexity,
the number of multiplications and divisions needed to calculate one
new output sample are used. For the NLMS these numbers are in the
order of the following figures:

AfULNLM$ = 2N
DiVyiys = L. (2.11)

2.2 BNLMS algorithm

The NLMS algorithin adapts all weights every T time units. The Block
Normalized Least Mean Square (BNLMS) algorithm performs this up-
dating only once every L - T time units (L Z 1). In this section it is
shown that the BNLMS algorithm makes a more aceurate estimate in
comparison to the NLMS algorithin, while complexity 1s in the same
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order. On the other hand, since updating of the adaptive coefficients 1s
petformed less frequently, the BNLMS has a slower rate of convergence
in comparison to the NLMS algorithm. However, as will be shown in
Chapter 3, the main reason to apply the BNLMS algorithm is that for
large L this algorithm can be implemented in a very efficient way by
using block processing techniques.

In the LMS algorithm the N — 1 — i** element of the estimate of the
gradient vector is given by:

(Zppgsl®)No1i = —22fk —i]r[k] for i=N—1,---,1,0. (2.12)

This preduct z[k —1]r{k] is an estimate of the crosscorrelation between
the signals x and ». By averaging this crosscorrelation over a block
with length L{> 1), and calculating this estimate only once every L
samples, this results in the following equation:

(ﬁBLMS[kL])N*l—" - _% X;:, z{kL — 1 — glr[kL — q]

= xi[kL i) (kL) (2.13)
with

xglkl —i) = (zlkL—i—L+1),---,z[kl —i~1],z[kL ~])*
(kL] = (r[kL— L+1}, -+, r[kL — 1], #[kL]) (2.14)

These equations shows that for the caleulation of this estimate both
the uput signals and the residual signals have to be down sampled by
a factor L. PFurthermore, using the same approach as in the previous
section, it is obvious that the normalized updating equation for the i*
coefficient ( = 0,1,---, N — 1) is given by:
20y, .
wil(k + 1)L] = wykL] + mp_cL[kL — i) [kL] (2.15)
T

with ar 15 the adaptation constant for the BNLMS algorithm. This
mechanism is depicted in Fig. 2.2, For the updating of every adaptive
coefficient, L consecutive samples z{k—:], - -+, z[k—i—L+1]of the input
signal are needed. These samples are available in a delay line containing
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x[k]

x [kiL-i]

Figure 2.2: Adaptive filter using BNLMS update algorithm
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(L—1} delay elements as the vector x; [k—i]. Each element of this vector
is down sampled, at the same moment, by a factor L resulting in a
vector xz[kL—i]. An equivalent procedure is performed for the residual
signal r[k]: First signal r{k] is multiplied by 2a;/Le? (resulting in r'[£])
then stored in a delay line (resulting in r7[k]) and down sampled by a
factor L (giving rg[kL]). Finally the update according equation (2.15)
is performed every Tz = LT time units. Using the N x L input signal
matrix x[kL], that is defined as:

xt[kL — N +1]

x[kL) = o = (x[kL — L +1},---,x[kL - 1], x[kL])
xp[kL — 1]
xp[kL)]
(2.16)

the BNLMS algorithm can be rewritten in vector-matrix notation as
follows:

wi(k+1)L] = =

The number of nmltiplications and diwsmns needed to produce L out-
put sarnples is in the order of L - 2N and L respectively. To produce
one new output sample this results in:
MULgyrms = 2N
DIVBNLMS = 1. (218)

OL  [kL)ry[EL). (2.17)

2.3 Dynamic Behaviour

In order to gain more insight into the performance of the BNLMS
algorithm, this section gives an analysis of this algorithm when a small
adaptation constant ay is used. A more general analysis is given in
appendix A.

By using the difference vector d(kL] = w4 — w([kL] and rewriting the
residual vector as:

ro[kL] = x[kLld[kL] + sr]kL] (2.19)

33



with sz [kL] = (s[kL ~ L +1],---,s[kL — 1], s[kL])* the BNLMS update
equation (2.17) can be written as follows:

205[,
Lo?

d[(k+1)L] = (I x[kL]xt [u,]) dlkL] -7 2-,»5[;“[,15,5[;.,,2 (2.20)

The analysis of various algorithms is performed by treating the adaptive
weight vector w{kL], and the differcnce vector d[kL] as random vec-
tors. The analysis is complicated by the fact that, during adaptation,
the residual signal pp[kL], and therefore the vectors wi(k + 1)L] and
d[(k + 1)L], are nonstationary, cven if the signals r and s are station-
ary. Accordingly, quantities of interest, such as the mean-squared error
JkL) = T E{rt [kLigy[kL]} are functions of the number of iterations
k.
First the average behaviour of the difference vector d[kL] is studied as a
function of £. By using the assumptions that signal = is independent of
s, and using E{s[k]} = 0, the above update equation can be rewritten
as:

._.CYL

B{QI(k+ 1)L} = B((T~ 75

x[kLIX (kL)) - dikL]} (2.21)

In this equation one can observe two different processes, with different
time constant, as a function of time: the input signal (in matrix y[kL])
and the adaptive weights (in vector d[kL]). Since the adaptation con-
stant o is assumed to be small, the variation in d[k{] is much slower in
comparison to the variation in matrix x[kL]. The input signal matrix
x|kL] and the difference vector d[kL] may be separated under E{-},
and for this reason the above difference equation is approximated as
follows:

.ZO(L

E{dI(k+ DL} ~ (- %

E{x[kL]x"{kL}}) - E{d[kL}}.  (2.22)

Using the definition of the input signal matrix x[kL] and the autocor-
relation matrix R 1t follows that

E{x[kLIX*kL]} = L - R (2.23)
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from which it follows that the above equation can be rewritten as:

20:L

E{d{{k+1)L]} = (I- R)E{d[kL]}. (2.24)

-'-'E
When the input signal is a non-white signal, the autocorrelation matrix
R also contains elements unequal to zero outside the main diagonal.
For such cases it follows that all elements of the vector E{d[(k+1)L]}
are interleaved. To overcome this problem both sides of this equation
can be transformed as follows:

ZCXL

" E{D(k + 1)L}} = (I~ 22EA)E{D[kL]} (2:25)

with:

DkL} = QM[kL] = Q"(wopt — wlkL])

= Wopt — WikL]. (2:26)

Since A is diagonal the above set contains N uncoupled difference equa-
tions that can be solved separately. Using the initial vector (that is no
random variable) E{D[0]} = W1 — W{0] = D0} this results for
l=0,1,---,N~—1in:

E{Dy[kL]} = (1 ~ 20 %)* Dyf0) (2.27)
or equivalently:
E{WiEL]} = (1 — (1 = 2a0X0)%) Wope, + (1 = 20xX)*Wi[0] (2.28)

with the relative eigenvalue Ay = A/o?. From this equation it follows
that the average behavior of the vector E{D[kL]} converges to zero,
or equivalently E{W[kL]} converges to Wopt, for & —+ co, provided
that the following condition is satisfied:

1
0<ap <= (2.29)
/\nmx

where Amax is the largest relative eigenvalue of the autocorrelation ma-
trix . An example of both the average and instantapneous convergence
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Figure 2.3: Average and instaniancous behaviour of a single adaptive weight
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behaviour of a single adaptive weight W{kL), with L =1, is plotted in
Fig. 2.3. The conclusion of this analysis is that when the number of
iterations k approaches infinity, provided that the adaptation constant
o 15 set within bounds defined by equation (2.29), the average of the
weight vector W[kL] computed by the BNLMS algorithm converges to
the unknown optimum Wiener solution W,y , or equivalently w(kL)
converges to Wopt-

However this average convergence is not sufficient as far as the algo-
rithim convergence is concerned. There 1s no guarantee that the average
will converge within finite variance. Hence, analysis of the second order
statistics is required in order to get more insight into the convergence
properties of the algorithm,

As mentioned before a quantity of interest, describing the convergence
properties of an adaptive filter with N weights and using a block update
mechanism, is the mean squared error of a block with L residual signal
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samples;
TkL) = TE{GREe kL) (2.30)
with minimur:
1
Jinin = L]l wikti=w . = T EtselkLlgr [k L]} = o] (231}

With signals # and s independent this quantity can be written as:

JIkL]

I

ZECOCRIIARE] + aglbL]) - (RLIAIEL] + s 6D}
= (& (LIRLIRIMIEL]) + Ty (2.32)

The input signal matrix x[kL] and the difference vector d[kL] may
again be separated under E{-} for small adaptation constant ayz. Fur-
thermore by using E{x[kL]x*|kL]} = L - R the above expression can
be approximated as:

JEL) ~ B{Q'(L)RA[KL]} + Ty, = Jex (kL] + Ty (2:33)

with Jex[kL] the excess mean-squared error. By using the unitary
transformation €} this excess mean—squared error can be rewritten as:

Jex[kl] = E{d'kLIQQRQQ"d[kL]} = E{D*kL]AD[kL]}
N-1
= Y ME{IDkLIP} = trace{A - A[kL]} (2.34)
=0

with:
AlKL] = E{DFLID"(KL]). (2.35)

One of the quantities of interest:

JEL) = Jin — Jex[FL] - Sl ME{|DifkL]"}
J J '

. ) 2
min min o

JkL) = (2.36)

This quantity is composed of a sum of product components A E{| D[k L}))*}
For this reason an expression is derived for each component, by first
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taking a closer look to A[kL]. Transforming equation (2.20) with the
unitary matrix Q results in:

2&L

D[(k+1)L) = ( "[kL]Q) D[kL]

205[,

[irL}sL[kL] (2.37)

Using a small adaptation constant ay, it follows:

ik +1)L] E{D((k + 1)L]R"[(k + 1)L]}

E{ (1— —
K 20q 4 h

e (1- 2k @iuiriifkia))

1a}

Lig}

k4

1

) N

+ = E{QPx[kL]sy [k L]sh [k L) XMk L]Q} (2.38)

By using the assumption that the input signal (y) aud the difference
vector (D) may be separated under E{-}, and using the white noise

assumption for signal s this equation can be approximated as follows:

2evy, 207,

Al(k+1)L] =~ AL - ZEAARL) -

# ::

-~ A[RLIA

4“’1, .

L 4Jmm (2.39)
For one product component of the sum (2.36) only the diagonal ele-
ments of the above matrix A{kL] are needed. With the relative eigen-
value A;, one product component can now be written as:

ME{| Dif(k+1)L]17} = (1 — 40z %) A,E{|D,[u,]|2}+4%2£§faf. (2.40)

Equations (2.36) and (2.40) fully describe the dynamic behavior of the
BNLMS algerithm for small adaptation constant ap. From equation
(2.40) it is possible to calculate the contribution of each separate ith
producl component to the total quantity J[kL]. Two valuable expres-
sions that can be derived from equation (2.40) are:
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s The final value, that is reached in steady state, given by:

Jim ME{IDELI} = MIDifooll* = T2 Ti-02 (241)

¢ The number of samples needed for a decrease of the quantity
ME{|Di[kL)|*} by a factor e is given by the integer value that
is closest to the number:
-1 1

= = L= = 2.42
7 1l - dar | PETS (242)

A small value for 7 implies fast adaptation.

From these quantities the final misadjustment and the rate of conver-
gence of the adaptive filter can be derived as follows:

Final Misadjustrment:

The final misadjustment J is defined as:

7 = lim (JkL]) = Jexoo] (2.43)
oo min
Using equation (2.41) and ity & = N this leads to:
j.z {:1;1 Alll:)l[c"c']l‘2 — or - N. (2'44)

o2 L
Note that this quantity is independent of the input signal statistics.

Rate of Convergence:

In general it is difficult to speak about the rate of convergence of the
whole process. After all it follows from equation (2.36) that the quan-
tity J[kL] is composed of a sum of N product components A, E{|Dy{kL})|*}
each having its own rate of convergence. Hence a "local” time constant
7t of the adaptive filter is defined as that time constant n; for which the
product component results in the largest contribution to the quantity

JikL).
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As mentioned in the introduction the quantity #zg 15 used mn this report.
This quantity gives the number of samples needed to reduce 10log(J[0])
by 20 dB, and thus s is also a composition of different 7;. Converting
7, that gives the number of sainples to reduce this logarithmic quantity
by 10log(e) dB, gives:

207

= e .45
20 = Tolog(e) (2.45)

Convergence region:

Until now it was assumed that the adaptation constant ay was small.
But what is small? In order to answer this question some knowledge
must be available about the region of adaptation constants for which
the adaptive filter still converges. For this an analysis is made of an
adaptive filter without making the restriction of using a small adapta-
tion constant. This analysis is given in Appendix A. In order to get
an impression about this convergence area the results are summarized
here. The convergence region of the BNLMS algorithm is given by:

1 Nl ('YL.)\g
T s < |
=0 1 — (!LA;
0<ayp < = omax (2.46)
max

2.4 Physical Interpretation

In order to interpret the results of the previous section in a physical way,
the Toeplitz-circulant approximation is used as discussed in Chapter
1, With the autocorrelation function p[r] restricted to

plr] =0 for |7| > tmax with  7Tmax € N (2.47)

the excess mean—squared error of equation (2.33) can be rewritten as
follows:

Jex[kL] = E{d'[kL)RA[kL])} ~ E{d'[kL]Cd[kL]}. (2.48)
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In this equation is C the circulant extension of the Toeplitz autocorre-
lation matrix R as discussed in Chapter 1 (Section 1.3). The approxi-
mation (2.48) imposes the following restriction on the first and the last
Tmax — 1 components of the difference vector d[kL]:

o i€ {0,1, -+, Tmax — 2}
(d[kL]); = 0 for { i€ {N-1—(rmax—2),---,N-2,N-1}

(2.49)
Note that this restriction becomes more and more true when the adap-
tation process continues, since E{d[kL]} — 0 for £ — oo. The circu-
lant autocorrelation matrix can be diagonalized with the Fourier matrix
F, and thus (2.48) can be rewritten as:

Jex[kl) = E{d'[kL)F'FCF'Fd[kL]} = %E{Q"[kL]PQ[kL]}
N-1
= < 3 RE{DILLIP). (2.50)
{=0

In this equation the transformed difference vector is defined as D[kL] =
Fd[kL] and the diagonal power matrix is given by P = FCF~1,

In conclusion, within the above mentioned restrictions on the autocor-
relation function (2.47) and the differnce vector (2.49), the results of the
previous section can be physically interpreted by replacing the eigen-
value A; with the power F; and the transformed difference vector DIkL]
is the Fourier transformation (F) of the time domain difference vector
d[kL]. These interpretations will be used in the following section, when
experiments are carried out.

2.5 Experiments

The analytical results of Section 2.3 are verified in this section by ex-
ploring the influence of different parameters on the convergence prop-
erties of the BNLMS algorithm. For the experiments the system as
given in Fig. 1.7 is used, with an adaptive filter of length N = 128,
Two quantities of importance in the equations (2.36) and (2.40) are
the eigenvalues A; and the transformed initial difference components
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[ D [0])? = IWopt,: — W4[0]1%. In the previous section it was argued that,
within the restrictions (2.47) and (2.49), in these equations the eigen-
values A; may be replaced by the powers Py and that the transformed
difference vector is defined as D(kL] = Fd[kL], with F the Fourier
matrix.

In these experiments three different input signals (random, ma(l) and
ar(l)) are used, from whicli the psdf are plotted in Fig. 1.9. The
"unknown” Wiener system is a low—pass filter, whose impulse response
Wopt and the absoluie value of the frequency response are plotted in
Fig. 2.4. In first instance, unless stated otherwise, an adaptation con-
stant ey = 1/12800 is used, while the adaptive weights are initialized
in such a way that all |D;[0]|® are equal. Signal s{k] is a white noise
signal, independent of x[k], with E{s*{k]} = ¢ = Jy;;;,, that is chosen
in such a way that 10log(J[0])=20 dB.

In the pext subsection the parameters ag, L, the input signal z{k]
and finally the initialization of the adaptive filter coeflicients are varied
separately.

2.5.1 Influence of adaptation constant oy

When using a white noise input signal z[k], the equations for final
misadjustment and rate of convergence reduce to:

1.15

(%)

From these equations it follows that by increasing the adaptation con-
stant az the adaptive filter converges faster (g smaller), but it be-
comes less accurate (J larger), while decreasing a, leads to the opposite
result. In order to show this, Fig, 2.5 gives the quantity 10 log(./[kL])
as function of the discrete time index k. The first curve is plotted
for L = 1 and ap = o = 1/12800 resulting in 10log(J) = —20dB
and pag = 14720 samples. The second curve gives the result when the
adaptation constant is doubled (1/12800 — 1/6400). The final misad-

justment is indeed 3dB (a factor 2) worse, while the rate of convergence
is twice as fast (& 7360 samples). The smooth lines are the analytical

J o= (O—L) N and  mg =

D (2.51)
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Figure 2.4: Impulse and frequency response of "unknoun” Wiener system
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results from equations (2.36) and (2.40), or equivalently the ensemble
averages. The "noisy” lines represent experimental results that are
single runs from the PC/DSP programs.

Finally it follows from the above equations {2,531} that by increasing
the number of adaptive coefficients N the final misadjustment J will
increase, since more and more adaptive weights are fluctuating around
their final steady state value, On the other hand the initial rate of
COnVergence iy 1s not depending on N.

2.5.2 Influence of block length L

From equations (2.51) it follows that for a white noise input signal the
adaptation constant e can be eliminated as follows:
1.15- N

vao

In Fig. 2.6 this theoretical function (10log(J)) is plotted (solid line)
as a function of the rate of convergence {v0), With ar as a parameter.

J= (2.52)
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The lower right part of the curve corresponds to very small adaptation
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Figure 2.6: 10 log(J} as function of vy for different L

constant {ag — 0). From (2.52) it follows that convergence properties
are independent of the block length L. On the other hand from equation
(2.46) it follows that the convergenece region is dependent on L, and for
white noise given by:

L

0 < ar < amax =
In Fig. 2.6 the adaptation constant g 1s varied for different L in the
range 0 < ap < amax/2. The different "maximum” points are indi-
cated for L = 10N, L = N, L = Nf2 and L = 1. From this it follows
that for large adaptation constant the NLMS algorithm outperforms
the BNLMS algorithm. This algorithin 1s "too accurate”, and thus
too slow in comparison to the NLMS algorithm. On the other hand
a strong point of the BNLMS algorithm is that, for large L, # can be
implemented very efficiently in frequency demain, as will be shown in
Chapter 3.



For different values of L measurements are carried out with the PC/DSP
programs, and the results are marked 1n Fig. 2.6 with different symbols.
From these results it follows that the derived theoretical results match
reasonably well with the experimental results, even {or large adaptation
constant ar. An explanation for this may be as follows:

The main assumption for the analysis was a small adaptation constant,
in order to be able to separate the input signal z[A] and the adaptive
weights wk] under B{-}. For large adaptation constant the residual
signal is decreasing very fast, resulting in a steady state final value of
the adaptive weights, and again the above mentioned separation under
E{-} may be applied.

2.5.3 Influence of coloured input signal

For this experiment three different input signals (white noise, ma(l)
and ar(1)) are used, as described in Chapter 1. The white noise signal
has a flat psdf, the ma(l) signal has a psdf containmg more power at
the higher {requencies, while the ar(1) signal 1s chosen to have more
power in the lowest frequencies. The Eigenvalue Ratio (ER) of these
last two signals equals 100, These spectra are plotted in Fig. 1.9. The
experimental results are plotted in Fig. 2.7. These results show that
a large ER of the input signal can indeed slow down the adaptation
process in comparison to the white noise case [26]. But what is slow?
Convergence of the adaptive filler with an ar(1) or an ma(1} signal as
input is initially faster than using a white poise signal. As mentioned
in the introduction chapter, all signal models generate signals with
normalized spectra. Thus both ar(l) and ma(l) signals have spectral
values larger and smaller than the white notse signal spectrum. The
larger parts result in a faster ivitial rate of convergence, while the
smaller part resulls in a slower rate of convergece at the end. From this
and Fig. 2.7 it follows that even when applying different input signals,
with equal ER, convergence properties of the BNLMS algorithm can
differ.
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2.5.4 Initialization

In many practical situations the adaptive weights are initialized with ze-
ros. This implies that the initial difference vector is given by: |Di[0]}% =
|W, opt|*. In this experiment this "unknown” Wiener filter is a low-
pass function, as plotted in Fig. 2.4. The input signals that are used
are the same as of the previous subsection. The results of this experi-
ment are plotted in Fig. 2.8. From these curves it follows that an input
signal with a large £R can both slow down (ma(1) signal) or speed up
(ar(1) signal) the adaptation process, in comparison to the white noise
case. This depends on the "simularity” between the psdf of the input
signal and the squared magnitude of the systemn function (smf) from
the initial difference vector. In this experiment the spectrum of the
ar(1) signal and the smf of the initial difference vector have much re-
semblance, since both have a "low—pass™ character. This results in a
fast rate of convergence. The ma(1) signal however has a "high-pass™
character, which results in a very slow adaptation process.
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2.6 Discussion

In this chapter it is shown that, for small adaptation constant ayp, the
BNLMS and NLMS algorithms have equal convergence properties. For
large adaptation constant NLMS outperforms BNLMS.

When denoting the number of multiplications and divisions needed to
caleulate one new output sample as a rough measure of complexity
, the BNLMS and the NLMS algorithm have equal complexity. The
BNLMS algorithm however can be implemented in frequency domain
in an efficient way for large L, by using FFTs, which will be shown in
the next chapter.

The dynamic behaviour of the adaptive filter using the BNLMS al-
gorithm is fully described by equations (2.36) and (2.40). From the
discussion in Section 2.4 it follows that, within the restrictions (2.47)
and (2.49), in these equations the eigenvalues A; may be approximated
by the power F and that DJkL] is the Founer transformation of the
difference vector d(kL]. With this the quantity E{|D;[kL}|*} represents
the smf of the difference vector.

From the equations and experimental results it follows that not only
the ER of the input signal is important to descibe the convergence
properties of the adaptive filter. It is shown that both the psdf of the
input signal and its resemblance with the smf of the initial difference
vector play an important role too,

In later chapters of this report some techniques are given to decorrelate
the input signal by normalizing each component /. This is done by di-
viding out the eigenvalue A, represented by the power P, The result of
this decorrelation is that convergence properties will equal the "white
noise case”. Or equivalently it will lead to an "average” convergence
result of the adaptive filter, that is not dependent on the input signal
statistics. Without this normalization convergence may be worse or
better, depending both on the psdf of the input signal and the resem-
blance between this psdf and the sl of the mitial difference vector.
The conclusion is that when having enough a priori information about
the input signal statistics and the unknown optimum Wiener filter, it
may be better not to decorrelate the input signal, when both spectra
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have much resemblance. This situation occurs in the acoustic echo
canceller, where both the psdf of the input (speech) signal and the smf
of the acoustic echo path have a "low-pass™ character. On the other
hand, when there is no resemblance, or when the a priori knowledge
about the input signal statistics and/or the unknown optimum Wiener
filter is not available ,decorrelation is a good "average” solution.
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Chapter 3

Efficient Implementation of
BNLMS algorithm

From the previous Chapter it follows that the two main operations
in the BNLMS algorithm are: 1) a linear convolution, to perform the
filtering of the input signal with the adaptive weights, and 2) a linear
correlation, to calculate an estimate of the gradient that 1s needed for
the update of the adaptive weights. For large filter lengths NV these
operations can be carried out very efficiently in frequency domain by
using Fast Fourjer Transforms (FFTs) for the transformation between
time- and frequency—-domain [37]. Overlap-save and overlap-add are
two wellkuown techniques to convolve an infinite length input sequence
(e.g. z[k]) with a finite length impulse response (e.g. N adaptive
weights w;[kL]). With these methods the infinite length input sequence
is split into segments which are processed separately by applying block
processing techniques. The desired signal is a composttion of these
separate signal. The way of splitting the input sequence and composing
the desired result differs for both methods.

In literature [9] it is asserted that, for complexity reasons, in adaptive
filter configurations the overlap—save method is to be preferred to the
overlap—add method. The main goal of this chapter is to contradict
this statement [52]. It is shown that the only limitation of the overlap-
add method, used in adaptive filter configurations, is that the choice
of the parameters 15 more restricted in comparison to the overlap-save
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method, This bowever is a direct consequence of the way of processing
in the overlap-add method.

Both methods will be explained first for fixed filter coefficients and
after that for adaptive coeflicients, All methods will be implemented
efficicntly in frequency domain by using FI'Ts and block processing
techuiques. Section 3.1 deseribes the overlap-save methad for fixed fil-
ters. The results of this section are used n Section 3.2 to derive an
efficient implementation of the BNLMS algorithm for large filter length
N. Section 3.3 describes the overlap-add method for fixed- and adap-
tive filters. For adaptive filters this method leads to a more complex
result in comparison to the overlap—save method. The rcason for this
is that during the calculations in the overlap—add method a previously
caleulated result has to be added to the present one, while the adap-
tive weights have changed in the meanwhile. In Section 3.4 a method
is given to implement the overlap-add method for adaptive filters m an
efficient way. Applying this to the BNLMS algorithm leads to an effi-
cient implementation of this algorithm with a complexity comparable
to that of the overlap—save method. The chapter ts concluded with a
discuseion in Section 3.5,

3.1 Overlap—save method for fixed filters

This method is based on the partial convolution of a length B segment
of the input signal #[k] and a length N weight vector w. With B = N—
1+ L this wmethod generates L new output samples &[k] each step. This
method can be implemented with DFTs, or FFTs when B is a power of
two: it is depicted for fixed filters in Fig. 3.1. The input signal x{k] is
split into segments of leugth B that have an overlap with the previous
segment of N — 1 samples. This segmentation with an overlap of input
signal samples is carried out by the delay line and down samplers shown
in the figure. The result is a length B vector x[£L]. Furthermore the
length NV weight vector w = (wn_1,--, wp) is first mirrored and than
added with zeros to a vector of length B. The (cyclic) convolution 1s
carried out in frequency domain by a multiplication of the transformed
weight vector by the transformed input signal vector. The result 1s
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transformed back to time domain by an inverse FFT. QOuly L out of
B samples from this evelic convolution represent a linear convolution
result., Thus N —1 samples have to be discarded, resulting in a length L
vector &;{kL]. The original sample rate is obtained by upsampling this
vector with a factor L and desegmenting it into samples ék — L + 1],
that 15 the output sigual of a transposed delay line. Applying this block
processing technique, results in a processing delay of L samples (=L-T
time uniis).

From Fig. 3.1 it follows that this method costs 3 Fourier transforms,
Note that one FFT is supcrfluous if the weights w are constant. When
B iz a power of two these can be unplemented with FFTs. The com-
plexity of each FFT 1s roughly equal to %2103;(3) multiplications, with
each complex multiplication equal to 4 real multiplications. In general
B will not be equal to a power of two. For simplicity reasons however
it is assumed in this thesis that all DFTs can be implemented as FFTs.
In due course the exact length of B can always be changed in such a
way that it matches the nearest power of two.

Furthermore it follows from Fig. 3.1 that two complex-valued length
B vectors have to be multiplied. Since both the input signal z[k] and
the weight vector w arve real, the resulting vectors in frequency domain
have symmetry properties and ouly half of the frequency components
have to be calculated. The number of real multiplications needed to
calculate one new output sample with the implementation of Fig. 3.1
15 roughly given by:

7 : (3.1)

L1(3-4- B'log(B) +4B) 1 (3-2B%0g(B) + 43)
T .

On the other hand when implementing Fig. 3.! with a transversal

filter in time domain, each new output sample costs N real multiplica-

tions. Comparing these two complexity numbers shows that for large

B (= N + L —1) the overlap-save method, implemented with FFTs as

depicted in Fig. 3.1, 15 much more efficient.

Note:

In practical situalions not only the number of (real) multiplications is

of importance when realising an FFT for large B in a Digital Signal



Processor (DSP) or on a chip . Also the storage, needed for the inter-
nal butterfly results, must be counted, and incorporated in the eventual
cost of the filter. However, as mentioned before in this thesis only the
number of multiplications/divisions are counted.

3.2 Overlap—save implementation of BNLM

In this section the overlap—save method of the Section 3.1 is used to
implement the BNLMS algorithm of Fig. 2.2, The result is depicted in
Fig. 3.2. As mentioned before two main operations in the BNLMS al-
gorithm are the linear convolution, to perform the filtering of the input
gignal with the adaptive weights, and a linear correlation, to calculate
the gradient estimation that is needed for the update of the adaptive
weights. These operations are carried out in the blocks "CONVOLU-
TION™ and "CORRELATION" respectively in Fig. 3.2. The convo
lution is a straightforward replica of Fig. 3.1, except for the return
to the original sampling rate. Here the signal &[k] is segmented and
down sampled in a length L vector & [kL]. The length L residual sig-
nal vector is given by rp[kL} = &;[kL] — &.]kL]. The return to the
original sampling rate is carried out by upsampling this residual signal
vector and applying this result to a transposed delay line, resulting in
the delayed residual signal r[k — L 4+ 1]. Before calculating the corre-
lation between the residual signal vector ry[kL] and the input signal
vector x[kL], each element of rp[kL] is first multiplied by the adapta-
tion constant (2ayz)/(Le?). To correlate two signals is an equivalent
operation as to a convolve two signals, except for an extra mirroring of
the input signal. This mirroring is carried out in frequency domain by
using the conjugate (*) operator. The result of the ¢yclic convolution
contains only N correct linear convolution values. This result has to
be mirrored because the ordering 1s chosen such that element zero of
the vector w[kL] is wy_[kL].

Again as a rough measure of complexity the number of real multipli-
cations and divisions, needed to produce one output sample, is used.
For the efficient overlap-save implementaiion of the BNLMS algorithm
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with 5 FFTs, as depicted in Fig. 3.2, these numbers are as follows:

1(5-2B%og(B)+2-48
2 L
DiVgp_pnims = 1. (3.2)

il

MULEF—BNLMS

Note that this quantities give an order of magnitude and are not ment to
be exact. For example the multiplication needed for the scaling with the
number 2o/ La? and the calculations needed for the estimate o2 are not
included. Comparing these complexity numbers with the complexity
number of the BNLMS algorithm, equation (2.18), it follows that for
large B (=N + L — 1) the implementation as depicted in Fig. 3.2 is
more efficient.

Notes:

s In Fig. 3.2 it is possible to combine the two mirror operations, one
before and one after the updating of the adaptive weight vector,
and leave them out. However in order to keep the separate imple-
mentations of the convolution and correlation operations visible,
this has not been done here in the figure.

o In contrast to the implementation in Fig, 2.2, here both the up-
date and the filter use block processing techniques, resulting in a
processing delay of {L — 1) samples. The implementation of Fig.
2.2 has no processing delay, since only the update of the adaptive
weights uses block processing techniques.

¢ The FFTs can be implemented efficiently when B is a power of
two. For this reagon N is generally chosen as a power of two, and
B = 2N, resulting in L = N 4 1 new samples for each iteration.

3.3 Overlap—add for fixed and adaptive
filters

The overlap—add method is based on the calculation of a complete
convolution of a length L segment of the input signal 2{k] and a length
N weight vector w. Each step generates L new output samples é[k].
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The method for fixed fillers, implemented with FI"Ts and using block
processing techniques, is depicted in Fig. 3.3 (left hand figure) with
B =N+ L ~ 1. The input signal z[k] is split into segments of length
L. After that the signal vector 15 down-sampled by a factor L and
filled up with N — 1 zeres. The resulting vector is applied to an FFT
of length B. The N length weight vector w is mirrored and added
with L — 1 zeros, This length B vector is transformed to frequency
domain, resulting in the vector W. The (cyelic) convolution is carried
out in frequency domain by multiplication of these two transformed
vectors. The result of this multiplication is transformed back to time
domain with an inverse FFT. In this way a complete linear convolution
between the length L segment of the input signal and the length N
weight vector is calculated by a cycelic conveluticn, The desired linear
convolution of the infinite length input signal and the length N weight
vector is composcd as follows: In each iteration & the last /N —] samples
of the previous iteration (A — 1) have to be added to the present result.
This is done by first (circular) shifting over L samples then discarding
the last L samples and after that adding L zeros, and delaying over
Tp, = L -T time units, Only L values are correct linear convolution
samples. For simplicity reasons it will be assumed that all operations
are such that only one addition 1s needed, as depicted in the right hand
side of Fig. 3.3 . This leads to the condition: L = N — 1.

The problem with the above mentioned method for adaptive filters is
that the last addition is not allowed any more: After all, from iteration
(k1) to k the adaptive weights have changed. The right hand side
of Fig. 3.3 shows the overlap—add method when applied to filters with
adaptive weights. The input signal vector, in frequency domam, 1s
delayed. Both this delayed vector and the present frequency domain
input signal vector are multiplied by the adaptive weight vector W[kL].
When applying this procedure to the implementation of the BNLMS
algorithm the result is an implementation with 7 FFTs [8],

3.4 Efficient overlap—add method for adar
tive filters
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In this section it is shown that using the overlap-add method for the
BNLMS algorithm, implies a restriction in the choice of the parameters
N and L. After that an efficient implementation is derived [52].

As mentioned before the BNLMS algorithm needs a convolution and a
correlation. When applying the overlap—add method, as explained in
the previous secion, the result of the convolution is a length L signal
vector &.[kL]. The only condition for the overlap-add method was:
L > N —1 in order to have only one addition of a segment with one
previous segment. This length L vector &;[kL) results in a length L
residual vector rp[kL], that is used to calculate the needed correlation
with the input signal. The result of this correlation, that is an estimate
of the gradient vector, must generate a length N vector. This leads to
the choice L = N.

On the other hand it is possible to combine, under certain restrictions,
twa FFTs of Fig. 3.3. The two windows, that throw away the last
L samples and augment this with L zeros, can be combined with the
window after the addition point if L = N — 1. Furthermore the cyclic
shift can easily be implemented in frequency domain, by multiplying
each frequency component / by e J#*/B)X By doing so the two FFTs
can be combined to one FFT after the addition point, while the two
multiplications with the adaptive weights can be performed after the
addition point too.

A compromise between the two above mentioned conditions can be
found by segmenting the input signal in length N vectors and add
these with N zeros, thus B = 2N. The FFTs can still be combined
in this way while moreover the cyclic shift in frequency domain is now
given by (e ™) = (1) for l = 0,---,N —~ 1. The only drawback
of this choice is that every iteration one superfluous output sample is
generated, but for large N and L this does not causes a real problem.
This method is an efficient overlap—add implementation for adaptive
filters as shown in Fig. 3.4. Note that in this figure the vector —] is
2N dimensional vector, from which the components are alternating 1
and -1, defined as:

=1=(1,-1,1,—1,+--)% (3.3)

This result can be used in a straightforward way to the BNLMS algo-
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rithm [52], and leads to the implementation as depicted in Fig. 3.5,
where 5 FFTs are used in stead of 7 FFTs.

3.5 Discussion

Efficient implementations of the BNLMS algorithm are given using 5
FFTs for both the overlap-save and the overlap-add method. The
used block processing technique results in an extra processing delay.
At first instance it seems that, for adaptive filter configurations, the
overlap~add method is more restricted in the choice of the parameters
L and B in comparison to the overlap-save method. This however is a
direct consequence of the overlap-add technique. It is shown that, when
using the overlap—add method for adaptive filters, a good compromise
is found by using length N segments of the input signal z[k] and length
B = 2N FFTs. In many practical situations the length of the FFT is
chosen ag B = 2N. For this case it is shown that, in contrast to a
statement in literature (9], both overlap-save and overlap-add can be
implemented with five FFTs. On the other hand, when L is chosen
more freely (such that B 3 2N), it is shown that the adaptive filter
structure can not be implemented with the overlap-add method.
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Chapter 4

Frequency Domain Adaptive
Filters

In Chapter 2 it is shown that convergence properttes of gradient-based
adaptive methods in general, and LMS in particular, are dependent on
the input signal statistics. Since many physical processes of interest,
such as speech and special codes, are highly correlated, this has served
as motivalion for deriving other methods of adaptive filtering which are
not so sensitive to the input signal statistics.

In this chapter adaptive filters are discussed of which the weights are
adjusted independently. This is achieved by using an orthogonal trans-
form that 1s performed with a fixed preprocessing consisting of the Dis-
crete Fourier Transform {DFT) or the fast implementation of this: the
Fast Fourier Transformation FFT. Sinee the autocorrelation function
and the psdf form a Fourier transform pair, decorrelation can be per-
formed in frequency domain. However, as a result of the cyclic nature
of the DFT, perfect decorrelation will never be reached.

In Section 4.1 it is shown how decorrelation can be performed in fre-
quency domain. This is done by choosing the adaptation constant for
each frequency compouent { equal to the overall adaptation constant
divided by an estimate of the input power of this frequency compo-
nent. Using this approach leads to the Frequency Domain Adaptive
Filter (FDAF). In Section 4.2 it is shown under which circumstances
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and restrictions the normalization in frequency domain shows a close
resemblance with the decorrelation of the input signal. Another moti-
vation for switching to frequency domain is the efficient implementation
of a convolution using FFTs when block processing is applied, as dis-
cussed in the previous chapter. This leads to the Block Frequency
Domain Adaptive Filter (BFDAF) that is represented in section 4.3.
This BFDAF approach tackles two problems simultanously:

(a) Under the restrictions, as given in Section 2, convergence prop-
erties are made (almost) independent of input signal statistics by
spectrum normalization.

{(b) Complexity is reduced, as proposed in the previous chapter, by
implementing the convolution and correlation in frequency do-
main, with FFTs as transformation between time— and frequency
domain.

Roughly there are two vaniants of the BFDAF known in literature.
The first one, containing five FFTs, is explained in Section 4.3. This
structure was introduced in [9] as the constrained BFDAF, since it re-
quires a constraint in adjusting the frequency domain weights based
on overlap-save sectioning. In [34] an unconstrained structure is in-
troduced by removing the window. This structure only needs three
FFTs. The main goal of the following sections is to get an insight into
differences of convergence properties of these structures. For this rea-
son Section 4.4 gives an analysis of the BFDAF by using a generalized
window function [51,50}. As a result of this analysis it is shown that,
under certain circumstances, an efficient window function can be used
as introduced in [49,59]. Results of this analysis are supported by ex-
periments, given in Section 4.5. This chapter is closed with a short
discussion in Section 4.6.

4.1 Frequency Domain Adaptive Filter

Applying the concept of the Frequency Domain Adaptive Filter (FDAF)
[36] results, for the generic adaptive filter of Fig. 1.7, in a changing of
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each of the components in amplitude and phase by the unknoewn op-
timum Wiener filter wy¢. These changes of each component can be
estimated by an adaptive filter, that is implemented as a filter bank
parallel Lo wgpt- By using the Fourier matrix F this FDAF concept
can be derived by rewriting the output signal é[k] of the transversal
filter of Fig. 1.7 as

o= X w[k—z‘]w,-[k]q*[fcl-mk}
= ‘[A]F Flwlk] = Fx[k] (Fwlk])
N 1
= XD -WUH = 5 S KWL (4.1)
l"O

Thus the estimate é[£] of the signal e[k] can be rewritten as the above
surnrmation, with

X[k = (Xo[k],---, Xnalk])' = F - x[#]
Wkl = (Welk], -, Wialk]) = F7 - wlk]. (4.2)

Multiplying both sides of the LMS updating algorithm with the matrix
F* gives:
Frwlk + 1] = F*w[k] + 2aF"x[k]r[k] (4.3)

resulting in the following LMS algorithm that is implemented with one
DFT:
W'k + 1] = W*[k] + 2aX"[k]r[k]. (4.4)

This principle is used v the FDAF that is depicted in Fig. 4.1. Note
that the calculation of the output signal é[k] of the adaptive filter needs
a factor 1/N. This is accomplished in the figure by multiplying the
residual signal »{k] by the scaled adaptation constant Zaf/N.

With each new input sample the data slides one step down a delay
line of length N, acting as a rectangular window, and a new FFT is
computed. Each of the FFT outputs X[k}, with I =0,1,---, N =1,
is associated with a specific frequency band. The FFT used in this
manner can be considered as a means of implementing a bank of band-
pass filters uniformly spaced in frequency between zero and half the
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sarnpling frequency. Note that because of the rectangular weighting of
the input signal, each bandpass filter has a sin(z)/z character. The
FFT outputs iu Fig. 4.1 are complex discrete functions of the sam-
pling index k. They are approximately uncorrelated with each other,
being in diflerent frequency bands. The frequency components are not
perfectly uncorrelated because the FFT band-pass filters overlap some-
what, causing leakage of signal components from one band to another.
For an exact description of this interbin decorrelation we refer to {32]
(part of B. Picinbono). These complex output signals of the FFT are
weighted in Fig. 4.1 with complex adaptive wetghts W;'[k] to produce
é[k]. In fact thesc weights are such that they "perform” an inverse
Fourier transform since W™{k] = F'__w_[k] = NF~-*wl[k]. The N weights
are updated in accordance to the transformed LMS algorithm as de-
scribed above, When dealing with real signals and impulse responses
the adaptive weight vector W*[k] and the input signal vector X{%| have
symmetry properties, which can be used to lower the computation load
of the algorithm.

Under certain circumstances, described in the next section, the conver-
gence of the above described transformed LMS update algorithm can
be made independent of the input signal statistics by normalizing each
of the FFT outputs to equal power levels. This result follows from the
analysis of the average value of the transformed LMS algorithm (4.4).
For this the residual signal »[k] is first rewritten as:

k) = XU DU+ o[ (4.5)
with

D[k = B - dik) = F* (wepy — wik]) = Wo, — W', (46)

Assuming a small adaptation constant ¢ it follows that, as in Chapter
2, the input signal and the adaptive weights may be separated under
E{-}. Together with E{s[k]} = 0 it follows that averaging equation
{4.4) reduces to:

B[k + 11} & (1 20 EXIXRY) - B{DV(H). (4)
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Thus convergence of each separate component F{D;[k]} is dependent

on the input signal statistics, that are given by the matrix L E{X"[k]X"[%]}.
Under the assumption that different frequency components are uncor-
related this matrix reduces to the diagonal matrix P as follows:

1 . : TS § 2 1 2
!—\;E{l (R]XC[R)} = dmg{NE{IXo[k]l ey NE{IXN-J.U"” 1}
= diag{Fp,++, Py} =P. (4.8)

Note that here the same approximation is applied as mentioned in the
Chapter 1, where the symmetric circulant autocorrelation matrix C
is constructed from the Toeplitz autocorrelation matrix R. Since the
circulant matrix C can be diagonalized by the Fourier matrix F as
follows:

1
SE(XHXH) = LFB{x{Hx'[H}F = FRE
= F7'CF =P. (4.9)
Thus normalizing each of the FFT outputs with Fifor {=0,1,+.-, N1
to equal power levels makes the convergence properties independent of

the input signal statistics. This results in the Frequency Domain Adap-
tive Filter (FDAF) that is given by the following updating equation:

Wk + 1} = W*k] + 20P 7 X k]r[k] (4.10)
and the update scheme is depicted in Fig. 4.1.

Finally this section is concluded with some general comments:

» Counting as a rough measure for complexity the number of real
multiplications and divisions, results for the FDAF algorithm in
the following numbers:

MULppsr = = (2N%og(N) +4N)

[ el el

DIVFDAF = 4N, (411)

e From the update equation (4.10) it follows that in average the
final value is a transformed version of the optimal Wiener solution,
namely

lim (E{QW(k]}) = 1F"Ropt- (4.12)
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& The power levels for [ = 0,---, N — 1 can be estimated by expo-
nential time averaging as follows:
. R Xi[k]P? .
Plk+ 1] = 8A[k + (1 - 5)%.1.’., with 0« g <1, (4.13)
In [51,50] a detailed analysis is given of the influence of this es-
timation scheme on the convergence properties of the frequency
domain adaptive lilter.

s Siuce the update scheme needs the inverse of A, it may be usefull
to search for estimators for this inverse funetion. This is equivalent
to the approach as used in the Recursive Least Square (RLS)
method that will be shortly discussed in Chapter 6.

4.2 Decorrelation conditions for the FDA
algorithm

As mentioned in the introduction of this chapter, perfect decorrela-
tion can mever be reached by the power normalization of each separate
frequency component because of the cyclic nature of the DFT. This
section describes two conditions under which the power normalization
acts as a reasonable approximation for the desired decorrelation of the
input signal of the adaptive filter.

The first condition is a direct consequence of the Toeplitz—circulant
matrix approximation as discussed in Chapter 1. A restriction for this
approximation was that the autocorrelation function p[7] has negligible
values for mmax greater than half the length of the Fourier transforma-
tion. For the FDAF this results in:

{rmax| < N/2. (4.14)

A direct consequence of this condition is that the closer the poles of a
signal model lie to ihe unit circle, the larger the DFT length has to be
chosen in order to enable decorrelation such an input signal.

The second condition is mainly due to the fact that the inverse value
of the power spectrum (1/F) is needed in the update equation. This
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causes problems for input signals that can be modelled with zeros very
close to the unit circle. In order to be able to give a quantative measure
of the second condition, the impact of the DFT length IV on the power
normalization is analysed. In the FDAF algorithm the psdf

E_ plrle =irt — = p[0] + 2 E plr] cos(r8) (4.15)

is estimated, and normalized, at frequency 8y - [ = (27 /N) - | with the
function:

P = —E{IXz[kllz} pl0} +2 }:

re=1

[T] cos(Onlr).  (4.16)

Transforming this equation {o time domain results in an expression for
the cyclic estimate p of the autocorrelation function p. Namely for
r=0,1,.-,N—1:

- -7 T
plrl = —5—plr] + 5 plN — ] (4.17)
from which two error sources in the estimation of g are evident:

{a) Basing the estimate on N samples introduces a bias that results

(b) Sampling the power spectral density function P(eja) results in a
periodic repetition of the function p with period N = Fp[N —1].

Ideally the power normalization of the FDAF algorithm implies that
all power levels of the input signal are reduced to 1, and hence the
convergence properties for all adaptive weights become equal. Now the
Power Decrease Ratio (PDR) [37] is defined as:

P()lo=oy:.

PDR; = 2
I

(4.18)

This function evaluates for frequency component ! how far the onginal
power P(ed®)|s=s,1 is decreased or increased to 1 by the power normal-
ization as applied in the FDAF algorithm with 1/7.
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For the ma(l) and ar(1) models, as described in chapter 1, this PDR
function is evaluated as:

1+ a®+ 2a cos(Gyl)
FDR = 4.19
Mt 1+ a%+ 2(1— cos{fn!) (4-19)

1— a?

PDR — 1407w 2acos(@n)
ARJ 1+ ?-ZN 1 N~ 'Ta|'r| CO%(ONIT)

In Fig. 4.2 these functions are plotted with a = 0.8182 (= ER = 100)
for different N. From these figures it follows: the larger the DFT
length, the better the power spectral normalization. Tt also follows
from this figure that for sinall values of N the PDR is rcasonable flat
for a signal model with a pole (ar(1)). For this model PRI = 0.9 for
N =32, To increase this value further from 0.9 to 1 a DFT of infinite
length is needed. Furthermore it follows that the PDR, with N = 32,
for signal models with a spectral zero (mafl)) is equalized to 1 for
N = 32 over a large spectral range, except the spectral range near the
spectral zero. In order to increase this spectral zero further from 0.4 to
1, a DFT of wfinite length is needed. In many practical cases however
this DFT length can be restricted for the folowing two reasons: The
approximation of the decorrelation by the power normalization needs
not to be perfect, while moreover this approximation needs not to be
that good for the whole frequency range. It follows from Fig. 4.2 that
the ma(1) signal can be decorrelated reasonably well when the unknown
optimal Wiener filter has a low-pass character. The ar(1) signal can
be decorrelated satisfactory for large enough N as long as frmax| <
N/2, "independent” of the frequency response of the unknown optimal
Wiener solution.

In conclusion it follows that in general frequency domain adaptive fil-
ters can decorrelate an input signal acceptably well by normahizing each
separate frequency component by its power spectruin when the follow-
ing decorrelation conditions are satisfied:
For ar-signal meodels (spectral poles):
The autocorrelation function p[r] of the input signal must be restricted
hy:

}Tlnax[ < N/L’ (420)
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Figure 4.2: PDR for ma(1) (top) and ar(1) for different DFT length N
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For ma-signal meodels (spectral zeros):
The length of the DFT must be such that the power decrcase ratio,
that is defined as )

P(e)|o=gn1

A
is reasonably equalized to 1 in the frequency range that is of importance
for the unknown optimum Wiener system.

These results are verified by experiments described in Section 4.5,

PDR, = (1.21)

4.3 Block Frequency Domain Adaptive
Filter

Implementing the BNLMS update equation in {requency domain, as
described in Chapter 3, and performing the power normalization as dis-
cussed in the previous sections leads to the Block Frequency Domain
Adaptive Filter (BFDAF). This structure is derived in the present sec-
tion. The first step is to describe the overlap-save implementation of
the BLMS update algorithm, as depicted in Fig. 3.2 (without power
normalization), in mathematical forms. The second step is to determine
the update not in time, but in frequency domain. The last step is to
make the convergence properties independent of input signal statistics
by power normalization, as described in the previous sections.

The update equation of the BLMS algorithm is given by:

wl(k+ 1)L} = w[kL] + Q.E“X[A:L];L[m (4.22)
with
wlkl] = (wnoi[kL],- wl[kL] wolkL])* (4.23)
rglkl] = (WKL — L+ 1se-- r[kL = 1], o[kL])"
kL] = (x(kL—L+1. [kL-l xIEL)
X[hL—i] = (J[LL—:-—N+]} elkL— i = 1], 2{kL — i)}t

In Fig. 3.2 this algorithm is calculated by using a cyclic correlation
that is performed in frequency domain. With B = N + L — 1 first the
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B x B matrix x“[kL] is defined as the I-circulant expansion of the N x L
mirrored matrix Jy - x[kL]. This is done by putting I « x{kL] in the
upper right corner of x*[kL] and filling in the missing elements in such
a way that x°[kL] becomes I-circulant. By deing this, the following
relationship is obvious:

(1 0)oxthtl () ) =Iwxbnh (a2

Noticing that Iy - Ix = Ix the mirror matrix Jy can be placed at the
left-hand side of this formula. With this the above update equation
can be written as:

w{(k+1)L) = E[kL]+g§JN( Iy O )-x‘[kL]-( I‘i );L[kL]. (4.25)

The J—cireulant matrix can be diagonalized as follows:
Fx“[kL]F™ = X*[kL] = diag{X*[kL]} (4.26)
with
X kL] = (Xg[kL], XT[kL), -+~ X5, kL] = F" - xglkL].  (4.27)

Thus by multipying both sides of the I-circulant matrix x°{kL] in equa-
tion (4.24) with the B x B identity matrix Ig = F~' - F, the update
equation (4.22) can be wnitten as follows:

wl(k +1)L] = wikL] + 2—5-.]” (v 0)FX"LRKL] (4.28)

with
R'{kL] = F ( I‘i ) r.[kL]. (4.29)

Note that with the assumption

1 ety ) | P, forl=m
EE{AI (kL) XalkL]} = { 0 elsewhere (4.30)
it follows that the following relationship holds:
%E{gg*[kL]E[kL]} - %E{X*[kL]X[kL]} _p. (4.31)
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Hemnce it 1s allowed to use a diagonal matrix notation X[kL] = diag{E k1
in formulas, and a vector notation X[kL] in figures.

For the second step of this section update equation (4.28) has to be
described as if it was implemented after the second mirroring and win-
dowing of Fig. 3.2, This can be done by multiplying both sides of the

. . I .
above update equation with ( gr ) Jn. Noticing furthermore that

Iy - Iy = Iy and by defining the window

g=(I{,")(1N 0) (4.32)

this results in

( Ig ) Iywl(k+1)L] = ( Ig ) Inwlkl] + %gF"X*[kL]E’[kL}‘

(4.33)
Now this update equation will be implemented in frequency domain.
This can be done by multiplying both sides of the last update equation
with the Fourier matrix F, resulting in the following equation:

W(k+1)2] = WKL + DX RLRRL] (434
with

WIkL] = F ( Ig ) Ivwikl] and G =FgF™. (4.35)

This equation describes the BLMS update algorithm, implemented ef-
ficiently in frequency domain. The update part is depicted in Fig, 4.3.
In order to make the convergence properties independent of the input
signal statistics, the last step of this section is to use the same power
normalization as used in the previous sections. The result of this is the
Block Frequency Domain Adaptive Filier (BFDAF), from which the
update equation is given by

W(k +1)1] = WKL) + 7 GPX (kLR kL] (4.36)
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Figure 4.3: Update part of efficient BLMS algorithm implemented in fre-
quency domain

An implementation of this algorithm is depicted in Fig. 4.4. Note that
in this figure the power normalization is performed with the vector P!
that is defined as:

B = (1/Pyy o, 1 Pyoa) (4.37)

Az mentioned in the introduction of this chapter, there are roughly two
variants of the BFDAF known in literature. The first one is explained
in this section with 5 FFTs. This structure was introduced in [9] as
the constrained BFDAF, since it requires a constraint (window g) in
adjusting the frequency domain weights based on overlap—save section-
ing. In [34] an unconstrained structure is introduced by removing the
window g. This structure is less complex since it requires only 3 FFTs.
As a measure for complexity the number of real multiplications and
divisions 18 used needed to calculate one output sample:

; - 2 -
MULsrosr — % (('3 + 2win) EBLI,og(B) +2 43))
1 48
'DIVBFDAF — 5 . T (438)

with B = N+ L — | and the processing delay L = 1. Above that the
parameter win is used to denote the difference in complexity between
the unconstrained (win = 0) and constrained (win = 1) approach.
Notes:
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Figure 4.4: Adaptive filter using BFDAF update algorithm
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e It is known from literature that an FFT can be implemented most
efficiently when the length B is a power of two [37]. In many
practical cases this is done by choosing N as a power of two and
L = N+ 1. This results in B = 2N. Another possibility is
to choose N in stead of NV — 1 samples of the previous segment,
and choosing L = N. The number of cutput samples is now
L +1 =N 41, from which the first sample is already caleulated
in the previous iteration.

e The FDAF of section 1 is, of course, a special case of the BFDAF
with L = 1. This can be shown as follows:
For L = 1 the BFDAF update equation (4.36) reduces to:

FIywlk + 1] = FIyw(k] + 2P~ diag{ X [k}erik]  (4.39)

with & = (l,e"j%w'”,---,e‘j%’(N_l)(N_l))*. This vector is the
frequency domain equivalent of a time domain cyclic shift J3*. By
multiplying both sides of the above update equation, in time do-
main, with the operator J} this cyclic shift can be made undone.
Furthermore with FIyw[k] = W[k}, and thus with FIwik] =
W*[k], this update equation reduces to the FDAF update equa-
tion (4.10).

4.4 Analysis of the BFDAF algorithm

In order to get an insight into differences of convergence properties
of the constrained and unconstrained structure this section gives an
analysis of the BFDAF as proposed in the previous section. In this
analysis it is assumed that the power matrix P is constant. In refer-
ences [51,50] a more detailed analysis is given when the exponential
power spectral estimation scheme of equation (4.13) is used. Further-
more the analysis of this section uses a generalized window function
g = diag{ge,+++,g5-1}- For the constrained structure this window is
defined as g = geon with

Et:on:(lg)(lw 0):(13’8) (4.40)
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while for the unconstrained structure this window 1s a through connec-
tion and is defined as g = gyne = Ip. Note that the definition of the
transformed adaptive weight vector as

W[iL] = F ( W ) InwlkL] (4.41)

only holds for the constrained window function geop. A more general
transformed adaptive weight vector is defined as:

WkL) = Flgw'[kL] = Flwp[kL], -, wg_,[kL]) (4.42)
will be used for the analysis. Purthermore it is assumed that both
decorrelation conditions, as described in Section 4.2, are satisfied

For analytical purposes the update scheme of Fig. 4.4 is modified. This
is done by placing the inverse FFT and window, needed to producc
erlkLl, after the addition point. This part is depicted in Fig. 4.5. By

Rfki] EfkL]

windew v RlkL] E[wL] e[k]
]
fk—t+1]

Figure 4.5: Modification of BFDAF update scheme for analytical purposes

doing so the residual transformed vector R{kL] can be written as:
R[kL] = X[kL|DIkL]+ S[kL]
DiL] = Wopt - WIkL]

|

S[kL] = Fap(kL]

&0



With these notations it is obvious to write

0 _
Rkl =F ( I ) (0 I )F'R{kL] (4.44)
With the window function
v=(I°)-(o I.) and V=FyF! (4.45)
L

this transformed and windowed residual vector can be rewritte as:
E'[kL] = VR[kL]. (4.46)

Now update equation (4.36) can be rewritten as:
W(k + 1)L] = W[kL] + ZT“GP-IX-[kL]vE[kL] (4.47)

or equivalently, the update equation for the difference vector D[kL] is
given by:
D{(k+ 1)L} = (I ~ 2TCMG‘rfF’“’K"[I::L]VK[I::L]) -D{kL]
2o
L
Asin chapter 2, the analysis is performed in two steps. First the average
behaviour of the difference vector D[£L] is studied, and after that the
mean squared error of a block with L residual samples is analysed.
Both steps use the assumptions that signal z is independent of signal
s, and that the adaptation constant is small. With these assumptions
the average behaviour of the difference vector D[kL] is given by:

GPIX*[EL]VS[kL). (4.48)

E{D{(k + L} = (1- 22 GP B{X(RLIVXIRL]}) - E{D{kL]}.
(4.49)
Since the different frequency components are assumed to be mutu-
ally uncorrelated, the calculation of the (s, t)th element of the matrix
E{X*kL]VX[EL]} 1s given by:
(B{XRLIVX[kL]}ae = B{XJRLIX[RL]} - (Vs
{ B-P(V),, ifs=t

#

0 elsewhere, (4'50)
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The definttion of the window function v is such that

1 B~} L
Vie= = ;= 4.51
(Vh=g L =5 (+51)
and with this
E{X*[kLiVXIEL]} = LP. (4.52)

Thus the above difference equation reduces to:
E{D[(k+1)L}} = (I - 20G) E{D[kL]} (4.53)
or equivalently
E{W[(k+ L]} = (I-2aG) E{WI[LL]} + 2aG Wt (4.54)

By using the definition of W,,¢, as given in equation (4.43), and with
w'[kL) = (wh_[kL], -, wilkL], wolkL])* and W[kL] = FIpw'[kL]

the above equation can be rewritten as:

. 1
JpE{w'(k + 1}L] = (I - 2ag) Jg E{w'[kL]} + 20g ( N ) INWopt-

0
(4.55)
From this it follows that, independent of the window function g, the
adaptive weight vector converges in average to the optimum Wiener
solution as follows:

Jim Jpw(kl] = ( Ig ) IvWopt (4.56)

under the condition that the adaptation constant « is chosen in the
AVETAEE CONVEIEENCE Area:

0 < v =

with  gmax = max{ge. -, 9m-1}- (4.57)
fmax

As mentioned in Chapter 2 the second quantity of interest is j[kL] =
Jex[kL]/o? with

Jex{kl] = T B{(eslkl] - &g [RL) (eolbL) — & (kL)) (4358)
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from which the difference signal is defined as
ey[kbL) - &[kL) = (0 I ) ¥ 'X[kL]|DfkL). (4.59)
With this, Jex[kL] can be rewritten as
Jexl¥l] = TE{DMRLIXALF (0 1z )"
(0 I )FX([kL]D[kL]}

- ﬁg{gh[kL]E{X*[kL]VX[kL]}g[kL]}

~ TE{D'RLIPDIEL]} = ptrace{PARL]} (4.60)
with A[kL] = E{D[kL]D*kL]}. Furthermore by defining the trans-

formed difference vector as D[kL] = F - d[kL] with the time-domain
difference vector given by:

dikL] = (( Ig’ ) InWopt — szz’[kL]) : (4.61)
The quantity Jex[kL] can also be expressed in time—domain as follows:
Jex[kL] = %E’{ﬂt[kL] (FhPF) d[kL]} = trace{Cé[kL]} (4.62)

with the I-cireulant autocorrelation matrix C and the matrix §[kL)]

defined as:
C=F'PF and §[kL]= E{d[kL|d![kL]}. (4.63)

First an expression is given for A[kL] by using equation (4.48). For
small adaptation constant this leads to:

B+ 1)L ~ AL - S GP B{X RLVX[FL}A[KL)
—%?—A[kL]E{X*[kL]V*‘X[icL]}P“G"
+1i:GP‘1E1P“G" (4.64)
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with

= E{X"[kLIVE{S[kL|S"KkL]}V X [kL]}. (4.65)
Since s is assumed to be a white noise signal it follows that
E{8[LLISM"kL)} = Bo’L (4.66)
Together with the following quantities

E{X*[RLIVX[EL]} E{X*[ELIV*X[kL]} = LP
E{X"[kL]VV*X[LL]} = LP {4.67)

El

the above difference equation reduces to:
Allk+ 1)L = A[kL]—20GAkL] = 20 A[kL)G*

+4lzafa2GP—1G" (4.68)

With A{kL] = F6[ALIF" and F=1P~'F = C~! this equation is trans-

formed hack to time domain as:

2
§[(k + 1)) = §[kL] — 2ags(kL] — 2a6lkL]g + %*—afgc-*g. (4.69)

This equation is analysed for different window functions in the next
subsections.

4.4.1 Unconstrained window function

The window function is now defined as g = gyne = Ip and with Lhis
the difference equation (4.69) reduces to:

(k4 1)L) = (1 — 4a)d[kL] + iz—zafc-l. (4.70)

With this the quantity of interest J{kL] can be expressed with the
following difference equation:

trace{ CS[kL]}

a8

= (1—4a)JkL] + 1022 (4.71)

kL) = 7
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From this equation it follows that convergence properties of the uncon-
strained BFDAF (3 FFTs) are independent of the input signal statis-
tics. The rate of convergence v, and the final misadjustment J are
given by

1.15 — B
Lon R TL and J = Q'-E. (472)

Comparison these results with the convergence properties of the BNLMS
algorithm (2.45}, that uses a white noise input signal, shows that both
algorithms have the same rate of convergence rpp. On the other hand
for the unconstrained BFDAF algorithm B (= N + L — 1) adaptive
weights are fluctuating around their final value, while these are only
N coefficients in the BNLMS case. For this reason the final misadjust-
ment J of the unconstrained BFDAF is a factor B/N worse. In many
practical situations, the processing delay L is choosen in the order of
the number of adaptive weights (e.g. N + 1). For this situation the
factor B/N equals 2 (=3dB).

In conclusion it follows that the unconstrained BFDAF is capable to
decorrelate a coloured input signal. The windowing, that is needed
for a correct overlap—save convolution/correlation, is performed by the
adaptive filter itself at the cost of a factor B/N in accuracy for the
final misadjustment. Note finally that, of course, the two decorrelation
conditions, as mentioned in Section 4.2, must be satisfied. For the
unconstrained case this implies that mmax < B/2 = (N + L —1)/2.

4.4.2 Constrained window function
The window function is now defined as:

g=gcml=(lg)(lnr 0)=(I(1)v g) (4.73)

When, as in many practical situations, the adaptive weights are initi-
ated with zeros it is obvious that the B x B matrix é[kL] contains only
elements different from zero in the upper left N x N comer. Thus with
the N x N matrix §'[kL], the B x B matrix é[kL] can be written as:

§[kL) = ( y )6’[kL] (v o). (4.74)
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Substituting this in equation (4.69) and using the expression

o H
JkL) = M (4.75)
o’-‘
this results in the following difference equation:
T 4 4(,!2 -1
JELY = (1 —4a)J{(k - 1)L] + Tt'."ace{CgC g} (4.76)
In this equation the trace{-} can be rewritien as:
trace{CgC~ g} = trace{(C™Y . C"} {(4.77)

with the N x N matrices C" and (C7')’ defined as the N x N upper
left part of the B »x B matrices C and C~?! respectively, defined as:

¢ = (1w o)e(’y)

(€Y = (Iy o)c-‘(lg) (4.78)

From this equation it follows that the constrained BFDAF (5 FFTs)
has the following convergence properties:

1.15 N (tv-ace{(c_l)' - c’}) O (19)

Vog Fiz —— and  J = o= -
o L N

Thus the contstrained BFDAF has almost equal convergeuce properties
as the BNLMS algoritlim, with a white noise input signal. The only
difference is that the final misadjustment J contains a deviation factor
f that is defined as:

f= trace{(C1) - C'}

= (4.80)

In order 1o get some insight into the quantitative value of this factor
the following table shows some results. In this table the factor f 1s
calculated for N = 16, and for different L. Two different input signals
(ma(1) and ar(1)) with different Eigenvalue Ratios (ER) are given.
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N | L| ER [ ma(1) | ar(1)
f f
16{ 8 1 1.00 1.00
10 1.04 1.04
100 1.12 1.20
1000 1.15 1.58
16 | 16 1 1.00 1.00
10 | 1.04 | 1.04
100 1.13 1.21
1000 1.18 1.62
16 | 32 1 1.00 1.00
10 1.04 1.04
100 1.16 1.22
1000 1.23 1.69

From this table it follows that in general the deviation factor f is close
to one. For large ER this is not correct any more. By the assumption
Tmax < B/2 the ER is restricted, and thus the deviation factor may
be approximated to 1, as long as ER is not too large (or Tmax < B/2).
In [51] {p794 and 796) it was argued that this deviation factor is in
practice restricted to be smaller than 2.

In conclusion it follows that the constrained BFDAF (5 FFTs) is,
within the decorrelation conditions of Section 4.2, able to decorrelate
a coloured input signal. The final misadjustment is, for many practi-
cal situations, a factor B/N better in comparison to the unconstrained

BFDAF (3FFTs).

4.4.3 Efficient window function

As mentioned in the previous subsections all B weights converge to a
final value with a certain variance for the unconstrained BFDAF. After
convergence, B weights fluctuate and add to the final misadjustment,
whereas only N weights are needed. In the constrained BFDAF this
is brought about by forcing the last L — 1 weights to zero, so as to
lower the final misadjustment by a factor B/N = (N + L —1}/N, while
maintaining the rate of convergence. This is done by multiplication
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in the time domain by the function geon, necessitating, however, the
use of two extra FFTs in comparison to the unconstrained BFDAF.
Lowering the final misadjustment by the same amount in the uncon-
strained approach would reduce the rate of convergence by the same
factor B/N. On the other hand, a direct convolution in the frequency
domain, based on the transform of geon, ts very complicated.

In order to dispense with these two extra FFTs, but obtain the same
rate of convergence and final misadjustment as with the constrained
BFDAF, in {49,59] an BFDAF is proposed having a window function
Ecos in the loop that can easily be implemented in the frequency deo-
main. This window function is defined for i = 0,-+-, B —1 as

1 1 2
(Bcos)i = 5+ 5605(—51) (4.81)

that 15 transformed in the frequency domain to the matrix Gegs. This
is an l-circulant tridiagonal matrix with

Bj2 for k=1
Bf4 fork=1I+1

(Geosheg= 1§ Bf4 fork=0andl=B-1 (4.82)
Bf4 fork=B-1landlI=0
4] elsewhere.

In many practical situations some a prioti knowledge of the "unknown”
Wiener system is present. Here it is assumed that the impulse response
of this function 15 globally decaying function. Thus the coeflicients are
grealest at the beginning, the rate of convergence of an adaptive filter
being largely determined by the speed at which the greatest coefhicients
converge. The window function geos, a raised cosine function, will give
these first coefficients the same speed as geon. When choosing in first
instance L = N + 1 and thus B = 2N the suimn of values of {gcos): and
{(gcon)i are both equal to NV, leading to the same final misadjustment,
In contrast to the window function gepn, the wmultiplication in the
time domain with the diagonal matrix geos can easily be implemented
in frequency domain by a simple cyclic convolution with the three com-
ponents of the tridiagonal I-circulant matrix Gegs as sketched in Fig.
4.6. The three components of Geps are moreover powers of two, which
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Figure 4.6: Efficient implementation of raised cosine window function

makes the few extra multiplications needed very simple. In conclusion
it follows that for a global decaying Wiener system the given eflicient
BFDAF, with a raised cosine window gcas, has convergence properties
of the constrained BFDAF and it can be implemented with the com-
plexity that is in the order of the unconstrained BEDAF (3FFTs).

Notes:

# For the more general case B = N+ L~ 1and L > N +1 this
technique ¢an also be applied, but the gain can only be a factor
two m stead of B/N.

» In some practical cases it is better to use a shifted version of the
raised cosine window function as deseribed in [39]. Examples are a
causal linear phase low or high pass filter, or an impulse response
with a delay al the beginning.

4.5 Experiments

The main analytical results of the previous sections are verified in this
section with experiments. For these experiments the system, as given
in Fig. 1.7, is used.
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4.5.1 FDAF (L=1)

In this experiment it is shown that the decorrelation properties of a fre-
quency domain adaptive filter are limited by the two main decorrelation
conditions as described in Section 4.2. In order to do so an adaptive
filter with N = 32 coefficients uses an FDAF algorithm (L = 1) with
DFT length B = N + L — 1. The adaptive weights are initialized in
such a way that |D;[0]|? is constant, and the adaptation constant is
chosen as e = 4.6/1000. The results of this experiment are given in
Fig. 4.7 for an ma(1) input signal and in Fig. 4.8 for an ar(1) signal.
Both signals have an LR = 100 (— a = 0.8182). The function that is

Convergence of ma(l) (ERw100} for differeot DFT lenglh B

alph'n ;"4~611D'm
N . =132
L..Digre | pomstat

- [{Hog{Pe-hatleFWP{e)}

0 200 400 600 800 1000 1200 1400 1600 1800 2000

--5 pumber of samplos

Figure 4.7: FDAF with ma(1) input signel for different DFT length B

plotted in these figures is:
10 E{(e[k] — é[k])%}
10 -1% log( E{eTF] ). (4.83)

From this function it is possible to measure the deviation from the
"ideal” rate of convergence wyp = 1.15/c = 250 samples, that is reached
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Convergence of ar{1) (ER=100) for different DFT length B
' : i | olpha = 4.6/1000
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Figure 4.8: FDAF with ar(1) input signal for different DFT length B

when the mput signa] 1% pc—:rfectiy decorrelated. From the PDR fune-
tions, plotted in Fig. 4.2, it follows that this ideal situation only occurs
when the DFT length B approaches infinity. In the experiment this
"ideal” situation is simulated by using an FDAF with a white noise
input signal. Furthermore the situation with an DFT length B = 1
is simulated with a the time domain adaptive filter using an NLMS
update algorithm: No decorrelation takes place.

From the PDR function of the ma(1) signal, top figure of Fig. 4.2, it
follows that an FDAF with B = 32 is capable to equalize the first part
of the power spectrum to 1. The speciral zero (at @ = =) is, for this
value of B, ouly increased to 0.4. In order to increase this level towards
1, an DFT of length B — oo is needed. From the experimental result
of an FDAF with B = 32, as plotted in Fig. 4.7, it follows that in first
instance the rate of convergence equals the ideal one. Decreasing below
-70 dB shows that indeed to decrease another 20 dB costs 250/0.4 = 600
samples.

On the other hand 1t {ollows from the PDR function of the ar(1) signal,
bottom figure of Fig. 4.2, that an FDAF with B = 32 is capable o
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equalize the complete power spectrum to 0.9 . In order to increase
this level to 1, a DFT with a very large length is needed. From the
experiment with 2 = 32, as plotted in Fig. 4.8, it follows that for this
situation the rate of convergence vy, is indeed in the order of 250/0.9 =
280 samples.

The conclusions of these experiments is that a frequency domain adap-
tive filter can decorrelate an input signal acceptably, when the tweo
main decorrelation conditions of Section 4.2 are satisfied.

4.5.2 BFDAF

In this experiment it is shown with ¥ = 32 and L = 33 {— B = 64),
that the difference in final misadjustment between the constrained
(5FFTs) and uncounstrained BFDAF (3FFTs) is roughly a factor B/N =
2 (=3 dB). Above that it is shown that the efficient cosine BFDAF
(3FFTs) has almost the same convergence properties as the constrained
BFDAF. Fig. 4.9 gives the results of this experiment. Ir this figure

25

—> 10 leg(!_exfI_min}

9. ‘ .mmu%u-‘ i

-15k 3
20} 3 E ;
i ; ; ; BFDAF(pemstr+ps)
25 ) i i H . ! ! f P
o 02 04 06 08 1 12 14 16 18

-5 pumber of sumipics x1{H

Figurc 4.9: Convergence of different BFDAFs
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the function 10 -° log(J[kL]) is plotted as a function of the number of
input samnples. The mput signal is an ma(l) signal with ER = 100
(— a = 0.8182). The unknown Wiener system is an exponential de-
caying function defined as:

Wopt = (0~7)£ for 1=0,1,---,3L (4.84)

Furthermore with & = 0.33/32 the "ideal” results are as follows:

Vag = 3650

10 -1 lﬂg(jmnstr) R =20
10 - log(Tuncons) = =17
10 P log(Jeos) = —20

4.6 Discussion

In this chapter it is shown that, within the two main decorrelation
conditions of Section 4.2, convergence propertics of the BFDAF can
be made independent of the input signal statistics by simple power
normalization. Moreover caomplexity is reduced by implementing the
convolution and correlation in frequency domain with FFTs as trans-
formation between time- and frequency domain,

The final misadjustment of the constrained BFDAF (5FFTs) is a factor
B/N better in comparison to the unconstrained BFDAF (3FFTs). In
many practical cases, when from a prioni knowledge it is known that
the "unknown” Wiener system is a globally decaying function, then
the cosine BFDAF (3FFTs) is an efficient alternative, with convergence
properties equal to the constramed BFDAY (5FFTs) and complexity
equivalent to the ynconstrained BFDAF (3FFTs).

Finally it is noted that from literature [37] it is known that the power
of a signal can be calculated by correlating the signal with itself using
equivalent overlap save procedures in frequency domain as mentioned
in Chapter 3. Following this method in the given BFDAF introduces
an extra FFT in order to caleulate the power in a correct way. Thus
although the estimate Ay = FE{X{kL]- X"[kL]} is not correct it is
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shown in this chapter that for the BFDAF algorithm decorrelation
can be performied in an acceptable way within the given decorrelation
conditions.
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Chapter 5

Partitioned Frequency
Domain Adaptive Filters

The previous chapter gives an overview of some Frequency Domain
Adaptive Filtering approaches. Decorrelation of the input signal is car-
ried out in frequency domain by normalizing the power spectral density
function. This is done by dividing each separate frequency component
by its power spectral density function. The resolution of this function
equals the number B = N+ L =1 of frequency components, with N the
adaptive length filter and L the block length or processing delay. On
the other hand the statistical properties of the input signal, and thus
the needed number of divisions, has no relation at all with the seg-
ment length B. Assume for example that the autocorrelation function
of the input signal has only a few nonzero values within the scgment
length. The spectral density function of such a signal is smooth, and
the first question 1s: Is | possible to reduce complexity by performing
the complete decorrelation with less than B divisions?

Another practical problem is that the length B of the FFTs used in
the BFDAF approach must be a power of two. This implies that for
large N {as for an acoustic echo canceller N == 1024 samples), also the
processing delay L must be chosen very large (e.g. L = 1025 samples).
This however may be an unacceptable number in practice. A second
question is: s it possible to obtain more freedom in the choice of
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the processing delay L while still being able to implement the needed
Fourier transform of the adaptive filter with FFTs?

A possible solution to these problems is to partition the adaptive filter,
and by that the update algorithm, n separate parts. lmplementing
this in an efficient way leads to partitioned frequenecy domain adaptive
fitter approaches.

In Section 5.1 the adaptive filter, using the BFDAF algorithm, is parti-
tioned in separate consecutive parts. Implementing this in an elficient
way leads to the Partitioned Block Frequency Domain Adaptive Filter
(PBFDAF) (61,6,4,69,30,57]. In Section 5.2 complexity of the BFDAF
and the PBFDAF is compared for a practical example. In Section
5.3 the consecutive partitioning concept is generalized for the "sliding”
FDAF. It is not necessary to partition the adaptive filter in consecutive
parts, also parts may be interleaved. This results in the mixed Parti-
tioned Frequency Domain Adaptive Filter {mixed-PFDAF) [56,58], in
which a DFT of length M = N/K is used. With this mixed concept
it is possible to search a way of partitioning for which convergence of
the partitioned filter, with smaller DFT length M, has equal conver-
gence properties as the "non-partitioned” FDAF structure with DFT
length V. Section 5.4 describes decorrelation conditions for the mixed-
PFDAF structure. The aim of this section is to search those conditions
for the input signal statistics for which convergence properties of the
partitioned structure are equal to those of the original frequency do-
main adaptive filter. In Seclion 3.5 experimental results are given,
while Section 5.6 gives some conclusions.

5.1 Partitioned BFDAF

In this section an adaptive filter is partitioned in A" consccutive separate
smaller adaptive filters each having length M = N/K, and each using
an BFDAF update algorithm. The parameter K is restricted to be
an integer in the range {1,2,---, N}, and with this parameter it is
possible to vary the new structure betwecen a frequency domain and
time domain structure. Namely for & = 1 the new structure equals



the BFDAF as given in Chapter 4, while for K = N this structure
reduces to the NLMS algorithm.

The first step of the partition concept is to split the impulse response
w(kL] of the original adaptive filter in K consecutive parts of equal
length M as:

wlkL] = (W [RL]), -, (o (K LYY, (oo R L])H) (5.1)
with for g =0,1,--- , K — 1
Eq[kLl = (w(ﬂ+1)M'1{kL11 Tty qu+1[kL}! qu{kL])t‘ (5.2)

The N x L input signal matrix xy[kL] can also be partitioned into K
equal separate parts as:

XK-1[kL]

dkr=| (5.3)
xalkL]
xo{kL]
with for ¢ =0,1,---, K — 1 the M x L matrices x,[kL] defined as:
xolkl] = (x[kL —gM = L+1],--- ,x]kL —qM ~1],x[kL — qM]) (5.4)

in which the length M vector x[kL — gM —u] for u = 0,1---,L — 1
contains the elenients:

(zfkL—gM—u~M+1], v, [kl —gM —u~1],z[kL—qM —u]}. (5.5)

With this the original length L output signal vector éz[kL] of the adap-
tive filter can be rewritten as:

K=-1
éxlkL] = XTMwikL] = 3 xilkLlw kL] (5.6)

q=0

From the given partitioning of the input signal matrix x[kL] it follows
also that each part x,[kL] can be written as a delayed version of the
first part yo[kL] as

XqlkL) = xo[kL — qM] with ¢=0,1,--+,K —1. (3.7)
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All K separate adaptive weights vectors are updated using a block
update algorithm with segment length B = M + L — 1, adaptive filter
length M = N/K and processing delay L = 1. This is depicted in Fig.
5.1. The next siep is to use a BFDAF structure for each separate part.
For this reason each partitioned J-circulant input signal matrix x,{kL]
is, as in the previous chapter, related to the I-circulant matrix x%{kL]
as fOll()WfS:

(Yar 0)-xlkL]- ( 1(1 ) = o - yo[kL]. (5.8)

This l—<irculant matrix is transformed to frequency domain with the
B % B Fourier matrix F as follows:

Fx((kL]F~! = X;[kL] = diag{X;[kL]} (5.9)

with
X kL] = (Xga[kL], v, Xomr{EL]). (5.10)
The adaptive weight veclor w, [kL] is windowed and translormed to

frequency domain as:

W, [kL}=F ( 13, ) Tprwe kL], (5.11)

As in the previous chapter this definition only holds for the constrained
case. A more general definition is:

W, [kL] = Flgw, (5.12)

in which w; is a vector of dimension B =M + L —1 of the adaptive
weights. Furthermore each BFDAF needs a B x B window matrix

G =FgF™! with
Ine .
g=(0)(1M o) (5.13)

and the B x 1 transformed version of the length L restdual signal vector
pplkL):

rikg = ( 5 )il (5.14)

by
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Figure 5.1: Partitioning concept for block update algorithm with B = M +
L-1,M=N/K and L > 1
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Now the BFDAF update equation for each separate adapiive weight
vector W ikL) (¢ =0,1,---, K — 1) is given by:

W_[(k+ 1)L] = W [kL] + %GP;‘X;[!:L}E’[!:L] (5.15)

in which the decorrelation takes place by the power normalization, that
is performed by the inverse of the B x B diagonal power matrix

P, = %E{x;[u]xq[u]}. (5.16)

By combining different DFTs of the separate BFDAFs the structure can
be implemented more cfficiently. As mentioned above all partitioned
input signal matrices x,[kL] are delayed versions of the first one xo[kL)].
This also holds for the circulant forms and their frequency domain
parts:

X;[kL] = I.i"xg[kui[,]F‘1 = Fyglkl — qM’]F‘1 =X3[kL - qM]. (5.17)
With the restriction
M=ul with pe{t,2---,M} (5.18)

it follows that it is pogsible to write the time index kL~gM as (k—qu)L
and the delayed versions Xo[(k — gp) L} can simply be obtained by de-
laying XelkL] in frequency domain over ¢ - g delay elements of length
Tt = L-T. Thus under the given restrictions (5.18) all separate DFTs,
that transform delayed versions of the input signal, can be combined
to one DFT while the delays are performed in frequency domain. Fur-
thermore every separate BFDAF has an inverse DFT and discards the
first M —1 samples. These functions can be combined to one DFT with
the "throwing away” part after the addition point. Finally each sepa-
rate BFDAF needs the same vector R'[kL], and thus only one DFT is
needed to calculate this vector. The computational complexity can be
further reduced when the input signal is stationary. For such signals it
can be shown thatl the diagonal power matrix P, from equation (5.16)
is independent of the partitioning index ¢ and thus

P, =P = diag{Po, Py.- -+, Ps.1}. (5.19)
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The power normalization can be performed directly on the B x 1 trans-
formed residual vector R/[kL], and only B divisions are needed. The
above mentioned combinations of DFTs and the reduced number of
divisions, lead to the Partitioned Block Frequency Domain Adaptive
Filter (PBFDAF), that is shown in Fig. 5.2. The filtering part of the
PBFDAF structure (right hand side of figure 5.2} is depicted in an alter-
native way in Fig. 5.3. From this figure it follows that each frequency
component Xy (kL], with ! = 0,1,---, B — 1, is used as a (complex)
input signal for a transversal filter with delay elements p - 7. The
K adaptive weights Wy, [kL],- -+, Wg_11[kL] of each transversal filter
are updated by using an NLMS algorithm with complex weights. The
normalization of component ! is performed with 1/F. From this figure
it also follows that each new segment of /3 input sipnal samples has an
overlap of M —1 samples with the previous segment. By this it is obvi-
ous that, even when a white noise input signal is applied, the frequency
component Xq;{kL] is "correlated in time” with delayed versions of it
that are used in the adaptive complex NLMS filter of component {. This
"correlation in time” for each frequency component ! can degrade the
decorrelation properties of the PBFDAF structure in compatison to the
BFDAF structure. On the other hand, the windows (used for the con-
strained approach), do cancel a part of this "correlation in time”. From
the experimental results at the end of this chapter it follows that, even
for colourd input signals, the convergence properties are not degraded
sericusly for small K,

As a final comment of this section it is noted that the PBFDAF method
has much resemblance with the filterbank approach as described in [31].
In general, subband filters are designed such that, in contrast to the
DFT, they have a good frequency selectivity. The impulse response
of such a subband filter also introduces a "correlation in time” in the
subbands. Furthermore, when implementing these subband filters as
causal filters, they also introduce a processing delay.

Thus, besides a good frequency selectivity the subband filters of the
filterbank approach must be designed, from the adaptive point of view,
in such a way that they introduce minimal "correlation in time”, and
that the processing delay is still acceptable.
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5.2 Complexity PBFDAF in relation to
BFDAF

The complexity lor the efficiently implemented PBFDAF structure, as
depicied in Fig. 5.2, is given by:

e s ' . 2 AR
MULpgrpip = % ((5 + 2K - win) ZB; log(B) 4 2 - 1K B)
1 48
DIV, = —.— )
PBFDAF 5 I (5.20)
with
B = M<+L-1
M = N/K with Kel{1,2,---N}
L ¢ {1!27'!(N/I{)}
. 1 constrained case
win = { 0 unconstrained case . (5.21)

With ' =1 and L > 1 these numbers equal, of course, the complexity
of the BFDAF. For the BFDAF structure the complexity needed to
calculate one new output sample becomes smaller for increasing L. On
the other hand, since L equals the processing delay, this value may in
practice not increase above some maximum allowable value Lyppax. An
example 1s the acoustic echo canceller [31], from which the acoustic echo
to be cancelled 15 in the order of 100 msec. On the other hand, in order
not to be audible, the processing delay may not exceed say 25 msec.
With a sampling frequency of 10 kHz, in the area of speech applications,
this yields an adaptive transversal filter with at least N, = 1000
coefficients, while the maximal allowable processing delay is 1n the order
of Lmax &= 250 samples. For this example, the needed number of
multiplications for the PBFDAF structure is comparcd to the number
for the BFDAF struclure for different K, and the result is plotted
in Fig. 5.4. Tor all structures the processing delay is chosen as L =
Lmax = 250 while the tota! number N of adaptive weights (N = M- K)
is chosen in such a way that the Fourier transform can be implemented
as an FI'T, thus the segment length B = M + L — 1 must be a power
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Figure 5.4: Relative number of real mulliplications of PBFDAF/BFDAF as
function of K
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of two. This implies that N can be larger than Np;,. For example
when K = 1 (BFDAF) and with L = 250, the segment length must
be B = 2048, resulting in N = 1789. Furthermore, in order to make
an acceptable comparison, it is assumed that all structures are able to
decorrelate the applied coloured input signal, and thus the convergence
properties ate described by the equations from the previous chapter.
The imtial speed of convergence {14) is for all structures the same, and
is given by the following number of samples:

1.15
Ling =2 s 250, (5.22)
[0

The final misadjustient 15 given by the following formula

— M-K
J=«a 7

(5.23)

and this quantity differs from one structure to the other. Al used
numbers are given in the following table:

I M |IN=M.-K| B J

1 | 1789 1789 2048 | T2 a
2 775 1550 1024 | 6.2 &
3 775 2325 10241 93 a
4 263 1052 512 4.2 o
3 263 1315 512 5.3 o

141 | 263 37033 512 | 148.3 o
142 7 994 256 4.0 o

For this example it follows from this table and Fig. 5.4 that the
PBFDAF, with X = 4, is more accurate (factor 7.2/4.2 = 2.3 dB) and
needs less multiplications ({actor 0.5) in comparison to the BFDAF
structure. Finally it is noted that the PBFDAF requires less divisions
than the BFDAY approach, since the normalization is carried out over
less frequency components.
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5.3 Mixed-PFDAF

As mentioned in the previous section the consecutive partitioning scheme
results in an adaptive filter structure whose convergence properties can
degrade in comparison to the original frequency domain adaptive filter.
In this section it i1s shown that the consecutive partitioning concept as
given in Section 1 can be generalized in an efficient way for the sliding
FDAF approach (L = 1l and B = N+ L~ 1 = N) in such a way
that this consecutive partitioning is a subclass of this generalization.
The same generalization can be applied to block processing techniques
(L > 1), but the only subelass that can be implemented efficiently is
the given consecutive partitioning. In Section 5.4 input signal condi-
tions are derived for this generalized scheme in order to have equal
convergence properties in comparison to the FDAF approach.

The first step needed for this generahization is to rewrite the output
signal (k] of the adaptive filter

N-1

iR = 3 2l — ifuslk] = x[k] - wlk) (5.24)

=0

by partitioning both the input signal vecter xjk] and the adaptive
weight vector w[k]. To this end the two vectors are "mixed” in K
separate vectors of length M as follows:

xM[k] = (R R (PR
_"W_:m[k] = ((E}}tﬂﬂ)ﬂ-",(Eén[k])t)‘- (525)

While the exact way of "mixing” is defined further down, the above
convolution sum £[k| can be rewritten as:

K-1
é[k] = (xRN - w™ik] = 3 (" (R]) - w (K], (5.26)

q=0

With this the length N convolution sum €[] 15 rewritten as K separate
smaller length M = N/K convolutions sums. Furthermore, as depicted
in Fig. 5.5, each of these smaller convolution sums can be performed
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with an FDAF, containing one DFT of length M. To this end the
convolution sum is rewritten as follows:

Kl K-
&kl = g(zqm[k])‘ (FarFz) wiifi] = ; xR (Far - Wi [k
—— 1 = Xl‘ﬂ .l. WIT! Ey 5.9

=0

The next step is to implement the mixed structure efficiently by com-
bining DFTs. By defining the transformed vector

X{PH] = Far o[t = (X[, XELR) (529

it follows that only one DFT of length M has to be applied to the input
signal when the other Founier transforms are simlpy delayed versions
of this vector:

Mk = XPk=¢C) with ¢=0,---,K~1 (5.29)

with C some constant. This can be archieved by defining the vectors
X[k} for ¢ = 1,2,---, K — 1 as delayed versions, over C samples, of
the first vector x[?[k] as shown in Fig. 5.5 with

k) =xPk—qC] for g=1,--, K -1 (5.30)

By defining M = ¢ - I it follows that the first vector x{[k] of length
M, contains the input samples

zlk —{u+sN/I)] with u=0,---,C=1 and s5=0,---T=1,

(5.31)
In literature [56] two partitioning schemes for the FDAF are known: In
the "consecutive” partitioning scheme K times M consecutive samples
are selected, while on the other hand the "comb” partitioning scheme
selects K times M samples, but every following sample is interleaved by
leaving out (K — 1) samples. The "mixed” partitioning, conceptually
is depicted in Fig. 5.6(a), is in between these two schemes: The M
samples are split in M = € - [ samples, where € gives the number of
consecutive samples. With [ in the range 1,2,---, M it follows that
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the mixed partitioning equals the consecutive-partitioning for I = 1
and equals the comb-partitioning for / = M. An example of choosing
M out of N samples, according to the above mixed concept, is given in
Fig. 5.6(b). Since the length of a DFT must be an integer it is obvious
that all above used values must be chosen such that N, M, K, T and
C are integer values. When the DFT is implemented as an FFT, M
must be a power of two as well. On the other hand when M = N, and
thus K" =1 the values of [ and C are not relevant any more and may
be chosen arbitrarily as ¢ = M and 7 = 1. Furthermore the next &
adaptive weight vectors of length M are needed for ¢ =0,---, K — 1:

WK = (Woglk, -+, Woay s [A)'. (5.32)

Equivalent to the FDAF approach the update scheme for these K adap-
tive weight vectors is given by K separate (length M) FDAF update
algorithms for ¢ =0,--- , K — 1:

(W [k + 1)) = (WRAD" + 20(P™)(XIP [k — ¢Cl) k] (5.33)

with, for stationary signals, the diagonal power matrix P™ defined as
follows:

Pm — LE{XH-I[A _ qC](xIﬂ[k _ qc})h}

= Mdmg (E{|XDRIEY - E{XIR L (KF)

= diag( PP, --- Fay ) (5.34)
This update scheme is depicted in Fig. 5.7 with the vector (P™)™}
containing the diagonal elements of the diagonal matrix {(P™)!

The complexity of the mixed-PFDAF structure is roughly given by the
following equations:

MU Lypizea-prpar = %(EM log{ M) + K - 4M)
DIViized-prpar = -12-'4M (5.35)

with M = N/K and K =1,2,---, N.
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5.3.1 Relation with incomplete Decimation—In—
Time FFT

From Fig.5.6 it follows that for I = M, and thus ¢ = 1, the M
input samples are chosen in such a way that every following sample is
taken by leaving out {K — 1) samples. This corresponds to the comb-
partitioning scheme as given in [56). This comb-PFDAF can be related
to an incomplete Decimation In Time (DIT) FFT [37] by looking to
the first steps of this DIT-FFT procedure. These steps, to implement
an NN point DIT-FFT, are:

s Split the input signal in an "even” and an "odd” part.
» Apply FFTs of length N/2? to bath parts separately.

¢ Combine the N/2 frequency components of both FFTs with an
appropriate butterfly stage.

When applying signal vector x[k| to this DIT-FFT the result of the
"odd” N/2 point FFT equals the result of the "even” N/2 point FFT,
delayed over T seconds. Thus these two N/2 point FFTs can be com-
bined to one N/2 point FFT, after which each frequency component
is delayed over one delay element of T seconds. Now leaving out the
last butterfly stage, as described above, results in an incomplete DIT-
FFT that is used in the comb-PFDAF with K = 2. Generalizing this
concept leads to the comb-PFDAF as given in [56), or equivalently the
mixed-PFDAF of Fig. 5.7 with I = M.

5.3.2 Relation with incomplete Decimation In Fre-
quency FFT

When chosing [ = 1, and thus ¢ = M, it follows from Fig. 5.6 that M
consecutive samples are chosen, which corresponds to the consecutive—
PFDAF as given in {56]. This consecutive-PFDAF can be related to
an incomplete Decimation In Frequency (DIF) FFT [37] by verifying it
with the first steps of the DIF-FFT procedure:

¢ Split the input signal in a "left” and a "right” part, each containing
N/2 samples of the input signal.
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e Combine the N/2 samples of both parts with an appropriate but-
terfly stage.

s Apply two separate FFTs of length N/2.

When leaving out the butterfly stage, and applying the signal vector
x[k] to the two N/2 point FFTs the result of the "right” N/2 point FFT
equals the "left” N/2 point FFT, delayed over (N/2) delay elements of
T seconds. Combining these two FFTs to one FFT of length N/2 gives
an imcomplete DIF-FFT which is used in the consecutive-PFDAF, with
K = 2. Generalizing this concept leads to the consecutive-PFDAF as
given [56], or equivalently the mixed-PFDAF of Fig. 5.7 with I =1,

5.4 Decorrelation conditions for the mixe
PFDAF

The filtering part of the mixed-PFDAF structure, depicted at the right
hand side of Fig. 5.7, is redrawn in an alternative way in Fig. 5.8. In
this figure each frequency component X[k} is a complex input signal
of a transversal filter with delay elements C'-T and K adaptive weights.
The K adaptive weights, for each separate frequency component ! =
0,1,+++, K — 1, are updated by using a "complex NLMS" algorithm:

Wk +1] = W + 2o (XP{k - gC1)° A (5.36)

with N = K - M and ¢ = U,---,h ~ 1. The input signal of each
separate complex NLMS algorithm can have "correlation in time”, that
may degrade convergence propertics of the mixed-PFDAF structure.

In this section those statistical conditions of the input signal are searched
for which the convergence properties of the mixed-PFDAF with DFT
length M = N/K, are equal to those of the FDAF with DFT length
N [58]. First all relevant signals are combined into the following form:

Fa 00 0\ (xR XE
0 0 By 0 || wop || xmp | 69
0 0 0 Fy x" (k] Xa' (k)
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or 1n cornpact natation:
F™ . x™[k] = X™[k]. (5.38)
All relevant correlations can be calculated by the expression

E{XTE(XT )} = F™ - E{xM k)M F)}- (F")
F™.R™ . (F™)h (5.39)

As mentioned in Chapter 4 an input signal can be decorrelated in fre-
guency domain by simple power normalization if the decorrelation con-
ditions are satisfied. One of these restrictions was, in order to ap-
proximate the Toeplitz autocorrelation matrix by a circular one, that
the length of the autocorrelation function is limitted by rmax with
Irmax| < M/2. Using this property it follows from the above equa-
tions that if the "mixed” autocorrelation matrix

R = E{x™[K)(x™[K])'} (5.40)

is block—diagonal, with only autocorrelation function values up to M/2
elements in the main diagonal blocks, then the convergence properties
of the mixed-PFDAF are "equivalent” to the FDAF. Note that that
this equivalence 1s not exact since the Toeplitz—circulant approximation
is carried out for different matrix dimensions. In order to fulfill this
restriction it follows from equation (5.39) that the autocorrelation func-
tion p(r) = E{z[k]z[k—7]} of the input signal may have values unequal
to zero, or undefined, for 7 = AN/I with A =0,%1,---,(/ —1)/2. For
all other values of  this autocorrelation function must vanish. On the
other band one of the decorrelation conditions for the FDAF was that
rinax < N/2. Thus the mixed-PFDAF, with DFT length M = N/K,
has equivalent convergence properties as the FDAF, with DFT length
N, when the autocorrelation function of the input signal has the prop-
erties

. , N -1 N
o] = arbitrary for r = 0,:|:%,:|:2- T-v-,:l:Tl - (5.41)
0 elsewhere
with 7 = 1,2, ---, M. The interpretation of equation (5.41) is as fol-

lows:
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Assume the autocorrelation function p’[7] with 7/2 degrees of freedom
is defined as follows:

- 1
o] = { arbitrary |r} < 5

0 elsewhere (5.42)

then the autocorrelation function pfr] of the input signal z{k] equals
this function p'[r] interleaved with (N/I) — 1 zeros. Thus the power
spectral density function

P(e]a)z i p[.,-]e"'jﬂ"' (543)

T=—0

contains N/I mirror images.
The interpretation for the comb-PFDAF and consecutive-PFDAF is
as follows:

Comb-PFDAF (I = M):
The comb-PFDAF has equal convergence properties as the FDAF if
the input signal has an autocorrelation with the properties

olr] = { arbitrary for 7 = 0, £K,--+, £(M - 1)- K (5.44)

0 elsewhere

The spectrum of the input signal contains K mirror images. The com-
plete decorrelation is performed by using the information of one mirror
image. This iz done by applying a DFT of length M on the comb
partitioned imput signal.

Consecutive-PFDAF (I =1):

Equation (5.41) shows that the consecutive-PFDAF has the same con-
vergence properties as the FDAF if the input signal has one undefined
autocorrelation value p{0]. Thus, as already stated in Section 5.2, con-
secutive partitioning of the input signal will always degrade convergence
properties of the adaptive filter in comparison to FDAF, unless a white
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noise input signal is applied to the adaptive filter.
On the other hand when p[7} has up to M degrees of freedom as:

ol = { arbitrary |7} < M/2 (5.48)

0 elsewhere

then the power spectral density function of such a signal is a "smooth”
function. For such a signal a possible solution is not actual to ap-
ply any partitioning scheme at all, but simply using an FDAF, with
transformation length N, in which every K consecutive components
are normalized with the same power function. Note, however, that this
approach does not reduce complexity: 5till N divisions and a DFT of
length N are needed.

O

Similary, if the autacorrelation function of the mmput signal does not
fulfil the restrictions given in equation (5.41) more and more block-
diagonal terms of equation (5.39) will influence the convergence proper-
ties of the adaptive filter. Normalizing the mixed—-partitioned frequency
components by P/ for I = 0,1,---,M — 1 is not enough any more to
decorrelate the input signal completely. This also follows directly from
the DIT- or DIF-FFT point of view: Too many stages are left out!

5.5 Experiments

Results of Lthe previous section are verified here with some experiments.
For the first two experiments the system as given in Fig. 1.7 is used,
of which the "unknown” Wiener system has an exponential decaying
impulse response of length N = 64. The adaptive weights are initialized
with zeros, and the white noise signal s[k] is such that the quantity
10log(J[kL]) starts with 20 dB. The partition factor K is varied from
K =1 (PBFDAF = BFDAF) to K = N = 64 (PBFDAF = BNLMS).
The processing delay was choosen to L = M + 1, with the partitions
length M = N/K. With these parameters the length of the DFT equals
B =2M. Fie. 5.9 shows the results for an ar(1) signal, with parameter
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Convergence PBFDAF with variable number of partitions K
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Figure 5.9: PBFDAF with M = N/K and DFT length B = 2M, ar{1) input

a = —0.8182, and Fig. 5.10 gives the results for an ma(l) signal, with
parameter a = —0.8182. From these experiments it follows that, with
N = 64, the PBFDAF is capable to decorrelate an ar(1) input signal
reasonably well in the range K = 1,2-.+,8 For an ma(l) signal this
range 1s K = 1,2,3,4.

With the last experiment of this chapter the results of the mixed-
PFDAF will be verified. For this an "unknown” Wiener system is
chosen with N = 32 coeffiecients. The adaptive weights are mitialized
with zeros, and the signal s{k] = 0. Thus the quantity of interest is:

E{(e[k] — &[k])*} -
10log ( 2 ) . (5.46)

The input signal is generated by an ar{4) model, that is defined as:
T[k] = (V1 —a®) k] +a-z[k ~ 4] (5.47)

with n[k] a white noise signal, having average zero and E{n?*{k]} = 1/3,
and a = 0.8182. The adaptation constant is & = 4.6/1000. The results
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Figure 5.11: Erperimental results of mixed-PFDAF
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of different experiments are plotted in Fig. 5.11. Two reference curves
are plotted: the ideal decorrelation case (white noise) and the situation
where no decorrelation takes place (NLMS). After that the result of the
FDAF algorithm (K = 1) is plotted.

First the FDAF is simulated using the mixed-PFDAF structure with
DFT length M equal to the adaptive filter length M = N = 32. For
this situation no partitioning takes place. As discussed in Chapter 4,
the resulting curve slightly deviates from the ideal curve (white noise).

Furthermore 1t is shown in the figure that the given ar(4) signal can be
decorrelated by using a mixed-PFDAF with C = 1 {(comb-partitioning)
and K = 4. The DFT used has length M = N/4 = 8.

Finally it is shown in the figure that the consecutive way of partitioning
degrades convergence already for /' > 1. This is simulated with the
consecutive partitioning for M = N/2 = 16,

5.6 Discussion

In this chapter some techniques are presented to decouple the spec-
tral resolution and the filter length N. These techniques are carried
out by partitioning the impulse response, and by that the update algo-
rithm, in separate parts. Implementing this in an efficient way for the
block processing approach leads to the (consecutive) PBFDAF struc-
ture, in which the impulse response is separated in K consecutive parts
of length M = N/K. In general convergence properties will degrade
when using more and more partitions. It is shown by experimental re-
sults that for small K this degradation is minimal. On the other hand
it is shown that, for a practical example, complexity of the PBFDAF
structure is less than the complexity needed to implement the BFDAF
structure.

For the "sliding” FDAF a new mixed-PFDAF was introduced from
which the transformation length of the DFT is a factor & smaller than
that of the DFT used in the FDAF structure. Furthermore it was shown

that with one extra parameter / = M/C this structure describes both
the comb-PFDAF (I = M} and consecutive- PFDAF (J = 1) as given
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in [36]. The comb- and consecutive-structures are respectively equiva-
lent to an incomplete Decimation In Time or Decimation In Frequency
method as applied to FF'T schemes, Moreover it 1s shown that the
mixed- PFDAF with K = N/M and / = M/C has the same conver-
gence properties as FDAF if statistical properties of input signal, given
by the autocorrelation function p[7], has I degrees of freedom according
to equation (5.41). The power spectral density function of such a sig-
nal contains N/I mirror images. This implies that the comb-PFDAF
(I = M) can have up to M degrees of freedom in the autocorrelation
function (5.44) with equal convergence properties as the FDAF. The
consecutive—-PFDAF on the other hand can only have one degree of
freedom: For an input signal with M degrees of freedom with autocor-
relation function as given in equation (5.45): consecutive partitioning
will always degrade convergence properties.

Finally some cormments for fulure research are given:

& The given mixed structure is such that each separate frequency
component has a transversal filter structure, from which the adap-
tive weights are updated according to a "complex” NLMS algo-
rithm. Research can be done to investigate the possibilities to
choose both structure and algorithm for each separate frequency
component in more agreement with the requirements of that com-
ponent.

# [n this chapler lechiniques are deseribed to decrease the spectral
resolution of the adaptive filler from N to M = N/K components.
In Chapter 4 it is shown that frequency domain adaptive filters
require two decorrelation conditions. If the length of the Fourier
transformn however is such that these conditions are not satisfied,
it may be possible to search for methods to increase the DIF'T
length (at the cost of complexity).



Chapter 6

Time domain Adaptive
filters

In this chapter some time domain techniques are given that can decor-
relate an input signal of an adaptive filter with N weights, by using an
L x L autocorrelation matrix (L > 1).

In Section 6.1 first a short overview is given of some well known tech-
niques that use an N x N autocorrelation matrix. As an intreduction to
techniques used later in this chapter, Section 6.2 describes a geometrical
interpretation of an NLMS algorithm. This method uses a projection
of the difference vector on a one-dimensional space, representing all
available information in the adaptive filter. This method is called the
Orthogonal Projection (OP) method. Using meore information from
the past, this geometrical interpretation is generalized in Section 6.3,
where a projection is made of the diflerence vector on a L dimensional
hyperplane, representing the available information. In order to reduce
complexity, this algorithm is performed on block bases, making one
update every L samples. This results in the Block Qrthogonal Projec-
tion (BOP) algorithm. 1t is shown that this method decorrelates the
input signal with an L x L autocorrelation matrix. With the dimeusion
L > 1 this method offers more freedom i tuning this dimension to the
requiremnents of the input signal. Another possibility is discussed in
Section 6.4. In this section the L-dimensional hyperplane 15 orthogo-
nalized by using the Gram-Schimdt procedure before applying to the
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BOP method. Tlus results in the Gram-Schmidt Block Orthogonal
Projection {GS-BOP) algorithm. In Section 6.5 it is shown that for
signals generated with an auto regressive model of order p (ar(p)) this
Gram-5chmidt approach can be implemented very efficient]y resulting
in the Efficient Orthogonal Projection (EOP) algorithm. This EOP
algorithm can decorrelate ar(p) input signals with roughly the same
amount of complexity as the NLMS algorithm. All theoretical results
are verified by experiments in Scction 6.6 and this chapter is concluded
in Section 6.7 with a discussion.

6.1 Decorrelation in time domain with
N x N autocorrelation matrix

Although not a subject of rescarch in this thesis, this section gives a
short overview of some well known techniques that decorrelate an input
signal with an N x N autocorrelation matrix.

6.1.1 LMS/Newton

In this section the assumption is made that the autocorrelation matrix
R = [E{x[k}x'[k]}, or an estimate of it, as well as the inverse B!,
are completely known. It is shown how R~} can be used in order to
make convergence properties of the adaptive algonithm independent of
statistical properties from signal z[k].

Premultiplying only the update part in the LMS algorithm (2.8) by
the inverse autocorrelation matrix R, results in the LMS/Newton
algorithm [G8):

1

wk + 1] = wik] + 2aR " x[k]r[£]. (6.1)

This algorithm equals the NLMS algorithm when the muput signal 13
a white noise signal with variance 2. Tu this case the autocorrelation
matrix is simply diagonal given by R = o21. Note thal in literature [68]
the LMS/Newton algoritlin is also known n such a form that adapts to
the optimum in one step solution. This equals the above algorithm by
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choosing & = 1/2. As in previous chapters two steps are studied: First
the convergence behaviour of the average weight vector is investigated
and second an expression is derived for the quantity J{k] = Jox/c?.

Calculating the average of hoth sides from (6.1) and using r{k] =
x‘[k](Wept — wik]) + s[k] and assuming E{s{k]} = 0 gives:
E{wlk +1]} = E{w[k]}+2aR™ E{x[k]x" [k} B{d[+}}
= Zavigp; + (1 - 20) E{m[H]}
k
= 2o 2(1 — 2a) Wepy + (1 — 20)* w(0]. (6.2

Thus for o within the convergence area (0 < o < 1) the LMS/Newton
algorithim converges, in average, to the optimum Wiener solution:

klim E{wlt]} = Wopt- (6.3)

For the onvergence behaviour of the LMS/Newton algorithm of the
second order statistics, first the updating equation can be rewritten for
the difference vector d[k] = o,y — w(k] as follows:

d[k] = (I—-2eR " x[k—1x'[k—1])d[k—1]—2aR ™ x[k—1]s[k—1]. (6.4)
This difference vector is substituted in the equation

jt = Jesli]_ EARR)

min

(6.5)

a3

and results in the following recursive relation for the dynamic behavior:
Jikl == (1 — 4a)J[k — 1] + 4N, (6.6)

These results are clearly independent of statistical properties of the

input signal z[&].

6.1.2 Recursive Least Square Algorithm

The problem with the LMS/Newton algortthm is that exact knowledge
is required of the matrix R™'. This matrix is in general not known a
priori and moreover it may slowly change 1n time.
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The family of methods known as (Recursive) Least Square ((R)LS)
algorithms belong also to the class of techniques that are theoreti-
cally less sensitive to the statistical properties of the input signal. The
main difference between gradient-based methods and RLS techniques is
that the RLS algorithms minimize an exact error criterion constructed
from the actual data in contrast with the statistical error criterion for
the LMS, Clearly, this exact optimization for every poini in time im-
plies quite a sophisticated processing algorithm. The traditional Least—
Squares approach to compute an N** order adaptive filter would require
in the order of N® arithmetic operations per time update, largely due
to the computation of the N »x N matrix inverse.

Instead of minimizing the mean square error, as in the LMS case, the
Least Squares (L5} approach minimizes an exponential weighted sum
of squared errors (the LS—cost function) usually defined as [3]:

k
e[k] = 30 NFTE[] — w'lA] - x[E])7 (6.7)
=0
Thus the present adaptive weight vector w(k] is convolved with previous
input signal vectors x[i} and compared with previous reference signals
€[¢]. The result is exponentially weighted with a window from which the
effective length 1s approximately equal to 1_1_—1 samples. A valueof A =1
signifies that all data is equally weighted, and this case is often referred
to 1 literature as the prewindowed case. Another cholce would be to
weight with a window of finite and equal length for all & This choice
is sometimes called a sliding window weighting. It says that only the
most recent samples are used to do the estimation and these samples
are weighted equally. Both this sliding window and the exponential
weighting methods can be used to handle slow time variations in the
unknown Wiener systemn. Depending on the type of time variation,
one scheme may be better than the other. For simplicity here only
the exponential weighting is considered, because it can be realized in a
recursive way.

Now a short work through the mathematics. Minimization of the L5-
cost function leads to the following optimum adaptive weight vector at
time instant k:

w(k] = R*![k]e[k) (6.8)
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with:

R = 3 Al

=0

k
el = 3N, (6.9)

i=0

Direct solution of these equations should require in the order of N?
operations. In order to reduce this computational effort, recursive so-
lutions are used leading to the Recursive Least Square (RLS) algorithm,
The first step is to compute R[] and (k] recursively according to the
next equations:

R[t]
c[#]
Sinice equation (6.8) needs the inverse autocorrelation matrix, the sec-

ond step is to compute R=1[k] recursively by using a well known matrix
inversion lemma [26] (p385). This results in the following equation:

[

AR[E — 1] 4 x[Ax*[#]
Aelk — 1] + x[K]2[k]. (6.10)

H

Rk = (R‘M-H—ﬂHfMR*m—ﬂ) (6.11)

with the gain vector g[k] defined as:

1 A -1 .
E[k] = A+ Ktlk]ﬁ_llk — 1]x[#] ‘R7HE — 1]x{k]. (6.12)

By multiplying both sides of equation {6.11) with the vector x[k] it
tollows that: )
R k(K = ¥ (6.13)

Thus the gain vector is a transforimed vector obtained by rotating the
input signal vector.

The RLS updating equatiou for the adaptive weights can now be de-
rived as follows:
Filling in equation (6.10) in (6.8) and using (6.13) gives:

wlk] = ARk — 1)c{k = 1] + g[k]&[k]. (6.14)
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Usiug expression (6.11) for the quantity AR [k — 1] results in:

wlk] = wik -1} - g[k]x*{klw(k — 1] + g[k]2[K]
= wlk— 1] + glk]r[#]. (6.15)

Thus afler initialization every iteration consists of the following steps:

a) Calculate the residual signal »[k] = é[k] — x*{k]w([k — 1].

[

(a)

(b) Calculate the gain vector according to equation (6.12)
(¢) Calculate the new weight vector according to (6.13)
(d)

d) Calculate the new inverse autocorrelation matrix ﬁ"[k] according
equation (6.11).

Comparing the LMS update algorithm (2.8) with the above RLS equa-
tions (6.15) shows that in the LMS case the gain vector gik] = 2ax[k].
This implies that the input signal vector is not transformed or rotated.

The complexity of the above RLS update equations is in the order of
N2

In the past decade, new algorithms have been derived that further
reduce the number of required multiplications plus divisions per iter-
ation such that they become linear in N. Basically, they capitalize
on a property of the autocorrelation matrix R that is not exploited
in the previous methods, namely that the vector x[k] acts like a shift
register such that x[k + 1} is only a "push up” version of x[k] with a
new sample at the bottom. This new algorithm can be broadly clas-
sified into two categories by their approaches to solution. One is the
Fast Kalman typc or the fixed-ordet recursive least—squares algorithms,
and the other is the ladder type algorithms. Loosely speaking, the fast
Kalman algorithms belong to the framework given in the above RLS
update equations, and use more cfficient methods to update the gain
vector g[k] at each iteration. The ladder algorithm resorts to another
formulation of w[k] and finds simpler ways of updating it. A tutorial
of fast RLS is given in [2].

In couclusion it follows that the LM5/Newton can perfectly decorrelate
a correlated input signal, when the exact autocorrelation matrix, and
its inverse, are known a priori. The complexity of the algorithm is
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very large. The recursive schemes are less complex and have good
decorrelation properties too. Stil] this complexity is too high for many
practical applications. Fast RLS schemes with low complexity and good
decorrelation properties have been developed in the last years.

6.2 Geometricinterpretation of the NLMS
algorithm

In this section a geometric interpretation is given of the signal estima-
tion problem of Fig. 1.7. For simplicity reasons it 1s assurned, in first
instance, that the signal s[k] is zero,

The update procedure is as follows (see also Fig. 6.1):

~2a 4]
dfk+1],
4 ]
- E_[k]

<« > p k]
¢°1)

Figure 6.1: Geometric infcrpretation of the NLMS elgorithm
Make a projection of the difference vector d[k] on the available data
which is present in the vector x[4]. By doing so d[k] i1s decomposed as:
d[A] = d*[k] + d* (4] (6.16)
with d*[k] orthogonal and d*{k] parallel to x[k]. This implies that:
<x[k],d*[k]> = 0
Ak = c-xli (617
with ¢ some scalar. With s[k] = 0 it follows from Fig. 1.7 that the
residual signal r(k] can be written as:
i = xKIdlk] =< x(k}, d[K] >= (6.18)
< x[k], d8 (] >= cllx(¥]II".

it
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From this equation the parameter ¢ can be calculated since both the
signal r[k] and the quantity ||x[k]]|® are known. With this the parallel
component d®[k] can be written as:

rik]

4] = ¢ xlk] = T

x[k]. (6.19)
The main purpose of the adaptive algorithm is to both reduce the length
and rotate vector d(k] in such a way that it becomes "more orthogonal”
to x{k]. This can be achieved by subtracting a small part of the vector
d®[k] from the vector d[k], as shown iu Fig.6.1. Thus:
x[k]r(k)
dlk +1] = d[k] — 20d®[k] = d[k] — 2a=—"—— (6.20)
|[[#]1[*
which leads, with the definition of the difference vector, to the following
update equation:

[k]r(k]
[

wlk + 1] = w[k] + 2 (6.21)
Comparing this algorithim with the NLMS algorithms shows thal both
are very similar. The above algorithin is the deterministic interpreta-
tion of the (stochastic) NLMS5 algonithm. Heuristically this geometric
approach can be explained as follows:

First assume orthogonal vectors x[k] and x[k + 1] Vi (the geometrical
interpretation of a stochastic white noise process). For these orthogo-
nal vectors the update algorithm rotates the vector d[k] in such a way
that the inner product < dik + 1], x[%] >, which is a measure for the
final misadjustment, hecomes smaller in comparison to the previous
inner produect. This reduction can be accomplished in two ways: by
reducing the length of d[k] and/or by rotating d[4] in such a way that
it becomes more orthogonal to the vector x[k]. The above algorithm
achieves both. For example when choosing a large adaptation constant
@ = 1/2 the algorithin rotates d[4] in one step orthogonal to x[k]. This
implies that the inner product becomes zero, while the length of d[k+1]
necds not to be zero. When however the "noisy” signal (k] is present,
the inner product can have large fluctuations since the vector dik] can
fluctuate around the orthogonal position. This can result in a large
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final misadjustment. On the other hand choosing a small adaptation
constant ¢ leads to a very slow algorithm, whith the final difference
vector both small and orthogonal to the input signal vector, resulting
in a small final misadjustment.

When the input signal vectors are not orthogonal, representing a coloured
process, the new update direction is not orthogonal to the previous up-
date directions. An update made in one iteration can both be helped
or counteracted in the next iteration: Convergence properties of the
above algorithm are sensitive to the geometric distribution of the input
signal vectors, Or in stochastic terms: Convergence properties of the
NLMS algorithm are dependent of the input signal statistics, as was
shown in in Chapter 2,

6.3 L—step Orthogonal Projection Algo-
rithm

In [39,16] an L-step Orthogonal Projection (OP) method is introduced,
that extends the geometric approach of the previous section to L dimen-
sions., With this OP method a projection is made on an L dimensional
hyperplane rather than en a line. In general there are two variants to
implement this idea:

(a) The "sliding” procedure that uses every iteration only one new
input signal sample. This is the L-step Orthogonal Projection
method (OP) as described in [39].

(b) The "block” approach that uses L new samples and performs only
one update of the adaptive weight vector every L samples. This is
the Block Orthogonal Projection (BOP) algorithm [55]. Since the
latter algorithm can be implemented more efficiently it is described
here.

The procedure of the BOP method is as follows: make a projection of
d[kL] on an L dimensional plane, spanned by the L vectors x[kL],- -+, x[kL~
L +1). Thus:

dikL] = d®[kL] + d*[kL] (6.22)
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with

<dkL),x[kL—=i]> = 0 foralli=0,---L~1 (6.23)
L-1
d8[kL] = Y. alkLx[kL — i} = x[kLic[kL)
; (6.24)

with the N x L matrix y[kL] and the L dimensicnal vector ¢[k L] defined
as:

x[kL]
c[kL]

(E[I"L - L+ l]a e )E[k‘L - Ilai[kL])
(epalkL], -~ ca[kL], co[ L))" (6.25)

With the assumption (in first instance) that signal s[k] = 0, the L
dimensional residual signal vector rz[kL] can be written as:

r[kL) = x‘[kLJd(KL). (6.26)

Now an equivalent procedure as in the previous section can be used to
calculate the coefficient vector c[kL], by using the fact that d'[kL] is
perpendicular to all vectors x[kf — 4] for : = 0,1,---, L ~ 1. In vector
matrix notation this leads to:

rplkL] = x'[kL)d[kL] = x*{kL] (2[kL] + A4 [kL])
= X'(kL)d* (kL] = x*{kL]x[kL]clkL). (6.27)

The solution of these equations is given by:

c[kL] = R} [kL]e[kL] (6.28)
with the L x L "autocorrelation matrix” is defined as:

R(kL] = y'[kL]x[kL] (6.29)

from which the (p, ¢)* element equals:

(RIEL])p g cxlkl=L+1+p,xkl—L+14¢]>

= x'kL~L+1+px[kL—L+1+4q) (6.30)
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The length of vector d[kL] can now be reduced with some amount
according to the following update equation:

dl(k+ 1)L] = a[kL] — 2ad®[kL] (6.31)
d[kL] ~ 2ax[kL]R™}kL|rg[kL].  (6.32)

This equation leads, with the definition of the difference vector, to the
BOP update equation:

wl(k + 1)L] = w[kL] + 2ax[kLIR[kL]r [k L]. (6.33)

Comparing this algorithm with the BNLEMS update equation shows
that the BOP algorithm is a generalization of the BNLMS algorithm.
The input signal is decorrelated by an L x L "autocorrelation matrix”
R[%L]. On the other hand this matrix needs not to have dimension N x
N aszinthe RLS approach. In the experimental results at the end of this
chapter it is shown that indeed for specific input signals decorrelation
can be performed with the inverse of an [ x L autocorrelation matrix,
with L < N. Finally some general notes:

o In [43] (p69)} the uscfull suggestion is made to calculate the in-
verse of the autocorrelation matrix R-1[kL] by using equivalent
“recursive” techniques as used for the RLS algorithm.

e Since both BOP and PBFDAF methods decorrelate the input sig-
nal with less than N degrees of {freedom, a strong relationship
between these two methods is expected, This relationship is in-
vestigated in {14]. The first step in this paper is to partition the
adaptive weight vector in length L vectors. The BOP updating al-
gorithm (6.33) is partitioned in an equivalent way. Using the same
techniques as discussed i chapter 4, these partitioned BOP algo-
rithm is implemented in frequency domain and is compared with
the PBFDAF method. By doing so it follows that, in comparisen
to the PBFDAF algorithm, the BOP method performs a more ac-
curate decorrelation, using a Toeplitz autocorrelation matrix, but
1t costs more complexity to implement it. On the other hand it
is also shown that the decorrelation properties of the, relative low
complexity, PBFDAF method are reasonably well.
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6.4 BOP algorithm with Gram—Schmidt
procedure

The purpose of this section is to rewrite the BOP updaling equation
(6.33) in such a way, that it can be used in the following section.

The BOP concept of the previous section is to make a projection of the
vector d(kL) on a space that was spanned by the basis:

(x[kL ~ L+1],---,x[kL]}. (6.34)

The first step in this section is to construct froin this basis a new
orthogonal basis by using the Gram—Schinidt procedure. After that
the same BOP procedure is used, with this new basis, as given in the
previcus sectjon.

For: =0to L — 1 the Gram-Schmidt procedure leads to the following
set of orthogonal vectors:

% [kL] = xTEL — i] — 2 = K[kﬁﬁ:[gﬁﬁiﬂ’] Zg kL] (6.35)

with the sum 2;210 defined as zero. Note furthermore that these con-

structed orthogonal vectors are not shifted versions of each other, in
contrast to the input signal vectors, thus:

(Ri[kL])e # (XolkL])ess. (6.36)

The Gram-Schmidt procedure (6.35) is such that the new orthogonal
basis and the initial basis span the same space. From this it is obvious
that it is always possible 1o write each new basis vector X;kL} as a linear
combination of initial basis vectors xjkL —¢]. Thusfori =0,---,L—1:

(kL] = 3 ik LIx(kL - g]. (6.37)

g=0

with {[kL] = 1 for all £ = 0,1,---,L — 1. In matrix notation these
equations can be written as follows:

FkL) = x[kL) - P{EL} (6.38)
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with the L » L lower tnangular matrix

viAkEl 6 - -0 0

T(kL) = : S : (6.39)
wIkL) - - kL] 0
W MRL] - kL] ARIkL]

and the N x L matrix containing the orthogonal set of basis vectors as
follows:
XEL] = (Rga[kL], - - RolkL]) - (6.40)

The BOP concept is to make a projection of the vector d[kL] on the
orthogonal basis. This leads to:
< dH{AL], i[kL] >
d3(kL)

fl

0 forz=0,.--,L—1
X[ELIGIkL] = RELIERL]  (6.41)

with g[kL] = I'"*[kL]c[kL]. Furthermore by defining the rotated (trans-
formed) residual signal vector as:

Fo[RL) = TEL)E (kL] = (Fpos[EL), - ol (6.42)

the following Gram~Schmidt BOP update algorithm (GS-BOP) ean be
derived in a similar way as described in the previous section:

w((k + 1)L) = w[kL] + 205 (kLR RL|EL [KL). (6.43)

In this equation the L x L rotated {travsformed) "autocorrefation”
matrix B[kL] is diagonal because of the orthogonality property of the
vectors ¥;[kL]. Thus:

R[kL] = diag{|[&g—[RL)I1?, -, |1 Za (KL} (6.44)
Now it is straightforward to rewrite the GS-BOP algorithm (6.43) as:

Wikt DL = wlbL] 4 90 6 KKLUELRL])p 1
ik D = bl 420 0 S R

=0

(6.45)
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From this updale equation it follows that every iteration, thus every
L samples, one "NLMS” correction is made for the difference vector
in cach of the L orthogonal directions. Thus a correction made in one
direction is not influenced by a correction made in another direction.

As a final comment of this section it is noted that in [40] (p99) some
efficient alternatives are given to compute the matrix I'[kL]. Onc of
them uses the Householder transform [64].

6.5 An efficient OP algorithm for AR(p)
processes

Applying the G5-BOP concept of the previous section to the "sliding”
approach, results in an algorithm equivalent to update equation (6.45).
At time k- T a set of L orthogonal vectors is calculated spanning an
L dimensional plane, and the adaptive weight vector is updated in L
different orthonormal directions. At time (k + 1) - T a complete pew
set of L orthogonal vectors is calculated spanning a new L dimensional
plane. Updates in orthogonal directions do not influence each other.
Since, however the L dimensional planes at time k - T and at time
(k+ 1) - T need not to be orthogonal, it is obvieus that an update
of the adaptive weight veclor in one iteration can be influenced by
previous or following updates,

From literature [35] it is known that a speech signal can be modelled by
using an ar{p) model, with p in the order of 8, - - -, 12. This section gives
an algorithm is given (derived from (6.43)) that perfectly decorrelates
ar(p} input signals. After that an efficient realization of this scheme is
given.

A ar(p} signal is described by the following difference equation:

r[k] = i a;x[k — @] + n[k] (6.46)

i=1

with n[k] a white noise process. Describing this equation in N dimen-
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sional vectors x[k] and nfk} gives:
»
x[k] =Y aix[k — 1+ nfk]. (6.47)
=1

Since n[k] s a white noise process it follows that the veetor nlk] is
independent of n[k —1] for all 2 > 0. Now the following signal is defined

(k] = x[k] - ‘Z: dix[k — 4 (6.48)

=1

¥

with Z,[k] = (E.[k — N + 1], -+, E,[k])* and &; some estimate of the
coefficient a;. Note that a recursive scheme (with low complexity) to
calculate the coefficients &; is the following LMS update algorithm [29):

aslk + 1] = &lk] + 283, [k — i]. (6.49)

By comparing the "new” vector Z_{k] of equation (6.48) with the defi-
nition of an ar(p) process, it is obvious that X,[k] is an estimate of the
white noise process nfk]. This implies that when &; = a;

%K) L& k=i >0, (6.50)

In contrast to the result of the previous section: For ar(p) signals it
is better to a make every iteration only a correction in direction X [k],
since this vactor is already orthogonal te all previous update directions.
Thus for ar(p) processes only the first part of (6.45) is needed. This
results in the following update algorithm, that decorrelates an ar(p)
input signal completely:

X, (k)75 (K]

wlk+ 1] =wlk] + EQW

(6.51)
with:

R = rE =3 aHn

=1

rilk} = x[k—ild[k]+slk—d] for i=0,.--,p.
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Figure 6.2: OF algorithm for AR signals

This update scheme is refered to as the Orthogonal Projection alge-
rithm for Auto Regressive signals {OP-AR), and a schematic interpre-
tation is depicted in Fig. 6.2. In comparison to the NLMS algoritm
this OP-AR algorithm first "whitens” both the input signal (z — &)
and the "z-component in the residual signal” (r — 7). With these
"white” signals an NLMS update iz made. Thus convergence proper-
ties are independent of the input signal statistics. In fact the OP-AR
algorithmn is a parametric algorithm to solve the decorrelation problem,
whereas the frequency domain and RLS approaches are non-parametric
approaches.

The problem however with the OP-AR algorithm is complexity. Every
iteration p — 1 extra convolutions of length N have to be calculated
to generate the residual signals ry[kl. Since, however, the algorithm
decorrelates perfectly, the following approximation can be used to lower
down this complexity:

2a

FAAI) =~ (1 = 22 B{dlk ~ 0}, (6.52)
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Using this approximation it follows that an estimate of #;[k] of the
signal r;[k] is given by:

(k] ~ 2 Yrik — ). (6.53)

Using this approximation complexity can drastically be reduced. To-

gether with a simple low pass filter for the power average, leads to the
following Efficient OP-AR (EOP-AR) algorithm [53,60]:

90 —p[k]rp[k]

wlk + 1} = w(k] + 2= 314 (6.54)
with:
%,H) = x{t] -3 alkxlk i (6.55)
B = ol el
(k] = &lk] — é[k)
filk] = (1—:2"9— rlk—1 fori=1,---,p

alk+1] = &;[k]+?/3£[k]1:[k—z’] fori=1,--.p
G2k +1] = ~&2[k] + (1 — 4)2*[E].

This EOP-AR algorithm can completely decorrelate an ar(p) input
signal, while the complexity (the number of multiplications) has the
same order as the NLMS algorithm. An implementation for the boxes
z — % and 7 — 7 of Fig. 6.2 for this EOP-AR algorithm 1s given in
Fig. 6.3forp=1.

Finally it is noted that it can be proved that the first update algorithm
given in [39] (page 21) is, as the authors say, a specific form of the QP
algorithm for o = 2. In [70] however this specific algorithm is used for

arbitrary values of o {in the convergence area). This leads to the next

algorithm:
Ry [K]r (k]

wlk + 1] = wlk] + QQW

(6.56)
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Figure 6.3: Jmplementation of t — & and r — 7 for EOP-AR algorithm
with p = 1

This however is no "real” OP algorithm as proposed in [39] (page 23
under forrmula (3)), but it looks like an "OP-AR” algorithm. The
"whitening” however is only performed in the z ¢component and not
in the residual signal r. The result is that this algorithm will not
completely decorrelate an ar input signal.

6.6 Experiments

Results of the previous section are venfied in this section with some
experiments. For these experiments the system as given in Fig. 1.7
is used, from which the "unknown” Wiener system has an impulse
response of length N = 32, The adaptive weights are initialized with
zeros. The signal s[k] is zero, thus the quantity of interest is:

E{(e[k] — é[k])*}
10log ( D), ) . {6.57)

The input signal is an ma(l) or ar(l) signal with ER = 100. This is
done by chosing {or both models the parameter a = +0.8182 and n{k} is
taken as a white noise signal, having zero average and E{n?[k]} = 1/3.
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The adaptation constant is e« = 4.6/1000. In the first experiment it is
shown that i1t is possible to perform the decorrelation with the inverse
of an L x L autocorrelation matrix with I < N. The results of this

Convergeace of BOP algorithins with Ll autocometation matrix
0 T T T T T T T T
: i ; ; i N 3
b e MR AGO0G
Claput T madl)
oo DAGE ¢ comstont

= 10 tog(Ple-hat(e) 1P{el)

i

4 200 400 600 BO0 1000 1200 1400 1600 1RO 2004

- sumber of samples
Fipure 6.4: Convergence BOP algorithm with L x L matriz for ma(1) signal

experiment are plotted in Fig. 6.4 and Fig. 6.5. From both figures
it follows that when lowering the dimension L of the autocorralation
matrix convergence properties degrade. Comparing however the result
for the ma(1) signal (Fig. 6.4} and the ar(1)} signal (Fig. 6.3) shows
that the ma(1) signal is much more sensitive for lowering this dimen-
sion L. Convergence properties with an ma(l) signal as input already
degrades for L < 16, while the ar{1) degrades for L < 8, evenfor L =2
convergence is reasonable for the ar(1) process. These results can be
explained as follows: since the ma(1) model contains a 2ero, 1t 15 obvi-
ous that the inverse autocorrelation matrix is a full matrix. Making the
dimension smaller results in throwing away relevant information. The
ar(1) model however contains a pole, resulting in an tri-diagonal inverse
autocorrelation matrix. Lowering down the dimension is allowed.

The second experiment shows that the EQP algorithm indeed decorre-
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Figure 6.5: Convergence BOP algorithm with L x L matriz for ar(1) signal

lates a signal that is generated by an ar model. The result is plotted
im Fig. 6.6. As a reference the white noise curve represents the ideal
decorrelation case. The input signal is an ar(1) signal, and also the re-
sult of convergence of the NLMS algorithm is plotted. The third curve
shows the result from the EOQP algorithm as depicted in Fig. 6.3. This
curve is indeed close to the ideal case, which shows the decorrelation
capacity of the EOP algorithm for ar(1} signals.

6.7 Discussion

In this chapter it is shown that it is possible to decorrelate an adaptive
filter with N weights , with an L x L autocorrelation matrix with L > 1.
For signals with spectral poles L can be relative small, resulting in a
small amount of extra complexity to decorrelate such a signal. Signal
models with spectral zeros need a higher dimension L.

When from a priori knowledge it is known that the input signal is gen-
erated with an ar(p) model it 15 shown that the EOP algerithm decor-
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Figure 6.6: Convergence of EQP algorithm for ar(1) signal

relates such a signal, with complexity in the order of the complexity
needed for the NLMS algorithm.
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Chapter 7

Conclusions

This thesis explores some methods to use available a priori information
in order to reduce complezity while maintaining convergence properties
of adaptive filters. The most important results are listed below:

A reasonable approximation of the convergence properties of the Block
Normalized Least Mean Square (BNLMS) algorithm can be deduced
from the product of the spectrum of the input signal with the squared
magnitude of the system function (smf) from the difference vector. A
priori knowledge about the "matching” of the signal characteristics and
the "unknown” system can be used to initialize the algorithm as well
as possible.

For large filters the BNLMS algorithm can be implemented very effi-
ciently in frequency domain by using Fast Fourier Transforms (FFTs)
for the transformation between time— and frequency domain. The
length of these transforms is given by the number B = N + L — 1,
with N the number of adaptive weights and L the processing delay
(resulting from the block processing approach). Both overlap—save and
overlap—add method can be implemented with equivalent complexity.

Convergence properties of an adaptive filter can be made indepen-
dent of the input signal statistics by decorrelation of the input signal.
This decorrelation can be accomplished relatively easy with frequency
domain techniques by normalizing the spectrum of each separate fre-
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quency component, With this method an approximation is made of the
required time domain decorrelation. Applying this spectral normaliza-
tion to the efficiently implemented BNLMS algorithm in frequency do-
main, leads to the Block Frequency Domain Adaptive Filter (BFDAF).
Roughly there are two variants of the BFDAF. The first method is the
constrained BFDAF, since it requires a window that forces a constraint
in adjusting the frequency domain weights based on overlap-save sec-
tioning. The implementation of this structure requires five FFTs. The
second method is the unconstrained BFDAF, since it removes the win-
dow. This method uses three FFTs. For input signals that have an
autocorrelation function pl7], that is neglectable for || < N/2 and
L = N/2, the constrained BFDAF has better convergence properties
than the unconstrained BFDAF: Because of the constaint window less
weight are fluctuating around their final value resulting in a smaller
final misadjustment. Furthermore when the impulse response of the
unknown system is a global decaymng function it is possible to use an
efficient implementation of the BFDAF, using 3 FFTs, with conver-
gence properties equivalent to the constrained BFDAF (5FFTs).

By partitioning the original BFDAF into smaller parts and implement-
ing this in an efficient way leads to the Partitioned Block Frequency
Domain Adaptive Filter (PBFDAF). In comparison with the BFDAF,
the PBFDAF structure can be realized with smaller FFTs, resulting
in a reduced processing delay. Furthermore when some a prion infor-
mation is available of the input signal spectrum this information can
be used to reduce complexity, since decorrelation is performed by less
divisions in the PBFDAF approach.

With the Block Orthogonal Projection (BOP) method it is possible to
decorrelate the input signal of an adaptive filter with the inverse of
an autocorrelation matrix from which the dimension can be chosen in
accordance to the input signal statistics. The BOP and the PBFDAF
are strongly related, since both methods reduce the required number
of degrees of freedom in order to decorrelate the input signal of the
adaptive filter. Furthermore it is possible to decorrelate auto regres-
sive signals with an Efficient Orthogonal Projection (EOP) algorithm.
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Finally some recormmendations for future reserch are listed below:

o Still a complete analysis of the (BN)LMS algorithm is required
that is both relatively simple and that uses correct assumptions.

¢ From several discussions given in this thesis it follows that con-
vergence properties of adaptive filters are depending on statistical
properties of the input signal of the adaptive filter. On the other
hand it is known that multirate techniques introduces spectral
deformations (i.e. aliasing, mirroring). From this it follows that,
when using adaptive techniques in a multirate environment [11], a
description of the convergence properties is not trivial. New fun-
damental concepts are needed in order to descibe this multirate
adaptive digital signal processing area. Some papers in this area

are: [31,33,20].

Note that the PBFDAF structure of Chapter 5 of this thesis is an
example of a multirate adaptive filter: Each separate frequency
component is fillered with a separate filter, having a sample rate

that differs from the sample rate of the inpul signal z[k].

e The Efficient Orthogonal Projection (EQP) algorithm (Section
6.5) uses a signal model, with only poles, to decorrelate the input
signal of the adaptive filter in an efficient way. It is usefull to
extend this technique for general signal models containing poles

and/or zeros for the following two reasons:

— The input signal is decorrelated by using only relevant infor-

mation needed for the decorrelation.

— This method is suitable for the tracking problem: The signal
model can be used to track the nostationarities of the input
signal, while the adaptive filter itself can be used to track the

nonstationarities of the unknow system.

s When applying techniques known from fixed filters to adaptive
filters, this must always be done with some care since the adaptive
weights change every iteration. An cxample is the discussing of
the overlap-add method for adaptive filters, as given in Section 3.3
and 3.4. Another challenge is the area of parallel adaptive digital
signal processing: splitting the original problem into paraltel parts
has to be done with much care when adaptive weights are involved.
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This area needs new fundamental research. Some literature in this
area is given in [26](Chapter 10) and its references.
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Appendix A

Derivation of dynamic
behavior of BNLMS
algorithm

In this appendix more accurate formulas are given that describe the
dynamic behavier of the BNLMS algorithm. This 1s done by giving
a derivation that is mainly based on results given in [15]. Although
this derivation has some weak points, mentioned explicitly here, no
alternative derivation is given because theoretical and experimental
results fit reasonably well.

From the BNLMS update equation {2.17) and with & = f’:f it follows:

d((k + 1)L) = (Y= 2apx(ELIX(kL)) dIFL) - 2acx [kl KLY (A1)
Transforming this equation with the unitary matrix Q gives:

(1- 2@, Q"x[kL]x*[kL]Q) DIkL] - 2@ Q" x[kLsy [k
(I - 2@ X[kLIX*(kL]) DKL) — 2 X [kL]sr kL] (A

Di(k+ 1)L]

i

with

X([kL) = Q"x[kL]. (A.3)
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This matrix has the property

E{X[kLIX"kL)} = E{Q"x[kL]X'[*L]Q}

LQ"RQ =L -A. (A.4)

Furthermore for small adaptation constant the input signal z and the
adaptive weights w may be separated under E{-}. This results in:

Al(k+1)L) = E{D[(% + 1) LID*[(k + 1) L]}
E{(I - 2o, X [kLX kL)) - AlKL) - (I — 2ap X[k LIXMkL])}
+4a} B {X[RL)E {5y [k Llst[kL]} XPkL]}
= A[kL] ~ 2a, E{X[kL)X*[kL]}A[KL)

2@ AlkL) E{X kL] X kL]}

+4as E{X[kL)XMkL] - AlkL] - X[kL)X*EL]}

4@ I E{AX[KLIXMEL]}
= A[LL] - 2La  AAKL] — 2LagAlkL)A

A&t E{X[IcL]X"‘[kL]A[kL]X[kL]X"[kL]}

+4L 2 ninA- (A5)

#

The first weak point of this analysis is that the above equation only
holds for small adaptation constant, while later on the same equations
are used as if they are valid for large adaptation constant too! A pos-
sible validation can be that for large adaptation constant the residual
signal is decreasing very fast, resulting in a steady state final value
of the adaptive weights. Again the above mentioned separation under
E{-} may be applied.

Skipping the time index for one moment, the (i, 7)* element of the last
matrix between brackets is given by:

" . L=-1N=-1N-1L-1 XX A A
B{XXPAXX '} =3 Y 3 Y E{X,p XL XX A, (AS)

p=0 t=0 r=0 =0

Now the assumption is made that the elements of matrix X have a
complex circular Gaussian distribution function. With this assumption
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this fourth order moment can be split into three different parts [42]:

E{XpXLX X5} = E{XeXL E{X.XG} + B{XaX P E{XXG,
E{X X0} X0 X0, (A
Using the definition of matrix X[{kL} = Q*x[kL] this gives for the
(p, )t element:
ng=g;‘5[k'L-L+ 1 —t] =%kl - L+1~t]q (A.8)
and in general:

B{X, X} = @ E{x(kL - L+1—t]x'[kL - L+1—n]}q . (A.9)

The second weak point of the analysis is that it is assumed that the
main contributions of this matrix are on the diagonal elements, thus
for £ = n, and that the contributions for t % n may be neglected in the
sequel. Using this, it follows furthermore that

E{X, X} = Q:E{;[kL ~L+1=-0x*kl—-L+1—1{}q_
Y A, forp=m
. nggm_ { 0 forp#m (4.10)

On the other hand it follows from the circular Gaussian assumption
that
E{X,Xpmn} = 0. (A.11)

Using these results this leads to:
E{XX"AXX"M =~ L*AAA + L -trace{AA}A. (A.12)
With this, the above expression for A{(k + 1)L] ¢an be written as:
Al(k+ VL] = A[kL]—2L8, (AA[RL] + A[RL]A)
+4Lad (LAA[KLIA + trace{ AA[KL]}A)
+ALT] S i A (A.13)

Since only the diagonal elements of A are of interest, this expression
can be rewritten as:

Allk + 1)) = AA[KL] + 4o 50 A (A.14)
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with
A =T-4La A +4L*GA? + 4@ A - A (A.15)

and

A = ("Xlih“'a“xl\"-:l.)t
A[KL] = (DoolkL],- -, An_avafkLD™ (A.16)

This equation fully describes the dynamic behavior of the adaptive fil-
ter using the BNLMS update scheme. Following the same strategy as
in [15] from this equation the following important convergence charac-
teristics can be derived.

Convergence Area!

It can be shown ([15]) that the BNLMS algorithm converges if:

N-1 Az
o L AT
L+4lay g 1 —4Laph +4L2@502 — 1 >0 ( )
and
1 —4Laph +4L*@ N < 1. (A-18)
Using the definition for the relative eigenvalue
% = all (A.19)

ES S V)

&
and introducing

— 1 N= (!L)\I
Ter(3) = = A.20
vV =7 § 1 — aph (4.20)

it can be concluded that the convergence region of the BNLMS algo-
rithm is given by:
0<ap< % and Z.r(}) <l {A.21)
!

Final Misadjustment:
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Using the expression describing the dynamic behavior of the BNLMS
algorithm for & — oo the final misadjustmant can be written as:

7 = lim (M) = 4La X1 — A)1A (A.22)
koo Jmmin
with
I- A =4La; (T +7A)) (A.23)
and
A= LapA?
v = —&. (A.24)
Using the Barlett formula (as in {15)):
At A _ atfpr_ T JTEIA L AT
A(r+ya)7a = o (r oy TAAT )-
tr-1
S e (A.25)
1+ +AT1A
Combing this with the expression for the final misadjustment gives:
- Lo L(x)
1-— EG.L(A) ( )

Note that indeed for small adaptation constant oy this quantity can
be approximated with the equation given in chapter 2, namely:

T 2EN. (A.27)
L
which is indeed the result used 1n chapter 2.

Rate of Convergence:

A closed expression for the rate of convergence as given in [15] can be
derived as follows:

J, = L- }“j (JikL] — J[oo]) = L - i (Jex[kL] — Jex[oo])
= L3S (A[EL) - Afoo]) (A.28)
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Furthermore with:
AJKL]— Afeo] = A - (A[(k = 1)L] — Afeo]). (A.29)

this implies for the rate of convergence:

Lo= L-X-Y A(Alk - 1)1 - Al
k=0
= LA 3 {AM} - (Af0] - Afeo))
k=0
= L-X-I-A)'Ay (A.30)
with
Bini = A[0] — Afeo}. (A.31)
Using again a modification of the Barlett formula gives:
t AN -1 = t -1 _ Y I\—lAAtr\ml
X (T + 7ax) A(F Tt A )
A7
= —_——— 32
1+ 9AT-1A (A32)

which results in the next expression for the rate of convergence of the
BNLMS algorithm:

lﬂll
Jo=—. o 1 aghi (A.33)
4T 1 - Lag(M)

For small adaptation constant o this equation reduces to

1 N-1 2
Jym— A a¥ A.34
L 451_‘ & ".11‘ 4&5‘ g lnll ( )

A problem with this measure for the rate of convergence is that a fast,
or slow, initial part iz neglected by definition.

The rate of convergence in Chapter 2 gives the number of samples
needed to reduce the quantity 10logJex[0]/Jm;, by 20 dB, and for
small adaptation constant this number was given by:

1.15

TN

(A.35)

Yoy =2
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Samenvatting

In vergelijking met vaste filters hebben adaptieve filters extra (rekenkundige)
complexiteit nodig om de coéfficiénten aan te passen volgens een specifiek
regelalgoritme.  Met zo'n algoritme is het mogelijk om goede resultaten
te verkrijeen in een omgeving waar een aantal signaaleigenschappen niet
volledipg bekend zijun. De convergentieeigenschappen van zo'n adaptief filter
worden onder andere gekenmerkt door de snelheid en nauwkeurigheid van
het adaptatieproces. In veel praktische situaties is enige a priori informatie
beschikbaar van de omgeving en/of de van belang zijnde signaaleigenschap-
pen. Dit proefschrift behandelt enkele methoden om de beschikbare a priori
informatie te gebruiken om hiermee de (rekenkundige) compleriteit te ver-
minderen met behoud van de convergentieeigenschappen.

De akoestische echo compensator, een typische toepassing van een adap-
tief filter, was een van de onderwerpen waaraan, in de periode 1984-1989,
onderzoek werd gedaan bij de Radio en Data Transmissie groep op het
Natuurkundig Laboratorium van Philips. In deze toepassing wordt een spraak-
signaal via een akoestisch echopad, van 100-200 msec., als een ongewenst
signaal in een microfoon gereflecteerd. Het adaptief filter moet nu een schat-
ting; maken van dit ongewenste echosignaal. De belangrijkste problemen van
deze toepassing ziju, buiten de lengte van het akoestisch echopad (10002000
coéfficiénten), de niet stationariteiten van het spraaksipnaal en het tijdvari-
ante karakter van het echopad. Hoewel geen specifick onderzoeksgebied van
dit. proefschrift, heeft de akoestische echo compensator toch gediend als mo-
tivatie voor de meeste gedeelten uit dit proefschrift. Het meeste materiaal is
geplubliceerd in [49]-[60] en [14].

In Hoofdstuk 1 wordt een algemene inleiding pegeven van adaptieve filters
en de gebruikte symbolen en notaties worden uitgelegd.

Omdat blok processing technieken een centrale rol vervullen in dit proef-
schrift, wordt in Hoofdstuk 2 een afleiding en een analyse gegeven van het
"Block Normalized Least Mean Squares” (BNLMS) algoritme. Dit BNLMS
algoritme maakt een keer per L monsters een aanpassing van alle N adaptieve
coéfficiénten. Hierin is L de procesvertraging. In de literatuur wordt vaak
beweerd dat dit algoritme, dat met weinig rekenkundige complexiteit gere-
aliseerd kan worden, slechte convergentieeigenschappen heeft als een gekleurd
signaal wordt toegevoegd aan de ingang van het adaptief filter. Uit de analyse
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en experimentele resultaten van dit proefschrift volgt dat zowel de statisti-
sche eigenschappen van het ingangssignaal als de initialisatie van de adaptieve
cotfliciénten de convergentieeigenschappen beinvloeden. Dit heeft tot gevolg
dat bij een gekleurd ingangssipnaal de convergentieeigenschappen zowel beter
als slechter kunnen worden. Enige a priori kennis van de ingangssignaal
eigenschappen kan gebruikt worden om het algoritme zo goed mogelijk te
mitialiseren.

In Hoofdtsuk 3 wordt aangetoond dat het BNLMS algoritme voor grote
filters (de akoestische echo compensator heeft een adaptief transversaal filter
nodig van 1000-2000 coéfficiénten) heel efficiént kan worden uitgevoerd in
het frequentie domein. Voor de transformatie tussen het tijd- en frequentie
domein wordt hierbij gebruik gemaakt van de ”Fast Fourier Transformatie”
(FFT) met een lengte van B = N + L — 1. Dit is een van de eerste redenen
om de akoestische echo compensator in het frequentie domein uit te voeren.
In de literatuur zijn, voor vaste filters, twee methoden bekend om deze ef-
ficiénte implementatie uit te voeren. Dit zijn de zogenaamde "overlap-save”
en de "overlap-add” methode. Een bewering in de literatuur is dat bij adap-
tieve filters de "overlap-save” procedure met minder FFT's gerealiseerd kan
worden dan de "overlap-add” methode. In dit hoofdstuk wordt aangetoond
dat dit onjuist is en dat beide methoden bij adaptieve filters met ongeveer
dezelfde hoeveelheid rekenkundige complexiteit gerealiseerd kunnen worden.

Statistische eigenschappen van een spraak signaal zijn tijdsafhankelijk.
Als in zo’n situatie het BNLMS algoritme voor de aanpassing van de adap-
tieve coéfficiénten wordt toegepast, dan kunnen de convergentieeigenschap-
pen sterk fluctueren. Voor zo’n geval, en voor vele andere praktische toepassin-
gen, is het wenselijk om het update algoritme zodanig aan te passen dat de
convergentieeigenschappen van het adaptief filter onafhankelijk worden van
de statistische eigenschappen van het ingangssignaal. Uit de literatuur is
bekend dat het relatief eenvoudig is om in het frequentie domein deze decor-
relatie uit te voeren. Dit is de tweede motivatie om de akoestische echo com-
pensator in het frequentie domein te realiseren. In Hoofdstuk 4 wordt aange-
toond dat decorrelatie kan worden uitgevoerd in het frequentie domein door
tedere afzonderlijke frequentie component spectraal te normeren. Met deze
methode wordt een benadering gemaakt van de gewenste tijd domein decor-
relatie. Eerst wordst in dit hoofdtsuk aangetoond onder welke voorwaarden
deze benadering acceptabel is. Toepassing van deze spectrale normalisatie
bij het efficiént uitgevoerde BNLMS algoritme in het frequentie domnein, leidt
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tot het "Block Frequency Domain Adaptive Filter” (BFDAF). Globaal zijn
er twee varianten van het BFDAF algoritme bekend. De eerste, die vijyf FFTs
nodig heeft voor de realisatie, is geintroduceerd als de "constrained” BFDAF.
Bij deze methode wordt de aanpassing van de adaptieve coéfficiénten door
een venster zodanig geconditioneerd, dat voldaan wordt aan de voorwaarde,
die nodig 18 voor de "overlap-save” procedure. De tweede methode is de "un-
constrained” BFDAF, omdat hierbij het venster niet nodig is. Deze methode
kan worden gerealiseerd met slechts drie FFTs. In het hoofdstuk wordt een
analyse gegeven van een gegeneraliseerde structuur van de BFDAF, die voor
beide methoden kan worden gebruikt. Uit deze analyse volgt dat in het alge-
meen de "constrained” methode (3 FFTs) betere convergentieeigenschappen
heeft dan de "unconstrained” methode (3FFTs). Verder is het bekend dat
vele praktische systemen, zoals de akoestische echo compensator, een globaal
afnemende impuls responsie hebben. Als deze a priori informatie beschik-
baar is, dan kan gebruik pgemaakt worden van een efficiénte implementatie
van de BFDAF die geraliseerd kan worden met drie FFTs, terwijl de conver-
gentieeigenschappen vergelijkbaar zijn met de BFDAF van vijf FFTs.

Een van de grootste nadelen van signaalbewerking op basis van blokken is
de procesvertaging van L monsters (meestal 1s L in de orde grootte van de fil-
ter lengte N). Verder is bij de nitvoering van de decorrelatie in het frequentie
domein door spectrale normalisatie, de resolutie van het spectrum pelijk aan
het aantal frequentie componenten B. Echter, de statistische eigenschappen
van het ingangssignaal, en dus het benodigd aantal frequentie domein delin-
gen, heeft geen enkele relatie met de lengte B. Door nu het originele BFDAF
i K kleinere stukken te partitioneren, met 1 £ & < N, en deze verkregen
structuur op een cfficiénte manier te implementeren, wordt het ”Partitioned
Block Frequency Domain Adaptive Filter” (PBFDAF) verkregen, die wordt
besproken in Hoofdstuk 5. Deze structuur heeft, in vergelijking met het
BFDAF, een gereduceerde procesvertraging. Verder kan eventueel aanwezige
a priori informatie van het spectrum van het ingangssignaal gebruikt worden
om de rekenkundige complexiteit te reduceren. Dit omdat de decorrelatie bij
de PBFDAF methode wordt uitgevoerd met minder dan B delingen.

In Hoofdstuk 6 wordt het adaptief filier probleem beschreven op een ge-
ometrische manier. Een generalisatie van dit concept leidt Lot de "Block
Orthogonal Projection” (BOP) methode. Met deze methode is het mogelijk
om het ingangssignaal van een adaptief filter te decorreleren met een L x L
inverse autocorrelatie matrix, met L > 1. Dit in tegenstelling tot de "Re-
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cursive Least Squares” (RLS) methode, die hiervoor een NV x N (inverse)
autocorrelatie matrix nodig heeft. Als nu enige a priori informatie bekend is
van het ingangssignaal is het mogelijk om met de BOP benadering de dimen-
sie L beter aan te passen op de bencdigde dimensie om het ingangssignaal
te decorreleren. Omdat verder zowel de BOP als de PBFDAF methode met
een gereduceerd aantal vrijheidsgraden het ingangssignaal van het adaptief
filter kunnen decorreleren, wordt hun onderlinge relatie ook in Hoofdstuk
6 besproken. Verder is het bekend uit de literatuur dat een spraaksignaal
gemodelleerd kan worden met een auto regressief (ar) proces. Een “Effi-
cient Orthogonal Projection” (EQP) algoritme wordt geintroduceerd om ar—
signalen op eenvoudige wijze te decorreleren.
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STELLINGEN

Behorende bij het proefschrift
Adaptive Filtering Methods

On methods to use a priori information in order to reduce complerity while
maintaining convergence properiies

door P.C.W, Somimen

1. Ten onrechte wordt in de literatuur de suggestie gewekt dat de con-
vergentieeigenschappen van het ”"Least Mean Square” algoritme slecht
zijn als het ingangssignaal gekleurd is.

(Bron: Bellanger, M.G. (1987). Adaptive Digital Filters and Signal
Analysis, Marcel Dekker, Inc., New York, ISBN 0-8247-7784-0 (p.130))

2. Bij de analyse van het "Least Mean Square” algoritme worden aan-
names gedaan waaraan zelden voldaan wordi. De juistheid van de
resultaten impliceert niet dat de aannames gerechtvaardigd zijn.
(Bron: Widrow B., Stearns S.D. (1985), Adaptive Signal Processing,
Prentice-Hall, Englewood Cliffs, New Yersey 07632, ISBN 0-13-004029-
0 (p. 102))

3. De bewering dat, bij de uitvoering van een adaptief filter in het fre-
quentiedomein, voor de toepassing van de "overlap-add” procedure
meer Fourier transformaties nodig zijn dan voor de tospassing van de
"overlap—save” procedure is onjuist.

(Bron: G. Clark, S.R. Parker, $.K. Mitra, A Unified approach to Time-
and Frequency—Domain Realization of FIR Adaptive Digital Filters,
IEEE Trans. on ASSP, vol.31, no.5, oct. 1983, pp. 1073-1083)

4. Bij een adaptief filter kan het "tracking” probleem in twee delen worden
opgesplitst. Hierop kan, door gebruik te maken van signaalmodellen
voor het ingangssignaal, op een adequate manier worden ingespeeld.
(Bron: Haykin, 8. (1986). Adaptive Filler Theory, Prentice-Hall, Engle-
wood Cliffs, New Jersey 07632, ISBN 0-13-004052-5 (p. 251))



10.

i1.

. Adaptieve filters die gebruik maken van frequentiedomein technieken

zijn, voor veel praktische toepassingen, een goed alternatief voor de
"Recursive Least Squares” methode.
(Bron: Dit proefschrift)

Bij toepassingen waar een akoestische echo (100-200 msec.) nog steeds
een probleem vormt, verdient het aanbeveling om te zoeken naar andere
oplossingen dan het parallel schakelen van een adaptieve echo compen-
sator.

. Onder de weggebruikers belasten de voetganpger en de fietser het milieu

het minst. In de praktijk wordt dit nog steeds niet voldoende gewaar-
deerd in de vorm van regelgevingen en voorzieningen ten behoeve van
deze weggebruikers,

Voor het productierijp maken van eenr massaproduct is een van de
vereisten dat het ontwikkelteam eensgezind aan de slag gaat. Bij het
doen van innovatief onderzoek is daarentegen enige mate van eigenwi js-
heid van de teamleden een vereiste.

. Een TUE-medewerker die een dienstreis naar het buitenland maalkt is

van te voren nooit zeker of hij voldoende tegen ongevallen verzekerd is.
De "aanbeveling” om op eigen kosten een passende verzekering af te
slniten getuigh van een onzorgvuldig personeelsbeleid.

{(Bron: Regeling voor vergoeding van reiskosten voor dienstreizen, p7)

Met behulp van vrij eenvoudige apparatuur (PC, DSP) is het in veel
gevallen wel degelijk mogelijk om goed en professionee) wetenschap-
pelijk onderzoek te verrichten.
(Bron: Cursor, 1-12~89, p6-T)

Het geven van stellingen bij een proefschrift zou niet verplicht moeten
zijm,

Piet Sommen
Valkenswaard, 16 juni 1992
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