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Summary 
In comparison to fixed filters, adaptive filters use extra complexity to update 
the weights according to some specific algorithm. With such an algorithm 
it becomes possible to perform satisfactory in an environment where com­
plete knowledge of the relevant signal characteristics is not available. The 
performance is, among other things, measured by the speed and accuracy of 
convergence. In many practical cases at least some a priori information is 
available about the environment and/or the relevant signal characteristics. 
This thesis explores some methods to uSe the available a priori information 
to reduce complexity, while maintaining convergence properties_ 

The acoustic echo canceller, a typical application of an adaptive filter, 
was one of the research subjects of the Radio and Data Transmission group 
at Philips Research Laboratories in the period 1984-1989. In this application 
a speech signal is reflected via an acoustic echo path of 100-200 msec. as 
an undesired echo into a microphone. The task of the adaptive filter is to 
produce an estimate of the unknown acoustic echo signal. The main problems 
of this application are besides the length of the acoustic echo path (modelled 
with a transversal structure of 1000-2000 coefficients), the non~stationaritjes 
in the speech signal and the time variant character of the echo path. Although 
not a subject of research in this thesis, the acoustic echo canceller has served 
as a motivation for most parts of this report. Almost all material has been 
published in [49]-[60] and [14]. 

In Chapter 1 a general introduction of adaptive filters is given and the 
used symbols and definitions aTe explained. 

Since block processing tedmiques playa central role in this thesis, Chap­
ter 2 gives a derivation and analysis of tbe well known and robust Block 
Normalized Least Mean Square (BNLMS) algorithm. The BNLMS algo­
rithm makes one update of all N adaptive coefficients every L samples, with 
L the processing delay_ In Ijterature it is often stated that this, low complex­
ity} algorithm has bad convergence properties when a coloured input signal is 
applied to the adaptive filter_ However, from the analytical and experimental 
results it follows that both the input signal statistics and the initialization 
of the adaptive weights influence the convergence properties. This implies 
that convergence properties can become botb better and worse for a coloured 
input signal. A priori knowledge about the "matching'l of the signal charac-
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teristics and the "unkllown" system can be used to initialize the algorithm 
as good as possible. 

In Chapter 3 it is shown that for large filters (the aco\lstic echo canceller 
needs an adaptive transversal filter with 1000-2000 coefficients) the BNLMS 
algorithm can be implemented very efficiently in frequency domain. For the 
transformation between time- and frequency domain Fast Fourier Transforms 
(FFTs), with length B = N +£-1, are used. This efficient implementation is 
(me of the first reasons to implement the acoustic echo canceller in frequency 
domain. Furthermore it is known that two well known procedures to carry 
out this efficient implementation for fixed filters are given by the ovedap­
save and the overlap-add method. In literature [8] it is asserted that, for 
complexity reMons, in adaptive tiHer configuratioDs the overlap-save method 
is to be preferred to the overlap-add method. This statement is contradicted 
in t.his chapter, and it. is shown that both methods Can be implemented in 
adaptive filters with equivalent complexity. 

Statistical properties of a speech signal are time dependent. When using 
such a non-statiollar input signal, and applying the BNLMS algorithm for 
the updating of the adaptive coefficients, convergence properties can change 
very much during adaptation. For this and many other practical situations 
it is desirable to change the update algorithm in such a way that conver­
gen<;e properties of the adaptive filter become independent of the input sig­
nal statistics. Since it is known from literature that decorrelation can be 
accomplished relatively easy with frequency domain techniques, this is the 
second motivation to implement the acoustic echo canceller in frequency do­
main. It is shown in Chapter 4 that in frequency domain decorrelation is 
performed by normalizing the spectrum of each separate frequen<::y compo­
nent. With this method an approximation is made of the required time 
domain decorrelation. First it is shown under what conditions this approxi­
mation is acceptable. Applying this spectral normalization to the efficiently 
implemented BNLMS algorithm in frequeucy domain, leads to the Block Fre­
quency Domain Adaptive Filter (J3FDAF). Roughly there are two variants 
of the BFDAF hown in litel'(I,ture. The first, one, with five FFTs, was in­
troduced as the constrain~d BFDAF silJce it requires a window that forces 
a constraint in adjusting the frequ~I\cy domain weights ba5ed on overlap·' 
save sectioning. The second method is tb~ unconstrained BFDAF, since it 
removes the window. This unconstrained structure only needs three FFTs. 
An analysifl is given of a generalized BFDAF structure, suitable for both 
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structures. From this it follows that, in general, the constrained method 
(5FFTs) has bettter convergence properties than the unconstrained method 
(3FFTs). Furthermore it is known that many practical systems, such as the 
acoustic echo canceller, have a global decaying function as impulse response. 
When this a priori information is available, an efficient implementation of the 
BFDAF is introduced, using 3 FFTs, with convergence properties equivalent 
to the constrained BFDAF (5FFTs). 

One of the main problems of block processing techniques is the large 
processing delay of L samples (usually L is in the order of the filter length 
N). Furthermore, when performing decorrelation in frequency domain by 
spectral normalization, the resolution of the spectrum equals the number B 
of frequency components. However, the statistical properties of the input 
signal, and thus the required 1Hunber of divisions, have no resemblance at 
all with the segment length B. By partitioning the original BFDAF into }{ 
smaller parts, with I :s; f{ ::; N, and implementing this in an efficient way 
leads to the Partitioned Block Frequenr:y Domain Adaptive Filter (PBFDAF) 
as dicussed in Chapter 5. This structure has, in comparison with the BFDAF, 
a reduced processing delay. Furthermore, when some a priori information is 
available of the input signal spectrum, this information can be used to reduce 
complexity, since decorrelation is performed with less than B divisions in the 
PBFDAF approach_ 

In Chapter 6 the adaptive filtering problem is described in a geometri­
cal way. Generalizing this approach leads to a Block Orthogonal Projection 
(BOP) method. With this method it is possible to decorrelate the input sig­
nal of an adaptive filter with the inverse of an L x L autocorrelation ma.trix 
with L ~ 1. This in contrast to the Recursive Least Squares (RLS) method, 
that uses an N x N (inverse) autocorrelation matrix (with N the length of 
the adaptive filter). When some a priori information of the input signal is 
available, it is possible to match the dimension L of thE> required autocorre" 
lation matrix more properly to decolTelate the input signal. Both BOP and 
PBFDAF methods reduce the required number of degrees of freedom for the 
decorrelation of the input signal of the adaptive filter. For this reason tbe 
relationship between these two methods is a.lso discussed in Chapter 6. fur­
thermore it is knowll from literature that a speech signal can be modelled by 
an auto regressive (ar) process. An Efficient Orthogonal Projection (EOP) 
algorithm is introduced that can decorrelatc ar-signals. 
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Chapter 1 

General Introduction to 
Adaptive Filters 

When designing a Wiener filter a priori knowledge about the actual statistical 
properties of the data to be processed is required. Only when the properties 
match the a priori information on which the design of the filter is based, 
the filter is optimum. It may impossible to design the Wiener filter because 
this information is not known completely and an appropriate design may no 
longer be optimum. A possible solution to this problem is to first estimate 
the statistical parameters of the relevant signals and then compute the filter 
parameters. For teal-time operation this procedure may require costly hard­
ware. A more efficient method is to use an adaptive filter. Such a device is 
self-designing in that the adaptive filter relies for its operation on a recursive 
algorithm, which makes it possible for the filter to perform satisfactorily in 
an environment where complete knowledge of the relevant signal statistics is 
not available, or when the statistics slowly vary in time. The algorithm starts 
with a set of initial conditions, representing all information available about 
the environment. In a stationary environment, after successive iterations of 
the algorithm it converges, in average, to the optimum Wiener solution in 
some statistical sence. In a non stationary environment, the algorithm offers 
tracking capability, whereby it can track the variations in the statistics of 
the relevant signals yielding Some local solution, provided that the variations 
are sufficiently slow. From textbooks [21,27,38,68,10,1,26,7] it follows that 
adaptive digital filters are extremely useful devices in many applications of 
digital signal processing. 



As a direct consequeJJ(:e of the application of a recursive algorithm, by 
which the parameters of eLn adaptive filter are updated from one iteration to 
the next, the parameters becOllle time dependellt. Since this time dependence 
if; caused by the rdevant signals ,til a.daptive filter if; a nonlinear device. Note 
that one iteration of the. adaptive filter has not necessarily to be performed 
between tW() sllcccsive samples. 

In another context, an adaptive filter is often referred tn as linear in the 
~ense that the output of the filter is obtained as a linear combination of 
the available set of observations applied. to the filter input. This report is 
restricted to linear, finite impulse response adaptive filters. Furthermore all 
used signals are discrete in time. 

In Section 1.1 of this chapt.er some adaptive filtering applications are 
given in order to est(l.blish the COllllt>ction between the material presented 
in later sections and the application of interest. from these examples a 
generic for111 of an adaptive filter is derived ill Section 1.2, while in addition 
general assumptions are given used further on in t.his report. Section 1.3 gives 
the main definitions and Ilotations ll:-:ed in later c.hapters, while Section 1-4 
describes the used symbols. Fillally in Section 1.5 diffel'ellt factors, describing 
adaptive filters, are given. 

1.1 Applications of adaptive filters 

This section describes differeJlt applications of adaptive filters. 

L Signal Estimation (Fig. 1.1): 
The input signal x is leaked through all unknown system with impulse 

response h as signal e together with signal $, that is llilcorrelated with 
x) into the measurable sigual c. The main task of the adaptive filter is 
to make all estimatei: of the ullknown signal e. 

Some examples that belong to this class are: 

(a) Echo cancellation [25]: 
There are roughly two different types of echo canCt~llers: 

• Voice, acoustk [6.1,28J (Fig. 1.2): 
In Fig. 1.2 ouly the near-end acoustic echo canceller is given. 
All E~quivalellt system will be present at the far-end. Possible 



x 

Figure 1.1: Signal Estimation 

s 

acoustic 
echo pe.th 
(100-200 lIl3ec) 

Figure 1.2: Acoustic echo canceller 
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applications of the acoustic echo canceller are: audio-video 
teleconferencing and loudspeaking telefony systems_ In these 
applications the far-end speech signal x enters the near-end 
acoustic room through a loudspeaker. Here signal x is re­
flected, via an acoustic echo path of 100--200 msec j as an 
undesired echo (~ into a microphone, toget.her with the near­
eud speech signal 8. Without the acoustic echo canceller the 
echo signal e will enter the far-end system, where it will be 
refteded again. The result will be an unacceptable roundsing­
ing or ringing effect. 
The task of the near-end acoustic echo canceller is to pro­
duce an estimate e of the unknown acoustic echo signal e j 
resulting fJ'QrIl the far-end speech signal x: The main prob· 
lems here are besides the length of the acoustic echo path, the 
Ilon-stationarities in the input signal x and the time variant 
character of the echo path. Adapta.tion is typically carried 
out in the absence of the near-end speech signal. When dou­
ble talk is detected (both near- and far-end signals present), 
updating of the echo canceller coefficients is inhibited . 

• Data [67,]8] (Fig. Lq: 
In Fig. 1_:3 only the near-end eclw canceller is given. An 
equivalent system is present at the fa.r-end. In a modem, 

Figure 1.3: Data echo canceller 

transmlS510n 
medium 

containing (among other thilJgs) a transmitter and a receiver 
for data signalsj the near-end data signal x hM to be trans­
mitted while the [a,r-··cnd data. signal $ has to be l'eceived. An 
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hybrid directs signal x to~ and signal s from a transmission 
medium. Since the hybrid is not perfect, it will produce a.n 
undesired ~echo~ signal e of the near--end signal x in the re­
ceiver. In practical situations e can be up to 20 dB stronger 
than the desired signal s. 
The near-end echo canceller has to produce an estimate e of 
the echo e, resulting from the Inea.r--end' signal x. Filter adap­
tation is typically required to be continued in the presence of 
a large echo signal e which is correlated with the near--end 
transmitted data signa.l x-

(b) Noise c~ncellation [43]: 
An unknown system with impulse response h coloures the mea­
surable noise source x_ The adaptive filter produces an estimate e 
of the signa.l e (Fig. 1.1). One example is that of cancelling noise 
from the pilot's speech signal in the cockpit of an aircraft. In this 
case e may be the pickup from a. microphone in the pilot's hel­
met and x is the ambient noise picked up by another microphone 
placed in the cockpit. 

(c) Adaptive Arrays {51 (Fig- lA): 
In this application a number of input signals, e.g. from an array 
of receiving antennas or microphones, are processed through an 
array of adaptive filters whose outputs are summed together. The 
radiation diagram of the array Can be adjusted by adjusting the 
amplitude and phase of each array element with an adaptive filter. 
In practice the filters can consist of only one coefficient. The 
adaptation can be done to create a null in the direction of an 
interfering trallsmitter (adaptive null steering) Or to generate a. 

maximum output for a desired siglla\ from an unknown direction 
(adaptive beam forming (66])-

2. Signal Correction (Fig. 1.5): 
The desired signal e is distorted by at) unknown channel with impulse 

response h, Together with a noise signal n~ the output of this <.:hannel 
is available as input signal x of the adaptive filter. The adaptive filter 
has to correct this signal x in such a way that the channel distortion is 
removed and the desired signal e can be estimated. 
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Figure 1.4: Adaptive Array 
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Figure 1.6: Signal C01Tccf'i(m 
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The most important example of this class is the linear equalizer [41]. 
After the initial training period (if there is one), the coefficients UJ of the 
adaptive equalizer may be continually adjusted in a decision-directed 
manner. In this mode} the residual signal r is derived from the final 
(not necessarily correct) receiver estimate e of the transmitted sequence 
e. In normal operation, the receiver decisions are cortect with high 
probability, 50 that the error estimates are correct often enough to allow 
the adaptive equalizer to maintain precise equalization. Moreover, a 
decision-directed adaptive equalizer can track slow variations in the 
channel characteristics or linear perturbations in the receiver front end, 
such as slow jitter in the sampler phase. 

3. Signal Prediction (Fig. 1.6): 
The original signal e consists of a predictable and an unpredictable 

Figure 1.6: Signal Prediction 

part. The adaptive filter has to produce an estimate e of the predictable 
part. The residual signal 7· :;;;;: e - e will equal the unpredictable part 
of e. An example is the Adaptive Line Enhancer (ALE) [44,19]. The 
ALE can be used to detect a low level sine wave s embedded in a 
background additive noise n with a broadband spectrum (e == s + n). 
The main function of the delay Tr.. is to remove correlation that may 
exist between the noise component n in the original input signal e and 
the noise component in the delayed predictor input x. An ALE must 
be viewed as an adaptive filter that is designed to suppress broadband 
components (e.g. white noise) contained in the input signal, while 
at the same time passing narrowband components (e.g. sine wave) 
with little attenuation. In other words, it can be used to enhance the 
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presence of sine waves (whose spectrum consists of harmonic lines) in 
an adaptive manner. 

Another well known ~;<ample is linear predictive coding (LPC) of speech 
where the end result is the sd of estimated LPC coefficients [44,19]. 
Due to the nOllstationary na.ture of the speech signal, LPC coefficients 
are typically obtained separately for each new frame (10 to 25 ms) of 
t.he speech signal. 

1.2 Generic form and general assump­
tions 

There is no unique solution to the adaptive filtering problem. For 
the purpose of further development a g~lleric fom) is given (Fig. 1.7), 
which is based on Wiener filter theory. It is assumed that the unknown 

Update 1----1'"'" W 

r 
s 

Figure 1.7: Generic j07'nl of adaptive filter 

system function Wopt, can be modelled with a Fillite Impulse Response 
(FIR) filter. F'or the adaptive filter also an FIR structure is used as tlw 
structural basis for implementing the adaptive filter, [rum which the 
order is assumed to be grehtel' than (but at least equal to) the order of 
the unknown optimum Wi(~lltT filter. ['ur the case of stationary inputs, 
the mean ··square.d error J (i.~. the mean-squared value of the difference 
between the signal t; and the FIR filter output e) is precisely a quadratic 
function of th~ adaptiv~ weights w in the FIR filter. The depcnden(:e of 
the mean-squared errOr J on the unknown weights may be vit;malized 
in the form of a multidimensional paraboloid with a uniquely defined 



bottom or minimum point Jmin. The weights corresponding to this 
minimum point define the optimum Wiener solution vector ~pt. It 
can be shown that the gradient vector \l = 61/ 6yt always points away 
from the minimum Jmin as depicted for a single adaptive weight in 
Fig. 1.8. The coefficient vector w of the adaptive filter is updated in 

- - -=---...-'-:::::- - -
J min 

Wopt W --... 

Figure 1.8: J as function of a sl7lg1e adaptive weight w 

such a way that after convergence the adaptive weights will equal, in 
average, the unknown optimal FIR Wiener solution vector ~pt. This 
can be reached by using a steepest-descent update, from which the 
update scheme looks like: 

(1.1 ) 

where 0' is the adaptation constant (0: > 0). In general this will result 
in an update algorithm for the adaptive weights which will have the 
following general form: 

(

new ) ( old ) (adaptatiOn) ( input ) (reSidUal) 
coefficient = (:oefficient + constant . signal . signal 

vector vector (0;) vector 

Generally it is assumed in this report that the reference signal e con­
sists of two components e = e + s. The first signal e is the result of 
a linear convolution of the input signal x with the unknown optimal 
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FIR Wiener filter Wopt) while tbe second signal s is uncorrclated with 
x. Furthermore it is assumed that both x and s have zero mean. In 
practical applications, e.g. for the acoustic echo callceller as descrihed 
in Section 1.1 j a double talk detector is needed: tlw result is that, dur­
ing adaptation) signal .5 lIlay be approximated as a white noise signal. 
This approximation will be llsed for all all 1l.1 Y tical calculations. In or­
der to make ana,lysis of some adaptive algorithm~ more tractable, the 
assumption is made that the adaptation constant a is sufficiently small. 

As mentioned before all adaptive filter ofr~rs tracking cap3bilitics in 
nonstationary environments. It call track val'iatic)Ils in the unknown 
optimum Wiener filter. Furtherlllore the tracking quality is dependent 
of tlw nonstationarity of the input signal. Since tracking is not the 
main topic in this report it is assumed that the signals are st.a.tionary 
and that the environment, the unknown Wieller solution, is not time 
variant. 

1.3 Definitions and notations 

For the purpose of fmtller development in thi~ section some frequently 
used defiuitions and notatiOll(; art' listed. 

All signals in time domain are (l.::;sumed to be real and discrete in time 
(denoted by square. brackets), TI11ls x[k] denotes signal x at discrete 
thne k, corresponding tu k . T in continuous time. 

Furthermore, with N denoting the order of the adaptive filter, signab 
and weights are rt>presented ill v~r.tors as follc)ws: 

~[kl 
)Y[k] 

~pt 

!i[k] 

(.r.[k - N + lk· ·,x[k - lLx[k])f 

(uw-dkL"" tlJdkL walk])! 

(Wopt,N-U"', Wopt,u Wopt,o)t 

Nopt - w[k] 

where t denotes transpose. In general a bold-face and underlined <:har­
actcr is used for a vector) whil(~ a buld-face ]lot underlined letter denotes 
a matrix. In some cases it is necessary to delwte the dimension of a 
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vector Or matrix explicitly. For example whet) it is not obvious that the 
dimension of vector ~[k] is B then it is denoted with a capital subscript 
as: 

~[kl = (x[k - B + IL··· J x[k - l]'x[kW (1.2) 

The N X N identity matrix is given by IN, while a circular shift of the 
data over L positions in an N dimensional vector is carried out by the 
matrix: 

(L3) 

in which the .zero matrices 0 ha.ve a.ppropriate dimensions. Note that 
:ij; = IN. The data of an N dimensional vector can be mirrored with 
the N X N mirrored matrix J N that is defined as: 

1 
o I 

(1.4 ) 

1 o 
1 

A reverse circular shift over L positions, in opposite direction to It-, is 
carried out by the matrix 

(1.5) 

Note that J~ = I N • 

When an N dimensional vector liN[k] is changed to a B dimensional 
vector ~rk] (with B == N + L-1) by adding L-I zeros, this is denoted 
by the following vector matrix product: 

L1[k] = ( I; ) . x,v[k]. ( 1.6) 

On the other hand when a. B dimensional vector .&8[k] is changed to an 
N dimensional vector I..N[k] by throwing away the last L - 1 elements, 
this is carried out by 

IN[k] == (IN 0). ~B[kl· (1-7) 

II 



In the last part of this report the stochastic signal x [k], that is repre­
sented in the N dimensional vectOr x[ k], is considered in a geometrical 
way. For this the innerproduct between two real vectors x[k] and ~pt 
is defined as; 

N-l 

< x[k],~pt. >;::;:; xt[k]. ~)pt ~ I: Wopt .• ·r:[k - i] (1.8) 
;=0 

and the £2 norlIl of the real Vec.tor x[k] is defilled as: 

Ilx[kjll = J < t£[kLx[kJ >. ( 1.9) 

Furthermore, with E{·} denotillg the mathf:'matical expectation, the 
variances of the stationary stochas1.ic signals :dk] allel s[k] , both having 
zero mean, are defined as E{:r~[,l,;]} ~ rr; cllld E{.:;2[k]} = O"!, For 
stationat·y real signaL> x[k] the autoconelation function p[T] is defined 
as [37]: 

p[T] = E{x[k]x[k - Tn· (1.10) 

This aut.ocorrelation fund,ion can be represented wit.h an N X N real 
symmetric Toeplitz autocorrelation matrix R that is defined as: 

whose (k, l)th element is gi ven by: 

(R)~d = p[\k - il] 

Or in matrix form: 

R= 

prO] 
pill 

p[1] 
prO] 

piN - 1] p[N - 2] 

• p[N - 1] 
p[N - 2] 

prO] 

(1.11) 

(1.12) 

With Qh denoting the hermetian (::;complex conj ugate (*) and trans­
pose (t)) ol'matrix Q, the following uuitary or similarity transformation 
is often useful: 

(1.13) 
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where A ~ diagpo,'" l AN-I} is a diagonal matrix containing the 
eigenvalues of Rand Q :;::::: (90,'" ,.9N - 1 ) is an orthonormal matrix 
containing the eigenvectors. The followiIlg properties of Q and Rare 
used (see also [26J): 

Qh'Q ::.::1 ~h.9.n={~ if 1 = m 
{::} 

if 1 =I- m 

QhQ =1 <* QQh =1 
N-l 

:E Al trace{A} ;:;; tt·ace{QhRQ} = trace{RQQh} 
1",,0 

trace{R} = Na! 

AI > ° for I~O,1,···,N-l. (1.14) 

while furthermore the "relative eigenvalue" XI is defined as: 

(1.15) 

The Eigenvalue Ratio (ER) is defined as the ratio of the maximum and 
minimum eigenvalue: 

ER = Amax 

\nin 
(1.16) 

Both the autocorrelation function p[T] and the autocorrelation matrix 
R represent a time-domaiu description of the second order statistics 
of a stationary discrete-time stochastic signal. The power spectral 
density function (psdf) P(J'L that is a real and positive function, is 
related to this autocorrelation function via the Fourier Transformation 
for Discrete signals (FTD) as follows: 

~ 00. ~ 

P(el') = L p[T]e-Jr8 = p[O] + 2 E p[r] <:05(OT). ( 1.17) 
.,.=1 

When comparing theoretical and experimental results different types 
of input signals are used. These signals are generated by signal mod­
els. All these models derive signal x[kJ froIll a. white noise signal n[k] 
through appropriate filtering (colouring)_ The signal n[k] has zero mean 
,E{n[k]} = 0, and variance E{n2 [kJ} = a!. In the sequel for each 



separat.e model the diffel'ellee equation, describing the model, and the 
autocorrelation functio~l pIT] are given. Furthermore an expression is 

given for the psdf P(el 6 ). From literature [26] it is known that the 
eigenvalues are bounded by tb~~ maximum and minimum of the psdf 
[22], and this bound for the E R is also given. In order to be able to 
make correct comparisons betweHll convergence properties of an adap­
tive filter with different kind of input sigllals) different signal models 
are chosen in sLlch a way that theil' total power is the same f01" all these 
models. This implies that the model parameters are chosen in such a 
way that. 

1 12
" • -. P(eJlI)dO == prO] ;:::: a~. 

21r 0 
{l.lB} 

White uoise signal l11odd: 
Each sample of the white lloi",e signet! n[k] has no relation (correlation) 
with all other samples n[k - i] for i :f:. O. 

Autocorrelation 

Spectnuu 

Eigel1valutl Ratio 

x[k] ;:::: n[k] 

p[rJ;:::: { ~~ 
P(el ll

) ;:::: (T~ 
ER:::; 1 

Moving Average signal model of ordE'r 1 (ma): 

for T ;:::: 0 
eJsewhet'e. 

{1.19} 

A typical example of a signal that belongs to this class is an tJ AMI" 
(Alternative Mark Inversion) code [13]. This code posseS(les several 
characteristics that 3r~ desirable in baseband pul~e transmission. It has 
no DC component and contains only a ~Ina.1l amount of low·-frequency 
components. Timing information can eMily be recovered from the re­

c~ived line signal. 

The ma-·signal Dlodd of order 1 is dC'fined M: 

Model : 
1 

:t[k]:::;: ~. (n[h:] + an[l: -1)) 
1 + a2 

Au tocorre 1 at. ion piT] ~ { 

14 

for l' ;:::: 0 
for l' ;:;= ± 1 

elsewhere. 

(1.20) 



Spectrum . ( 2a ) P(el'):::. 1 + --2 cos(B) O"~, 
1 + a 

Eigenvalue Ratio ER'.5: (1 + a)2 
l~a 

Auto Regressive signal model of order 1 (ar): 
The vocal tract of a speech signal call typically be described by an ar 
signal of higher order [48]. 
The ar-signal model of order 1, with lal < 1, is defined as: 

Model x[kJ = (~). n[k] + axlk - IJ (1.21) 

Autocorrelation p[TJ = a l1'IO'; 
Spectrum p(~8) = (1 - a2)a~ 

1 + a2 - 2a cos(8) 

Eigenvalue Ratio ER:::: (1 + a) 2 
1 ~ a 

An N dimensiona.l discrete-time vector x[k] is transformed to the fre­
quency domain vector X[k] via the Discrete Fourier Transform (DFT), 
by using the N X N Fourier matrix F. Thus; 

X[k] :::: (Xo[k],··· )XN_dk])t == F· ~[kJ 

with the (p, q) th element of F given by: 

(1.22) 

(1.23) 

Nate that the indices p, qare defined in the range 0,1, .•. , N - 1. This 
Fourier matrix has symmetrical and unit.a.ry propertiea, namely: 

Ft = F F-1 = ~Fh. (1.24) 
N 

In thir; report two types of cit"culant ma.trices, that can be constructed 
by a circular shift of the first row, arc used. Thetle are the "I-circulant" 
matrix, that is defined a$ 

dO] c[l J e[N -1] 
c[N -1] e[O] c[N - 2J 

c= ( 1.2,5) 

c[l] c[2] c[O] 
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and the jj "-circulant" matrix 

c= 

e[O] 
e[l] 

e[N - 1] 

c[N - 2] e[N - 1] 
e[N - 1] e[O] 

(1.26) 

e[N - 3] c[N - 2J 

Since the DFT has a. circular property, the Fourier matrix F diagonal­
izes t.he I-circulant mat.rix C as follows [12]: 

( 1.27) 

When C is an J-circulant l1Httrix, this is diagonalized by the Fourier 
matrix F as follows: 

(1.28) 

When the autocorrelation fUI1<::tion p[TJ is re.iitricted p[T] :::: 0 for IT\ > 
Tmax, with Tmax <t: N, it is possible to construct the I-circulant au­
tocorrelation matrix C (lilt of the Toeplitz matrix R. A possibility is 
to define. the first row of the circulant matrix C as follows: 

{ 

p[TJ f()l· T :;;= 0, ... , Tmax 

e[T] = p[N - rJ for T := N. - Tmax,···, N - 1 
o clsewIH~rf' . 

(1.29) 

Some important similarities, extensively treated in [22,23]' between the 
autocorrelation R and the I-circulant autocorrelatioll matrix C, con­
structed as in (1.29), are us(~d in this report. The most important ones 
are listed below: 

• With the I-circulant aut(lcolTclation matrix C, as constructed in 
(1.2~)), the eigenvalues H of C i;l,re approxiTlla.ted as: 

with (1.30) 

IG 



• The eigenvalues of the autocorrelation matrix R are bounded by 
the minimum and maximum of the psdf: 

and 
mIll 

() 
{P(J9)} . 

(1.31) 

• The eigenvalues AI of. the Toeplitz autocorrelation matrix Rand 

the sampled psdf P(eJiI)IO = I· ON are asymptotically equally dis­
tributed. This result can easily be shown for the given models, 
since each of these models have monotanuausly increasing/decreasing 
psdf. The result is plotted in Fig. 1.9. The signals arc generated 

1 

1.8-

1.4 

~ 
] .., 
i 
0-

1 0.8 ........ , .............. .L ............. W¥"" .. N-;>~"" 
; : 

0.6 ,!, .. ". 

0.2 : ·····,····1"",·.·,1I1I'''!'' ',".,.I1 ... ;.,., .......• , ... j ...... , ...... . 

0 
0 ~ ~ ~ ~ w ~ w 00 ~ 

._" tb~1ll [pi/lool 

Figure 1.9: Spectrum and eigenvalues for different signal models 

with the above mentioued models with O'~ = 1 and 1121 = 0.8182 
(ER ::::;: 100). The same figure shows in point-type the ordered 
eigenvalues of the 32 X 32 autocorrelation matrix R, at a distance 
of ()N ;;;:; ~. From this figure it follows that for these simple mod­
els the ordered eigelJva.lues are almost equal to the sampled values 
of the psdf: 

.\/ Q::: P(e1 B)Il/=H'N far l = 0,1"", N - 1. (1.32) 

17 



This similar behaviour of Toeplitz and circulant matrices should seem 
rea.sona.ble since the normal equations R . .9 -= '\'.9 and C· g = P . .9 for 
N >- 2Tmax + 1 an' essentially the same. diff(~rence equations of order 
Tmax, with different boundary conditiolls. In fact the "nice" boundary 
conditions make P easy to find exactly, by using a DFT, while exact 
solut.ion for ,\ are usually more complicated. 

In general different frequency components Xdk] and Xn>[k] are COTTe­

lated wit.h each other (see for an an exact description of t.his interbin 
correlation the course books [32] (part of B. Picinbono)). Here however 
it is a.sfSll1ned that different frequency componentr:; Xd k] MC approxi· 
mately uncorrelah~d, thm;: 

~E{Xl[I.:])C [k]} ~ {h for.l = 111, 

N m 0 elsewhere. 
(1.33 ) 

This approximation makes use of the circ.ulaut approximation as de­
scribed above. This can be visualized ill the followillg expression: 

~E{X[k]Xh[k]} ~FE{~l~:]xt[k]}Fh = ~FRFh 

R ---> C ~FCFh = P 
~ N 

1.4 Symbols 

All experiments with the adaptive filter structures and algorithms in 
this report. have been carried out on a PC in which (I. DSP board 
(TMS320C30) was mounted. The used symbols, listed below, aTe such 
that it is straightforward to implenwllt them on this PC/DSP combi­

nation. 

A signal is denoLed by a single line (l.)T(lW (---l-) whil!~ a vector, nmtaining 
more signals, is indicated by a double lille arrow (:::}). When It vedor 
y = (vo,··· ,l)N_d t contains signal sample~ then alwayr:; element zero 
will eqlJaI the sample with the lowest time index. Thlls Vo = x[k - N + 
1],···, VN-l = ;r.[h]. In Fig. 1.10 the first two :;;yll1bols are int.roduced 
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~_ ... ~ x[k-N+l1 
~----~ 

x[k) :r;[k-lti+l) 

-I CN-li:}--
(a) 

x[k] 

(b) 
z[k] x[k-l) x[k-N+l] 

Figure 1.10: Symbols for cascading delay elements (aJ and delay line (b) 

on the right-hand side of the figure. The first symbol, having one input 
and one output, denotes the cascading of (N - 1) delay elements T j 

containing N samples of signa.l z[k]. The second symbol is used for a 
delay line with one input signal sample x[k] and a length N vector ;&[k] 
of output samples. 

Different symbols to reorder elements of a vector y are depicted in Fig. 
1.11. The first symbol denotes a mirroring of al1 elements in a vector. 
Mathematical1y this is denoted as 

(1.35) 

The second symbol is used to shift the elements of vector 2!; in a circular 
way over L positions Or mathematically: 

- It :r - NK· ( 1.36) 

In some cases it is necessary to cbange the dimension of a vector by 
adding zeros. This is carried out, for B = N + L - 1, in the first symbol 
of Fig. 1.12, or mathematically: 

( 1.37) 

The second symbol in this figure is used to switch from an B dimen-
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I 
Mirroring 

1 

I Vo I VI I _....----------_ ........... EN] 
I 

Circular shift 

1 
[VL ! E~-II Vo ~1 I !~ 

(a) 

...--.. 

(0) 

Figure' I,lL; Rro)yiC1'ing ,~ymbois 
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(a) 

I 
Throwing 8.W8.y 

1 

to 

L-l rn 
N L-l (b) 

Figure 1.12: Symbols to change the dimension of a vector 
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sional vector Xs to 3.n N dimensional vector ¥..N' by discarding L - 1 
elements, or lW:LtlwlIlatically: 

(1.38) 

Fig. 1.13 shows SOllle a.ddition and multiplication symbols. These are 

y 

====l+~"'" 

(0) 

y 

===-:::1..+ 

(b) (c) 

't 
====t..X 

(d) 

Figure 1.1.3: Addition and multiplication symbols 

defined as: 

N-l 

(a) y;::;:; 2:: (X)i 
.",0 

(b) (z). == (X), + (~::)i for i = 0",·, N - 1 

(c) (:r); = n . (:K), for i ~ 0"", N - 1 

(d) (.?!), = (~.)i . (r)i for i ~ 0"", N - 1 

Whell using block processillg techniq1les the input sigllal x[k] hM to 
be segmented iuto owrlapping blocks. This way of processing is im­
plemented in this report by 1lsillg up· and down·-samplen, [11]. When 
a signal a:[k] is down-sampled by a factor N, it is denoted as x[kN]. 
For this example a delay elcmellt, in the down-sampled domain, cor­
responds to 7N = N . T ~econds. Fig. 1.14 shows itll example of a 
down-sampler followed by one delay deme1lt TN aile! an up-sampler. 
The output signa.i y[k] of this eX(I.rnple is given by: 
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x[k] x[kN] y[k] 

Figure 1.14: Down-sampler, up-sampler and delay element symbol 

[k] = { x[k - N] for k = 0, N, 2N, ... 
y 0 elsewhere. (1.39) 

Finally Fig. L 15 shows an example of arranging the input signal 
samples in such a way that block processing techniques can he ap­
plied. The input signal x[kJ is split into segments with B samples 
x[k - B + 1J, ... ,x[k - 1], x[kJ. With B = N + L - 1 these segments 
have an overlap of N - 1 samples with the previous segment. This 
splitting and overlapping is performed in the delay line followed by a 
down sampler. These down samplers all shift the data at the same mo­
ment. Now the block processing can take place, denoted in the dashed 
area in the figure. Using circular techniques, the block processing 15 
often in such a way that for the calculation of L output signal samples 
y[k]' ... , y[kL + 1], all B = N + L - I input signal samples are needed. 
The result of such block processing techniques is usually a vector from 
which only a part is needed. A window throws away the first N - 1 
elements of the vector y[kLJ. Returning to the original sampling rate 
is carried out by an upsampler, that shifts all the data at the same 
moment) and a transposed delay line. Block processing techniques will 
always introduce a processing delay. In this example the first output 
sample is y[k - L + 1], and thus the processing delay is L - 1 samples. 

1.5 Various measures describing adaptive 
filter qualities 

A wide variety of recursive algorithms has been developed ill the liter­
ature for the operation of adaptive filters. In most practical cases the 
choice of one algorithm in favour of another is determined by various 
factors, depending on the exciJange between complexity requirements 
and convergence properties of the adaptive filter. In practice the main 



x(k) 

~[k-L+ t) :t(k-L) 

x 

~[k-Il+I) 

x 

a-Jf+l.-) 

L>.I 

x(k) 

Figure 1. Hi: Example oj block processing with overlapping input signal seg­

ments 
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goal in designing an adaptive filter is to reach a certain <te;;(:ura(.y j, a.5 

soon as possible" with the least amount of complexity. As a rough 
measure for complexity the number of real multiplications, needed to 
calcula.te one output sample, is used. Furthermore in this report the 
main emphasis concerning convergence properties of adaptive filters 
will be on the following points: 

• Misadju.stment (J): 
A quantity of interest, describing the convergence properties of an 
adaptive filter, is the mean-squared error of the residual signal 
J = E{r2} with minimum Jmin = E{s2}. For an algorithm 
of interest, this parameter J provides a quantitative measure of 
the amount by which the final va.lue of the mean-squared error, 
averaged oVer a.n ensemble of adaptive filters, deviates from the 
minimum mean-squared error that produces the unknown Wiener 
filter. 

• Relative Misadjustment (J): 
The "relative" mi5adjustment is defined as: 

J = E{(c - C)2} .::: 1 - lmin 

E{Sl} Jmin 
Jex ( lAO) 

• Final Misadjustment (J} 
The fractional amount by which the steady state misadjustment 
exceeds the minimum attainable misadjustment Jmin defined as: 
]:=J.:.;;, -

• Rate of convergence (/)20): 
In signal estimation problems, such as echo cal1cellation~ this rate 
of convergence is defiued as a quantity which is related to the 
number of iterations required for an algorithm, in response to sta" 
tionary signals, to decrease the quantity 10log(J) by 20 dB. A 
fast rate of convergence allows the algorithm to adapt rapidly to a 
stationary environment of unknown statistics. Furthermore, it en­
ables the algorithm to track statistical variations when operating 
in a nonstationary environment. 

Although not a subject of research in this report some other points of 
interest when describing and comparing adaptive filters arc: 
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• Convergence region (o:max): 
This is the region of allowed values for the ada.pt(:l.tion constant Q, 

for which the algorithm converges- Most of the times this region 
is given by 

0< (} < (¥max 

where (}:max is thA largest value of the adapt<'l,tion constant Q that 
yields a stabJe algori t lUll. 

• Nurfu:T'ical p1'Oj)erties: 
When ~.n algorithm is implemented numerically, inaccuracies are 
produced due to 1'Olllld-off noise and represelltation errors in the 
computer. 

• Str"ucture: 
This refers to the structUl'c of information flow in an a.lgorithm, 
determining the manner ill which it is implemented in hard-ware 
form. For example, a.ll algorithm whose structure exhibits high 
modularitYl parallelism or COUCUlTcncy is well-suited for imple­
mentation using Very Large Scale Integration (VLSJ)-

• Robustness: 
This refers to the ability of the algorit.hm to operate satisfactorily 
with ill conditioned input data. 

• Chip aTt;a: 

The ultin1il,te area needed to imph>mcnt the algc)rithm on a chip. 
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Chapter 2 

The Block Normalized Least 
Mean Square Algorithm 

In literature often the suggestion is made that the Normalized Least 
Mean Square (NLMS) algorithm always requires a large number of 
iterations to converge when the Eigenvalue Ratio (ER) is large [7]- The 
main goal of this chapter is t.o show that also the squared magnitude 
of the system fuuction (sm£) of the initial difference vector (i.e. the 
difference between the optimal Wiener solution and the initial adaptive 
weights) plays an important role too. In order to do so first the NLMS 
algorithm is derived in Section 2.1. This algorithm makes one updating 
of all adaptive weights after every sampling period (;;:::; T time units)_ 
The Block Normalized Least Mean Square (BNLMS) algorithm, that 
is described in Section 2.2, makes this updating ouly once every L 
samples (= L· T time units). Obviously with L ~ 1 the BNLMS 
a.lgorithm is as a generalization of the NLMS algorithm. The analysis 
of the BNLMS algorithm is presented in Sectioll 2_~l. The results of this 
section are used to derive the most important convergence properties of 
the BNLMS algorithm. In Section 2.4 these results are interpreted ill a 
physical way and are verified by experiments in Section 2_5_ In Section 
2.6 the main results are discussed. Literature with more information 
about the BNLMS algorithm is given in [46,15,17]. 
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2.1 NLMS algorithm 

In this section fin:!t the Normalized Least Mean Square (NLMS) al­
gorit.hm is derived, as given in [68]. The popularity of the (N)LMS 
algorithm is largely due to the simplicity of its computational struc­
hue, low storage requirements, and the relative ease with which it may 
be mathematically analyzed. Fig. 2.1 shows an adaptive filter that uses 
the NLMS algorithm for the updating od the coefficients. As stated in 

x[k] 

x[k-i] ,.;[k-N+1 ] 

+ 

r[k1 elk] __ ----~--------~~--------~+M-----------------------

Update 

Figure 2.1: Adaptive filter using the NLMS algorithm 

Chapter 1 it is (l.ssumcd that elk] is a sum of the convolutioIl of signal 
x[k] with an unknown optimum Wiener filter (wopd and a signal s[k] 

28 



that is uncorrelated with signal :e[k}. Thus: 

N-l 

elk] :;::: L: x[k - ijwopt,i + s[k] = ;Kt[k}. ~pt + $[k]. (2.1) 
i"'O 

As shown in Fig. 2_1 a transversal structure is choosen for the adaptive 
filter and for this reason the residual signal r'[k] can be written as 
follows: 

t·rk] :;::: xt[k]. 4[k} + s[k] 

with the difference vedor 4[k} == ~pt - w[k]. 

(2_2) 

The LMS algorithm (without normali:lation) basically adapts, in aver­
age, to the unknown Wiener solution. This is done by minimizing the 
mean-squared error of the residual signal, that is given by: 

This expression is a quadratic function of the adaptive filter coefficients 
having an absolute minimum Jmin- To <;alculate this minimum the 
gradient of J[k] with respect to the vector w[k] is considered, that is 
defined as: 

( 
6J[k] oJ[k] ) t 

V[k}:;::: 8WN_l[k]"'" 8wo[kj (2.4) 

Evaluation of this expression leads to: 

\7[k} ~ -2E{x[k]r[k]}. (2.5) 

The LMS algorithm is based on the steepest-descent method, that is 
given in the updating scheme 

w[k + 1] :;::: w[k]- av[k] (2.6) 

where a is an adaptation constant (a > 0). As already stated in the 
introduction (Fig- 1.8), the gradient 'V[k} a.lways points away from the 
minimum Jmin' The steepest-descent method therefore simply goes 
opposite to the gradient direction to find the minimum. In the LMS 
algorithm the gradient (2.5) is now approximated by: 

~Ms[kJ = -2x[k]r'[k}. (2.7) 
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Since this is a very rough (or noisy) estimate, the LMS algorithm is also 
referred to a..<; the noisy gradient or gradient approximation algorithm. 
Using this estimate in the steepest-descent update equation (2_6) it 
leads to the LMS algorithm: 

w[k + 1] == ~[k] + 2ax[k]r·[kJ. (2.8) 

The residual signal 7'[k] C<l11taills delayed signal samples x[k - i], and 
from this it follows t.hat. the quantity E{2o:~[k]r-[k]} is depending on 
E{x2[k]};:= CT;. Thus the convergence properties of the LMS algorithm 
are dependent on the variance 0";. This effect can be cancelled by nor­
malizing the adaptation constant Q by an estimate 6-;[k] of the variance 
o-! of the input signal x[k]. This results in the NLMS algorithm: 

20' 
w[k + 1J = w[k] + Q-~[k]x[kJt·[kJ. (2.9) 

A possible estimate for the variance is: 

(2.10) 

Unless stated otherwise it i~ assumed that a perfect estimator for this 
variance is available, thus &; = o-!. As a rough measure for complexity, 
the number of ITlultiplications and divisions needed to calculate one 
new output sample are used. For the NLMS these numbers are in the 
order of the following figures: 

MULl'lLM$ 2N 

DH'NLMS :: L (2.11) 

2.2 BNLMS algorithm 

The NLMS algorithm adapts all weights every T time units. The Block 
Normalized Least Mean Square (BNLMS) algorithm performs this up­
da.ting only once every L . T time units (L ;;: 1). In this section it is 
shown that the BNLMS algorithm makes a more ac;curate estimate in 
comparison to the NLMS algoritlun, while comph~xit.y is in the same 
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order. On the other hand j since updating of the adaptive coefficients is 
performed less frequently, the BNLMS has a slower rate of convergence 
in comparison to the NLMS algorithm_ However, as will be shown in 
Chapter 3, the main reason to apply the BNLMS algorithm is that for 
large L this a.lgorithm can be implemented in a very efficient way by 
using block processing techniques. 

In the LMS algorithm the N - 1 - ith. element of the estimate of the 
gra.dient vector is given by: 

tiLMS[k])N-l-i = -2x[k - iJr[k] for i = N ~ 1" .. , 1, O. (2.12) 

This product =e[k - i]r[k] is an estimate of the crosscorrelation between 
the signals x and r. By averaging this crosscorrelation over a block 
with length L('?:. 1), and calculating this estimate only once every L 
samples, this results in the following equation: 

with 

~[kL - i] 
w,[kL] 

2 L-l 

=' -- E x[kL - i - q]r[kL - q] 
L q=O 

~1[kL - iJ . w,[kL] (2.13) 

= (x[kL - i - L + ll,· .. , x[kL - i - 1], x[kL - iW 
(r[kL - L + 11,···, r[kL - 1], r[kL])t, (2.14) 

These equations shows that for the calculation of this estimate both 
the input signals and the residual $igna.ls have to be down sampled by 
a. fa.ctor L. Furthermore, using the same approach as in the previous 
section, it is obvious that the normalized updating equation for the ith 

wefficient (i = 0,1"", N - 1) is given by: 

wi[(k + l)L] = wi[kLJ + L2a~2£i[kL - iJ,tdkL] 
a~ 

(2.15) 

with (XL is the adaptation constant for the BNLMS algorithm. This 
mechanism is depicted in Fig. 2.2. For the updating of every adaptive 
coefficient, L consecutive samples .x[ k- i], ... j or [k-i - L+ 1] of the input 
signal are needed. These samples are available in a. delay line containing 
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x[k] l([k-i] x[ILN+1] 

:=:===$= = = = ~===*= 

+ 

+---~----------------~--------~+~------------------

Update (i""O.l ..... N-l) 

.!!.L[kL-i] 

I~ I w; (k~J 
r'{kL] 
-L 

Figme 2.2: Adaptive filteT' ut,;ing BNLMS update algorithm 
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(L-1) delay elements as the vector XL[k-i]. Each element of this vector 
is down sampled, at the same moment) by a factor L resulting iu a 
vector &[kL-ij. An equivalent procedure is performed for the residual 
signal r[k]: First signaI7'[k} is multiplied by 2aL/ La; (resulting in r/[k]) 
then stored in a delay line (resulting in tl,[k]) and down sampled by a 
factor L (giving !i[kL]). Finally the update according equation (2.15) 
is performed every T!, = L· T time units. Using the N X L input signal 
matrix X[kLL that is defined as: 

x~JkL - N + I] 

X[kL] = = (ii[kL - L + l}, ... ,2~JkL - l},K[kL]) 

E,[kL - 1] 
~[kL] 

(2.16) 
the BNLMS algorithm Can be rewritten in vector-matrix notation as 
follows: 

2aL 
~(k + l)L] ::::: :!i,[kL] + -L 2X[kL]!:r[kLj. 

t7:r; 
(2.17) 

The number of multiplications and divisions needed to produce L out­
put samples js jn the order of L . 2N and L respectively. To produce 
one new output sample tbis results in: 

MULBNLMS 

DIVBNLMs 

2.3 Dynamic Behaviour 

2N 

1. (2_18) 

In order to gain more insight into the performance of the BNLMS 
algorjthm~ this section gives an analysis of this algorithm when a small 
adaptation constant aL is used. A more general analysis is given in 
appendix A. 

By using the difference vector .d[kL] = YLopt -w[kL] and rewriting the 
residual vector as: 

t£[kL] = i[kL].d[kL] + §..L[kL] (2_19) 

:tl 



with .4[kL] = (s[kL - L + IJ,"', .~[kL - 1], s[kL])t the BNLMS update 
equation (2.17) call b~ written as follows: 

( 
2nL t) 20'L d[(k+ 1)L] = 1--
1 

2X[kL]X [kLJ Q[kLJ- -2 X[kL]§dkL]. (2.20) 
.. 17", LI7., 

The analysis of various algorit.hms is performed by treating the adaptive 
weight vector :¥L[kL], a.nd the difference vector 4[kL] as random vec­
tors. The analysis is complica.ted by the fact tha.t, during adaptation, 
the residual signal rdkLL and therefore t.h~ vectors w[(k + 1 )L] and 
!i[ (k + 1) L], are nOllstat. iOllarYj even if the sigllab X and s are statioIl­
ary. Accordingly, quantities of interest, slIch as the mean-squared error 
J[kL] = iE{:d;,[kLlrdkL]} are fUllctions of tht> number of iterations 
k. 

First the average behaviour of the difference vector d[kL] is studied as a 
function of k. By using the assumptions that signal x is independent of 
Sj and using E{.s[k]} == OJ the above update equation can be rewritten 
as; 

2C1'r 
E{g[(k+ l)L]} = E{(I- -L zx[kL]yt[kL]) .g[kL]}. 

0'., 
(2.21 ) 

In this equation Ol)t' call observe two different proceSS~5, with different 
time constant j as a fUWtioll of time: the illput signal (in matrix X[kLJ) 
and the adaptive w~ights (in vector d[k:!.J). Since the adaptation con­
stant 0:£ is assumed to be small, the variation ill !i[k!] is much slower in 
comparison to the varia.tion in matrix X[kL]. The input signal m3trix 
xlkL) and the ditTt>rf:ncc vector 4[kL] may be ~epa.rated under E{·}j 
and for this reason the above difference equation is approximated as 
follows: 

E{4[(k + 1 )L]} ~ (I - 2La~ E{X[kL]xt[kL]}). E{d[kLj}, 
u", 

(2.22) 

Using the definition of the input signal matrix X[kL] and the autocor­
relation matrix R it follows that 

(2.23) 



from which it follows that the above equation can be rewritten as: 

E{d,{(k + I)L]} ~ (I - 2~2L R)E{.d[kL]). 
a~ 

(2.24) 

When the input signal is a non-white signal, the autocorrelation matrix 
R also contains elements unequal to zero outside the main diagonal. 
For such cases it follows that all elements of the vector E{4{(k + I )LJ} 
are interleaved. To overcome this problem both sides of this equation 
can be transformed as follows: 

E{D[(k + 1 )L]} = (I - 20:2L A)E{D[kL]) 
(Til' 

(2.25) 

with: 

D[kLJ Qh4[kL] = Qh(~pt - Yi.{kL]) 

= lYopt - W[kL]. (2.26) 

Since A is diagonal the above set contains N uncoupled difference equa­
tions that can be solved separately. Using the initial vector (that is no 
random varia.ble) E{D[O]} ~ :WOpt - W[o] = D[01 this results for 
t = 0,1, ... , N - 1 in: 

(2.27) 

Or equivalently: 

E{WdkL]} == (1 - (1 - 2a:L);d') Wopt,l + (l - 2O:LX1)"WI[Oj (2.28) 

with the relative eigenvalue II '= Ada;. From this equa.tion it follows 
that the average behavior of the vedor E{Q{kL]} converges to zero, 
or equivalently E{W[kLj} converges to Wopb for k -+ 00, provided 
that the following condition is satisfied: 

I 
O<I)L<~ 

"max 
(2.29) 

where Xmax is the largest relative eigenvalue of the autocorrelation ma­
trix R- An example of both the a.verage and instantaneous convergence 
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Figure 2.3: A veragc and instantannms behaviour of a single adaptive weight 
W 

behaviour of a single adaptive weight W[kL], with L = 1, is plotted in 
Fig. 2.3. The conclusion of this analysis i5 that when the number of 
iteratioIl5 k approaches infinity, provided that the adaptation constant 
(Y,L is set within bounds defined by equatioll (2.29), the average of the 
weight vector W,[kL] computed by the BNLMS algorithm converges to 
the unknown optimum \VieIH>r solution 1Yopt1 or equivalently w[kLJ 
converges to ~pt-

However this average convergence is not suffidellt as far as the algo­
rithm convergence is concerned. Therf~ is no gllarant!~e that the average 
will converge within finite variance. Hence, analysis of the second order 
statistics is required in order to gd marc insight into the cOIlvergence 
properties of the algorithm. 

As mentioned bdon> a quantity of int~rt.~st, describillg the convergence 
properties of an adaptive filter with N weight.s and using a block update 
mechanism, is the mean squared error of a block with L residual signal 
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samples: 

J[kL1 = IE{:d,[kL1r.r.[kL]} (2.30) 

with minimum: 

Jmin = J[kL]I~[kLl""~pt = ±E{~[kL]§L[kL]} == Q"~. (2.31) 

With signals x and s independent this quantity can be written as: 

J[kL] == ~ E{(l[kL]d[kL] + .h[kL]Y . (l[kL].d[kL] + ~[kL])} 

ZE{dt
[kL1x[kL]l[kL].d[kL]} + Jmin (2.32) 

The input signal matrix X[kL] and the difference vector g[kLJ may 
again be separated under E{·} for small adaptation constant o.L. Fur­
thermore by using E{X[kL]Xt[kL]} = L . R the a.bove expression ca.n 
be approximated as: 

J[kL] ~ E{dt[kL]R.d[kL]} + Jmin = Jex[kL] + Jrnin (2.33) 

with Jex[kL] the excess mean-squared error. By using the unjtary 
transforma.tion Q this excess mean-squared error can be rewritten as: 

Jex[kL] = E{.dt[kL]QQ~RQQh.d[kL]} = E{Dh{kLJAD[kL]} 
N-l 

== E AIE{IDz[kL1I:l} = trace{A· A[kL]} (2.34) 
1",,0 

with: 
D.[kL] = E{D[kL]Dh[kL]}. {2.35} 

One of the quantities of interest: 

J[kL] :: J[kL]- Jmin = lex[kL] = Ef!:Ol Al E{IDz[kLJl
2
}. (2.36) 

lmin Jmin Q"~ 

This quantity is composed of a sum of product components AIE{IDdkL1Il} 
For this reaSOn an expression is derived for each component, by first 
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taking a closer look to 6.[kLJ- Transforming equation (2.20) wit.h the 
unitary matrix Q results in: 

Using a small adaptation constant or. it follows: 

6.[(k + 1 )L] ;; E{D[(k + l)L]It[(k + l)L]} 

E{ (I - ~:~ QhX[kLlxh[kL]Q) D[kL] 

.nh[kL] (I - ~:~ Qhx[kLlxh[kL]Q)} 

40: 2 

+ L· 2 L4 E{ QhX[kL]§.r,[kL]§~[kLJXh[kL]Q}.(2.38) 
17~ 

By using the assumptioll that the input signal (X) ;:l,uJ the difference 
vector (D) may be separ'ated under E{-}, and using the white noise 
assumption for signal s this equation c.an be approximated a.s follows: 

!.l.[(k + I)L] ~ ~[kLl - 2Ct
2
L A.6.[kL] - 2D:2L ~[kL]A 

(1:;: 17", 

4(l'l, 
+-L 4 J min A . 

O'~ 
(2.39) 

For one product component of the sum (2.;36) only the diagonal ele­
ments of the above matrix ~[kLl are n~eded. With the relative eigen­
value Xll one product component Call now be writtell a.s; 

2; 

'\/E{IDJ[(k+l)LW} = (1 - 40£11) .\IE{IDI[kLW}+4(~L"X~(T;. (2.40) 

Equations (2.36) and (2.40) fully describe the dynamic behavior of the 
BNLMS algorithm for small ada.ptation constant 0L- From equation 

(2.40) it is possible to calculate the contribution of ea.ch separate [th 
product component to the total quantity J[kL]. Two valuable expres­
siom; that can be derived from equation (2.40) arc: 
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• The final value, that is reached in steady state, given by: 

(2.41) 

• The number of samples needed for a decrease of the quantity 
A1E{ID,[kL]i2} by a factor e is given by the integer value that 
is closest to the number: 

(2.42) 

A small value for 1".1 implies fast adaptation. 

From these quantities the final misadjustment and the rate of conver­
gence of the adaptive filter can be derived as follows: 

Final Misadjustment: 

The final misadjustment J is defined as: 

J = lim (J[kLJ) = Jex[oo]. 
,.-~ Jmin 

(2.43) 

Using equation (2.41) and E~Ol XI = N this leads to: 

(2.44) 

Note that this quantity is independent of the input signal statistics. 

Rate of CQntJet~qenct: 

In general it is difficult to speak about lli rate of convergence of the 
whole process. After all it follows from equation (2.36) that the quan­
tity J[kL] is composed of a §.!!!!l of N product components AIE{[DdkLW} 
each having its own rate of convergence. Hence a "local" time constant 
j of the adaptive filter is defined as that time constant Tt for whidl the 
product component results ill the largest contribution to the quantity 
J[kL]. 



As mentioned in the introduction the quantity 1120 is used in this report. 
This qua.ntity gives the number of samples needed to reduce lOtog( J[OJ) 
by 20 dB, and thus 1/20 is also a composition of different Tl. Converting 
T, that gives the number of samples to reduce this logarithmic quantity 

by lOlog(e) dB, giv~s: 
20T 

VlO = --~ 
lOlog(e.) . 

(2.45) 

Convergence region: 

Until now it waS asslImed that the adaptation cousi.a.llt ar, was small. 
But what is sma.l!'? In ol'der to a.nswer this question ~ome knowledge 
must be available about the region of adaptation constants for which 
the ada.ptive filter still converges. For this an analysis is made of an 
adaptive filter without makillg the restriction of using a small adapta­
tion constant.. This analysis is givell ill App<>ndix A. In order to get 
an impression about this COli vergence area the results are summarized 
here. The conVel'g(·lI(,(~ region of the BNLMS algorithm is given by: 

1 N-l (\'LXI -1: 
L 1==0 1 - OL.\I 

1 
0< aL < --~­

Amax 

< 

2.4 Physical Interpretation 

(2-46) 

In order to interpret the results of the previous section in a physkat way, 
the Toeplitz,cil'culant approxim1l.tioll is used as discllsfled in Chapter 
1, With the autownelation functioll p[ 7 1 restricted to 

p[j] = 0 for 171 > 7max with Tmax <{: N (2.47) 

the excess mean-squared errol' of equati(lIl (2.33) can be rewritten as 

follows: 

(2.18) 
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In this equation is C the circula.nt extension of the Toeplitz autocorre­
lation matrix R as discussed in Chapter 1 (Section 1.3). The approxi­
mation (2.48) imposes the following restriction on the first and the last 
Tmax - 1 components of the difference vector d[kL]: 

(g[kL])i = 0 for { ~ E {OJ Ij'" j Tmax - 2} 
~ E {N - 1 - (Tmax - 2), ... , N - 2, N - I} 

(2.49) 
Note that this restriction becomes more and more true when the adap­
tation process continues, since E{4[kL]} _ 0 for k _ 00. The circu­
lant autocorrelation matrix can be diagonalized with the Fourier matrix 
F, and thus (2.48) can be rewritten as: 

Jex[kL] = E{.4t [kL]F-1FCF-1F4[kL]}::= ~E{Dh[kL]PD[kL]} 
1 N-l 

N I: l1E{IDdkLW}· (2.50) 
1_0 

In this equation the transformed difference vector is defined as D[kL] = 
F4[kL] and the diagonal power matrix is given by P = FCF-l. 

In conclusion, within the above mentioned restrictions on the autocor­
relation function (2.47) and the differnce vector (2.49), the results ofthe 
previous section can be physically interpreted by replacing the eigen" 
value '\, with the power 11 and the transformed difference vector D[kL} 
is the Fourier transformation (F) of the time domain difference vector 
4[kLJ. These interpretations will be used in the following section j when 
experiments are carried out. 

2.5 Experiments 

The analytical results of Section 2.3 are verified in this section by ex­
ploring the influence of different parameters on the convergence prop­
erties of the BNLMS algorithm. For the experiments the system as 
given in Fig. 1.7 is used, with a.n adaptive filter of length N :::;; 128. 
Two quantities of importance in the equations (2.36) and (2.40) are 
the eigenvalues Al and the tra.nsformed initial difference components 
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IDilOW == IWOpt,l- Wi [O1l2. In the previous section it was argued that, 
within the restrictions (2.47) and (2.49), in these equations the eigen­
vahH'~s .\1 may be replaced by the powers H and that the transformed 
difference vector is defined as D[kLJ = F4[kLj, with F the Fourier 
matrix. 

In these experiments three different input signals (random, ma( 1) and 
ar{l)) are used, from which the psdf are plotted in Fig. l.~L The 
"unknown" Wiener system is a low-pass filter, whose impulse response 
Wopt and the absol ute value of the freguellcy response are plotted in 
Fig. 2.4. In first instance, unless stated otherwise, an adaptation con­
stant O:L = 1/12800 is used, while the adaptive weights arc initialized 
in such a way that all ID1[0112 are equid. Signal s[k] is a white noise 
signal, independent of x[k]' with E{$2[k]} = J! = Jmio 1 that is chosen 
in such a way that 101og( ][0])=20 dB. 

In the next. subsection the parameters 0:£, L, the input signal x[k] 
and finally the initiali~ation of the adaptive filter coefficients are varied 
separately. 

2.5.1 Influence of adaptation constant O:L 

When using a white Iwise input signa..! x[k], the equatiolls for final 
misadjustl1lcnt and rate of cQllvergenc.e reduce to: 

(2.51) 

From these ~quil.tions it follows that by increasing the adapt.at.ion con­
stant Ctr, the adaptiv~ filter converg~s faster (1120 slllaller), but it oe­
comeS less accurate (7 larger L while der,reasi ng 0:£ leads to the opposite 
result. In order to show this, Fig. 2.5 gives the qua.ntity 10 log(.J[kLJ) 
as function of the discrete time index k. The first curve is plotted 
for L = 1 and (};L ::;:; Ct = 1/12800 resulting in 10Iog(J) == -20dB 
and VM :::;j 14720 sa.mples. The second curve gives the result when the 
a.daptation constant is doubled (1/12800 ---l- 1/6400). The final rnisad­
justmcnt is indeed 3dB (a factor 2) worse, while the rate of convergence 
is twice as fast (;=;j 7360 samples). The smooth lines are the analytical 
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Figure 2.5: 10 log(JeAkLJ!JminJ as function of Ihf' number of samplf'.s 

results from equ{l.t.iOlls (2.36) and (2.40), or equivalently the ensemble 
averages. The " noisi) Jines represent experimental results that arc 
single runs from the PCjDSP programs. 

Finally jt follows from the above eqllations (2.51) that by increasing 
the n11mber of adaptive nwffi<.ients N the filial misadjustment J will 
inU"ease) since more aud IlIOJ"(~ <l(litptive weight~ are fluctuating around 
their filial t>teady state value. Oil the other haud t.h~ initial rate of 
convergence 1/20 is !lOt. depending on N. 

2.5.2 Influence of block length L 

From equations (2 .. ,,)1) it follows that for a white noise input signal the 

adaptation constaut. Ur, ca.n be eliminat.ed as follows: 

(2.52) 

In Fig. 2.6 thjs theoretical function (lOlog(J)) it> plotted (solid line) 
a.,.,> a function of the rate of convergence (v2oL with QL as a parameter-
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The lower right part of the curve corresponds to very small a.dapta.tion 
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Figure 2.6: 10 log(J) as function of /J2D for different L 

constant (aL ---* 0). From (2.52) it follows that convergence properties 
are independent of the block length L. On the other hand from equation 
(2.46) it follows that the convergence region is dependent on L, and for 
white noise given by: 

L 
0< QL < Qmax = ~--L-' N+ (2-53) 

In Fig- 2-6 the ada.ptation constant aT.. is varied for different L in the 
range 0 < CiL < Qmax/2. The different nmaximumn points are indi· 
cated for L = ION, L = N) L = N/2 and L:::: 1. From this it follows 
that for large adaptation constant the NLMS algorithm outperforms 
the BNLMS algorithm. This algorithm is "too accurate\ and thus 
too slow in comparison to the NLMS algorithm. On the other hand 
a strong point of the BNLMS algorithm is that) for large L, it Can be 
implemented very efficiently in frequency domain, as will be shown in 
Chapter a_ 
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For different values of L measurements arc carried out with the PC/DSP 
programs, and the results are marked in Fig. 2.6 with different symbols. 
From these result,fl it follows that the deriVf)d theoretical results match 
reasonahly well with the ~~xperimentaJ n~~ults, even for large adaptation 
constant <l:L. An explanation for this may be as follows: 
The main assunlption for the <ulalyflis was a small adaptation constant, 
in order to be able to separate the input signal .r.[k] and the adaptive 
w!~igh1.s wdk]llnd!-'r E{-}- For brge adaptation constant the residual 
signal is decreasing very fast, resulting in a steady state final value of 
the adaptive w~ightf;, and again th~ above lllentiolled separation under 
E{·} may be applied. 

2.5.3 Influence of coloured input signal 

For this experiment three differellt input signals (white noise, ma( 1) 
and ar( 1)) arc used, as described in Chapter 1. The whi te lJOlse signal 
has a flat psdf, the ma( 1) signal has a psdf containing morc power at 
the higher frequencies, while the ar( 1) signal is chosen to have more 
power in the lowest frequencies. The Eigenvalue Ratio (E R) of these 
last two signaLs equa.ls 100, Tltet>e spectra are plotted in Fig. 1.9, The 
experimental results are plotted in Fig. 2,7. These results show that 
a larg~ EN of the illPut siglla.l Can indeed slow down the adaptation 
process in comparif;olJ to the white lIoise case [2GJ. But what is slow? 
Convergence of th~~ adapt.ivf' filter with all ar(l) or an ma(l} signal as 
input is initially fMt.er t.han llsi11g a white noise signal. As m~l1tioned 
in the introduction chapter, all signal modfds generate signals with 
nonnalized spectra. Thus both ar( 1) and ma( 1) signals have spectral 
values larger and smaller th,m the white lloise signal spectrum. The 
larger parts result in a faster initial rate of COllvergt~nceJ while t.he 
smaller part results iT) it slower rate of convcrgece at the end. From this 
and Fig. 2.7 it follows that even when applying different input signals, 
with equal E R, convergence properties of the BNLMS algorithm can 
differ. 
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Figure 2.7: Convergence of BNLMS algorithm with different input ,~ignals 

2.5.4 Initialization 

In many practical situations the adaptive weights are initialized with ze· 
ros. This implies that the initial difference vector is given by: ID1[OW ;:;;,: 
1W;0 t1 2

• In this experiment this "unknown" Wiener filter is a low­
pas~ function, as plotted in Fig. 2.4. The input signals that are used 
are the same as of the previous subsection. The results of this experi­
ment are plotted in Fig. 2.8. From these curves it follows that an input 
signal with a large E R can both slow down (111a( 1) signal) or speed up 
(ar{l) signal) the adaptat.ion process) in comparison to the white noise 
case. This depends on the "similarity" between the psdf of the input 
signal and the squared magnitude of the system function (smf) from 
the initial differellce vector. In this experiment the spectrum of the 
ar( 1) signal and the smf of the initial difference vector have much re­
semblance, since both have a "low-pass" character. This results in a 
fast rate of wnvel'geoce_ The ma(l) signal however has a "high-pass" 
character, which results in a. very slow a.daptation process. 
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2.6 Discussion 

In this chapter it is shown that, for small adaptation constant Ci.L, the 
BNLMS and NLMS algorithms have equal convergence properties. For 
large adaptation constant NLMS outperforms BNLMS. 

When denoting the number of multiplications and divisions needed to 
calculate one new output sample as a rough measure of comple::dty 
, the BNLMS and the NLMS algorithm have equal complexity. The 
BNLMS algorithm however can be implemented in frequency domain 
in an efficient way for large L, by using FFTs, which will be shown in 
the next chapter. 

The dynamic behaviour of the adaptive filter using the BNLMS al­
gorithm is fully described by equations (2.36) and (2-40)- From the 
discussion in Section 2.4 it follows that, within the restrictions (2-47) 
and (2.49), in these equations the eigenvalues )'Z may be approximated 
by the power PI and that D[kLl is the Fourier transformation of the 
difference vector d[kL]. With this the quantity E{IDdkLW} represents 
the smf of the difference vector_ 

From the equatiQIls and experimental results it follows that not only 
the ER of the input signal is important to descibe the convergence 
properties of the adaptive filter. It is shown that both the psdf of the 
input signal and its resemblance with the smf of the initial difference 
vector pla.y a.n important role too. 

In later chapters of this report some techniques are given to decorrelate 
the input signal by normalizing each component 1. This is done by di­
viding out the eigenvalue '\1, represented by the power P,. The result of 
this decorrelation is that convergence properties will equal the "white 
noise. c::ase" _ Or equivalently it will lead to an "average'J cOl1vergenc~ 
result of the adaptive filter, that is not dependent on the input signal 
statistics. Without this normalization convergence may be worse or 
better, depending both on the psdf of the input signal and the Tesem­
blance between this psdf and the smf of the initial difference vector. 
The conclusion is that when having enough a priori information about 
the input signal statistics and the unknown optimum Wiener filter, it 
may be better not to decorrelate the input signal, when both spectra 
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have much resemblance. This situation OCCurS ill the acoust.ic: echo 
canceller, where both the psclf of the input (speech) signal and the smf 
of the acoustic echo path have a j'low-pass" ch(l.n~der. On the other 
hand j when there is no re:semblance, or when the a priori knowledge 
a.bout the input signal statistics and/or the unknown optimum Wiener 
filter is not ava.ilahh~ ,decol'l'elation is a good" average" solution. 
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Chapter 3 

Efficient Implementation of 
BNLMS algorithm 

From the previous Chapter it follows that the two main operations 
in the BNLMS algorithm are: I) a linear convolution, to perform the 
filtering of the input signal with the adaptive weights, and 2) a linear 
correlation, to calculate an estimate of the gradient that is needed for 
the update of the adaptive weights. For large filter lengths N these 
operations can be carried out very efficiently in frequency domain by 
using Fast Fourier Transforms (FFTs) for the transformation between 
time- and frequency-domain [37]. Overlap-save and overlap-add are 
two weUknown techniques to convolve an infinite length input sequence 
(e.g. x[kJ) with a finite length impulse response (e.g. N adaptive 
weights wi[kL]). With these methods the infinite length input sequence 
is split into segments which are processed separately by applying block 
processing techniques. The desired signal is a composition of these 
separate signal. The way of splitting the input sequence and composing 
the desired result differs for both methods. 

In literature [9] it is asserted that, for complexity reasons, in adaptive 
filter (:onfigurations the overlap-save method is to be preferred to the 
overlap-add method. The lllain goal of this chapter is to I;:ontradict 
this statement [52}. It is shown that the only limitation of the overlap­
add method, used in adaptive filter configurations, is that the choice 
of the parameters is more restricted in comparison to the overlap-saVt~ 
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method. This bowever is a direct consequence of the way of proce~~jng 
in the overlap·wadd method. 

Both methods will be explained first. for fixed filter coefficients and 
after that for adaptive coefficients. All methods will be implemented 
efficiently in frequency domain by usil)g FFTs and block processing 
techniques. Sectioll :1.1 dE~scribes the overlap-save method for fixed fil­
ters. The results of t.his section arC used in Section 3.2 to derive an 
efficient implementation of the BNLMS algorithm for large filter length 
N. Sedioll 3.3 describes the ovcl'lap--add method for fixed- and adap­
tive filters. FoJ' a.daptive filters this method leads to it 1I10re complex 
result ill comparison to the overlap-save method. The reason for this 
is that during t.he cakubttiolls in the overlap-add method a. previously 
calculated result has to lw addf'd 1.0 the present one, while the adap­
tive weigbt~ haw~ changed ill the meanwhile. III Section 3.1 a method 
is given to implement the overlap-add method for adapt.ivE' filters in an 
efficient way. Applying this to the B N LMS algorithm leads to an effi­

cient implementa.tion of this algorithm with a complexity comparable 
to that of the overlap-save method. The chapter is cOllcluded with a 
discussion in Section 3.5. 

3.1 Overlap~save method for fixed filters 

This method is based on the partial convolution of a length B segment 
of the input signal x[k] and a h~llgth N weight vector w. With B = N-
1 + L this metlwd g(~neratcs L new output samples e[k] each step. This 
method can be implemellh~d with DFTs, or FFT::-: whcn B is a power of 
two: it is depicted for fixed filters ill Fig. 3.1. The in put signal x[ k] is 
split into segments of length B that have an overlap with the previous 
5egrneut of N - 1 samples. This segmentation with all overlap of input 
signal samples is carried out by the delay line and down samplers shown 
in the figure. The result is a It:ngth B vedaI' ~[/';Ll. Furthermore the 
length N weight vector ~ = (lON-i,"', 'Wo)t is first minored and than 
added with zeros to a vedm' of length B. The (cyclic) convoluti(lO is 
carried out in frequency domain by a multiplication of the tran~formcd 
weight vector by the tl'<tllsformed input sigD(l,\ vector. The re5Ul1. IS 
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Figure 3.1: Overlap-sa'/Je method for fixed filters implemented with FFTs 



transformed back to time domai n by an inverse FFT. Only L out of 
B samples from this cyclic convolution represent a linear convolution 
result. Titus N -} samples bitv~ to be diSC(l.rded, resulting in it length L 
vector ~[kLJ. The original sample rate is obtained by upsampling this 
vector with a factor Land desegmenting it into samples elk ~ L + 1], 
that is the output sigm:d of a. transposed dday lille. Applying this block 
processing techniquc j results in a proccssing delay of L samples (=L· T 
time lll1its). 

From Fig. 3.1 it follows that this method costs :.~ Fourier transforms. 
Note that one FFT is superfluous if the weights w are constant. When 
B is a power of two these can be implemented with FFTs. The com­
plexity of each FFT is roughly equal to flog( B) multiplications, with 
eacb complex lIlul1.iplic.atiOlI ~qlla.l to 4 real multiplications. In general 
B will not be equal to a power of two. FOI' simplicity reasons however 
it is assumed in this thesis that all DFTs can be implemented as FFTs. 
In due course tht~ exact l~~ngth of B can always be changed in such a 
way that it matches tlH~ nearest power of two. 

Furthermore it follows from Fig. :J.l that two complex-valued length 
B vectors have to be multiplit·J. Siuce Loth the input signal x[i:] al)d 
the weight vector ~ ar~ real, the I"('sulting vectors in frequency domain 
have symmetry properties and ()Illy half of tilt! frequency components 
have to be calculated. The number of real multiplications needed to 
calculate one new output sample with the implelllellLation of Fig. 3.1 
is roughly given by; 

i(3·4 . ~210g(B) + 48) __ ~ (:3. 2B~log(B) + 4B) . 
. (3.] ) 

L 2 L 

On the other hand when implementillg Fig. 3.1 with a transversal 
filter in time domain, each new output sample costs N real multiplica­
tions. Comparing these two complexity numbers shows that for large 
B (;;;;; N + L - 1) the overlap-save method, implemented with FFTs as 
depicted in Fig. :3.1, i:;; II)lIdl lIlore efficient. 
Note: 
In practical siLuatiom: not only the number of (real) multiplications is 
of importance wlwn realising an FFT for large B in (l. Digital Signal 

54 



Processor (DSP) or on a chip. Also the storage, needed for the inter­
nal butterfly results) must be counted) and incorporated in the eventual 
cost of the filter. However, as mentioned before in this thesis only the 
number of multiplications/divisions are counted. 

3.2 Overlap-save implementation of BNLl\ 

In this section the overlap-save method of the Section 3.1 is used to 
implement the BNLMS algorithm of Fig. 2.2. The result is depicted in 
Fig. 3.2. As inentioned before two main operations in the BNLMS al­
gorithm are the linear convolution j to perform the filtering of the input 
signal with the adaptive weights, and a linear correlation, to calculate 
the gradient estimation that is needed for the update of the adaptive 
weights. These operations are carried out in the blocks "CONVOLU­
TION" and l)CORRELATION" respectively in Fig- 3-2- The convo­
lution is a straightforward replica of Fig. 3.1, except for the return 
to the original sampllng rate. Here the signal elk] is segmented and 
down sampled in a lellgtb L vector h[kL1. The length L residual sig­
nal vector is given by tdkL1 ~ idkL1 - ~[kL}. The return to the 
original sampling rate is carried out by upsampling thls residual signal 
vector and applying this result to a transposed delay line, resulting in 
the delayed residual signal ilk - L + 11. Before calculating the corre­
lation between the residual signal vector U[kL] and the input signal 
vector X[kL], each element of tL[kL] is first multiplied by the adapta­
tion constant (2ad/(LO';). To correlate two signals is an equivalent 
operation as to a convolve two signals, except for an extra mirroring of 
the input signal. This mirroring is carried out in frequency domain by 
using the conjugate (*) operator. The result of the cyclic; convolution 
contains only N correct linear convolution values. This result has to 
be mirrored beca.use the ordering is chosen such that element zero of 
the vector w[kL] is 'Uw-dkL]. 

Again as a. rough mea.sure of complexity the number of real multipli­
cations and divisions, needed to produce one output sample, is used. 
For the efficient overlap-save implementation of the BNLMS algorithm 
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with 5 FFTs, as depicted in Fig. 3.2, these numbers are as follows: 

MULEF-BNLMS 

D IVEF-BNLMs 

~ e· 2B
2

10g(Z) + 2· 4B) 
1. (3.2) 

Note that this quantities give an order of magnitude and are not ment to 
be exact. For example the multiplication needed for the scaling, with the 
number 2c.r./ L(7; and the calculations needed for the estimate a! are not 
included. Comparing these complexity numbers with the complexity 
number of the BNLMS algorithm, equation (2.18), it follows that for 
large B (=.N + L - 1) the implementation as depicted in Fig. 3.2 is 
more efficient. 
Notes: 

• In Fig. 3.2 it is possible to combine the two mirror operations, one 
before and one after the updating of the adaptive weight vector, 
and leave them out. However in order to keep the separate imple" 
mentations of the convolution and correlation operations .visible, 
this has not been done here in the figure. 

• In contrast to the implementation in Fig. 2.2, here both the up· 
date and the filter use block processing techniques, resulting in a. 
processing delay of (L - 1) samples. The implementation of Fig. 
2.2 has no processing delaYJ since only the update of the adaptive 
weights uses block processing techniques. 

• The FFTs ca.n be implemented efficiently when B is a. power of 
two. For this reasOn N is generally chosen as a power of two, and 
B = 2N, resulting in L = N + 1 new samples for each itera.tion-

3.3 Overlap-add for fixed and adaptive 
filters 

The overlap-add method is based on the calculation of a complete 
convolution of a length L segment of the input signal x[k] and a length 
N weight vector w_ Each step generates L new output samples elk] . 
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The method for rixt~d filters, implemellted with FTTs and using block 
proce~sing teclllliques, is depicted in Fig. :3.:3 (ldt hand figure) with 
B = N + L - 1. The input signal x[kJ is split into segments of length 
L. After that the signal vector is down-sampled by a factor Land 
filled up with N - 1 zeros. The resulting vector is applied to an FFT 
of length B. The N length weight vector w is mirrored and added 
with L - 1 Zero:::. This length B vector irs transformed to frequency 
domain, resulting in the vector W. The ( cyclic) convolution is carried 
out in frequency domain by multiplication of these two transformed 
vectors_ The result ()f this mlllt.iplicat.ion is transformed ba.ck to time 
domain with an inverse FFT. III this way a n)mplete linear (~(mvolution 
between the lengtb L se-gment of the input sigmd a.nd the lengt.h N 
weight vector is calculated by a cyclic convolution. The desired linear 
convolution of the infinite length input signal and the length N weight 
vector is composed as follows: In each iteration k the last N - 1 samples 
of the previous i t.eration (J.: - 1) have to be added to the present result. 
This is done by first (circular) ~hifting over L samples then discarding 
the last L samples and after that adding L zeros, alld del3yiug over 
T;c, = L . T time units. Only L values are coned linea( convolution 
samples. For simplicity rea50U::: it will be assumed that all operations 
are such that only Ollt': addition is needed, as depicted in the right hand 
side of Fig. :3.3 . This leads to the condition: L ;;;: N - 1. 

The problem with the above melltioned method for adaptive filters is 
that the last addition is not allowed any mOre: After all, from iteration 
(k - 1) to k the adaptive weights have changed. The right hand side 
of Fig. 3.3 shows the overlap--add method when applied to filters with 
adaptive weight~. The input. signa.l vector, in frequency dOIIlain, is 
delayed. Both this d(~layed vector and th~ present frequency domain 
input signal vector are multipli(~d by the a.daptive weight vedor W[kL]. 
When a.pplying t.his procedure to the- implelllent(:ltion of the BNLMS 
algorithm the result is an imph~mentat.ion with 7 FFTs [8J. 

3.4 Efficient overlap-add method for ada}: 
tive filters 
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Figure 3.4: Efficient overlap-add method for adaptive filters 
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In this section it is shown that uSlng the overlap-add method for the 
BNLMS algorithm, implies a restriction in the choice of the parameters 
Nand L. After that an efficient implementa.tion is derived [52]. 

As mentioned before the BNLMS algorithm needs a convolution and a 
correlation. When applying the overlap-add method, as explained in 
the previous secion, the result of the convolution is a length L signa.l 
vector h[kL]. The only condition for the o,verlap-add method was: 
L ;:::: N - 1 in order to have only one addition of a segment with one 
previous segment. This length L vector h[kL] results in a length L 
residual vector !..LlkLJ, that is used to, calculate the needed correlation 
with the input signa1. The result of this correlation, that is an estimate 
of the gradient vector, must generate a length N vector. This leads to 
the choice L = N. 

On the other hand it is possible to combine, under certain restrictions, 
two FFTs of Fig. 3.3. The two windows, that throwaway the last 
L samples and augment this with L zeros, can be combined with the 
window after the addition point if L = N - 1. Furthermore the cyclic 
shift can easily be implemented in frequency domain, by multiplying 
each frequency component I by e-j (211'/B)Ll. By doing so the two FFTs 
can be combined to one FFT after the addition point, while the two 
multiplications with the adaptive weights can be performed after the 
addition point too. 

A compromise between the two above mentioned co,nditions can be 
found by segmenting the input signal in length N vectors and add 
these with N zero,s, thus B = 2N. The FFTs can still be combined 
in this way while moreover the cyclic shift in frequency domain is now 
given by (e-j,..)1 = (-1)1 for 1 ~ 0,···, N - 1. The only drawback 
of this choice is that every itera.tion one superfluous output sample is 
generated, but for large Nand L this does not causes a real problem_ 
This method is an efficient overlap-add implementation for adaptive 
filters as shown in Fig. 3.4. Note that in this figure the vector =.l is 
2N dimensional vector, from which the components are alternating 1 
and -1, defined as: 

-1 = (1 -1 1 -1 ... )t - ) " , ~ 
(3.3) 

This result can be used in a straightforwa.rd way to the BNLMS algo-
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rithm [52]' and leads to the implementation as depicted in Fig. 3.5; 
where 5 FFTs are used in stead of 7 FFTs. 

3.5 Discussion 

Efficient implementations of the BNLMS algorithm are given using 5 
FFTs for hoth the overlap-save and the overlap-add method. The 
used block processing technique results in an extra processing delay. 
At first instance it seems that, for adaptive filter configurations, the 
overiav-add method is more restricted in the choice of the parameters 
Land B in comparison to the overlap-save method. This however is a 
direct consequence of the overlap-add technique. It is shown t.hat, when 
using the overlap-add method for adaptive filters, a good compromise 
is found by using lengt.h N segln~J1ts of the input signal x[kJ and length 
B = 2N FFTs. In many practical situations the length of the FFT is 
chosen as B :::: 2N _ For tbis case it is shown that, in contrast to a 
statement in literature [9]' both overlap-save alld overlap-add can be 
implemented with five FFTs. On the other haud, when L is chosen 
mOre freely (such that B -# 2N), it is shown that the adaptive filter 
structure can not be implement.ed with the overlap-add method. 
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Chapter 4 

Frequency Domain Adaptive 
Filters 

In Chapter 2 it is showll that cUllvergen<;e properties of gradient-based 
adaptive methods in general, and LMS in particular, are dependent on 
the input signal statistics. Since many physical processes of interest, 
such as speech and special codes, are highly correlated) this has served 
as motivation for deri ving other methods of adaptive filt.ering which are 
not so sensitive to the input signal statistics. 

In this chapter adaptive filters are discussed of which the weights are 
adjusted independently. This is achieved by using an orthogonal trans" 
form that is performed wit.h a fixed preprocessing consisting of the Dis­
crete Fourier Transform (OFT) or the fast implementation of this: the 
Fast Fourier Transformat.ion FFT. Since the autocorrelation function 
and the psdf form a Fourier transform pair, decorrelatioll Ol,n be per­
formed in frequency domain. However, as a result of the cyclic nature 
of the DFT) perfect decorrela.tion will never be reached. 

In Section 4.1 it is t-ihown bow decorrelation can be performed in fre­
quency domain. This is done by choosing the adaptation constant for 
each frequency (.()mp01H~llt I equa.l to the overall adaptation constant 
divided by an estimate of the input power ~)f this frequency compo­
nent. Using this approach leads to the Frequency Domain Adaptive 
Filter (FDAF). II) Sedioll 4.2 it. is shown under which circumstance~ 
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and restrictions the normalization in frequency domain shows a close 
resemblance with the decorrelation of the input signal. Another moti­
va.tion for switching to frequency domain is the efficient implementa.tion 
of a convolution using FFTs when block processing is applied, as dis­
cussed in the previous chapter. This leads to the Block Frequency 
Domain Adaptive Filter (BFDAF) that is represented in section 4.3. 
This BFDAF approach tackles two problems simultanously: 

(a) Under the restrictions, as given in Section 2, convergence prop­
erties are made (almost) independent of input signal statistics by 
spectrum normalization. 

(b) Complexity is reduced, as proposed in the previous chapter, by 
implementing the convolution and correlation in frequency do­
main, with FFTs as transformation between time- and frequency 
domain. 

Roughly there are two variants of the BFDAF known in literature. 
The first one, containing five FFTs, is explained in Section 4.3. This 
structure was introduced in [9] as the constrained BFDAF, since it re­
quires a constraint in adjusting the frequency doma.in weights based 
on overlap-save sectioning. In [34] an unconstrained structure is in­
troduced by removing the window. This structure only needs three 
FFTs. The ma.in goal of the following sections is to get an insight into 
differences of convergence properties of these structures. For this rea­
son Section 4.4 gives an analysis of the BFDAF by using a generalized 
window function [51,501. As a result of this analysis it is shown that, 
under certain circumstances, an efficient window function can be used 
as introduced in [49,59]. Results of this analysis are supported by ex­
periments, given in Section 4.5. This chapter is closed with a short 
discussion in Section 4.6. 

4.1 Frequency Domain Adaptive Filter 

Applying the concept ofthe Frequency Domain Adaptive Filter (FDAF) 
[36] results, for the generic adaptive filter of Fig. 1.7, in a changing of 
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each of the components in amplitude and phase by the unknown op­
timum Wiener filter Wopt. These changes of each component can be 
estimated by an adaptive filter, that is implemented as a filter bank 
parallel to Wopt. By using the Fourier matrix F this FDAF concept 
can be derived by rewriting the output signal elk] of the transversal 
filter of Fig. 1. 7 as 

N-l 

elk] = E x[k - iJWi[kJ = ~t[k]· ~[k] 

= 2£t[k]F. F-l~[k] = ~ (F;K[k])t. (F"'~k]) 
1 1 #-1 
Nxt[k]. W~[k] == N E X,[k]Wt[k]. (4.1) 

1"",0 

Thus the estimate e [k] of the signal e[ k] can be rewritten as the above 
summation) with 

(Xo[k],···, XN_1[kj)t = F· ~[k] 

(Wo[l.~],···, WN _ 1!kj)' = F'" . w[kJ. (4.2) 

Multiplying both sides of the LMS updating algorithm with the matrix 
F" gives: 

F"'~[k + 1] = F"'~[k} + 2aF"K[kJr[k] (4.3) 

resulting in the following LMS algorithm that is implemented with one 
DFT: 

( 4.4) 

This principle is used in the FDAF that is depicted in Fig. 4.1. Note 
that the calculation of the output signal e [k] of the adaptive filter needs 
a factor IjN, This is accomplished in the figure by multiplying the 
residual signal r[k] by the scaled adaptation constant 2o:/N. 

With each new input sample the data slides one step down a delay 
line of length N, acting as a rectangular window) and a new FFT is 
computed. Each of the FFT outputs Xdk], with 1 = 0,1) ... ) N - 1, 
is associated with a specific frequency band. The FFT used in this 
manner can be considered 3S a means of implementing a bank of band­
pass filters uniformly spaced in frequeJlcy between zero and haJf the 
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Figure 4.1: Adaptive filter 'Using FDAF updating algorithm 
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sampling frequency. Note that because of the rectang1Jiar weighting of 
the input signal, each bandpass filter has a sin(x)/x character. The 
FFT outputs iu Fig. 4.1 are complex discrete functions of the sam­
pling index k. They are approximately un correlated with each other, 
being in different fr~quency bands- The frequency components arc not 
perfectly uncorrelated because the FFT band-pass fillers overlap some­
what, causing leakage of signal components from OIle band to another. 
For an exact descript.ion of this interbin dccorrclation we refer to [32] 
(part of B. Picinbono). These complex output signals of the FFT are 
weighted in Fig. 1.1 with complex adaptive weights Wt[k] to produce 
elk]. In fact these weights arc such that they "perform" an inverse 
Fourier transfmm since W"[k] =' F~)£.[k] = NF-1w[kJ. The N weights 
are updated in accordance to t.h~ transformed LMS algorithm as de­
scribed above. When dealing with real signals and impulse responses 
the adaptive weight vector W+[k] and the input signal vector X{k] have 
symmetry properties, which can be used to lower the computation load 
of the algorithm. 

Under certain circumstances, described in the next section, the conver­
gence of the above described transformed LMS update algorithm can 
be made independellt of the input signal statistics by normalizing each 
of the FFT outputs t.Q equal power levels. This result follows from the 
analysis of the average value of the transformed LMS algorithm (4-4)­
For this the residual signal dk] is first. rewritten as: 

(4.5) 

with 

rr[k] = F" . !i[k] == F~ (~Pt - w[k]) = ~)pt - WOrk]. (4.6) 

Assuming a small adaptation constant Q it follows that, as in Chapter 
2, the input signal and the adaptive weights may be separat~d under 
E{·}. Together with E{s{k]} ~ 0 it follows that avel'aging equation 
(4.4) reduces to: 
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Thus convergence of each separate component E{D;[k]} is dependent 
on the input signal statistics, that are given by the matrix kE{X·[k]Xt[k]}. 
Under the assumption that different frequency components are uncor­
related this matrix reduces to the diagonal matrix P as follows: 

~E{X"[k]Xt[k]} ~ diag{ ~E{IXo[k]12}, ... , ~E{IXN-dkW}} 
== diug{Po,'" j PN~l} = P. (4.8) 

Note that here the same approximation is applied as mentioned in the 
Chapter 1, where the symmetric circula.nt autocorrelation matrix C 
is constructed from the Toeplitz autocorrelation matrix R. Since the 
circulant matrix C ca.n he diagonalized by the Fourier matrix F as 
follows: 

~E{X·[k}xt[kn === ~F" E{~[k]t$t[k]}F = F-1RF 

~ F-1CF = P. (4.9) 

Thus normalizing each of the FFT outputs with F1 for I = 0,1 j ••• j N-1 
to equal power levels makes the convergence properties independent of 
the input signal statistics. This results in the Frequency Domain Adap­
tive Filter (FDAF) that is given by the following updating equation: 

W·[k + 11 = W"[k} + 2ap~lX·[k]r[k] (4.10) 

a.nd the update scheme is depicted in Fig. 4.1. 
Finally this section is concluded with some genera.l comments: 

• Counting as a. rough measure for complexity the number of real 
multiplications and divisions, results for the FDAF algorithm in 
the following numbers: 

MUL FDAF 

DIVFDAF 

~ ~ (2N~log(N) + 4N) 
1 

::::; -.4N 2 . (4.11 ) 

• From the update equation (4.10) it follows that in average the 
final value is a transformed version of the optimal Wiener solution, 
namely 

(4.12) 
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• The power levels for I :;:::: 0, ... , N - 1 can be estimated by expo­
nential time averaging as follows: 

In [51,50] a detailed analysis is given of the influence of this es" 
tima.tion scheme on the convergence properties of the frequency 
dmnain adaptive filler . 

• SiIlce the update scheme needs the inverse of H, it may be usefull 
to search for estimators for this inverse function. This is equivalent 
to the approach as used in the Recursive Least Squa.re (RLS) 
method that will be shortly discussed in Chapter G. 

4~2 Decorrelation conditions for the FDA: 
algorithm 

As mentioned in the introduction of this chapter, perfect decorrcla­
tion can {leVer be reached by the power normalization of each separate 
frequency component because of the cyclic nature of the DFT. This 
section describes two conditions under which the power normalization 
acts as a reasonable approximation for the desired decorrelation of the 
input signal of the iida.ptive filter. 

The first condition is a direct consequence of the Toeplitz-dr<:ulant 
matrix approximation as discussed in Chapter I. A restriction for this 
approximation was that the autocorrelation function p[r] has negligible 
values for Tmax greater than half the length of the Fourier transforma­
tion. For the FDAF this results in; 

!Tmax! < Nj2. (4.14) 

A diTect consequence of this condition is that the closer the poles of a 
signal model lie to the unit circle, the larger the DFT length has to be 
chosen ill order to enable decan-elation such an input signal. 

The second condition is mainly due to the fact that the inverse value 
of the power spectrum (1/ PI) is needed in the update equation. This 
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causes problems for input signals that can be modelled with zeros very 
dose to the unit circle. In order to be able to give a quantative measure 
of the second condition j the impact of the DFT length N on the power 
normalization is analysed. In the FDAF algorithm the psdf 

• aJ. <;D 

P(e1') == E p[r)e-J'T' = prO] + 2 I: plr] cos(rO) (4.15) 
.,.=1 

is estimated, and normalized, at frequency ON . I = (2)'1"/ N) . I with the 
function: 

(4.16) 

Transforming this equation to time domain results in an expression for 
the cyclic estimate p of the autocorrelation function p. Namely for 
T = 0, Ij'" j N - 1 : 

( 4.17) 

from which two error sources in the estimation of Ii are evident: 

(a) Basing the estimate on N samples introduces a bias that results 
in a windowing effect :::} Nii,,". 

(b) Sampling the power spectral density function P( aiB) results in a 
periodic repetition of the function p with period N =? N.-p[N - T]. 

Ideally the power normalization of the FDAF algorithm implies that 
all power levels of the input signal are reduced to 1, and hence the 
convergence properties for an adaptive weights become equal. Now the 
Power Decrease Ratio (P DR) [57] is defined as: 

(4.18) 

This function eva.luates for frequency component I how far the original 
power P( ~9) IS",SNI is decreased Or increased to 1 by the power normal­
ization as applied in the FDAF algorithm with 1/ p,. 
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For the ma( 1) ami ar( I) models, a:s described ill ch(\.pt~r 1, this P D R 
function is evaluated as: 

PDRMA,I = 
I + a2 + 2a cos( ONt) 

I + a2 + 2?N1 cos( ONE) 
(4-19) 

l-a2 

PDRAR,I = 
1 + 2 r:;~=-/ N ;..,- a lTI cos( ONir r 

In Fig. 1.2 these functions are plotted with (l = O_H1R2 (:=;.- ER =:; 100) 
for different N _ Fr01l1 the:se figures it follows: the larger the DFT 
length, the better the pOWE"'1' spedral normalization. It also follows 
from this figure that for small value~ of N the PDR is reasonable flat 
for a. signa.l model with a pole (ar( 1)). For this model P D H ~ 0_9 for 
N = 32. To increase this value further from 0.9 to 1 a OFT of infinite 
length is needed. Furthermore it follows that the PDR, with N = 32, 
for signal models with a spectral zero (ma(l)) is equalized to 1 for 
N = 32 over a large spectral range) except the spectral range near the 
spectral zero. In order to increase this spectral zerO further from 0.4 to 
I, a DFT of iufillite length is needed. In many practical Ci:l.~eS however 
this OFT length can be restrided for the folowing two reasons: The 
approximation of the decorrelation by the power normalization needs 
not to be perfect, while moreover this approximation needs not to be 
that good for the whole frequency range. It follows from Fig_ 4.2 that 
the ma( 1) signal can be decorrE"'latE"'d reasonably well when the unknown 
optimal Wiener filter has a low-pass character. The ar(I) signal can 
be decorrelated satisfactory for large enough N as long as Irmax I < 
N /2, "independent" of the frequency response of the lInkllown optimal 
Wiener solution. 

In conclusion it follows that ill general frequency dOll1aill adaptive fil­
ters can dccorrelate an input signal acceptably well by normalizing each 
separate frequency component by its power spectrum when the follow­
ing decorrelation conditions arc satisfied: 
For ar~signal models (~lu:clml poles): 
The autocorrelation function p[rJ of the input signal must be restrid.ed 
by: 

b"Inax I < N /2 (4.20) 
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Figure 4.2: PDR for ma(l) (top) and ar(l) for different DFT length N 
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For rna-signal models (spectral zeros): 
The length of the DFT IIlust be such that the power decrease ratio, 
that is defined as 

PDR
1 

= P(el
9
)1'",9N I (4.21) 

F1 
is reasonably equalized to 1 in the frequency range that is of importance 
for the unknown optimum Wiener system. 
These results are verified by experiments described in Section 4.5. 

4.3 Block Frequency Domain Adaptive 
Filter 

Implementing the BNLMS update equation in fr~quency domain, as 
described in Chapter 3, and pel'formiIlg the power normalization as dis­
cussed in th~ previous sections leads to the Block Frequency Domain 
Adaptive Filter (BFDAF). This structure is derived in the present sec­
tion. The first step is to describe the overlap-save implementation of 
the BLMS update algorithm, as depicted in Fig. 3.2 (without power 
normalization), in mathematical forms. The second step is to determine 
the update not in time, but in frequency domain. The last step is to 
make the convergence properties illdependent of input signal statistics 
by power llormalization, as described in the previous sections. 

The update equation of th~ ELMS algorithm is given by: 

with 

w[kLJ 
!:L[kL] 

X[kL] 
~[kL - i] 

2a 
w[(k + I )L] =:: Y{[kLJ + TX[kLJrdkL] (4.22) 

(wN-dkLJ,···, wdkL], wo[kL])t (4.23) 

(r[kL - L + IJ,···, t'[kL - I], r[kLW 
(x[kL - L + 1],." ,x[kL - Ij,x[kL]) 

:::: (;r[kL - i - N + 11,·· ·,x[kL - i - l],x[kL - iDt 

In Fig. 3.2 this algorithm i~ calculated by using a cyclic correlation 
that is performed in frequency domain. With B = N + L - 1 first the 
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B x B matrix XC[kL] is defined as the I-circulant expansion of the N xL 
mirrored matrix I N . X[kLJ. This is done by putting I N • X[kL] in the 
upper right corner of X"[kL] and filling in the missing elements in such 
a way tha.t xe[kL] becomes I-circulant. By doing this, the following 
relationship is obvious: 

(IN 0). x"[kL] . ( I~ ) = I N • X[kL]. (4.24) 

Noticing that I N ·IN = IN the mirror matrix I N can be placed at the 
left-hand side of this formula. With this the above update equation 
can be written as: 

w[(k+ 1)L] ;;;: w[kL] + 2~ I N (IN 0). Xe[kL]· ( ~ ) tr,[kL]. (4.25) 

The I-circulant matrix can be diagonalized as follows: 

with 

X*[kL) :=:: (X~[kL], X;[kLL"· ,Xs_1 [kL))' = F'"· :&B[kL]. (4.27) 

Thus by multipying both sides oHhe I-circulant matrix X':[kL] in equa­
tion (4.24) with the B X B identity matrix Ia == F-1 

• F, the update 
equation (4.22) can be written as follows: 

w[(k + l)L] = ~[kL] + 2; I N (IN 0) F-tX*[kL]R'[kL] (4.28) 

with 

R'[kL] ;:;;; F ( ~ ) !L[kL]. 

Note that with the assumption 

~E{Xt[kL]Xni[kL]} = { :x, for l:;;:: m 
elsewhere 

it follows that the followiug relationship holds: 

(4.29) 

( 4.30) 

~E{X*[kL]xtlkL]} = ~E{X"'[kLJX[kLn == P. (4.31) 



Hence it is allowed to use a diagonal matrix notation X[kL] = diag{X[kL 
in formulas, and a vector notation X[kLJ in figures. 

For the second step of this section update equation (4.28) has to be 
described as if it. was implemented after the second mirroring and win­
dowing of Fig. 3.2. This can be done by multiplying both sides of the 

a.bove updat.e equation with (I; ) J N. Noticing furthermore that 

I N • Jrv == IN and by defining the window 

(4.32) 

this results in 

( I; ) JNw[(k + 1)LI ;;= ( I; ) JNw[kL] + 2; gF-1X~[kL]RI[kL]. 
(4.33) 

Now this update equation will be implemented in frequency domain. 
This can be done by mult.iplying both sides of the la.st update equation 
with the Fourier matrix F, ref:lulting in the following equa.tion: 

2 
W[(k + 1 )LJ = W[kL] + ~GX~[kL]RI[kL] (4.34) 

with 

( 4.35) 

This equation describes the BLMS update algorithm, implemented ef­
ficiently in frequency domain. The update part is depicted iu Fig. 4.3. 
In order to make the convergence properties independent of the input 
signal statistics, the last step of this section is to use the same power 
norma.lizat.ion as used in the previous sections- The result of this is the 
Block Frequency Domain Adaptive Filter (BFDAF), from which the 
update equation is given by 

l£[(k + 1 )L] ~ W[kLJ + 2Z GP-1X·[kL]B/[kL] (4_36) 
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Figure 4.3: Update part of efficient BLMS algorithm implemented in Ire. 
quency domain 

An implementation of this algorithm is depicted in Fig. 4.4. Note that 
in this figure the power normalization is performed with the vector p-l 
that is defined as: 

(4.37) 

As mentioned in the introduction of this chapter, there are roughly two 
variants of the BFDAF known in literature. The first one is explained 
in this section with 5 FFTs. This structure was introduced in [91 as 
the constrained BFDAF, since it requires a constraint (window g) in 
adjusting the frequency domain weights based on overlap-save section­
ing. In [34J an unconstrained structure is introduced by removing the 
window g. This structure is less complex. since it requires only 3 FFTs. 
As a measure for complexity the number of real multiplications and 
divisions is used needed to calculate one output sample: 

2
1 ((3 + 2win) . 2B2

L
log(B) + 2· 4B)) 

MULBFDAF 

1 48 
DIVBFDAF ~ 2 L (4.38) 

with B == N + L - 1 and the processing delay L ;?: 1. Above that the 
parameter win is used to denote the difference in complexity between 
the unconstrained (win == 0) and constrained (win::;; 1) approach. 
Notes: 
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Figure 4.4: Adaptive filter using BF DA F update algorithm 



• It is known from literature that an FFT can be implemented most 
efficiently when the length B is a power of two [37J. In many 
practic;:al cases this is done by choosing N as a power of two and 
L = N + 1. This results in B = 2N. Another possibility is 
to choose N in stead of N - 1 samples of the previous segment, 
and choosing L = N. The number of output samples is now 
L + 1 =' N + 1, from which the first sample is already calculated 
in the previous iteration . 

• The FDAF of section 1 is, of course, a special case of the BFDAF 
with L = 1. This can be shown as follows: 
For L ;;; 1 the BFDAF update equation (4.36) reduces to: 

(4.39) 

with g = (1, e-j~(N-l), ... , e-j~(N-l)(N-l)}t. This vector is the 

frequency domain equivalent of a time domain cyclic shift J"il. By 
multiplying both sides of the above update equation, in time do.­
main, with the operator J}v this cyclic shift Can be made undone. 
Furthermore with FJww[k] = W[k1, and thus with FJk.!l.[kj = 
W~[kL this update equation reduces to the FDAF update equa­
tion (4.10). 

4.4 Analysis of the BFDAF algorithm 

In order to get an insight into differences of convergence properties 
of the constrained and unconstra.ined structure this section gives an 
analysis of the BFDAF as proposed in the previous section. In this 
analysis it is assumed that the power matrix P is constant. In refer­
ences [51;50] a more detailed analysis is given when the exponential 
power spectral estimation scheme of equation (4.13) is used. Further­
more the a.nalysis of this section uses a generalized window function 
g == diag{go,'" , 9B-l}' For the constrained struct.ure this window is 
defined as g = gcon with 

(4.40) 
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!!'[kLl 

while for the unconstrained structure this window is a through connec­
tion and is defined as g ;: gune :;:;:: lB. Note that the definition of the 
transformed adaptive weight vector as 

W[kL] = F ( I; ) J N~[kL] (4.41) 

only holds for the constrained window function gcou. A more general 
t.rQ.nsformed adaptive weight vector is defined as: 

(4.42) 

will be used for the analysis. Furthermore it is assumed that both 
dccorrelation conditions, as described in Section 4.2, are satisfied 

For analytical purposes the update scheme of F1g. 4.4 lS modified. This 
lS done hy plac.ing t.h~ inv~rse FFT and window, needed to produce 
h[kL], after the addition point. This part is depicted 111 Fig. 4.5. By 

-gkL] 

~ 
N-l ~ 

window v 

Figure 4.5: Modification of BFDAF update scheme JOT aualytical purposes 

doing 50 the residui\.l transformed vector R[kLJ can be written as; 

R[kL] = X[kL]D[kLJ + ~[kLl 
D[kL] ~pt -W[kL] 

~Pt F ( I; ) JN~pt (4.43) 

5.[kL] F§s[kL] 
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With these notations it is obvious to write 

R/[kL) = F ( I: ) . (OIL) F-1R{kL]_ (4-44) 

With the window function 

v = ( I~ ) . (OIL) and V = FvF- 1 (4.45) 

this transformed and windowed residual vector can be rewritte as: 

R'[kLJ == VR[kL). (4.46) 

Now update equation (4.36) can be rewritten as: 

W[(k + l)L} = W[kL} + 2;GP-1X*[kL}VR[kL} (4.47) 

or equivalently, the update equation for the difference vector D[kL] is 
given by: 

D[(k+l)L} :;::: (1- 2;GP-1X"[kL1VX[kLl) ·D[kL] 

-2; GP-tX-[kL1VSjkLj. (4.48) 

As in chapter 2, the a.nalysis is performed in two steps. First the average 
behaviour of the difference vector D[kL) is studied; and after that the 
mean squared error of a block with L residual samples is analysed. 
Both steps use the assumptions that signal :l: is independent of signal 
B; and that the adaptation constant is small. With these assumptions 
the average behaviour of the difference vector D[kL] is given by: 

E{D[(k + l)L]} :=:: (I - 2; GP-l E{X'" [kL]VX[kL]) ) . E{D[kLl}. 

(4.49) 
Since the different frequency components are assumed to be mutu­
ally uncorrelated, the calculation of the ($; t) th element of the matrix 
E{X~[kL1VX[kL]} is given by: 

(E{X*[kL]VX[kL]) )~,e E{X;[kLJXt[kL]} . (V)~lt 

~ {B. P.(V).,. if s = t (4.50) 
~ 0 elsewhere. 
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The definition of the window function v is such that 

a.nd with this 

1 B-l L 
(V) :::;:: - 'X""" v' = -~.~ B ~ I B 

1=0 

E{X"[kL]VX[kL]} ~ J.p-

Thus the above difference equation reduces to: 

E{D[(k + l)L]} ~ (I - 2aG) E{D[A:L]} 

or equiv31eIltly 

E{W[(k + 1 )L]} ~ (I - 2nG) E{W[kL]} + 2aG:w.opt, 

(4.51) 

( 4.52) 

(4.53) 

( 4_54) 

By using the definition of w.opb as given in equation (4.43), and with 

wl[kLJ = (WB_l[kLl, .. ·,UJ~[kL],w~(kL])t and W[kLJ = FJB»::'[kLJ 
t.he above equation can be rewritten as: 

JBEb~l(k + 1)LJ ~ (I - 2ag)JBE{w' [kL]) + 2ag ( I; ) JN~pt-
( 4.55) 

From this it follows that, illdepelldent of the willdow function g, the 
adaptive weight vector converges in average to the optimum Wiener 
solution as follows: 

( 4.56) 

under the condition that the adaptation constant 0: is chosen ill the 

average convergence area: 

1 
0<0: < -- with f!max;; max{go,'" ,f!M-l}· 

Ymax 
(4.57) 

As mentioIled in Chapter 2 the second quantity of interest is .J[kL] = 

Jex[kLl/o-; with 

(4_58) 
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from which the difference signal is defined as 

~r.,[kL] - h[kLJ ",. (0 h) F-1X[kL]D[kL]. (4.59) 

With this, Jex[kL] can be rewritten as 

Jex{kL] = z.E{Dh[kL]Xh[kL](F-1
)" (OIL t . 

. (OIL) F-1X[kL]I![kL]} 

~ ;L E{Dh[kL]E{X" [kL]VX[kL]}D(kL]} 

~ ~E{D.h[kL]PLl[kL]} = 1trace{P,6,[kL]} (4.60) 

with ,6,[kL] = E{D[kL]]2h[kL]}. Furthermore by defining the trans­
formed difference vector as D[kL] = F . .d.[kL] with the time-domain 
difference vector given by: 

4[kL] = (( I; ) J1'dYopt - JsW/[kL]) . (4.61) 

The qua.ntity Jex[kL] can also be expressed in time-domain as follows: 

Jex[kL]::: ~E{gt[kL] (FhpF) .d.[kLl} ;:::: trace{C6[kL]} (4.62) 

with the I-circulant autocorrelation matrix C and the matrix b'[kL] 
defined as: 

C = F-1pF and F[kL] = E{.d.[kL].dt[kL]}. (4.63) 

First an expression is given for .6.[kL] by using equation (4.48). For 
small adaptation constant this leads to: 

6[(k + l)L] ~ 6.[kL] - 2; GP-l E{X"[kL1VX[kL]}~[kL] 

_ 2a 6.[kL] E{X'"[kL]VhX[kL]}P-l Gh 
L 

40:2-+ L'l GP-l E1P-1Gh (4.64) 
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with 
E1 = E{X*[kLjV E{S-[kL].s.h[kL]} yhX[kLj}. (4-65) 

Since s is assumed to be a white Iloise signal it follows that 

(4.66) 

Together with the following quantities 

E{X~[l.;LjVX[kL]} ;;; E{X~[kLjyhX[l:L]} == LP 

E{X·[kLjVVhX[kL]} = LP (4.67) 

the above difTen~llce equation reduces to: 

~[(k~ + 1 )Lj = .6.[kL]- 2nG~[kLJ - 206.[kL]Gh 

+4 ~ (J~a2Gp-lGh. (4.68) 

With .6.(kLJ = Fo[I.:L]F" and F-lp-lF = C-1 this equation is trans­
formed bac:k to time domain as: 

40: 2 

o[{k + l}LJ = 6[1.:[,]- 2ag5[kL]- 2ao[kL]s + TO';gC-1g. (4_69) 

This equation is analysed for different window functions in the next 
Sll bsections. 

4.4.1 Unconstrained window function 

The window fUllction is now defined as g = gUIle = IB and with this 
the difference equcttioll (4 .G~)) l'f'duces to: 

With this the quantity of interest J[kL] can be expressed with the 
following difference equation: 

J[kLJ = trace{ C5[kL]} = (I _ 4cr)J[kL] + 402 B. (4.71) 
(7; L 
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From this equation it follows that convergence properties of the uncon­
strained BFDAF (3 FFTs) are independent of the input signal statis­
tics. The rate of convergence /.131;1 and the final misadjustment J are 
given by 

1.15 - B 
1120 ~ --L and J::::: a-

Ct L· ( 4.72) 

Comparison these results wit.h the convergence properties of the BNLMS 
a.lgorithm (2.45), that uses a white noise input signal, shows that both 
a.lgorithms have the same rate of convergence 1I20. On the other hand 
for the unconstrained BFDAF algorithm B (= N + L - 1) adaptive 
weights are fluctuating around their final value, while these are only 
N coefficients in the BNLMS case. For this reason the final misadjust­
ment J of the unconstrained BFDAF is a factor B f N worse. In many 
practical situations, the processing delay L is choosen in the order of 
the number of adaptive weights (e.g. N + 1). For this situation the 
factor B/N equals 2 (=3dB). 

In conclusion it follows that the unconstrained BFDAF is capable to 
decorrelate a coloured input signal. The windowing, that is needed 
for a correct overlap-save convolutionf correlation, is performed by the 
adaptive filter itself at the cost of a factor B / N in al;curacy for the 
final misadjustment. Note finally that, of COurse; the two decoITelation 
conditions, as mentioned in Section 4.2; must be satisfied. For the 
unconstrained case this implies that 'imax < 8/2 = (N + L - 1)/2. 

4.4.2 Constrained window function 

The wiudow fUllction is llOW defined as: 

(4.73) 

When, as in many practical situations, the adaptive weights are initi­
ated with zerOS it is obvious tha.t the B X B matrix 5[kL] contains only 
elements different from zero in the upper left N x N corner. Thus with 
the N x N matrix 8'[kL], the B X B matrix 8[kL] ca.n be written as: 

5[kL] = ( I; ) o'[kLJ (IN 0). (4.74) 
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Substituting this in equation (4.69) and using the expression 

J[kL] = lrace{C8[kL]} 
0- 2 

~ 

this results in the fullQwillg difference equation: 

In this equatioll the t7-acer} can be rewrittell as: 

(4_75) 

(4.76) 

( 4.77) 

with the N X N l1liltrices C f and (C-1
)' defined as the N X N upper 

left. part of the B X B matrices C and C-l respectively, (Ienned as: 

c l (IN 0) C ( I; ) 

(C-1r = (IN 0) C-1 ( I; ) (4.78) 

From this eqllat,ioll It follows that the constrained BFDAF (5 FFTs) 
ha.5 t.he following convergence properties: 

- N (t7.ace{(C-1 )1. C1}) 
J~O:T' N . (4.79) 

Thus the contstrailled BFDA F has almost eqllitl COllVl"rgence properties 
a~ the BNLMS algoritillH) with a white noise input sigllaL The only 
difference is that the final misadjllstmetlt J contaills a deviation fact.or 

f that is defined as: 

f = tnlce{(C- 1 r . e l
}_ 

N 
( 4.80) 

In order to get some insight into the quantitative value of this factor 
the following table shows some results. In this table the factor f is 
calculated for N = 16, and for different L. Two different input signals 
(maO) and ar( 1)) with different Eigenvalue Ratios (ER) are given. 
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16 8 1 1.00 1.00 
10 1.04 1.04 

100 1.12 1.20 
1000 1.15 1.58 

16 16 1 1.00 1.00 
10 1.04 1.04 

100 1.13 1.21 
1000 1.18 1.62 

16 32 1 1.00 1.00 
10 1.04 1.04 
100 LI6 L22 

1000 1.23 1.69 

From this table it follows that in general the deviation factor f is dose 
to one. For large ER this is not correct any mare. By the ~sumption 
'Tma.x < B 12 the ER is restricted, a.nd thus the deviation factor may 
be approximated to 1, as long as ER is not too large (or Tmax < BI2). 
In [51] (p794 and 796) it Was argued that this devia.tion fa.ctor is in 
practice restricted to be smaller than 2. 

In conclusion it follows that the constrained BFDAF (5 FFTs) is, 
within the deoorrelation conditions of Section 4.2, able to deoorrelate 
a coloured input signal. The final misadjustment is, for ma.ny practi­
cal situations, a. factor BIN better in comparison to the unconstrained 
BFDAF (3FFTs). 

4.4.3 Efficient window function 

As mentioned in the previous subsections all B weights collverge to a 
final value with a ~ertain variance for the lln.:;:oostrained BFDAF. After 
convergence, B weights fluctuate and add to the final misadjustment, 
whereas only N weights are needed. In the constrained BFDAF this 
is brought about by forcing the last L - 1 weights to zero j so as to 
lower the final misadjustment by a factor BIN = (N + L ~ 1)IN, while 
maintaining the rate of convergence_ This is done by multiplication 

87 



in the t.ime domain by the function gCOJl, necessitating, however, the 
use of two extra FFTs in comparison to the unconstrained BFDAF. 
Lowering the final misadjustmcnt by the same amount in the uncon­
strained approach would reduce the rate of convergence by the same 
factor B! N. On the other hand, a direct convolution in t.he frequency 
domain, based on the transform of gcon, is very complicated. 

In order to dispense with these two extra FFTs, but obtain the same 
rate of convergence and fina.l misadjustment as with the constrained 
BFDAF, in [49,59] an BFDAF is proposf':d having a window function 
gcos in the loop that can easily be implemented in the frequency do­
mall). This window function is defin~d for i = 0,· .. , B-1 as 

1 1 27r 
(gcos)' ~ - + ~cos(~i) 

1 :2:l B (4.81 ) 

that. is transformed in the frequency domain to the matrix Gcos. This 
is an I-circulant tridiagonal Illi\.trix with 

B!2 fcn k= I 
B ! 4 for k == I ± 1 

(GCOSh"l = B!4 for k = 0 and l;:= B-1 
B!4 fnr k ~ B-1 and 1 ~ 0 
o elsewhere. 

(4.82) 

In many practical situations some a priori knowledge of the "unknown" 
Wiener system is preseut. Here it is assumed that the impulse response 
of this function is globally decaying function. Thus t.he coefficients are 
great.est at the beginning, tht> rate of convergence of an adaptive filter 
being largely determined by the ~peed at which the greatest coefficients 
converge. The window function gcos, a raised cosine function, will give 
these first coefficients the sa.me speed as gcon. When choosing in first 
instance L = N + 1 and thus B = 2N the sum of values of (gcOS)i and 
(gcon)i (Ire bolh equal to N, leading to the sa.me final misadjustment. 
In contrast to t.he window function gcon, the multiplication in the 
time domain with the diagonal matrix gcos can easily be implemenled 
in frequency doma;u by a simple cyclic convolution with the three com­
ponents of the tridiagonal I-cin:ulant matrix Gcos as sketched in Fig. 
4.6, The three components of Gcos are moreover powers of two, which 
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~ 

~ D//~ c{g t> 
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! L = N+l 

A N B 

I I N!2_ ... r 
Circulor Convolution 

Figure 4.6: Efficient imph:mwtation of raised cosine window function 

makes the few extra multiplications needed very simple. In conclusion 
it follows that for a global decaying Wiener system the given efficient 
BFDAF, with a raised cosine window gC05; has convergence properties 
of the constrained BFDAF and it can be implemented with the com­
plexity that is in the order of the unconstrained BFDAF (3FFTs). 

Notes: 

• For the mOre genera.l case B = N + L - 1 and L > N + 1 this 
technique can also be applied, but the gain can only be a factor 
two in stead of BIN . 

• In some pra.ctical cases it is better to use a shifted version of the 
raised cosine window function as described in [59]- Examples are a 
causal linear phase low or high pass filter; or an impulse response 
with a delay at the beginning. 

4.5 Experiments 

The main analytical results of the previous sections are verified in this 
section with experiments. For these experiments the system, as given 
in Fig. 1.7, is used. 
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4.5.1 FDAF (L = 1) 

In this experiment it is shown that the decorrelation properties of a fre" 
quency domain a.daptive filter a.re limited by the two main decorrelation 
conditions as described in Section 4.2. In order to do so an adaptive 
filter with N = 32 coefficients uses an FDAF algorithm (L = 1) with 
OFT length B = N + L - 1. The adaptive weights are initialized in 
such a way t.ha.t I DdOW is constant, and the adaptation constant is 
chosen as ('[ ~ 4.6/1000. The results of this experiment are given in 
Fig. 4.7 for an ma( 1) input signal and in Fig. 4.8 for an ar( 1) signal 
Both signals have an ER = 100 (~a = 0.8182). The function that is 

COIl vergence of mil( I) (ERtilOO) for diff~I"C'DI uri l~gLb a 
alpbll .. 4..6Ii (J(XJ 

!; ...• 1.~~1 ......... ~.m~(!L ...... . 
N '=32 ~ 

-~o ··········i············;·· 

.60 ...... . 

Figure 4.7: FDAF with ma(J) input signal for- differ-ent DFT length B 

plotted in these figures is: 

(4.83) 

From this function it is possible to measmC the devia.tion from the 
"ideal" rate of convergence 1/20 == 1.1.1 / cr. = 250 samplefl, that is reached 
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Convor,onco of ""I) (UR=IOO) for difforent OJ.f longth II 

: IIlplill ,.4.1511l)j:XJ 
..... .i ........ ~P.!!L ............ :.~m ... L ........... . 

! N' .. 32 .+ ........ '!" .... IP[QW2 

-
~ 
~ .50 ....... . 

l' oro '''''' "" c·,···,,· .,., j, ... , .. ,.,,, 

~ -70" ........... :.. . ... ,. . .. ,. 

j -90 ....... " .. , .. , , .. , ,., .. ,. . ... , .... , ....... . 

_IOOL..-~ .......... _'---_ ........ _'--_ ......... _""'-..:...._~jj",...~.o.A-~ 
o 200 400 600 800 1000 1200 1400 1600 1800 2000 

Figure 4.8; PDAP with ar-( 1) input signal /07' dijJC7'Cnt DFT length B 

when the input sigJlal is perfedly dec:orrebted. From the PDR func­
tions, plotted in Fig. 4.2, it follows that this ideal situation only occurs 
when the DFT length B approaches infinity. In the experiment this 
"ideal" situation is simulated by using an FDAF with a white noise 
input signal. Furthermore the situation with an DFT length B :;:;: 1 
is simulated with a the time domain adaptive filter using an NLMS 
update algorithm: No decorrelatioll taker:; place-

From the PDR function of the ma{l) signal, top figure of Fig. 4_2) it 
follows that an FDAF with B = 32 is capable to equalize the first part 
of the power spectrum to 1. The spectral zen) (at () :;::; 7() is, for this 
value of B, only increased to 0.4. In order to increase this level towards 
1, an OFT of length B --+ 00 is needed. From the experimental result 
of an FDAF with B = 32, a:o: plntted iII Fig_ 4_7, it follows that in first 
instance the rate of convergence equals the ideal one. Decreasing below 
-70 dB shows that indeed to decrease another 20 dB costs 250/0A ~ 600 
samples. 
On the other hand it followfl from the PD R. function of the al'( 1) signal, 
bottom figure of Fig. 1.2) that an FDAF with B = 32 is ca.pahle to 
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equalize the complete power spectrum to 0.9. In order to increase 
this level to 1, a DFT with a very large length is needed. From the 
experiment. with B = 32, as plotted in Fig. 4.8, it follows that for this 
tlit.u3.tion the rate of convergence l/20 is indeed in the order of 250/0.9 ~ 
280 samples. 

The conclusiolls of these experiments is tha.t. a. frequency domain adap­
tive filter can decor rei ate an input signal acceptably, when the two 
main decorrclation conditions of Section 4.2 arc satisfied. 

4.5.2 BFDAF 

In this experiment it is shown with N = 32 and L = 33 (---io B = 64), 
that the difference in final misadjustment between the constrained 
(5FFTs) and uHcollstrained BFOA F (3FFTs) is roughly a factor B / N = 
2 (=3 dB). Above that it is shown that the efficient cosine BFDAF 
(3FFTs) ha.s almost the sa.me convergence properties as the constrained 
BFDAF. Fig. 4.9 gives the results of this experiment. In this figure 

, : ! N! *32. 

······· •.•• · .• l ...• i··············i······ft-t·~··:f~~~: .. 
. . " ,. '; .................. : ......... : ........ L .. · .. ·· .. t· .. · .. ·· .. _· .. ···· 

! . . ~.. . ! I 

L : 

o .... . : . . i I • ••••• "1"" ••••.•.•• ,' •• ;- ..••• , ' •••...•• ~. , ••.•.•• , ••.•.• 1"' ., ....... ,' ···t·····, .. ,.""I~ , .. , 1111" 

-5 ...... .. I. "'1 '~ I" 

-10 

-15 , ... 

-20 . ..... ...... .. ..... 

. 25 L-------'-_.-L ................... j .... -.-.....,~; ----'-----'-:"' ---,-'-" ,-------:-'c,------"-:": 
o 0.2 0.4 0.6 o.g 1.2 1.4 1.8 

Figure 4.9: COlwe.rgwce of differ'ent BFDAFs 

92 



the function 10 .10 log( J[kL]) is plotted as a function of the number of 
input samples. The input signal is an ma(l) signal with ER = 100 
(--+ a = 0.8182). The unknown Wiener system is an exponential de­
caying function defined as: 

Wopt,.=(0.7)i for i:;:0,1,···,31. ( 4.84) 

Furthermore with (} = 0_3:1/32 the "ideal" results arc as follows: 

1)20 :=::=: 3680 

IO .10 log(J constr) ;;:::: -20 
10 I (~ ) 10 - og J unCOIlS ;:;::: -17 

10 -
~ -:W 10· log(Jcos ) ~ 

4.6 Discussion 

In this chapter it is shown that, wilhill the two main dccorre1ation 
conditions of Section 4-2, (~(lIIvergence properties of the BFDAF can 
be made independent of the input signal statistics by simple power 
normalization. Moreover complexity is reduced by implementing the 
convolution and correlation in frequency domaiu with FFTs as trans­
formation betweE'1l tiIlle- and frequency domain. 

The final misadjustm~nl of the constrained BFDAF (.)FFTs) is a factor 
B / N better ill compariS()Il to tlie unconstrained BFDAF (:3FFTs)- III 
many practical cases, Wh~ll from a priori knowkdgc it is known that 
the "unknown" Wiener system is a globally decaying function, then 
the cosine BFDAF (:3FF1\) i~ all E"fficient alternative, with convergence 
properties equal to the cOllstrailH"d BFDA F (5FFTs) and complexit.y 
equivalent to the llllwnstrained BFDAF (:3FFTs). 

Finally it is noted tl)(lt from literature [:37] it is knowll tha.t the power 
of a signal can he c.alculated by correlating the signal with itself using 
equivalent {lverlap save procedures in frequency dOI11a.in as mentioned 
in Chapter 3. Following this method in the givell BFDAF introduces 
an extra FFT in order to calculat.e the power ill a correct way. Thus 
although the estimate PI = :¥iE{XdkL] - X~[kL)} is not correct it is 
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shown in this chapter that for the BFDAF algorithm decorrelation 
can be performed in an acceptable way within the given decorrelation 
conditions. 

94 



Chapter 5 

Partitioned Frequency 
Domain Adaptive Filters 

The previous chapter gives an overview of some Frequency Domain 
Adaptive Filtering approaches. Dec01'l'ela.tioll of the input signal is car­
ried out in frequency domain by tlo1'lnalizing the power spectral density 
function. This is done by dividing each separate frequency component 
by its power spectral density fundioIl_ The resolution of this function 
equals the number B :;::: N + L - 1 of frequency components, with N the 
adaptive length filter and L the block length or proces.<;ing delay. On 
the other hand the statistical properties of t.he input signal, a.nd thus 
the needed number of divisions, has no relation at all with the seg­
ment length B. Assume for example that the autocorrelation function 
of the input signal has only (t few nonzero values within the segment 
length- The spectral density function of such a signa.l is smooth, and 
the first question is: Is I possible to reduce complexity hy performing 
the complete decorrelatioll with less than B divisiolls? 

Another practical problem is that the length B of the FFTs used in 
the BFDAF approach must be a power of two. This implies that for 
large N (as for an a.collstic echo canceller N ;;:::: 1024 sa.mples), also the 
processing delay L must be chosen very large (e.g. L == 1025 samples). 
This however may be an unacceptable number in practice. A second 
question is: Is it possible lo obtain morl~ freedom in the choice of 
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the processing delay L while still being able to implement the needed 
Fourier transform of the adaptive filter with FFTs? 

A possible solution to these problems is to partition the adaptive filter, 
and by that the update algorithm) in separate parts. Implementing 
this ill all efficiellt way leads to partiti()lled fl'eqllellcy domain adaptiw~ 
filter approaches. 

In Section 5.1 the <l.daptive filter, using the BFDAF algorithm, is parti­
tioned in separate consecutive parts. Implementing this in an efficient 
way leads to the Partitioned Block Frequency Domain Adaptive Filter 
(PBFDAF) [61,6,4,69,30,57J. III Section 5.2 complexity of the BFDAF 
and the PBFDAF is compared for a practical example. In Section 
.')-3 the cOllsecutive partitioning concept is gelleralized for the "sliding" 
FDAF. It is not necessary to partition the adaptive filter in consecutive 
parts, also parts may be interleaved. This results in the mixed Parti­
tioned Frequency Domain Adaptive Filter (mixed·-PFDAF) [56,58]' in 
which a DFT of length M = N / j{ is used_ With this mixed concept 
it is possible to search a way of partitioning for which convergence of 
the part.it.ion~d filter, with smaller DFT length M, has equal conver­
gence properties as the "non-partitioned" FDAF structure with DFT 
length N- Section .'5.4 describes decorrelation conditions for the mixed­
PFDAF structure. Th~ aim of this section is to search those conditions 
for the input signal statistics for which convergence properties of the 
partit.iolled structure are equal to those of the original frequency do­
main adaptive filt.{~r. hI Section 5_5 experimental results are given, 
while Section 5.u gives some conclusions. 

5.1 Partitioned BFDAF 

In this section an adaptive filter is partitioned in f{ consecutive separate 
smaller adaptive filten: ea.ch having length M = N / f{, alld each using 
an BFDAF update algorithm- The para.meter f( is restricted to be 
an integer in the range {I, 2,···, N}, and with this parameter it is 
possible to va.ry the new t;1.ructure between a frequency domain and 
time domain structure. Namely for J( == 1 t.he new structure equals 



the BFDAF as given ill Chapter 4) while for J( = N this structure 
reduces to the NLMS algorithm. 

The first step of the partition concept is to split the impulse response 
w[kLJ of the original adaptive filter in /{ consecutive parts of equal 
length M as: 

w[kL] ~ ((~-l [kL])t) ... , (wdkL})f, ~o[kL])t)t (5.1) 

with for q = 0, 1, ... , f( - 1 

~[kL] = (W(Q+l)M-dkLL···, wqM+t[kL], wqM[kLj)'. (5.2) 

The N x L input signal matrix X[kL] call also be partitioned into j( 

equal separa.te parts as: 

X[kL] ::: 

n[kLJ 
Xo[kL] 

(5.3) 

with for q = 0) 1,·", f{ - 1 the M x L matrices Xq!kL] defined as: 

Xq[kL1 = (x[kL - qM - L + 1]'· .. ,x[kL - qM -1], K[kL - qM]) (5.4) 

in which the length M vector :li[kL - qM - u] for u = 0,1 ... , L - 1 
contains the elements: 

(x[kL-qM -u- M + 1]'· .. ) x[kL-qi\! -u-l]';l:[kL-qM -u])t. (5.5) 

With this the original length L output signal vector cL[kLJ of the adap­
tive filter can be rewritten as: 

K-l 

cL[kLJ = llklJw[kL] = L X~[kLJwq[kL]- (5.6) 
q;;;;;O 

From the given partitioning of the input ~jgnal matrix x[kL] it follows 
also that each part Xq[kL] can be written as a delayed version of the 
first part Xo[kL] a.s 

Xq[kLl=Xo[kL~qM] with q=O,l,···,J{-l. (5_7) 
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All ]{ separate adaptive weights vectors are updated using a block 
update it\gorithm with segment length B ;:::: M + L - 1, adaptjve filter 
length M = N I f{ and processing delay L 2: 1. This is depicted in Fig. 
5.1. The next st.ep is to use a BFDAF structure for each separate part. 
For this reason each partitioned J-circul<;1nt input signal matrix Xq[kL] 
is, as in the previous chapter, related to the I-circulant matrix X~[kLJ 
as follows: 

This l-dl'culant matrix is transformed to frequency domain with the 
B x B Fourier matrix F as follows: 

FX~[kL]F-l = X;[kL] = diag{:K;[kL]} (5.9) 

wit.h 

~[kL] == (Xq,o[kLJ,··· 1 Xq,8-1 [kLW- (5.10) 

The adaptiw w~igl)t vedor ~[kL] is windowed <;11HI t.rM)srormed to 
frequency domain as: 

~[kL] = F ( I~ ) JMNq[kL]. (5.11 ) 

As in the previous chapter this definition only holds for the constrained 
caSe. A mOre gell~ral definition is: 

Wq[kL] = FJ.8~ (5.12) 

in which ~ is a vector of dimension B = M + L - 1 of the adaptive 
weights. Furthermore each BFDAF needs a B X B window matrix 
G = FgF-l with 

(5.13) 

and the B X 1 transformed version of the length L residual signal vector 

rdkL]: 

R'[kL] = F ( ~ ) rdkL]. (S_14 ) 



W [kLJ 
-0 

X(k) 

Block 
algorithm 

o 

r[k-L+ 1] 

W [kL] 
-1 Block 

algorithm 
1 

+ 
e [kL] 
-L 

W [kL] 
-1(-

Block 
algorithm 

K-1 

Figure 5.1: Partitioning concept for block update algorithm with B = M + 
L - 1 j M = N / J( and L ;-:: 1 
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Now the BFDAF update equation for each separate adaptive weight 
vector ~[kLJ (q = 0, 1", . , /\ - 1) is given Ly: 

(5.15 ) 

in which the decorrelation takes place by the power normalization, that 
is performed by the inverse of the B X B diagonal power matrix 

(5.16) 

By combining different DFTs of the separate BFDAFs the structure can 
be implemented morc efficiently. As mentioned above all partitioned 
input signal matrices \q[kL] are delayed versions of the first one Xo[kL]. 
This also holds for the circulant forms and their frequency domain 
part.s: 

X;(kL] = FX:[kL]F- 1 = FXC;[kL - qM]F- 1 = X~[kL - qM]. (5.17) 

With the restriction 

M ;:;;;; fLL with Jl. E {1, 2, ... j M} (.5.18) 

it follows that it is possible to write the time index kL-qM as (k-ql1)L 
and the delayed versions Xo[(k - qp)LJ can simply be obtained by de­
laying Xo[kL] in frequency domain over q . Jl. delay elements of length 
TL = L ·T. Thus under the given restrictions (5.18) all separ~te DFTs, 
that transform delayed versions of the input signal, can be combined 
to one DFT while the delays are performed in frequency domain. Fur­
thermore every separate BFDAF ha.s 3U inverse DFT and discards the 
first M -1 samples. These functions can be combined to one DFT with 
the "thNwillg {l,W(I.Y" l}{l.rt 3fler the addition point. Finally each sepa." 
rate BFDAF needs the same vector R/[kLJ, and t.hus only one DFT is 
needed to C(lJculate t.his wdor. The computational complexity can be 
further reduced when the input signal is stationary. For such signals it 
can be showll that. t.ht> dill.gonal power ma.trix P q from equation (5.16) 
is independent of the partitioning index q and thus 

( 5.19) 
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The power normaliza.tion can be performed directly on the B X 1 trans­
formed residual vector R'[kLJ, and only B divisions are needed. The 
above mentioned combinations of DFTs and the reduced number of 
divisions, lea.d to the Partitioned Block Frequency Domain Adaptive 
Filter (PBFDAF), that is shown in Fig. 5.2. The filtering part of the 
PBFDAF structure (right hand side of figure 5.2) is depicted in an alter­
native way in Fig. 5.3. From this figure it follows that each frequency 
component Xo,l[kLj, with 1 = 0,1, ... , B-1, is used as a (complex) 
input signal for a transversal filter with delay elements jJ. • TL . The 
[{ adaptive weights Wo.dkL], ... , WK-1.J[kL] of each transversal filter 
are updated by using an NLMS algorithm with complex weights. The 
normalizatiou of component I is performed with 1/ PI. From this figure 
it also follows that each new segment of f3 input signal samples has an 
overlap of M - 1 samples with the previous segment. By this it is obvi­
ous that, even when a white noise input signal is applied, the frequency 
component Xo.dkL] is "correlated in time" with delayed versions of it 
that are used in the adaptive complex NLMS filter of component l. This 
" correlation in time" for each frequency component 1 can degrade the 
decorrelation properties of thtj PBFDAF structure in comparison to the 
BFDAF structure. On the other hand, the windows (used for the WIl­

strained approach), do Calle!?] a part of this "correlation in time". From 
the experimeotall'esults at the end of this cha.pter it follows that, even 
for colourd input signals, the convergence properties are not degraded 
seriously for small f(. 

As a final comment of this section it is noted that the PBFDAF method 
has much resemblance with the filter bank approach as described in [31]. 
In general, subband filters are designed such that, in contrast to the 
DFT, they have a good frequency selectivity. The impulse response 
of such a. subband filter also ilJtroduces a "correlation in time" in the 
subbands. FurthermoH\ when implementing these subband filters as 
causal filters, they also introduce a processing delay. 

Thus, besides a. good frequcncy selectivity the subband filters of the 
filterbank approach must be designed, from the adaptive point of view, 
in such a way that they intwduce minimal "correlation in time", and 
that the processing delay is still a.c(:eptaLle. 
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Figure 5.2: Ejjicient implementation oj PBFDAF structure 
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5.2 Complexity PBFDAF in relation to 
BFDAF 

The complexit.y ror the efficiently implemented PBFDAF structure, as 
depicted in Fig. 5.2) is given by: 

MU LpBFDAF 
~ ((:3 + 2[{ . win) . 2~~log(B) + 2· 4]( B) 

with 

1 4B 

2 L 

B M+L~l 

M :;; NIl( with J( E {l,2,···N} 

L E {1,2,···,(N/f()} 

wm {
I constrained case 
o unconstrained case. 

(5.20) 

(5.21 ) 

With 1( = 1 and L ~ 1 these numbers equal, of course, the complexity 
of the BFDAF. For the BFDAF structure the complexity needed to 
calculate one new output sample becomes smaller for increasing L. On 
the other hand, since L equals the processing delay, this value may in 
practice not increase above some maximum allowable value Lmax. An 
example is the acoustic; echo canceller [31l~ from which the aco1lstic echo 
to be cancelled is in the order of 100 msec. On the other hand) in order 
not to be audible, the processing delay may not exceed say 25 msec. 
With a sampling frequency of 10kHz, in the area of speech applications, 
this yields an adaptive transversal filter with at least Nmin = 1000 
coefficients, whil(~ the lllil.ximaJ a,]Jowable processing delay is in the order 
of Lmax ~ :,U;O samples. For this example, the needed number of 
multiplications for tlw PBFDAF structure is compared to the numbel' 
for the BFDAF structure for different f{) and the result is plotted 
in Fig. 5.4. ror ,dl ~lructures the processing d~la.y is chosen as L :;:::: 
Lmax = 2.50 while t.lt(~ total number N of adaptive weights (N = M .J() 
is chosen in such a way that the Fourier transform ca.n be implemented 
a.5 an FFT, thus the segment length B == M + L - 1 must be a power 
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of two. This implies that N can be larger than Nmin' For example 
when J( = 1 (BFDAF) and with L ;;;;; 250) the segment length must 
be B = 2048) resulting in N :::::; 1789. Furthermore) in order to make 
an acceptable (:omparison, it is assumed that all structures are able to 
decorrelate the applied coloured input signal, and thus the convergence 
properties are described by the equations from the previous chapter. 
The initial speed of convergence (1/20) is for all structures the same, and 
is given by the following number of samples: 

1.15 
/.120 ~ --250. 

a 

The final misadjustmcnt is given by the following formula 

- M·f{ 
J=o:-­

L 

(5.22) 

(5-23) 

and this quantity differs from one structure to the other. All used 
numbers are given in the following table: 

I{ M N:::= M·l( B J 
1 1789 1789 2048 7.2 a 
2 775 1550 1024 6.2 a 

3 775 2325 1024 9.30: 
4 263 1052 512 4.20' 
5 263 1315 512 5.3 a . . , 

. 
. 

141 26:.l 37083 512 148.3 0' 
142 7 994 256 4.0 a 

For this example it follows from this table and Fig. 5.4 that the 
PBFDAF) with I( = 1) is more accurate (fador 7.2/4_2 == 2.3 dB) and 
needs less multiplicatiom: (fad or 0-5) in comparison to the BFDAF 
structure. Finally it is noted that the PBFDAF requireK less divisions 
than the BFDAF approach, since the normalization is carried out over 
less frequency components. 
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5.3 Mixed-PFDAF 

As mentioned in the previous section the consecutive partitioning scheme 
results in an adaptive filter structure whose convergence properties can 
degrade in comparison to the original frequency domain adaptive filter. 
In this section it is shown that the consecutive partitioning concept as 
given in Section I can be generalized in an efficient way for the sliding 
FDAF approach (L = 1 and B = N + L - I == N) in such a way 
that this consecutive partitioning is a subclass of this generalization. 
The same generalization can be applied to block processing techniques 
(L > 1), but the only subclass that can be implemented efficiently is 
the given consecutive partitioning. In Section 5.4 input signal condi­
tions are derived for this generalized scheme in order to have equal 
convergence properties in c;omparison to the FDAF approach. 

The first step needed for this generalization is to rewrite the output 
signal elk] of the adaptive filter 

N-l 

elk] = E x[k - i]UJi[kl :::: tft[J.:]. ~[k] (5.24) 
;=0 

by partItioning both the input signal vector ~[k] and the adaptive 
weight vector w[k). To this end the two vectors are "mixed" in ]{ 
separate vectors of length M as follows: 

Km[k] 
wm[k] 

((~~1 [k])t, •.• j C;4n[k] )t)t 
= ((~)_l[k])t, ... , (~n[k])t)t. (5.25) 

While the exact way of "mixing" is defined furlher down, the above 
convolution sum e[k] can be rewritten as: 

K-l 

elk] = c~.m[k])t. Y£m[l.:] = E (~l[k])'. ~1[kl. (5.26) 
q ... O 

With this the length N convolution sum elk] is (ewritten as [{ separate 
smaller length M = N/ f{ cOllvolutions sums. Furthermore, as depicted 
in Fig. 5 .. 5, each of these smaller cOllvolution sums can be performed 
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Figure 5.,,): Mixf;d PPDAF with M = N / J( 
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with an FDAF, containing one DFT of length M. To this end the 
convolution sum is rewritten as follows: 

elk] = E\~m[k})t(FMFil)~l1[k]== ~ }-:l(FM·~m[k])t.(F.M.~m[k: 
q;O q_O 

1 K-l 
~ M E (oX!l1[k])t. (.w!'O[kJ)'". (5.2i 

q_O 

The next step is to implement the mixed structure efficiently by com­
bining DFTs. By defining the transformed vector 

(5_28) 

it follows that only one OFT of length M has to be applied to the input 
signal when the other Fourier transforms are simlpy delayed versions 
of this vector: 

~m[kl ::;;: X,bTI[k - qC] with q = OJ''' j f{ - 1 (5.29) 

with C some constant. This can be archieved by defining the vectors 
Xqm[k] for q = 1,2"", f{ - 1 as delayed versions, over C samples, of 
the first vector &m[k] as shown in Fig. 5.5 with 

~TI[kl = ~l[k ~ qC] for q ;;;;: 1,···, f{ - 1. (5.30) 

By defining M = C . / it follows that the first vector ~n[k] of length 
M, contains the loput samples 

x[k-(u+sN/!)] with u=O,''',C-l and .~=O, ... I-l. 
(5.31) 

In literature [56] two partitioning schemes for the FDAF are known: In 
the j'consecutive" partitionil1g scheme ]{ times Al consecutive samples 
are selected, while on the other hand the" c(lInb" partitioning scheme 
selects J( times At samples, but every following sample is interleaved by 
leaving out (I< - 1) samples. The "mixed" partitioning, conceptually 
is depicted in Fig. fi.6(a), is in between these two schemes: The M 
samples are split in M == C . I samples, where C gives the number of 
consecutive samples_ With / in the range 1,2,"', M it follows that 
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Figure 5.6: (a) Mixed partitioning concept with M =: N / [{ and I = M /e 
(b) Example with N = 18, J( == 3 and C :::: 2 
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the mixed partitioning equals the consecutive-partitioning for I ::::;;: 1 
and equals the comb-partitioning for J = M. An example of choosing 
M out of N samples, according to the above mixed concept, is given in 
Fig. 5.G(b). Since the length of it DFT must be an integer it is obvious 
that all above used values must be chosen such that N, M, /(, J and 
C are integer values. When the DFT is implemented as an FFT, M 
must be a power of two as welL On the other hand when M = N, and 
thus J( = 1 the values of [ and C are not relevant any more and may 
be chosen arbitrarily as C = M and I = 1. Furthermore the next ]{ 
adaptive weight vedors of length M are needed for q = 0, ... , ]( - I: 

Wm[k] :::; (Wm[k] ... Will [k])t 
--'-'--q q,O" q,M -1 • (5.32) 

Equivalent to the FDAF approach the update scheme for these f( adap­
tive weight vectors is given by ]{ separate (length M) FDAF update 
algorithms for q = 0, ' .. , J( - 1: 

with, for stationary signals, the diagonal power matrix pm defined as 
follows: 

(5.34) 

This update scheme is depicted in Fig. 5.7 with the vector (p"')-l 
containing the diagonal elements of the diagonal matrix (p ... ) -1. 

The complexity of the mixed-PFDAF structure is roughly given by the 
following equations: 

MU Lrn.'~",J.-FF'))AP 

D IV ... ;'~",d.-PFDAF 

:::=: ~ (:2M2)og(M) + [{. 4M) 
1 

~ -·4M 
2 

with M = NIl{ and [{ = 1,2,,,·,N. 
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Figure 5.7: EjJi(:icnl Mixfd-PFDAF with one DFT (M = N/ J(, M = I· C) 
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5.3.1 Relation with incomplete Decirnation-In­
Time FFT 

From Fig.5-6 it follows that for I = M, and thus C = 1 j the M 
input samples are chosen in such a way that every following sample is 
taken by leaving out (I{ - I) samples. This corresponds to the corob­
partitioning scheme as given in [56J. This comb-PFDAF can be related 
to an incomplete Decimation In Time (DIT) FFT [37J by looking to 
the first steps of this DIT -FFT procedure. These steps, to implement 
an N point DIT·FFT, are: 

• Split the input signa] in an "even" and an "odd" part. 

• Apply FFTs of length N /2 to both pal't5 sfparately. 
. . 

• Combine the N /2 frequency components of both FFTs with an 
appropriate butterfly stage. 

When applying signal vector x[k] to this DIT-FFT the result of the 
"odd" N /2 point FFT equals the result of the lleven" N /2 point FFT l 
delayed over T seconds. Thus these two N /2 point FFTs can be com­
bined to one N /2 point FFT, after which each frequency component 
is delayed over one delay element of T seconds. Now leaving out the 
last butterfly stage, as described above, results in an incomplete DIT­
FFT that is used in the comb-PFDAF with [( = 2. Generaliz.ing this 
concept leads to the colllb-PFDAF a.s given in [56]' or equivalently the 
mixed-PFDAF of Fig. 5.7 with 1= M. 

5.3.2 Relation with incomplete Decimation In Fre­
quency FFT 

When chosing I = 1, and thus C = At, it follows from Fig. 5.6 that M 
consecutive samples are chosen, which cone~ponds to the consecutive­
PFDAF as give!) in [.56]. This cOllsecutive-PFDAF can be related to 
an incomplete Decimation In Frequency (DIF) FFT [:H] by verifying it 
with the fint steps of the DIF -FFT procedure: 

• Split the input signal in a "left" and a "right" part, each containing 
N /2 samples of the input signa.l. 



• Combine the N /2 samples of both parts with an appropriate but­
terfly stage . 

• Apply two separate FFTs of length N /2, 

When leaving out the butterfly stage, and applying the signal vector 
x[k] to the two N/2 point FFTs the result of the "right" N/2 point FFT 
equals the "left" N/2 point FFT, delayed over (N/2) delay elements of 
T seconds. Combining these two FFTs to one FFT of length N /2 gives 
an iucomplete DlF-FFT which is used in the consecutive-PFDAF, with 
]{ = 2. Genel'alizing this concept leads to the cousecutive-PFDAF as 
given [56], Or E'(ju;valel)tly the mixed-PFDAF of Fig. 5.7 with 1==1. 

5.4 Decorrelation conditions for the mixel 
PFDAF 

The filtering part of the mixed-PFDAF structure, depicted at the right 
hand side of Fig, 5.7, is redrawn in an alternative way in Fig, ,).8- In 
this figure each frequency component Xll1[kJ is a complex input signal 
of a transversal filter with delay elements C· T and f{ adaptive weights. 
The ]{ adaptive weights, for each separate frequency component 1 = 
0,1, ... j f( - 1 j are updated by using a ,. complex NLMS" algorithm: 

20: 
W~[k + 1] = W;y[k] + Flffi (XF1[k - qC])"'r[k] (5.36) 

with N .:::: j{ - M a.nd q = 0,"'. J( - L The illput signal of each 
separate complex N LMS algorithm can have" correlation in time", that 
may degrade <.:ollvergence properties of the mixed-PFDAF structure. 

III thi~ (;ed.ioll those st.atistical conditions of the input signal are searched 
for which the convergence properties of thE') mixed··PFDAF with DFT 
length M = N/ j( 1 are equal to those of the FDAF with DFT length 
N [58J. First all relevant ~igllalfl are combined into the following form: 

o 

o 
o 

o 

FM 
o 

( S.:17) 

114 



+ 

r[k] 

mixed 
partitioning 

m 
)( I [II] 

* W O,l [k) 

+ 

It[k] 

e[k] 
+---L------------{+}of-------~-

Figure 5.8: Alternative figure for filtering part of mixed-PFDAF 
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or in compact notation: 

(5_38) 

All relevant correlations can be calculated by the expression 

E{Xm[k](Xm[k])h} = F7n. E{2);lll[k](Xlll[k])t}. (Fffi)h 
F m • Rlll . (Fffi)h. (5.39) 

As mentioned in Chapter 4 an input signal can be decorrelated in fre­
quency domain by simple power normalization if the decorrelation con­
ditions are s~tisfied. Oue of these restrictions was, in order to ap­
proximate the Toeplitz autocorrelation matrix by a circular one, that 
the length of the autocorrelation function is limitted by "max with 
I Tmax I < M/2. Using this property it follows from the above equa­
tions that if the" mixed" autocorrelation matrix 

(5.40) 

is block-diagonal, with only autocorrelation function values up to M /2 
elements in the main diagonal blocks, then the convergence properties 
of the mixed-PFDAF are "equivalentn to the FDAF. Note that that 
this equivalence is not exact since the Toeplitz-circulant approximation 
is carried out for different matrix dimensions. In order to fulfill this 
restriction it follows from equation (,5_39) that the autocorrelation func­
tion pIT] = E{x[k]x[k - Tn of the input signa.l may have values unequal 
to zero, Or undefined, for" = )'N / I with), = 0, ±1, ... , (1- 1 )/2. For 
all other values of 1" this autocorrelation function must vanish. On the 
other hand one of the decorrelation conditions for the FDAF was that 
"max < N/2. Thus the mixed~PFDAF, with DFT lengt.h M ;;;; N/ /{, 
has equivalent convergence properties as the FDAF, with DFT length 
N, when t.he autocorrelation function of the input signal has the prop­
erties 

J[T] - ' 1 ' 1 ' 2 1 {
arbitrary fo.·r.1' = 0 ±1Y. ±2.!i ... ±'~l - Ii 

f - 0 elsewhere 
(5.41 ) 

with J == 1,2,"', M. The interpretation of eqllation (5.41) is as fol­
lows: 
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Assume the autocorrelation function p/[T] with 1/2 degrees of freedom 
is defined as follows: 

I[T] ::.:: {arbitrary ITI < 1;1 
p 0 elsewhere (5.42) 

then the autocorrelation function p[T] of the input signal x{k] equals 
this function l[T] interleaved with (N I 1) ~ 1 zeros. Thus the power 
spectral density function 

co 

p(~9) = E p[rje-j1h (5.43) 
T=-Qri) 

contains N /1 minor images. 
The interpretation for the comb-PFDAF and consecutive-PFDAF is 
as follows: 

Comb-PFDAF (I = M ): 
The comb-PFDAF has equal convergence properties as the FDAF if 
the input signal has an autocorrelation with the properties 

[7] = {arbitrary for T = 0, ±K,''') ±(M - 1) . J( 
p 0 elsewhere 

(5.44) 

The spectrum of the input signal contains f{ mirror images. The com­
plete decorrelatioll is performed by using the information of one mirror 
image. This is done by applying a DFT of length M on the comb 
partitioned input signaL 

o 

COl1sccutivc-PFDAF (I = l): 
Equation (5-41) shows that the cOllsecutive-PFDAF has the same con­
vergence propertier:: as the FDAF if the input signal has one undefined 
autocorrelation value prO]. Thus) as already stated in Section 5.2, con­
secutive partitioning of the input sigual will always degrade convergence 
properties of the adaptive filter in comparison to FDAF, unless a white 
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noise input signal is applied to the adaptive filter. 
On the other hami when p[T] has up to M degreetl of freedom as; 

p[T] = {arbitrary ITI < M 12 
o elsewhere 

(5.45 ) 

then the power spectral density function of such a signal is a "smooth" 
function. For such a signal a possible solution is not actual to ap­
ply any partitioning scheme at all, but simply using an FDAF, with 
transformation length N, in which every J( consecutive components 
are normalized with the same power function. Note, however, that this 
approach docs not reduce complexity: Still N divisions and a DFT of 
length N are needed. 

o 

Similary, if the autocorl'datiol1 fundion of the input signal does not 
fulfil the restrictions given in equation (5.41) mOre and more block·" 
diagonal terms of equation (5.:39) will influence the convergence proper­
ties of the adaptive filter. Normalizing the mixed-partitioned frequency 
components by Pin for I = 0, 1, ... , M - I is not enough any more to 
decorrelate the input signal completely. This also follows directly from 
the DIT- Or DlF-FFT point of view: Too many stages are left out! 

5.5 Experiments 

Results of the previous section are verified here with some experiments. 
For the first two experiments the system as given in Fig. 1.7 is used) 
of which the "unknown" Wieller system has an exponential decaying 
impulse response of length N .::0": 64. The adaptive weights are initialized 
with zeros, and the white noise signal .~[kl is such that the quantity 
lOlog(.J[kL]) start.s with 20 dB. The partition factor 1< is varied from 
f{ = 1 (PBFDAF = BFDAF) to f{ ~ N :::; 64 (PBFDAF = BNLMS)­
The processing delay was choos(~n to L :;;;;; M + 1, with the partitions 
length M ~ NI/{. With these parameters the length of the DFT equals 
B = 2M. Fig. 5.0 shows the results for an al'(l) signal, with panmetcr 
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Figure 5.9: PBFDAF with M == N / f{ and DFT length B :::::: 2M, ar(l} input 

a = -0.8182, and Fig. 5.10 gives the results for an ma(l) signal, with 
parameter a == -0.8182. From these experiments it follows that; with 
N = 64, the PBFDAF is capable to decorrelate an ar(1) input signal 
reasonably well in the range ]{ == 1, 2 •.• j 8. For all ma( 1) signal this 
range is ]( ;::;;: 1,2.) 3) 4. 

With the last experimellt of this chapter the results of the mixed­
PFDAF will be verified. For this an ))ullknown') Wiener system is 
chosen with N ;;;;;; 32 coeffiecients. The adaptive weights are initialized 
with zeros, and the signal $[k] = O. Thus the quantity of interest is: 

(
E{(e[k] - e[k])2}) 

lOlog E{e2 [k]} , (5.46) 

The input signal is generated by an ar( 4) model, that is defined as; 

x[k] ~ (~),n[kl+a.x[k-4] (5.47) 

with n[k} a white noise signal, havillg average zero and E{ n2 [k]} = 1/3, 
and a = 0,8182. The adaptation constant is Q = 4.6/1000. The results 
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of different experiments are plotted in Fig. 5.11. Two reference curves 
are plotted: the ideal decorrelation case (white noise) and the situation 
where no decorrelation takes place (NLMS). After that the result of the 
FDAF algorithm (I{ """ 1) is plotted. 

First the FDAF is simulated using the mixed-PFDAF structure with 
DFT length M equal to the adaptive filter length M = N = 32. For 
this situation no partitioning lakes place. As discussed in Chapter 4 j 

the resulting Curve slightly deviates from the ideal curve (white noise). 

Furthermore it is shown in the figure that the given ar(4) signal can be 
decorrelated by using a mixed-PFDAF with C = I (comb-partitioning) 
and J( :;;:; 4. The DFT used has length M = NI4 = 8. 

Finally it is shown in the figure that the consecutive way of partitioning 
degrades convergence already for f( > 1. This is simulated with the 
consecutive partitioning for 111 = N 12 = 16. 

5.6 Discussion 

In thjs chapter some techniques are presented to decouple the spec­
tral resolution and the filter length N. These techniques are carried 
out by partitioning the impulse response j and by that the update algo­
rithm, in separate parts_ Implementing this in an efficient way for the 
block processing approach lea.ds to the (consecutive) PBFDAF struc­
ture j in which the impulse response is separated in J( consecutive parts 
of length M :::::. N I J{. In general convergence properties will degrade 
when using more and more partitions. It is shown by experimental re­
sults that for small f( this degradation is minimal. On the other hand 
it is shown that, for a pradical example, complexity of the PBFDAF 
structure is less than the complexity needed to implement the BFDAF 
structure-

For the "sliding" FDAF a new mixed-PFDAF was introduced from 
which the transformation length of the DFT is a fact(Jr l{ smaller than 
that of the DFT used in the FDAF structure. Furthermore it Wa~ shown 
that with one extra parameter 1 = M Ie this structure describes both 
the comb-PFDAF (I = M) and consecutive- PFDAF (J == 1) as given 
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in [56]. The comb- and consecutive-structures are respectively equiva­
lent to an illcomplete Decimation In Time or Decimation In Frequency 
method as applied to FFT sc.hemes. Moreover it is shown that the 
mixed··PFDAF with J( == NIM and J = MIC has the same conver­
gence properties a.s FDA F if statistical properties of input signal, given 
by the autocorrdation function p[r], has I degrees of freedom according 
to equation (5.11). The power spectra.! density function of such a sig­
nal wntains N I J mirror images. This implies that the comb-PFDAF 
(I = M) can have up t.o M degrees of freedom in the autocorrelation 
function (5.44) with equal convergence propert.ies a$ the FDAF- The 
consecllt.ive-PFDAF 011 the other hand can only have one degree of 
freedom: For an input signal with M degrees of freedom with autocor­
relation function as given in equation (5.45): consecutive partitiouing 
will always degrade convergence properties. 

Finally some COfIunellts for future research are given: 

• The given mixt-~d structme is slIch t.hat ea.t-It separat.e frequency 
C<lU1j.HHlellt has a transversal filter structure, from which the adap­
tive weip;hts are updated according to a "complex" NLMS alp;o­

rithm. Research can be done to investigate the possibilities to 
choose both structmt' and algorithm for each separate frequency 
component. ill more agreement with the requirements of t.hat. r:om­
ponent. 

• In this chapt.er techuique1l are described to decrease the spectral 
l'es~)lutiol1 of the adaptive filter from N to M = N If( components. 

In Chapter 1 it is shown that frequency domain adaptive filters 
require two decorrelation conditions. If the length of the Fourier 
t.raHsform however is such that these cOllditi01'S are not satisfied, 
it may be possible to search for methods to increase the OFT 
length (at the cost of complexity). 



Chapter 6 

Time domain Adaptive 
filters 

In this chapter some time domain techniques are given that can decor­
relate an input signal of an adaptive filter with N weights, by using an 
L X L autocorrelation matrix (L ~ 1). 

In Section 6.1 first a short overview is given of some well known tech­
niques that use an N X N autocorrelation matrix. As an introduction to 
techniques used latcr in this chapter, Section 6.2 describes a geometrical 
interpretation of an NLMS <dgorithm. This method uses a projection 
of the difference vector on a one-dinwnsional space, representing all 
availa.ble information in the adaptive filter. This method is called the 
Orthogonal Projection (OP) method. Using more information fro01 
the past, this geometrical interpretation is generalized in Section 6.3, 
where a projection is made of the difference vedor on a L dimensional 
hyperplane j representing the available information. In order to reduce 
complexity, this algorithm is performed on block bases, making one 
update every L samples. This results in the Block Orthogonal Projec­
tion (BOP) algorithm. It. is shown t.hat. this nwthod dccorrclatcs the 
input signal with an Lx L autocorrelation matrix. With the dimellsion 
L 2: 1 this method offers more freedom ill tUlIing this dimension to the 
requirements of the input signaL Another possibility is discussed in 
Section 6.4. In this section the L-dimensional hyperplane is orthogo­
nalized by using the Gram-Schmidt procedure before applying to the 
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BOP metbod_ This results in the Gram-Schmidt Block Orthogonal 
Projection (GSBOP) algorithm_ In Section 6 .. ') il is shown that for 
signals generated wilh an auto regressive model of order p (ar(p)) this 
Gram-Schmidt approach can be implemented very efficieutly resulting 
in the EfTicient Orthogonal Projection (EOP) algorithm. This EOP 
algorithm can decorrclate ar(p) input signals with roughly the same 
amount of complexity as the NLMS algorithm. All theoretical results 
are verified by experiments in Section 6.6 and this chapter is concluded 
in Section 6.7 with a discussion. 

6.1 Decorrelation in time domain with 
N x N autocorrelation matrix 

Altlwugh not a subject of research in this thesis, this section gives a 
short overview of some well known techniques that decoTrelate an input 
signal with an N X N autocorrelation matrix. 

6.1.1 LMS/Newton 

In this section the assumptiOIJ is made that the alltocorrela1:ion matrix 
R = E{x[kJxt[k]} , or an estimate of it, as well as the inverse R-l, 
are completely known. It is shown how R -1 can be used in order to 
make convergence propertie~ of the adaptive algorithm independent of 
statist.ical properties from signal x [k]. 

Premultiplying only the update part in the LMS algorithm (2.8) by 
the inverf>€ alltocorrelation mi\.tl'ix R- 1, reslI)tf> in t.he LMS/Newton 
algorithm [G8J: 

w[k + 1] ::= ~[kl + 2o:R-1 K[k]r[kJ. (6.1 ) 

This algorithm equals lhe NLMS algorithm when the input signal i8 
a. whit.e noise sigllal with variallce 0-;_ III this ca.se the autocorrelation 
matrix is simply diagonal given by R = 0-;1. Note thai in lit~~ra.ture [G8J 
the LMS/Newt.oll algorithm is a.lso kllown in such a form that adapts to 
the optimum in one step solulion. Thi~ equalK the above algorithm by 
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choosing a ;;;; 1/2. As in previous chapters two steps are studied: First 
the convergence behaviour of the average weight vector is investigated 
and second an expression is derived for the quantity }[kJ ;:;; Jex!a~. 

Calculating the average of both sides from (6,1) and using 7'[ k] 
xt[k](.!Yopt - w[kl) + s[kJ and assuming E{s[k]} = 0 gives: 

E{w[k + I]} ~ E{w[k]} + 2aR- 1 E{K[k]KT[k]}E{.d[k]} 

2a~pt + (1 - 2a)E{~[k]) 
/r; 

;:;:: 2a EO - 2a)'NQpt + (1 - 2a)k+1w[O]. (6.2) 
i_O 

Thus for 0:' within the convergence area (0 < (\' < 1) the LMS/Newton 
algorithm converges, in average, to the optimum Wiener solution: 

(6.3) 

For the onvergence behaviour of the Ll'vlS! Newton algorithm of the 
second order statistics, first the updating equation call be rewritten for 
the difference vector d[k] = ~pt - ».:.[1.:] as follows: 

g[k] = (I-2()R-1~[k-l]1:i;t[k-l])Q[k-l]~2aR-lx[k-1Js[k-ll. (6.4) 

This difference vector is substituted in the eqnation 

i[k] == Jex[k] ~ E{dt[kJRd[k]) 
Jmin 0"; 

(6.5) 

and results in the following recun;ive relation for the dynamic behavior: 

J[kJ === (1 - 40').J[k - 1J + 402 N. (6.6) 

These results a.re clearly indepelldent of statistical properties of the 
input signal x[kl-

6.1.2 Recursive Least Square Algorithm 

The problem with the LMS!N<>wton algorithm is that exact knowledge 
is required of the matrix R -1. This matrix is ill general not known a 
priori and moreover it may slowly dliulge in time. 
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The family of methods known as (Recursive) Least Square ((R)LS) 
algorithms belong also to the class of techniques that are theoreti­
cally Jess sensitive to the statistical properties of the input signal. Tlte 
main difference between gradient-based methods and RLS techniques is 
that t.he RLS a.lgol'ithlTI5 minimize an exact errOr criterion constructed 
from the adu(I,1 data in contrast with the statistical errqr criterion for 
the LMS. Clearly, this exad optimization for every point. in t.ime im­
plies quite a sophisticated processing algorithm. The traditj()Hal Lea.'lt­
Squares approach to compute an Nth order adaptive filter would reql,lire 
in the order of N'J arithmetic operations per time update, largely due 
to the cOInputatio)) of t.he N x N matrix inverse. 

Instead of minimizing the mean square error) as in the LMS ease, t.he 
Least Squares (LS) appwach minimizes an exponential weighted sum 
of squared errors (the LS-cost function) U$llally defined as [3]: 

k 

elk] == 2: )/.-i(i.~[i] - w t [k] . ~[i])2_ (6.7) 
i"'O 

Thus the present adaptive weight vector w[k] is convolved with previous 
input signal vectors K[ij and compared with previous reference signals 
l[i]. The result is exponentially weighted with a window from which the 
elTedi ve lengt.h is approximately equal to l':" samples. A value of .\ = 1 
signifies that all data is equally weighted, and this case is often referred 
to in literature as the prewindowed case. Another choice would be to 
weight with a window of finite and equal length for all k. This choice 
is somet.imes called a slidillg window weighting. It says that only the 
most recent samples are used to do the estimation and these samples 
are weighted equally. Bot.h t.his sliding window and the exponential 
weighting methods can be used to handle slow time variations in the 
unknown Wiener system- Depending on the type of time variation, 
one scheme may be better than the other- For simplicity here only 
the exponential weighting is considered, because it can be realized in a 
recurSIve way. 

Now a short work through the matheml;ltics- Millimization of the LS­
wst functioll leads to the following optimum adaptive weight vector at 
time instant k: 

(6.8) 

126 



with: 

k 

R[kJ "E >.k-·:!i[i]Ji~[iJ 
It 

£[1.:] = L >.k-'e[i]:K[ij. (6-9) 
i::::;:o 

Direct solution of these equations should require ill the order of N1. 
operations. In order to reduce this computational effort, recursive so­
lutions are used leading to the Recursive Least SCluare (RLS) algorithm. 
The first step is to compute. R[kj and !;.[k] recursively according to the 
next equations: 

tt[k] 
!;.[k] = 

>.R[J.: - 1] + :K[J.:)xt[k] 
A£[J.: - 1] + 1i[kjc[kj. (6.10) 

Since equation (6.8) needs the inverse autocorrelation matrix, the sec­
ond step is to compute it-1 [kjt'ccursively by using a well known matrix 
inversion lemma [26] (p:3S.5). This results in the following equation: 

(6.11) 

with the gain vector ~[k] defined as: 

1 • 
Er[k] - . R-1[k - l]x[k] 
12 - >'+;~/[kJR-l[J.:_l]~[":] - . 

(6.12) 

By multiplying both sides or equatioIl (G_11) with the vector ~[J.:] it 
follows that: 

(G.13) 

Thus the gain vector is a transformed vect.or obtained by rotating the 
input signal vector. 

The RLS updating equatioll for the adaptive weights can now be de­
rived as follows: 
Filling in equation (G_1 0) in ((j.8) and using (Ll:3) gives: 

~[I.:] ~ ).Ft- i [k - 1k[k - 1] + ~[k]e[kl· (6.14) 
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UsiIlg expression (0.11) for the quantity Xl\-l[k -1] results in: 

lY[kJ w[k - 1J - ~[k]~t[kJw[k - 1] + ~[k]l[k] 
w[k - 1] + ~[k]dk]. (G.15) 

Thlls after initialization every iteration consists of the following steps: 

(a) Calculate the residual signal ?'[k] = e[k]- xt[kJw[k - lj. 

(b) Calculate the gain vector according to equation (6.12) 

(c) Calculate the new weight vector according to (6-15) 

(d) Calculate the new inverse autocorrelation matrix it-I [kJ according 
equation (6_1 t)_ 

Comparing the LMS update algorithm (2.8) with the above RLS equa­
tions (6_15) shows that in the LMS case the gain vector ~[k] = 20'2£[k]­
This implies that the input signal vector is not transformed or rotated. 
The complexity of the above RLS update equations is in the order of 
N2_ 

In the past decade, new algorithms have been derived that further 
reduce the number of required multiplications plus divisions per iter­
atioll such that they become linear in N. Basically, they capitalize 
on a property of the autocorrelation matrix R that is not exploited 
in the previous methods, namely that the vector x[ k] ads like a shift 
register such that K[k + 1] is only a "push up" version of x[k] with a 
new sample at the bottom. This new algorithm can be broadly c1as­
sHied into two categories by their approaches to solution. One is the 
Fast Kalman type or the fixcd.,order recursive least-squares algorithms; 
and the other is the ladder type algorithms. Loosely speaking; the fa:st 
Kalman algorithms belong to the framework given in the above RLS 
update equations; and use more efficient methods to update the gain 
vector £[kJ at each iteration. The ladder algorithm resorts to another 
formulation of w[k] and finds simpler ways of updat.ing it. A tutorial 
of fast RLS is given in [2]. 
III C01l<:iu:-IC)l) i1. f(l1l0WS thaI. the LMS/Newton can perfectly decon-elate 
a correlated input :o:igllal, when the exact autocorrelation matrix, and 
its inverse, are known a priori_ Tile complexity of the a.lgorit.hm is 
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very large. The recursive schemes are less complex and have good 
decorrelation properties too. Still this wmplexity is too high for many 
practical applications. Fast RLS schemes with low complexity and good 
decorrelation properties have been developed in the last years. 

6.2 Geometric interpretation of the NLMS 
algorithm 

In this section a geometric interpretation is given of the signal estima­
tion problem of Fig. 1.7. For simplicity reasons it is assumed, in first 
insta.nce, that the signal s[k] is zerO. 
The update procedure is as follows (see also Fig. 6.1): 

S!6[k) 

!J. 
-2a.2. [k] 

Figure 6.1: Geomd7'ic intcrprdation of the NLMS algorithm 

Make a projection of th~ difference vector g[k] on the available data 
which is present in the vector li[kJ. By doing so !i[k] is decomposed as: 

(6.16) 

with 4.J..[k] orthogonal and d.l.[k] parallel to :Ji[I.:]. This implies that: 

< ~[k],4..l[kJ > = 0 

gfi[k] = c· x;[kJ (6.17) 

with c some scalar. With s[k] = 0 it follows from Fig. 1.7 that the 
residual signal t'[k] can be written as: 

7·[kJ '=" xt[k].d[k] =< ~[kJ, g[kJ >= 
< x[k],.d~[kl >= cll~[k] W· 
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From this equation the parameter c can be calculated since both the 
signal r[k] and the quantity Ilx[kJl1 2 are known. With this the parallel 
component .dA[k] can be written as: 

I!. r[k] 
.d [k] = c· x[k] = Ilx[kJW . X[k]. ( 6-19) 

The main purpOs(~ of the a.dap1.i ve algorit.hm is to both reduce the length 
and rotate vector d[k] in such a way that it becomes "more orthogonal" 
to x[k). This can be achieved by subtracting a small part of the vect.or 
d.:r.[k] from the vector d[k], as shown in Fig.6.l. Thus: 

, .:r. x[kJr[kJ 
!i[k + 1] = g[k]- 2c~4 [k] = d[k]- 2a Ilx[k]W (6.20) 

which leads, with the definition of the difference vector, to the following 
update equation: 

~[k]r[k] 
w[k + 1] = w[k] + 20' Ilx[k]112' (6-21 ) 

Comparing this a.lgorithm with the NLMS algorithms shows that both 
are very similar. The above algorithm is the deterministic interpreta­
tion of the (stochastic) NLMS algorithm. Heuristically this geometric 
approach Cau be explailled as follows: 
First assume orthogonal vedors ~[k] and ?f[k + i] Vi (the geometrical 
interpretation of a stochastic white noise process), For these orthogo­
nal vectors the update algorilhm rotal~:;; t.he vector !i[k] in such a way 
that the inner product < .d[k + l),x[k] >, which is a measure for the 
final misadjustment, becomes smaller in comparison to the previous 
inn~r producl. Tlli:) redudion can be accomplished in two ways: by 
reducing the length of !i[k) and/or by rotating 4[q in such a way that 
it becomes more orthogonal to the vector x[k]. The abov(:~ algorithm 
achieves both. For example when choosing a large a.dapta.tion constant 
(}' :=: 1/2 Uw algorit.hm rotates !![k] in one step orthogonal to x[k]. This 
implies that the inner product beCOJ)JAs zero, while the length of d[k+ 1] 
needs not to be zero. When however the "noisy" ~jgnal s[k] is present, 
the inn~r prodnct Call ha.ve large fluctuations since the vector !i[k] can 
fluctuate around the orthogoll<:tl po:)i1.ion. This can result in a large 
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final misadjustmellt. On the other hand choosillg a small adaptation 
constant Q leads to a very slow algorithm, whith the final difference 
vector both small and orthogonal to the input signal vector, resulting 
in a small final misadjustment. 

When the input signal vectors a.re not orthogonal, representing a. coloured 
process, the new update direction is not orthogonal to the previous up­
date directions. An update made in one iteration can both be helped 
Or counteracted ill the next iteration: Convergence properties of the 
above algorithm are sensitive to the geometric distribution of the input 
signa.l vectors. Or in stochastic terms: Convergence prop~rties of the 
NLMS algorithm are dependent of the input signal statistics, as was 
shown in in Chapter 2. 

6.3 L-step Orthogonal Projection Algo­
rithm 

In [39,16] a.n L-step Orthogonal Projection (OP) method is introduced, 
tha.t extends the geometric approach of the previous section to L dimen­
sions. With this OP method a projection is made on an L dimensional 
hyperplane rather than on a line. In general there are two va.riants to 
implement this idea: 

(a) The "sliding" procedure that uses every iteration only one new 
input signal sample_ This is the L-step Orthogonal Projection 
method (OP) as described ill [:39J-

(b) The "block" approach tha.t uses L new samples and performs only 
one update of the ada.ptive weight vector every L samples- This is 
the Block OrthogQmd Projection (BOP) algorithm [55]. Since the 
latter algorithm can be implemented m~m~ efficiently it is described 
here. 

The procedure of the BOP method is as follows: ma.ke a projection of 
d[kL] 011 an L dimellsional plane, spanned by the L vec.tors ;K[kL},··· ,2f[kL­
L + 1]. Thus: 

4[kLJ = 4~[kLJ + _~e-[kL] 



with 

< !e-[kL],X[kL - i] > = 

.4~[kL] = 

° for all i = 0, ... L ~ 1 (6.2:3) 
L-l 

L Co[kL]K[kL - i] = X[kL]~[kL] 

(6.24) 

with the N X L matrix X[kL] and the L dimensional vedor £[kL] defined 
as: 

X[kLJ = (K[kL - L + 1]'··· ,x[kL - 1], ;!i[kLJ) 
~[A:Ll = (CL_l[kL],··· 1 cl[kL], ('-{)[kLJt (6.25) 

With the aSSUlnptiOll (in first in$tance) that signal s[k] :;::; 0, the L 
dimensional residual signal vector r.r.,[kL] can be written as: 

rdkL] ;;;;: l[kL].4[kL]. (6.26) 

Now an equivalent procedure as in the previous section can be used to 
calculate the coefficient vector ~[kLL by using the fact that ~e-[kL] is 
perpendicular to all vectors ~[kL - i] for i = 0,1, ... , L - 1. In vector 
matrix not.at.ion t.his leads to: 

rdkL] l[kL]d[kL] = l[kL] (.dd[kL] + fe-[kLJ) 
l[kLldL\[kL] = Xt[kLJX[kLk[kL]. (6_27) 

The solution of these equations is given by: 

~[kL] = it-l[kL]dkL] (6.28) 

with the L X L 11 autocorrelation matrix" is defined as: 

R[kL] = l[kL]X[kL] (6.29) 

from which the (p, q )th element equals: 

(R[kLJ)p,q = < ~[kL - L + 1 + p], ~[kL - L + 1 + qj > 
= xt[kL - L + 1 + p]~[kL - L + 1 + qJ- (6.30) 



The length of vector .d.[kL] can now be reduced with some amount 
according to the following update equation: 

4[(k + 1 )L] 4[kL] - 2o:4fi [kL] 
d[kL] - 2ax[kL]R-1[kL]!:L[kL]. 

(6.31) 

(6.32) 

This equation leads) with the definition of the difference vector, to the 
BOP update equation: 

YL[(k + l)L] = ~[kL] + 2nX[kL]it-1[kLlrdkL]. (6.33) 

Comparing this algorithm with the BNLMS update equation shows 
that the BOP algorithm is a generalization of the BNLMS algorithm. 
The input signal is decorrelated by an L xL)) auto(orrelation matrix" 
R[kL]. On the other hand this matrix needs not to have dimension N X 

N as in the RLS approa.ch. In the experimental results at the end of this 
chapter it is shown that indeed for specific input signals decorrelation 
can be performed with the illv€l'se of an L x L autocorrelation matrix, 
with L < N. Finally Sorlie general notes: 

• In [4.5] (pG9) the usdull suggestion is made to calculate the in­
verse of the autocorrelation matrix ft-l[kL] by using equivalent 
"recursive" techniques as used for the RLS algol'ithm . 

• Since both BOP and PBFDAF methods detorrelate the input sig­
nal with less than N degrees of freedom) a strong relationship 
between these two methods is expected. This relationship is in­
vestigated in [J 4]. The first step in t.his palwr is to partition the 
adaptive weight vector in length L vectors. The BOP updating al­
gorithm (6.:3:3) is partitioned in an equivalent way. Using the same 
techniques as discussed in chapter 4, these partitioned BOP algo­
rithm is implemented in frequency domain and is compared with 
the PBFDAF method. By doing so it follows that, in comparison 
to the PBFDAF algorithm) tllfl BOP mfltbod performs a mote ac­
curate decorrelation, using a Toeplitz autocorrelation matrix) but 
it costs mOre complexity. to implement it. On the other hand it 
is also shown that the decorrelation properties of the, rela.tive low 
complexity, PBFDAF method are reasonably well. 



6.4 BOP algorithm with Gram-Schmidt 
procedure 

The purpose of this section is to rewrite the BOP upda,ting equation 
(6.3.3) in such a WhY, that: it. nUl be used in the followiug section. 

The BOP concept of the previous section is to make a projection of the 
vector n[kL] on a space that was spanned by the basis: 

{x[kL ~ L + 1]'··· ;;:;;[kL]}. (6.34) 

The fil"st step in this sectioll is to construct from this basis a new 
orthogonal ta,sis by using the Gram-Schmidt procedure. After that 
the same BOP procedure j~ used, with this new basis, as given in the 
previous sectioll_ 

For i = 0 to L - 1 the Gram-Schmidt proced11re leads to the following 
set of orthogonal vectors: 

N ,[kL] == [kL _']_ ~ < K[kL - i], ~[kLl > N [kL] 
2ii' X Z ~ 11~[kLjlJ2 ~ (6.35) 

with the sum :E;~o defined as zero. Note furthermore that these con­
structed orthogonal vectors are not shifted versions of each other, in 
contrast to the input sigllal vectors, thus: 

(6.36) 

The Gram-Schmidt procedure (6.35) is such that the new orthogonal 
basis and the initial basis span the same space. From this it is obvious 
that lt is always possible to write each new b3.::;is vector iikL}3.s a linear 
combinatiou of illitial basis vector::; ;l:£[kL - q]. Thus for i = 0, ... , L - 1: 

i 

&[kL] = L: 'Y~[kLl~[kL - q}. (6.37) 
9",,0 

with .,.1[kL] = 1 for all 'i = 0,1,,,, , L - 1. In matrix notation these 
equations can be written a::; follows: 

X[kLJ = X[kLj. r[kLJ (6_38) 



with the L X L lower triangula.r rnatrix 

1f:::~[kL] 0 0 0 

r[kL] = (6-39) 

if-l[kL] ,.ti[kL] 0 
i;-l[kL] iMkL] )'g[kL] 

and the N X L matrix containing the orthogonal set of basis vectors as· 
follows: 

X[kL] = ("&'-1 [kL],··· ,&[kL]). (6.40) 

The BOP concept is to make a projection of the vector 4[kL] on the 
orthogonal basis. This leads to: 

< 41.[kLLt[kL] > := 0 for i == 0"", L - 1 

.d.CI[kL] = X[kL]£[kL] = X[kL]£[kL] (6.41) 

with £[kL] = r-l[kLk[kL]. Furthcrmore by defining the rotated (trans­
formed) residual signal wctor i;l.:;: 

the following Gram-Schmidt BOP update algorithm (GS-BOP) can be 
derived in a similar way as described in the previous section: 

w[(k + 1 )L] = w[kLJ + 20:X[kLjR-1[kLjfdkLj. (6.43) 

In this equation the L x L rotated (tr1l.m;fcmned) "autocorrelation') 
matrix R[kL] is diagonal because of the orthogonality property of the 
vectors Ki[kLJ. Thus: 

Now it is straightforward to rewrite the GS-BOP algorithm (6.43) as: 

w[(k + 1)LJ = w[kL] + 20: ~ &[kL](rL[kL])L-l-i. (6.45) 
- - ~ IIRdkL]W 



From this update equation it follows that every itel'ation, thus every 
L samples, one "NLMS,j correction is made for the difference vector 
in each of the L orthogonal directions. Thus it correction made in Olle 
direction is not influenced by a correction made ill another direction. 

As a final comment of thi~ section it is noted that in [10] (p89) some 
efficient altematives are given to compute the matrix r[kL]. One of 
them uses the Householder transform [64}. 

6.5 An efficient OP algorithm for AR(p) 
processes 

Applying the GS---BOP concept of the previou~ section to the "sliding" 
approach, results ill an algorithm equivalent to update equa.tion (6.45). 
At time k . T a. set of L orthogonal vectors is calculated spanning an 
L dimensional plane, and the adaptive weight vector is updated in L 
different orthonormal directions. At time (k + 1) . T a complete neW 

sct of L orthogolll;l.l vectors is calculated spanning a new L dimensional 
plane. Updates in orthogonal directions do not influence each other. 
Since, however tbe L dimensional planes at time k . T and at time 
(k + 1) . T need not to be orthogonal, it is obvious that an update 
of the adaptive weight vector in one iteration can be influenced by 
previous or following updates. 

From literature [:35] it is kllown that a speech fo:ignal can be modelled by 
using an ar( p) model, with p in the order of 8, ... ,12, This section gives 
an algorithm is give!) (derived from (G,45)) that perfectly decorrelates 
ar(p) input signals. After that. an efficient realisation of thi~ scheme is 
gIven. 

A ar(p) signa.1 is described by the following difference equation: 

p 

x[k] = I: aix[k - ·i] + n[kJ ( 6.46) 
i=l 

with n[k] it white noise proc.e~s. Describing this equation in N dimen-
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sional vectors ?;.[k] and n.[k1 gives: 

p 

~[k] = E a·a:-;[k - i] + n[k]. (6.47) 
i""l 

Since n[k1 is a white noise process it follows that the vector n.[k] is 
independent of n[k - i] for all i > O. Now the followiIlg signa.l is defined 

p 

~[kJ = x[kJ - L aix[k ~ iJ (6.48) 
.",,1 

with ~[kj -= (ip[k - N + I]' ... 1 Xp[ kjY and G.. some estimate of the 
coefficient ai. Note that a recursive scheme (with low complexity) to 
calculate the coefficients a. is the following LMS update algorithm [29J: 

(6.49) 

By comparing the "new" vector ~p[kJ of equation (G.48) with the defi­
nition of an ar(p) process, it is obvious that Xp[k] is an estimate of the 
white noise process U[k]. This implies that when lti :;;; a. 

&,[k] ..1 ,Rp[k - i1 i > o. (6.50) 

In contrast to the result of the previous section: For ar(p) signals it 
is better to a make every itera.tion ouly a correction in direction Kp[k], 
since this vector is a.lready orthogonal to a.1I previous update directions. 
Thus for ar(p) processes only the first part of (6.45) is needed. This 
results in the following update algorithm, that decoITl":lates an ar(p) 
input signal completely: 

(6.51 ) 

with: 

p 

rp[k] r[kj- I::a,[kjr.[kj 
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Figure 6.2: OP algorithm for AR signals 

This upda.te scheme is refered to as the Orthogonal Projection algo­
rithm for Auto Regressive signals (OP-AR), and a schematic interpre­
tation is depicted in Fig. 6.2. In comparison to the NLMS algoritm 
this OP-AR algorithm first "whitens" both the input signal (x ~ x) 
and the" x-component in the residual signal" (r --t r). With these 
"white" signals an NLMS update is made. Thus convergence proper­
ties are independent of the input signal statistics. In fact the OP-AR 
algorithm is a parametric algorithm to solve the decorrelation problem, 
whereas the frequency domain and RLS approaches are non-parametric 
approaches. 

The problem however with the OP-AR algorithm is complexity. Every 
iteration p - 1 extra convolutions of length N have to be calculated 
to generate the residual signals t·ilkJ. Since, however, the algorithm 
decorrelates perfectly, the following approximation can be used to lower 
down this complexity: 

20' ' 
E{g[k]} ~ (1 - N)' E{4[k - i]}. ( 6 . .52) 
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Using this approximation it follows that an estimate of 7\[k] of the 
signal ri[k] is given by: 

A [ ] 2a . 
t'i k ~ (1 - N )'1'[k - i]. (6.53) 

Using this approximat.ion complexity can drastica.lly be reduced. To­
gether with a. simple low pass filter for the power average, leads to the 
following Efficient OP-AR (EOP-AR) algorithm [53,60]: 

with: 

R,,[k] 

7'lk] 

fdk] 

ai[k + 1J 
a-;[k + IJ 

x [kIf [k] 
w[k + 1] :::;;;; w[k] + 2 ~ p 
- ~ a No-ilk1 

p 

x[kJ - L a,[k]x[k - i] 
i=l 

elk] ~ elk] 
20' . 

(1- N)J7'[k~il for i = 1,"',p 

adk] + 2$x[k]x[k - iJ for i = 1"" ,p 

iU;[kj + (1 -,)x2 [k]. 

(6.54) 

(6.55) 

This EOP-AR algorithm can completely decorrelate an ar(p) input 
signal, while the complexity (the number of multiplications) has the 
same order as the NLMS algorithm. An implementation for the boxes 
x --t i and T --t i of Fig. 6.2 for this EOP-AR algorithm is given in 
Fig. 6.3 for p = 1. 

Finally it is noted that it can be proved that the first update algorithm 
given in [39J (page 21) is, as the authors say, a specific form of the OP 
algorithm for a;;;: i. In [70] however this specific algorithm is used for 
arbitrary values of a (in the convergence area). This leads to the next 
algorithm: 

x [kJ7'[k] 
w [k + 1] = w [k] + 20' ----=-"--::------:--:-­- - < x[kj,~p[kJ > 
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-- r_ r _ 
1(-1( 

I([k] x[k] 
r[k]r- - - - ~ - - - - -,-;tk) 
--r-..-----------{+ ~-.. 

I 
I T X I 

I 
I 
I I _ I 

L ___ -~[k] _ J I 2a - I 1- N -0, [k] 
L~ _______ ---I 

Figure 6.3: Implementation of x ~ x and r .....-+ r for EOP-AR algorithm 
with p = 1 

This however is no "real" OP algorithm as proposed in [:39] (page 23 
under formula (3)L but it looks like an j'OP-AR" algorithm- The 
"whitening" however is only performed in the :r component and not 
in the residual signa.l T _ The result is that this algorithm will not 
completely decorrelate an ar input signal. 

6.6 Experiments 

Results of the previous section are verified in this section with some 
experiments. For these experiments the system as given in Fig. 1.7 
is used, from which the "unknown" Wiener system has an impulse 
response of length N = 32. The adaptive weights are initialized with 
zeros. The signal s[k] is zero; thus the quantity of interest is: 

01 (
E{(e[k] - e[kW}) 

I og E{e~[k]} . (6.57) 

The input signal is all ll1a( 1) or ar(l) signal with ER = 100. This is 
done by chosillg for both models the parameter a = +0.8182 and n[kJ is 
taken as a white noise sigllal; having zero average and E{n2 [k]} = 1/3. 
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The adaptation constant is a ::::;:: 4.6/1000. In the first experiment it is 
shown that it is possible to perform the decorrelation with the inverse 
of an L X L autocorrelation matrix with L .s N. The results of this 

COllV~rg~~ of BOP algorithms with LxI.. autocom:latloo Ill:mll. 

....... : .......... : .......... i ............ : ...... ~ ......... .. ;.~~wl.m .. .... . 
! ~ ldpul = 1IIa(l) ! 

........... L. ............ L .... lQl<;111.~~ ....... ~ !1f11!1ifw.iL ....... . 

~ 
.30 

i 
40 . 

-so 

s 
? 

-90 . 

--> number of s3mpks 

Figure 6.4: Convergence BOP algorithm 'With L X L matrix for ma(l} signal 

experiment are plotted in Fig. 6.4 and Fig. 6.5. From both figures 
it follows that when lowering the dimension L of the autocorralation 
matrix convergence properties degrade. Comparing however the result 
for the ma( 1) signal (Fig. 6.4) and the ar(l) signal (Fig. 6-5) shows 
that the ma( 1) signal is much more sensitive for lowering this dimen· 
sion L. Convergence properties with an ma( 1) signal as input already 
degrades for L:::; 16, while the ar{l} degrades for L:;=; 8) even for L = 2 
convergence is reasonable for the ar(l) process. These results call be 
explained as follows: since the ma( I) model contains a zero, it is obvi­
ous that the inverse autocorrelation matrix is a full matrix. Making the 
dimension smaller results in throwing away relevant information. The 
ar(l) model however contains a pole, resulting in an tri-diagonal inverse 
autocorrelation matrix. Loweril1g down the dimension is allowed. 

The second experiment shows that the EOP algorithm indeed decorre-
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C<lo:lv~rgel.ce of BOP Al8orithm~ with I.)\j. ~utoc".,..,lati"" malrix 
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-1000'----:-200~-~----,~----:-~----::-::'...J.... ........ ~-1400~-1600-'-c-:-----,-1800~-=...J2000 

--> nwll\)t;r of samples 

Figure 6.5: Convergence BOP algorithm with L X L matrix for' ar(1) sigrtal 

lates a signal that is generated by an ar model. The result is plotted 
in Fig_ 6.6. As a l-cfercnce the white noise curve represents the ideal 
decorrelation Case. The input signal is an ar(l) signal, and also the re­
sult of convergence of the NLMS algorithm is plotted. The third curve 
shows the result from the EOP algorithm as depicted in Fig. 6.3. This 
curve is indeed dose to the ideal case, which shows the decorrelation 
capacity of the EOP algorithm for ar(l) signals. 

6.7 Discussion 

In this chapter it is shown that it is possible to decorrelate an adaptive 
filter with N weights, with all Lx L autocorrelation matrix with L 2 1, 
For signals with spectral poles L can be relative small, re:sulting in a 
small amount of extra complexity to decorrelat,e such a signal. Signal 
models with spectral zeros need a higher dimension L. 

When from a priori knowledge it is known that the input signal is gen­
erated with an ar(p) model it is shown that the EOP algorithm decor-
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Figure 6-6: Convergence of EOP algorithm JOT ar(l) signal 

relates such a signal, with complexity in the order of the complexity 
needed -for the NLMS algoTithm_ 



Chapter 7 

Conclusions 

This thesis explores some methods to use available a priori information 
in order to reduce complexity while maintaining convergence properties 
of adaptive filters. The most important results are listed below: 

A reasonable approximation of the convergence properties of the Block 
Normalized Least Mean Square (BNLMS) algorithm can be deduced 
from the product of the spectrum of the input signal with the squared 
magnitude of the system function (smf) from the difference vector. A 
priori knowledge about the "matching" of the signal characteristics and 
the \'lunknown'n system can be used to initialize the algorithm as well 
as possible. 

For large filters the BNLMS algorithm can be implemented very effi­
ciently in frequency domain by using Fast Fourier Transforms (FFTs) 
for the t.ransformation between time- and frequency domain. The 
length of these transformtl is given by the number B == N + L - 1, 
with N the number of adaptive weights and L the processing delay 
(resulting from tile block processing approach). Both overlap-save and 
overlap-add method can be implemented with equivalent complexity. 

Convergence properties of an adaptive filter can be made indepen­
dent of the input signal statistics by decorrelation of the input signal. 
This decorrelation can be accomplished relatively easy with frequency 
domain techniques by normalizing the spectrum of each separate fre-
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quency component. With this method an approximation is made of the 
required time domain decorrelation. Applying this spectral normaliza­
tion to the efficiently implemented BNLMS algorithm in frequency do­
main, leads to the Block Frequency Domain Adaptive Filter (BFDAF). 
Roughly there are two variants of the BFDAF. The first method is the 
constrained BFDAF, since it requires a window that forces a constraint 
in adjusting the frequency domain weights based on overlap-save sec­
tioning. The implementation of this structure requires five FFTs. The 
second method is the unconstrained BFDAF, since it removeS the win­
dow. This method uses three FFTs. For input signals that have an 
autocorrelation function p[T}, that is neglect able for 17"1 < N /2 and 
L > N /2, the constra.ined BFDAF has better convergence properties 
than the unconstrained BFDAF: Because of the constaint window less 
weight are fluctuating around their final value resulting in a smaller 
final misadjustment. Furthermore when the impulse response of the 
unknown system is a global decaying function it is possible to use an 
efficient implementation of the BFDAF, using 3FFTs, with conver­
gence properties equivalent to the constrained BFDAF (5FFTs). 

By partitioning the original BFDAF into smaller parts and implement­
ing this in an efficient way leads to the Partitioned Block Frequency 
Domain Adaptive Filter (PBFDAF). In comparison with the BFDAF, 
the PBFDAF structure can be realized with smaller FFTs, resulting 
in a reduced processing delay. Furthermore when some a priori infor­
mation is available of the input signal spectrum this informa.tion can 
be used to reduce complexity, since decorrelation is performed by less 
divisions in the PBFDAF approach. 

With the Block Orthogonal Projection (BOP) method it is possible to 
decorrelate the input signal of an adaptive filter with the inverse of 
an autocorrelation matrix from which the dimension can be chosen in 
accordance to the input signal statistics. The BOP and the PBFDAF 
are strongly related, since both methods reduce the required number 
of degrees of freedom ill order to decorrelate the input signal of the 
a.daptive filter. Furthermore it is possible to decorrelate auto regres­
sive signals with an Efficient Orthogonal Projection (EOP) algorithm. 
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Finally some recornmendations for future reserch are list(~d below: 

• Still a complete analysis of the (BN)LMS algorithm is required 
that is both relatively simple and that uses correct assumptions. 

• From several discussions given in this thesis it follows that con­
vergence properties of adaptive filters are depending on statistical 
properties of the input signal of the adaptive filter. On the other 
hand it is known that multirate techniques introduces spectral 
deformations (i.e. aliasing, mirroring). From this it follows that, 
when using adaptive techuiques in a multi rate environment [11], a 
description of the convergence properties is not triviaL New fun­
damental concepts are needed in order to descibe this multirate 
adaptive digital signal processing area. Some papers in this area 
are: [31,33,20]. 
Note that tlte PBFDAF structure of Chapter .) of this thesis is an 
example of a multirate adaptive filter: Each separate frequency 
component is filtered with a separate filter) having a sample rate 
that differs from the sample rate of the input signal x[k). 

• The Efficient Orthog~mal Projection (EOP) algorithm (Section 
6.5) uses a signal model; with only poles, to decorrelate the input 
signal of the adaptive filter ill an efficient way. It is useful! to 
extend this technique for general signal models containing poles 
and/or zeros for the following two reasons: 

- The input signal is decorrelated by using only releva.nt infor­
mation needed for the decorrelatioll. 

This method is suitable for the tracking problem: The signal 
model can be used to track the nostationarities of the input 
signal, while the adaptive filter itself can be used to track the 
nonstationarities of the unknow system. 

• When applying techniques known from fixed filters to adaptive 
filters, this must always be done with some care since the adaptive 
weights change every iteratioll. An example is the discussing of 
the overlap-add method for adaptive filters, as given in Section 3.3 
and 3.4. Anot.hel' challenge is the area of paralld adaptive digital 
.~i9ual processing: splitting the original pwblem into parallel parts 
has to be dOBe with much care when ada.plive weights are involved. 
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This area needs new fundamental research. Some literature in this 
area is given in [26](Chapter 10) and its references. 
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Appendix A 

Derivation of dynamic 
behavior of BNLMS 
algorithm 

In this appendix mOre accurate formulas are given that describe the 
dynamic behavior of the BNLMS algorithm. This is done by giving 
a derivation that is mainly based on results given in {l5]. Although 
this derivation has some weak points, mentioned explicitly here, no 
alternative derivation is given because theoretical and experimental 
results fit reasonably well. 

From the BNLMS update equation (2.17) and with ch ;;:: f;;2 it follows: .. 

g[(k + l)L] = (I - 2aLx[kL]l[kL]) .d[kL]- 2aLx[kL}.§.L[kLj. (A.I) 

Transforming this equation with the unitary matrix Q gives: 

D[(k + 1 )L] == (I - 2aLQ"x[kL]Xt [kL]Q) D[kLJ - 2CVLQh X[kL]4[b 

= (I - :n:itX[kLJXh[kLJ) ll[kL]- 2chX[kLJ§.dkLJ (A.: 

with 
(A.3) 
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This matrix has the property 

E{X[kL}Xh[kL]} E{QAx[kLlx£[kL}Q} 
:::= LQ"'RQ;:::: L· A. (AA) 

Furthermore for small adaptation constant the input signal x and the 
adaptive weights w may be separated under E{·}. This results in: 

b[(k + 1)L] ;:::: E{D[(k + l)Llli~[(k + l)L]} 

~ E {(I - 20LX[kL]Xh[kL]) -Ll[kL] . (I - 2chX[kL]Xh[kL])} 

+4ijiE {X[kL]E {§L[kLl~[kLl} X"[kLl} 

= ll.[kL] - 2aLE{X[kL1Xh[kL]}b..[kL} 

-2aLi.\[kL]E{X{kL1X"'[kL]} 
+4aiE{X[kL]X"'[kL]- .6.[kL] . X[kL1X"'[kL]} 

+4ai.Jmin E{X[kL1X"[kL]} 
:::;;: ll.[kLJ - 2LchA6.[kLl- 2LaL ll.[kLJA 

+4aiE {Xl k L ]X"'[ k L] 6. [k L lX[ k L ]Xh[ k L]} 

+4L'QilminA- (A.5) 

The first weak point of this analysis is that the above equation only 
holds for small adaptatiou constant, while later on the same equations 
are used as if they are valid for large adaptation constant too! A pos­
sible va.lidation can be that for large adaptation constant the residual 
signal is decreasing very fast, resulting in a steady state final value 
of the adaptive weights. Again the above mentioned separation under 
E{·} may be applied. 

Skipping the time index for one moment, the (i,j)£'" element of the last 
matrix; between brackets is given by: 

L-l N-l N~l L-l 

E{XXhLlXX"}ij == L L L L: E{XipX;pXrIXj6}.6.tr. (A.6) 
P"'O t",O r::::O ,,,,,0 

Now the assumption is made that the elements of matrix X have a. 
complex circular Gaussian distribution function. With this assumption 
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this fourth order moment can be split into three different parts [42]: 

E{XipX;pX ... Xj,t} ;;:; E{XipX;p}E{X~.XjJ + E{XiPX,..}E{X;pXj. 
+E{XipXj,t}E{X,pX;.}. (A.I 

Using the definition of matrix X[kL] = QhX[kLJ this gives for the 
(p, t )th element: 

xp~ = S;~[kL - L + 1 - t] = lit[kL - L + 1 - l]~ (A.S) 

and in general: 

E{XptX;:,.,..} :;::; S;E{1i[kL - L + 1 - tl~t[kL - L + 1 - n]}9m. (A.9) 

The second weak point of the analysis is that it is assumed that the 
main contributions of this matrix are on the diagonal elements, thus 
for t = 11" and that the contributions fot t ¥ n may be neglected in the 
sequel. Using this, it follows furthermore that 

;:;;; qhE{x[kL - L + 1 - lJxt[kL ~ L + 1 -l]}q 
_p _In 

hR _ {Ap for p:=;:: m. (A.lO) 
9;; 9. .... - 0 for p i- m 

On the other hand it follows from the circular Ga.ussian assumption 
tha.t 

E {XptXmn } = O. (A.ll ) 

Using these results this Jeads to: 

E{XXh .6.XXh} :::;j L 2 A~A + L . trace{A.6.}A. (A.12) 

With this, the above expression for ~[(k + 1)L] Can be written as: 

~[(k + l)LJ = .6.[kL]- 2f.:uJ., (A~[kLl + Ll.[kLJA) 
+4Lal (LA.6.[kL]A + t7·ace{ALl.[kL]}A) 

+4LrrlJmin A. (A.13) 

Since only the diagonal elements of D. are of interest, this expression 
can be rewritten as: 

~[(k + 1 )L] == A.1.[kL] + 4LalJmin.l (A.14) 
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with 
(A.15) 

and 

~ = (.\0)"') .\N-d 
~[kLl = (6.o,o[kL],.··, 6.N_1 ,N_l[kLj)h. (A.16) 

This equation fully describes the dynamic behavior of the adaptive fil­
ter using the BNLMS upda.te scheme. Following the same strategy as 
in [15] from this equation the following important convergence charac::­
teristic$ can be derived. 

Convergence At'ta: 

It can be shown ([15]) that the BNLMS algorithm converges if: 

(A.17) 

and 
1 - 4LaLA/ + 4LO!o~'\~ < l. (A-18) 

Using the definition for the relative eigenvalue 

(A.19) 

and introducing 
~ 1 N-l aLII 

Ec.,L('\) =: -L L 1 .\ 
1",0 -CtL I 

(A.20) 

it can be concluded that the convergence region of the BNLMS algo­
rithm is given by: 

1 
0< aL < XI 

Final Misadjustment: 

and (A.21) 
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Using the expressioIl describing the dynamic behavior of the BNLMS 
algorithm for k - 00 the final misadjustmant can be written as: 

] = lim (J[kLl- Jrnin) = 4La"i,..1t(I _ A)-l..1 
1.--."" Jmin 

(A.22) 

with 
(A.23) 

and 

(A.24) 

Using the Barlett formula (as in [15]): 

_At (r + "'AAt) -1 _,\ = ).,t (r-l _ 1 . r-1.\ . Atr-1) A 
I - 1 + .\tr-l.\ - - -1- -

l~r-l ~ 
(A.25) 

Combing this with the expression for the final misadJustment gives: 

] = Ea.L(\) . 
1 - ECI,L('\) 

(A.26) 

Note that indeed for small adaptation constant 0:£ this quantity can 
be approximated with the equation given in chapter 2, namely: 

(A.27) 

which is indeed the result used in chapter 2. 

Rate of Convergence: 

A closed expression for the rate of convergence as given in [15J can be 
derived as follows: 

00 Q:> 

J, = L· I: (J[kL]- J[oo]) ::.: L . L (Jex[kLJ - Jexlco]) 

00 

;:;; L· j.t E (a[kL]- .6.[00]) (A.28) 
10=0 
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Furthermore with: 

A[kLj- a[oo] ;;; A. (.o.I(k - I)L]- ~[oo])_ (A.29) 

this implies for the rate of convergence: 
OQ 

J~ = L· 'At. LA (,6,[(k - 1 )Lj - ~I(X)]) 
k"'o 
00 

L·}}· E {AI;} . (.6.[0] - a[ooj) 
k""o 

L . ).t . (I _ A)-l d .. 
- ~Inl 

with 
~ini = a[o]- 6.[00). (A.31) 

Using again a modification of the Barlett formula gives: 

~t (r + 7,\,\£)-1 ;:;;; ).t (r-1 _ 7 r-1,\.\t r-l) 
- 1 +lgr~ll -

gr-1 

(A.32) 

which results in the next expression for the rate of convergence of the 
BNLMS algorithm: 

~ .. EN -1 ----.!.!!!.:!. 
J __ 1_ . I_D l-<lILAI 

~ - 4aL I - Eo:,L(.\) . 
(A.33) 

For small adaptation constant 0 this equation reduces to 

1 N-1 2 N-1 

J~ ~ 4a E flini" = 4a-~ E b.ini,l' 
L 1",0 L 1_0 

(A.34) 

A problem with this measure for the rate of convergence is tha.t a fast, 
or slow, initial pa.rt is neglected by definitiou_ 
The rate of convergence in Chapter 2 gives the number of samples 
needed to reduce the quantity 101ogJex [OllJmin by 20 dB, and for 
small adaptation constant this number waS given by: 

(A.35) 
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Samenvatting 
In vergelijking met vaste filters hebben adaptieve filters extra (rekenkundige) 
COTTlplexiteit nodig ~Hn de coefficienten aan te passen volgens een spedfiek 
regeJalgoritrne- Met z()'n algoritme is het mogelijk om goede resultaten 
te verkrijgen in een omgeying waar eeo aantal signaalcigenschappen niet 
yolleJig bekend zijn. De convergentieeigenschappen van zo'n adaptief filter 
worden onder andere gekenmerkt door de snelheid en nauwkeurigheid van 
het adaptatieproces. In veel praktische sitllaties is enige a priori informatie 
beschikbaar van de omgeving en/of de van belang zijnde signaaleigenschap­
pen, Dit. prodschrift. behandelt enkele methodcn om de beschikbare a priori 
informatie te gebruiken om hiermee de (rekenk-undige) compJexiteit te ver­
mindcren met behoud van de convergentieeigenschappen. 

De akoestische echo compensator, een typische toepassiug van een adap­
tief filter, was e~1I Van de onderwerpen waaraan, in de peri ode 1984-1989, 
onderzoek werd gedaa.n bij de Radio en Data Transmissie groep op hel 

Natuurkundig Laboratorium van Philips. In deze toepassing wordt een spraak· 
signaaJ via eell ablestisch edlOpad, van 100-200 msec' J als eell ongewenst 
signaal in een microfoon gerefledeerd- Het adaptief filter moet nu een $chat­
ting maken van dit ongewenste echosignaal. De helangrijkste problemen van 
deze toepMsing zijn, buiteo de lengte van het akoestisch echopad (1000-2000 
coefficienten), de niet stationariteiten van het spraaksignaal en het tijdvari­
ante karakter van het echopad. I10ewel geeo specifiek onderzoeksgebied van 
dit proefsdlTift, heeft de akoestische echo compensator toch gediend als mo~ 
tivatie yoor de meest.e gedeelten uit dit proefschrift. Het meeste materiaal is 
geplubliceerd in [49J-[60J en [14J. 

In Hoofdstuk 1 wordt een algernene inleiding gegeven van a.daptieve filters 
en de gebruikte symbolen en notaties worden uitgelegd. 

Omda.l blok proc€ssing techniekcn cen centrale rol yervuJlen in dit proef­
schrift, wordt in Hoofdstuk 2 een afleiding en cen analyse gegeven van het 
'JBlock Normalized Least Mean SquareslJ (BNLMS) algoritme- Dit. BNLMS 
algoritme maakt een keer per L monsters een aanpassing van alle N adaptieve 
coefficient.en_ Hierin is L de procesvertraging, In de literatuur wordt vaak 
beweerd dat dit algoritrne, clat met weinig rekenkundige c(lmplexitcit gere­
aliseerd kan worden, slcchtc convergentieeigenschappen heeft als eell gekJeurd 
signaa] wordt toegevoegd aan de ingallg van het adaptief filter. Uit de analyse 
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en experimentele resultaten van dit proefschrift voIgt dat zowel de statisti­
sche eigenschappen van het ingangssignaal al::: de initialisatie van de adaptieve 
coefficienten de convergentieeigenschappen beinvloeden. Dit heeft tot gevolg 
dat bij een gekleurd ingangssignaal de convergelltieeigenschappen zowel beter 
als slechter kunnen worden. Enige a priori kcnnis van de ingangssignaal 
eigenschappen kan gebruikt worden om het algoritme zo goed mogelijk te 
initialiseren. 

In Hoofdtsuk 3 wordt aangetoond dat het BNLMS algoritme voor grate 
filters (de akoestische echo compensator heeft een adaptief transversaal filter 
nodig van 1000-2000 coefficienten) heel efficient kan worden uitgevoerd in 
het frequentie domein. VOOI de transformatie tuggen het tijd- en frequentie 
domein wordt hierbij gebruik geroaakt van de "Fast Fourier Transformatie'"' 
(FFT) met een lengte van B = N + L - 1. Dit is een van de eerste redenen 
om de akoestische echo compensator in het frequentie domein uit te Yoeren. 
In de literatuur zijnJ voor vaste filters, twee methoden bekend om deze ef· 
ficiente implementatie uit te voeren_ Dit zijn de zogenaamde "overlap-save" 
en de "overlap-add" methode. Een bewering in de literatuur is dat bij adap­
tieve filters de JJoverlap-save" procedure met minder FFT's gerealiseerd kan 
worden dan de "overlap-add" methode. In dit hoofdstuk wordt aangetoond 
dat dit onjuist is en dat beide methoden bij adaptieve filters met ongeveer 
dezelfde hoeveelheid rekenkundige complexiteit gerealiseerd kunnen worden. 

Statistische eigenschappen van een spraak signaal zijn tijdsafllankelijk_ 
Als in w'n situatie het BNLMS algoritme voor de aanpassing Van de adap­
tieve coefficienten wordt toegepast, dan kunnen de convergentieeigenschap­
pen sterk fiuctueren. Voar zo'n geval, en voor vele andere praktische toepassin­
gen, is het wenselijk om het update algoritme wdanig aan te passen dat de 
convergentieeigenschappen van lIet adaptief filter ona.fhankelijk worden van 
de statistische eigenschappen van het ingangssignaal. Uit de literatuur is 
bekend dat het relatief eenvoudig is om in bet frequentie domein dcze decor­
relatie uit te voeren. Dit is de tweede motivatie om de akoestische echo com­
pensator in het frequentie domein te realiseren. In Hoofdstuk 4 wordt aange· 
toond dat decorrelatie kan worden uitgevoerd in het frequentie domein door 
iedere afzonderlijke frequentie component spectraal te normeren. Met deze 
methode wordt een benadering gemaa.kt van de gewenste tijd domein decor­
relatie. Eerst wordt in dit hoofdtsuk aangetoond onder welke yoorwaarden 
deze benadering acceptabel is. Toepassing van deze spectrale normalisatie 
bij het efficient uitgevoerde BN LMS algol'itme in het frequelltie domein, leidt 
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tot het "Block Frequency Domain Adaptive Filter" (BFDAF). Globaal zijn 
er twee varia.nten van het BFDAF algoritme bekend. De eerste~ die vijf FFTs 
nodig heeft voor de realisatie, is geintroduceerd a,ls de" constrained" BFDAF. 
Bij deze methode wordt de aanpassing van de adaptieve coeJficienten door 
een venster zodanig gcconditioneerd, dat voldaan wordt aan de voorwaarde, 
die no dig is voor de "overlap-save~' procedure. De tweede methode is de "un­
constrained" BrDA F, orndat hierbij het venster niet nodig is. Deze methode 
kan worden gerealiseerd met slechts drie FFTs. In het hoofdstuk wordt een 
analyse gegeven van een gegeneraliseerde structuur van de BFDAF, die vaar 
beide methoden kan worden gebruikt. Uit de:z;e analyse voIgt dat in het alge­
meen de "constrained" methode (5 FFTs) bet ere convergentieeigenschappen 
heeft dan de jjunconstrained" methode (3FFTs). Verder is het bekend dat 
vele praktische systemen, zoals de akoestische echo compensator, eell globaal 
afnemende impuls responsie hebben. Als deze a priori infonnatie beschik­
baar is, dan kan gebruik gemaakt worden van cen efficiente implementatie 
van de BFDAF die geraliseerd kan worden met drie FFTs~ terwijl de conVer­
gentieeigenschappen vergelijkbaar zijn met de BFDAF Vall vijf FFTs. 

Een van de grootste nadden van signaalbewerking op basis van blokken is 
de procesvcrtaging van L monsters (meestal is L in de orde grootte van de fil­
ter lengte N). Verder is bij de uitvoerillg Van de decorrelatie in het frequentie 
domein door sp~dra.le nm:malisatie, de resolutie van het spectrum gelijk aan 
het aantal frequentie componepten B. Echter, de statistische eigenschappen 
van het ingangssignaal, en dus het benodigd aantal frequentie domein delin­
gen, hecft geen enkele relatie met de lengte B. Door nu het originele BFDAF 
in f{ kleinere fltukken te pa.rtitioT)eren, met 1 :;:; f{ ::; N, en deze verkregen 
structuur op cen cfficiente manier tc implementeren, wordt het llPartitioned 
Block Frequency Domain Adaptive Filter" (PBFDAF) verkrcgen, die wordt 
besproken in Hoofdstuk 5. Deze structuur heeft, in vergelijking met het 
BFDA F, een geredllceerde procesvertraging. Verder kan eventueel a.anwezige 
a priori informatie van het spectrum van het ingangssignaal gebruikt worden 
om de rekenkundige complexiteit te reduceren. Dit omda.t de decorrelatie bij 
de PBFDAF methode wordt uitgevoerd met miudel' dan B delil1gen. 

In Hoofdstuk 6 wordt het adaptief filter probleem beschreven op cen ge­
ometrische manier. Een genera.lisatie van dit concept leidt tot de "Block 
Orthogonal Projection" (BOP) methode. Met dczc methode is hel mogelijk 
om het ingangssignaal van een adaptief filt~r I.e uecorreleren met eell L X L 
inverse autocorrelatie matrix, met L ~ 1. Dit ill tegenstelling tot de "Re-
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cursive Least Squares jj (RLS) methode j die hiervoor een N X N (inverse) 
autocorrelatie matrix nodig heeft. Als nu enige a priori informatie bekend is 
van het ingangssignaal is het mogelijk om met de BOP benadering de dimen­
sie L beter aan te passen op de benodigde dimensie om het ingangssignaal 
te decorreleren. Omdat verder zowel de BOP als de PBFDAF methode met 
een gereduceerd aantal vrijheidsgraden het ingangssignaal van het adaptief 
filter kunnen decorreleren, wordt hun onderlinge relatie ook in Hoofdstuk 
6 besproken. Verder is het bekelld uit de literatuur dat een spraaksignaal 
gemodelleerd kan worden met een auto regressief (ar) proces. Een ;'Effi· 
cient Orthogonal Projection') (EOP) algoritme wordt geintroduceerd om ar­
signalen op eenvoudige wijze te decorreleren-
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STELLINGEN 
Behorende hij bet ptoefschrift 

Adaptive Filtering Methods 
On methods to use a priori information in order to reduce complexity while 

maintaining convergence properties 

door P.C.W. Sommen 

L Ten onrechte wordt in de literatuur de suggestie gcwekt dat de con· 
vergentieeigenschappen van het "Least Mean Square" algoritme slecht 
zijn als het ingang$signaal gekleurd is. 
(Bron: Bellanger, M.G. (1987). Adaptive Digital Filters and Signal 
Analysis, Marcel Dekker, Inc., New York, ISBN 0-8247-7784-0 (p.130)) 

2. Bij de analyse van bet "Least Mean Square" algoritme worden aan­
names gedaan waaraan zelden voldaan wordt. De juistheid van de 
resultaten impliceert niet dat de aannames gerechtva.a.rdigd zijn. 
(Bron: Widrow B., Stearns S-D- (1985), Adaptive Signal Processing, 
Prentice-Hall, Englewood Cliffs, New Yersey 07632, ISBN 0"13·004029-
o (p. 102)) 

3. De bewering dat, bij de uitvoering van een adaptief filter in het fre­
quentiedomein, voor de toepassing van de "overlap-add" procedure 
meer Fourier transformaties nodig zijn dan voor de toepassing van de 
"overlap-save" procedure is onjuist. 
{Bran: G. Clark, S.R. Parker, S-K. Mitra, A Unified approach to Time­
and Frequency-Domain Realization of FIR Adaptive Digital Filters, 
IEEE Trans. on ASSP, vo1.31, ;(10.5, oct. 198:3, pp. 1073-1083) 

4. Bij een adaptief filter kan het "tracking" probleem in twee delen worden 
opgesplitst. Hierap kan, door gebruik te maken van signaalmodellen 
voor het ingangssigllaal, op cen adequate rnanier worden ingespeeld. 
(Bran: Haykin, S. (1986). Adaptive Filter Theory, Prentice-Hall, Engle" 
wood Cliffs, New Jersey 07632, ISBN 0-13-004052"5 (p. 251)) 



5. Adapt.ieve filters die gebruik maken van frequentiedomein technieken 
zijn) voor veel praktische toepassingen, een goed alternatief vOor de 
)' Recursive Least Squares" methode. 
(Bron: Dit proefschrift) 

6. Bij toepassingen waar een akoestische echo (100-200 msec.) nog steeds 
een probleem vormt, verdient het aanbeveling om te zoeken naar andere 
oplossingen dan het parallel schakelen van een adaptieve echo compen­
sator. 

7. Onder de weggebruikers belasten de voetganger en de fietsel' het milieu 
het minst. In de praktijk wordt dit nag steeds niet voldoende gewaar­
deerd in de vorm van regelgevingen en vool'zieningen ten behoeve van 
deze weggebl'uikers. 

8. Voal' het praductiel'ijp maken van een massaproduct is een van de 
vereistell dat het ontwikkelteam eensgezind aan de slag gaat. Bij het 
doen van innovatief onderzoek is daarentegen enige mate van eigenwi js­
hcid van de tcamleden cen vereiste. 

9. Een TUE-medewerker die een dienstl'eis naar het buitenland maakt is 
Vall te VOren nooit zeker of hij voldoende tegen ongevallen verzekerd is. 
De " aanbeveling" om op eigen kosten een passende vel'zekering af te 
51uit.en getuigt van een onzorgvuldig personeelsbeleid. 
(Bran: Regeling vaar vergoeding van reiskosten vaar dienstreizen, p7) 

10. Met behulp van vrij eenvoudige apparatuur (PC, nsp) is het in veel 
gevallen wei degelijk mogelijk om goed en profe8sioneeJ wetensdlap­
pelijk andel'zoek te verrichten. 
(StOn: Cursor j 1··12·~89j p6-7) 

II. lIet geveu van stellingen bij een proefschrift zou niet verplicht maeten 
ZlJIL 

Piet Sommen 
Valkenswaard, 16 juui 1992 
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