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Introduction

1.1 The output regulation
problem

1.2 Convergent dynamics

1.3 Contribution of the thesis
1.4 Structure of the thesis

1.1 The output regulation problem

The output regulation problem is one of the central problems in control theory.
This problem deals with asymptotic tracking of prescribed reference signals
and/or asymptotic rejection of undesired disturbances in the output of a dy-
namical system. The main feature that distinguishes the output regulation
problem from conventional tracking and disturbance rejection problems is that
in the output regulation problem the class of reference signals and disturbances
consists of solutions of some autonomous system of differential equations. This
system is called an exosystem. Reference signals and/or disturbances generated
by the exosystem are called exosignals.

Many control problems can be formulated as a particular case of the output
regulation problem. For example, in the set-point control problem the constant
reference signals to be asymptotically tracked by the output of a system can
be considered as outputs of an exosystem given by a differential equation with
zero right-hand side. A particular value of the reference signal is, in this case,
determined by the corresponding initial condition of the exosystem. In the same
way, constant disturbances acting on a system can be considered as outputs
of an exosystem with zero right-hand side. Therefore, the set-point control
problem and the problem of asymptotic rejection of constant disturbances in the
output of a system can be considered as particular cases of the output regulation
problem. Similar to the case of constant exosignals, harmonic reference signals
and disturbances can be considered as outputs of a linear harmonic oscillator.
In this case, parameters of the oscillator determine the frequency content of
the exosignal, while the initial conditions of the oscillator determine particular
amplitudes and phases of the exosignal. Here, we see that the problem of
asymptotic tracking and disturbance rejection for the case of harmonic reference
signals and disturbances can be considered as a particular case of the output
regulation problem.
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Examples of the output regulation problem with more complex exosystem
dynamics can be found, for example, in the problem of controlled synchroniza-
tion (see e.g. [58; 59; 73]). In this problem one considers two systems of the
same dimensions. The first system is autonomous and it is called a “master”
system. The “master” system usually has some complex dynamics, e.g. it may
have a chaotic attractor. The second system can be controlled and it is called a
“slave” system. The controlled synchronization problem is to find a controller
which, based on the measured signals from the master and slave systems, gen-
erates control action such that the state of the “slave” system asymptotically
tracks the state of the “master” system. In other words, the states of these two
systems synchronize. The fact that a controlled synchronization problem can
be treated as a particular case of the output regulation problem was pointed out
in [35]. From the formulation of the controlled synchronization problem, one
can easily notice that this problem has a lot in common with the observer de-
sign problem for the autonomous “master” system. In fact, the “slave” system
can be treated as an observer for the master system. Therefore, the problem
of observer design for autonomous systems can also be treated as an output
regulation problem.

For linear systems the output regulation problem was completely solved
in the 1970’s in the works of B.A. Francis, W.M. Wonham, E.J. Davison and
others [13; 20; 85]. This research resulted in the well-known internal model
principle [20] and in the observation that solvability of the linear output regu-
lation problem is related to the solvability of the so-called regulator equations,
which, in the linear case, are two linear matrix equations [19].

Following the trend of developing nonlinear control systems theory (see e.g.
[37; 60] and references therein), in the 1980’s some authors started studying the
output regulation problem for nonlinear systems [2; 27; 28]. A breakthrough
in the nonlinear output regulation problem happened with the publication of
the seminal paper [39] by A. Isidori and C.I. Byrnes. In that paper the au-
thors showed that under the neutral stability assumption on the exosystem
and some standard stabilizability/detectability assumptions on the system, the
local output regulation problem is solvable if and only if certain mixed alge-
braic equations and partial differential equations are solvable. These equations
are called the regulator equations. They are nonlinear counterparts of the reg-
ulator equations from the linear output regulation problem. An alternative
solution to the local output regulation problem was proposed in [32]. These
papers were followed by a number of publications dealing with various aspects
of the local output regulation problem. For example, if it is difficult to solve
the local output regulation problem (because it requires solving the regulator
equations), then approximate (in some sense) solutions to the problem can be
found, as reported in [8; 31; 34; 83]. The problem of structurally stable (i.e.
when the system parameters are assumed to be close enough to their nominal
values) output regulation was addressed in [8; 37]. The case when the system
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parameters are allowed to range within a given compact set was considered
in [8; 43; 50; 52]. The semiglobal output regulation problem with an adaptive
internal model, which allowed for uncertainties in the exosystem, has been con-
sidered in [78]. Probably the most complete list of references to results on the
output regulation problem until the year 2000 can be found in [7] and [8].

So far, the results on the output regulation problem mentioned above dealt
either with the local or semiglobal (i.e. when initial conditions belong to some
predefined compact set) cases. Actually, the number of results on the global
variant of the output regulation problem is very small compared to the number
of results on the local and semiglobal cases. Only recently more and more pa-
pers on the global output regulation problem have started appearing. In [77]
the global robust output regulation problem was solved for minimum-phase sys-
tems which are linear in the unmeasured variables. The same class of systems
as in [77], but with unknown system and exosystem parameters was considered
in [16]. In that paper the global output regulation problem was solved using
adaptive control techniques. In [12; 56] the global robust servomechanism prob-
lem for nonlinear systems in triangular form was considered. In [11] a problem
formulation for the global robust output regulation problem was proposed and
a way how to convert this problem into a certain robust stabilization problem
was suggested.

Careful examination of the global results mentioned above allows to con-
clude two things. First, at the moment there is still no agreed problem state-
ment for the global output regulation problem. Secondly, all these results start
with the assumption that the regulator equations are solvable and that the
corresponding solutions are defined either globally or in some predefined set.
The only vague justification for this assumption is that in the local output
regulation problem, the existence of locally defined solutions to the regulator
equations is a necessary condition for the solvability of the problem. In fact,
these two observations are, in a certain sense, coupled. Recall that in the local
output regulation problem [8; 39], a properly chosen problem setting with a
“right” set of standing assumptions allowed to obtain necessary and sufficient
conditions for the solvability of the problem and to build up a nice, complete
theory for this problem. Our hypothesis, which is now confirmed by the re-
sults contained in this thesis, is that by choosing a proper problem setting for
the global output regulation problem and a proper set of assumptions, one
can build up a more or less complete theory for the global output regulation
problem, just like it was done for the local case in [8; 39]. Such theory would in-
clude necessary and sufficient conditions for the solvability of the problem and
it would embrace the existing problem formulations and results on the global
output regulation problem. Moreover, it would provide us with new solutions
to the global output regulation problem for new classes of systems.

One possible way of defining such a new problem setting has been proposed
in [40]. Although the approaches adopted in this thesis and in [40] are different,
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the corresponding final results are close to each other.
A cornerstone in such a new problem formulation for the global output

regulation problem adopted in this thesis is the natural requirement that the
closed-loop system must have some “convergence” property. Roughly speaking,
this property means that all solutions of the closed-loop system “forget” their
initial conditions and converge to some unique solution, which can be called a
limit- or a steady-state solution. This solution is determined only by the ex-
osignal generated by the exosystem. This “convergence” property is discussed
in the next section.

1.2 Convergent dynamics

In many control problems and, in particular, in the output regulation prob-
lem, it is required that controllers are designed in such a way that all solutions
of the corresponding closed-loop system “forget” their initial conditions and
converge to some steady-state solution which is determined only by the input
of the closed-loop system. This input can be, for example, a command sig-
nal or a signal generated by a feedforward part of the controller or, as in the
output regulation problem, it can be the signal generated by the exosystem.
For asymptotically stable linear systems excited by inputs, this is a natural
property. Indeed, due to linearity of the system, every solution is globally
asymptotically stable and, therefore, all solutions of such a system “forget”
their initial conditions and converge to each other. After transients, the dy-
namics of the system are determined only by the input.

For nonlinear systems, in general, global asymptotic stability of a system
with the zero input does not guarantee that all solutions of this system with
a non-zero input “forget” their initial conditions and converge to each other.
There are many examples of nonlinear globally asymptotically stable systems,
which, being excited by a periodic input, have coexisting periodic solutions.
Such periodic solutions do not converge to each other. This fact indicates that
for nonlinear systems the convergent dynamics property requires additional
conditions.

The property that all solutions of a system “forget” their initial conditions
and converge to some limit- or steady-state solution has been addressed in
a number of papers. In [72] this property was investigated for systems with
right-hand sides which are periodic in time. In that work systems with a
unique periodic globally asymptotically stable solution were called convergent.
Later, the definition of convergent systems given by V.A. Pliss in [72] was
extended by B.P. Demidovich in [15] (see also [64]) to the case of systems
which are not necessarily periodic in time. According to [15], a system is
called convergent if there exists a unique globally asymptotically stable solution
which is bounded on the whole time axis. Obviously, if such solution does
exist, all other solutions, regardless of their initial conditions, converge to this
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solution, which can be considered as a limit- or steady-state solution. In [14; 15]
B.P. Demidovich presented a simple sufficient condition for such a convergence
property. A translation of his results into English can be found in [64]. With
the development of absolute stability theory, V.A. Yakubovich showed in [86]
that for a linear system with one scalar nonlinearity satisfying some incremental
sector condition, the circle criterion guarantees the convergence property for
this system with any nonlinearity satisfying this incremental sector condition.

In parallel with this Russian line of research, the property of solutions con-
verging to each other was addressed in the works of T. Yoshizawa [87; 88] and
J.P. LaSalle [54]. In [54] this property of a system was called extreme stability.
In [87] T. Yoshizawa provided sufficient and, under certain assumptions, nec-
essary conditions for this extreme stability. These conditions are formulated in
terms of existence of a Lyapunov-type function satisfying certain conditions.
Extremely stable systems with periodic and almost-periodic right-hand sides
were studied in [88].

Several decades after these publications, the interest in stability properties
of solutions with respect to one another revived. Incremental stability, incre-
mental input-to-state stability and contraction analysis are some of the terms
related to such properties. In the mid-nineties, W. Lohmiller and J.-J.E. Slo-
tine (see [55] and references therein) independently reobtained and extended
the result of B.P. Demidovich. In particular, they pointed out that systems
satisfying the (extended) Demidovich condition may enjoy certain properties
of asymptotically stable linear systems that are not encountered in general
asymptotically stable nonlinear systems. Yet, the notion of contraction intro-
duced in [55], which is supposed to reflect the phenomenon that all solutions
tend to each other, looks more like a sufficient condition for the extreme sta-
bility property introduced by J.P. LaSalle. A different approach was pursued
in the works by V. Fromion et al [22–24]. In this approach a dynamical system
is considered as an operator which maps some functional space of inputs to
a functional space of outputs. If such operator is Lipschitz continuous (has a
finite incremental gain or incrementally stable), then, under certain observabil-
ity and reachability conditions, all solutions of a state-space realization of this
system converge to each other. The sufficient conditions for such Lipschitz con-
tinuity condition proposed in [24] are very close to the sufficient conditions for
the convergence property obtained by Demidovich. In [3] D. Angeli developed
a Lyapunov approach to studying both the global uniform asymptotic stability
of all solutions of a system (in [3], this property is called incremental stability)
and the so-called incremental input-to-state stability property, which is com-
patible with the input-to-state stability approach (see e.g. [79]). The drawback
of the incremental stability and incremental input-to-state stability notions in-
troduced in [3] is that they are not coordinate independent. As was pointed
out in these recent papers, observer design and (controlled) synchronization
problems are some of the possible applications of such stability properties.
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In this thesis, for the property that all solutions of a system “forget” their
initial conditions and converge to some limit solution, we will adopt the no-
tion of convergent systems introduced by B.P. Demidovich. In comparison to
the other notions mentioned above, the property of convergence has two main
advantages: it is coordinate independent and it allows to define the limit so-
lution in a unique way, which proves to be beneficial in further analysis and
applications of convergent systems.

1.3 Contribution of the thesis

In this thesis we systematically study the output regulation problem based on
the notion of convergent systems. As a preliminary step, we extend the notion
of convergent systems introduced by B.P. Demidovich, investigate various prop-
erties of such systems and design certain tools for the analysis of convergent
systems. All these results can be used not only in the context of the output
regulation problem, but also in other problems in systems and control theory.
Then we formulate the so-called uniform output regulation problem. This is
a new problem setting for the output regulation problem. It is based on the
notion of convergent systems. We state a global, regional, semiglobal and local
variants of the uniform output regulation problem as well as a robust variant
of this problem for systems with uncertainties. This new problem setting has
several advantages over the existing problem settings (see e.g. [8; 11]). First,
it allows to deal with exosystems having complex dynamics, e.g. exosystems
with a (chaotic) attractor. Up to now most of the results on the output regu-
lation problem dealt only with exosystems having relatively simple dynamics,
for example with linear harmonic oscillators. The ability to deal with complex
exosystem dynamics allows to treat the problem of controlled synchronization
of systems with complex dynamics (see e.g. [35]) as a particular case of the uni-
form output regulation problem. The second advantage of this new problem
setting is that, as will be discussed below, it allows to treat the local and global
variants of the uniform output regulation problem in a unified way regardless of
the complexity of the exosystem dynamics. This new problem setting includes,
as its particular cases, the output regulation problem for linear systems and
the conventional local output regulation problem for nonlinear systems (see,
e.g. [8]).

For the global, global robust and local variants of the uniform output reg-
ulation problem, we provide necessary and sufficient conditions for the solv-
ability of these problems as well as results on characterization of all controllers
solving these problems. For all these different variants of the problem, the
obtained results on the solvability of the problem and controllers character-
ization look similar. Such a uniformity is a sign of the right choice of the
problem setting. Moreover, it is shown that many of the existing controllers
solving the global output regulation problem in other problem settings (see
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e.g. [12; 56; 67; 70; 77]), which can be different from the global uniform output
regulation problem, in fact solve the global uniform output regulation problem.

The solvability analysis of the uniform output regulation problem is based
on certain invariant manifold theorems. As will be discussed in Chapter 4,
these invariant manifold theorems can also be used for studying the so-called
generalized synchronization of coupled systems, for the computation of periodic
solutions of nonlinear systems excited by harmonic inputs and for the exten-
sion of the Bode magnitude plot from linear systems to nonlinear uniformly
convergent systems. Such a plot can be used, for example, for the purpose of
system performance analysis.

The solvability conditions for the global uniform output regulation prob-
lem do not provide direct recipes for finding controllers solving this problem.
Therefore, we provide separate results on controller design for the global uni-
form output regulation problem for several classes of nonlinear systems. One of
these controller designs is based on the notions of quadratic stabilizability and
detectability. These notions extend the conventional notions of stabilizability
and detectability from linear systems theory to the case of nonlinear systems.
The controller design based on these notions extends the known controllers
solving the linear and the local nonlinear output regulation problems to the
case of the global uniform output regulation problem for nonlinear systems.
For the case of a Lur’e system with a nonlinearity having a bounded derivative
and an exosystem being a linear harmonic oscillator, feasibility conditions for
such controller design can be easily checked by checking feasibility of certain
Linear Matrix Inequalities. Moreover, for this class of systems and exosystems
we provide a robust controller design which copes not only with the uncertain-
ties in the system parameters, but also with the uncertain nonlinearity from a
class of nonlinearities with a given bound on their derivatives.

All controller designs for the global uniform output regulation problem pre-
sented in the thesis are based on certain general methods that allow us to
design controllers making the corresponding closed-loop systems convergent.
These methods, which are presented in the thesis, can also be used for other
control problems where the convergence property of the closed-loop system is
required or desired.

If we cannot find a solution to the global uniform output regulation problem,
it can still be possible to find a controller that solves the local output regulation
problem. There are standard procedures for such controller designs (see e.g.
[8; 37]). The resulting controllers solve the output regulation problem for the
initial conditions of the closed-loop system and the exosystem lying in some
neighborhood of the origin. In order to enhance applicability of such controllers,
we present estimation results which, given a controller solving the local output
regulation problem, provide estimates of this neighborhood of initial conditions
for which the controller works. Such estimation results are presented for both
the exact and approximate variants of the local output regulation problem (see,
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e.g. [37]). These estimation results are also based on the notion of convergent
systems.

The nonlinear output regulation problem has been studied from a theoreti-
cal point of view in a series of papers. In all these works the proposed controllers
are validated only by means of simulations. To the best of our knowledge, there
are no examples of experimental validation of controllers solving the nonlinear
output regulation problem. In this thesis we try to fill in this gap in the field
of nonlinear output regulation. We study a local output regulation problem for
the so-called TORA system, which is a nonlinear mechanical benchmark sys-
tem, see e.g. [30; 44; 82]. A simple controller solving this problem is proposed.
This controller is implemented in an experimental setup and its performance is
investigated in experiments. The reason for this experimental study is twofold.
The first reason is to check whether controllers from the nonlinear output reg-
ulation theory are applicable in an experimental setting in the presence of
disturbances and modeling uncertainties, which are inevitable in practice. The
second reason is to identify the factors which can deteriorate the controller
performance and therefore require specific attention already at the stage of
controller design.

1.4 Structure of the thesis

The thesis is organized in the following way. In Chapter 2 we provide some
mathematical notions and results which will be used in the thesis. Here we re-
call different stability notions, the input-to-state stability and related results,
some facts on ω-limit sets and the center manifold theorem. Moreover, since
most of the analysis in the thesis is based on the notion of convergent systems,
this chapter contains a section with definitions, properties and sufficient condi-
tions for various notions of convergent systems. Since these notions and results
can be applied not only in the context of the output regulation problem, but
also for other control problems, this section can be used separately from the
rest of the thesis.

In Chapter 3 we formulate different variants of the so-called uniform out-
put regulation problem. We provide problem statements for the global, local,
regional, semiglobal and robust variants of the uniform output regulation prob-
lem. In this chapter we show that the uniform output regulation problem em-
braces the output regulation problem for linear systems and the conventional
local output regulation problem for nonlinear systems as particular cases. As
will become clear in Chapter 4, this new problem formulation allows to treat
the local and global variants of the uniform output regulation problem in the
same way. Moreover, in Chapter 3 we show how well-known problems such as
the observer design problem for autonomous systems and the controlled syn-
chronization problem can be viewed as a uniform output regulation problem.

Solvability of different variants of the uniform output regulation problem is
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studied in Chapter 4. In that chapter we first recall the solvability analysis of
the conventional local output regulation problem for nonlinear systems (see e.g.
[8; 37]), which is based on the center manifold theorem. In order to extend this
analysis to the non-local variants of the uniform output regulation problem, we
provide counterparts of the center manifold theorem for non-local analysis of
system dynamics. With these invariant manifold theorems at hand, we obtain
necessary and sufficient conditions for the solvability of different variants of the
uniform output regulation problem as well as results on the characterization of
all controllers solving these problems. These results are provided for the global,
global robust and local variants of the uniform output regulation problem.
The invariant manifold theorems, which form the foundation for the analysis
of the uniform output regulation problem, can also be applied in other fields
of systems and control theory. As an illustration, we discuss how they can
be used for studying the generalized synchronization phenomena [62], for the
computation of periodic solutions of a nonlinear system excited by harmonic
inputs and for defining a nonlinear analogue of the Bode magnitude plot for
convergent systems.

In Chapter 5 we present solutions to the global uniform output regulation
problem for particular classes of systems. First, we show how a controller
solving this problem can be decomposed into two parts. Then we discuss how
these parts of the controller can be found. One of these parts is responsible for
the convergence property of the closed-loop system. Due to this fact, we present
several results for designing a controller that makes the corresponding closed-
loop system convergent. Finally, based on these results, we provide several
solutions to the global uniform output regulation problem. In particular, for
Lur’e systems we provide, under certain conditions, a solution to the robust
global uniform output regulation problem for systems not only with parametric
uncertainties, but also with functional uncertainties in the right-hand side.

If we cannot find a solution to the global uniform output regulation problem
for a particular system, it can still be possible to find a local controller for the
output regulation problem. In Chapter 6 we provide results that allow us
to estimate the set of initial conditions for the system and the exosystem for
which this controller solves the output regulation problem. These results are
presented for the exact and approximate variants of the local output regulation
problem.

In Chapter 7 we provide experimental results on the local output regulation
problem for the TORA system.

Chapter 8 contains conclusions and recommendations.
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Preliminaries

2.1 Mathematical preliminaries
2.2 Convergent systems

2.3 Summary

In this chapter we present certain mathematical notions and results which
will be used in the thesis. In Section 2.1 we recall various stability concepts,
input-to-state stability, the notions of invariant and ω-limit sets and the cen-
ter manifold theorem. In Section 2.2 we introduce the notion of convergent
systems, discuss some properties of convergent systems and present sufficient
conditions for convergence. The notion of convergent systems plays a central
role in the analysis of the uniform output regulation problem studied in this
thesis.

2.1 Mathematical preliminaries

2.1.1 Stability concepts

We begin this section with giving definitions of some stability concepts for
non-autonomous systems. Consider the system

ż = F (z, t), z ∈ R
d, t ∈ R, (2.1)

where F (z, t) is piecewise continuous in t and locally Lipschitz in z.

Definition 2.1.1 ([51]) A solution z̄(t) of system (2.1), which is defined for
t ∈ (t∗,+∞), is said to be

• stable if for any t0 ∈ (t∗,+∞) and ε > 0 there exists δ = δ(ε, t0) > 0
such that |z(t0) − z̄(t0)| < δ implies |z(t) − z̄(t)| < ε for all t ≥ t0.

• uniformly stable if it is stable and the number δ in the definition of
stability is independent of t0.

• asymptotically stable if it is stable and for any t0 > 0 there exists δ =
δ(t0) > 0 such that |z(t0) − z̄(t0)| < δ implies limt→+∞ |z(t) − z̄(t)| = 0.
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• uniformly asymptotically stable if it is uniformly stable and there exists
δ > 0 (independent of t0) such that for any ε > 0 there exists T = T (ε) >
0 such that |z(t0) − z̄(t0)| < δ for t0 ∈ (t∗,+∞) implies |z(t) − z̄(t)| < ε
for all t ≥ t0 + T .

• exponentially stable if there exist δ > 0, C > 0 and β > 0 such that
|z(t0) − z̄(t0)| < δ for t0 ∈ (t∗,+∞) implies

|z(t) − z̄(t)| ≤ Ce−β(t−t0)|z(t0) − z̄(t0)|, ∀ t ≥ t0.

Asymptotic stability of z̄(t) implies that all solutions starting in some neigh-
borhood of z̄(t) are attracted to z̄(t). If we are interested in attractivity of
the solution z̄(t) for a predefined set of initial conditions Z ⊂ R

d, we need the
following definitions.

Definition 2.1.2 A solution z̄(t) of system (2.1), which is defined for t ∈
(t∗,+∞), is said to be

• asymptotically stable in a set Z ⊂ R
d if it is asymptotically stable and

any solution of system (2.1) starting in z(t0) ∈ Z, t0 ∈ (t∗,+∞) satisfies
|z(t) − z̄(t)| → 0 as t → +∞.

• uniformly asymptotically stable in Z ⊂ R
d if it is uniformly asymptoti-

cally stable and it attracts solutions of system (2.1) starting in z(t0) ∈ Z,
t0 ∈ R uniformly over t0, i.e. for any compact set K ⊂ Z and any ε > 0
there exists T (ε,K) > 0 such that if z(t0) ∈ K, t0 ∈ (t∗,+∞), then
|z(t) − z̄(t)| < ε for all t ≥ t0 + T (ε,K).

• exponentially stable in Z ⊂ R
d if it is exponentially stable and there exist

constants C > 0 and α > 0 such that any solution starting in z(t0) ∈ Z,
t0 ∈ R satisfies

|z(t) − z̄(t)| ≤ Ce−α(t−t0)|z(t0) − z̄(t0)|. (2.2)

Recall that a domain of attraction of an asymptotically stable solution z̄(t) is
defined as a family of sets D(t0) ⊂ R

d, t0 ∈ (t∗,+∞) such that if z(t0) ∈ D(t0)
then |z(t) − z̄(t)| → 0 as t → +∞. In general, a domain of attraction D(t0)
depends on t0. Thus, the requirement of asymptotic stability in a set Z means
that Z ⊂ D(t0) for all t0 ∈ R. In this case, the set Z can be called a uniform
domain of attraction.

Definition 2.1.3 A solution z̄(t), which is defined for t ∈ (t∗,+∞), is called
globally (uniformly, exponentially) asymptotically stable if it is (uniformly,
exponentially) asymptotically stable in Z = R

d.
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Remark. In literature, stability notions are usually defined only with respect
to the zero solution z̄(t) ≡ 0 (see e.g. [51]). This is due to the fact that if z̄(t) is
not identically zero, one can make the coordinate transformation x := z− z̄(t).
After such coordinate transformation system (2.1) takes the form

ẋ = F (x + z̄(t), t) − F (z̄(t), t) (2.3)

with the solution x̄(t) ≡ 0 corresponding to the solution z̄(t) in the original
coordinates. After such a transformation, (uniform) stability and (uniform)
asymptotic stability of solutions z̄(t) and x̄(t) ≡ 0 are equivalent. At the same
time, if we deal with (uniform) asymptotic stability of z̄(t) with some uniform
domain of attraction Z, such coordinate transformation not only transforms
z̄(t) into x̄(t) ≡ 0, but it also transforms the set Z into some time depen-
dent set X (t). Analysis of a solution with a time-dependent domain of attrac-
tion is rather complicated. Therefore, we provide the definitions of (uniform)
asymptotic stability in a set Z with respect to the solution z̄(t) in the original
coordinates. Notice that in the case of Z = R

d, global (uniform, exponen-
tial) asymptotic stability of a bounded solution z̄(t) is equivalent to global
(uniform, exponential) asymptotic stability of the solution x̄(t) ≡ 0 of system
(2.3). Therefore, Definition 2.1.3 is equivalent to conventional definitions of
(uniform, exponential) asymptotic stability, see e.g. [51].�

In the analysis of the output regulation problem, we will need the following
two properties of uniformly asymptotically stable solutions.

Property 2.1.4 Suppose z̄(t) is a solution of system (2.1) defined for all t ∈ R

and uniformly asymptotically stable in Z. If there exists a solution z̃(t) which
is defined for all t ∈ R and lies in some compact set K ⊂ Z for all t ∈ R, then
z̃(t) ≡ z̄(t).

Proof: Suppose at some instant t∗ ∈ R the solutions z̄(t) and z̃(t) satisfy
|z̃(t∗) − z̄(t∗)| ≥ ε > 0 for some ε > 0. Since z̄(t) is uniformly asymptotically
stable in Z, there exists a number T (ε,K) such that if z̃(t0) ∈ K for some
t0 ∈ R then

|z̃(t) − z̄(t)| < ε, ∀ t ≥ t0 + T (ε,K). (2.4)

Set t0 := t∗−T (ε,K). Then for t = t∗ inequality (2.4) implies |z̃(t∗)−z̄(t∗)| < ε.
Thus, we obtain a contradiction. Since t∗ has been chosen arbitrarily, this im-
plies z̃(t) ≡ z̄(t).�

It may happen that a solution z̄(t) which is uniformly asymptotically stable
in a set Z does not lie in this set. But if there is a solution z̃(t) lying in a
compact subset of Z for all t ∈ R, then, as follows from Property 2.1.4, z̄(t)
and z̃(t) coincide and, therefore, z̄(t) lies in Z for all t ∈ R. In the case of
Z = R

d, Property 2.1.4 means the following. If a solution z̄(t) defined for all
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t ∈ R is globally uniformly asymptotically stable and there exists some solution
z̃(t) which is also defined and bounded for all t ∈ R, then z̄(t) and z̃(t) coincide.

The next property states uniqueness of a solution which is uniformly asymp-
totically stable in a set Z.

Property 2.1.5 If there exists a solution z̄(t) of system (2.1) such that it
is defined for all t ∈ R and uniformly asymptotically stable in Z, then this
solution is unique.

Proof: Suppose z̃(t) is another solution which is defined for all t ∈ R and
uniformly asymptotically stable in Z. Suppose at some instant t∗ ∈ R it holds
that |z̃(t∗)− z̄(t∗)| ≥ 2ε > 0 for some ε > 0. Let z∗ be some point in the set Z.
Since both z̃(t) and z̄(t) are uniformly asymptotically stable in Z, there exists
T (ε, z∗) > 0 such that if z(t0) = z∗ for some t0 ∈ R then

|z(t) − z̄(t)| < ε, |z(t) − z̃(t)| < ε ∀ t ≥ t0 + T (ε, z∗). (2.5)

Set t0 := t∗ − T (ε, z∗). By the triangle inequality and inequality (2.5), it holds
that for t := t∗ = t0 + T (ε, z∗)

|z̃(t∗) − z̄(t∗)| ≤ |z̃(t∗) − z(t∗)| + |z(t∗) − z̄(t∗)| < 2ε.

Thus, we obtain a contradiction. Hence, z̃(t∗) = z̄(t∗). Due to the arbitrary
choice of t∗, we conclude that z̃(t) ≡ z̄(t) for all t ∈ R.�

2.1.2 Input-to-state stability

In this section we recall the notion of input-to-state stability (ISS) and review
some related results. Prior to introducing the notion of input-to-state stability,
we give the following definitions of class K and class KL functions.

Definition 2.1.6 ([51]) A continuous function α : [0, a) → [0,+∞) is said to
belong to class K if it is strictly increasing and α(0) = 0. It is said to belong
to class K∞ if a = +∞ and α(r) → +∞ as r → +∞.

Definition 2.1.7 ([51]) A continuous function β : [0, a)× [0,+∞) → [0,+∞)
is said to belong to class KL if, for each fixed s, the mapping β(r, s) belongs to
class K with respect to r and, for each fixed r, the mapping β(r, s) is decreasing
with respect to s and β(r, s) → 0 as s → +∞.

With these definitions at hand, we can formulate the property of input-to-
state stability. Consider the system

ż = F (z, u, t), t ∈ R, z ∈ R
d, u ∈ R

m, (2.6)
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where F (z, u, t) is piecewise continuous in t, continuous in u and locally Lip-
schitz in z. The input u(t) is a piecewise continuous function of t. Suppose for
u(t) ≡ 0 system (2.6) has an equilibrium point z = 0.

Definition 2.1.8 ([51]) System (2.6) is said to be locally input-to-state stable
if there exist a class KL function β(r, s), a class K function γ(r), and positive
constants kz and ku such that for any initial state z(t0) with |z(t0)| ≤ kz, and
any input u(t) with supt≥t0 |u(t)| ≤ ku, the solution z(t) exists and satisfies

|z(t)| ≤ β(|z(t0)|, t − t0) + γ( sup
t0≤τ≤t

|u(τ)|) (2.7)

for all t ≥ t0. It is said to be input-to-state stable if inequality (2.7) is satisfied
for any initial state z(t0) and any bounded input u(t).

Remark. Local ISS implies, in particular, that for any input u(t) satisfying
|u(t)| ≤ ku for all t ≥ t0 and u(t) → 0 as t → +∞ any solution z(t) of system
(2.6) starting in |z(t0)| ≤ kz tends to zero, i.e. z(t) → 0 as t → +∞. �

Below we review certain results, related to the input-to-state stability prop-
erty, which will be used in the thesis. The following theorem gives a sufficient
condition for input-to-state stability.

Theorem 2.1.9 ([51]) Consider system (2.6). Let V (z, t) be a continuously
differentiable function such that

α1(|z|) ≤ V (z, t) ≤ α2(|z|) (2.8)

∂V

∂t
+

∂V

∂z
F (z, u, t) ≤ −α3(|z|), ∀|z| ≥ ρ(|u|) > 0 (2.9)

for all (z, u, t) ∈ R
d × R

m × R, where α1(r) is a class K∞ function and α2(r),
α3(r) and ρ(r) are class K functions. Then system (2.6) is input-to-state stable
with γ = α−1 ◦ α2 ◦ ρ.1

The following lemma establishes a link between the uniform asymptotic sta-
bility of the equilibrium z = 0 of the unforced system (2.6) and the local
input-to-state stability of system (2.6).

Lemma 2.1.10 ([51]) Consider system (2.6). Suppose that in some neigh-
borhood of the origin (z,u)=(0,0) the function F (z, u, t) is continuously differ-
entiable and the Jacobian matrices ∂F/∂z and ∂F/∂u are bounded, uniformly
in t. If the equilibrium z = 0 is uniformly asymptotically stable, then system
(2.6) is locally input-to-state stable.

1Here ◦ denotes the composition of two functions, i.e. (α ◦ ρ)(r) = α(ρ(r)).
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Figure 2.1: Serial interconnection of two systems with inputs.

The next lemma allows to establish existence of a solution of a (locally) ISS
system which is defined and bounded for all t ∈ R.

Lemma 2.1.11 Suppose system (2.6) is locally input-to-state stable. Then
there exists a number k̃u > 0 such that for any input u(t) defined for all t ∈ R

and satisfying supt∈R |u(t)| ≤ k̃u there exists a solution zu(t) which is defined
for all t ∈ R and satisfies

sup
t∈R

|zu(t)| ≤ γ(sup
t∈R

|u(t)|), (2.10)

where γ(r) is the class K function from the definition of the input-to-state
stability. If system (2.6) is input-to-state stable, then a solution zu(t) satisfying
(2.10) exists for any input u(t) bounded on R.

Proof: See Appendix A.1.

The ISS property is very useful for studying interconnected systems. Con-
sider the systems

ż = F (z, y, u, t), (2.11)
ẏ = G(y, u, t), (2.12)

which are interconnected as shown in Figure 2.1. The functions F (z, y, u, t)
and G(y, u, t) are locally Lipschitz in z and y, continuous in u, and piecewise
continuous in t.

Theorem 2.1.12 ([79]) Consider systems (2.11) and (2.12). Suppose the sys-
tem (2.11) with (y, u) as input is ISS and the system (2.12) with u as input is
ISS. Then the interconnection of systems (2.11) and (2.12) is also ISS.

The theorem presented above deals only with series interconnection of ISS
systems. The next theorem, which is known as the the small gain theorem
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Figure 2.2: Bidirectionally interconnected systems with inputs.

for ISS systems, allows us to establish input-to-state stability for arbitrarily
interconnected ISS systems. Consider the systems

ż = F (z, y, u, t), (2.13)
ẏ = G(z, y, u, t), (2.14)

which are interconnected as shown in Figure 2.2. The functions F (z, y, u, t)
and G(z, y, u, t) are locally Lipschitz in z and y, continuous in u, and piecewise
continuous in t.

Theorem 2.1.13 ([47]) Consider systems (2.13) and (2.14). Suppose the sys-
tem (2.13) with (y, u) as input and the system (2.14) with (z, u) as input are
input-to-state stable and, for some class K functions γy(r), γz(r), γuz(r) and
γuy(r), and for some class KL functions βz(r, s) and βy(r, s), any solution of
system (2.13) with bounded inputs y(t) and u(t) satisfies

|z(t)| ≤ βz(|z(t0)|, t − t0) + γy( sup
t0≤τ≤t

|y(τ)|) + γuz( sup
t0≤τ≤t

|u(τ)|) (2.15)

and any solution of system (2.14) with bounded inputs z(t) and u(t) satisfies

|y(t)| ≤ βy(|y(t0)|, t − t0) + γz( sup
t0≤τ≤t

|z(τ)|) + γuy( sup
t0≤τ≤t

|u(τ)|). (2.16)

Suppose for some class K function ρ(r) the following small gain relation is
satisfied:

(γz + ρ) ◦ (γy + ρ)(r) ≤ r. (2.17)

Then the interconnected system (2.13), (2.14) is ISS.

2.1.3 Invariant and ω-limit sets

Consider a system
ẇ = s(w), w ∈ R

m (2.18)

with a locally Lipschitz function s(w). Let w(t, w0) denote the solution of
system (2.18) starting in w(0, w0) = w0. In the analysis of the output regulation
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problem, we will need the definitions of an invariant set and ω-limit sets of
system (2.18), which are given below.

Definition 2.1.14 ([4]) A set W ⊂ R
m is called invariant (positively invari-

ant) with respect to system (2.18) if w0 ∈ W implies w(t, w0) ∈ W for all t ∈ R

(for all t ≥ 0).

Definition 2.1.15 ([4]) A point w∗ ∈ R
m is called an ω-limit point of the

trajectory w(t, w0) if for any T > 0 and any ε > 0 there exists t∗ > T such that
|w(t∗, w0) − w∗| < ε. The set of all ω-limit points of the trajectory w(t, w0) is
called the ω-limit set and denoted by Ω(w0). For trajectories starting in some
set W ⊂ R

m, the notation Ω(W) denotes Ω(W) :=
⋃

w0∈W Ω(w0).

The following statements reflect some standard facts on ω-limit sets, see e.g.
[4]. For a trajectory w(t, w0) which is bounded for t ≥ 0 the ω-limit set Ω(w0)
is a bounded invariant set. If W ⊂ R

m is a bounded positively invariant set,
then Ω(W) is a bounded invariant set which attracts all trajectories w(t, w0)
starting in w0 ∈ W, i.e. for any w0 ∈ W it holds that dist(w(t, w0),Ω(W)) → 0
as t → +∞. Here, the distance dist(w,W) between a point w ∈ R

m and a
set W ⊂ R

m is defined as dist(w,W) := infw∗∈W |w − w∗|. If W is a compact
positively invariant set, then Ω(W) ⊂ W.

2.1.4 Center manifold theorem

In this section we recall the center manifold theorem, which forms a foundation
for studying the local output regulation problem (see e.g. [8]). Consider the
interconnected systems

ż = F (z, w), (2.19)
ẇ = s(w), (2.20)

where the functions F (z, w) and s(w) are twice continuously differentiable.

Theorem 2.1.16 ([10]) Consider systems (2.19) and (2.20). Suppose F (0, 0) =
0, s(0) = 0 and all eigenvalues of ∂F/∂z(0, 0) have negative real parts and all
eigenvalues of ∂s/∂w(0) have zero real parts. Then there exist δ > 0 and a C1

function α(w) defined for all |w| < δ such that α(0) = 0 and the graph z = α(w)
is a locally invariant and locally exponentially attractive manifold for systems
(2.19) and (2.20). The mapping α(w) satisfies the partial differential equation

∂α

∂w
(w)s(w) = F (α(w), w). (2.21)

If a set W ⊂ {w : |w| < δ} is (positively) invariant with respect to system
(2.20), then the graph

M(W) := {(z, w) : z = α(w), w ∈ W}
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is (positively) invariant with respect to systems (2.19) and (2.20), and for all
(z(t), w(t)) starting close enough to the origin (0, 0) it holds that

|z(t) − α(w(t))| ≤ Ce−βt|z(0) − α(w(0))| (2.22)

for some C > 0 and β > 0.

The manifold M(W) is called the center manifold and Theorem 2.1.16 is
usually referred to as the center manifold theorem. In general, the center man-
ifold theorem is formulated for bi-directionally coupled systems, i.e. when the
right-hand side of system (2.20) also depends on z. For the output regula-
tion problem it is sufficient to formulate the center manifold theorem only for
unidirectionally coupled systems (2.19) and (2.20).

2.2 Convergent systems

In many control problems and in particular in the output regulation problem,
it is required that the closed-loop system has the following internal stability
property: every solution of the closed-loop system “forgets” its initial condition
and converges to a (unique) limit solution determined only by an input. This
input can represent, for example, the feedforward part of the controller or a
disturbance. At the moment, there are several notions that formalize such in-
ternal stability requirement in mathematical terms: in [55] it is the contraction
property, in [3] it is incremental stability and incremental input-to-state sta-
bility, in [22; 24] it is incremental stability in terms of input-output operators
and in [15] it is the notion of convergence. In this thesis we will use the no-
tion of convergent systems originally developed by the Russian mathematician
B.P. Demidovich, see [15; 64]. This notion is coordinate independent, while the
notions of incremental stability and incremental input-to-state stability from
[3] are not; it is a rigorously defined topological property of solutions of a dy-
namical system, while the notion of contraction defined in [55] looks more like
a sufficient condition for such a topological property; it is more suitable for the
purposes of this thesis than the notion of incremental stability from [22; 24]
since we are not using the operator formalism in describing the system. Below
we give definitions of convergent systems, formulate basic properties of such
systems, and provide sufficient conditions for convergence.

2.2.1 Definitions

In this subsection we give definitions of convergent systems. These definitions
extend the definition given in [15]. Consider the system

ż = F (z, t), (2.23)
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where z ∈ R
d, t ∈ R and F (z, t) is locally Lipschitz in z and piecewise contin-

uous in t.

Definition 2.2.1 System (2.23) is said to be

• convergent in a set Z ⊂ R
d if there exists a solution z̄(t) satisfying the

following conditions

(i) z̄(t) is defined and bounded for all t ∈ R,
(ii) z̄(t) is asymptotically stable in Z.

• uniformly convergent in Z if it is convergent in Z and z̄(t) is uniformly
asymptotically stable in Z.

• exponentially convergent in Z if it is convergent in Z and z̄(t) is expo-
nentially stable in Z.

If system (2.23) is (uniformly, exponentially) convergent in Z = R
d, then it is

called globally (uniformly, exponentially) convergent.

The solution z̄(t) will be called a limit solution and the set Z will be referred
to as a convergence region. As follows from the definition of convergence, any
solution of a convergent system starting in a convergence region “forgets” its
initial condition and converges to some limit solution which is independent of
the initial condition. In general, the limit solution z̄(t) may be non-unique.
But for any two limit solutions z̄1(t) and z̄2(t) it holds that |z̄1(t)− z̄2(t)| → 0
as t → +∞. This statement follows from the triangle inequality

|z̄1(t) − z̄2(t)| ≤ |z̄1(t) − z(t)| + |z(t) − z̄2(t)|,
where z(t) is some solution of system (2.23) starting in z(t0) ∈ Z, t0 ∈ R,
and the fact that z̄1(t) and z̄2(t) attract solutions starting in Z. At the same
time, for uniformly convergent systems the following property follows from
Property 2.1.5.

Property 2.2.2 If system (2.23) is uniformly convergent in Z, then the limit
solution z̄(t) is unique.

The convergence property is an extension of stability properties of asymp-
totically stable linear time-invariant (LTI) systems. Recall that for a piecewise
continuous vector-function f(t), which is defined and bounded on t ∈ R, the
system ż = Az + f(t) with a Hurwitz matrix A has a unique solution z̄(t)
which is defined and bounded on t ∈ (−∞,+∞). It is given by the formula
z̄(t) :=

∫ t

−∞ exp(A(t − s))f(s)ds. This solution is globally uniformly expo-
nentially stable with the rate of convergence depending only on the matrix A.
Thus, an asymptotically stable LTI system excited by a bounded piecewise-
continuous function f(t) is globally exponentially convergent.
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2.2.2 Convergent systems with inputs

In the scope of control problems, time dependency of the right-hand side of
system (2.23) is usually due to some input. This input may represent, for
example, a disturbance or a feedforward control signal. In this section we will
consider convergence properties for systems with inputs. So, instead of systems
of the form (2.23), we consider systems

ż = F (z, w) (2.24)

with state z ∈ R
d and input w ∈ R

m. The function F (z, w) is locally Lipschitz
in z and continuous in w. We will consider piecewise continuous inputs w(t)
which are defined for all t ∈ R.

Classes of inputs
In the sequel we will deal with several important classes of inputs. The first
class consists of piecewise continuous inputs w(t) ∈ R

m which are defined and
bounded for all t ∈ R. This class of inputs is denoted by PCm. The second
class PC(W) is defined in the following way. Let W be some subset of R

m. A
function w(·) : R → W belongs to the class PC(W) if it is piecewise continuous
and if there exists a compact set Kw ⊂ W such that w(t) ∈ Kw for all t ∈ R. In
particular, we obtain that PC(Rm) = PCm. Another important class of inputs
considered in the thesis is the following. Consider the system

ẇ = s(w) (2.25)

with a locally Lipschitz function s(w). Let the set W ⊂ R
m be invariant with

respect to system (2.25). The class of inputs Is(W) consists of solutions w(t)
of system (2.25) starting in w(0) ∈ W. Note that since the set W is invariant,
we have for w(·) ∈ Is(W) that w(t) ∈ W for all t ∈ R.

Below we define the convergence property for systems with inputs.

Definition 2.2.3 System (2.24) is said to be (uniformly, exponentially) con-
vergent in a set Z ⊂ R

m for a class of inputs N ⊂ PCm if it is (uniformly,
exponentially) convergent in Z for every input w(·) ∈ N . In order to empha-
size the dependence of the limit solution on the input w(t), it is denoted by
z̄w(t).

As follows from the previous section, a simple example of a system which
is globally exponentially convergent for the class of inputs PCm is the system

ż = Az + Bw (2.26)
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with a Hurwitz matrix A. The corresponding limit solution z̄w(t) equals
z̄w(t) :=

∫ t

−∞ exp(A(t − s))Bw(s)ds. Moreover, this solution is bounded by

|z̄w(t)| ≤
∫ 0

−∞
‖ exp(−As)B‖ds sup

τ∈R

|w(τ)|.

Thus, for all inputs w(t) satisfying |w(t)| ≤ ρ, for some ρ > 0, and all t ∈ R

the corresponding limit solutions satisfy |zw(t)| ≤ R for all t ∈ R, where
R := ρ

∫ 0

−∞ ‖ exp(−As)B‖ds. Therefore, all limit solutions corresponding to
the inputs satisfying |w(t)| ≤ ρ for all t ∈ R are bounded by R uniformly with
respect to all inputs from this set. This motivates introducing the Uniformly
Bounded Limit Solution (UBLS) property. For a set W ⊂ R

n, consider some
class of inputs N (W) ⊂ PC(W).

Definition 2.2.4 The system (2.24) which is convergent in Z for a class of
inputs N (W) is said to have the Uniformly Bounded Limit Solution (UBLS)
property if for any compact set Kw ⊂ W there exists a compact set Kz ⊂ R

d

such that for any input w(·) ∈ N (W) the following implication holds

w(t) ∈ Kw ∀ t ∈ R ⇒ z̄w(t) ∈ Kz ∀ t ∈ R. (2.27)

Remark. For Z = R
d, W = R

m, and N (W) = PCm this definition is
equivalent to the following statement. For every ρ > 0 there exists R > 0 such
that if a piecewise continuous input w(t) satisfies |w(t)| ≤ ρ for all t ∈ R, then
the corresponding limit solution satisfies |zw(t)| ≤ R for all t ∈ R. The UBLS
property will prove to be useful in Chapter 4.�

Example 2.2.5 The system (2.26) with a Hurwitz matrix A is globally expo-
nentially convergent and has the UBLS property for the class of inputs PCm.
An example of a system which is globally exponentially convergent with the
UBLS property for the class of inputs PC(W) for some W ⊂ R

m, but which
does not have this property for the class of inputs PCm, is given by the system

ż = Az + B

(
1

1 − |w|2
)

w

with a Hurwitz matrix A. One can easily check that for W := {w : |w| < 1}
this system is globally exponentially convergent and has the UBLS property for
the class of inputs PC(W) and it does not have these properties for the class
of inputs PCm.�

A property that is even stronger than the UBLS property and that also holds
for asymptotically stable LTI systems, is presented in the following definition.
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Definition 2.2.6 System (2.24) is said to be input-to-state convergent (ISC)
if it is globally uniformly convergent for the class of inputs PCm and for every
input w(·) ∈ PCm system (2.24) is ISS with respect to the limit solution z̄w(t),
i.e. there exist a KL-function β(r, s) and a K∞-function γ(r) such that any
solution z(t) of system (2.24) corresponding to some input ŵ(t) := w(t)+∆w(t)
satisfies

|z(t) − z̄w(t)| ≤ β(|z(t0) − z̄w(t0)|, t − t0) + γ( sup
t0≤τ≤t

|∆w(τ)|). (2.28)

In general, the functions β(r, s) and γ(r) may depend on the particular input
w(t). If β(ρ, s) and γ(r) are independent of the input w(t), then such system
is called uniformly input-to-state convergent.

The following property establishes a link between the input-to-state con-
vergence and the global uniform convergence with the UBLS property.

Property 2.2.7 If system (2.24) is input-to-state convergent, then it is glob-
ally uniformly convergent with the UBLS property for the class of inputs PCm.

Proof: We only need to show that an input-to-state convergent system has the
UBLS property for the class of inputs PCm. Consider some input ŵ(·) ∈ PCm.
Since the input-to-state system is convergent, there exists a limit solution ẑw(t),
which is bounded for all t ∈ R. Then for any input w(·) ∈ PCm satisfying
|w(t)| ≤ ρ, for some ρ > 0 and all t ∈ R, the corresponding limit solution z̄w(t)
satisfies

|z̄w(t)| ≤ |ẑw(t)| + |z̄w(t) − ẑw(t)|

≤ sup
t∈R

|ẑw(t)| + β(|z̄w(t0) − ẑw(t0)|, t − t0) + γ

(
sup
t∈R

|w(t) − ŵ(t)|
)

≤ sup
t∈R

|ẑw(t)| + γ

(
sup

t∈R, |w|≤ρ

|w − ŵ(t)|
)

=: R. (2.29)

In the last inequality we have used the fact that |z̄w(t0) − ẑw(t0)| remains
bounded as t0 → −∞ and therefore β(|z̄w(t0)−ẑw(t0)|, t−t0) → 0 as t0 → −∞.
Thus, we have shown that for any input w(t) satisfying |w(t)| ≤ ρ for all t ∈ R

the corresponding limit solution z̄w(t) satisfies |z̄w(t)| ≤ R for all t ∈ R. Notice
that R does not depend on w(t). This proves the UBLS property.�

Similarly to the conventional ISS property, the property of input-to-state
convergence is especially useful for studying convergence properties of inter-
connected systems. In this thesis the input-to-state convergence property will
be used in Chapter 5. For local analysis we introduce the notion of local con-
vergence.



28 Preliminaries

Definition 2.2.8 System (2.24) with F (0, 0) = 0 is said to be locally (uni-
formly, exponentially) convergent for some class of inputs N ⊂ PCm if there
exists a neighborhood of the origin Z ⊂ R

d and a number ρ > 0 such that sys-
tem (2.24) is (uniformly, exponentially) convergent in Z for all inputs w(·) ∈ N
satisfying the condition |w(t)| < ρ for all t ∈ R.

Roughly speaking, if system (2.24) is locally convergent, then for any suffi-
ciently small inputs w(t) from the class N all solutions of system (2.24) starting
close enough to the origin converge to the same limit solution z̄w(t).

2.2.3 Basic properties of convergent systems

As follows from the previous section, the (uniform) convergence property and
the input-to-state convergence property are extensions of stability properties
of asymptotically stable LTI systems. In this section we present certain prop-
erties of convergent systems that are inherited from asymptotically stable LTI
systems.

Since all ingredients of the (uniform) convergence and the input-to-state
convergence properties are invariant under smooth coordinate transformations
(see Definitions 2.2.1, 2.2.6), we can formulate the following property.

Property 2.2.9 The uniform convergence property is preserved under smooth
coordinate transformations in the following sense. If system (2.24) is (uni-
formly) convergent in Z for some class of inputs N ⊂ PCm, then after a
smooth coordinate transformation z̃ = ψ(z) the system in the new coordinates
is (uniformly) convergent in Z̃, where Z̃ = ψ(Z) is the image of Z under the
mapping ψ. Moreover, the UBLS property and the input-to-state convergence
property are preserved under smooth coordinate transformations.

Certain properties of convergent systems can be concluded if the input w(t)
is defined only on the positive half axis t ∈ [t0,+∞) rather than on the whole
time axis as in the definition of the convergence property.

Property 2.2.10 Suppose system (2.24) is globally (uniformly) convergent
for the class of inputs PC(W). Then for every piecewise continuous input w(t)
defined for t ≥ t0 and lying in some compact subset of W for all t ≥ 0, there
exists a solution z̃w(t) which is defined and bounded for all t ≥ t0 and which
is (uniformly) globally asymptotically stable.

Proof: Define w̃(t) such that w̃(t) = w(t) for all t ≥ t0 and w̃(t) ≡ w(t0) for all
t < t0. This w̃(t) belongs to the class PC(W). Since system (2.24) is globally
(uniformly) convergent for the class of inputs PC(W), there exists a limit solu-
tion z̃w(t) corresponding to the input w̃(t). This solution z̃w(t) is (uniformly)
globally asymptotically stable. By definition, for t ≥ t0 this z̃w(t) is a solution
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of system (2.24) with the input w(t). This establishes our claim.�

The next statement summarizes some properties of uniformly convergent
systems excited by periodic or constant inputs.

Property 2.2.11 Suppose system (2.24) with a given input w(t) is uniformly
convergent in Z. If the input w(t) is constant, the corresponding limit solution
z̄w(t) is also constant; if the input w(t) is periodic with period T , then the
corresponding limit solution z̄w(t) is also periodic with the same period T .

Proof: Suppose the input w(t) is periodic with period T > 0. Denote z̃w(t) :=
z̄w(t + T ). Notice that z̃w(t) is a solution of system (2.24). Namely, by the
definition of z̃w(t), it is a solution of the system

ż = F (z, w(t + T )) ≡ F (z, w(t)).

Here we have used the periodicity of w(t), i.e. w(t + T ) ≡ w(t). Since z̄w(t) is
bounded on t ∈ R and uniformly asymptotically stable in Z, so is z̃w(t) since
z̃w(t) is a time-shifted version of z̄w(t). Thus, z̃w(t) is also a limit solution
of system (2.24). But as follows from Property 2.2.2, the limit solution of a
uniformly convergent system is unique. Thus, z̄w(t + T ) = z̃w(t) ≡ z̄w(t). This
proves periodicity of the limit solution z̄w(t). A constant input w(t) ≡ w∗ is
periodic for any period T > 0. Hence, the corresponding limit solution z̄w(t)
is also periodic with any period T > 0. This implies that z̄w(t) is constant.�

If a system is locally uniformly convergent for some class of inputs N ⊂ PCm

containing the zero input w(t) ≡ 0, then it has a certain continuity property
which guarantees that for small inputs the corresponding limit solutions are
also small. This is stated in the following property.

Property 2.2.12 Consider system (2.24) with F (0, 0) = 0 and F (z, w) being
C1 in some neighborhood of the origin (z, w) = (0, 0). Suppose system (2.24) is
locally uniformly asymptotically convergent for some class of inputs N ⊂ PCm

containing the zero input w(t) ≡ 0. Then there exists a neighborhood of the
origin Z ⊂ R

d, a number kw > 0 and a class K function γ(r) such that system
(2.24) is uniformly convergent in Z for any w(·) ∈ N satisfying supt∈R |w(t)| ≤
kw and the corresponding limit solution z̄w(t) satisfies

sup
t∈R

|z̄w(t)| ≤ γ(sup
t∈R

|w(t)|). (2.30)

Proof: See Appendix A.2.

If two inputs converge to each other, so do the corresponding limit solutions,
as follows from the next property.
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Figure 2.3: Parallel connection of two systems with inputs.
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Figure 2.4: Series connection of two systems with inputs.

Property 2.2.13 Suppose system (2.24) is globally uniformly convergent for
the class of inputs PCm and F (z, w) is C1. Then for any two inputs w1(·) and
w2(·) ∈ PCm satisfying w1(t)−w2(t) → 0 as t → +∞, the corresponding limit
solutions z̄w1(t) and z̄w2(t) satisfy z̄w1(t) − z̄w2(t) → 0 as t → +∞.

Proof: See Appendix A.3.

The next two properties relate to parallel and series connections of uniformly
convergent systems, as shown in Figure 2.3, 2.4.

Property 2.2.14 (Parallel connection) Consider the system{
ż = F (z, w), z ∈ R

d

ẏ = G(y, w), y ∈ R
q.

(2.31)

Suppose the z- and y-subsystems are globally uniformly convergent for some
class of inputs N ⊂ PCm (input-to-state convergent). Then the system (2.31)
is globally uniformly convergent for the class of inputs N (input-to-state con-
vergent).

Proof: The proof directly follows from the definitions of uniformly convergent
and input-to-state convergent systems.�
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Figure 2.5: Bidirectionally interconnected systems with inputs.

Property 2.2.15 (Series connection) Consider the system{
ż = F (z, y, w), z ∈ R

d

ẏ = G(y, w), y ∈ R
q.

(2.32)

Suppose the z-subsystem with (y, w) as input is input-to-state convergent, and
the y-subsystem with w as input is input-to-state convergent. Then system
(2.32) is input-to-state convergent.

Proof: See Appendix A.4.

The next property deals with bidirectionally interconnected input-to-state
convergent systems, as shown in Figure 2.5

Property 2.2.16 Consider the system{
ż = F (z, y, w), z ∈ R

d

ẏ = G(z, y, w), y ∈ R
q.

(2.33)

Suppose the z-subsystem with y = 0 is input-to-state convergent. Assume that
there exists a class KL function βy(r, s) such that for any input (z(·), w(·)) ∈
PCd+m any solution of the y-subsystem satisfies

|y(t)| ≤ βy(|y(t0)|, t − t0).

Then the interconnected system (2.33) is input-to-state convergent.

Proof: Denote z̄w(t) to be the limit solution of the z-subsystem corresponding
to y = 0 and to some w(·) ∈ PC. Then (z̄w(t), 0) is a solution of the intercon-
nected system (2.33) which is defined and bounded for all t ∈ R. Performing
the change of coordinates z̃ = z − z̄w(t) and applying the small gain theorem
for ISS systems (Theorem 2.1.13), we establish the property.�

Remark. We will use Property 2.2.16 in Chapter 5 in order to prove the
separation principle for input-to-state convergent systems. In that context



32 Preliminaries

system (2.33) represents a system in closed loop with a state-feedback controller
and an observer generating state estimates for this controller. The y-subsystem
corresponds to the estimation error dynamics of the observer.�

2.2.4 Sufficient conditions for convergence

In the previous sections we presented the definitions and basic properties of con-
vergent systems. The next question to be addressed is: how to check whether
a system exhibits these convergence properties? In this section we provide
sufficient conditions for convergence for smooth and non-smooth systems.

A simple sufficient condition for the uniform convergence property for smooth
systems was proposed in [14] (see also [64]). Here we give a different formula-
tion of the result from [14] adapted for systems with inputs and extended to
include the input-to-state convergence property.

Theorem 2.2.17 Consider system (2.24) with the function F (z, w) being C1

with respect to z and continuous with respect to w. Suppose there exist ma-
trices P = PT > 0 and Q = QT > 0 such that

P
∂F

∂z
(z, w) +

∂F

∂z

T

(z, w)P ≤ −Q, ∀z ∈ R
d, w ∈ W. (2.34)

Then system (2.24) is globally exponentially convergent with the UBLS prop-
erty for the class of inputs PC(W). If W = R

m, then system (2.24) is input-
to-state convergent.

We will refer to condition (2.34) as the Demidovich condition, after B.P. Demi-
dovich, who applied this condition for studying convergence properties of dy-
namical systems [14; 15; 64]. In the sequel, we say that a system satisfies the
Demidovich condition if the right-hand side of this system satisfies condition
(2.34) for some matrices P = PT > 0 and Q = QT > 0.

A complete proof of Theorem 2.2.17 is provided in Appendix A.5. It is
based on two technical lemmas formulated below. These lemmas will also be
used in subsequent results on the convergence properties.

Lemma 2.2.18 ([14; 64]) Suppose F (z, w) is C1 with respect to z and con-
tinuous with respect to w. Let C ⊂ R

d and W ⊂ R
m be such that

P
∂F

∂z
(z, w) +

∂F

∂z

T

(z, w)P ≤ −Q, ∀z ∈ C, w ∈ W, (2.35)

for some positive definite matrices P and Q. Then there exists β > 0 such
that for any w ∈ W and for any two points z1, z2 ∈ R

d such that the open line
segment (z1, z2) connecting these two points lies in C, it holds that

(z1 − z2)T P (F (z1, w) − F (z2, w)) ≤ −β(z1 − z2)T P (z1 − z2). (2.36)
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The number β > 0 depends only on the matrices P and Q. If the set C is
convex, then relation (2.36) holds for any two points z1, z2 ∈ C and for any
w ∈ W.

Remark. The number β can be chosen equal to β := λmin(Q)/λmax(P ),
where λmin(·) and λmax(·) denote the minimal and the maximal eigenvalues of
a symmetric matrix. If Q := aI for some scalar a > 0, then β = a/‖P‖, where
‖ · ‖ = λmax(·) is the matrix norm induced by the vector norm |z| = (zT z)1/2.
This expression for β will be used in Chapter 6.�

For the case of C = R
d, Lemma 2.2.18 allows to establish global exponential

stability of every solution of system (2.24) corresponding to any input w(·) ∈
PC(W) (see details in the proof of Theorem 2.2.17 in Appendix A.5). The
second lemma allows to establish the existence of a solution z̄w(t) which is
defined and bounded for all t ∈ R.

Lemma 2.2.19 ([86]) Consider system (2.24) with a given continuous input
w(t) defined for all t ∈ R. Suppose D ⊂ R

d is a compact set which is positively
invariant with respect to system (2.24) with the input w(t). Then there exists
a solution z̄w(t) of system (2.24) satisfying z̄w(t) ∈ D for all t ∈ R.

Theorem 2.2.17 is proved in the following way. The Demidovich condi-
tion (2.34) guarantees that for any input w(·) ∈ PC(W) any solution of sys-
tem (2.24) is globally exponentially stable. Moreover, this condition guarantees
that for any input w(·) ∈ PC(W) system (2.24) has a compact positively in-
variant set Dw (see details in the proof of Theorem 2.2.17 in Appendix A.5).
By Lemma 2.2.19 this implies the existence of a solution z̄w(t) which is defined
and bounded for all t ∈ R. Therefore, system (2.24) is globally exponentially
convergent. The UBLS property and the input-to-state convergence property
require a rather technical proof (see Appendix A.5). The reasoning used in
the proof of Theorem 2.2.17 and Lemmas 2.2.18 and 2.2.19 will be used in the
proofs of subsequent results on the convergence property.

Example 2.2.20 Let us illustrate the application of Theorem 2.2.17 with a
simple example. Consider the system

ż1 = −z1 + wz2 + w (2.37)
ż2 = −wz1 − z2.

The Jacobian of the right-hand side of system (2.37) equals

J(z1, z2, w) =
( −1 w

−w −1

)
.
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Obviously, J + JT = −2I < 0. Thus, the Demidovich condition (2.34) is
satisfied for all z1, z2 and w (with P = I and Q = 2I). By Theorem 2.2.17,
system (2.37) is input-to-state convergent.�

If the right-hand side of system (2.24) is not smooth with respect to z
(therefore, the Jacobian ∂F/∂z(z, w) may be undefined in certain points of
the state space), after some adjustments we can still apply the Demidovich
condition (2.34) for checking the exponential convergence property. The next
theorem extends Theorem 2.2.17 to the case where the function F (z, w) may
lose continuous differentiability on certain low-dimensional sets.

Theorem 2.2.21 Consider system (2.24). Let F (z, w) be continuous with
respect to w and locally Lipschitz with respect to z for all z ∈ R

d and w ∈
W ⊂ R

m. Moreover, let F (z, w) be C1 with respect to z in (z, w) ∈ (Rd\Γ)×W,
where Γ ⊂ R

d is a set consisting of a finite number of hyperplanes given by
equations of the form HT

j z +hj = 0, for some Hj ∈ R
d and hj ∈ R, j = 1 . . . k.

Suppose there exist matrices P = PT > 0 and Q = QT > 0 such that

P
∂F

∂z
(z, w) +

∂F

∂z

T

(z, w)P ≤ −Q, ∀z ∈ R
d \ Γ, w ∈ W. (2.38)

Then system (2.24) is globally exponentially convergent with the UBLS prop-
erty for the class of inputs PC(W). If W = R

m, then system (2.24) is input-
to-state convergent.

Proof: See Appendix A.6.

Remark. It can be proved that the statement of Theorem 2.2.21 holds also
for the case when the set Γ consists of a finite number of smooth manifolds
given by equations of the form hj(z) = 0, j = 1, . . . k. The proof of this fact
is based on the same ideas as the proof of Theorem 2.2.21, but contains much
more technical details.�

As a particular case of Theorem 2.2.21 we obtain the following result for
piecewise affine systems.

Theorem 2.2.22 Consider the state space R
d which is divided into regions

Λi, i = 1, . . . , l, by hyperplanes given by equations of the form HT
j z + hj = 0,

for some Hj ∈ R
d and hj ∈ R, j = 1, . . . , k. Consider the piecewise affine

system
ż = Aiz + bi + Dw(t), for z ∈ Λi, i = 1, . . . , l. (2.39)

Suppose the right-hand side of (2.39) is continuous and there exists a positive
definite matrix P = PT > 0 such that

PAi + AT
i P < 0, i = 1, . . . , l. (2.40)
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Then system (2.39) is globally exponentially convergent for the class of inputs
PCm and input-to-state convergent.

The continuity requirement on the right-hand side of system (2.39) can be
checked with the following lemma.

Lemma 2.2.23 Consider system (2.39). The right-hand side of system (2.39)
is continuous iff the following condition is satisfied: for any two regions Λi and
Λj having a common boundary HT z + h = 0 the corresponding matrices Ai

and Aj and the vectors bi and bj satisfy the equalities

GHHT = Ai − Aj (2.41)
GHh = bi − bj ,

for some vector GH ∈ R
d.

Proof: See Appendix A.7.

Recall that by Property 2.2.15 a series connection of input-to-state con-
vergent systems is again an input-to-state convergent system. Therefore we
obtain the following corollary of Property 2.2.15 and Theorems 2.2.17, 2.2.21
and 2.2.22.

Corollary 2.2.24 The series connection of systems satisfying the Demidovich
condition is an input-to-state convergent system.

Taking into account the existence of powerful solvers for linear matrix in-
equalities (LMI), condition (2.40) can be efficiently checked with a computer.
In certain cases, feasibility of the Demidovich condition (2.34) or (2.38) can
also be concluded from feasibility of LMIs of the form (2.40). Namely, suppose
there exist matrices A1, . . . Ak such that

∂F

∂z
(z, w) ∈ co{A1, . . . Ak}, ∀ z ∈ R

d \ Γ, w ∈ W,

where

co{A1, . . . Ak} :=

{
A ∈ R

d×d : A =
k∑

i=1

λiAi,

k∑
i=1

λi = 1, λi ≥ 0

}

is the convex hull of matrices A1, . . . , Ak. If the LMIs

PAi + AT
i P < 0, i = 1, . . . , k (2.42)

admit a common positive definite solution P = PT > 0, then condition (2.34)
or (2.38) is satisfied with this matrix P .
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In some cases, feasibility of the LMI (2.42) can be checked using frequency
domain methods following from the Kalman-Yakubovich lemma (see [51; 86]).
For example, one can use the circle criterion, as follows from the following
lemma.

Lemma 2.2.25 ([51; 86]) Consider a Hurwitz matrix A ∈ R
d×d, matrices

B ∈ R
d×1, C ∈ R

1×d and some number γ > 0. Denote A−
γ := A − γBC and

A+
γ := A + γBC. The following conditions are equivalent:

(i) There exists P = PT > 0 such that

PA−
γ + (A−

γ )T P < 0, PA+
γ + (A+

γ )T P < 0. (2.43)

(ii) The matrix A is Hurwitz and
∣∣C(iωI − A)−1B

∣∣ < 1
γ for all ω ∈ R.

This lemma allows to check input-to-state convergence for the so-called
Lur’e systems, as follows from the following example.

Example 2.2.26 Consider the system

ż = Az + Bϕ(y) + Ew (2.44)
y = Cz + Hw,

with the Hurwitz matrix A, scalar output y and scalar nonlinearity ϕ(y) ∈ R.
Suppose the nonlinearity ϕ(y) is C1 and it satisfies the condition

∣∣∣∂ϕ
∂y (y)

∣∣∣ ≤ γ

for all y ∈ R. Then the Jacobian of the right-hand side of system (2.44), which
is equal to ∂F

∂z := A + BC ∂ϕ
∂y (y), satisfies ∂F

∂z ∈ co{A−
γ , A+

γ } for all y ∈ R. By
Lemma 2.2.25, if the condition∣∣C(iωI − A)−1B

∣∣ <
1
γ

, ∀ ω ∈ R, (2.45)

is satisfied, then LMI (2.43) admits a common positive definite solution. There-
fore, system (2.44) satisfies the Demidovich condition (2.34) for all z ∈ R

d and
all w ∈ R

m. By Theorem 2.2.17, such a system is globally exponentially con-
vergent for the class of inputs PCm and it is input-to-state convergent.�

If the nonlinearity ϕ(y) is not C1, in some cases one can still conclude the
input-to-state convergence of the system, as follows from the next example.

Example 2.2.27 Consider system (2.44) with H = 0 and the nonlinearity
ϕ(y) given by the formula

ϕ(y) :=

 k1y, |y| ≤ δ
k2y + (k1 − k2)δ, y > δ
k2y − (k1 − k2)δ, y < δ

(2.46)
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Figure 2.6: Nonlinearity ϕ(y).

for some δ > 0 and k2 > k1 > 0. The nonlinearity ϕ(y) is shown in Figure 2.6.
The system (2.44), (2.46) represents a linear system in closed-loop with

a variable gain controller. In [25] such controllers are proposed to enhance
the performance of DVD drives. One of the questions addressed in [25] is:
under what conditions does system (2.44), (2.46), being excited by a periodic
input w(t), have a unique globally asymptotically stable periodic solution?
This question can be easily answered using Lemma 2.2.25 and Theorem 2.2.22,
which guarantee that system (2.44), (2.46) is globally exponentially convergent.
Notice that system (2.44), (2.46) is an example of a continuous piecewise affine
system (2.39) with two modes separated by the switching surfaces Cz = δ and
Cz = −δ. The matrices A1 and A2 corresponding to different modes can be
written as A1 = Ã + γBC and A2 = Ã − γBC, where Ã = A + k1+k2

2 BC and

γ = (k2 − k1)/2. Therefore, if Ã is Hurwitz and
∣∣∣C(iωI − Ã)−1B

∣∣∣ < 1
γ for

all ω ∈ R, then, by Lemma 2.2.25, there exists a matrix P = PT > 0 such
that (2.40) is satisfied. By Theorem 2.2.22 system (2.44), (2.46) is globally
exponentially convergent. This implies that all solutions of system (2.44), (2.46)
exponentially converge to a unique limit solution z̄w(t). By Property 2.2.11,
for any periodic input w(t) this limit solution z̄w(t) is periodic with the same
period T as the period of w(t).�

Theorem 2.2.17 is based on quadratic Lyapunov functions. It may happen
that there are no matrices P = PT > 0 and Q = QT > 0 such that system
(2.24) satisfies the Demidovich condition (2.34). Yet, this system can be uni-
formly convergent if it satisfies the conditions of the theorem presented below.
This theorem is a generalization of Theorem 2.2.17.

Theorem 2.2.28 Consider system (2.24). Suppose there exist C1 functions
V1(z1, z2) and V2(z), K-functions α2(s), α3(s), α5(s), γ(s) and K∞-functions
α1(s), α4(s) satisfying the conditions

α1(|z1 − z2|) ≤ V1(z1, z2) ≤ α2(|z1 − z2|), (2.47)
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∂V1

∂z1
(z1, z2)F (z1, w) +

∂V1

∂z2
(z1, z2)F (z2, w) ≤ −α3(|z1 − z2|), (2.48)

α4(|x|) ≤ V2(z) ≤ α5(|z|), (2.49)

∂V2

∂z
(z)F (z, w) ≤ 0 for |z| ≥ γ(|w|) (2.50)

for all z1, z2, z ∈ R
d and all w ∈ R

m. Then system (2.24) is globally uniformly
convergent and has the UBLS property for the class of inputs PCm.

Proof: See Appendix A.8.

In order to establish the local exponential convergence property of system
(2.24), one needs to check the linearization of system (2.24) at the origin, as
follows from the next theorem.

Theorem 2.2.29 Consider system (2.24) with F (0, 0) = 0 and F (z, w) being
C1 with respect to z and continuous with respect to w in some neighborhood
of (z, w) = (0, 0). Let N ⊂ PCm be some class of inputs w(·) containing the
zero input w(t) ≡ 0. The following statements are equivalent:

(i) System (2.24) is locally exponentially convergent for the class of inputs
N .

(ii) System (2.24) is locally exponentially convergent for the class of inputs
PCm.

(iii) The matrix ∂F/∂z(0, 0) is Hurwitz.

Proof: See Appendix A.9.

2.3 Summary

In this chapter we have presented mathematical preliminaries which will be
used further in this thesis. These preliminaries include various stability con-
cepts, input-to-state stability, the notions of invariant sets and ω-limit sets and
the center manifold theorem. Moreover, we have introduced various notions of
convergent systems, which will play a central role in the analysis and design
problems for the output regulation problem. The notion of convergence repre-
sents a convenient formalization of the property that all solutions of a system
with an input “forget” their initial conditions and converge to some limit solu-
tion which is determined only by the input. The notion of convergence is more
convenient than the other existing formalizations of such property (contraction
property [55], incremental stability [3; 22] and incremental input-to-state sta-
bility [3]), because the convergence property is a rigorously defined topological
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property of solutions of a system with inputs, it is coordinate independent and
it does not require an operator description of the system. The convergence
property is an extension of stability properties of asymptotically stable LTI
systems to the nonlinear case. Therefore, convergent systems have a number
of stability properties which are inherited from asymptotically stable linear
systems. Some of these properties have been presented in this chapter. We
have provided sufficient conditions for various convergence properties. These
conditions apply to systems with smooth right-hand sides and non-smooth, but
continuous right-hand sides. As a particular case, we have presented sufficient
conditions for input-to-state convergence for continuous piecewise affine sys-
tems. This result extends, in a certain sense, the result obtained in [49], where
a property, which is similar to convergence, is exploited in observer design for
piecewise linear systems. The results on convergent systems presented in this
chapter will be used in subsequent analysis and controller design for the output
regulation problem. At the same time, they can be used for analysis and syn-
thesis in other control problems, where it is important that solutions of a sys-
tem “forget” their initial conditions and converge to some steady-state solution
determined by the input. These problems include tracking, synchronization,
observer design, disturbance rejection, and nonlinear performance analysis.
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3.6 Summary

3.1 Introduction

Roughly speaking, the output regulation problem is either a disturbance rejec-
tion problem or a tracking problem or a combination of these two problems.
The key feature that distinguishes the output regulation problem from the
conventional disturbance rejection and tracking problems is that disturbances
and/or reference signals are generated by an external autonomous system,
which is called an exosystem. Disturbances and reference signals generated
by the exosystem are called exosignals. The only available information on the
exosignals is the model of the exosystem and the set of initial conditions of the
exosystem, while the particular initial condition, which determines a particular
exosignal, is unknown. The exosystem together with the set of initial condi-
tions determine the class of exosignals which affect the system. The output
that we want to regulate (e.g. the tracking error in the tracking problem) is
called the regulated output. The output which is available for measurement is
called the measured output. The output regulation problem is, in general, to
find a measured output feedback controller such that the closed-loop system
is internally stable and the regulated output tends to zero along solutions of
the closed-loop system [37]. The internal stability requirement roughly means
that all solutions of the closed-loop system “forget” their initial conditions and
converge to some limit solution which is determined only by the exosignal. As
we have seen in the previous chapter, such an internal stability requirement
can be formalized as the requirement of (uniform) convergence of the closed-
loop system, which has been defined in Chapter 2. In this chapter we state
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several variants of the uniform output regulation problem based on the notion
of uniform convergence. First, in Section 3.2 we introduce the equations of the
systems under consideration and make basic assumptions on these systems.
After that, in Section 3.3 we state different variants of the uniform output
regulation problem: the global, semiglobal, regional and local variants of the
problem as well as the problem of robust uniform output regulation. Relations
between the uniform output regulation problem and the conventional formula-
tions of the output regulation problem are discussed in 3.4. Relations between
observer design and controlled synchronization problems and the uniform out-
put regulation problem are studied in Section 3.5.

3.2 System equations and basic assumptions

Consider systems modelled by equations of the form

ẋ = f(x, u, w), (3.1)
e = hr(x,w), (3.2)
y = hm(x,w) (3.3)

with state x ∈ R
n, input u ∈ R

k, regulated output e ∈ R
lr and measured

output y ∈ R
lm . The exogenous signal w(t) ∈ R

m, which can be viewed as a
disturbance in equation (3.1) or as a reference signal in (3.2), is generated by
an external autonomous system

ẇ = s(w) (3.4)

with some set of initial conditions W ⊂ R
m. System (3.4) is called an exosys-

tem. The functions f(x, u, w), hr(x,w), hm(x,w) and s(w) are assumed to be
continuous and, where necessary, locally Lipschitz in order to guarantee exis-
tence and uniqueness of solutions of the corresponding differential equations.
In the sequel we will use the following notation: the class of all solutions of
exosystem (3.4) starting in the set W ⊂ R

m is denoted by Is(W).
In the context of the output regulation problem, we will consider several

classes of exosystems. Exosystems of the first class satisfy the following bound-
edness assumption in a set of initial conditions W:

A1 The set W is invariant with respect to exosystem (3.4) and for any com-
pact set K0 ⊂ W there exists a compact set Kw ⊂ W such that any
solution w(t) starting in w(0) ∈ K0 satisfies w(t) ∈ Kw for all t ∈ R.

For the case of W = R
m, assumption A1 can be reformulated in the fol-

lowing equivalent way: for any number a > 0 there exists b > 0 such that
|w(0)| ≤ a implies |w(t)| ≤ b for all t ∈ (−∞,+∞). Using the definitions of
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Yoshizawa [87], such a property of solutions of exosystem (3.4) can be called
equi-boundedness of solutions in forward and backward time.

A simple and practically important example of an exosystem satisfying the
boundedness assumption A1 is a linear system

ẇ = Sw (3.5)

with the matrix S such that its spectrum consists of simple eigenvalues on
the imaginary axis with, possibly, multiple eigenvalues at zero. This system
is a linear harmonic oscillator. Without loss of generality, we assume that the
matrix S is skew-symmetric. In this case, the exosystem (3.5) satisfies A1 in
any ball Wr := {w : |w| < r}, 0 < r ≤ +∞. Indeed, for every solution of
exosystem (3.5) it holds that |w(t)| ≡ Const. Thus, for every compact set
K0 ⊂ Wr we can choose Kw to be a closed ball Kw := {w : |w| ≤ r̄}, where
r̄ > 0 is such that r̄ < r and K0 ⊂ Kw. With this choice of Kw it holds that Kw

is a compact subset of Wr and any solution w(t) starting in w(0) ∈ K0 satisfies
w(t) ∈ Kw for all t ∈ R.

Assumption A1 is rather restrictive since a wide variety of practically and
theoretically important exosystems do not satisfy this assumption. For exam-
ple, exosystems having a limit cycle or any other bounded attractor with an
unbounded domain of attraction do not satisfy this assumption because there
exist trajectories leaving any compact set as t → −∞. Such exosystems are
encountered, for example, in (controlled) synchronization problems, see e.g.
[35; 36; 59]. As will be shown in Section 3.5, the (controlled) synchronization
problem is a particular case of the output regulation problem. In practice we
are interested not in the dynamics for negative time, but only in the dynamics
for positive time, i.e. for t → +∞. Thus, we come to the second class of
exosystems which will be considered in this thesis. Exosystems of this class
satisfy the following assumption in a compact set of initial conditions W+:

A2 The set W+ is positively invariant with respect to exosystem (3.4).

For exosystems satisfying assumption A2 in some compact set W+, this set,
for example, may consist of a bounded attractor and some compact positively
invariant subset of its domain of attraction.

For local variants of the output regulation problem, we will consider so-
called neutrally stable exosystems.

Definition 3.2.1 The exosystem (3.4) with an equilibrium w = 0 is called
neutrally stable if w = 0 is stable in forward and backward time and for any
point w0 close enough to the origin it holds that w0 ∈ Ω(w0), where Ω(w0) is
the ω-limit set defined in Section 2.1.3.

Similar to the case of exosystems satisfying the boundedness assumption A1,
the class of neutrally stable exosystems contains linear harmonic oscillators.
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Indeed, any linear harmonic oscillator (3.5) has an equilibrium w = 0, which
is stable in forward and backward time. Moreover, every trajectory w(t) of
exosystem (3.5) returns to any neighborhood of its initial state w(0). This
implies that w0 ∈ Ω(w0) for every w0 ∈ R

m.

3.3 The uniform output regulation problem

In this section we formulate several problem settings for the uniform output
regulation problem. In every problem setting one has to find, if possible, a
controller of the form

ξ̇ = η(ξ, y), ξ ∈ R
q (3.6)

u = θ(ξ, y) (3.7)

for some q ≥ 0 such that the closed-loop system

ẋ = f(x, θ(ξ, hm(x,w)), w), (3.8)
ξ̇ = η(ξ, hm(x,w)) (3.9)

satisfies three conditions: Regularity, Uniform convergence, and Asymptotic
output zeroing.

The regularity condition means that the closed-loop system satisfies condi-
tions for existence and uniqueness of solutions. Throughout the thesis, we will
require that the closed-loop system is locally Lipschitz with respect to (x, ξ)
and continuous with respect to w.

The uniform convergence condition means that the closed-loop system with
w as input is uniformly convergent in some set Z ⊂ R

n+q for every w(t) being
a solution of the exosystem starting in some predefined set of initial conditions
W ⊂ R

m. The sets Z and W will be determined in the specific problem settings
introduced in this section. The uniform convergence requirement guarantees
that every solution of the closed-loop system starting in (x(0), ξ(0)) ∈ Z and
corresponding to a solution w(t) starting in w(0) ∈ W “forgets” its initial
conditions and converges to a unique limit solution z̄w(t), which is determined
only by the input w(t). Moreover, in some problem settings it will be required
that the closed-loop system has the Uniformly Bounded Limit Solution (UBLS)
property (see Definition 2.2.4), which means that for inputs taking their values
in some bounded set, the corresponding limit solutions are bounded uniformly
with respect to these inputs.

The asymptotic output zeroing condition means that for every solution of
the closed-loop system starting in (x(0), ξ(0)) ∈ Z and every solution of the
exosystem starting in w(0) ∈ W it holds that the regulated output tends to
zero:

e(t) = hr(x(t), w(t)) → 0 as t → +∞.
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In the following subsections we formulate precise problem statements for the
global, regional, semiglobal and local variants of the uniform output regulation
problem.

3.3.1 The global uniform output regulation problem

In this section we consider global variants of the uniform output regulation
problem for two types of exosystems. The first variant is formulated for ex-
osystems with trajectories starting in some open invariant set W ⊂ R

m for
which the exosystem satisfies the boundedness assumption A1. This variant
is called the global uniform output regulation problem. The second variant is
formulated for the case of exosystems for which the set of initial conditions
W+ is compact and positively invariant, i.e. for exosystems that satisfy as-
sumption A2 in the compact set W+. This variant is called the global forward
time uniform output regulation problem. Both variants of the global uniform
output regulation problem are formulated in the following definition. The re-
quirements which are different for the forward time variant of the problem are
given in brackets.

The global (forward time) uniform output regulation problem: given
exosystem (3.4) satisfying the boundedness assumption A1 in an open set of
initial conditions W ⊂ R

m (satisfying the assumption A2 in a compact set
of initial conditions W+ ⊂ R

m), find, if possible, a controller of the form
(3.6), (3.7) such that the closed-loop system (3.8), (3.9) satisfies the following
conditions:

a) the right-hand side of the closed-loop system is locally Lipschitz with
respect to (x, ξ) and continuous with respect to w;

b) the closed-loop system is globally uniformly convergent with the UBLS

property for the class of inputs Is(W) (for the class of inputs PC(W̃),
where W̃ is some neighborhood of W+);

c) for all solutions of the closed-loop system and the exosystem starting in
(x(0), ξ(0)) ∈ R

n+q and w(0) ∈ W (w(0) ∈ W+) it holds that e(t) =
hr(x(t), w(t)) → 0 as t → +∞.

The main difference between the forward time and regular variants of the
global uniform output regulation problem is in the uniform convergence con-
dition b). In the forward time variant of the problem, the set W+ is compact
and only positively invariant with respect to the exosystem. Therefore, certain
solutions of the exosystem starting in W+ may be not defined for all t ∈ R.
This fact does not allow us to require the uniform convergence property in
b) for the class of inputs consisting of solutions of the exosystem starting in
w(0) ∈ W+ because in the definition of convergence the inputs must be defined
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for the whole time axis t ∈ R. In order to cope with this difficulty, the uniform
convergence is required for a larger class of inputs PC(W̃).

Both variants of the global uniform output regulation problem will be
treated similarly at the stage of controller design in Chapter 5. We will en-
counter the differences between these two variants only at the analysis stage in
Chapter 4, when the question of solvability of the problems is answered.

3.3.2 The regional and semiglobal uniform output
regulation problems

If it is required that the region of convergence Z in the uniform output reg-
ulation problem must contain a certain predefined compact set, but need not
necessarily be global, then we deal with the so-called regional uniform output
regulation problem, as is precisely defined below.

The regional (forward time) uniform output regulation problem:
given the exosystem (3.4) satisfying the boundedness assumption A1 in an
open set of initial conditions W ⊂ R

m (satisfying the assumption A2 in a
compact set of initial conditions W+ ⊂ R

m) and given compact sets Wc ⊂ W
(Wc ⊂ W+) and X ⊂ R

n, find a controller of the form (3.6), (3.7) and a
compact set Ξ ⊂ R

q such that the closed-loop system (3.8), (3.9) satisfies the
following conditions:

a) the right-hand side of the closed-loop system is locally Lipschitz with
respect to (x, ξ) and continuous with respect to w.

b) the closed-loop system is uniformly convergent in the set X × Ξ and has
the UBLS property for the class of inputs consisting of solutions of the
exosystem starting in Wc (for the class of inputs PC(W̃c), where W̃c is
some neighborhood of Wc).

c) for all solutions of the closed-loop system and the exosystem starting in
(x(0), ξ(0)) ∈ X×Ξ and w(0) ∈ Wc it holds that e(t) = hr(x(t), w(t)) → 0
as t → +∞.

If one has to solve the regional (forward time) uniform output regulation
problem for any pair of compact sets X ⊂ R

n and Wc ⊂ W (Wc ⊂ W+) then
such problem is called the semiglobal (forward time) uniform output
regulation problem.

The problem formulations for the regional and semiglobal variants of the
uniform output regulation problem are given here for the sake of complete-
ness of the set of different problem settings for the uniform output regulation
problem. We will not pay much attention to them in this thesis.
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3.3.3 The local uniform output regulation problem

For the local variant of the uniform output regulation problem, it is assumed
that f(0, 0, 0) = 0, hr(0, 0) = 0, hm(0, 0) = 0, s(0) = 0, and the functions
f(x, u, w) and hm(x,w) are C1. Also, it is assumed that the exosystem (3.4)
is neutrally stable (see Definition 3.2.1). Notice that neutral stability of the
exosystem implies that arbitrarily close to the origin w = 0 there exists a
neighborhood of the origin W which is invariant with respect to the exosystem
dynamics. We will formulate two variants of the local output regulation prob-
lem: one, which is more general, using the uniform convergence property and
another one using the exponential convergence property.

The local uniform (exponential) output regulation problem: find, if
possible, a controller of the form (3.6), (3.7) with η(0, 0) = 0, θ(0, 0) = 0 such
that the closed-loop system (3.8), (3.9) satisfies the following conditions:

a) the right-hand side of the closed-loop system is C1 with respect to (x, ξ)
and continuous with respect to w.

b) the closed-loop system is locally uniformly (exponentially) convergent for
the class of inputs Is(W), where W ⊂ R

m is some invariant neighborhood
of the origin.

c) for all solutions of the closed-loop system and the exosystem starting
close enough to the origin (x, ξ, w) = (0, 0, 0) it holds that

e(t) = hr(x(t), w(t)) → 0 as t → +∞.

Remark. In the case of the local exponential output regulation problem,
requirement b) is equivalent to the requirement that the Jacobian matrix of the
right-hand side of the closed-loop system (3.8), (3.9) evaluated at (x, ξ, w) =
(0, 0, 0) is Hurwitz. This statement follows from Theorem 2.2.29 and from the
fact that w(t) ≡ 0 is a solution of the exosystem and this solution belongs to
the class Is(W) for any neighborhood of the origin W.�

3.3.4 Types of controllers

Depending on the information available for feedback, one can distinguish dif-
ferent types of controllers. If y = (x,w), i.e. the states of the system and the
exosystem are available for feedback, controller (3.6), (3.7) is called a full state
feedback. If only the regulated output is available for feedback, i.e. y = e, then
controller (3.6), (3.7) is called an output feedback. In other cases a controller is
called partial state feedback. Notice that the controller (3.6), (3.7) may consist
only of the static block (3.7). In this case, ξ = ∅ and the controller is called
static. Otherwise, it is called dynamic.
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3.3.5 Robust output regulation

In practice certain parameters of the system and the exosystem may not be
known exactly. In this case, these parameters may be included in the system
model as an unknown constant vector p ∈ R

r, with a nominal value p◦:

ẋ = f(x, u, w, p) (3.10)
e = hr(x,w, p), (3.11)
y = hm(x,w, p), (3.12)
ẇ = s(w). (3.13)

Suppose controller (3.6), (3.7) solves the (global, regional, local) uniform
output regulation problem for the nominal values of parameters p◦. We say
that controller (3.6), (3.7) is structurally stable at p◦ if it solves the (global,
regional, local) uniform output regulation problem for all parameters p from
some neighborhood of the nominal vector p◦. If controller (3.6), (3.7) solves
the (global, regional, local) uniform output regulation problem for all p from
some predefined set P ⊂ R

r, it is called robust with respect to p ∈ P. In
other words, such a controller solves the robust (global, regional, local) uniform
output regulation problem with respect to p ∈ P.

It may occur that not only certain constant parameters of the system are
unknown, but also certain functional characteristics are not known exactly.
Such uncertainty may be considered as an unknown function ϕ(·) in the right-
hand side of the system equations:

ẋ = f(x, u, w, ϕ(x,w)). (3.14)

The only information that is known about ϕ(·) is that it belongs to a certain
class F . If controller (3.6), (3.7) solves the (global, regional, local) uniform
output regulation problem for all functions ϕ(·) from the class F , it is called
robust with respect to the functional uncertainty ϕ(·) ∈ F .

3.3.6 Properties of the closed-loop system

Notice that due to the requirement of uniform convergence, every solution of
system (3.1) in closed-loop with controller (3.6), (3.7) solving one of the variants
of the uniform output regulation problem are bounded for t ≥ t0.

If the system and the exosystem satisfy f(0, 0, 0) = 0, hm(0, 0) = 0, s(0) = 0
and a controller solving the (local, global) uniform output regulation problem
satisfies the conditions η(0, 0) = 0 and θ(0, 0) = 0, then for w(t) ≡ 0 the
closed-loop system (3.8), (3.9) has a (locally, globally) asymptotically stable
equilibrium at the origin (x, ξ) = (0, 0). This property guarantees that if there
are no disturbances or reference signals (w(t) ≡ 0) then controller (3.6), (3.7)
(locally, globally) stabilizes system (3.1), (3.3) at the origin.
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3.4 Relations to conventional problem settings

The uniform output regulation problem formulated in the previous sections is
somewhat different from conventional variants of the output regulation prob-
lem, see e.g. [8; 20; 32; 39]. Usually, instead of the uniform convergence con-
dition some other internal stability condition is required. Yet, in some cases
conventional problem settings are particular cases of the uniform output regu-
lation problem. We will illustrate this statement with two examples.

In the linear output regulation problem [8; 13], the system is given by
equations of the form

ẋ = Ax + Bu + Ew, (3.15)
e = Crx + Hrw,

y = Cmx + Hmw,

where x is the state, u is the control, e and y are the regulated and measured
outputs respectively, and w is an external signal generated by the exosystem

ẇ = Sw,

which is a linear harmonic oscillator.

The linear output regulation problem is to find a controller of the form

ξ̇ = Kξ + Ny, (3.16)
u = Mξ + Ly

such that the closed-loop system(
ẋ

ξ̇

)
=

(
A + BLCm BM

NCm K

)(
x
ξ

)
+
(

E + BLHm

NHm

)
w

=: F

(
x
ξ

)
+ Rw

satisfies the following two properties:

i) Internal stability: for w(t) ≡ 0 the closed-loop system is asymptotically
stable, i.e. the matrix F is Hurwitz;

ii) Asymptotic output zeroing: for all solutions of the closed-loop system
and the exosystem it holds that e(t) = Crx(t)+Hrw(t) → 0 as t → +∞.

Notice that the closed-loop system is linear with a Hurwitz matrix F . As
follows from Example 2.2.5, this implies that the closed-loop system is globally
exponentially convergent and has the UBLS property for the class of inputs
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PCm. Thus, the linear output regulation problem is a particular case of the
global uniform output regulation problem.

For nonlinear systems, the output regulation problem has been most thor-
oughly investigated for the local problem setting. In this problem setting,
which we will call the conventional local output regulation problem, one con-
siders system (3.1)–(3.3) and exosystem (3.4) with f(0, 0, 0) = 0, hm(0, 0) = 0,
hr(0, 0) = 0, s(0) = 0 such that the functions f(x, u, w), hm(x,w), hr(x,w) = 0
and s(w) are of class C2. The exosystem is assumed to be neutrally stable.

The conventional local output regulation problem is to find a controller
of the form (3.6), (3.7) with C2 mappings η(ξ, w) and θ(ξ, w) satisfying η(0, 0) =
0 and θ(0, 0) = 0 such that the closed-loop system (3.8), (3.9) satisfies the
following conditions:

i) Local internal stability: for w(t) ≡ 0 the closed-loop system has an
asymptotically stable linearization at the origin.

ii) Local asymptotic output zeroing: for every solution of the closed-loop
system and the exosystem starting close enough to the origin (x, ξ, w) =
(0, 0, 0) it holds that e(t) = hr(x(t), w(t)) → 0 as t → +∞.

As follows from Theorem 2.2.29 (see also Remark to the formulation of
the local uniform (exponential) output regulation problem) such a local inter-
nal stability requirement is equivalent to local exponential convergence of the
closed-loop system, which is required in the local exponential output regula-
tion problem presented in Section 3.3.3. From this fact we conclude that the
conventional local output regulation problem is, in fact, a particular case of the
local exponential output regulation problem.

Both the linear output regulation problem and the conventional local output
regulation problem for nonlinear systems admit complete solutions in the form
of some necessary and sufficient conditions for the solvability of these problems
[8]. As will become clear in Chapter 4, the global uniform output regulation
problem admits similar necessary and sufficient conditions for its solvability.

The global output regulation problem for nonlinear systems, which re-
mained a tough and quite unaddressed problem for a long time, has received
attention in a number of recent publications [11; 16; 40; 56; 77]. In these papers
the authors use problem settings for the global output regulation problem with
various internal stability requirements. For example, in [77] it is required that
all solutions of the closed-loop system are bounded; in [56] in addition to the
requirement of boundedness of solutions of the closed-loop system it is required
that for w(t) ≡ 0 the closed-loop system has a globally asymptotically stable
equilibrium at the origin. In [40] it is required that all solutions of the closed-
loop system and the exosystem starting in any compact set of initial conditions
lie in a set with a compact closure for all t ≥ 0. Due to the novelty of the
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problem, at the moment there are no conventional definitions for the global
output regulation problem. At the same time, as we will see in Chapter 4,
many of the existing controllers solving the global output regulation problem
for various classes of systems in fact solve the global uniform output regula-
tion problem. This observation indicates that the uniform output regulation
problem may be a convenient problem setting for nonlinear non-local variants
of the output regulation problem.

3.5 Observer design and controlled
synchronization problems

Some classical control problems can be put in the framework of the output
regulation problem. In this section we show how the problem of observer design
for autonomous systems and the controlled synchronization problem can be
formulated as variants of the uniform output regulation problem.

3.5.1 Observer design problem

In the observer design problem for autonomous nonlinear systems, we consider
a system of the form

ẇ = s(w), (3.17)
r = ho(w)

with state w and measured output r. The problem is to find a system which
asymptotically reconstructs the state of system (3.17) from the measured out-
put r(t), i.e. we need to find a system of the form

ż = F (z, r), (3.18)
ŵ = g(z, r)

such that ŵ(t) − w(t) → 0 as t → +∞ and all solutions of system (3.18)
are bounded for t ≥ 0. Such system (3.18) is called an observer for system
(3.17). In many observer design methods, the dimension of the observer state
z equals the dimension of w and the output ŵ equals z. In this case, especially
if system (3.17) exhibits oscillatory behavior, the problem of finding such a
system (3.18) is called a synchronization problem, because we find a system
whose state z(t) synchronizes with w(t), i.e. they tend to each other. Links
between synchronization, which is extensively studied in the physics community
(see e.g. [9; 48; 63]), and observer design problems, which are studied in the
field of control, have been revealed in [59]. In general, system (3.18) can have
a higher dimension than system (3.17). It is assumed that solutions of system
(3.17) start in some compact positively invariant set W+ ⊂ R

m. In many
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cases this is a natural assumption since in most real life systems the variables
describing the state of a system to be observed lie in some bounded set for all
t ≥ 0.

The problem of finding an observer for system (3.17) can be formulated as
a global forward time uniform output regulation problem. In order to show
this, consider the system

ẋ = u, x, u ∈ R
m (3.19)

e = x − w, (3.20)

y =
(

x
ho(w)

)
. (3.21)

Suppose a controller of the form (3.6), (3.7) solves the global forward time uni-
form output regulation problem for system (3.19)-(3.21) and exosystem (3.17).
By the formulation of the global forward time uniform output regulation prob-
lem, for every solution of system (3.17) starting in w(0) ∈ W+ and for every
solution of the closed-loop system

ẋ = θ(ξ, x, ho(w)) (3.22)
ξ̇ = η(ξ, x, ho(w)) (3.23)

starting in (x(0), ξ(0)) ∈ R
m × R

q it holds that e(t) = x(t) − w(t) → 0 as t →
+∞. At the same time, system (3.22), (3.23) is globally uniformly convergent
for the class of inputs PC(W), where W is some neighborhood of W+. This
implies that every solution of system (3.22), (3.23) is defined and bounded for
all t ≥ 0. Hence, system (3.22), (3.23) is an observer for system (3.17).

3.5.2 Controlled synchronization problem

In the scope of the controlled synchronization problem, we consider two sys-
tems: a so-called master system and a slave system. The master system is
given by an equation of the form

ẇ = s(w), (3.24)
rm = ho(w)

with state w ∈ R
m and output rm. It is assumed that solutions of system

(3.24) start in some compact positively invariant set W+ ⊂ R
m. The master

system generates oscillations. The slave system is given by the equation

ẋ = f(x, u), (3.25)
rs = g(x)

with state x ∈ R
m, control u and output rs. The controlled synchronization

problem is to find a controller which, based on the measured signals rm(t) and
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rs(t), generates a control action u(t) such that x(t) − w(t) → 0 as t → +∞
for all solutions of the slave system and all solutions of the master system
starting in W+. One can easily see that this problem can be formulated as the
global uniform forward time output regulation problem for exosystem (3.24)
and system (3.25) with the regulated output e = x−w and the measured output
y = (g(x), ho(w)). The observer design problem discussed in the previous
section is a particular case of the controlled synchronization problem with the
right-hand side f(x, u) ≡ u and the output rs = x.

3.6 Summary

In this chapter we have presented different variants of the global, regional,
semiglobal and local variants of the uniform output regulation problem. In all
variants of the problem there are three basic requirements: Regularity, Uni-
form convergence and Asymptotic output zeroing. The regularity requirement
guarantees existence and uniqueness of solutions. The uniform convergence
requirement guarantees that solutions of the closed-loop system “forget” their
initial conditions and converge to some limit solution determined only by the
input. The asymptotic output zeroing condition means that along all solutions
of the closed-loop system and the exosystem, the regulated output tends to
zero. The problem statements are presented for three classes of exosystems.
The first class consists of exosystems satisfying the boundedness assumption
A1. An important representative of this class is a linear harmonic oscillator.
The second class consists of exosystems with initial conditions in a compact
positively invariant set. This class includes exosystems with limit cycles and
(chaotic) attractors. The third class of exosystems, which is considered in the
local uniform output regulation problem, consists of neutrally stable exosys-
tems. An important representative of this class is a linear harmonic oscillator.
The uniform output regulation problem extends the output regulation problem
for linear systems and the conventional local output regulation problem for
nonlinear systems to non-local (global) variants of the uniform output regula-
tion problem for nonlinear systems. It is shown that the problem of observer
design for autonomous systems and the controlled synchronization problems
can be considered as particular cases of the global uniform output regulation
problem. The key ingredient of the uniform output regulation problem, which
distinguishes it from other variants of the output regulation problem known
in literature, is the requirement of uniform convergence. As will be shown in
Chapter 4, this new problem setting with the uniform convergence requirement
allows to obtain necessary and sufficient conditions for solvability of the global
uniform output regulation problem.
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Solvability of the uniform output

regulation problem

4.1 Analysis of the
conventional local output
regulation problem

4.2 Invariant manifold theorems
4.3 Solvability of the global

(forward time)uniform
output regulation problem

4.4 Solvability of the local
uniform output regulation
problem

4.5 Applications of the
invariant manifold theorems

4.6 Summary

In this chapter we establish general conditions for solvability of the global
and local variants of the uniform output regulation problem. First, we review
some known ideas and results related to the conventional local output regula-
tion problem. These results are based on the center manifold theorem. In order
to extend these results to the uniform output regulation problem for both the
local and global case, we present invariant manifold theorems, which serve as
non-local counterparts of the center manifold theorem. In the formulation of
these invariant manifold theorems, the notion of convergent systems, developed
in Chapter 2, plays a central role. Based on these invariant manifold theorems,
general necessary and sufficient conditions for solvability of the global and local
uniform output regulation problems are derived. These conditions also indicate
what kind of properties a controller should have in order to solve the uniform
output regulation problem. This information will be exploited at the stage of
controller design in Chapter 5.

4.1 Analysis of the conventional local output

regulation problem

The conventional local output regulation problem, which is a particular case of
the local exponential output regulation problem, has been solved in [39] (see
also [8; 37]). In that paper necessary and sufficient conditions for the solvability
of this problem have been obtained. We will review one of these results in order
to motivate its extensions to the global uniform output regulation problem.
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In order to understand the ideas and techniques used in the analysis of
the conventional local output regulation problem, we investigate the dynamics
of the closed-loop system (3.8), (3.9) with a controller (3.6), (3.7) solving the
conventional local output regulation problem.

Denote z := (xT , ξT )T . By F (z, w) denote the right-hand side of the closed-
loop system (3.8), (3.9). With these new notations the regulated output e
equals e = h̄r(z, w) := hr(x,w). Therefore, the combination of the closed-loop
system and the exosystem can be written as

ż = F (z, w), (4.1)
ẇ = s(w), (4.2)
e = h̄r(z, w).

As follows from the formulation of the conventional local output regulation
problem, for any controller solving this problem the corresponding closed-loop
system is such that F (0, 0) = 0 and the function F (z, w) is C2. Moreover,
the fact that for w(t) ≡ 0 the closed-loop system has an asymptotically stable
linearization at the origin is equivalent to the Jacobian matrix ∂F/∂z(0, 0)
being Hurwitz. At the same time, the fact that the zero solution w(t) ≡ 0
of the exosystem is Lyapunov stable in forward and backward time (this is
a consequence of the neutral stability assumption on the exosystem) implies
that ∂s/∂w(0) has all its eigenvalues on the imaginary axis. Thus, by the
center manifold theorem (Theorem 2.1.16) there exists a number δ > 0 and a
C1 mapping α(w) defined for all |w| < δ such that α(0) = 0 and the graph
z = α(w) is locally invariant and locally exponentially attractive with respect
to systems (4.1) and (4.2). Moreover, since the zero solution w(t) ≡ 0 of the
exosystem is Lyapunov stable in forward and backward time, there exists a
neighborhood of the origin W ⊂ {w : |w| < δ} which is invariant with respect
to (4.2). Hence, the graph M(W) := {(z, w) : z = α(w), w ∈ W} is invariant
with respect to systems (4.1), (4.2) and for all solutions z(t), w(t) starting close
enough to the origin (0, 0) it holds that

z(t) − α(w(t)) → 0 as t → +∞. (4.3)

This fact shows that in some neighborhood of the origin the dynamics of the
closed-loop system (4.1) coupled with the exosystem (4.2), after transients,
reduces to the dynamics on the center manifold M(W). Hence, the properties
of this center manifold determine whether the regulated output e(t) tends to
zero along solutions of the closed-loop system or not. In particular, it can be
shown (see, e.g. [8; 39]) that under the neutral stability assumption on the
exosystem, e(t) = h̄r(z(t), w(t)) → 0 as t → +∞ for all solutions of the closed-
loop system (4.1) and the exosystem (4.2) starting close enough to the origin
if and only if

h̄r(α(w), w) = 0 (4.4)
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for all w in some neighborhood of the origin W̃ ⊂ R
m. Since the center manifold

M(W) is invariant with respect to systems (4.1) and (4.2), the mapping α(w)
satisfies the partial differential equation

∂α

∂w
(w)s(w) = F (α(w), w) (4.5)

for all w ∈ W. This equation is obtained by substituting the solution of the
closed-loop system z̄w(t) := α(w(t)) in equation (4.1).

As follows from the analysis presented above, the question whether a con-
troller solves the conventional local output regulation problem reduces to the
questions whether for w(t) ≡ 0 the corresponding closed-loop system has an
asymptotically stable linearization at the origin and whether there exists a
locally defined C1 mapping α(w), with α(0) = 0, satisfying equations (4.5)
and (4.4). If we denote (π(w), σ(w)) := α(w), where π(w) and σ(w) are the
components of the mapping α(w) corresponding to the x- and ξ-coordinates of
the closed-loop system, respectively, this statement can be summarized in the
following theorem.

Theorem 4.1.1 ([8]) Under the neutral stability assumption on the exosys-
tem (3.4), a controller of the form (3.6), (3.7) solves the conventional local
output regulation problem if and only if a) for w(t) ≡ 0 the corresponding
closed-loop system (3.8), (3.9) has an asymptotically stable linearization at
the origin and b) there exist C1 mappings π(w) and σ(w) defined in some

neighborhood of the origin W̃ and satisfying π(0) = 0, σ(0) = 0 and

∂π

∂w
(w)s(w) = f(π(w), θ(σ(w), hm(π(w), w)), w),

∂σ

∂w
(w)s(w) = η(σ(w), hm(π(w), w)),

0 = hr(π(w), w) ∀ w ∈ W̃.

This theorem provides a characterization of all controllers solving the con-
ventional local output regulation problem. It also forms a foundation for further
results related to solvability and controller design for the conventional local out-
put regulation problem, which can be found, for example, in [8]. Since in this
thesis we also study global variants of the output regulation problem, we need
to extend the result of Theorem 4.1.1 to the global case. An essential obstacle
for such an extension is that the analysis in Theorem 4.1.1 is based on the
center manifold theorem (Theorem 2.1.16), which is a local result. Existing ex-
tensions of this theorem to non-local cases (see, e.g. [21; 48; 53; 84]) are based
on certain quantitative conditions on the dynamics of the coupled systems (the
closed-loop system and the exosystem in the case of the output regulation prob-
lem). We would like to avoid such quantitative conditions and to find non-local
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counterparts of the center manifold theorem based on certain qualitative con-
ditions on the coupled systems. As a preliminary observation, notice that in
the center manifold theorem it is required that the Jacobian ∂F/∂z(0, 0) is a
Hurwitz matrix. As we know from Theorem 2.2.29, this requirement is equiv-
alent to the requirement that system (4.1) is locally exponentially convergent
for the class of inputs PCm. This observation gives an idea that the require-
ment of some convergence property on system (4.1) may serve as a non-local
counterpart of the condition on ∂F/∂z(0, 0). In fact, as we will see in the next
section, existence of a continuous invariant manifold of the form z = α(w) for
systems (4.1) and (4.2) is, under certain assumptions, equivalent to some uni-
form convergence property of system (4.1). The invariant manifold theorems
presented in the next section will naturally lead us to certain necessary and
sufficient conditions for the solvability of the global and local variants of the
uniform output regulation problem. This fact, in turn, explains why we have
based different variants of the uniform output regulation problem on the notion
of uniform convergence.

4.2 Invariant manifold theorems

In this section we present certain invariant manifold theorems which serve as
counterparts of the center manifold theorem for studying solvability of the
global and local variants of the uniform output regulation problem. To this
end, we consider coupled systems of the form

ż = F (z, w), (4.6)
ẇ = s(w), (4.7)

where z ∈ R
d, w ∈ R

m. The function F (z, w) is locally Lipschitz in z and
continuous in w; s(w) is locally Lipschitz. In the analysis of the uniform out-
put regulation problem, system (4.6) corresponds to a closed-loop system and
system (4.7) corresponds to an exosystem.

First, we consider the case of system (4.7) with some open invariant set of
initial conditions W ⊂ R

m. Recall that Is(W) denotes the class of all solutions
of system (4.7) starting in W. The next technical lemma provides conditions
for the existence of a continuous asymptotically stable invariant manifold of
the form z = α(w). This lemma will serve as a foundation for further results
on invariant manifolds presented in this section.

Lemma 4.2.1 Consider system (4.6) and system (4.7) with an open invariant
set of initial conditions W ⊂ R

m. Suppose

(i) System (4.6) is uniformly convergent in a set Z ⊂ R
d for the class of

inputs Is(W), and, for any compact set K0 ⊂ W, there exists a compact



4.2. Invariant manifold theorems 59

set Kz ⊂ Z such that for any w(·) ∈ Is(W) satisfying w(0) ∈ K0 the
corresponding limit solution satisfies z̄w(t) ∈ Kz for all t ∈ R.

Then

(ii) There exists a continuous mapping α : W → Z such that the graph

M(W) := {z = α(w), w ∈ W}
is invariant with respect to systems (4.6) and (4.7). Moreover, for every
w(·) ∈ Is(W) the solution z̄w(t) = α(w(t)) is uniformly asymptotically
stable in Z.

In general, the mapping α(w) is not unique. But for any two such mappings
α1(w) and α2(w) and for any w(·) ∈ Is(W), it holds that

α1(w(t)) − α2(w(t)) → 0 as t → +∞ (4.8)

and α1(w(t)) ≡ α2(w(t)) for any w(t) lying in some compact subset of W for
all t ∈ R.
If system (4.7) satisfies the boundedness assumption A1 in the set W, then
statements (i) and (ii) are equivalent and the mapping α(w) defined in (ii) is
unique.

Proof: See Appendix A.10.

This lemma is a preliminary technical result which forms a foundation for
further global and local results related to the existence of continuous invariant
manifolds of the form z = α(w). The conditions in Lemma 4.2.1 are rather
complicated. This is due to the fact that this lemma covers the general case. In
particular cases of this lemma, which are formulated below, the conditions will
simplify significantly. In particular, under the boundedness assumption A1 on
system (4.7) for Z = R

d we obtain the following global result.

Theorem 4.2.2 Consider system (4.6) and system (4.7) satisfying the bound-
edness assumption A1 in some open invariant set W ⊂ R

m. The following
statements are equivalent:

(ig) System (4.6) is globally uniformly convergent and has the UBLS property
for the class of inputs Is(W).

(iig) There exists a unique continuous mapping α : W → R
d such that the

graph
M(W) := {z = α(w), w ∈ W}

is invariant with respect to systems (4.6) and (4.7). Moreover, for every
w(·) ∈ Is(W) the solution z̄w(t) = α(w(t)) is uniformly globally asymp-
totically stable.
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Proof: We only need to show that the conditions given in (ig) are equivalent
to the conditions (i) in Lemma 4.2.1 for Z := R

d.
(ig)⇒(i). Consider a compact set K0 ⊂ W. By the boundedness assumption
A1, there exists a compact set Kw ⊂ W such that if a solution w(t) of system
(4.7) starts in w(0) ∈ K0 then w(t) ∈ Kw for all t ∈ R. At the same time, by
the UBLS property, there exists a compact set Kz ⊂ R

d such that the fact that
w(t) ∈ Kw for all t ∈ R implies z̄w(t) ∈ Kz for all t ∈ R. This implies (i).
(i)⇒(ig). Consider a compact set Kw ⊂ W and a solution of system (4.7)
satisfying w(t) ∈ Kw for all t ∈ R. In particular, this solution satisfies
w(0) ∈ K0 := Kw. By the conditions given in (i), there exists a compact
set Kz ⊂ R

d such that for any solution w(t) starting in w(0) ∈ K0 (hence, for
any w(t) satisfying w(t) ∈ Kw for all t ∈ R) the corresponding limit solution
z̄w(t) lies in Kz. Thus, we have shown that system (4.6) has the UBLS property
for the class of inputs Is(W), i.e. we have shown (ig).�

Due to the fact that under the boundedness assumption A1 the class of
inputs Is(W) is contained in PC(W), we obtain the following corollary to
Theorem 4.2.2.

Corollary 4.2.3 Consider system (4.6) and system (4.7) satisfying the bound-
edness assumption A1 in some open invariant set W. Suppose system (4.6)
is globally uniformly convergent and has the UBLS property for the class of
inputs PC(W). Then statement (iig) of Theorem 4.2.2 holds.

In the global forward time uniform output regulation problem we deal with
exosystems that do not need to satisfy the boundedness assumption A1, but
they satisfy the assumption A2, i.e. they start in some compact positively
invariant set of initial conditions W+ ⊂ R

m. For such systems we formulate
the following result.

Theorem 4.2.4 Consider systems (4.6) and (4.7). Let W+ be a compact
positively invariant set of system (4.7) and W± ⊂ W+ be an invariant subset
of W+. Suppose system (4.6) is globally uniformly convergent for the class of
inputs PC(W), where W is some neighborhood of W+. Then there exists a
continuous mapping α : W → R

d such that the set

M(W+) := {z = α(w), w ∈ W+}
is positively invariant with respect to (4.6), (4.7) and for any w(t) starting in
w(0) ∈ W+ the solution z̄w(t) = α(w(t)) is uniformly globally asymptotically
stable. In general, the mapping α(w) is not unique. But for any two such
mappings α1(w) and α2(w) and for any w(t) starting in w(0) ∈ W+ it holds
that

|α1(w(t)) − α2(w(t))| → 0 as t → +∞, (4.9)

and α1(w) = α2(w) for all w ∈ W±.
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Proof: See Appendix A.11.

In Theorem 4.2.4 the mapping α(w) may be non-unique as can be seen from
the following example, which is a modified example from [76].

Example 4.2.5 Consider two scalar systems

ż = −z (4.10)

ẇ = −w3

2
. (4.11)

System (4.10) is globally uniformly convergent, since for every input w(t) the
limit solution equals z̄w(t) ≡ 0 and it is globally exponentially stable. For
every r > 0 the set W+(r) := {w : |w| < r} is positively invariant with respect
to (4.11). The set W± contains only the origin, W± = {0}. It can be easily
checked that for any constant c the mapping

αc(w) =
{

ce−1/w2
, w = 0

0, w = 0

is continuous and the graph z = αc(w) is invariant with respect to (4.10) and
(4.11). The mappings αc(w) for all parameters c coincide in the origin, which
belongs to W±. For any initial condition w(0) ∈ R the solution w(t) of system
(4.11) tends to zero, which implies αc(w(t)) → 0 as t → +∞. Thus for any c1

and c2 it holds that

αc1(w(t)) − αc2(w(t)) → 0, as t → +∞. �

The next theorem provides a local variant of the invariant manifold theorem
presented above.

Theorem 4.2.6 Consider systems (4.6) and (4.7) with F (0, 0) = 0, s(0) = 0
and with F (z, w) being C1 with respect to z and continuous with respect to w.
Let the equilibrium w = 0 of system (4.7) be stable in forward and backward
time. Then the following statements are equivalent:

(il) System (4.6) is locally uniformly convergent for the class of inputs Is(W̃),
where W̃ ⊂ R

m is some invariant neighborhood of the origin.

(iil) There exists an invariant neighborhood of the origin W and a unique
continuous mapping α : W → R

d such that α(0) = 0 and the graph

M(W) := {(z, w) : z = α(w), w ∈ W}
is invariant with respect to systems (4.6) and (4.7). Moreover, there exists
a neighborhood of the origin Z ⊂ R

d such that for every w(·) ∈ Is(W)
the solution z̄w(t) := α(w(t)) is uniformly asymptotically stable in Z.
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Proof: See Appendix A.12.

In general, it is not a simple task to find an invariant manifold even if its
existence is guaranteed by the invariant manifold theorems presented above.
Yet, in some simple cases such a manifold can be found analytically. We will
show this with a couple of examples.

Example 4.2.7 Consider a linear system

ẇ = Sw, w ∈ R
m (4.12)

with the matrix S having all its eigenvalues being simple and lying on the
imaginary axis. Such system satisfies the boundedness assumption A1 in the
whole state space. Consider a system given by the equation

ż = Az + q(w), (4.13)

where A is a Hurwitz matrix and q(w) is a polynomial in w of some finite degree
n. Notice that this system is globally exponentially convergent and has the
UBLS property for the class of inputs PCm (see , for example, Theorem 2.2.17).
By Corollary 4.2.3, there exists a unique continuous function α(w) such that
the graph M := {z = α(w), w ∈ R

m} is invariant with respect to systems
(4.13) and (4.12). As follows from [8] (Lemma 1.2, p.13), the mapping α(w)
is a polynomial in w of the same degree as the degree of q(w). It is a unique
solution of the equation

∂α

∂w
(w)Sw = Aα(w) + q(w).

The right- and left-hand sides of this equation are polynomials in w. Thus,
equating the corresponding components of these polynomials we find the unique
coefficients of the polynomial α(w).�

Using the ideas from [8], this example can be extended in the following way.

Example 4.2.8 Consider nonlinear systems of the form

ż1 = A1z1 + q1(z2, . . . zn, w), z1 ∈ R
d1

ż2 = A2z2 + q2(z3, . . . zn, w), z2 ∈ R
d2 (4.14)

· · ·
żk = Akzk + qk(w), zk ∈ R

dk ,

where the matrices Ai, i = 1, . . . , k, are Hurwitz and qi(w), i = 1, . . . , k, are
polynomials of their arguments. Every subsystem of system (4.14) is input-
to-state convergent (see Theorem 2.2.17). Therefore, system (4.14) is a se-
ries connection of input-to-state convergent systems. By Property 2.2.15, this
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system is input-to-state convergent. By Property 2.2.7, input-to-state con-
vergence, in turn, implies that system (4.14) is globally uniformly conver-
gent and has the UBLS property for the class of inputs PCm. By Corol-
lary 4.2.3, there exists a unique continuous mapping α(w) such that the man-
ifold M := {z = α(w), w ∈ R

m}, where z := (zT
1 , . . . , zT

k )T , is invariant with
respect to systems (4.14) and (4.12). Applying the results obtained for system
(4.13) to the last equation in (4.14), we find the component of α(w) correspond-
ing to zk. This component αk(w) is a polynomial. Substituting this αk(w) in
the (k − 1)-th equation, we again obtain an equation of the form (4.13), from
which we can find αk−1(w). Repeating this process, we find the remaining
components of the mapping α(w).�

These examples indicate, that in some cases it is indeed possible to find the
invariant manifold whose existence is guaranteed by the invariant manifold
theorems presented in this section.

The invariant manifold theorems presented in this section state an equiv-
alence between the existence of a (globally) uniformly asymptotically stable
invariant manifold of the form z = α(w), with a continuous function α(w), and
certain convergence properties of system (4.6) (under Assumptions A1, A2 or
under the neutral stability assumption on system (4.7)). The sufficient condi-
tions for various convergence properties presented in Section 2.2.4 allow us to
determine whether systems (4.6) and (4.7) have such an invariant manifold.

As will be seen from the next sections, the invariant manifold theorems will
naturally lead us to certain necessary and sufficient conditions for the solvability
of different variants of the uniform output regulation problem.

4.3 Solvability of the global (forward time)

uniform output regulation problem

In this section we apply the invariant manifold theorems to study the solvability
of the global uniform output regulation problem. Since there are two variants of
the global uniform output regulation problem, we will obtain solvability results
for both of them. Moreover, we will present solvability results for the robust
global uniform output regulation problem.

4.3.1 Solvability of the global uniform output regulation
problem

The next theorem, which is based on Theorem 4.2.2, establishes necessary and
sufficient conditions for a controller (3.6), (3.7) to solve the global uniform
output regulation problem.



64 Solvability of the uniform output regulation problem

Theorem 4.3.1 Consider system (3.1)-(3.3) and exosystem (3.4) satisfying
the boundedness assumption A1 in an open set of initial conditions W. Then
the following statements are equivalent:

a) Controller (3.6), (3.7) solves the global uniform output regulation prob-
lem.

b) The closed-loop system is globally uniformly convergent and has the
UBLS property for the class of inputs Is(W) and there exist continu-
ous mappings π : W → R

n and σ : W → R
q satisfying equations

d

dt
π(w(t)) = f(π(w), θ(σ(w), hm(π(w), w)), w),

d

dt
σ(w(t)) = η(σ(w), hm(π(w), w)), (4.15)

∀ w(t) = w(t, w0) ∈ W,

0 = hr(π(w), w) ∀ w ∈ Ω(W), (4.16)

c) There exist continuous mappings π : W → R
n and σ : W → R

q satisfying
equations (4.15) and (4.16) and for every w(·) ∈ Is(W) the solution
(x̄w(t), ξ̄w(t)) = (π(w(t)), σ(w(t))) is globally uniformly asymptotically
stable.

Proof: we will prove the equivalence of a), b) and c) in the following se-
quence: a)⇒b)⇒c)⇒a).

a)⇒b): Suppose controller (3.6), (3.7) solves the global uniform output reg-
ulation problem. Then the closed-loop system (3.8), (3.9) is globally uniformly
convergent and has the UBLS property for the class of inputs Is(W). By The-
orem 4.2.2, this implies the existence of a continuous mapping α(w) such that
the graph of this mapping

M(W) := {(x, ξ, w)) : (x, ξ) = α(w), w ∈ W}

is invariant with respect to the closed-loop system (3.8), (3.9) and the exosys-
tem (3.4). Denote by π(w) and σ(w) the x- and ξ-components of the mapping
α(w). Since the graph M(W) is invariant, for any solution of the exosystem
w(t) starting in w(0) ∈ W, the pair of functions (π(w(t)), σ(w(t))) represents a
solution of the closed-loop system (3.8), (3.9). This implies that the functions
π(w(t)) and σ(w(t))) satisfy equations (4.15). Since the regulated output e(t)
tends to zero along any solution of the closed-loop system and the exosystem
starting in (x(0), ξ(0)) ∈ R

n+q and w(0) ∈ W, respectively, e(t) also tends to
zero along the solution (π(w(t)), σ(w(t)), w(t)), i.e.

hr(π(w(t)), w(t)) → 0 as t → +∞. (4.17)



4.3. Solvability of the global (forward time)uniform output regulation
problem 65

Let us show that this fact implies (4.16). Suppose there exists w∗ ∈ Ω(W)
such that hr(π(w∗), w∗) = 0. By the definition of the ω-limit set Ω(W), there
exists a solution w(t) starting in w(0) ∈ W and a sequence {tk}+∞

k=1 such that
tk → +∞ and w(tk) → w∗ as k → +∞. Since hr(π(w), w) is continuous and
the sequence w(tk) is bounded, we obtain

hr(π(w(tk)), w(tk)) → hr(π(w∗), w∗) = 0, as k → +∞.

This contradicts (4.17). Thus, indeed, the equality (4.16) holds. This completes
the proof of this implication.

b)⇒c): Since the closed-loop system (3.8), (3.9) is globally uniformly con-
vergent and has the UBLS property for the class of inputs Is(W), by Theo-
rem 4.2.1 for every solution of the exosystem w(t) starting in W, the solution of
the closed-loop system (x̄w(t), ξ̄w(t)) := (π(w(t), σ(w(t)) lying on this manifold
is uniformly globally asymptotically stable.

c)⇒a): By Theorem 4.2.2, the existence of the continuous mappings π(w)
and σ(w) given in c) implies that the closed-loop system (3.8), (3.9) is glob-
ally uniformly convergent and has the UBLS property for the class of in-
puts Is(W). We only need to show that for any solution of the closed-loop
system and the exosystem starting in (x(0), ξ(0)) ∈ R

n+q and w(0) ∈ W
the regulated output e(t) tends to zero. Consider a solution of the exosys-
tem w(t) starting in w(0) ∈ W and the solution of the closed-loop system
(x̄w(t), ξ̄w(t)) := (π(w(t)), σ(w(t)). Since the solution (x̄w(t), ξ̄w(t)) is globally
uniformly asymptotically stable, for any other solution of the closed-loop sys-
tem (x(t), ξ(t)) it holds that x(t) − π(w(t)) → 0 and ξ(t) − σ(w(t)) → 0 as
t → +∞. Thus,

e(t) = hr(x(t), w(t)) → hr(π(w(t)), w(t)) as t → +∞. (4.18)

At the same time, dist(w(t),Ω(W)) → 0 as t → +∞ (see Section 2.1.3). Since
w(t) is bounded, this implies

hr(π(w(t)), w(t)) → hr(π(Ω(W)),Ω(W)) = {0} as t → +∞.

Together with (4.18), this implies e(t) = hr(x(t), w(t)) → 0 as t → +∞. This
completes the proof of the theorem.�

Remark. In the literature, global variants of the output regulation prob-
lem are considered mostly for the case of exosystems being linear harmonic
oscillators [12; 56; 70; 77]. Such exosystems satisfy the boundedness assump-
tion A1. Many of the proposed controllers solving such variants of the global
output regulation problem (see, e.g. [12; 56; 70; 77]) are designed in such a
way that they guarantee existence and global uniform asymptotic stability of
a sufficiently smooth invariant manifold (x, ξ) = (π(w), σ(w)), with π(w) and
σ(w) satisfying equations (4.15), (4.16). As follows from Theorem 4.3.1, such
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controllers solve the global uniform output regulation problem.�

Theorem 4.3.1 provides a criterion for checking whether a particular con-
troller solves the global uniform output regulation problem. It can be used
directly for controller design (we will address this problem in Chapter 5) in the
following way: given some controller such that the corresponding closed-loop
system satisfies the conditions b) or c) in Theorem 4.3.1, this theorem guaran-
tees that this controller solves the global uniform output regulation problem.
Alternatively, we can specifically design a controller such that the correspond-
ing closed-loop system satisfies conditions b) or c). At the same time, Theo-
rem 4.3.1 allows to obtain certain controller-independent necessary conditions
for the solvability of the global uniform output regulation problem as follows
from the following lemma.

Lemma 4.3.2 The global uniform output regulation problem is solvable only
if there exist continuous mappings π(w) and c(w) defined in some neighborhood
of Ω(W) satisfying the equations

d

dt
π(w(t)) = f(π(w(t)), c(w(t)), w(t)), (4.19)

0 = hr(π(w(t)), w(t)) (4.20)

for all solutions of the exosystem w(t) satisfying w(t) ∈ Ω(W), t ∈ R.

Proof: The statement of the lemma is obtained from equations (4.15) and (4.16)
by denoting c(w) := θ(σ(w), hm(π(w), w)).�

Equations (4.19) and (4.20) are the so-called regulator equations, see e.g.
[8; 37; 39]. Solvability of the regulator equations guarantees that for every
solution of the exosystem lying in the ω-limit set Ω(W) there exists a control
input ūw(t) := c(w(t)) for which system (3.1) has the solution x̄w(t) := π(w(t))
along which the regulated output equals zero. Notice that the ω-limit set
Ω(W) can be treated, in a certain sense, as the steady-state dynamics of the
exosystem. This is due to the fact that this set is invariant and it attracts all
solutions of the exosystem starting in W. From this point of view, solvability
of the regulator equations can be interpreted in the following way: for any
solution w(t) of the exosystem from the steady-state dynamics set Ω(W) there
exists at least one control input ūw(t) such that system (3.1) with these w(t)
and ūw(t) has at least one solution x̄w(t) along which the regulated output e(t)
is identically zero.

Originally, solvability of the regulator equations in some neighborhood of
the origin was obtained as a necessary condition for the solvability of the con-
ventional local output regulation problem under the assumption that exosystem
(3.4) is neutrally stable. Lemma 4.3.2 shows that solvability of the regulator
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equations (4.19) and (4.20) is also necessary for the solvability of the global
uniform output regulation problem.

With the regulator equations at hand, we can obtain further necessary con-
ditions for the solvability of the global uniform output regulation problem. As
follows from equation (4.15), controller (3.6), (3.7) is such that if we excite it
with the input ȳw(t) := hm(π(w(t)), w(t)), for some solution of the exosystem
w(t) ∈ Ω(W), it has a bounded solution ξ̄w(t) = σ(w(t)), and along this solu-
tion the output of the controller equals u(t) = c(w(t)), where π(w) and c(w)
are solutions to the regulator equations defined above. This property motivates
the following definition of the so-called induction property.

Definition 4.3.3 Consider the system

ζ̇ = ν(ζ, y), (4.21)
u = �(ζ, y)

with state ζ, input y and output u. Let ȳ(t) and ū(t) be defined and bounded
for all t ∈ R. We say that the input ȳ(t) induces the output ū(t) in system
(4.21) if for the input ȳ(t) system (4.21) has a solution ζ̄(t) defined and bounded
for all t ∈ R and satisfying the equality ū(t) = �(ζ̄(t), ȳ(t)) for all t ∈ R.

The notion of induction closely relates to the notions of immersion and internal
models used in the conventional local output regulation problem (see [8] for
further details on immersion and internal models).

With the definition of the induction property at hand, we obtain the fol-
lowing necessary condition for the solvability of the global uniform output reg-
ulation problem.

Lemma 4.3.4 Suppose the global uniform output regulation problem is solv-
able. Then there exists a controller of the form (3.6), (3.7) such that for
any solution of the exosystem w(t) lying in the ω-limit set Ω(W) the input
ȳw(t) := hm(π(w(t)), w(t)) induces the output ūw(t) = c(w(t)) in the controller
(3.6), (3.7), where c(w) and π(w) are solutions to the regulator equations (4.19)
and (4.20). Moreover, the closed-loop system corresponding to this controller
is globally uniformly convergent and has the UBLS property for the class of
inputs Is(W).

The conditions given in Lemma 4.3.4 have the following meaning. The require-
ment that the controller makes the corresponding closed-loop system globally
uniformly convergent with the UBLS property for the class of inputs Is(W) is
natural, since this property of the closed-loop system is required in the prob-
lem statement. The induction property guarantees that controller (3.6), (3.7)
is capable of generating the control ūw(t) = c(w(t)) (see Lemma 4.3.2) based
on the measured signal y(t).
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Lemmas 4.3.2 and 4.3.4 provide necessary conditions for the solvability of
the global uniform output regulation problem. In fact, as follows from the next
theorem, these conditions are not only necessary, but also sufficient for the
solvability of the problem.

Theorem 4.3.5 Consider system (3.1)-(3.3) and exosystem (3.4) satisfying
the boundedness assumption A1 in an open set of initial conditions W. The
global uniform output regulation problem is solvable if and only if the following
conditions are satisfied:

(i) There exist continuous mappings π(w) and c(w) defined in some neigh-
borhood of Ω(W) and satisfying the regulator equations (4.19) and (4.20)
for all solutions w(t) of exosystem (3.4) satisfying w(t) ∈ Ω(W) for all
t ∈ R.

(ii) There exists a controller of the form (3.6), (3.7) such that for any so-
lution of the exosystem w(t) lying in the set Ω(W) the input ȳw(t) :=
hm(π(w(t)), w(t)) induces the output ūw(t) = c(w(t)) in controller (3.6),
(3.7), and the closed-loop system corresponding to this controller is glob-
ally uniformly convergent and has the UBLS property for the class of
inputs Is(W).

Under these conditions, a controller solves the global uniform output regulation
problem if and only if it satisfies the conditions given in (ii).

Proof: The only if part of the theorem follows from Lemmas 4.3.2 and 4.3.4.
We only need to show that if the condition (i) is satisfied then a controller
satisfying the conditions given in (ii) solves the global uniform output regulation
problem. We will do this by showing that if a controller satisfies the conditions
given in (ii), then the corresponding closed-loop system satisfies condition b)
in Theorem 4.3.1. Thus, by Theorem 4.3.1 this controller solves the global
uniform output regulation problem.

Suppose controller (3.6), (3.7) satisfies the conditions given in (ii). Then by
Theorem 4.2.2 there exist continuous functions π̃(w) and σ̃(w) such that the
graph (x, ξ) = (π̃(w), σ̃(w)) for w ∈ W is invariant with respect to the closed-
loop system (3.8), (3.9) and the exosystem (3.4). This implies that π̃(w) and
σ̃(w) satisfy the following equations

d

dt
π̃(w(t)) = f(π̃(w), θ(σ̃(w), hm(π̃(w), w)), w),

d

dt
σ̃(w(t)) = η(σ̃(w), hm(π̃(w), w)) (4.22)

for all solutions of the exosystem w(t) starting in the set W. Moreover, for every
w(t) starting in W, the solution of the closed-loop system (x̃w(t), ξ̃w(t)) :=



4.3. Solvability of the global (forward time)uniform output regulation
problem 69

(π̃(w(t)), σ̃(w(t))) is globally uniformly asymptotically stable. Let us show
that the mapping π̃(w) also satisfies the equation

hr(π̃(w), w) = 0 ∀ w ∈ Ω(W). (4.23)

Once this equality is proved, by Theorem 4.3.1 we obtain that controller (3.6),
(3.7) solves the global uniform output regulation problem.

In order to prove (4.23), we will show that

π(w(t)) ≡ π̃(w(t)) (4.24)

for any solution of the exosystem lying in Ω(W). Then equality (4.23) will
follow from (4.20) and from the fact that Ω(W) is an invariant set with respect
to system (3.1) (i.e. for any w∗ ∈ W there exists a solution w(t) lying in Ω(W)
and satisfying w(0) = w∗).

Let us first show that for every solution w(t) lying in Ω(W) the closed-loop
system (3.8), (3.9) has a solution (x̄w(t), ξ̄w(t)) which is defined and bounded
for all t ∈ R. This fact follows from the regulator equations (4.19) and from
the property of the controller that for the input ȳw(t) := hm(π(w(t)), w(t))
it has a solution ξ̄w(t) which is defined and bounded for all t ∈ R and for
which θ(ξ̄w(t), hm(π(w(t)), w(t))) ≡ c(w(t)) for all t ∈ R. Substituting this
(x̄w(t), ξ̄w(t)) := (π(w(t)), ξ̄w(t)) in the equations of the closed-loop system
(3.8), (3.9), one can easily check that such a pair (x̄w(t), ξ̄w(t)) is indeed a
solution of the closed-loop system. Since w(t) lies in a compact subset of Ω(W)
(due to assumption A1) and since π(w) is continuous in some neighborhood of
Ω(W), the function π(w(t)) and hence (x̄w(t), ξ̄w(t)) are bounded for all t ∈ R.

Recall that the solution (x̃w(t), ξ̃w(t)) := (π̃(w(t)), σ̃(w(t))) is defined and
bounded for all t ∈ R and it is globally uniformly asymptotically stable. By
Property 2.1.4, this implies that (x̃w(t), ξ̃w(t)) ≡ (x̄w(t), ξ̄w(t)) for t ∈ R. This,
in turn, implies (4.24). This completes the proof of the theorem.�

Theorem 4.3.5 provides a way to solve the global uniform output regulation
problem. First, one needs to solve the regulator equations (4.19) and (4.20)
(or to show that they are not solvable, which implies that the problem cannot
be solved) and then to find a controller satisfying the conditions given in (ii).
Particular ways of finding such controllers will be discussed in Chapter 5.

4.3.2 Solvability of the robust global uniform output
regulation problem

In this section we provide solvability conditions for the robust global uniform
output regulation problem. In this problem we consider systems of the form
(3.10)-(3.12) depending on a vector of unknown, but constant, parameters p
taken from an open set P. The problem is to find a controller (independent
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of p) that solves the global uniform output regulation problem for all p ∈ P.
This problem can be reduced to a regular variant of the global uniform output
regulation problem by extending the exosystem in the following way:(

ẇ
ṗ

)
=
(

s(w)
0

)
=: ŝ(w, p). (4.25)

After such an extension the parameter p is considered to be a part of the exo-
signal. Notice that if the original exosystem (3.4) satisfies the boundedness
assumption A1 in a certain open set W ⊂ R

m, then the extended exosystem
(4.25) satisfies assumption A1 in the set W × P. Therefore, controller (3.6),
(3.7) solves the global uniform output regulation problem for all parameters
p taken from the set P if it solves the global uniform output regulation prob-
lem for the extended exosystem (4.25), with (w, p) being the new state of the
exosystem. The converse statement is not true, in general, because the UBLS
property of the closed-loop system for the class of inputs Is(W) for every pa-
rameter p ∈ P, which is required in the problem formulation of the robust
global uniform output regulation problem, does not imply the UBLS property
of the closed-loop system for the class of extended inputs Iŝ(W × P), where
Iŝ(W × P) denotes all solutions of the extended exosystem (4.25) starting in
W×P. In fact, solvability of the global uniform output regulation problem for
the extended exosystem (4.25) is necessary for the solvability of the so-called
strong robust global uniform output regulation problem, which is formulated
in the following way.

Controller (3.6), (3.7) solves the strong robust global uniform
output regulation problem if it solves the global uniform output
regulation problem for all p ∈ P, and for any compact subsets
Kw ⊂ W and Kp ⊂ P there exists a compact set Kz ⊂ R

d such
that for any solution of the exosystem w(t) starting in w(0) ∈ Kw

and any parameter p ∈ Kp the corresponding limit solution z̄wp(t)
of the closed-loop system lies in the set Kz for all t ∈ R.

One can easily check that such strong robust global uniform output regula-
tion problem is equivalent to the global uniform output regulation problem
for system (3.10)-(3.12) and exosystem (4.25). Using this fact, we can apply
the results obtained in the previous section in order to study solvability of the
strong robust global uniform output regulation problem. Consequently, we can
formulate the following results, which are counterparts of Theorems 4.3.1 and
4.3.5.

Theorem 4.3.6 Consider system (3.10)-(3.12) with the parameter p taken
from an open set P and exosystem (3.4) satisfying the boundedness assumption
A1 in an open set of initial conditions W. Then the following statements are
equivalent:
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a) Controller (3.6), (3.7) solves the strong robust global uniform output
regulation problem.

b) The closed-loop system is globally uniformly convergent and has the
UBLS property for the class of inputs Iŝ(W ×P) and there exist contin-
uous mappings π(·, ·) : W ×P → R

n and σ(·, ·) : W ×P → R
q satisfying

the equations

d

dt
π(w(t), p) = f(π(w, p), θ(σ(w, p), hm(π(w, p), w, p)), w, p),

d

dt
σ(w(t), p) = η(σ(w, p), hm(π(w, p), w, p)), (4.26)

∀ w(t) = w(t, w0) ∈ W, p ∈ P
0 = hr(π(w, p), w, p) ∀ w ∈ Ω(W), p ∈ P. (4.27)

c) There exist continuous mappings π(·, ·) : W ×P → R
n and σ(·, ·) : W ×

P → R
q satisfying equations (4.26) and (4.27) and for every w(·) ∈ Is(W)

and every p ∈ P the solution (x̄w(t), ξ̄w(t)) = (π(w(t), p), σ(w(t), p)) is
globally uniformly asymptotically stable.

The next theorem provides solvability conditions for the strong robust global
uniform output regulation problem. It directly follows from Theorem 4.3.5.

Theorem 4.3.7 Consider system (3.10)-(3.12) with the parameter p taken
from an open set P and exosystem (3.4) satisfying the boundedness assumption
A1 in an open set of initial conditions W. The strong robust global uniform
output regulation problem is solvable if and only if the following conditions are
satisfied:

(i) There exist continuous mappings π(w, p) and c(w, p) defined in W̃ ×
P, where W̃ is some neighborhood of Ω(W), satisfying the regulator
equations

d

dt
π(w(t), p) = f(π(w(t), p), c(w(t), p), w(t), p), (4.28)

0 = hr(π(w(t), p), w(t), p) (4.29)

for all solutions w(t) of the exosystem (3.4) satisfying w(t) ∈ Ω(W) and
for all p ∈ P.

(ii) There exists a controller of the form (3.6), (3.7) such that for any solution
of the exosystem w(t) lying in the set Ω(W) and for any p ∈ P the input
ȳw(t) := hm(π(w(t), p), w(t), p) induces the output ū(t) = c(w(t), p) in
controller (3.6), (3.7) and the closed-loop system corresponding to this
controller is globally uniformly convergent and has the UBLS property
for the class of inputs Iŝ(W ×P).
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Under these conditions, a controller solves the strong robust global uniform
output regulation problem if and only if it satisfies the conditions given in (ii).

4.3.3 Solvability of the global forward time uniform
output regulation problem

Solvability of the global forward time uniform output regulation problem can
be studied in a similar way as solvability of the global uniform output regu-
lation problem. The main difference is that instead of Theorem 4.2.2, which
forms the foundation for the analysis in the previous sections, the results in
this section are based on Theorem 4.2.4. The proofs are identical to the proofs
of Theorems 4.3.1 and 4.3.5 and are omitted here. The first theorem, which is a
counterpart of Theorem 4.3.1, provides necessary and sufficient conditions un-
der which a controller solves the global forward time uniform output regulation
problem.

Theorem 4.3.8 Consider system (3.1)-(3.3) and exosystem (3.4) with a com-
pact positively invariant set of initial conditions W+ ⊂ R

m. Then the following
statements are equivalent:

a) Controller (3.6), (3.7) solves the global forward time uniform output reg-
ulation problem.

b) There exist continuous mappings π : W → R
n and σ : W → R

q, where
W ⊂ R

m is some neighborhood of W+, satisfying

d

dt
π(w(t)) = f(π(w), θ(σ(w), hm(π(w), w)), w),

d

dt
σ(w(t)) = η(σ(w), hm(π(w), w)), (4.30)

∀ w(t) = w(t, w0) ∈ W+, for t ≥ 0,

0 = hr(π(w), w) ∀ w ∈ Ω(W+), (4.31)

and the closed-loop system (3.8), (3.9) is globally uniformly convergent
and has the UBLS property for the class of inputs PC(W).

The next theorem is a counterpart of Theorem 4.3.5. It provides neces-
sary and sufficient conditions for solvability of the global forward time uniform
output regulation problem.

Theorem 4.3.9 Consider system (3.1)-(3.3) and exosystem (3.4) with a com-
pact positively invariant set of initial conditions W+ ⊂ R

m. The global forward
time uniform output regulation problem is solvable if and only if the following
conditions are satisfied:
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(i) There exist continuous mappings π(w) and c(w) defined in some neigh-
borhood of the set Ω(W+) and satisfying the regulator equations

d

dt
π(w(t)) = f(π(w(t)), c(w(t)), w(t)), (4.32)

0 = hr(π(w(t)), w(t)) (4.33)

for all solutions of exosystem (3.4) satisfying w(t) ∈ Ω(W+) for t ∈ R.

(ii) There exists a controller of the form (3.6), (3.7) such that for any solu-
tion of the exosystem w(t) lying in the set Ω(W+) the input ȳw(t) :=
hm(π(w(t)), w(t)) induces the output ūw(t) = c(w(t)) in controller (3.6),
(3.7), and the closed-loop system corresponding to this controller is glob-
ally uniformly convergent and has the UBLS property for the class of
inputs PC(W), where W is some neighborhood of W+.

Under these conditions, a controller solves the global forward time uniform
output regulation problem if and only if it satisfies the conditions given in (ii).

Results related to solvability of the robust variant of the global forward
time uniform output regulation problem can be obtained in the same way as
in Section 4.3.2.

4.4 Solvability of the local uniform output

regulation problem

Analysis of the solvability of the local uniform output regulation problem is
very close to the analysis in the global case (see Section 4.3.1). Analysis in the
local case is based on the local invariant manifold theorem (Theorem 4.2.6).
Since the proofs of the results presented in this section are nearly identical to
the proofs of the results from Section 4.3.1, they are omitted.

The following theorem provides necessary and sufficient conditions for a
controller of the form (3.6), (3.7) to solve the local uniform output regulation
problem.

Theorem 4.4.1 Consider system (3.1)-(3.3) and exosystem (3.4) satisfying
the neutral stability assumption. Then the following statements are equivalent:

a) Controller (3.6), (3.7) solves the local uniform output regulation problem.

b) There exist continuous mappings π(w) and σ(w) defined in some invariant
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neighborhood of the origin W ⊂ R
m, satisfying π(0) = 0, σ(0) = 0 and

d

dt
π(w(t)) = f(π(w), θ(σ(w), hm(π(w), w)), w),

d

dt
σ(w(t)) = η(σ(w), hm(π(w), w)), (4.34)

∀ w(t) = w(t, w0) ∈ W,

0 = hr(π(w), w), ∀ w ∈ W (4.35)

for all w(·) ∈ Is(W), and the closed-loop system (3.8), (3.9) correspond-
ing to this controller is locally uniformly convergent for the class of inputs
Is(W).

The main difference between Theorem 4.4.1 and Theorem 4.3.1 (if we do
not take into account that in the first case the analysis is local and in the second
it is global) is in equations (4.35) and (4.16). In (4.35), the equality

hr(π(w), w) = 0 (4.36)

is required for all w ∈ W, while in (4.16) this equality is required only for the set
Ω(W). This difference is explained by the fact that the exosystem is neutrally
stable. By the definition (see Definition 3.2.1), neutral stability implies that
for some neighborhood of the origin Ŵ it holds that Ŵ ⊂ Ω(Ŵ). Thus, for a
sufficiently small neighborhood W of the origin the equality hr(π(w), w) = 0
for all w ∈ Ω(W) implies that this equality is satisfied for all w ∈ W. The
opposite is also true. If equality (4.36) is satisfied for all w in some invariant
neighborhood of the origin W, one can choose another invariant neighborhood
of the origin W̃ such that equality (4.36) holds for all w ∈ Ω(W̃). The proof
of this statement is as follows. From the definition of the set Ω(W̃) one can
conclude that Ω(W̃) ⊂ clos(W̃), where clos(W̃) is the closure of the set W̃.
Hence, if we find an invariant neighborhood of the origin W̃ such that clos(W̃) ⊂
W, then equality (4.36) is satisfied for all w ∈ Ω(W̃). Such a neighborhood W̃
exists, because the trivial solution w(t) ≡ 0 is stable in forward and backward
time (see the proof of Theorem 4.2.6, where this statement is proved and used
several times).

The next theorem provides a local counterpart of Theorem 4.3.5.

Theorem 4.4.2 Consider system (3.1)-(3.3) and exosystem (3.4) satisfying
the neutral stability assumption. The local uniform output regulation problem
is solvable if and only if the following conditions are satisfied:

(i) There exist continuous mappings π(w) and c(w) defined in some invariant
neighborhood of the origin W ⊂ R

m, such that π(0) = 0, σ(0) = 0 and

d

dt
π(w(t)) = f(π(w(t)), c(w(t)), w(t)), (4.37)

0 = hr(π(w(t)), w(t)) (4.38)
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for all solutions of exosystem (3.4) satisfying w(t) ∈ W for all t ∈ R.

(ii) There exists a controller of the form (3.6), (3.7) satisfying the following
conditions: a) there exists a continuous mapping σ : W → R

q satisfying
σ(0) = 0 and

d

dt
σ(w(t)) = θ(σ(w), hm(π(w), w)), (4.39)

c(w(t)) = θ(σ(w(t)), hm(π(w(t)), w(t)))

for all w(t) ∈ W, and b) the closed-loop system corresponding to this
controller is locally uniformly convergent for the class of inputs Is(W).

Under these conditions, a controller satisfying the conditions given in (ii) solves
the local uniform output regulation problem.

Remark. The requirement that the controller satisfies equation (4.39) for
some continuous σ(w) guarantees that for any solution of the exosystem w(t)
lying in the set W for all t ∈ R the input ȳw(t) := hm(π(w(t)), w(t)) induces
the output ūw(t) = c(w(t)) in controller (3.6) (3.7).�

4.5 Applications of the invariant manifold

theorems

All solvability results presented in this chapter are based on the invariant mani-
fold theorems (Theorems 4.2.1, 4.2.2, 4.2.4 and 4.2.6). Although these theorems
were derived for studying the output regulation problem, they are interesting in
their own respect. In this section we discuss how these invariant manifold the-
orems can be applied in the scope of the so-called generalized synchronization
and for analysis of nonlinear systems excited by harmonic signals.

4.5.1 Generalized synchronization

In the field of master-slave synchronization one considers coupled systems of
the form

ż = F (z, w), (4.40)
ẇ = s(w). (4.41)

System (4.41) can be treated as a master system which generates a driving sig-
nal for the slave system (4.40). One of the phenomena studied in the context
of the master-slave synchronization is the so-called generalized synchronization
[62; 63; 75]. Roughly speaking, generalized synchronization occurs if for some
continuous function α(w) all solutions z(t) of system (4.40) converge to the
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manifold z = α(w), i.e. limt→+∞(z(t) − α(w(t)) = 0. As follows from Theo-
rem 4.2.4, if all solutions of system (4.41) start in a compact positively invariant
set W+ and system (4.40) is globally uniformly convergent with the UBLS prop-
erty for the class of inputs PC(W), where W is some neighborhood of W+, then
there exists a continuous function α(w) defined in W such that for all initial
conditions z(0) ∈ R

d and w(0) ∈ W+ it holds that limt→+∞(z(t)−α(w(t)) = 0.
Since the ω-limit set Ω(W+) is an invariant set inside W+, Theorem 4.2.4 im-
plies that the mapping α(w) is uniquely defined for all w ∈ Ω(W+). Therefore,
we see that the result of Theorem 4.2.4 can be applied for studying generalized
synchronization phenomena.

4.5.2 Analysis of systems excited by harmonic signals

A common way to analyze the dynamics of a dynamical system is to investi-
gate its responses to harmonic excitations at different frequencies. For linear
systems, the information on responses to harmonic excitations, which is usu-
ally presented in the form of Bode plots, allows us to identify the system and
to analyze its properties like performance and robustness. Moreover, it serves
as a powerful tool for controller design. There exists a vast literature on fre-
quency domain identification, analysis and controller design methods for linear
systems. Most (high performance) industrial controllers, especially for motion
systems, are designed and tuned based on these methods. The lack of such
methods for nonlinear systems is one of the reasons why nonlinear systems and
controllers are not popular in industry. Even if a (nonlinear) controller achieves
a certain control goal (e.g. tracking or disturbance attenuation), which can be
proved, for example, using Lyapunov stability methods, it is very difficult to
say something about performance of the corresponding nonlinear closed-loop
system, while performance is critical in many industrial applications. So there
is a need to extend the linear analysis and controller design methods based on
harmonic excitation to nonlinear systems.

One of the first difficulties in such an extension is that a general nonlinear
system being excited by a periodic (e.g. harmonic) signal can have none, one or
multiple periodic solutions and if a periodic solution exists, its period can differ
from the period of the excitation signal. Moreover, if such periodic solutions
exist, they essentially depend not only on the excitation frequency, but also on
the amplitude of the excitation. As follows from Property 2.2.11, uniformly
convergent systems, although being nonlinear, have relatively simple dynamics
and for any periodic excitation there exists a unique periodic solution which
has the same period as the excitation. Such periodic solutions can be found nu-
merically using, for example, shooting and path following methods [61]. These
methods require significant computational efforts, since they are based on the
integration of the corresponding differential equations. At the same time, if in
addition to the uniform convergence property a system has the UBLS prop-
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erty for the class of bounded piecewise continuous inputs, periodic solutions
corresponding to all harmonic excitations of the form u(t) = A sin(ωt) for all
frequencies ω and all amplitudes A can be found from only one function. This
statement follows from the following theorem.

Theorem 4.5.1 Consider the system

ż = F (z, u) (4.42)
y = h(z), (4.43)

with state z ∈ R
d, input u ∈ R and output y ∈ R; the function F (z, u) is

assumed to be locally Lipschitz with respect to z and continuous with respect
to u. Suppose system (4.42) is globally uniformly convergent and has the UBLS
property for the class of inputs PC1. Then there exists a unique continuous
mapping α : R

3 → R
d such that z̄u(t) = α(A sin(ωt),A cos(ωt), ω) is a unique

periodic solution of system (4.42) corresponding to the excitation input u(t) =
A sin(ωt).

Proof: The proof of this theorem follows from the fact that harmonic signals
u(t) = A sin(ωt) for various amplitudes and frequencies are generated by the
following system:

ẇ1 = ωw2

ẇ2 = −ωw1 (4.44)
ω̇ = 0
u = w1.

The initial conditions of this system determine the excitation amplitude A
and frequency ω. Thus, we can treat system (4.42) excited by the input
u(t) = A sin(ωt) as a system being coupled with exosystem (4.44). One can eas-
ily check that system (4.44) satisfies the boundedness assumption A1. Thus,
by Corollary 4.2.3 there exists a unique continuous function α : R

3 → R
d

such that the limit solution corresponding to the solution of the exosystem
(w1(t), w2(t), ω(t)) = (A sin(ωt),A cos(ωt), ω) equals

z̄u(t) = α(A sin(ωt),A cos(ωt), ω).

Since system (4.42) is globally uniformly convergent for the class of inputs PC1,
by Property 2.2.11 we obtain that z̄u(t) is a unique periodic solution of system
(4.42).�

As follows from Theorem 4.5.1, the function α(w1, w2, ω) contains all in-
formation related to periodic solutions of system (4.42) corresponding to har-
monic excitations, and the function h(α(w1, w2, ω)) contains all information on
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the periodic outputs corresponding to harmonic excitations. So, the function
h(α(w1, w2, ω)) can be considered as a nonlinear analog of the Bode plot for
uniformly convergent systems (in the linear case, the Bode plot contains all
information on periodic outputs corresponding to harmonic excitations). For
the analysis of a nonlinear system, it can be useful to introduce some kind
of magnitude plot for h(α(w1, w2, ω)). This can be done in the following way.
Suppose we are interested in responses of system (4.42) to harmonic excitations
at all frequencies ω ≥ 0 and all amplitudes not exceeding some A∗ > 0. Define

ΥA∗(ω) := sup
A∈(0,A∗]

(
sup

w2
1+w2

2=A2

1
A|h(α(w1, w2, ω))|

)
.

This function is a nonlinear analog of the Bode magnitude plot. The meaning
of this function is the following. First, we take some A ∈ (0,A∗] and compute
the maximal absolute value of the periodic output corresponding to the exci-
tation u(t) = A sin(ωt). Then we divide it by A. Such normalized maximal
value is a gain k(ω,A) with the following meaning: if the harmonic excitation
with frequency ω has the amplitude A, then the maximal absolute value of
the periodic output corresponding to this excitation equals k(ω,A)A. Finally,
ΥA∗(ω) is the maximal value of the gain k(ω,A) over all amplitudes from the
set A ∈ (0,A∗]. For linear systems of the form ż = Az + Bu with a Hurwitz
matrix A and output y = Cz, the gain k(ω,A) is independent of the ampli-
tude A and it equals k(ω) = |C(iωI − A)−1B|. Hence, ΥA∗(ω) is independent
of A∗ and it equals ΥA∗(ω) = |C(iωI − A)−1B|. Therefore, we see that for
linear systems ΥA∗(ω) coincides with the Bode magnitude plot. The function
ΥA∗(ω) can be used further to study dynamical properties of uniformly con-
vergent systems. Depending on the inputs and outputs that we choose for the
nonlinear system (4.42), we can define nonlinear variants of the sensitivity and
complimentary sensitivity functions.

As it has been mentioned in Section 4.2, the problem of finding the mapping
α(w1, w2, ω) is, in general, not an easy task. But in certain cases it is possible
to find this mapping analytically. Let us find α(w1, w2, ω) for a particular
example.

Example 4.5.2 Consider the system

ż1 = −z1 + z2
2 , (4.45)

ż2 = −z2 + u, (4.46)
y = z1. (4.47)

This system is a series connection of input-to-state convergent systems. There-
fore, by Property 2.2.15, system (4.45), (4.46) is input-to-state convergent.
This, by Property 2.2.7 implies that system (4.45), (4.46) is globally uniformly
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convergent with the UBLS property for the class of inputs PC1. Consequently,
by Theorem 4.5.1 the mapping α(w1, w2, ω) exists and it is unique. Using the
method described in Example 4.2.8, we will first find α2(w1, w2, ω) from equa-
tion (4.46). In our case, α2(w1, w2, ω) is a polynomial function of degree 1 in
the variables w1 and w2. So, we will seek α2 in the form:

α2(w1, w2, ω) = a1(ω)w1 + a2(ω)w2.

Substituting this expression in equation (4.46), we find

a1(ω) =
1

1 + ω2
, a2(ω) =

−ω

1 + ω2
.

Then, substituting the obtained α2 for z2 in (4.45), we compute α1(w1, w2, ω).
In our case, it is a polynomial of w1 and w2 of the same degree as (α2(w1, w2, ω))2.
Thus, we will seek α1(w1, w2, ω) in the form

α1(w1, w2, ω) = b1(ω)w2
1 + 2b2(ω)w1w2 + b3(ω)w2

2. (4.48)

After the corresponding computations, we obtain

b1(ω) =
2ω4 + 1

(1 + 4ω2)(1 + ω2)2
, b2(ω) =

ω3 − 2ω

(1 + 4ω2)(1 + ω2)2
,

b3(ω) =
2ω4 + 5ω2

(1 + 4ω2)(1 + ω2)2
.

After the function α(w1, w2, ω) is found, one can numerically, though very
efficiently, compute the magnitude characteristics ΥA∗(ω) for some maximal
excitation amplitude A∗ and all frequencies over the band of interest. In Fig-
ure 4.1, ΥA∗(ω) is computed for A∗ = 1. Since α1(w1, w2, ω) is a uniform
polynomial function of degree 2 with respect to the variables w1 and w2 (see
formula (4.48)), one can easily check that for arbitrary A∗ > 0 it holds that
ΥA∗(ω) = A∗Υ1(ω). Here we see the dependency of the amplification gain on
the amplitude of the excitation. This is an essentially nonlinear phenomenon.�

Certainly, the analysis presented above is preliminary. The reason why it
is provided here is the following. Although it is a common knowledge that
nonlinear systems may have very complex dynamics and that, in general, it is
not possible to apply linear analysis and design methods to investigate non-local
dynamical properties of nonlinear systems, uniformly convergent systems, even
being nonlinear, exhibit relatively simple dynamics. Moreover, for uniformly
convergent systems we can define an analogue of such a well-known linear
analysis tool as the Bode plot, which can be used, for example, for studying
attenuation properties at different excitation frequencies. It is still an open
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Figure 4.1: The function ΥA∗(ω) computed for A∗ = 1.

question whether such a nonlinear Bode plot contains enough information to
fully identify the system or to design controllers based on this plot. Another
open question is how to compute the function α(w1, w2, ω). A standard solution
would be to find it numerically. Yet, such numerical methods still need to be
developed. As we have shown with an example, in certain cases α(w1, w2, ω)
can be found analytically. The results and open questions discussed in this
section open an interesting direction in nonlinear systems and control analysis.

4.6 Summary

In this chapter we have presented several results related to solvability of the
global-, global robust-, global forward time- and local uniform output regulation
problems. Theorems 4.3.1, 4.3.6, 4.3.8 and 4.4.1 provide characterization of all
controllers solving the above mentioned variants of the uniform output regu-
lation problem. Theorems 4.3.5, 4.3.7, 4.3.9 and 4.4.2 provide necessary and
sufficient conditions for solvability of these problems. These solvability condi-
tions consist of two ingredients: solvability of the so-called regulator equations
and existence of a controller which has the so-called induction property and
makes the closed-loop system uniformly convergent. Solvability of the regu-
lator equations guarantees that for every initial condition of the exosystem it
is possible to find at least one control input for which the controlled system
has at least one solution along which the regulated output equals zero. The
induction property of the controller guarantees that this controller is capable
of generating this control input based on the information available from the
measurements. The uniform convergence property guarantees that the above
mentioned solution, along which the regulated output tends to zero, is (globally,
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locally) asymptotically stable.
All solvability results presented in this chapter are based on the invariant

manifold theorems (Theorems 4.2.2, 4.2.4 and 4.2.6), which, in the context of
the output regulation problem, serve as counterparts of the center manifold the-
orem. Although the invariant manifold theorems are derived in order to study
solvability of the uniform output regulation problem, they are interesting in
their own respect. As follows from the discussion in Section 4.5, these invari-
ant manifold theorems can be used for checking the generalized convergence
property for coupled systems and for the computation of periodic solutions
of uniformly convergent systems excited by harmonic inputs. Moreover, these
theorems allow us to define a nonlinear variant of the Bode plot for uniformly
convergent systems. This opens a new direction in analysis of nonlinear sys-
tems.
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Controller design for the global

uniform output regulation problem

5.1 Introduction
5.2 Controller decomposition
5.3 How to make a system

input-to-state convergent?

5.4 Controller design for the
global uniform output
regulation problem

5.5 Summary

In the previous chapter we presented necessary and sufficient conditions for
solvability of different variants of the uniform output regulation problem. Even
if the problem is solvable, these conditions do not give an answer to the ques-
tion on how to find a particular controller solving this problem. For the local
exponential output regulation problem such design methods are well known
and can be found, for example, in [8]. In this chapter we discuss and present
some methods on controller design for the global uniform output regulation
problem.

5.1 Introduction

In this chapter we consider the system

ẋ = f(x, u, w), (5.1)
e = hr(x,w), (5.2)
y = hm(x,w) (5.3)

with state x ∈ R
n, control u ∈ R

k, regulated output e ∈ R
lr and measured

output y ∈ R
lm . The external input w ∈ R

m is generated by the exosystem

ẇ = s(w). (5.4)

We will consider both the regular and the forward time variants of the
global uniform output regulation problem. In the first case, all solutions of the
exosystem start in an open invariant set of initial conditions W ⊂ R

m such
that exosystem (5.4) satisfies the boundedness assumption A1 in the set W.
A controller solving this variant of the problem makes the closed-loop system
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globally uniformly convergent with the UBLS property for the class of inputs
Is(W) and guarantees that for all solutions of the closed-loop system starting
in R

n+q (here q is the dimension of the controller) and all solutions of the
exosystem starting in W the regulated output e(t) tends to zero. In the forward
time variant of the global uniform output regulation problem, all solutions
of the exosystem start in a positively invariant compact set W+ ⊂ R

m. A
controller solves this problem if it makes the corresponding closed-loop system
globally uniformly convergent with the UBLS property for the class of inputs
PC(W), where W is some neighborhood of W+, and it guarantees that for all
solutions of the closed-loop system starting in R

n+q and all solutions of the
exosystem starting in W+ the regulated output e(t) tends to zero. Controller
designs presented in this chapter are suitable for both the regular and the
forward time variants of the global uniform output regulation problem.

As we have seen in Chapter 4 (see Theorem 4.3.5), if the global uniform
output regulation problem is solvable, then there exist continuous mappings
π(w) and c(w), defined in some neighborhood of the ω-limit set Ω(W), such
that they satisfy the regulator equations

d

dt
π(w(t)) = f(π(w(t)), c(w(t)), w(t)), (5.5)

0 = hr(π(w(t)), w(t))

for any solution of the exosystem w(t) lying in the ω-limit set Ω(W). In case of
the forward time variant of the problem, a necessary condition for the solvability
of the problem (see Theorem 4.3.9) is the existence of continuous mappings
π(w) and c(w) defined in some neighborhood of the ω-limit set Ω(W+) such
that they satisfy the regulator equations (5.5) for all solutions of the exosystem
w(t) lying in the ω-limit set Ω(W+). In the sequel we will denote the ω-limit
sets Ω(W) and Ω(W+) by Ω omitting W or W+.

Since solvability of the regulator equations (5.5) is a necessary condition for
the solvability of the global (forward time) uniform output regulation problem,
we assume that this condition is satisfied and that the continuous mappings
π(w) and c(w) satisfying these equations for all solutions of the exosystem
w(t) lying in the steady-state set Ω are known. Moreover, we assume that
these mappings π(w) and c(w) are continuously extended to the whole state
space R

m. This means that π(w) and c(w) are globally defined continuous
mappings which satisfy the regulator equations (5.5) for all solutions of the
exosystem w(t) lying in the steady-state set Ω.

In general, it can be rather difficult to check solvability of the regulator
equations and to find its solutions. Yet, for some particular systems this can
be done rather easily as illustrated with the following example.
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Example 5.1.1 Consider the system

ẋ1 = x2,

ẋ2 = x3 − x2 + sin(x2), (5.6)
ẋ3 = u,

e = x1 − w1

and the exosystem

ẇ1 = w2, (5.7)
ẇ2 = −w1.

Notice that exosystem (5.7) satisfies the boundedness assumption A1 in the
whole state space R

2. Moreover, since all solutions of (5.7) are periodic,
Ω(R2) = R

2. For system (5.6), the regulator equations have the form

d

dt
π1(w(t)) = π2(w),

d

dt
π2(w(t)) = π3(w) − π2(w) + sin(π2(w)), (5.8)

d

dt
π3(w(t)) = c(w),

0 = π1(w) − w1

for all solutions of the exosystem w(t). Here we adopt the notation π(w) =
[π1(w), π2(w), π3(w)]T . The last equation in (5.8) gives us π1(w) = w1. Sub-
stituting this knowledge into the first equation in (5.8), we obtain π2(w) = w2.
Repeating this procedure for the second and the third equations, we obtain
π3(w) = −w1 + w2 − sin(w2) and c(w) = −w1 − w2 + w1 cos(w2).�

In the subsequent sections, we will design controllers of the form

ξ̇ = η(ξ, y) (5.9)
u = θ(ξ, y)

having the following two properties:

a) system (5.1)-(5.3) in closed loop with controller (5.9) is input-to-state
convergent;

b) for any solution w(t) of exosystem (5.4) lying in the ω-limit set Ω, the
input ȳw(t) := hm(π(w(t)), w(t)) induces the output ūw(t) = c(w(t)) in
controller (5.9) (see Definition 4.3.3).
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Notice that a controller having these two properties solves the global uni-
form output regulation problem, and in the forward time case, it solves the
global forward time uniform output regulation problem. Namely, the input-to-
state convergence property implies that the corresponding closed-loop system
is globally uniformly convergent with the UBLS property for the class of in-
puts PCm. Since in the regular variant of the global uniform output regulation
problem the exosystem satisfies the boundedness assumption A1 in the set
W, the class of inputs Is(W) is contained in PCm. Therefore, the closed-loop
system is globally uniformly convergent with the UBLS property for the class
of inputs Is(W). This fact, together with the induction property b) implies,
by Theorem 4.3.5, that such a controller solves the global uniform output reg-
ulation problem. In the forward time case, Theorem 4.3.9 guarantees that a
controller which a) makes the corresponding closed-loop system input-to-state
convergent and b) has the induction property stated above, solves the global
forward time uniform output regulation problem.

One can try to find a controller with properties a) and b) stated above
directly or can try to tackle this problem by decomposing the desired controller
and finding its parts separately. The last approach is discussed in the next
section.

5.2 Controller decomposition

In practice the induction property and the input-to-state convergence property
can be achieved with two different parts of the controller. Thus, the problem of
finding a controller solving the global uniform (forward time) output regulation
problem can be tackled in two steps. First, we find a controller of the form

ξ̇1 = η1(ξ1, y), (5.10)
u1 = θ1(ξ1, y)

that has the required induction property, i.e. that for any solution of exosystem
(5.4) lying in the ω-limit set Ω the input ȳw(t) = hm(π(w(t)), w(t)) induces the
output ūw(t) = c(w(t)) in system (5.10). Once such controller (5.10) is found,
we extend system (5.1) with this controller in the following way:

ẋ = f(x, θ1(ξ1, y) + u2, w),
ξ̇1 = η1(ξ1, y) + v, (5.11)
ye = (ξ1, y),
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where (u2, v) is a new input and ye is an extended output. After such an
extension the problem reduces to finding a controller

ξ̇2 = η2(ξ2, ye),
u2 = θ2(ξ2, ye), (5.12)
v = ψ(ξ2, ye)

such that the extended system (5.11) in closed loop with controller (5.12) is
input-to-state convergent and that in the steady-state operation both u2 and
v are zero. Finding such controller is the second step in the controller design
problem. If we find such controller (5.12), then the overall controller takes the
form

ξ̇1 = η1(ξ1, y) + ψ(ξ2, ξ1, y)
ξ̇2 = η2(ξ2, ξ1, y) (5.13)
u = θ1(ξ1, y) + θ2(ξ2, ξ1, y).

Controller (5.13) solves the global uniform (forward time) output regulation
problem. Indeed, this controller makes the corresponding closed-loop sys-
tem input-to-state convergent and for any solution of exosystem (5.4) lying
in the ω-limit set Ω the input ȳw(t) = hm(π(w(t)), w(t)) induces the output
ūw(t) = c(w(t)) in controller . Hence, by Theorem 4.3.5 (Theorem 4.3.9 for
the forward time case) such controller solves the global uniform (forward time)
output regulation problem.

After such controller decomposition, the question is how to find controllers
(5.10) and (5.12) with the properties described above. If the external signal
w(t) is measured, controller (5.10) can be set to u1(w) = c(w). If this is not
the case, one can use the next obvious choice:

ξ̇1 = s(ξ1), (5.14)
u1 = c(ξ1).

This controller does not use y, but despite that for any solution of the exosystem
w(t) lying in the set Ω system (5.14) has a solution ξ1(t) ≡ w(t) along which its
output u1 equals c(w(t)). So, indeed system (5.14) has the required induction
property. Being a part of the overall controller (5.2), such ξ1-system (5.14)
serves as an observer for the exosystem. The next possible choice for the ξ1-
subsystem is a linear system, as stated in the next lemma.

Lemma 5.2.1 Suppose y ∈ R, u ∈ R and there exist numbers a0, . . . ar, ar = 0
and b0, . . . br such that for any solution of exosystem (5.4) w(t) lying in the set
Ω the functions ȳw(t) = hm(π(w(t)), w(t)) and ūw(t) = c(w(t)) satisfy the
relation

r∑
i=0

ai
di

(dt)i
ūw(t) =

r∑
i=0

bi
di

(dt)i
ȳw(t). (5.15)
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Then there exist matrices Φ ∈ R
(r−1)×(r−1), N ∈ R

(r−1)×1, M ∈ R
1×(r−1) and

κ ∈ R such that the input ȳw(t) induces the output ūw(t) in the system

ξ̇1 = Φξ1 + Ny (5.16)
u = Mξ1 + κy.

Proof: Choose Φ, N , M and κ such that system (5.16) is the state space realiza-
tion of a linear system u = W (s)y with the transfer function W (s) := b(s)/a(s),
where a(s) =

∑r
i=0 ais

i and b(s) =
∑r

i=0 bis
i. Relation (5.15) shows that ȳw(t)

and ūw(t) satisfy the relation u = W (s)y. Therefore, system (5.16) with the
input ȳw(t) has a bounded solution along which the output u equals ūw(t).
Hence, system (5.16) has the required induction property.�

A different way of finding a ξ1-subsystem with the required induction prop-
erty can be found, for example, in [11]. The reason why we may need several
different implementations of the ξ1-subsystem is the following. It may happen
that for a certain implementation of the ξ1-subsystem it is not possible to design
a ξ2-subsystem which guarantees global uniform convergence of the closed-loop
system. At the same time, for another implementation of the ξ1-subsystem such
ξ2-subsystem can be found. For example, in the local exponential output regu-
lation problem, the internal model, which is a counterpart of the ξ1-subsystem,
is required to have certain detectability properties. Without these properties
it is not possible to find a ξ2-subsystem of the controller that makes the closed-
loop system locally exponentially convergent (see e.g.[8]). In the global uniform
output regulation problem it is not clear yet what are the counterparts of such
detectability properties for the ξ1-subsystem.

Having found controller (5.10) with the required induction properties, we
need to find controller (5.12) that makes the closed-loop system input-to-state
convergent. This problem is discussed in the next section.

5.3 How to make a system input-to-state
convergent?

In this section we present different methods for designing controllers that make
the corresponding closed-loop system input-to-state convergent. These meth-
ods are based on basic results on convergent systems from Chapter 2 (see
Section 2.2).
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5.3.1 Backstepping design

In this section we present an analogue of the backstepping method for designing
a feedback that makes a system input-to-state convergent. Consider the system

ż1 = F (z1, z2, w), (5.17)
ż2 = u, (5.18)

with states z1 ∈ R
d, z2 ∈ R

k, control u ∈ R
k and external input w ∈ R

m.
The function F (z1, z2, w) is locally Lipschitz with respect to z1 and z2, and
continuous with respect to w.

Theorem 5.3.1 Consider the system (5.17), (5.18). Suppose there exists a
C2 function ψ(z1) such that the system

ż1 = F (z1, ψ(z1) + v̄, w) (5.19)

with inputs v̄ and w is input-to-state convergent. Then for any scalar b > 0
the controller

u = −b(z2 − ψ(z1)) +
∂ψ

∂z1
(z1)F (z1, z2, w) + v (5.20)

is such that the closed-loop system (5.17), (5.18), (5.20) with v and w as inputs
is input-to-state convergent.

Proof: Consider the coordinate transformation ξ1 := z1, ξ2 = z2 − ψ(z1). In
the new coordinates, the system equations are

ξ̇1 = F (ξ1, ψ(ξ1) + ξ2, w),

ξ̇2 = u − ∂ψ

∂z1
(ξ1)F (ξ1, ψ(ξ1) + ξ2, w).

After applying the feedback

u = −bξ2 + v +
∂ψ

∂z1
(ξ1)F (ξ1, ψ(ξ1) + ξ2, w), (5.21)

the equations of the closed-loop system become

ξ̇1 = F (ξ1, ψ(ξ1) + ξ2, w), (5.22)
ξ̇2 = −bξ2 + v. (5.23)

Due to the choice of ψ(ξ1), the ξ1-subsystem with inputs (ξ2, w) is input-to-
state convergent. At the same time, the ξ2-subsystem is input-to-state conver-
gent, because it is linear with the Hurwitz matrix −bI (this system satisfies the
Demidovich condition with the matrices P = I, Q = 2bI, see Theorem 2.2.17).
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By Property 2.2.15, the series connection of systems (5.22) and (5.23) is an
input-to-state convergent system. Finally, notice that in the original coordi-
nates (z1, z2) controller (5.21) equals the controller given in (5.20).�

Remark 1. The input-to-state convergence property of system (5.19) can
be established, for example, using Theorem 2.2.17. Some methods for finding
the function ψ(z1) with the required properties will be discussed later in this
chapter.�

Remark 2. The parameter b > 0 can be used to influence the rate of
convergence in the closed-loop system, while the additional input v can be
used to shape limit solutions of the closed-loop system (for example, in order
to guarantee certain steady-state behavior of the closed-loop system). Actually,
instead of the controller (5.20) we can use any controller of the form

u = −κ(z2 − ψ(z1)) +
∂ψ

∂z1
(z1)F (z1, z2, w) + v,

where the function κ(·) is such that the system ξ̇2 = −κ(ξ2)+v is input-to-state
convergent.�

Remark 3. The result of Theorem 5.3.1 can be extended to the case of
arbitrary number of integrators in the system:

ż1 = F (z1, z2, w),
ż2 = z3,

· · ·
żk = u.

In this case, F (z1, z2, w) and ψ(z1) must be sufficiently differentiable.�

To illustrate the backstepping controller design method, consider the following
example.

Example 5.3.2 Consider the system

ẋ1 = x2

ẋ2 = −x1 − x3
2 + x3 (5.24)

ẋ3 = u.

It can be easily checked that for ψ(x1, x2) = x3
2 − ax2, a > 0, the (x1, x2)

subsystem with x3 = ψ(x1, x2) + v̄ is input-to-state convergent (because it
becomes a linear system with a Hurwitz system matrix). By Theorem 5.3.1,
for any b > 0 the controller

u = −b(x3 − x3
2 + ax2) + (3x2

2 − a)(−x1 − x3
2 + x3) + v (5.25)

makes the closed-loop system (5.24), (5.25) with v as input input-to-state
convergent.�
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5.3.2 Quadratic stability design

In this section we consider controller design procedures based on the notions of
quadratic stability, stabilizability and detectability, which are defined below.

Definition 5.3.3 A matrix function A(ζ) ∈ R
d×d is called quadratically stable

over a set Z if for some P = PT > 0 and Q = QT > 0

PA(ζ) + A(ζ)TP ≤ −Q ∀ζ ∈ Z. (5.26)

Definition 5.3.4 A pair of matrix functions A(ζ) ∈ R
d×d and B(ζ) ∈ R

d×k is
said to be quadratically stabilizable over Z if there exist a matrix K ∈ R

k×d

such that A(ζ) + B(ζ)K is quadratically stable over Z.

Definition 5.3.5 A pair of matrix functions A(ζ) ∈ R
d×d and C(ζ) ∈ R

k×l

is said to be quadratically detectable over Z if there exist a matrix L ∈ R
d×l

such that A(ζ) + LC(ζ) is quadratically stable over Z.

Notice that if A(ζ) ≡ A is constant, quadratic stability of A is equivalent
to the matrix A being Hurwitz; quadratic stabilizability of constant matrices
(A,B) and quadratic detectability of constant matrices (A, C) are equivalent
to conventional stabilizability and detectability of the pairs of matrices (A,B)
and (A, C), respectively. Similar to the case of constant matrices, the pair
(A(ζ),B(ζ)) is quadratically stabilizable over Z if and only if (AT (ζ),BT (ζ))
is quadratically detectable over Z. This fact follows from pre- and post-
multiplication by P−1 of the inequality

P(A(ζ) + B(ζ)K) + (A(ζ) + B(ζ)K)TP ≤ −Q.

The purpose of the notion of quadratic stability introduced above becomes
clear if one recalls Theorem 2.2.17. Indeed, as follows from this theorem, if the
system

ż = F (z, w), z ∈ R
d, w ∈ R

m (5.27)

is such that F (z, w) is C1 with respect to z, continuous with respect to w and
the Jacobian ∂F

∂z (z, w) is quadratically stable over (z, w) ∈ R
d × R

m, then sys-
tem (5.27) is input-to-state convergent. The notions of quadratic stabilizability
and detectability are useful for controller and observer design as will be shown
below. Consider the system

ż = F (z, u, w), (5.28)
y = h(z, w)

with state z ∈ R
d, control u ∈ R

k, external signal w ∈ R
m and measured

output y ∈ R
l. The functions F (z, u, w), h(z, w) are assumed to be C1 with

respect to z and u and continuous with respect to w.
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Lemma 5.3.6 Consider the system (5.28) Suppose the pair of matrix functions
∂F
∂z (z, u, w) and ∂F

∂u (z, u, w) is quadratically stabilizable over R
d+k+m with some

matrix K ∈ R
k×d. Then the system

ż = F (z,Kz + v, w) (5.29)

with inputs v and w is input-to-state convergent.

Proof: The Jacobian of the right-hand side of system (5.29) equals

J(z, v, w) :=
∂F

∂z
(z,Kz + v, w) +

∂F

∂u
(z,Kz + v, w)K.

By the choice of the matrix K, J(z, v, w) is quadratically stable over R
d+k+m.

Hence, by Theorem 2.2.17 system (5.29) is input-to-state convergent.�

As we can see from this lemma, quadratic stabilizability of the pair (∂F
∂z , ∂F

∂u )
implies the existence of a feedback u = Kz + v that makes the closed-loop
system input-to-state convergent. The additional feedforward term v can be
used, for example, for shaping limit solutions of the closed-loop system (5.40).
The next lemma shows how the notion of quadratic detectability can be used
for designing an observer with exponentially convergent error dynamics.

Lemma 5.3.7 Consider system (5.28). Suppose the pair of matrix functions
∂F
∂z (z, u, w) and ∂h

∂z (z, w) is quadratically detectable over R
d+k+m with some

matrix L ∈ R
d×l. If for some inputs u(·) ∈ PCk and w(·) ∈ PCm, a solution

z(t) of system (5.28) and the output y(t) = h(z(t), w(t)) corresponding to these
inputs are such that they are defined for all t ≥ t0, then any solution of the
system

˙̂z = F (ẑ, u, w) + L(h(ẑ, w) − y) (5.30)

satisfies
|ẑ(t) − z(t)| ≤ Ce−a(t−t0)|ẑ(t0) − z(t0)|, (5.31)

for some numbers C > 0 and a > 0 independent of the particular inputs u(t),
w(t) and solution z(t). Moreover, the system

∆ż = G(z + ∆z, u, w) − G(z, u, w), (5.32)

where G(z, u, w) := F (z, u, w)+Lh(z, w), is such that for any input (z(·), w(·)) ∈
PCd×PCm and any feedback u = U(∆z, t) all solutions of system (5.32) satisfy

|∆z(t)| ≤ Ce−a(t−t0)|∆z(t0)|, (5.33)

where the numbers C > 0 and a > 0 are independent of z(t), w(t) and u =
U(∆z, t).
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Proof: Let us first prove the second part of the lemma. The Jacobian
∂G
∂z (z, u, w) equals ∂F

∂z (z, u, w) + L∂h
∂z (z, w). By the choice of the matrix L,

∂G
∂z (z, u, w) is quadratically stable over R

d+k+m, i.e. there exist positive definite
matrices P > 0 and Q > 0 such that

P
∂G

∂z
(z, u, w) +

∂G

∂z

T

(z, u, w)P ≤ −Q

for all (z, u, w) ∈ R
d+k+m. Hence, by Lemma 2.2.18 the derivative of the

function V (∆z) := 1/2∆zT P∆z along solutions of system (5.32) satisfies

dV

dt
= ∆zT P (G(z + ∆z, u, w) − G(z, u, w)) ≤ −a|∆z|2P = −2aV (∆z), (5.34)

where |∆z|P denotes |∆z|P = (∆zT P∆z)1/2. In inequality (5.34), the number
a > 0 depends only on the matrices P and Q and does not depend on the
particular values of z, u and w. This inequality, in turn, implies that there
exists C > 0 depending only on the matrix P such that if the inputs z(t) and
w(t) are defined for all t ≥ t0 then the solution ∆z(t) is also defined for all
t ≥ t0 and satisfies

|∆z(t)| ≤ Ce−a(t−t0)|∆z(t0)|, ∀t ≥ t0. (5.35)

It remains to show that system (5.30) is an observer for system (5.28). Denote
∆z := ẑ − z(t). Since z(t) is a solution of system (5.28), ∆z satisfies equation
(5.32). By the previous analysis, we obtain that ∆z(t) satisfies (5.35). This
implies (5.31).�

Lemma 5.3.7 provides conditions under which system (5.30) is an observer
for system (5.28). The observer itself is designed in such a way that it is
input-to-state convergent for y, u and w viewed as inputs.

Lemmas 5.3.6 and 5.3.7 show how to design a state feedback controller
that makes the closed-loop system input-to-state convergent and an observer
for this system with an exponentially stable error dynamics. In fact, for such
controllers and observers one can use the separation principle in order to design
an output feedback controller that makes the closed-loop system input-to-state
convergent. This statement follows from the next theorem.

Theorem 5.3.8 Consider the system (5.28). Suppose the pair of matrix func-
tions ∂F

∂z (z, u, w) and ∂F
∂u (z, u, w) is quadratically stabilizable over R

d+k+m

with some matrix K ∈ R
k×d and the pair of matrix functions ∂F

∂z (z, u, w) and
∂h
∂z (z, w) is quadratically detectable over R

d+k+m with some matrix L ∈ R
d×l.

Then system (5.28) in closed loop with the controller

˙̂z = F (ẑ, u, w) + L(h(ẑ, w) − y), (5.36)
u = Kẑ + v (5.37)
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with (v, w) as inputs is input-to-state convergent.

Proof: Denote ∆z := ẑ− z. Then in the new coordinates (z,∆z) the equations
of the closed-loop system are

ż = F (z,Kz + K∆z + v, w), (5.38)
∆ż = G(z + ∆z, u, w) − G(z, u, w), (5.39)

u = K(z + ∆z) + v, (5.40)

where G(z, u, w) = F (z, u, w) + Lh(z, w). By the choice of K, system (5.38)
with (∆z, v, w) as inputs is input-to-state convergent for the class of inputs
PCd+k+m (see Lemma 5.3.6). By the choice of the observer gain L, for any
inputs z(t), w(t), v(t) and for the feedback u = K(z(t)+∆z)+v(t) any solution
of system (5.39), (5.40) satisfies

|∆z(t)| ≤ Ce−a(t−t0)|∆z(t0)|, (5.41)

where the numbers C > 0 and a > 0 are independent of z(t), w(t) and v(t) (see
Lemma 5.3.7). Hence, applying Property 2.2.16, we obtain that the closed-loop
system (5.38)-(5.40) is input-to-state convergent.�

Remark. The controller proposed in Theorem 5.3.8 consists of the observer
(5.36) and the linear state-feedback controller (5.37), which uses the observed
states for feedback. As follows from the proof of the theorem, linearity of the
controller is not essential. What is essential is that system (5.38) with ∆z, v
and w as inputs is input-to-state convergent. Therefore, instead of the linear
controller (5.37) one can use any controller u = ψ(z)+v that makes the system

ż = F (z, ψ(z + ∆z) + v, w)

input-to-state convergent with respect to the inputs ∆z, v and w. For example,
such controller can be found using the backstepping method described in the
previous section.�

As we can see from Theorem 5.3.8, the notions of quadratic stability, stabi-
lizability and detectability can be very helpful in designing an output feedback
controller that makes the corresponding closed-loop system input-to-state con-
vergent. The question is how to check quadratic stability, stabilizability and
detectability. In general, this is not an easy task. Yet, in some particular cases
this can be done efficiently, as follows from the following lemma.

Lemma 5.3.9 Consider the matrix functions A(ζ) ∈ R
d×d, B(ζ) ∈ R

d×k and
C(ζ) ∈ R

l×d.
i) Suppose there exist matrices A1, . . .Ap such that

A(ζ) ∈ co{A1, . . . ,Ap}, ∀ζ ∈ Z,
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and the linear matrix inequality (LMI)

PAi + AT
i P < 0, i = 1, . . . p, (5.42)

P = PT > 0

is feasible. Then A(ζ) is quadratically stable over Z.
ii) Suppose there exist matrices A1, . . .Ap and B1, . . .Bp such that

[A(ζ) B(ζ)] ∈ co{[A1 B1], . . . [ApBp]}, ∀ζ ∈ Z,

and the LMI

AiP + PAT
i + BiY + YTBT

i < 0, i = 1, . . . p,

P = PT > 0 (5.43)

is feasible. Then the pair A(ζ),B(ζ) is quadratically stabilizable over Z with
the matrix K = YP−1, where Y and P satisfy (5.43).
iii) Suppose there exist matrices A1, . . .Ap and C1, . . . Cp such that

[A(ζ) C(ζ)] ∈ co{[A1 C1], . . . [Ap Cp]}, ∀ζ ∈ Z,

and the LMI

PAi + AT
i P + XCi + CT

i X T < 0, i = 1, . . . p,

P = PT > 0 (5.44)

is feasible. Then the pair A(ζ), C(ζ) is quadratically detectable over Z with
the matrix L = P−1X , where X and P satisfy (5.44).

Lemma 5.3.9 is a compilation of standard results on LMI applications to control
(see, e.g. [5]). In general, the LMI conditions presented above are only sufficient
for quadratic stability, stabilizability and detectability. Yet, for the case of
systems with one scalar output dependent nonlinearity, these conditions are
not only sufficient, but also necessary. We consider such systems in the next
section.

5.3.3 Controller design for Lur’e systems

In this section we consider controller design based on the notions of quadratic
stability, stabilizability and detectability for systems with one scalar output
dependent nonlinearity. In literature, systems with output dependent nonlin-
earities are often referred to as Lur’e systems, named after the Russian math-
ematician A.I. Lur’e. For such systems the notions of quadratic stability, sta-
bilizability and detectability simplify significantly. This simplification is due
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to the equivalence of quadratic stability and feasibility of certain linear matrix
inequality (LMI), which will be stated below. Consider the system

ż = Az + Dϕ(ζ) + Bu + Ew, (5.45)
ζ = Cζz + Hζw,

y = Cz + Hw

with state z ∈ R
d, control u ∈ R

k, external signal w ∈ R
m, measured output

y ∈ R
l, output ζ ∈ R and scalar nonlinearity ϕ(ζ). The nonlinearity is assumed

to be C1 and to satisfy the condition

sup
ζ∈R

∂ϕ

∂ζ
(ζ) = γ, inf

ζ∈R

∂ϕ

∂ζ
(ζ) = −γ (5.46)

for some γ > 0. If the nonlinearity ϕ(ζ) does not satisfy (5.46), but satisfies
the condition

sup
ζ∈R

∂ϕ

∂ζ
(ζ) = α, inf

ζ∈R

∂ϕ

∂ζ
(ζ) = β

for some α > β, then by introducing the transformation ϕ̃(ζ) := ϕ(ζ) − α+β
2 ζ

and Ã := A + α+β
2 DCζ , Ẽ := E + α+β

2 DHζ , system (5.45) can be written in
an equivalent form

ż = Ãz + Dϕ̃(ζ) + Bu + Ẽw

with the nonlinearity ϕ̃(ζ) satisfying condition (5.46) for γ := (α−β)/2. So, we
assume that all such transformations have been made and that the nonlinearity
ϕ(ζ) satisfies (5.46). Denote the Jacobian of the right-hand side of (5.45)
with respect to z by A(ζ) := A + ∂ϕ

∂ζ (ζ)DCζ . Denote A−
γ := A − γDCζ and

A+
γ := A + γDCζ . The next lemma shows that quadratic stability of A(ζ),

quadratic stabilizability of the pair (A(ζ), B) and quadratic detectability of the
pair (A(ζ), C) are equivalent to feasibility of certain linear matrix inequalities.

Lemma 5.3.10 Consider system (5.45).

• The following statements are equivalent:

(i) The matrix function A(ζ) is quadratically stable over R.

(ii) There exists a matrix P = PT > 0 satisfying the LMI

PA−
γ + (A−

γ )T P < 0, PA+
γ + (A+

γ )T P < 0. (5.47)

(iii) The matrix A is Hurwitz and

sup
ω∈R

|C(iωI − A)−1D| <
1
γ

. (5.48)
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• The pair of matrix functions (A(ζ), B) is quadratically stabilizable over
R if and only if the following LMI is feasible

A−
γ P + P(A−

γ )T + BY + YT BT < 0,

A+
γ P + P(A+

γ )T + BY + YT BT < 0, (5.49)

P = PT > 0.

Under this condition, A(ζ)+BK with K := YP−1, where Y and P satisfy
(5.49), is quadratically stable over R.

• The pair of matrix functions (A(ζ), C) is quadratically detectable over R

if and only if the following LMI is feasible

PA−
γ + (A−

γ )TP + XC + CTX T < 0,

PA+
γ + (A+

γ )TP + XC + CTX T < 0 (5.50)

P = PT > 0.

Under this condition, A(ζ)+LC with L := P−1X , where X and P satisfy
(5.44), is quadratically stable over R.

Proof: The equivalence of (ii) and (iii) is proved in Lemma 2.2.25. The impli-
cation (ii)⇒(i) holds due to the fact that A(ζ) ∈ co{A−

γ , A+
γ }. It remains to

prove the implication (i)⇒(ii). Suppose A(ζ) is quadratically stabilizable over
R. Thus, there exist matrices P = PT > 0 and Q = QT > 0 such that

PA(ζ) + AT (ζ)P ≤ −Q, ∀ζ ∈ R. (5.51)

Due to condition (5.46), there exist sequences {ζ−k }+∞
k=1 and {ζ+

k }+∞
k=1 such that

A(ζ−k )−A−
γ → 0 and A(ζ+

k )−A+
γ → 0 as k → +∞. Substituting these A(ζ−k )

and A(ζ+
k ) in inequality (5.51), in the limit for k → +∞ we obtain (ii). This

proves the first part of the lemma.
Let us show the equivalence of quadratic stabilizability of the pair (A(ζ), B)

and the feasibility of the LMI (5.49). The ’if’ part follows from Lemma 5.3.9.
So, we only need to show that quadratic stabilizability of the pair (A(ζ), B)
implies the feasibility of the LMI (5.49). Since the pair (A(ζ), B) is quadrati-
cally stabilizable, there exists a matrix K such that A(ζ)+BK is quadratically
stable over R. By the result of the first part of the theorem, this implies that

P (A−
γ + BK) + (A−

γ + BK)T P < 0, (5.52)

P (A+
γ + BK) + (A+

γ + BK)T P < 0. (5.53)

for some matrix P = PT > 0. Denote P := P−1 and Y := KP−1. Pre- and
postmultiplication of inequalities (5.52) and (5.53) by P−1, implies that P and
Y satisfy (5.49). This proves the second part of the lemma.



98 Controller design for the global uniform output regulation problem

The last part of the lemma on quadratic detectability of the pair (A(ζ), C)
is proved in the same way as the part on quadratic stabilizability of the pair
(A(ζ), B).�

Condition (5.46) means that ∂ϕ
∂ζ (ζ) exactly “fits” the range [−γ, γ]. This

condition allowed us to prove the equivalence of quadratic stability, stabiliz-
ability and detectability to certain LMIs. In practice, however, it is sufficient
to know that the nonlinearity ϕ(ζ) satisfies the condition

∣∣∣∂ϕ
∂ζ (ζ)

∣∣∣ ≤ γ for all
ζ ∈ R. For system (5.45) with such nonlinearity ϕ(ζ) the LMIs (5.47), (5.49)
and (5.50) still guarantee quadratic stability of A(ζ), stabilizability of (A(ζ), B)
and detectability of (A(ζ), C), respectively. In the sequel we will denote the
class of such nonlinearities by Fγ , i.e.

Fγ :=
{

ϕ ∈ C1 :
∣∣∣∣∂ϕ

∂ζ
(ζ)
∣∣∣∣ ≤ γ ∀ζ ∈ R

}
.

The result of Lemma 5.3.10 together with Theorem 5.3.8 gives us the fol-
lowing corollary.

Corollary 5.3.11 Consider system (5.45) with the nonlinearity ϕ ∈ Fγ . Sup-
pose the LMIs (5.49) and (5.50) are feasible. Then there exist matrices K and
L such that system (5.45) in closed loop with the controller

˙̂z = Aẑ + Dϕ(ζ̂) + Bu + Ew + L(ŷ − y), (5.54)

ζ̂ = Cζ ẑ + Hζw, ŷ = Cẑ + Hw, (5.55)
u = Kẑ + v (5.56)

is input-to-state convergent.

An example illustrating an application of such controller design will be pre-
sented in Section 5.4.

Corollary 5.3.11 allows to design an output feedback controller that makes
the closed-loop system input-to-state convergent. An important observation
regarding this controller design is that it requires accurate knowledge of the
system parameters and the nonlinearity ϕ(ζ). In some cases, however, we may
not know exactly the system parameters and the only available information
about ϕ(ζ) is that it belongs to the class Fγ . In this case, it may still be
possible to design an output feedback controller that makes the closed-loop
system input-to-state convergent. Such a controller design can be performed
based on Lemma 5.3.10. Denote A◦, B◦, D◦, C◦ and C◦

ζ to be the nominal
values of the matrices A,B,D,C and Cζ . We will seek a robust controller of
the form

ξ̇ = Gξ + My, (5.57)
u = Nξξ + Nyy + v.
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The following lemma gives sufficient conditions under which system (5.45) in
closed-loop with controller (5.57) is input-to-state convergent for all matri-
ces A,B,D,C and Cζ close enough to their nominal values, for all matrices
E,H,Hζ and for all nonlinearities ϕ(ζ) from the class Fγ .

Lemma 5.3.12 Consider system (5.45). Consider the closed-loop system (5.45),
(5.57) for the nominal parameters, with inputs w ≡ 0 and v ≡ 0 and with ϕ as
input:

ż = A◦z + B◦(Nξξ + NyC◦z) + D◦ϕ,

ξ̇ = Gξ + MC◦z, (5.58)
ζ = C◦

ζ z.

Suppose all poles of system (5.58) have negative real part and the transfer
function W ◦

ϕζ(s) of system (5.58) from input ϕ to output ζ satisfies

‖W ◦
ϕζ‖∞ <

1
γ

. (5.59)

Then system (5.45) in closed-loop with controller (5.57) is input-to-state con-
vergent for all matrices A,B,D,C,Cζ close enough to their nominal values, for
all matrices E,H,Hζ , and for all nonlinearities ϕ ∈ Fγ .

Proof: System (5.45) in closed-loop with controller (5.57) has the form

χ̇ = Âχ + D̂ϕ(ζ) + Êw + Ĥv, (5.60)
ζ = Ĉχ + Hζw, (5.61)

where χ := (zT , ξT )T and

Â :=
(

A + BNyC BNξ

MC G

)
, D̂ :=

(
D
0

)
, Ê :=

(
BNyH + E

MH

)
,

Ĥ :=
(

B
0

)
, Ĉ := (Cζ , 0).

Recall that the norm ‖Wϕζ‖∞ of the transfer function Wϕζ(s) is defined as
‖Wϕζ‖∞ = supω∈R |Ĉ(iωI − Â)−1D̂|. Notice that ‖Wϕζ‖∞ depends on the
matrices Ĉ, Â and D̂ continuously (at least in the domain where all eigenval-
ues of Â have negative real parts). The matrices Ĉ, Â and D̂ depend on the
system matrices A,B,D,C and Cζ continuously. The matrix Â◦ – the matrix
Â corresponding to the nominal system parameters – is Hurwitz. Therefore,
the conditions of the theorem imply that Â is Hurwitz and ‖Wϕζ‖∞ < 1/γ
for all matrices A,B,D,C and Cζ close enough to their nominal values. By
Lemma 5.3.10, this implies that the Jacobian of the right hand side of the
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closed-loop system, which is equal to A(ζ) := Â + D̂Ĉ ∂ϕ
∂ζ (ζ), is quadratically

stable over R. Hence, according to Theorem 2.2.17 the closed-loop system is
input-to-state convergent provided that the matrices A,B,D,C and Cζ are
close enough to their nominal values. Since condition (5.59) does not depend
on the nonlinearity ϕ(ζ) and on the matrices E, H and Hζ , the input-to-state
convergence property holds for all nonlinearities ϕ ∈ Fγ and all matrices E, H
and Hζ .�

Remark. The problem of finding a linear controller (5.57) such that the
corresponding transfer function Wϕζ(s) satisfies condition (5.59) is a standard
H∞ optimization problem. There are many software packages that allow to
solve this problem. For example, one may use a standard MATLAB routine
hinflmi. An example of this robust controller design will be given in Sec-
tion 5.4.�

An important assumption in the results presented in this section is that the
nonlinearity ϕ(ζ) belongs to the class Fγ for some γ > 0. Below we give a
result on controller design for systems with an arbitrary C1 nonlinearity ϕ(ζ).
Consider the system

ż = Az + ϕ(y) + Bu + Ew, (5.62)
y = Cz + Hw,

with state z ∈ R
d, measured output y ∈ R, control u ∈ R and external input

w ∈ R
m. We assume that system (5.62) has relative degree one, i.e. CB = 0.

Without loss of generality, we assume CB > 0. The variable on which the non-
linearity depends is assumed to be measured. The only available information
on the nonlinearity ϕ(y) is that it is C1 and there exists a continuous scalar
function ψ(y) such that ∣∣∣∣∂ϕ

∂y
(y)
∣∣∣∣ ≤ ψ(y), y ∈ R. (5.63)

Theorem 5.3.13 Consider system (5.62) with the nonlinearity ϕ(y) satisfying
condition (5.63). Suppose all zeros of the system

ż = Az + Bu (5.64)
y = Cz

have negative real parts and CB > 0 (i.e. system (5.64) has relative degree
equal to one). Then there exists a C1 function U(y) such that system (5.62)
in closed loop with the controller u = U(y) + v is input-to-state convergent for
the class of inputs PC1 × PCm. The function U(y) can be chosen, for example
equal to

U(y) = −κy − µ

∫ y

0

|ψ(τ)|2dτ, ∀κ ≥ κ∗, µ ≥ µ∗, (5.65)
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where the numbers κ∗ and µ∗ depend only on the matrices A, B and C and
can be determined from the matrix inequalities

PA + AT P − 2κ∗CT C < 0, PB = CT ,

µ∗I ≥ −P (PA + AT P − 2κ∗CT C)−1P,

which are feasible.

Proof: See Appendix A.13.
Remark 1. Theorem 5.3.13 can be extended to the case of y and u being

vectors of dimensions larger than one. The idea of the proof remains the same
as in the scalar case.�

Remark 2. A possible way to relax the requirement that system (5.64) must
be of relative degree one is by using filtered output transformations presented
in [57]. Such transformations allow to reduce the relative degree of the system
while preserving the property that all zeros of the system lie in the left-half
complex plane (minimum-phaseness).�

Remark 3. Basically, Theorem (5.3.13) shows that any strongly mini-
mumphase system of the form (5.62) (i.e. system with CB = 0 and stable
zeros) with a nonlinearity ϕ(y) satisfying condition (5.63) can be made input-
to-state convergent with a static output feedback of the form (5.65) provided
that the gains κ and µ are high enough. The only essential information is the
sign of CB (if CB < 0 then the formula for U(y) must be with pluses) and the
bound function ψ(y). Such a characterization of controllers can be useful, for
example, in adaptive control.�

5.4 Controller design for the global uniform

output regulation problem

With the controller design methods given in the previous section, we can
present results on controller design for the global (forward time) uniform out-
put regulation problem. The results in this section are formulated in terms
of Jacobians of the functions f(x, u, w), hm(x,w) and s(w), which are as-
sumed to be at least C1. In the sequel, we will use the following notations:
χ := (x, u, w) ∈ R

n+k ×W,

A(χ) :=
∂f

∂x
(x, u, w), B(χ) :=

∂f

∂u
(x, u, w),

E(χ) :=
∂f

∂w
(x, u, w), C(χ) :=

∂hm

∂x
(x,w),

H(χ) :=
∂hm

∂w
(x,w), S(χ) :=

∂s

∂w
(w).
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5.4.1 State feedback controller design

Let us first consider the state feedback case when the states x and w are
available for measurements, i.e. y = (x,w).

Theorem 5.4.1 Consider system (5.1)-(5.3) with y = (x,w) and exosystem
(5.4). Suppose the regulator equations (5.5) are solvable and the corresponding
continuous solutions π(w) and c(w) are globally defined (see Section 5.1 for
details). If the pair (A(χ), B(χ)) is quadratically stabilizable over χ ∈ R

n+k+m,
then the global (forward time) uniform output regulation problem is solved by
a controller of the form

u = c(w) + K(x − π(w)), (5.66)

where the matrix K is such that the matrix function A(χ)+B(χ)K is quadrat-
ically stable over χ ∈ R

n+k+m.

Proof: The controller (5.66) is such that for ȳw(t) := (π(w(t)), w(t)) it generates
control ūw(t) = c(w(t)). Therefore it has the required induction property (see
Section 5.1). Moreover, by the choice of the matrix K, the closed-loop system

ẋ = f(x,Kx + c(w) − Kπ(w), w)

is input-to-state convergent. Therefore, this controller solves the global (for-
ward time) uniform output regulation problem (see Section 5.1 for details).�

As was described in the Section 5.2, controller (5.66) consists of two parts:
u = u1 + u2, where u1 := c(w) and u2 = K(x− π(w)). The first component u1

guarantees the induction property, i.e. that for the input ȳw(t) = (π(w(t)), w(t))
the controller has the output ūw(t) = c(w(t)). The second component u2

guarantees that the closed-loop system is input-to-state convergent.

5.4.2 Output feedback controller design

If the full state (x,w) is not available for measurement, we can design an
observer to asymptotically reconstruct the unmeasured variables in controller
(5.66). If w(t) were measured, a controller would take the form

u = c(w) + K(x̂ − π(w)),

where the state estimates x̂ are generated, for example, by an observer of the
form

˙̂x = f(x̂, u, w) + Lx(hm(x̂, w) − y). (5.67)

For such observer design and related convergence analysis of the total closed-
loop system we can directly use Theorem 5.3.8. The main problem is that
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the state w of the exosystem is in many cases not available for measurements,
for example, if the exosystem generates disturbances. Therefore, w(t) can in
general not be used in the controller. In order to overcome this difficulty, we
extend the observer (5.67) with an observer for the exosystem and generate the
controller from the formula u = c(ŵ)+K(x̂−π(ŵ)), where ŵ are the estimates
of w. The main result on such controller design is formulated in the following
theorem.

Theorem 5.4.2 Consider system (5.1)-(5.3) and exosystem (5.4). Suppose the
regulator equations (5.5) are solvable and the corresponding solutions π(w) and
c(w) are globally defined locally Lipschitz mappings. If the pair (A(χ), B(χ))
is quadratically stabilizable over χ ∈ R

n+k+m and the pair[
A(χ) E(χ)

0 S(z)

]
, [C(χ) H(χ)] (5.68)

is quadratically detectable over χ ∈ R
n+k+m, then the global uniform output

regulation problem is solved by a controller of the form

u = c(ŵ) + K(x̂ − π(ŵ))
˙̂x = f(x̂, u, ŵ) + Lx(ŷ − y) (5.69)
˙̂w = s(ŵ) + Lw(ŷ − y)
ŷ = hm(x̂, ŵ),

where the matrices K and L = [LT
x , LT

w]T are such that the matrix functions
A(χ) + B(χ)K and [

A(χ) E(χ)
0 S(χ)

]
+ L[C(χ) H(χ)]

are quadratically stable over χ ∈ R
n+k+m.

Proof: Notice that controller (5.69) has the required induction property. In-
deed, for every solution of the exosystem w(t) lying in Ω(W), for the in-
put ȳw(t) = hm(π(w(t)), w(t)) system (5.69) has the solution (x̂(t), ŵ(t)) =
(π(w(t)), w(t)). This solution is bounded for all t ∈ R and for this solution
the output of the controller equals u = c(w(t)). So, controller (5.69) indeed
has the required induction property. Moreover, system (5.1) in closed-loop
with controller (5.69) is input-to-state convergent. The proof of this part is
identical to the proof of Theorem 5.3.8 since the observer error dynamics is
globally exponentially stable. Hence, controller (5.69) satisfies the conditions
of Theorem 4.3.5 and therefore it solves the global uniform output regulation
problem.�



104 Controller design for the global uniform output regulation problem

Remark. As follows from Theorems 4.3.5 and 4.3.9, continuity of the map-
pings π(w) and c(w) is a necessary condition for the solvability of the global
(forward time) uniform output regulation problem. In Theorem 5.4.2, the
functions π(w) and c(w) are required to be locally Lipschitz. This additional
requirement guarantees existence and uniqueness of solutions of the closed-loop
system. The requirement that π(w) and c(w) are globally defined is not very
restrictive, since in many cases π(w) and c(w) can be extended from a neighbor-
hood of Ω(W) (Ω(W+) in the case of the forward time variant of the problem)
to the whole space R

m.�

5.4.3 Controller design for Lur’e systems

The conditions for controller design presented in the previous section become
easily checkable when system (5.1)-(5.3) is a system with a scalar nonlinearity
depending on an output. So, in this section we consider the system

ẋ = Ax + Bu + Dϕ(ζ) + Ew,

ζ = Cζx + Hζw, (5.70)
e = Crx + Hrw,

y = Cx + Hw

with state x ∈ R
n, control u ∈ R

k, auxiliary output ζ ∈ R, regulated output
e ∈ R

lr and measured output y ∈ R
lm . The nonlinearity ϕ(ζ) is scalar and

assumed to belong to the class Fγ . We assume that the exogenous signal
w(t) ∈ R

m is generated by the linear exosystem

ẇ = Sw, (5.71)

where S is such that all its eigenvalues are simple and lie on the imaginary axis.
This exosystem generates constant signals and harmonic signals at a fixed set
of frequencies. Such exosystem satisfies the boundedness assumption A1 in any
open invariant set W and, moreover, Ω(W) = W. For example, if S is skew
symmetric, then any ball |w| < r is an open invariant set for the exosystem.
Therefore, we are dealing with the regular variant of the global uniform output
regulation problem. The regulator equations, in this case, have the form

d

dt
π(w(t)) = Aπ(w) + Bc(w) + Dϕ(Cζπ(w) + Hζw) + Ew, (5.72)

0 = Crπ(w) + Hrw

for all solutions of exosystem (5.71) lying in W. Denote A−
cγ := A − γDCζ ,

A+
cγ := A + γDCζ . First, let us consider the static state feedback case with

states x and w being available for measurement, i.e. y = (x,w).
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Theorem 5.4.3 Consider system (5.70) and exosystem (5.71) with y = (x,w)
and the nonlinearity ϕ ∈ Fγ . Suppose the regulator equations (5.72) are solv-
able and the mappings π(w) and c(w) are globally defined continuous mappings.
If the LMI

A+
cγPc + Pc(A+

cγ)T + BY + YT BT < 0,

A+
cγPc + Pc(A+

cγ)T + BY + YT BT < 0, (5.73)

Pc = PT
c > 0

is feasible, then the global uniform output regulation problem is solved by a
controller of the form

u = c(w) + K(x − π(w)), K := YP−1
c , (5.74)

where Pc and Y satisfy (5.73).

Proof: This theorem is a corollary of Theorem 5.4.1 and Lemma 5.3.10.�

Next, we consider the case when only the output y is available for feedback.
At this point, we will need the following notations: C := [C H],

A−
oγ :=

[
A − γDCζ E − γDHζ

0 S

]
,

A+
oγ :=

[
A + γDCζ E + γDHζ

0 S

]
.

The following theorem provides conditions for output feedback controller design
for Lur’e systems.

Theorem 5.4.4 Consider system (5.70) with the nonlinearity ϕ ∈ Fγ and
exosystem (5.71). Suppose the regulator equations (5.72) are solvable with the
solutions π(w) and c(w) being globally defined locally Lipschitz mappings. If
the LMI (5.73) and the LMI

PoA
+
oγ + (A+

oγ)TPo + XC + CTX T < 0,

PoA
−
oγ + (A−

oγ)TPo + XC + CTX T < 0, (5.75)

Po = PT
o > 0

are feasible, then the global uniform output regulation problem is solved by a
controller of the form

u = c(ŵ) + K(x̂ − π(ŵ)), (5.76)
˙̂x = Ax̂ + Bu + Dϕ(ζ̂) + Eŵ + Lx(ŷ − y), (5.77)
˙̂w = Sŵ + Lw(ŷ − y), (5.78)

ζ̂ = Cζ x̂ + Hζŵ, ŷ = Cx̂ + Hŵ (5.79)
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with K = YP−1
c , where Pc and Y satisfy (5.73), and L = [LT

x , LT
w]T = P−1

o X ,
where Po and X satisfy (5.75).

Proof: This theorem is a corollary of Theorem 5.4.2 and Lemma 5.3.10.�

Remark. If ζ is measured, then the condition on feasibility of the LMI
(5.75) can be relaxed by demanding that the pair of matrices[

A E
0 S

]
, [C H]

is detectable. Under this condition the observer (5.77)-(5.79) can be replaced
by the observer

˙̂x = Ax̂ + Bu + Dϕ(ζ) + Eŵ + L1(ŷ − y),
˙̂w = Sŵ + L2(ŷ − y), (5.80)
ŷ = Cx̂ + Hŵ,

where L := [LT
1 LT

2 ]T is taken such that the matrix[
A E
0 S

]
+ L[C H]

is Hurwitz. Observer (5.80) has linear exponentially stable estimation error
dynamics.�

Let us illustrate the controller design presented in the last theorem with an
example.

Example 5.4.5 Consider the system

ẋ1 = x2

ẋ2 = x3 − x2 + sin(x2) (5.81)
ẋ3 = u

e = y = x1 − w1

and the exosystem

ẇ1 = w2, (5.82)
ẇ2 = −w1. (5.83)

The corresponding regulator equations admit the solution π1(w) = w1, π2(w) =
w2, π3(w) = w2 − w1 − sin(w2), c(w) = −w1 − w2 + w1 cos(w2) (see Exam-
ple 5.1.1). The mappings π(w) and c(w) are globally defined and continuously
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differentiable. Let us apply Theorem 5.4.4. In our case,

A =

 0 1 0
0 −1 1
0 0 0

 , S =
[

0 1
−1 0

]
,

B = [0 0 1]T , E ≡ 0, Cr = C = [1 0 0], Hr = Q = [−1 0], ζ = x2, Cζ = [0, 1, 0],
Hζ = 0, ϕ(ζ) = sin(ζ) ∈ F1. Denote

A−
c :=

 0 1 0
0 −2 1
0 0 0

 , A+
c :=

 0 1 0
0 0 1
0 0 0

 ,

A−
o :=

[
A−

c E
0 S

]
, A+

o :=
[

A+
c E
0 S

]
,

C := [C H]. Numerical computations show that both LMIs (5.73) and (5.75)
are feasible and, for example, the matrices K = [−6 − 11, −6]T and L =
[−153, −78, −13, −132, 52] can be used as parameters in the controller (5.76)-
(5.79).

Thus, all conditions of Theorem 5.4.4 are satisfied. By this theorem, con-
troller (5.76)-(5.79) with the system matrices, mappings π(w), c(w) and con-
troller parameters K, L specified above solves the global uniform output reg-
ulation problem for W = R

2. First, we perform simulations for the following
initial conditions: x(0) = (1, 2, 0)T , w(0) = (1, 0)T , x̂(0) = 0, ŵ(0) = 0. The
results of these simulations are presented in Figures 5.1–5.4. Figure 5.1 shows
the variable x1(t) and the external signal w1(t). The regulated output e(t) is
presented in Figure 5.2. Figure 5.3 shows the control u(t) and in Figure 5.4 the
states of the closed-loop system are presented. Further, we present simulation
results for various initial conditions of the closed-loop system and the exosys-
tem. The regulated output corresponding to these simulations is presented in
Figure 5.5.�

As can be seen from Theorems 5.4.3 and 5.4.4, the proposed controllers
require accurate knowledge of the system model and the mappings π(w) and
c(w). In practice, both the system model and the mappings π(w) and c(w)
may not be known exactly or they may change if certain system parameters
are varied. This raises the problem of robust controller design to cope with the
uncertainties. This problem is addressed in the next section.

5.4.4 Robust controller design for Lur’e systems

In this section we aim at designing a controller that solves the global output
regulation problem not only for the nominal system parameters, but also for
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Figure 5.4: System state x(t).

the parameters from some neighborhood of the nominal ones and for all non-
linearities ϕ ∈ Fγ satisfying the additional condition ϕ(0) = 0. In order to
design a robust controller, we assume the following:

R1 There exist matrices Λ ∈ R
lr×lm and Ψ ∈ R

1×lm such that e = Λy and
ζ = Ψy;

R2 both y and u are of the same dimension.

At this point, instead of solving the robust output regulation problem for sys-
tem (5.70), we will solve it for the system

ẋ = Ax + Bu + Dϕ(Ψy) + Ew, (5.84)
ē = y = Cx + Hw

with the new regulated output ē. Obviously, since the original regulated output
e is a linear function of ē, by solving the problem for system (5.84) we also solve
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Figure 5.5: Simulations results for observer-based controller: e(t) for different
initial conditions of the closed-loop system and the exosystem.

it for the original system. The nominal parameters of system (5.84) are denoted
by A◦, B◦, C◦, D◦.

Before presenting results on controller design for system (5.84), let us con-
sider the case of system (5.84) without nonlinearity ϕ(ζ), i.e. the system

ẋ = Ax + Bu + Ew, (5.85)
ē = Cx + Hw.

It is said that controller

ξ̇ = Gξ + Mē, (5.86)
u = Nξξ + Ny ē

solves the linear robust output regulation problem for system (5.85) and ex-
osystem (5.71) if for all matrices A, B and C close enough to their nominal
values and for all matrices E and H the closed-loop system (5.85), (5.86) with
w = 0 is asymptotically stable and for any solution of closed-loop system (5.85),
(5.86) and exosystem (5.71) it holds that ē(t) → 0 as t → +∞ (see, for exam-
ple [8]). It is known [8] that if controller (5.86) solves the linear robust output
regulation problem, then for matrices A, B and C close enough to their nom-
inal values and for arbitrary matrices E and H there exists a solution to the
following matrix equation:

ΠS = AΠ + BΓ + E, (5.87)
0 = CΠ + H, (5.88)

ΣS = GΣ, Γ = NξΣ. (5.89)

Equations (5.87) and (5.88) are the regulator equations for the linear case. This
can be seen from the fact that if equations (5.87), (5.88) are postmultiplied
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by w, then they transform to the regulator equations with π(w) = Πw and
c(w) = Γw. Equation (5.89) is a linear counterpart of the induction property
of controller (5.86). Namely, if equation (5.89) is postmultiplied by w, then
the resulting equation means that controller (5.86) with the input ȳw(t) =
ēw(t) = CΠw(t) + Hw(t) ≡ 0 (due to equation (5.88)) has a solution ξ̄w(t) =
Σw(t), which is defined and bounded for all t ∈ R, because w(t) is defined
and bounded for all t ∈ R. Moreover, along this solution ξ̄w(t), the output
of the controller equals ūw(t) = NξΣw(t) = Γw(t) = c(w(t)). This means
that the input ēw(t) ≡ 0 induces the output ūw(t) = Γw(t) in the controller
(5.86). After this intermezzo on the linear output regulation problem, we can
formulate a technical result related to robust controller design for the global
uniform output regulation problem for system (5.84).

Lemma 5.4.6 Suppose controller (5.86) is such that

i) it solves the linear robust output regulation problem for system (5.85)
and exosystem (5.71);

ii) for w ≡ 0, the transfer function W ◦
ϕζ(s) of the closed-loop system with

the nominal parameters

ẋ = A◦x + B◦(Nξξ + NyC◦x) + D◦ϕ

ξ̇ = Gξ + MC◦x (5.90)
ζ = ΨC◦x

from input ϕ to output ζ satisfies ‖W ◦
ϕζ‖∞ < 1/γ.

Then controller (5.86) solves the global unform output regulation problem for
system (5.84) and exosystem (5.71) for all matrices E, H, all nonlinearities
ϕ ∈ Fγ satisfying ϕ(0) = 0 and for all matrices A, B, C and D being close
enough to their nominal values.

Proof: For all matrices A, B, C and D being close enough to their nominal
values, for all matrices E and H and for all nonlinearities ϕ ∈ Fγ , system
(5.84) in closed loop with (5.86) is input-to-state convergent. This fact follows
from Lemma 5.3.12. Since controller (5.86) also solves the linear robust output
regulation problem for system (5.85) and exosystem (5.71), for all matrices A,
B, C and D being close enough to their nominal values and for all matrices
E and H there exist matrices Π, Γ and Σ satisfying equations (5.87)-(5.89).
Since y = ē = 0 implies that ϕ(Ψy) = 0, equations (5.87)-(5.88) imply that the
mappings π(w) := Πw and c(w) := Γw are solutions to the regulator equations
(5.72). Just like in the case of the linear output regulation for system (5.85)
and exosystem (5.71), equation (5.89) implies that for any solution of the ex-
osystem w(t) the input ȳw(t) = ēw(t) ≡ 0 induces the output ūw(t) = Γw(t)
in controller (5.86). Therefore, by Theorem 4.3.5 controller (5.86) solves the



5.4. Controller design for the global uniform output regulation problem 111

global uniform output regulation problem for all A, B, C and D close enough
to their nominal values, for all E and H and for all ϕ ∈ Fγ satisfying ϕ(0) = 0.�

Remark. The problem of finding a controller that satisfies conditions i) and
ii) has been solved in [1]. Yet, careful examination shows that the conditions
under which the problem has been solved in [1] are not satisfied in our case.
In particular, in [1] it is required that system (5.84) with input u and output
ē has relative degree zero, i.e. that u is directly present in the output ē. In
our case, this condition is not satisfied. So, we proceed with our own controller
design.�

Necessary and sufficient conditions for solvability of the linear robust output
regulation problem for linear system (5.85) and exosystem (5.71) are [8]:

R3 the pair (A◦, B◦) is stabilizable, the pair (A◦, C◦) is detectable and for
every λ being an eigenvalue of the matrix S the matrix[

A◦ − λI B◦

C◦ 0

]
has full row rank.

We assume that condition R3 is satisfied and proceed with a design of a
robust regulator. The design closely follows the design of a robust controller for
the linear robust output regulation problem (see e.g. [8]). Let Smin be a p× p
matrix whose characteristic polynomial coincides with the minimal polynomial
of S. Construct a block-diagonal kp×kp matrix Φ which has k blocks Smin on
its diagonal, where k is the number of inputs (see Assumption R2). Choose a
kp× k matrix N and an m×mq matrix Γ such that (Φ,Γ) is controllable and
(Φ, N) is observable. Consider the augmented system

ẋ = A◦x + B◦Γξ1 + B◦v + D◦ϕ,

ξ̇1 = Φξ1 + NC◦x, (5.91)
ζ = ΨC◦x.

Suppose there exists a controller

ξ̇2 = Kξ2 + LC◦x, (5.92)
v = Mξ2 + RC◦x

such that system (5.91) in closed-loop with this controller is asymptotically
stable for ϕ = 0 and the transfer function W ◦

ϕζ(s) from input ϕ to output ζ
satisfies ‖W ◦

ϕζ‖∞ < 1/γ. As follows from the linear regulator theory [8], the
controller

ξ̇1 = Φξ1 + Ny,

ξ̇2 = Kξ2 + Ly, (5.93)
u = Γξ1 + Mξ2 + Ry
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solves the linear robust output regulation problem for system (5.85) and exosys-
tem (5.71). At the same time, the transfer function W ◦

ϕζ(s) satisfies ‖W ◦
ϕζ‖∞ <

1/γ. Therefore, by Lemma 5.4.6 controller (5.93) solves the global uniform out-
put regulation problem for system (5.84) and exosystem (5.71) for all matrices
A, B, C and D close enough to their nominal values, for all E and H and for
all ϕ ∈ Fγ satisfying ϕ(0) = 0.

The problem of finding a controller (5.92) that guarantees ‖W ◦
ϕζ‖∞ < 1/γ

is a standard problem in H∞ optimization, for which efficient solvers are avail-
able, for example, in MATLAB. Notice that the proposed robust controller
design follows the decomposition strategy from Section 5.2. First, we design
a ξ1-subsystem with the required induction property and then we find a ξ2-
subsystem that makes the overall closed-loop system input-to-state convergent.
Let us illustrate the proposed robust controller design with an example.

Example 5.4.7 Consider system (5.70) with the nominal values

A◦ =

 1 −2 0
40 3 4
1 0 5

 , B◦ =

 0
3
1

 , D◦ =

 1
1
0

 , C◦ = [1, 0, 0].

The exosignal w is generated by the exosystem

ẇ1 = w2 (5.94)
ẇ2 = −w1.

The outputs of the system are equal: ζ = e = y = Cx + Hw. The matrices E
and H can be chosen arbitrarily. The value γ for the class of nonlinearities Fγ is
chosen γ = 0.1. Notice that with such a choice of system matrices assumptions
R1 – R3 hold. Following the design procedure given above, we set

Φ =
[

0 1
−1 0

]
, N =

[
1
0

]
, Γ = [1 0].

Next, we search for a controller (5.92) that would satisfy the inequality ‖W ◦
ϕζ‖ <

1/γ. Such controller is found using the MATLAB routine hinflmi. The ob-
tained controller is validated by means of simulations. In the simulations the
matrices A,B,C and D are taken equal to their nominal values and the non-
linearity is chosen ϕ(ζ) = γ sin(ζ).

For the initial conditions x(0) = [1, 2, 3]T , ξ1(0) = 0, ξ2(0) = 0, w1(0) = 1,
w2(0) = 0 and for the matrices E and H

E :=

 1 2
0 1
−1 2

 , H := [0, 1]

the simulation results are shown in Figures 5.6 and 5.7. Results of several simu-
lations with randomly chosen matrices E and H and random initial conditions
for the closed-loop system and exosystem are given in Figure 5.8.�
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Figure 5.8: Simulations results for various initial conditions and for various
matrices E and H.

5.5 Summary

In this chapter we have presented several controller design methods for solving
the global (forward time) uniform output regulation problem. All designs are
based on the assumption that the regulator equations are solvable and that the
corresponding solutions of these equations are known. Under this assumption
and under the assumption that the global uniform output regulation problem
is solvable, a controller that solves the problem can be decomposed into two
parts:

• the first part guarantees the induction property of the controller, which
is necessary for the output regulation to occur,

• the second part guarantees that the overall closed-loop system is input-
to-state convergent.



114 Controller design for the global uniform output regulation problem

In Section 5.2 we have discussed certain ways how to design the first part of
the controller. The problem of making the overall closed-loop system input-
to-state convergent has been discussed in more detail in Section 5.3. We have
presented controller design methods based on backstepping, quadratic stability
and H∞ optimization methods. When being applied to Lur’e systems, these
methods are formulated in a simple and easily verifiable format. Although
these controller design methods have been developed in the scope of the out-
put regulation problem, they can be used independently for different nonlinear
control problems, e.g. the problem of tracking arbitrary time-dependent refer-
ence signals and the nonlinear observer design problem.

With the design tools on making a closed-loop system input-to-state con-
vergent at our disposal, we have presented controller design methods for the
global uniform (forward time) output regulation problem. Under the assump-
tion that the states of the system and the exosystem are measured, a state
feedback controller design has been presented. If only some output is available
for measurements, we show how to design an observer-based output feedback
controller. These two controller designs are based on the quadratic stability
approach. For Lur’e systems, the conditions which need to be satisfied for such
controller designs to be feasible reduce to checking the solvability of certain
LMIs. For the case of a Lur’e system with uncertain parameters and an un-
known nonlinearity from the class of nonlinearities with a bounded derivative,
we have presented a robust controller design that copes with such uncertainties.
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The local output regulation problem:

convergence region estimates

6.1 Estimates for the local
output regulation problem

6.2 Estimates for the
approximate local output
regulation problem

6.3 Summary

In the previous chapter we presented several controller design methods pro-
viding solutions to the global uniform output regulation problem. These meth-
ods allow us to solve this problem for certain classes of nonlinear systems. If
a system does not belong to one of these classes, it may happen that either
the global uniform output regulation problem is not solvable, or it is solvable,
but we do not know how to find a solution. At the same time, it may still be
possible to find a controller that solves the local exponential output regulation
problem. There are many results on controller design for the local exponential
output regulation problem for different classes of systems (see, e.g.[8; 32; 37]).
Despite the fact that the local output regulation problem is well studied, one
question remained open: given a controller solving the exponential output regu-
lation problem locally, in some neighborhood of the origin, how to determine (or
estimate) this neighborhood of admissible initial conditions? Without answer-
ing this question, solutions to the local exponential output regulation problem
may not be satisfactory from an engineering point of view. In this chapter we
address this estimation problem. In the first part of the chapter we consider
this problem for the so-called exact variant of the local output regulation prob-
lem. In this variant the regulated output tends to zero for all solutions of the
closed-loop system and the exosystem starting close enough to the origin.

For certain systems it can be very difficult to find a controller that guar-
antees that the regulated output tends exactly to zero. At the same time,
there are relatively simple design procedures for finding controllers guarantee-
ing that output regulation occurs approximately: for small initial conditions of
the closed-loop system and the exosystem the regulated output tends to small
values with the order of magnitude determined by the controller design. The
problem of estimating the sets of admissible initial conditions is also relevant
for such approximate local output regulation problem. We will consider this
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problem in the second part of the chapter.
We will consider only controllers solving the (approximate) local exponential

output regulation problem, which was in Chapter 3 also referred to as the
conventional local output regulation problem. For the sake of brevity we will
omit the word exponential in the name of the problem and by the local output
regulation problem we will indicate the local exponential output regulation
problem. This abbreviated name of the problem is also consistent with the
name used in the literature.

6.1 Estimates for the local output regulation

problem

6.1.1 Estimation problem statement

First, we recall the local output regulation problem (see also Section 3.4).
Consider systems modelled by equations of the form

ẋ = f(x, u, w), (6.1)
e = hr(x,w), (6.2)
y = hm(x,w) (6.3)

with state x ∈ R
n, input u ∈ R

k, regulated output e ∈ R
lr , measured output

y ∈ R
lm and exogenous input w ∈ Rm generated by the linear exosystem

ẇ = Sw. (6.4)

The functions f(x, u, w), hr(x,w) and hm(x,w) are at least C2 and f(0, 0, 0) =
0, hr(0, 0) = 0, hm(0, 0) = 0. It is assumed that exosystem (6.4) is neutrally
stable (see Definition 3.2.1). The assumption of linearity of the exosystem is
introduced in order to avoid unnecessary technical complications. All results
presented below can be extended to the case of general neutrally stable exosys-
tems. Due to the neutral stability assumption, the spectrum of S consists of
eigenvalues on the imaginary axis with their geometric and algebraic multiplic-
ity being equal. Without loss of generality, we assume that S is skew-symmetric
and thus any solution of system (6.4) has the property |w(t)| ≡ Const. Notice
that if the right-hand side of (6.1) depends on a vector p of unknown constant
parameters, w and p can be united and treated together as an external signal
(w, p) generated by an extended exosystem given by equations (6.4) and ṗ = 0.
This extended exosystem also satisfies the neutral stability assumption. We
assume that such extension has already been made and that (6.4) corresponds
to an extended exosystem.
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The local output regulation problem is to find, if possible, a feedback of the
form

ξ̇ = η(ξ, y), (6.5)
u = θ(ξ, y)

with C2 mappings η(ξ, y) and θ(ξ, y) satisfying η(0, 0)=0, θ(0, 0) = 0 such that

i) for w(t) ≡ 0 the closed-loop system

ẋ = f(x, θ(ξ, hm(x,w)), w), (6.6)
ξ̇ = η(ξ, hm(x,w)) (6.7)

has an asymptotically stable linearization at the origin;

ii) for every solution of the closed-loop system and exosystem (6.4) start-
ing close enough to the origin (x, ξ, w) = (0, 0, 0) it holds that e(t) =
hr(x(t), w(t)) → 0 as t → +∞.

A controller solving the local output regulation problem makes the output
e tend to zero at least for small initial conditions (x(0), ξ(0), w(0)). Without
specifying the region of admissible initial conditions for which output regulation
occurs, such solution may not be satisfactory from an engineering point of
view. Thus, we come to the following estimation problem: given the closed-
loop system (6.6), (6.7) and the neutrally stable exosystem (6.4), estimate the
region of admissible initial conditions for which the regulated output e(t) =
hr(x(t), w(t)) tends to zero.

Denote z := (xT , ξT )T ∈ R
d. Then the closed-loop system (6.6), (6.7) can

be written as

ż = F (z, w), (6.8)
e = h̄r(z, w) := hr(x,w),

where F (z, w) is the right-hand side of (6.6), (6.7). As it has been shown in
Section 4.1 (see also [8; 37; 39]), the controller (6.5) solves the local output
regulation problem if and only if the corresponding closed-loop system (6.8)
satisfies the following conditions:
A) The Jacobian matrix ∂F

∂z (0, 0) is Hurwitz,
B) There exists a mapping z = α(w) defined in a neighborhood W of the
origin, with α(0) = 0, such that

∂α
∂w (w)Sw = F (α(w), w),

0 = h̄r(α(w), w), for all w ∈ W.
(6.9)

We will give a solution to the estimation problem formulated above based on
the functions F (z, w) and α(w), which are found at the stage of controller design
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[8; 37]. To simplify the subsequent analysis, it is assumed that the closed-loop
system (6.8) and the mapping α(w) are defined globally for all z ∈ R

d and
w ∈ R

m (i.e. W = R
m). If this assumption does not hold, one should restrict

the subsequent results to the sets Z ⊂ R
d and W ⊂ R

m for which F (z, w) and
α(w) are well-defined.

Before proceeding with solving the estimation problem, we discuss the main
idea of the solution. First, we find two sets C ⊆ R

d and Wc ⊆ R
m having

the following property: if w(t) ∈ Wc for t ≥ 0, then any two solutions z1(t)
and z2(t) of system (6.8) lying in C for all t ≥ 0 converge to each other:
|z1(t) − z2(t)| → 0 as t → ∞. We call such set C a convergence set and the
set Wc a companion to the set C. Such sets exist due to condition A). This
condition implies that near the origin, for small w(t), the closed-loop system
(6.8) behaves like a linear asymptotically stable system and, in particular, all
its solutions are exponentially stable (this statement will be made precise later
on). Second, we find a set Y ⊂ C×Wc of initial conditions (z(0), w(0)) such that
any trajectory (z(t), w(t)) starting in this set satisfies the following conditions:
w(t) ∈ Wc, α(w(t)) ∈ C and z(t) ∈ C for all t ≥ 0. As follows from condition B),
z̄(t) := α(w(t)) is a solution of system (6.8) along which e(t) ≡ 0. Thus, by the
properties of C and Wc, it holds that z(t) → z̄(t) := α(w(t)) as t → +∞ and
hence e(t) = h̄r(z(t), w(t)) → h̄r(α(w(t)), w(t)) ≡ 0. So, Y is an estimate of
the set of admissible initial conditions (z(0), w(0)) for which output regulation
occurs.

6.1.2 Convergence sets and the Demidovich condition

In this section we discuss how to find a convergence set C and its companion
set Wc for the closed-loop system (6.8). As follows from Lemma 2.2.18, if a
convex set C ⊆ R

d and a set Wc ⊆ R
m are such that the Demidovich condition

P
∂F

∂z
(z, w) +

∂F

∂z

T

(z, w)P ≤ −Q, ∀z ∈ C, w ∈ Wc, (6.10)

holds for some positive definite matrices P = PT and Q = QT , then there
exists β > 0 such that

(z1 − z2)T P (F (z1, w) − F (z2, w)) ≤ −β(z1 − z2)T P (z1 − z2) (6.11)

for all z1, z2 ∈ C and for any w ∈ W. The number β > 0 depends only
on the matrices P and Q. Consider the function V (z1, z2) = 1/2|z1 − z2|2P ,
where |z|P denotes |z|P := (zT Pz)1/2. Inequality (6.11) implies that for any
piecewise-continuous input w(t) satisfying w(t) ∈ Wc for t ≥ t0 and for any
two solutions z1(t) and z2(t) of system (6.8) corresponding to this input and
satisfying z1(t) ∈ C and z2(t) ∈ C for all t ≥ t0 it holds that

d

dt
V (z1(t), z2(t)) ≤ −2βV (z1(t), z2(t)). (6.12)
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This, in turn, implies that z1(t) exponentially tends to z2(t):

|z1(t) − z2(t)|P ≤ e−β(t−t0)|z1(t0) − z2(t0)|P .

Consequently, we see that a convex set C and a set Wc satisfying the Demidovich
condition (6.10) represent a convergence set and its companion, respectively.

Another consequence of inequality (6.12) is that if z̄(t) is a solution of
system (6.8) and the ellipsoid EP (z̄(t), r) := {z : |z − z̄(t)|P < r} is contained
in C for all t ≥ 0, then EP (z̄(t), r) is invariant. This observation results in the
following corollary.

Corollary 6.1.1 Suppose C and Wc satisfy the Demidovich condition (6.10).
Let w(t) ∈ Wc for all t ≥ 0 and z̄(t) be a solution of (6.8) such that z̄(t) ∈ C
for all t ≥ 0. If the ellipsoid EP (z̄(t), r) is contained in C for all t ≥ 0, then any
solution of (6.8) starting in z(0) ∈ EP (z̄(0), r) exponentially tends to z̄(t).

In order to solve the estimation problem stated in Section 6.1.1, we need
to find sets C and Wc satisfying the Demidovich condition (6.10) for some
P = PT > 0 and Q = QT > 0. To reduce the number of arbitrary parameters
in the Demidovich condition, we rewrite it in the form

sup
z∈C, w∈Wc

Λ

(
P

∂F

∂z
(z, w) +

∂F

∂z

T

(z, w)P

)
=: a < 0, (6.13)

where Λ(·) denotes the largest eigenvalue of a symmetric matrix. Condition
(6.13) is equivalent to condition (6.10) for Q := aI and it is more convenient
for finding the sets C and Wc. Since ∂F

∂z (0, 0) is Hurwitz (this is the case due
to condition A)), one can choose a matrix P = PT > 0 satisfying the matrix
inequality P ∂F

∂z (0, 0)+ ∂F
∂z

T
(0, 0)P < 0. By continuity, P ∂F

∂z (z, w)+ ∂F
∂z

T
(z, w)P

is negative definite at least for small z and w. Hence, the Demidovich condition
(6.13) is satisfied for C(R) := {z : |z| < R} and W(ρ) := {w : |w| < ρ} for
some small R and ρ. If P ∂F

∂z (z, w) + ∂F
∂z

T
(z, w)P depends only on part of the

coordinates z, then the Demidovich condition is satisfied for CN (R) := {z :
|Nz| < R} and Wc(ρ) := {w : |w| < ρ}, where the matrix N is such that Nz

consists of the coordinates that are present in P ∂F
∂z (z, w)+ ∂F

∂z

T
(z, w)P . Having

chosen the matrix N , the numbers ρ and R can be found numerically solving
inequality (6.13) with CN (R) and Wc(ρ), where R and ρ are the parameters to
be found. In some simple cases such R and ρ can be found analytically.

6.1.3 Estimation results

Having found a convergence set CN (R) and its companion Wc(ρ), we can solve
the estimation problem stated in Section 6.1.1. Prior to formulating the solu-
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tion, let us introduce the following function:

mN (w0) := sup
t≥0

|Nα(w(t, w0))|, (6.14)

where w(t, w0) is a solution of the exosystem (6.4) satisfying w(0, w0) = w0.
The function mN (w0) indicates whether α(w(t, w0)) lies in the set CN (R): if
mN (w0) < R, then α(w(t, w0)) ∈ CN (R) for all t ≥ 0. Denote δ to be the
smallest number such that the inequality |Nz| ≤ δ|z|P is satisfied for all z ∈ R

d.
The number δ can be found from the formula δ = ‖NP−1/2‖, where ‖ · ‖ is the
matrix norm induced by the vector norm |z| = (zT z)1/2. Indeed,

δ = sup
|z|P =1

|Nz| = sup
|P 1/2z|=1

|Nz| = sup
|z̃|=1

|NP−1/2z̃| = ‖NP−1/2‖.

The following theorem gives an estimate of the set of admissible initial condi-
tions in the form of a neighborhood of the output-zeroing manifold z = α(w).

Theorem 6.1.2 Let the local output regulation problem be solved. Suppose
the closed-loop system (6.8) satisfies the Demidovich condition (6.13) with
CN (R) := {z : |Nz| < R} and Wc(ρ) := {w : |w| < ρ} for some R > 0, ρ > 0
and some matrix N . Then any trajectory (z(t), w(t)) of the closed-loop system
(6.8) and the exosystem (6.4) starting in the set

Y := {(z0, w0) : |w0| < ρ, mN (w0) < R, |z0 − α(w0)|P <
1
δ
(R− mN (w0))}

(6.15)
satisfies

|z(t) − α(w(t))| ≤ Ce−βt|z(0) − α(w(0))| (6.16)

for some β > 0 and C > 0 independent of z(0), w(0), and

e(t) = h̄r(z(t), w(t)) → 0, as t → ∞.

Proof: We need to show that (6.16) holds for any solution (z(t), w(t)) that
starts in (z(0), w(0)) satisfying the relations: |w(0)| < ρ, mN (w(0)) < R and
z(0) ∈ EP (α(w(0)), r), where EP (z̄, r) := {z : |z − z̄|P < r} and r := (R −
mN (w(0)))/δ. Due to the conditions on the initial conditions and the properties
of the exosystem, |w(t)| ≡ |w(0)| < ρ and the solution z̄w(t) := α(w(t)) satisfies

|Nz̄w(t)| ≤ sup
t≥0

|Nα(w(t))| = mN (w(0)) < R.

Hence, z̄w(t) ∈ CN (R) and w(t) ∈ Wc(ρ) for all t ≥ 0. Let us show that
EP (z̄w(t), r) ⊂ CN (R) for all t ≥ 0. Suppose z ∈ EP (z̄w(t), r) for some t ≥ 0.
Then

|Nz| ≤ |Nz̄w(t)| + |N(z − z̄w(t))| ≤ mN (w(0)) + δ|z − z̄w(t)|P
< mN (w(0)) + δr = R.
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z

w

Y z = α(w)

CN (R) ×Wc(ρ)
C N

(R
)

Wc(ρ)

0

Figure 6.1: Relation between the sets Y, CN (R) and Wc(ρ): Y is an invariant
set inside CN (R) ×Wc(ρ).

Consequently, EP (z̄w(t), r) ⊂ CN (R) for all t ≥ 0. The sets CN (R) and Wc(ρ)
satisfy the Demidovich condition (6.10). By Corollary 6.1.1, we obtain (6.16).
Finally, e(t) = h̄r(z(t), w(t)) → h̄r(α(w(t)), w(t)) ≡ 0 as t → +∞.�

The relation between the sets Y, CN (R) and Wc(ρ) is schematically shown
in Figure 6.1. If we want the closed-loop system (6.8) and the exosystem (6.4)
to start in the set Y, we need to guarantee that, first, the exosystem starts in
a point w0 in the set L := {w0 : |w0| < ρ,mN (w0) < R} and, second, that
the closed-loop system (6.8) starts in the set D(w0) := {z0 : (z0, w0) ∈ Y}.
As can be seen from Figure 6.2, the sets D(w0) may be different for different
values of w0. Thus, the knowledge of w0 is important. In practice, however, we
may not know the exact value of w0. For example, if the exosystem generates
disturbances, then, knowing the level of disturbances, we can establish that
w0 ∈ L, but still the exact value of w0 is unknown. In order to cope with
this difficulty, in the next result we find sets Z0 and W0 such that in whatever

z

w
Y

z = α(w)

D(w1)

0

D(w2)

w1 w2

Figure 6.2: The sets Y and D(w): for different w1 and w2, the sets D(w1) and
D(w2) may be different.
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z

w

Y

z = α(w)

0

EP (R(r)) × Bw(r)

Figure 6.3: Relation between the sets Y, EP (R(r)) and Bw(r).

point w0 ∈ W0 the exosystem is initialized, output regulation will occur if the
closed-loop system starts in z0 ∈ Z0. Prior to formulating the result, we define
the functions

σ(r) := sup
|w|≤r

(|Nα(w)| + δ|α(w)|P ), R(r) := (R− σ(r))/δ. (6.17)

The function σ(r) is nondecreasing and σ(0) = 0. Let r∗ > 0 be the largest
number such that r∗ ≤ ρ and σ(r) < R for all r ∈ [0, r∗). Now, we can
formulate the result.

Theorem 6.1.3 The conclusion of Theorem 6.1.2 holds for any trajectory
(z(t), w(t)) starting in

z(0) ∈ EP (R(r)) := {z : |z|P < R(r)}, w(0) ∈ Bw(r) := {w : |w| < r},

for some r ∈ [0, r∗).

Proof: The proof of this theorem is based on the fact that for every r ∈
[0, r∗) the set EP (R(r)) × Bw(r) is a subset of Y, as shown in Figure 6.3. If
EP (R(r))×Bw(r) ⊂ Y for any r ∈ [0, r∗), then the statement of Theorem 6.1.3
follows from Theorem 6.1.2. Let us show EP (R(r)) × Bw(r) ⊂ Y for any
r ∈ [0, r∗). Suppose z0 ∈ EP (R(r)) and w0 ∈ Bw(r) for some fixed r ∈ [0, r∗).
According to the definition of Y, we first need to show that |w0| < ρ. This is
true due to the fact that |w0| < r < r∗ ≤ ρ. Next, we show that mN (w0) < R.
By the definition of σ(r), it holds that |Nα(w)| ≤ σ(r) for all |w| < r. The
choice of |w0| < r implies |w(t, w0)| ≡ |w0| < r. Hence, by the definition of
mN (w0) we obtain

mN (w0) = sup
t≥0

|Nα(w(t, w0))| ≤ sup
|w|<r

|Nα(w)| ≤ σ(r).

The choice of r < r∗ implies that σ(r) < R and consequently mN (w0) < R.
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Next, we need to show that |z0 −α(w0)|P < (R−mN (w0))/δ. The triangle
inequality implies

|z0 − α(w0)|P ≤ |z0|P + |α(w0)|P . (6.18)

By the choice of z0 and by the definition of R(r),

|z0|P < R(r) = (R− σ(r))/δ = (R− sup
|w|≤r

(|Nα(w)| + δ|α(w)|P ))/δ

≤ (R− mN (w0))/δ − |α(w0)|P .

Substituting this inequality in (6.18), we obtain |z0−α(w0)|P < 1
δ (R−mN (w0)).

This completes the proof.�

The estimates presented in Theorem 6.1.3 are based on a pair of numbers
(R, ρ) such that the Demidovich condition (6.13) is satisfied for the sets CN (R)
and Wc(ρ). In fact, there is a whole set of pairs (R, ρ) and the corresponding
the family of sets of CN (R) and Wc(ρ) for which condition (6.13) is satisfied.
For the estimation purposes, among all such sets CN (R) and Wc(ρ) we want to
find the ones which are maximal in a certain sense. To this end, denote R∗(ρ)
to be the largest number such that the Demidovich condition (6.13) is satisfied
for all sets CN (R) and Wc(ρ) = {w : |w| < ρ} with R ∈ [0,R∗(ρ)). One can
easily check that R∗(ρ) is a non-increasing function of ρ. This function can be
found numerically. Having found R∗(ρ), we can enlarge the estimates presented
in Theorem 6.1.3 by redefining R(r) (see (6.17)) in the following way:

R(r) := (R∗(r) − σ(r))/δ. (6.19)

In this case, the convergence of solutions to the output-zeroing manifold will
be exponential, but the numbers C > 0 and β > 0 in (6.16) may depend on
the initial conditions (z(0), w(0)).

6.1.4 Example: the TORA system

Let us illustrate the application of Theorem 6.1.3. Consider the so-called
TORA-system (Transitional Oscillator with a Rotational Actuator), which is
shown in Figure 6.4. This system consists of a cart of mass M which is attached
to a wall with a spring of stiffness k. The cart is affected by a disturbance force
Fd. An arm of mass m rotates around the axis in the center of the cart. The
center of mass of the arm CM is located at distance l from the rotational axis.
J is the inertia of the arm with respect to the rotational axis. The arm is
actuated by a control torque Tu. The cart and the arm move in the horizontal
plane and, therefore, there is no effect of gravity. The horizontal displacement
of the cart is denoted by e and the angular displacement of the arm is denoted
by θ. This is a nonlinear mechanical benchmark system that was introduced
in [82] (see also [44; 46]).
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M
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Fd

Tu

m,J

CMl

θ

k

Figure 6.4: The TORA system.

The control problem is to find a control law for the torque Tu such that
the horizontal displacement e tends to zero in presence of the harmonic distur-
bance force Fd of known frequency, but unknown amplitude and phase. This is
a particular case of the output regulation problem. For the TORA system this
problem has been considered in [30; 66]. We will find a controller solving this
problem locally, i.e. for small initial conditions e(0), ė(0), θ(0), and θ̇(0) and for
disturbances with small amplitudes. After finding such a local controller, we
will estimate the set of admissible initial conditions of the closed-loop system
and admissible amplitudes of the disturbance force. These estimates will be
found based on Theorem 6.1.3.

The equations of motion for the TORA system are given by [82]

(M + m)ë + ml(θ̈ cos θ − θ̇2 sin θ) + ke = Fd, (6.20)
Jθ̈ + mlë cos θ = Tu.

The disturbance force Fd can be considered as an output of the linear harmonic
oscillator

ẇ1 = ωw2, ẇ2 = −ωw1, Fd = w1. (6.21)

For simplicity, we assume that e, ė, θ, θ̇, w1 and w2 are measured. All pa-
rameters of system (6.20) and exosystem (6.21) are known. In order to solve
the local output regulation problem, we transform system (6.20) into a sim-
pler form. After the time transformation τ :=

√
k/(m + M) t and coordinate
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transformation

x1 : =

√
M + m

J
e + φ sin θ, φ :=

ml√
J(M + m)

,

x2 : =

√
M + m

J

de

dτ
+ φ

dθ

dτ
cos θ,

x3 : = θ, x4 :=
dθ

dτ
,

and feedback transformation

Tu =
Jk

M + m
((1 − φ2 cos2 x3)v − φ cos x3(x1 − (1 + x2

4)φ sin x3 − µFd)),

where µ = 1
k

√
M+m

J and v is a new control, the system (6.20) takes the form
(see [82] for details):

ẋ1 = x2,
ẋ2 = −x1 + φ sin x3 + µFd,
ẋ3 = x4,
ẋ4 = v,

e = (x1 − φ sin x3)
√

J
M+m .

(6.22)

The exosystem (6.21) transforms into

ẇ1 = ω̂w2, ẇ2 = −ω̂w1, Fd = w1, (6.23)

where ω̂ :=
√

(m + M)/k ω is the new excitation frequency.
Let us solve the local output regulation problem for system (6.22) and

exosystem (6.23). We will use the controller design method from [8]. According
to this method, first we need to solve the regulator equations

d

dt
π(w(t)) = f(π(w), c(w), w), (6.24)

0 = hr(π(w), w),

where the functions f(x, v, w) and hr(x,w) correspond to equations (6.22). The
mappings π(w) and c(w) satisfying equations (6.24) in some neighborhood of
the origin are given by the formulas

π1(w) := −µw1

ω̂2
, π2(w) := −µw2

ω̂
, π3(w) := − arcsin

(
µw1

ω̂2φ

)
, (6.25)

π4(w) := − µω̂w2√
ω̂4φ2 − µ2w2

1

, c(w) :=
µω̂2w1(ω̂4φ2 − µ2(w2

1 + w2
2))(√

ω̂4φ2 − µ2w2
1

)3 .
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At the next step, choose a matrix K such that

∂f

∂x
(0, 0, 0) + K

∂f

∂u
(0, 0, 0)

is a Hurwitz matrix. This is possible because at the origin the pair (∂f
∂x , ∂f

∂u )
is stabilizable. Then the controller v = c(w) + K(x − π(w)) solves the lo-
cal output regulation problem. Indeed, it is easy to check that for such con-
troller the closed-loop system satisfies conditions A) and B) with the map-
ping α(w) := π(w). Having found a controller solving the output regulation
problem in some neighborhood of the origin, let us estimate this set of ad-
missible initial conditions (x(0), w(0)) (since the controller is static, we have
z = x) for the following values of the parameters: φ = 0.5, µ = 0.04, ω̂ = 1,
K = (12,−4,−8,−5). To this end, we apply Theorem 6.1.3.

First, we must choose a matrix P = PT > 0 such that

P
∂F

∂x
(0, 0) +

∂F

∂x

T

(0, 0)P < 0.

We find such P from the Lyapunov equation

P
∂F

∂x
(0, 0) +

∂F

∂x

T

(0, 0)P = −Q,

where Q is the diagonal matrix diag(2, 8, 1, 1). The estimation procedure de-
pends on the choice of the matrix P . Therefore, different choices of the matrix
Q (and, consequently, of the matrix P ) may result in different estimates. The
particular value of the matrix Q presented above has been found by trial and
error in order to obtain better (larger in some sense) estimates. For conve-
nience, the matrix P corresponding to the chosen matrix Q is normalized such
that ‖P‖ = 1. Since ∂F

∂x (x,w) depends only on x3, the matrix N for the set
CN (R) is chosen equal to N = (0, 0, 1, 0), i.e. such that Nx = x3. So, the con-
vergence set C is sought in the form CN (R) := {x : |x3| < R} (see Section 6.1.2
for details). Since ∂F

∂x (x,w) does not depend on w, the companion set Wc can
be taken equal to R

m and R∗(ρ) ≡ R∗ = Const. In our example the matrix

J(x,w) = P
∂F

∂x
(x,w) +

∂F

∂x

T

(x,w)P

depends only on x3. The number R∗ is the largest number such that J(x3) is
negative definite for all |x3| < R∗. Therefore, R∗ can be found numerically in
the following way. We check whether J(R) and J(−R) are negative definite
for increasing R starting with R = 0 until one of the matrices J(R) or J(−R)
ceases being negative definite. The step for the increment of R is taken equal
to 0.01. The value of R at which one of the matrices J(R) or J(−R) ceases
being negative definite is an approximate value of R∗. This procedure gives
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R∗ ≈ 1.03. Finally, computation of R(r) using formula (6.19) gives us estimates
of the admissible initial conditions set: EP (R(r)) × Bw(r). The function R(r)
is shown in Figure 6.5.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.05

0.1

0.15

0.2

0.25
R

(r
)

Disturbance level r

Figure 6.5: R(r) and r for the estimates EP (R(r)) × Bw(r).

In order to compare the estimates with the actual set for which output regu-
lation occurs, we perform the following simulations. First, we fix a disturbance
level r = 1. The estimate of the set of admissible x(0) corresponding to this
level of disturbances is equal to EP (R∗(r)). This is a four-dimensional set. In
order to visualize it, we take a cross-section of this set for fixed x3 = 0 and
x4 = 0. This cross-section is shown in Figure 6.6 by a solid ellipsoid. Then we
compute the cross-section of the actual region of convergence corresponding to
x3 = 0, x4 = 0 and the level of disturbances r = 1. In Figure 6.6 it is shown
by the dotted ellipsoid. This cross-section is found by numerical integration
of system (6.22) and exosystem (6.23) in the following way. A point (x1, x2)
belongs to this cross-section if for the initial condition x(0) = (x1, x2, 0, 0)T

output regulation occurs for all initial conditions of the exosystem satisfying
|w(0)| ≤ r. As can be seen from Figure 6.6, the estimates are fairly conserva-
tive. One possible reason for such conservativeness is a bad choice of the matrix
P . A different choice of P may result in better estimates. At the moment it is
an open question how to choose P in order to obtain the best (in some sense)
estimates. Another explanation for such conservative estimates is that the es-
timation procedure is based on quadratic Lyapunov functions analysis which
is conservative by itself when applied to nonlinear systems.

6.2 Estimates for the approximate local output

regulation problem

Even though the local output regulation can be solvable, it can be extremely
difficult to find a controller that solves it. Condition B) is the one that is es-
pecially difficult to satisfy. At the same time, in many cases it is easy to find
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Figure 6.6: The actual (dotted) and the estimated (solid) sets of admissible
initial conditions: cross-section for x3 = 0, x4 = 0 and |w0| = 1.

a controller that satisfies equations (6.9) in condition B) approximately (see
[8; 31; 34]), i.e. satisfying the condition

B∗) There exists a mapping z = α̃(w) defined in a neighborhood W of the
origin, with α̃(0) = 0, such that

∂α̃
∂w (w)Sw = F (α̃(w), w) + ε1(w),

0 = h̄r(α̃(w), w) + ε2(w),
(6.26)

for all w ∈ W , where ε1(w) and ε2(w) are small (in some sense) continuous
functions satisfying ε1(0) = 0 and ε2(0) = 0.

It is known (see [34]) that if the closed-loop system satisfies conditions A)
and B∗), then for all sufficiently small initial conditions z(0) and w(0) the
regulated output e(t) converges to a function ẽ(w(t)), where ẽ(w) is of the
same order of magnitude as ε1(w) and ε2(w), i.e. if for some ν ≥ 1, C1 > 0 and
C2 > 0 it holds that |εi(w)| ≤ Ci|w|ν , i = 1, 2, for all w in some neighborhood
of the origin W , then there exists Ce > 0 such that |ẽ(w)| ≤ Ce|w|ν for all
w ∈ W . This is called approximate local output regulation. Since it is required
that the initial conditions must be sufficiently small, the problem of estimating
this set of admissible initial conditions is also relevant in the case of such
approximate output regulation. This estimation problem can be solved using
the same techniques as in the case of exact output regulation.

The main idea is to find a set of initial conditions Ỹ ⊂ C × Wc (where C
and Wc satisfy the Demidovich condition) such that if (z(0), w(0)) ∈ Ỹ, then
z(t) ∈ C, α̃(w(t)) ∈ C and w(t) ∈ Wc for all t ≥ 0. As follows from (6.26),
z̃(t) := α̃(w(t)) can be considered as a solution of the perturbed system

ż = F (z, w) + ε1(w(t)) (6.27)
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and along this solution the regulated output equals −ε2(w(t)). Since z̃(t) is
exponentially stable (because of the Demidovich condition), a small perturba-
tion ε1(w(t)) implies, in the limit, a small difference between z(t) and α̃(w(t)).
Hence, Ỹ is an estimate of the set of admissible initial conditions. Estimates
in the form of direct product Z̃0 × W̃0 can be found in a similar way as in
Theorem 6.1.3.

In the derivation of estimation results, we will need the following technical
lemma.

Lemma 6.2.1 Consider the closed-loop system

ż = F (z, w(t)) (6.28)

and the perturbed system

ż = F (z, w(t)) + ε(t), (6.29)

where ε(t) is a continuous function of time. Suppose C and Wc are such that
the closed-loop system (6.28) satisfies the Demidovich condition (6.13). Let
w(t) ∈ Wc for all t ≥ 0 and z̄(t) be a solution of (6.29) such that the ellipsoid
EP (z̄(t), r) := {z : |z − z̄(t)|P ≤ r} is contained in C for all t ≥ 0. If the
perturbation term satisfies |ε(t)|P ≤ ar/(2‖P‖) for t ≥ 0, then any solution of
the unperturbed system (6.28) starting in z(0) ∈ EP (z̄(0), r) satisfies

lim sup
t→+∞

|z(t) − z̄(t)|P ≤ 2‖P‖
a

lim sup
t→+∞

|ε(t)|P . (6.30)

Proof: See Appendix A.14.

6.2.1 Estimation results

Having found the sets CN (R) and Wc(R) for which the closed-loop system
(6.8) satisfies the Demidovich condition, we can solve the estimation problem
for the approximate local output regulation problem. Prior to formulating the
solution, let us introduce the following functions:

m̃N (w0) := sup
t≥0

|Nα̃(w(t, w0))|, q(w0) := sup
t≥0

|ε1(w(t, w0))|P . (6.31)

The following theorem gives an estimate of the set of admissible initial condi-
tions in the form of a neighborhood of the approximate output-zeroing manifold
z = α̃(w).

Theorem 6.2.2 Consider the closed-loop system (6.8) and the exosystem (6.4)
satisfying conditions A) and B∗). Suppose the closed-loop system (6.8) satisfies
the Demidovich condition (6.13) with CN (R) := {z : |Nz| < R} and Wc(ρ) :=
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{w : |w| < ρ} for some R > 0, ρ > 0 and some matrix N . Then any trajectory
(z(t), w(t)) of the closed-loop system (6.8) and the exosystem (6.4) starting in
the set

Ỹ := {(z0, w0) : |w0| < ρ, m̃N (w0) +
2δ‖P‖

a
q(w0) < R, (6.32)

|z0 − α̃(w0)|P <
1
δ
(R− m̃N (w0))}

satisfies

lim sup
t→+∞

|z(t) − α̃(w(t))|P ≤ 2‖P‖
a

lim sup
t→+∞

|ε1(w(t))|P (6.33)

and, consequently,

lim sup
t→+∞

|e(t)| ≤ C̄ lim sup
t→+∞

|ε1(w(t))|P + lim sup
t→+∞

|ε2(w(t))|, (6.34)

for some number C̄ > 0 independent of the particular solution (z(t), w(t)).

The proof of this theorem is very close to the proof of theorem 6.1.2. It is
provided in Appendix A.15.

The next theorem is a counterpart of Theorem 6.1.3. It provides estimates
in the form of a direct product of two sets Z0×W0 such that in whatever point
w0 ∈ W0 the exosystem is initialized, approximate output regulation will occur
if the closed-loop system starts in z0 ∈ Z0. Prior to formulating the result, we
define the functions

σ̃(r) := sup
|w0|<r

(|Nα̃(w0)| + δ|α̃(w0)|P ), R̃(r) := (R− σ̃(r))/δ,

η(r) := sup
|w0|<r

(
|Nα̃(w0)| + 2δ‖P‖

a
|ε1(w0)|P

)
. (6.35)

Let r∗ > 0 be the largest number such that r∗ ≤ ρ, σ̃(r) < R and η(r) < R for
all r ∈ [0, r∗). The estimates for the sets of admissible z(0) and w(0) are given
by the next theorem.

Theorem 6.2.3 The conclusion of Theorem 6.2.2 holds for any trajectory
(z(t), w(t)) starting in

z(0) ∈ EP (R̃(r)) := {z : |z|P < R̃(r)}, w(0) ∈ Bw(r) := {w : |w| < r}

for any r ∈ [0, r∗).

Similar to the proof of Theorem 6.1.3, the proof of this theorem is based on
the fact that for every r ∈ [0, r∗) the set EP (R̃(r)) × Bw(r) is a subset of Ỹ.
The proof is given in Appendix A.16.
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6.2.2 Example

Let us illustrate the application of Theorem 6.2.3. Consider the local output
regulation problem for the TORA system (6.22) (see Section 6.1.4). This time
we assume that the disturbance force Fd equals

Fd = λ arctan(w1/λ)

for λ = 3, as shown in Figure 6.7. As in the previous example, w1 is generated
by the linear harmonic oscillator (6.23).

Although this problem looks very close to the problem considered in Sec-
tion 6.1.4, it is very difficult to solve. The difficulty is in solving the regulator
equations (6.24). At the same time, for the controller

v = c(w) + K(x − π(w))

with the mappings π(w) and c(w) defined in (6.25) the closed-loop system
satisfies the conditions A) and B∗) with

α̃(w) := π(w), ε1(w) := (0, µ(λ arctan(w1/λ) − w1), 0, 0)T , ε2(w) ≡ 0.

Therefore, this controller solves the approximate local output regulation prob-
lem, i.e. for small initial conditions of the closed-loop system and the exosys-
tem the regulated output tends to small values, as shown in Figure 6.8 (see
[8; 31; 34] for details on controller design for the approximate local output
regulation problem). The values of the parameters φ, µ, ω and K are taken
the same as in Section 6.1.4 and λ = 3.

Let us apply Theorem 6.2.3 to estimate the set of admissible (x(0), w(0)).
First, we need to find a pair of sets CN (R) and Wc(r) satisfying the Demidovich
condition (6.13). Since ∂F

∂x (x,w) does not depend on w, the companion set Wc
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Figure 6.7: Nonlinear disturbance force: Fd(w1) = 3 arctan(w1/3) – solid,
Fd(w1) = w1 – dashed.
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Figure 6.9: Approximate output regulation: R̃(r) and r for the estimates
EP (R̃(r)) × Bw(r).

can be taken equal to R
m. For the convergence set CN (R) we choose R = 0.88.

The corresponding a equals a = 0.083. We have chosen arbitrary R from the
range of R’s for which the corresponding a is positive. Such range has been
determined numerically in the previous example and it equals [0, 1.03). Finally,
after computing R̃(r), η(r) and r∗, we obtain estimates of the admissible initial
conditions set EP (R̃(r)) × Bw(r), where R̃(r) is given in Figure 6.9.

Theorem 6.2.3 provides the estimates for r ∈ [0, r∗). In our case, r∗ ≈ 2.3
(for r = r∗, the function η(r) reaches R). For r > r∗, Theorem 6.2.3 does not
guarantee that both x(t) starting in EP (R̃(r)) and α̃(w(t)) with w(t) starting
in Bw(r) will lie in the convergence set CN (R). Thus, Lemma 6.2.1 cannot be
applied and the inequalities (6.33) and (6.34) may not hold.
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Note that the mappings α̃(w) and c(w) and, thus, the closed-loop system are
defined only for |w1| < ω2φ/µ. For the given values of the system parameters
this constraint is given by |w1| < 12.5. The obtained estimates satisfy this
condition. Just like in the case of exact output regulation, the estimates are
rather conservative, which can be explained by a bad choice of the matrix P
or by the approach itself, since it is based on quadratic Lyapunov functions.

6.3 Summary

In this chapter we have considered the problem of estimating the sets of admissi-
ble initial conditions for a solution to the (approximate) local output regulation
problem. The presented solutions to this estimation problem are based on the
Demidovich condition. If a controller solves the local output regulation prob-
lem, then the closed-loop system satisfies the Demidovich condition at least in
some neighborhood of the origin. This neighborhood is estimated and based
on these estimates we provide a way how to compute estimates of the sets
of admissible initial conditions for the (approximate) local output regulation
problem. The obtained estimates consist of initial conditions for which the
trajectories of the forced closed-loop system exponentially converge to the (ap-
proximate) output-zeroing manifold. The results are illustrated by application
to a disturbance rejection problem in the TORA system. Since the exosystem
is allowed to generate constant signals, the obtained results are also suitable for
systems with parametric uncertainties. Although the analysis in this chapter
has been performed under the assumption of linearity of the exosystem, the
results can be extended to the case of general neutrally stable exosystems.

The obtained estimates are, in general, fairly conservative since they are
based on a quadratic stability analysis and strongly depend on the choice of
the matrices N and P . Despite this conservatism, the results can be rather
useful in the following situations. First, one can directly use the estimates in
practice (for certain simple systems they may be quite satisfactory). Secondly,
if the estimates are too conservative, one can use them as a starting point
for obtaining larger estimates by means of, for example, backward integration.
The third way is to use the estimates as a criterion for choosing/tuning certain
controller parameters. Since controller design admits some freedom in choosing
certain controller parameters (like the matrix K in the TORA example), one
can pick such parameters that guarantee larger estimates.
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Experimental case study

7.1 Controller design for the
TORA system

7.2 Experimental setup

7.3 Experiments
7.4 Summary

The output regulation problem for nonlinear systems has been studied from
a theoretical point of view in a series of papers. In several papers the output
regulation problem has been considered for mechanical systems, see e.g. [30;
41; 42; 80; 81]. In all these works the proposed controllers are validated only by
means of simulations. To the best of our knowledge, there are no examples of
experimental validation of controllers solving the nonlinear output regulation
problem.

In this chapter we try to fill in this gap in the field of nonlinear output
regulation. We study the disturbance rejection problem for the TORA system
considered in Section 6.1.4. This problem is a particular case of the local output
regulation problem. First, in Section 7.1 we will design a simple state feedback
controller solving this problem. Secondly, this controller is implemented in an
experimental setup described in Section 7.2. Thirdly, in Section 7.3 we present
experimental results and identify the causes which limit the performance of
this controller in practice.

The reason for this experimental study is twofold. The first reason is to
check whether the controllers from the nonlinear output regulation theory are
applicable in an experimental setting in the presence of disturbances and mod-
eling uncertainties which are inevitable in practice. The other reason is to
identify factors which can deteriorate the controller performance and therefore
require specific attention already at the stage of controller design. The results
presented in this chapter should be considered as first steps in the problem of
experimental output regulation. As any other first step into terra incognita, the
results presented here will probably raise more questions and new challenges
than provide ultimate answers.
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7.1 Controller design for the TORA system

In this section we design a simple controller for the disturbance rejection prob-
lem considered in Section 6.1.4. This problem is a particular case of the local
output regulation problem. A controller solving this problem has already been
presented in Section 6.1.4. In that controller design, we first transformed the
system model into a simple form by means of certain coordinate and feed-
back transformations and then designed a controller for the simplified model.
The controller designed in such a way is convenient for illustrating the estima-
tion results presented in the previous chapter because it is easier to compute
estimates of the set of admissible initial conditions for closed-loop systems hav-
ing a relatively simple form. Due to the nonlinear feedback transformations
employed in the simplification of the system model, the resulting controller
becomes a rather sophisticated nonlinear controller. In practice however, it
is convenient, important and in some cases even critical that the controller is
simple. Computational limitations of the digital signal processors used in the
controller implementation is one of the reasons for simplicity of the controller.
Another reason, which is more philosophical, is that the more sophisticated a
controller is the more difficult it is to analyze its performance and to identify
possible problems which are inevitable in practice. Since in this chapter we
aim at the experimental implementation of an output regulation controller, we
need to design a simple controller for the TORA system.

We start with the equations of motion for the TORA system (see Sec-
tion 6.1.4):

M̄ ë + ml(θ̈ cos θ − θ̇2 sin θ) + ke = Fd, (7.1)
Jθ̈ + mlë cos θ = Tu.

Recall (see Figure 6.4) that in this model e is the horizontal displacement of
the cart, θ is the angular position of the arm, Fd is the disturbance force, and
Tu is the control torque applied to the arm. The parameters of the system
are: M̄ := M + m, where M is the mass of the cart and m is the mass of the
rotating arm, l is the distance between the rotational axis of the arm and its
center of mass, k is the stiffness of the spring and J is the total inertia of the
arm with respect to the rotational axis. Notice that J > ml2. The disturbance
force Fd is generated by the linear exosystem

ẇ1 = ωw2, ẇ2 = −ωw1, Fd = w1, (7.2)

where ω is the oscillation frequency. The initial conditions of the exosystem
(7.2) determine the amplitude and phase of the excitation. Recall that the
control problem is to asymptotically regulate e(t) to zero for all sufficiently
small initial conditions of the closed-loop system and for all sufficiently small
initial conditions of the exosystem. This is a particular case of the local output
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regulation problem. For simplicity it is assumed that e, ė, θ, θ̇, w1 and w2 are
measured.

A controller solving this problem is sought in the form

Tu = c(w) + K(x − π(w)), (7.3)

where x := [e, ė, θ, θ̇]T is the state of the system (7.1), w := [w1, w2]T is the
state of the exosystem (7.2), c(w) and π(w) are the solutions of the regulator
equations and the matrix K is such that for w = 0 the closed-loop system
(7.1), (7.3) has an asymptotically stable linearization at the origin (see e.g.
Section 4.1 or [8] for more information on controller design for the local output
regulation problem).

The requirement on the matrix K is equivalent to the requirement that
A + BK is a Hurwitz matrix, where

A :=


0 1 0 0

− kJ
M̄J−m2l2

0 0 0
0 0 0 1

kml
M̄J−m2l2

0 0 0

 , B :=


0

− ml
M̄J−m2l2

0
M̄

M̄J−m2l2

 .

Notice that since J > ml2 and M̄ > m, we have M̄J − m2l2 > 0. For all
system parameters the pair of matrices (A,B) is controllable. Therefore, we
can always choose a matrix K such that A + BK is Hurwitz. Next we need
to solve the regulator equations. In other words, we need to find continuous
mappings π(w) := [π1(w), π2(w), π3(w), π4(w)]T and c(w) defined in a neigh-
borhood of the origin w = 0 and satisfying π(0) = 0 and c(0) = 0 such that, for
any sufficiently small solution of the exosystem w(t), for the disturbance force
Fd(t) = w1(t) and controller action Tu(t) = c(w(t)), the function x(t) = π(w(t))
is a solution of system (7.1) and along this solution the displacement e(t) equals
to zero. By substitution one can easily check that the mappings

π1(w) = 0, π2(w) = 0, π3(w) = −arcsin
( w1

mlω2

)
, (7.4)

π4(w) = − ωw2

(m2l2ω4 − w2
1)1/2

, c(w) =
ω2w1(m2l2ω4 − w2

1 − w2
2)

J(m2l2ω4 − w2
1)3/2

(7.5)

satisfy the regulator equations. Consequently, we have found a controller solv-
ing the local output regulation problem. The controller (7.3) admits some
freedom in the choice of the matrix K. This freedom can be used, for exam-
ple, in tuning the controller in order to obtain desirable performance of the
closed-loop system. Controller (7.3) is implemented in the experimental setup
described in the next section.
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7.2 Experimental setup

In order to obtain experimental validation of the proposed controller, an exper-
imental setup for the TORA system has been built. This setup has been con-
structed by adapting an existing X-Y positioning system (the H-bridge setup
available in the Dynamics and Control Technology Laboratory at Eindhoven
University of Technology) shown in Figure 7.1.

Figure 7.1: The adapted H-bridge setup.

The adapted H-bridge setup is schematically shown in Figure 7.2. It consists
of the following components. The two parallel axes Y1 and Y2 are equipped
with Linear Magnetic Motor Systems LiMMS Y1 and LiMMS Y2 that can
move along their axes. The Y1 and Y2 carriages support the X axis. In
all experiments that are performed on this setup the Y1 and Y2 carriages
are controlled to maintain a fixed position with a low-level PID controller.
Therefore, in the sequel we will assume that these two carriages stand still and
that the X axis is fixed.

In the sequel we will refer to the X-LiMMS carriage moving along the X
axis as the cart. The mass of the cart is M [kg]. The displacement of the cart
e [m] is measured using a linear incremental encoder (Heidenhain LIDA 201)
with a 1 µm resolution. The force applied to the cart by the linear motor is
proportional to the (voltage) control signal uF which is fed to the linear motor
through a proportional current amplifier i.e. F = κF uF . The constant κF has
the value of 74.4 N/V ([26]). In addition to the actuating force, a friction force
Ff = Ff (ė) is present in the bearings of the cart, which depends on the cart
velocity. Moreover, a cogging force Fc = Fc(e) exists, which depends on the
position of the cart. This cogging force is caused by the interaction of the
permanent magnets in the X rail and the iron-core coils of the electromagnets
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Figure 7.2: The adapted H-bridge setup scheme, top view.

in the cart, see [26] for details on the cogging force.
In order to implement the TORA system at the H-bridge setup, additional

hardware has been added to the cart, see Figure 7.3. A vertical shaft supported
by a set of (angular contact) ball bearings is attached to the back of the cart,
thus forming a rotational joint. An arm of mass m [kg] is attached to the lower
end of the shaft. The center of mass of the arm is located at the distance
of l [m] from the shaft center line. The angular position of the shaft (and
consequently of the arm) θ is measured by a rotational incremental encoder
(Maxon, HEDL55) with a (quadrature decoded) resolution of 0.18◦ at the motor
shaft. A 48V, 150W DC motor (Maxon RE40), fitted with a ceramic planetary
gearhead (Maxon GP42C) drives the shaft via an adapted flexible coupling
(ROBA-DX, type 931.333). The gear ratio equals gr = 338/3. The backlash
in the gearhead is approximately 1.5◦ at the output shaft. The total inertia of
all rotating parts (the arm, shaft, coupling, gearhead and motor) with respect
to the shaft is J [kg·m2]. Due to the friction in the motor, gearhead and ball
bearings of the shaft, an additional friction torque Tf = Tf (θ̇) acts on the arm.
The torque T generated by the DC motor is proportional to the current i [A] fed
to the motor, i.e. T = κT i, where κT = 60.3 mN · m/A is the motor constant.
The current i is generated by an analog current amplifier. It is proportional
to the (voltage) control signal uT fed to the amplifier, i.e. i = κAuT , where
κA = 1.2A/V is the amplifier constant. More details on the adapted H-bridge
setup can be found in [45].

Taking into account all the active forces and torques, we obtain the following
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Figure 7.3: The adapted H-bridge setup: rear view and connection scheme.

model of the setup consisting of the cart moving along the fixed X-axis and the
(horizontally) rotating arm attached to the cart.

M̄ ë + ml(θ̈ cos θ − θ̇2 sin θ) = F − Ff (ė) + Fc(e), (7.6)

Jθ̈ + mlë cos θ = T − Tf (θ̇),

where M̄ := M + m, the actuator force acting on the cart equals F = κF uF

and the actuator torque acting on the arm equals T = grκT κAuT , where uF

and uT are the control signals for the cart and for the arm, respectively.
The cogging force Fc(e) and the friction force Ff (ė) are identified using

the methods presented in [6]. The corresponding graphs are presented in Fig-
ures 7.4 and 7.5, respectively. The friction torque Tf (ė) has been identified
using constant angular velocity tests. The resulting graph is given in Fig-
ure 7.6.

The nominal value of the mass M̄ = 20.965 kg is computed from the mass of
the additional hardware mounted on the cart and the cart mass prior to adding
the hardware (this value has been identified in [26]). The nominal value of the
product ml = 1.2514 kgm is computed in the CAD software from the design
drawings of the arm. The nominal value of the total inertia of the rotating
parts J = 0.5405 kgm2 is computed from the inertia of the gearhead and the
motor taken from the specifications of these parts and the inertias of the shaft
and the arm computed using the CAD data.
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Figure 7.6: The identified friction torque Tf (θ̇).

In order to apply the output regulation controller, designed for the TORA
system, to the resulting setup, we need to compensate for the friction in the
cart and arm motion and for the cogging force in the X-axis. Moreover, we
need to implement the virtual spring action and the disturbance force along
the X-axis. For the cart, this is achieved by the controller

uF =
1

κF
(F̂f (ė) − F̂c(e) − ke + Fd), (7.7)

where F̂f (ė) and F̂c(e) are the friction compensation and cogging compensation
forces (based on models of these forces, see Figures 7.5 and 7.4, respectively),
k [N/m] is the stiffness of the virtual spring (which we can set arbitrarily) and
Fd(t) = w1(t) is the disturbance force acting on the cart. In the experiments
performed on the setup, the parameter k is set equal to k = 500 N/m. The
solutions w(t) = [w1(t), w2(t)] of the exosystem (7.2) as well as the disturbance
force Fd(t) = w1(t) are computed in the PC/dSpace-system..

Next, we need to implement the friction compensation in the rotating arm.
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This is done by the controller

uT =
1

grκT κA
(Tu + T̂f (θ̇)), (7.8)

where T̂f (θ̇) is the friction compensation torque based on the identified friction
torque in the arm, see Figure 7.6, and Tu is a new input.

After implementing the low-level controllers (7.7), (7.8) and the exosystem
(7.2), the resulting system takes the form

M̄ ë + ml(θ̈ cos θ − θ̇2 sin θ) + ke = Fd + εF , (7.9)
Jθ̈ + mlë cos θ = Tu + εT ,

where Fd(t) = w1(t) is the disturbance force, Tu is the control torque (new
input) and εF and εT are the residual terms due to inaccurate friction and cog-
ging compensation and due to uncertainties in the system parameters. System
(7.9) is now in the form of system (7.1) (if the residual terms are not taken into
account) for which the controller (7.3) solves the local output regulation prob-
lem. This controller requires the values for e and θ, which are measured by the
encoders, ė and θ̇, which are obtained by numerical differentiation and filtering,
and the values of w1(t) and w2(t), which are computed in the dSpace-system.

7.3 Experiments

In this section we present experimental results performed on the adapted H-
bridge setup in closed loop with the controller (7.8), (7.3).

7.3.1 Parameter settings

The matrix K in the controller (7.3) is set K := [29, −1.5, −11, −1.9]. The
eigenvalues of the linearized closed-loop system corresponding to this K and to
the nominal system parameters given in the previous section equal −1.0313 ±
5.8493i and −0.9121 ± 3.8901i. This choice of the matrix K is determined by
several requirements. The first and the third entries of the matrix K, which
correspond to the displacement of the cart e and angular position of the arm
θ, must be large enough to compensate for the residual friction and backlash
present in the system. At the same time, the real part of the eigenvalues of
the linearized closed-loop system must be less than a certain threshold in order
to guarantee the fast convergence rate and sufficient robustness properties of
the closed-loop system. Finally, the control signal resulting from this matrix
K must not exceed, in most operating conditions, the bounds given by the
amplifier and DC motor specifications. Taking these requirements into account,
a combination of trial and error and some optimization procedures resulted in
the matrix K presented above. During the experiments the parameters J and
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ml have been tuned in order to obtain better performance of the controller.
The tuned values of these parameters equal Ĵ = 0.4270 Nm2 (21% smaller
than the nominal value) and m̂l = 1.3389 kgm (7% larger than the nominal
value).

The friction compensation torque in the rotating arm T̂f (θ̇) is set 1.5 times
larger than the identified friction torque Tf (θ̇) given in Figure 7.6. It has been
noticed that for this friction compensation in the rotating arm the controller
has better performance. Such a large deviation from the identified values may
be caused by the fact that the friction in the gearhead, which is the main
contributor to the friction in the arm motion, depends not only on the angular
velocity θ̇, but also on the torque applied to the shaft. The identification of
the friction torque has been performed for very low torques (constant velocity
experiments), while in the experiments with the TORA controller the torques
are much higher. The cogging compensation force F̂ (e) is set equal to the
identified cogging force presented in Figure 7.4. The friction compensation
force F̂f (ė) in the cart motion is set to 90% of the identified friction force.
Moreover, for the cart velocity ė of magnitude less than 0.035 m/s it is set

F̂f (ė) :=
|ė|0.90
0.035

Ff (ė).

The resulting friction compensation force is shown in Figure 7.7. This under-
compensation of the friction in the cart motion reduces the friction-induced
limit-cycling which is observed in experiments if the friction compensation force
is set equal to the identified friction force, see e.g. [74]. At the same time,
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e0 [m] θ0 [deg]
Experiment # 1 0.2 20
Experiment # 2 -0.2 20
Experiment # 3 0.1 90

Table 7.1: Initial conditions e0 and θ0 used in the experiments.

friction under-compensation results in existence of an equilibrium set for the
cart. In the experiments, this equilibrium set can be easily observed when the
cart sticks in a point e∗, which is close, but not equal, to zero.

In the experiments, the frequency of the disturbance force Fd(t) (the fre-
quency of the exosystem) is set to 1 Hz, which corresponds to ω in the exosys-
tem (7.2) equal to ω = 2π rad/s.

7.3.2 Experimental results

All experiments are performed for initial conditions of the exosystem equal to
w1(0) = 0, w2(0) = A. These initial conditions correspond to the disturbance
force Fd(t) := A sin(ωt). We perform the experiments for two values of the
amplitude A: A = 15 and 25 N.

Two types of experiments are performed. In the experiments of the first
type, the system starts in a given initial condition e(0) = e0 [m], ė(0) = 0 [m/s],
θ = θ0 [deg], θ̇(0) = 0 [deg/s]. For each value of the amplitude A we perform
three experiments corresponding to different initial conditions e0 and θ0. These
initial conditions are given in Table 7.1. The results of the experiments cor-
responding to the disturbance amplitudes A = 15 and 25 N are presented in
Figures 7.8 and 7.9, respectively. In these figures the controller effort is repre-
sented by the current i = κAuT [A] fed by the amplifier to the DC motor. The
results of these experiments show that the controlled motion of the arm does
compensate a significant part of the harmonic disturbance force and the cart
stabilizes in a point close to zero.

In the experiments of the second type, the system is affected by the distur-
bance force Fd(t) of amplitude A. In the controller (7.3) only the feedback part
is active, i.e. Tu = Kx and there is no compensation for the disturbance force
Fd(t). Since there is no disturbance compensation, the cart starts oscillating.
At a certain time instant the feedforward part of the controller is activated,
i.e. Tu = c(w) + K(x − π(w)). This results in disturbance rejection in the
position of the cart e. The results of the experiments corresponding to the
disturbance amplitudes A = 15 and 25 N are presented in Figures 7.10, and
7.11, respectively.

From these experiments we see that the output regulation controller (7.3)
together with the friction compensation controller (7.8) do compensate a signif-
icant part of the harmonic disturbance force acting on the cart. After transients
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Figure 7.8: Experiments for a disturbance force amplitude A = 15 N and
predefined initial conditions.

the cart comes to rest in a point close to zero. So, the approximate output reg-
ulation occurs. In practice, we can achieve only approximate output regulation
because of the modeling uncertainties εF and εT (see (7.9)) that are not taken
into account at the stage of controller design. For example, the residual friction
in the cart motion manifests itself in the fact that the cart sticks in in a point
close, but not equal, to zero.

In a number of experiments performed on the setup, another phenomenon
has been observed: after transients the cart does not stick in an equilibrium
position, but keeps on oscillating, as shown in Figure 7.12. This behavior
is observed also in the case when no disturbance force acts on the system.
Therefore, it is not the disturbance rejection controller that causes this problem.
This limit-cycling can be explained by the interaction of several factors: friction
and friction compensation in the cart motion, friction and friction compensation
in the rotating arm, backlash in the gearhead and the feedback controller.
As can be seen from Figure 7.13, the backlash, for example, manifests itself
through the peaks in the angular velocity of the arm. When the shaft reaches
the border of the backlash zone, an impact occurs which causes the peaks in
θ̇. These peaks, in turn, are amplified by the controller (7.3) and fed back
into the DC motor actuating the arm. This provides the system with extra
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predefined initial conditions.
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Figure 7.10: Experiments for a disturbance force amplitude A = 15 N. Distur-
bance compensation is activated during the experiment.
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Figure 7.11: Experiments for a disturbance force amplitude A = 25 N. Distur-
bance compensation is activated during the experiment.
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Figure 7.12: Limit cycling in the cart motion. The disturbance force amplitude
is A = 15 N.

energy to compensate for the energy dissipation due to friction. An interaction
between the friction, friction compensation and controller can also cause such
limit cycling behavior. These problems require additional investigation which
is outside the scope of our research.
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Figure 7.13: Angular velocity of the arm. Impact instants due to backlash are
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7.4 Summary

In this chapter we have presented experimental results on the local output
regulation problem for the TORA system, which is a nonlinear mechanical
benchmark system. We have found a simple state-feedback controller which
solves a disturbance rejection problem for the TORA system. This problem is a
particular case of the local output regulation problem. In order to validate this
controller in experiments, an experimental setup for the TORA system has been
built by adapting the existing H-bridge setup. The proposed state-feedback
controller is implemented in this setup and tested in a row of experiments.

As follows from the results of these experiments, for the setup in closed-
loop with the proposed controller the output regulation occurs approximately.
This means that the regulated output e(t) does not tend to zero exactly, but
either sticks in an equilibrium position close to zero or keeps on oscillating with
a small amplitude. These phenomena are due to under-compensation of the
friction in the cart and due to the backlash problem in the gearhead of the
rotating arm. These factors have been not taken into account at the stage of
controller design.

In practice, there is always some type of uncertainty present in the system.
It can be either due to inaccurately identified parameters of the system or
due to friction, backlash or other parasitic phenomena present in the system
which are not taken into account in the system model. These uncertainties
may significantly reduce the performance of a controller. This should be taken
into account at the stage of controller design. In particular, from the class of
controllers solving the (local) output regulation problem one should choose a
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controller with the best, in some sense, robustness properties. For example, in
the TORA controller a well-chosen matrix K reduces the problems caused by
the backlash. The problem of the optimal, in some sense, choice of controller
parameters is a new problem in the field of nonlinear output regulation.

The results presented in this chapter are still very preliminary. They repre-
sent the first steps in the field of experimental output regulation for nonlinear
systems.
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8

Conclusions and recommendations

8.1 Conclusions 8.2 Recommendations

The problem of asymptotic regulation of the output of a dynamical system,
which includes both tracking and disturbance rejection problems, plays an im-
portant role in control theory. A particular case of this problem, when the
reference signals and/or disturbances are generated by an autonomous system
of differential equations, is the output regulation problem. This problem has
been systematically studied in this thesis.

8.1 Conclusions

Our treatment of the output regulation problem is based on the notion of
convergent systems. In the development of this approach we have passed several
stages.

Convergent systems. First of all, we have extended and elaborated the
notions of convergent systems originally developed by B.P. Demidovich. We
have introduced the notions of the uniform and exponential convergence, the
Uniformly Bounded Limit Solutions (UBLS) property and the input-to-state
convergence property. Then we have studied various properties of convergent
systems. It appears that convergent systems, although being nonlinear, have
rather simple dynamics and enjoy many stability properties comparable to
those of asymptotically stable linear systems. This makes them rather conve-
nient to deal with. Finally, we have proposed sufficient conditions for various
convergence properties for systems with smooth and non-smooth right-hand
sides. These sufficient conditions and properties of convergent systems serve as
tools in the subsequent treatment of the output regulation problem. Moreover,
they can be used for other control problems as well.

The uniform output regulation problem. Having developed mathematical
apparatus for convergent systems, we have formulated the uniform output regu-
lation problem. This is a new problem setting for the output regulation problem
based on the notion of convergent systems. In this problem setting one needs
to find a controller such that for any input generated by the exosystem the
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corresponding closed-loop system has a unique (globally) uniformly asymptoti-
cally stable steady-state solution and the regulated output tends zero along all
solutions of the closed-loop system. We have formulated the global, regional,
semiglobal and local as well as robust variants of the uniform output regulation
problem. This new problem setting includes as particular cases the output reg-
ulation problem for linear systems and the conventional local output regulation
problem for nonlinear systems. Moreover, it has several advantages over other
existing problem settings. It allows to deal with exosystems having complex
dynamics, e.g. exosystems with a (chaotic) attractor with an unbounded do-
main of attraction. Up to now most of the results on the output regulation
problem dealt only with exosystems having relatively simple dynamics, for ex-
ample with linear harmonic oscillators. Another advantage of this new problem
setting is that it allows to treat the local and global variants of the uniform
output regulation problem in a unified way. As it becomes clear from the solv-
ability analysis of the global uniform output regulation problem, many of the
known controllers solving the global output regulation problem in some other
problem settings, in fact solve the global uniform output regulation problem.

Solvability analysis. One of the main advantages of the chosen problem
setting for the uniform output regulation problem is that it allows to obtain
relatively simple results on the solvability of the problem. For the global,
global robust and local variants of the uniform output regulation problem,
we have provided necessary and sufficient conditions for the solvability of these
problems as well as results on the characterization of all controllers solving these
problems. These results extend the solvability results for the conventional local
output regulation problem, which are based on the center manifold theorem.
The solvability analysis of the uniform output regulation problem is based on
certain invariant manifold theorems. They serve as non-local counterparts of
the center manifold theorem. These invariant manifold theorems, although
being obtained in the scope of the output regulation problem, can be applied
in other fields of systems and control theory as well. For example, they can
be used for the analysis of synchronization phenomena, the computation of
periodic solutions of nonlinear systems excited by harmonic inputs and for the
performance analysis of nonlinear convergent systems.

Controller design. The analysis of the global uniform output regulation
problem provides necessary and sufficient conditions under which a controller
solves the problem. How to design a controller satisfying these conditions is a
separate problem. We have addressed this problem for several classes of non-
linear systems and provided several results on controller design for the global
uniform output regulation problem. One of these controller designs is based on
the notions of quadratic stabilizability and detectability, which extend the con-
ventional notions of stabilizability and detectability from linear systems theory
to the case of nonlinear systems. The controller design based on these notions
extends known controllers solving the linear and the local nonlinear output reg-
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ulation problems to the case of the global uniform output regulation problem
for nonlinear systems. For the case of a Lur’e system with a nonlinearity having
a bounded derivative and an exosystem being a linear harmonic oscillator, fea-
sibility conditions for such controller design can be easily verified by checking
the feasibility of certain Linear Matrix Inequalities. Moreover, for this class of
systems and exosystems we provide a robust controller design, which copes not
only with uncertainties in the system parameters, but also with an uncertain
nonlinearity from a class of nonlinearities with a given bound on their deriva-
tives. The controller design results obtained at this stage allow us to solve the
global uniform output regulation problem for new classes of nonlinear systems.

Convergence region estimates. If a solution to a global uniform output reg-
ulation problem cannot be found, it can still be possible to find a controller
that solves the corresponding local output regulation problem. The resulting
controller solves the output regulation problem for initial conditions of the
closed-loop system and the exosystem lying in some neighborhood of the ori-
gin. In this thesis we have presented estimation results which, given a controller
solving the local output regulation problem, provide estimates of this neigh-
borhood of admissible initial conditions. These results are obtained for both
the exact and the approximate local output regulation problem. The proposed
estimation results enhance applicability of the controller design procedures for
the nonlinear local output regulation problem. As in the rest of the thesis, the
notion of convergence plays a central role in these estimation results.

Experimental case study. In order to check applicability of controllers from
the nonlinear output regulation theory in practice, we have performed an exper-
imental case study for the TORA system. For this system we have considered
a disturbance rejection problem, which is a particular case of the local output
regulation problem. We have designed a controller solving this problem and
checked its performance in experiments. To this end, an experimental setup
for the TORA system has been built and the proposed controller has been im-
plemented in this setup. Despite of uncertainties and several parasitic effects,
such as residual uncompensated friction, backlash and a residual cogging force
present in the system, the proposed controller achieves approximate output
regulation, i.e. the regulated output converges to small values. The residual
regulation error is due to modeling uncertainties, which are inevitable in prac-
tice. To the best of our knowledge, this is the first experimental work in the
field of nonlinear output regulation.

At the end of the thesis we can conclude that the approach to the output
regulation problem based on the notion of convergent systems appears to be
very effective. Moreover, the results obtained in this thesis can be applied not
only to the output regulation problem, but to other problems in systems and
control theory as well.
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8.2 Recommendations

The results presented in this thesis can be extended in several ways. Below we
briefly review some possible extensions.

• In this thesis the uniform output regulation problem has been considered
for systems modeled by ordinary differential equations. At the same time,
many practical systems cannot be modeled by ODEs and may require a
model in the form of integral equations or partial differential equations.
The analysis and controller design methods for the output regulation
problem for systems given by integral or partial differential equations is
a possible step in further research. Another direction of research can be
related to the output regulation problem for systems given in the form
of differential equations with non-smooth and discontinuous right-hand
sides.

• The problem of controller design for the uniform output regulation prob-
lem requires a lot of further research, since the class of nonlinear systems
for which the available controller design methods apply is rather lim-
ited. One of the main problems is the problem of designing controllers
that make the corresponding closed-loop system globally uniformly con-
vergent. This is an interesting problem having connections to different
areas of nonlinear control theory. Controller design methods for conver-
gent systems can be beneficial for both tracking and disturbance rejection
problems.

• In the problem of estimating the set of admissible initial conditions for the
local output regulation problem there are several unanswered questions.
The estimation procedures presented in this thesis depend on several
parameters, which can be chosen in many ways. How to choose these
parameters in order to obtain the largest (in some sense) estimates is
still an open question. Another question is how to choose controller
parameters in order to increase the set of admissible initial conditions.

• For a given system and exosystem the output regulation problem can be
solved (if it is solvable) by many controllers. All these controllers achieve
the control goal of regulating the output of the system, but the perfor-
mance of the closed-loop system depends on the particular controller. In
this respect, we face the problem of performance analysis for nonlinear
systems. This problem has been thoroughly investigated for linear sys-
tems, but for nonlinear systems there are more questions than answers,
starting with the question on how to quantify the performance of a non-
linear system. A possible approach to tackle the performance analysis
problem for nonlinear convergent systems can be based on the invari-
ant manifold theorems presented in this thesis. These theorems allow
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to extend the Bode plot defined for linear systems to the case of non-
linear convergent systems. The extended Bode plot can be applied for
performance analysis of nonlinear convergent systems. This fact opens
an interesting research direction in nonlinear (control) systems theory.

• The notion of convergent systems seems to be very useful in many areas
of systems and control theory. The research on properties of convergent
systems, analysis and design tools for convergent systems has started
relatively recently. At the moment, there is a need in new design and
analysis tools for convergent systems.
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A.9 Proof of Theorem 2.2.29
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A.12 Proof of Theorem 4.2.6
A.13 Proof of Theorem 5.3.13
A.14 Proof of Lemma 6.2.1
A.15 Proof of Theorem 6.2.2
A.16 Proof of Theorem 6.2.3

A.1 Proof of Lemma 2.1.11

The proof of this lemma is based on ideas from [15; 86]. Since system (2.6)
is locally ISS, there exist numbers kz > 0 and ku > 0, a class KL function
β(r, s), and a class K function γ(r) such that for any initial state z(t0) with
|z(t0)| ≤ kz and any input u(t) satisfying supt≥t0 |u(t)| ≤ ku the solution z(t)
exists for all t ≥ t0 and satisfies

|z(t)| ≤ β(|z(t0)|, t − t0) + γ( sup
t0≤τ≤t

|u(τ)|). (A.1)

Choose a number k̃u > 0 such that k̃u ≤ ku and β(γ(k̃u), 0) + γ(k̃u) < kz.
Such k̃u exists because β(r, 0) and γ(r) are continuous and satisfy β(0, 0) = 0
and γ(0) = 0. We will show that for any input u(t) satisfying supt≥t0 |u(t)| ≤
k̃u there exists a solution zu(t) which is defined for all t ∈ R and satisfies
supt∈R |zu(t)| ≤ kz. If such solution exists, then it satisfies the inequality

|zu(t)| ≤ β(|zu(t0)|, t − t0) + γ( sup
t0≤τ≤t

|u(τ)|)

for all t0 ∈ R and t ≥ t0. In the limit for t0 → −∞ we obtain |zu(t)| ≤
γ(supτ∈R |u(τ)|) for all t ∈ R. This implies the statement of the lemma.

Let us show that a solution zu(t) described above does exist. Choose ε > 0
such that for ρ := γ(k̃u)+ε it holds that β(ρ, 0)+γ(k̃u) ≤ kz and ρ < kz. Such
ε exists due to continuity of β(r, 0) and due to the choice of k̃u. By the local ISS
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property, any solution z(t) with an initial condition satisfying |z(t0)| ≤ ρ and
corresponding to some input u(t) satisfying supt≥t0 |u(t)| ≤ k̃u is defined for all
t ≥ t0 and satisfies, due to (A.1), the inequality supt≥t0 |z(t)| ≤ β(ρ, 0)+γ(k̃u).
By the choice of k̃u and ρ this implies that supt≥t0 |z(t)| ≤ kz.

Choose T > 0 such that β(ρ, T ) < ε. Such T exists, because β(r, s) is a
decreasing function of s. Denote B̄ρ to be the closed ball B̄ρ := {z : |z| ≤ ρ}.
For every n ≥ 0, define the set

Vn := {ẑ ∈ R
d : ẑ := z(0, z0,−nT ), z0 ∈ B̄ρ},

where z(t, z0, t0) is a solution of system (2.6) starting in z(t0) = z0. Since B̄ρ

is a compact set, Vn is also a compact set. By the definition of the set Vn, if
ẑ ∈ Vn, then the solution of system (2.6) satisfying z(0) = ẑ is defined at least
for t ∈ [−nT, 0] and |z(−nT )| ≤ ρ. Hence, by the reasoning presented above,
such z(t) is defined for all t ≥ −nT and it satisfies supt≥−nT |z(t)| ≤ kz.

Let us show that Vn+1 ⊂ Vn for all n ≥ 0. As follows from the definition
of Vn, it is enough to show that any solution starting in z(−(n + 1)T ) ∈ B̄ρ

satisfies z(−nT ) ∈ B̄ρ. Suppose z(t) satisfies |z(−(n + 1)T )| ≤ ρ. Then it is
defined for all t ≥ −(n + 1)T and satisfies (A.1). Then, by the properties of
functions β(r, s) and γ(r), this solution satisfies |z(−nT )| ≤ β(ρ, T ) + γ(k̃u).
By the choice of T we obtain that |z(−nT )| ≤ ε + γ(k̃u) = ρ. Indeed, it holds
that Vn+1 ⊂ Vn for all n ≥ 0.

Since the sets Vn are compact and Vn+1 ⊂ Vn for all n ≥ 0, their intersec-
tion is non-empty, i.e. there exists z∗ ∈ ⋂+∞

n=0 Vn. Consider the solution zu(t)
starting in zu(0) = z∗. Since z∗ ∈ Vn for all n ≥ 0, the solution zu(t) is defined
for all t ∈ R and it satisfies supt∈R |zu(t)| ≤ kz.

The proof of the case of system (2.6) being ISS is identical to the local
case.�

A.2 Proof of Property 2.2.12

Notice that since F (z, w) is C1, the Jacobians ∂F
∂z (z, w) and ∂F

∂w (z, w) are
bounded in some neighborhood of the origin (z, w) = (0, 0). Thus, all con-
ditions of Lemma 2.1.10 are satisfied. By Lemma 2.1.10, system (2.24) is
locally ISS. Hence, by Lemma 2.1.11, there exists a number k̃w > 0 and a
class K function γ(r) such that for any input w(t) satisfying |w(t)| < k̃w sys-
tem (2.24) has a solution zw(t) which is defined for all t ∈ R and satisfies
supt∈R |zw(t)| ≤ γ(supt∈R |w(t)|). Since system (2.24) is locally uniformly
convergent for the class of inputs N , there exists a neighborhood of the origin
Z ⊂ R

d and a number r > 0 such that system (2.24) is uniformly convergent in
Z for any input w(·) ∈ N satisfying |w(t)| < r for all t ∈ R. Choose kw > 0 such
that kw < k̃w, kw < r and such that the closed ball B̄γ(kw) := {z : |z| ≤ γ(kw)}
lies in Z. Such kw exists, because γ(0) = 0 and γ(r) is continuous and Z



A.3. Proof of Property 2.2.13 159

is a neighborhood of the origin. Consider some input w(·) ∈ N satisfying
|w(t)| < kw for all t ∈ R. Due to uniform convergence, for this input there
exists a limit solution z̄w(t) which is defined and bounded for all t ∈ R and
uniformly asymptotically stable in Z. Moreover, there exists a solution zw(t)
defined for all t ∈ R and lying in the compact set B̄γ(kw) ⊂ Z. Hence, by Prop-
erty 2.1.4 z̄w(t) ≡ zw(t) for t ∈ R. Thus, for any input w(·) ∈ N satisfying
|w(t)| < kw for all t ∈ R the corresponding limit solution satisfies (2.30).�

A.3 Proof of Property 2.2.13

Consider two inputs w1(·)andw2(·) ∈ PCm satisfying w1(t) − w2(t) → 0 as
t → +∞ and the corresponding limit solutions z̄w1(t) and z̄w2(t). By the
definition of convergence, both z̄w1(t) and z̄w2(t) are defined and bounded for
all t ∈ R. Consider the system

∆ż = F (z̄w2(t) + ∆z, w2(t) + ∆w) − F (z̄w2(t), w2(t)). (A.2)

This system describes the dynamics of ∆z = z(t) − z̄w2(t), where z(t) is some
solution of system (2.24) with the input w2(t) + ∆w(t). Since F (z, w) ∈ C1,
the partial derivatives

∂F

∂z
(z̄w2(t) + ∆z, w2(t) + ∆w)

and
∂F

∂w
(z̄w2(t) + ∆z, w2(t) + ∆w)

are bounded in some neighborhood of the origin (∆z,∆w) = (0, 0), uniformly in
t ∈ R. Also, for ∆w ≡ 0 system (A.2) has a uniformly globally asymptotically
stable equilibrium ∆z = 0. By Lemma 2.1.10, system (A.2) is locally ISS
with respect to the input ∆w. This implies (see Remark to Definition 2.1.8)
that there exist numbers kz > 0 and kw > 0 such that for any input ∆w(t)
satisfying |∆w(t)| ≤ kw for all t ≥ t0 and ∆w(t) → 0 as t → +∞, it holds that
any solution ∆z(t) starting in |∆z(t0)| ≤ kz tends to zero, i.e. ∆z(t) → 0 as
t → +∞.

Choose t0 ∈ R such that |w1(t) − w2(t)| ≤ kw for all t ≥ t0. Consider a
solution of the system

ż = F (z, w1(t)) (A.3)

starting in a point z(t0) satisfying |z(t0) − z̄w2(t0)| ≤ kz. By the reasoning
presented above, ∆z(t) := z(t) − z̄w2(t) → 0 as t → +∞. At the same time,
z̄w1(t) is a uniformly globally asymptotically stable solution of system(A.3).
Hence, z(t) − z̄w1(t) → 0 as t → +∞. Therefore, z̄w2(t) − z̄w1(t) → 0 as
t → +∞.�
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A.4 Proof of Property 2.2.15

Consider some input w(·) ∈ PCm. Since the y-subsystem is input-to-state
convergent, there exists a solution ȳw(t) which is defined and bounded for all
t ∈ R. Since the z-subsystem with (y, w) as inputs is input-to-state convergent,
there exists a limit solution z̄w(t) corresponding to the input (ȳw(t), w(t)). This
z̄w(t) is defined and bounded for all t ∈ R.

Let (z(t), y(t)) be some solution of system (2.32) with some input w̃(t).
Denote ∆z := z − z̄w(t), ∆y := y − ȳw(t) and ∆w = w̃ − w(t). Then ∆z and
∆y satisfy the equations

∆ż = F (z̄w(t) + ∆z, ȳw(t) + ∆y, w(t) + ∆w) − F (z̄w(t), ȳw(t), w(t)) (A.4)

∆ẏ = G(ȳw(t) + ∆y, w(t) + ∆w) − G(ȳw(t), w(t)). (A.5)

Since both the z-subsystem and the y-subsystem of system (2.32) are input-
to-state convergent, system (A.4) with (∆y,∆w) as input is ISS and system
(A.5) with ∆w as input is ISS. Hence, by Theorem 2.1.12 the interconnected
system (A.4), (A.5) is ISS. In the original coordinates (z, y) this means that
system (2.32) is ISS with respect to the solution (z̄w(t), ȳw(t)). This implies
that system (2.32) is input-to-state convergent.�

A.5 Proof of Theorem 2.2.17

As follows from Lemma 2.2.18, the Demidovich condition (2.34) guarantees
that every solution of system (2.24) corresponding to an input w(·) ∈ PC(W) is
globally exponentially stable. Namely, condition (2.34) implies that inequality
(2.36) is satisfied for any two points z1, z2 ∈ R

d and for any w ∈ W. This, in
turn, implies that for a given input w(t) taking its values in W and for any
two solutions z1(t) and z2(t) corresponding to this input, the derivative of the
function V (z1, z2) = 1

2 (z1 − z2)T P (z1 − z2) satisfies

d

dt
V (z1(t), z2(t)) = (z1 − z2)T P (F (z1, w) − F (z2, w)) ≤ −2βV (z1, z2). (A.6)

The last inequality guarantees that the difference between any two solutions
z1(t) and z2(t) corresponding to some input w(·) ∈ PC(W), exponentially tends
to zero. In particular,

|z1(t) − z2(t)|P ≤ e−β(t−t0)|z1(t0) − z2(t0)|P ,

where |z|P denotes |z|P := (zT Pz)1/2.
It remains to show that there exists a solution z̄w(t) which is defined and

bounded for all t ∈ R. In order to show this, consider the function W (z) :=
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1
2zT Pz. The derivative of this function along a solution z(t) corresponding to
some bounded input w(t) equals

d

dt
W (z(t)) = zT PF (z, w) = (z − 0)T P (F (z, w) − F (0, w)) + zT PF (0, w).

Applying inequality (2.36), we obtain

d

dt
W (z(t)) ≤ −β|z|2P + |zT PF (0, w)|.

Notice that the term |zT PF (0, w)| can be estimated using the Cauchy inequal-
ity in the following way. Let the matrix Π be such that P = ΠT Π. Then
zT PF (0, w) = (Πz)T (ΠF (0, w)), i.e. zT PF (0, w) equals the scalar product of
Πz and ΠF (0, w). By the Cauchy inequality, we obtain

|(Πz)T (ΠF (0, w))| ≤ |Πz||ΠF (0, w)| = |z|P |F (0, w)|P .

Here, we have used the fact that |z|P = |Πz|. With this estimate of |zT PF (0, w)|,
we obtain

d

dt
W (z(t)) ≤ −β|z|2P + |z|P |F (0, w)|P ≤ −|z|P (β|z|P − sup

t∈R

|F (0, w(t))|P ).

The last inequality implies that for a given bounded input w(t), dW/dt(z) ≤ 0
for |z|P ≥ r, where r := supt∈R |F (0, w(t))|P /β. Consequently, the set {z :
|z|P ≤ r} is a compact positively invariant set. The existence of a solution
z̄w(t) which is defined and bounded for all t ∈ R follows from Lemma 2.2.19.
Thus, for every bounded input w(·) ∈ PC(W) there exists a solution z̄w(t)
which is defined and bounded for all t ∈ R and which is globally exponentially
stable. Hence, system (2.24) is globally exponentially convergent for the class
of inputs PC(W). The fact that the limit solution z̄w(t) lies in the set {z :
|z|P ≤ r}, where r := supt∈R |F (0, w(t))|P /β, determines that system (2.24)
has the UBLS property for the class of inputs PC(W). Namely, for any compact
set Kw ⊂ W the compact set Kz in the definition of the UBLS property can
be chosen equal to

Kz := {z : |z|P ≤ sup
w∈Kw

|F (0, w)|P /β}.

Let us show that for the case of W = R
d system (2.24) is input-to-state

convergent for the class of inputs PCm. Consider some input w(·) ∈ PCm

and the corresponding limit solution z̄w(t). Let z(t) be a solution of system
(2.24) corresponding to some input ŵ(·) ∈ PCm. Denote ∆z := z − z̄w(t) and
∆w := ŵ − w(t). Then ∆z satisfies the equation

∆ż = F (z̄w(t) + ∆z, w(t) + ∆w) − F (z̄w(t), w(t)). (A.7)
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We will use Theorem 2.1.9 in order to show that this system is ISS. Then input-
to-state stability of system (A.7) implies that system (2.24) is input-to-state
convergent for the class of inputs PCm.

Consider the function V (∆z) = 1
2 (∆z)T P∆z. Its derivative along solutions

of system (A.7) satisfies

dV

dt
= ∆zT P{F (z̄w(t) + ∆z, w(t) + ∆w(t)) − F (z̄w(t), w(t))} (A.8)

= ∆zT P{F (z̄w(t) + ∆z, w(t) + ∆w(t)) − F (z̄w(t), w(t) + ∆w(t))}
+∆zT P{F (z̄w(t), w(t) + ∆w(t)) − F (z̄w(t), w(t))}.

Applying Lemma 2.2.18 to the first component in formula (A.8), we obtain

∆zT P{F (z̄w(t) + ∆z, w(t) + ∆w(t)) − F (z̄w(t), w(t) + ∆w(t))} ≤ −β|∆z|2P .
(A.9)

Applying the Cauchy inequality to the second component in formula (A.8), we
obtain the following estimate:

|∆zT P{F (z̄w(t), w(t)+∆w(t))−F (z̄w(t), w(t))}| ≤ |∆z|P |δ(t,∆w)|P , (A.10)

where
δ(t,∆w) := F (z̄w(t), w(t) + ∆w(t)) − F (z̄w(t), w(t)).

Since F (z, w) is continuous and z̄w(t) and w(t) lie in compact sets for all t ∈ R,
the function δ(t,∆w) is continuous in ∆w uniformly in t ∈ R. This, in turn,
implies that ρ̃(r) := supt∈R sup|∆w|≤r |δ(t,∆w)|P is a continuous nondecreas-
ing function. Define the function ρ(r) := ρ̃(r) + r. This function is continuous,
strictly increasing and ρ(0) = 0. Thus, it is a class K function. Also, due to
the definition of ρ(r), we obtain the following estimate

|δ(t,∆w)|P ≤ ρ(|∆w|).

After substituting this estimate, together with estimates (A.10) and (A.9), in
formula (A.8), we obtain

dV

dt
≤ −β|∆z|2P + |∆z|P ρ(|∆w|). (A.11)

From this formula we obtain that

dV

dt
≤ −β

2
|∆z|2P , ∀ |∆z|P ≥ 2

β
ρ(|∆w|). (A.12)

Thus, applying Theorem 2.1.9, we obtain that system (A.7) is input-to-state
stable. This completes the proof of the theorem.�
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Γ
z1

z2

Figure A.1: The line segment (z1, z2) does not intersect Γ.

Γ
z1 =: y1

z2 =: y4

y2y3

Figure A.2: The line segment (z1, z2) intersects the set Γ in a finite number of
points. The points y1, . . . , y4 are ordered.

A.6 Proof of Theorem 2.2.21

We will show that the conditions of the theorem imply the existence of β > 0
such that for any w ∈ W and for any two points z1, z2 ∈ R

d it holds that

(z1 − z2)T P (F (z1, w) − F (z2, w)) ≤ −β|z1 − z2|2P . (A.13)

Once this relation is proved, the rest of the proof repeats the proof of Theo-
rem 2.2.17. Basically, the proof of inequality (A.13) replaces Lemma 2.2.18 in
the proof of Theorem 2.2.17.

Notice that inequality (A.13) holds automatically for z1 = z2. Hence, we
need to prove it only for the case z1 = z2. Inequality (A.13) will be proved
in several steps. First, consider two points z1, z2 ∈ R

d, z1 = z2, such that
the open line segment (z1, z2) connecting these points, so not containing these
points, lies entirely in the set C := R

d \ Γ, as shown in Figure A.1. Then, by
Lemma 2.2.18, inequality (A.13) holds for these z1 and z2 and for any w ∈ W.
Secondly, consider two points z1, z2 ∈ R

d such that the open line segment
(z1, z2) connecting these points intersects the set Γ in a finite number of points,
as shown in Figure A.2. Denote y1 := z1, yp := z2 and yi, i = 2, . . . , p − 1, –
the points of intersection of the line segment (z1, z2) with the set Γ. The points
y1, . . . , yp are ordered in such a way that any open line segment (yi, yi+1),
i = 1, . . . , p− 1, does not intersect Γ and yi = yi+1 for i = 1, . . . , p− 1. Denote
e := (z1 − z2)/|z1 − z2|P . Since all points yi, i = 1, . . . , p lie on the same closed
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line segment [z1, z2], and they are ordered, we obtain

e =
yi − yi+1

|yi − yi+1|P , i = 1, . . . , p − 1. (A.14)

Taking this fact into account, we obtain

(z1 − z2)T P (F (z1, w) − F (z2, w)) = |z1 − z2|P
p−1∑
i=1

eT P (F (yi, w) − F (yi+1, w))

= |z1 − z2|P
p−1∑
i=1

(yi − yi+1)T P (F (yi, w) − F (yi+1, w))
|yi − yi+1|P . (A.15)

Notice that for each pair of points yi and yi+1, i = 1, . . . p − 1, the open line
segment (yi, yi+1) connecting these points, but not including them, lies entirely
in the set C := R

d \ Γ. Thus, as follows from the first step of the proof,

(yi − yi+1)T P (F (yi, w) − F (yi+1, w)) ≤ −β|yi − yi+1|2P .

Substituting this inequality in (A.15), we obtain

(z1 − z2)T P (F (z1, w) − F (z2, w)) ≤ −β|z1 − z2|P
p−1∑
i=1

|yi − yi+1|P .

Since all points yi, i = 1, . . . , p, lie on the same line segment [z1, z2] and they
are ordered,

p−1∑
i=1

|yi − yi+1|P = |y1 − yp|P = |z1 − z2|P . (A.16)

This fact implies

(z1 − z2)T P (F (z1, w) − F (z2, w)) ≤ −β|z1 − z2|2P .

In the third step, consider two points z1, z2 ∈ R
d such that the open line

segment (z1, z2) connecting these points intersects the set Γ in infinite number
of points. In our case, this means that the line segment (z1, z2) belongs to
one or more hyperplanes constituting the set Γ. These hyperplanes are given
by the equations HT

j z + hj = 0, j = 1 . . . k. Consider the sequences {z1i}+∞
i=1

and {z2i}+∞
i=1 such that z1i → z1 and z2i → z2 as i → +∞ and such that

each line segment (z1i, z2i), i = 1, 2, . . . intersects the set Γ in a finite number
of points. Such sequences exist because for small variations of either z1 or
z2 in the direction transversal to the hyperplane HT

j z + hj = 0 to which the
line segment (z1, z2) belongs, the varied line segment (z̃1, z̃2) does not lie in
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the hyperplane HT
j z + hj = 0. Since each line segment (z1i, z2i), i = 1, 2, . . .

intersects the set Γ in a finite number of points, from the second step we obtain

(z1i − z2i)T P (F (z1i, w) − F (z2i, w)) ≤ −β|z1i − z2i|2P , i = 1, 2, . . . .

By continuity of the vectorfield F (z, w), in the limit for i → +∞ we obtain

(z1 − z2)T P (F (z1, w) − F (z2, w)) ≤ −β|z1 − z2|2P .

This completes the proof.�

A.7 Proof of Lemma 2.2.23

Let us first prove sufficiency. Suppose conditions (2.41) are satisfied. In order
to check continuity, we need to check whether Aiz + bi = Ajz + bj for all
z lying in the set Π := {z : HT z + h = 0}. Conditions (2.41) imply that
Aiz + bi − Ajz − bj = GH(HT z + h). Hence, if z belongs to the set Π, then
Aiz + bi − Ajz − bj = 0.

At the next step, we prove necessity. Suppose

Aiz + bi − Ajz − bj = 0 (A.17)

for all z lying in the set Π. Every point in Π can be expressed as z = z∗ + z̃,
where z∗ is some point such that HT z∗ + h = 0 and z̃ is an arbitrary point
satisfying HT z̃ = 0. Substituting this expression in (A.17), we obtain

Ai(z∗ + z̃) + bi − Aj(z∗ + z̃) + bj = 0.

Since (A.17) holds, in particular, for z = z∗, from the last expression we obtain
(Ai − Aj)z̃ = 0 for all z̃ satisfying HT z̃ = 0. Hence, (Ai − Aj)z̃ = 0 for all
z̃ ∈ KerHT . Let Ar

ij be the r-th row of the matrix Ai − Aj . Then

Ar
ij z̃ = 0 ∀z̃ ∈ KerHT . (A.18)

Since H is a nonzero vector, KerHT is a d − 1-dimensional subspace. The
relation Ar

ij z̃ = 0 for all z̃ ∈ KerHT implies that Ar
ij lies in the orthogonal

compliment to KerHT which is spanned by HT . Hence, Ar
ij = αrH

T for some
scalar αr. Repeating this analysis for all rows of the matrix Ai −Aj , we obtain
Ai − Aj = GHHT , where the vector GH equals GH = (α1, . . . , αd)T . After
substituting this equality in (A.17), we obtain GHHT z + bi − bj = 0 for all z
satisfying HT z + h = 0. This, in turn, implies bi − bj = GHh.�
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A.8 Proof of Theorem 2.2.28

Conditions (2.49) and (2.50) imply that the set N(ρ) := {z : V2(z) ≤ α5 ◦γ(ρ)}
is positively invariant for every input w(·) ∈ PCm satisfying

|w(t)| ≤ ρ ∀ t ∈ R. (A.19)

Condition (2.49) implies that for every ρ ≥ 0 the set N(ρ) is bounded and that
N(+∞) = R

d. Hence for any input w(·) ∈ PCm every solution of system (2.24)
remains in a bounded set N(ρ) for some ρ ≥ supt∈R |w(t)|.

Consider an input w(t) satisfying (A.19). Then the set N(ρ) is a compact
positively invariant set. By Lemma 2.2.19 there exists a solution z̄w(t) lying
in N(ρ) for all t ∈ R. By condition (2.49), this solution satisfies |z̄w(t)| ≤
α−1

4 ◦ α5 ◦ γ(ρ) for all t ∈ R. This is a uniform bound on |z̄w(t)| for all
w(t) satisfying (A.19). Substituting z̄w(t) in (2.47) and (2.48) gives conditions
for uniform global asymptotic stability of the solution z̄w(t) (see [51]). As a
consequence, system (2.24) is globally uniformly convergent for the class of
inputs PCm.�

A.9 Proof of Theorem 2.2.29

We will prove this theorem in the following sequence: (i)⇒(iii)⇒(ii)⇒(i).
(i)⇒(iii) Since (2.24) is locally exponentially convergent, for the input

w(t) ≡ 0 the limit solution z̄w(t) ≡ 0 is locally exponentially stable. This im-
plies that the linearization of system ż = F (z, 0) at the origin is exponentially
stable (see [51], Theorem 3.13). This is equivalent to the matrix ∂F/∂z(0, 0)
being Hurwitz.

(iii)⇒(ii) Since ∂F
∂z (0, 0) is Hurwitz, there exists a positive definite matrix

P = PT > 0 such that

P
∂F

∂z
(0, 0) +

∂F

∂z

T

(0, 0)P < 0. (A.20)

Denote J(z, w) = P ∂F
∂z (z, w) + ∂F

∂z

T
(z, w)P . Since F (z, w) ∈ C1, the function

J(z, w) is continuous. This implies, since J(0, 0) is negative definite, that
J(z, w) is negative definite for all small z and w. Consider a neighborhood of
the origin z = 0 in the form of the ellipsoid EP (R) := {z : |z|P < R}, where
|z|P := (zT Pz)1/2. Choose R > 0 and r > 0 small enough to guarantee that
J(z, w) < −Q for some Q > 0 and all z ∈ EP (R) and all |w| < r. Note that
the set EP (R) is convex. Therefore, by Lemma 2.2.18, this implies that there
exists β > 0 such that

(z1 − z2)T P (F (z1, w) − F (z2, w)) ≤ −β|z1 − z2|2P (A.21)
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holds for any z1, z2 ∈ EP (R) and any |w| < r. Relation (A.21), in turn, implies
that for any input w(t) satisfying |w(t)| < r for all t ∈ R, any two solutions
z1(t) and z2(t) lying in EP (R) for all t ≥ t0 exponentially converge to each
other, i.e.

|z1(t) − z2(t)|P ≤ e−β(t−t0)|z1(t0) − z2(t0)|P . (A.22)

Choose a positive number r̄ ≤ r such that sup|w|<r̄ |F (0, w)|P < βR. This
is possible, because F (0, w) is continuous and F (0, 0) = 0. With such choice
of r̄ the set EP (R) will be invariant for any input w(t) satisfying |w(t)| < r̄.
Namely, consider the function W (z) := 1

2 |z|2P . Its derivative along a solution
of (2.24) equals

dW

dt
(z) = zT PF (z, w) = (z − 0)T P (F (z, w) − F (0, w)) + zT PF (0, w).

Applying inequality (A.21) and Cauchy inequality, we obtain

dW

dt
(z) ≤ −|z|P (β|z|P − sup

t∈R

|F (0, w(t))|P ).

Thus, if |w(t)| ≤ r̄ for all t ∈ R then for |z|P = R it holds that

dW

dt
(z) ≤ −R(βR − sup

|w|≤r̄

|F (0, w)|P ).

By the choice of r̄ we obtain dW/dt(z) ≤ 0 for all |z|P = R. Thus, the set
EP (R) is compact and positively invariant with respect to system (2.24) with
any input w(t) satisfying the inequality |w(t)| ≤ r̄ for all t ∈ R. This implies
that, first, by Lemma 2.2.19, for every w(t) satisfying |w(t)| ≤ r̄ for all t ∈ R

there exists a solution z̄w(t) which is defined for t ∈ R and lies in EP (R) for all
t ∈ R. Second, since EP (R) is invariant, any two solutions starting in EP (R)
satisfy (A.22). Hence, for any input w(t) satisfying |w(t)| ≤ r̄ for all t ∈ R

the solution z̄w(t) is defined and bounded for all t ∈ R and it is exponentially
stable in EP (R), i.e. the system (2.24) is convergent in Z := EP (R). Thus,
system (2.24) is locally exponentially convergent for the class of inputs PCm.

(ii) ⇒ (i) This implication follows from the following inclusion

N
⋂

{w(·) : |w(t)| < r̄, t ∈ R} ⊂ PCm

⋂
{w(·) : |w(t)| < r̄, t ∈ R}.

Thus, if system (2.24) is exponentially convergent in some neighborhood of the
origin for the class of inputs PCm subjected to the constraint |w(t)| < r̄, for
some r̄ > 0 and all t ∈ R, then it is also exponentially convergent in the same
neighborhood for the class of inputs N subjected to the constraint |w(t)| < r̄.�
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A.10 Proof of Lemma 4.2.1

(i)⇒(ii): We prove the existence of α(w) by constructing this mapping. Since
system (4.6) is uniformly convergent in Z for the class of inputs Is(W), for
any solution of the exosystem w(t, w0) starting in w(0, w0) = w0 ∈ W there
exists a unique limit solution z̄(t, w0), which is bounded for all t ∈ R and which
is uniformly asymptotically stable in Z. Construct the mapping α(w) in the
following way: for every w0 ∈ W and every t ∈ R set α(w(t, w0)) := z̄(t, w0)
or, equivalently, α(w0) = z̄(0, w0). By the definition of the mapping α(w), the
graph z = α(w) is invariant with respect to (4.6) and (4.7) and any solution
z(t) = α(w(t)) lying on this manifold is uniformly asymptotically stable in Z.

It remains to show that the mapping z = α(w), constructed above, is con-
tinuous, i.e. that for any w1 ∈ W and any ε > 0 there exists δ > 0 such that
|w1 −w2| < δ implies |α(w1)−α(w2)| < ε. In the sequel, we assume that ε > 0
and w1 ∈ W are chosen arbitrarily and are fixed while w2 varies in the closed
ball K0 := {w : |w1 − w| ≤ r}, where r > 0 is chosen such that K0 ⊂ W. Such
r exists, because w1 ∈ W and W is an open set.

As a preliminary observation, notice that by the conditions given in (i), for
the compact set K0 there exists a compact set Kz ⊂ Z such that α(w(t, w0)) =
z̄(t, w0) ∈ Kz for all w0 ∈ K0 and all t ∈ R. Hence, for any w1 and w2 from the
set K0 it holds that α(w(t, wi)) ∈ Kz for i = 1, 2 and for all t ∈ R.

In order to prove continuity of α(w), we introduce the function

ϕT (w1, w2) := ẑ(0,−T, α(w(−T,w2)), w1),

where the number T > 0 will be specified later and ẑ(t, t0, z0, w∗) is the solution
of the time-varying system

˙̂z = F (ẑ, w(t, w∗)) (A.23)

satisfying the initial conditions ẑ(t0, t0, z0, w∗) = z0.
The function ϕT (w1, w2) has the following meaning, which is illustrated in

Figure A.3. First, consider the limit solution α(w(t, w2)), which is a solution
of system (A.23) with the input w(t, w2). At time t = 0, α(w(0, w2)) = α(w2).
Next, we shift along α(w(t, w2)) to time t = −T and appear in α(w(−T,w2)).
Then we switch the input in system (A.23) to w(t, w1), shift forward to the
time instant t = 0 along the solution ẑ(t) starting in ẑ(−T ) = α(w(−T,w2))
and appear in ẑ(0) = ϕT (w1, w2). Notice that ϕT (w0, w0) = α(w0) (there is
no switch of inputs and we just shift back and forth along the same solution
α(w(t, w0))). Thus,

α(w1) − α(w2) = ϕT (w1, w1) − ϕT (w2, w2)
= ϕT (w1, w1) − ϕT (w1, w2) (A.24)

+ϕT (w1, w2) − ϕT (w2, w2).
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α(w(t, w2))

α(w(t, w1))

α(w(0, w2)) = ϕT (w2, w2)

α(w(0, w1)) = ϕT (w1, w1)

ϕT (w1, w2)
α(w(−T,w2))

input w(t, w1)

input w(t, w2)

Figure A.3: The construction of the function ϕT (w1, w2).

By the triangle inequality, this implies

|α(w1) − α(w2)| ≤ |ϕT (w1, w1) − ϕT (w1, w2)| (A.25)
+ |ϕT (w1, w2) − ϕT (w2, w2)|.

First, we will show that there exists T > 0 such that

|ϕT (w1, w1) − ϕT (w1, w2)| < ε/2 ∀ w2 ∈ K0. (A.26)

Secondly, we will show that given a number T > 0 satisfying (A.26), there
exists δ > 0 such that

|ϕT (w1, w2) − ϕT (w2, w2)| < ε/2 ∀ w2 : |w1 − w2| < δ. (A.27)

Combining inequalities (A.26) and (A.27), we obtain |α(w1)−α(w2)| < ε for all
w2 satisfying |w1 −w2| < δ. Due to the arbitrary choice of ε > 0 and w1 ∈ W,
this proves continuity of α(w) in the set W.

In order to show (A.26), notice that ϕT (w1, w1) = ẑ1(0) and ϕT (w1, w2) =
ẑ2(0), where ẑ1(t) and ẑ2(t) are solutions of the system

˙̂z = F (ẑ, w(t, w1)) (A.28)

with the initial conditions ẑ1(−T ) = α(w(−T,w1)) and ẑ2(−T ) = α(w(−T,w2)),
respectively. By the conditions given in (i), ẑ1(t) = α(w(t, w1)) is a solution of
system (A.28) which is uniformly asymptotically stable in Z and which lies in
the compact set Kz. By the definition of uniform asymptotic stability in the
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set Z, this implies that ẑ1(t) attracts all other solutions ẑ(t) of system (A.28)
uniformly over the initial conditions t0 ∈ R and ẑ(t0) from any compact subset
of Z. In particular, for the compact set Kz and for the number ε > 0 there
exists T = T (ε,Kz) > 0 such that ẑ(t0) ∈ Kz implies

|ẑ1(t) − ẑ(t)| < ε/2, ∀ t ≥ t0 + T (ε,Kz), t0 ∈ R. (A.29)

By the definition of ẑ2(t), ẑ2(−T ) = α(w(−T,w2)). Since α(w(t, w2)) ∈ Kz for
all t ∈ R (see above), ẑ2(−T ) ∈ Kz. Thus, for t0 = −T and t = 0 formula
(A.29) implies

|ẑ1(0) − ẑ2(0)| < ε/2, (A.30)

which is equivalent to (A.26).
In order to show (A.27), notice that for a fixed T > 0, ẑ(0,−T, z0, w0) is

continuous with respect to z0 and w0. Thus, it is uniformly continuous over
the compact set G := {(z0, w0) : z0 ∈ Kz, w0 ∈ K0}. Hence, there exists δ > 0,
such that if z0 ∈ Kz, w1 ∈ K0, w2 ∈ K0 and |w1 − w2| < δ, then

|ẑ(0,−T, z0, w1) − ẑ(0,−T, z0, w2)| ≤ ε/2. (A.31)

Recall that by the definition of ϕT (w1, w2)

ϕT (w1, w2) − ϕT (w2, w2) = ẑ(0,−T, z0, w1) − ẑ(0,−T, z0, w2), (A.32)

where z0 := α(w(−T,w2)). Since w1 ∈ K0, w2 ∈ K0 and α(w(−T,w2)) ∈ Kz,
it follows from (A.31) and (A.32) that

|w1 − w2| < δ ⇒ |ϕT (w1, w2) − ϕT (w2, w2)| < ε/2.

Thus, we have shown (A.27). This completes the proof of continuity of α(w)
and completes the proof of implication (i)⇒(ii).

Let us prove relation (4.8). Suppose α1 : W → Z and α2 : W → Z are
continuous mappings such that the sets

M1(W) := {(z, w) : z = α1(w), w ∈ W}
M2(W) := {(z, w) : z = α2(w), w ∈ W}

are invariant with respect to systems (4.6) and (4.7). Consider some solution
of the exosystem w(·) ∈ Is(W). For this w(t), the functions z1(t) := α1(w(t))
and z2(t) := α2(w(t)) are solutions of system (4.6) lying in the set Z for all
t ∈ R. Since system (4.6) is uniformly convergent in Z for the input w(t), there
exists a limit solution z̄w(t) attracting all solutions of system (4.6) starting in
Z. This implies |z̄w(t) − zi(t)| → 0 as t → +∞ for i = 1, 2. By the triangle
inequality, the last expression implies |z1(t) − z2(t)| → 0 as t → +∞. Hence,
we have proved relation (4.8).
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Let us show that if a solution w(t) of the exosystem (4.7) lies in a compact
set Kw ⊂ W for all t ∈ R, then α1(w(t)) ≡ α2(w(t)) for t ∈ R. Since α1(w)
and α2(w) are continuous, z1(t) := α1(w(t)) and z2(t) := α2(w(t)) are two
solutions of system (4.6) corresponding to the same input w(t) and lying in the
compact set Kz := α1(Kw)

⋃
α2(Kw) ⊂ Z for all t ∈ R. Since system (4.6)

is uniformly convergent in the set Z for the class of inputs Is(W), the limit
solution is uniformly convergent in Z. By Property 2.1.5, the limit solution
z̄w(t) is unique and, by Property 2.1.4, we obtain z̄w(t) ≡ zi(t) for i = 1, 2 and
t ∈ R. Hence, z1(t) ≡ z2(t) or, equivalently, α1(w(t)) ≡ α2(w(t)) for t ∈ R.

If system (4.7) satisfies the boundedness assumption A1 in the set W,
then any solution w(t) starting in w(0) ∈ W lies in a compact subset of W.
Therefore, by the reasoning presented above, the mapping α(w) defined in (ii)
is unique.

Let us show that under the boundedness assumption A1 on system (4.7),
(ii) implies (i). We show that system (4.6) is uniformly convergent in Z for
the class of inputs Is(W). Recall that the class Is(W) contains all solutions of
system (4.7) starting in W. Due to assumption A1, any solution w(t) of system
(4.7) starting in w(0) ∈ W lies in some compact set Kw ⊂ W for all t ∈ R.
For any w(·) ∈ Is(W), define z̄w(t) := α(w(t)). Due to the fact that the graph
M(W) is invariant with respect to systems (4.6) and (4.7), z̄w(t) is a solution of
system (4.6) which is defined and bounded for all t ∈ R. By the conditions given
in (ii), z̄w(t) is uniformly asymptotically stable in Z. Hence, system (4.6) is
uniformly asymptotically stable in Is(W). Due to the boundedness assumption
A1, for any compact set of initial conditions K0 ⊂ W there exists a compact
set Kw ⊂ W such that if w(0) ∈ K0, then w(t) ∈ Kw for all t ∈ R. Since α(w)
is a continuous mapping from W to Z, for the compact set Kw ⊂ W the set
Kz := α(Kw) ⊂ Z is also compact. Therefore, if a solution of the exosystem
w(t) starts in w(0) ∈ K0, then the limit solution z̄w(t) = α(w(t)) lies in the
compact set Kz for all t ∈ R. Hence, we have proved (i). This completes the
proof of the lemma.�

A.11 Proof of Theorem 4.2.4

The proof of this theorem is based on the fact that any system (4.7) with a
compact positively invariant set W+ can be extended to some neighborhood of
W+ such that the extended system satisfies the boundedness assumption A1 in
this neighborhood and, at the same time, it has the same dynamics on W+ as
the original system (4.7). This statement is formulated in the following lemma.

Lemma A.11.1 Consider system (4.7). Suppose W+ ⊂ R
m is a compact set

which is positively invariant with respect to exosystem (4.7). Then for any



172 Appendix

open set W ⊃ W+ there exists a system

ẇ = s̃(w) (A.33)

such that s̃(w) is a locally Lipschitz function, s̃(w) = s(w) for all w ∈ W+ and
system (A.33) satisfies assumption A1 in the set W.

Proof: Since W+ is a compact set and W is a neighborhood of W+, we can
choose R > 0 such that the set L := {w : dist(w,W+) ≤ R} lies in W. Consider
system (4.6) and the following auxiliary system

ẇ = s̃(w), (A.34)

where s̃(w) is a locally Lipschitz function such that s̃(w) = s(w) for all w ∈ W+

and s̃(w) = 0 for all w such that dist(w,W+) ≥ R. For example, s̃(w) can be
chosen equal to s̃(w) := ψ(dist(w,W+))s(w), where ψ(x) is a smooth scalar
function satisfying ψ(x) = 1 for x = 0 and ψ(x) = 0 for x ≥ R. In particular,
one can choose ψ(x) to be equal to (see [51]):

ψ(x) := 1 − 1
b

x∫
0

e(
−1
y )e(

−1
R−y )dy for 0 ≤ x < R,

and ψ(x) := 0 for x ≥ R, where b is chosen such that ψ(R) = 0. Since
dist(w,W+) is a globally Lipschitz function of w, ψ(x) is smooth and s(w) is
locally Lipschitz, the function s̃(w) defined above is locally Lipschitz.

Notice that system (A.34) satisfies assumption A1 in the open set W. In-
deed, the right-hand side of (A.34) is constructed in such a way that it is not
equal to zero only inside the compact set L, which lies strictly inside W. More-
over, the set L is invariant because s̃(w) = 0 on the border of L. Thus, if a
solution of system (A.34) starts in a point w(0) ∈ W, then it either lies in the
compact set L or remains constant. Hence, if a solution of system (A.34) starts
in a compact set K0 ⊂ W, then it remains in the compact set Kw := K0

⋃L
for all t ∈ R.�

Now we can prove Theorem 4.2.4. Since system (A.33) satisfies the bound-
edness assumption A1 in the set W, Is̃(W) – the class of solutions of system
(A.33) starting in W – satisfies Is̃(W) ⊂ PC(W). Therefore, the fact that
system (4.6) is globally uniformly convergent and has the UBLS property for
the class of inputs PC(W), implies that it is globally uniformly convergent and
has the UBLS property for the class of inputs Is̃(W). Applying Theorem 4.2.2,
we obtain that there exists a continuous mapping α : W → Z such that the set
M := {(z, w) : z = α(w), w ∈ W} is invariant with respect to systems (4.6)
and (A.33) and every solution z(t) = α(w(t)) on this manifold is globally uni-
formly asymptotically stable. Since the dynamics of systems (4.7) and (A.33)
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coincide in the set W+, the set M(W+) = {(z, w) : z = α(w), w ∈ W+} is
a positively invariant set with respect to (4.6) and (4.7) and for every solu-
tion w(t) of system (4.7) starting in w(0) ∈ W+, the solution of system (4.6)
z̄w(t) := α(w(t)) is globally uniformly asymptotically stable.

The mapping α(w) depends on the choice of the auxiliary system (A.33),
which can be made in many ways. So in general, such mapping α(w) is not
unique. If α1(w) and α2(w) are two such mappings, then for any solution
of system (4.7) starting in w(0) ∈ W+, the functions z1(t) := α1(w(t)) and
z2(t) := α2(w(t)) are two solutions of system (4.6) corresponding to the input
w(t), which is well-defined for all t ≥ 0. Let us extend this input to the whole
time axis t ∈ R in the following way: w̃(t) := w(t) for all t ≥ 0 and w̃(t) := w(0)
for t < 0. The extended input w̃(t) defined in such a way belongs to the class
PC(W). Since system (4.6) is globally uniformly convergent for the class of
inputs PC(W), every solution corresponding to the input w̃(t) converge to some
limit solution. In particular, this implies that the solutions z1(t) := α1(w(t))
and z2(t) := α2(w(t)), which correspond to the input w̃(t) for t ≥ 0, converge
to each other, i.e. relation (4.9) holds.

If w(0) ∈ W±, then the solution w(t) of system (4.7) lies in the compact set
W+ for all t ∈ R. Since both α1(w) and α2(w) are continuous in W, α1(w(t))
and α2(w(t)) are two solutions of system (4.6) corresponding to the same input
w(t) and lying in the compact set Kz := α1(W+)

⋃
α2(W+) for all t ∈ R. But

due to the global uniform convergence of system (4.6), by Property 2.1.4 these
solutions must coincide with the limit solution. Hence, α1(w(t)) ≡ α2(w(t)) for
t ∈ R. Since w(t) ∈ W± can be chosen arbitrarily, we obtain α1(w) = α2(w)
for all w ∈ W±.�

A.12 Proof of Theorem 4.2.6

(il)⇒(iil). This implication is proved using Lemma 4.2.1. In order to apply this
lemma, we will show that there exists a neighborhood of the origin Z ⊂ R

d,
and an invariant neighborhood of the origin Ŵ ⊂ R

m such that a) system
(4.6) is uniformly convergent in Z for the class of inputs Is(Ŵ) and b) there
exists a compact set Kz ⊂ Z such that for any w(·) ∈ Is(Ŵ) the corresponding
limit solution z̄w(t) lies in Kz for all t ∈ R. If a) and b) are proved, then
condition (i) in Lemma 4.2.1 is satisfied for the sets Z and Ŵ defined above.
Hence, there exists a continuous mapping α : Ŵ → Z such that the graph
M(Ŵ) := {(z, w) = α(w), w ∈ Ŵ} is invariant with respect to systems (4.6)
and (4.7). As follows from Lemma 4.2.1, the mapping α(w) is uniquely defined
for all solutions of the exosystem lying in some compact subset of Ŵ for all
t ∈ R. Consider a closed ball B̄ρ := {w : |w| ≤ ρ}, where ρ > 0 is such
that Bρ ⊂ Ŵ. Such ball exists, since Ŵ is a neighborhood of the origin.
Choose W to be an invariant neighborhood of the origin such that W ⊂ B̄ρ.
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Such neighborhood exists, since w(t) ≡ 0 is Lyapunov stable in forward and
backward time. Therefore, all solutions of system (4.7) starting in W lie in a
compact subset of Ŵ for all t ∈ R. Thus, by Lemma 4.2.1 the mapping α(w) is a
continuous function uniquely defined in the neighborhood of the origin W such
that the graph M(W) := {(z, w) = α(w), w ∈ W} is invariant with respect to
systems (4.6), (4.7) and for every w(·) ∈ Is(W) the solution on this manifold
z̄w(t) = α(w(t)) is uniformly asymptotically stable in the neighborhood of the
origin Z. The fact that z̄w(t) ≡ 0 is the limit solution corresponding to the
input w(t) ≡ 0 implies α(0) = 0. This proves (iil).

Let us show that the neighborhoods of the origin Z and Ŵ described
above do exist. Notice that in our case system (4.6) satisfies the conditions
of Property 2.2.12. Let Z to be a neighborhood of the origin provided by
Property 2.2.12. Then we can choose ε > 0 such that the closed ball B̄ε := {z :
|z| ≤ ε} lies in Z. As follows from Lemma 2.2.12, there exists δ > 0 such that
system (4.6) is uniformly convergent in Z for all solutions of the exosystem
satisfying |w(t)| < δ for all t ∈ R and the corresponding limit solutions z̄w(t)
lie in the compact set B̄ε ⊂ Z (such δ can be chosen equal to δ := γ−1(ε),
where γ(r) is the class K function from Lemma 2.2.12). Due to the fact that
w(t) ≡ 0 is stable in forward and backward time, there exists an invariant
neighborhood of the origin Ŵ such that if w(0) ∈ Ŵ then |w(t)| < δ for all
t ∈ R. By the reasoning presented above, system (4.6) is uniformly convergent
in Z for the class of inputs Is(Ŵ) and for any w(·) ∈ Is(Ŵ) the correspond-
ing limit solution z̄w(t) lies in the compact set B̄ε ⊂ Z. Hence, Z and Ŵ
are the required neighborhoods of the origin. This completes the proof of the
implication (il)⇒(iil).

(iil)⇒(il). We will show that there exist a neighborhood of the origin Z ⊂
R

d and an invariant neighborhood of the origin W̃ ⊂ R
m such that system (4.6)

is uniformly convergent in Z for the class of inputs Is(W̃). Since W defined in
(iil) is a neighborhood of the origin, there exists a closed ball B̄δ := {w : |w| ≤
δ} such that B̄δ ⊂ W. Since w(t) ≡ 0 is stable in forward and backward time,
there exists an invariant neighborhood of the origin W̃ satisfying W̃ ⊂ B̄δ.
Hence, any solution of the exosystem starting in W̃ lies in a compact subset of
W. Since α(w) is continuous for all w ∈ W, for any solution of the exosystem
starting in W̃ the function z̄w(t) := α(w(t)) is a solution of system (4.6) which
is defined and bounded for all t ∈ R and which is uniformly asymptotically
stable in Z. Hence, by the definition of uniform convergence, system (4.6) is
uniformly convergent in Z for the class of inputs Is(W̃). This completes the
proof of the implication (iil)⇒(il) and the proof of the theorem.�
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A.13 Proof of Theorem 5.3.13

Consider system (5.62) in closed loop with control u = U(y) + v, where the
function U(y) equals

U(y) = −κy − µ

∫ y

0

|ψ(τ)|2dτ

for some κ ∈ R and µ ≥ 0. The derivative of U(y) equals ∂U
∂y (y) = −κ −

µ|ψ(y)|2. Denote ξ(y) := ∂ϕ
∂y (y). Then the Jacobian of the right-hand side of

the closed-loop system equals

A(y) = A + ξ(y)C + B(−κ − µ|ψ(y)|2).
Due to condition (5.63), |ξ(y)| ≤ |ψ(y)| for all y ∈ R. Let us show that there
exist numbers κ∗ ∈ R, µ∗ ≥ 0 and matrices P = PT > 0 and Q = QT > 0 such
that

J := P (A + ξC + B(−κ − µ|ψ|2)C) + (A + ξC + B(−κ − µ|ψ|2)C)T P ≤ −Q,
(A.35)

for all κ ≥ κ∗, µ ≥ µ∗ and all ξ ∈ R
d, ψ ∈ R satisfying the condition |ξ| ≤

|ψ|. Inequality (A.35) implies that the Jacobian A(y) is quadratically stable
over R and, therefore, the closed-loop system is input-to-state convergent (see
Definition 5.3.3 and Theorem 2.2.17). Rewrite J in the following form:

J := P (A−κBC)+ (A−κBC)T P +PξC +CT ξT P −µ|ψ|2(PBC +CT BT P ).
(A.36)

Since CB > 0 and the system (5.64) has all its zeros with negative real part,
it follows from [17; 18] that there exists a number κ∗ ∈ R and a matrix P =
PT > 0 such that

P (A − κ∗BC) + (A − κ∗BC)T P =: −2Q < 0, PB = CT . (A.37)

Notice that this implies

P (A − κBC) + (A − κBC)T P ≤ −2Q, ∀κ ≥ κ∗. (A.38)

Namely,

P (A − κBC) + (A − κBC)T P

= P (A − κ∗BC) + (A − κ∗BC)T P − (κ − κ∗)(PBC + CT BT P )
= −2Q − 2(κ − κ∗)CT C ≤ −2Q.

In this reasoning we have used the fact that PB = CT . From (A.36) and (A.38)
we obtain

J ≤ −2Q + PξC + CT ξT P − 2µ|ψ|2CT C
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for all κ ≥ κ∗. The inequalities µ ≥ 0 and |ψ| ≥ |ξ| imply

J ≤ −2Q + PξC + CT ξT P − 2µ|ξ|2CT C

= −Q − (Q − PξC − CT ξT P + CT ξT (2µI)ξC).

By completion of squares, we obtain

Q− PξC −CT ξT P + CT ξT PQ−1PξC = (Π−Π−1PξC)T (Π−Π−1PξC) ≥ 0,

where Π = ΠT > 0 is such that Q = ΠT Π. Hence,

J ≤ −Q + CT ξT (PQ−1P − 2µI)ξC

for all κ ≥ κ∗, and all |ψ| ≥ |ξ|. If µ∗ is such that 2µ∗I ≥ PQ−1P , then for all
µ ≥ µ∗ and all ξ ∈ R

d it holds that J ≤ −Q. Matrix inequalities for finding κ∗
and µ∗ directly follow from inequality (A.37), which is feasible, and condition
2µ∗I ≥ PQ−1P . This completes the proof.�

A.14 Proof of Lemma 6.2.1

Denote ζ := z − z̄. It satisfies the equation

ζ̇ := F (z, w(t)) − F (z̄, w(t)) − ε(t). (A.39)

Consider the Lyapunov function V (ζ) := 1/2ζT Pζ. Its derivative satisfies

dV

dt
= ζT P (F (z, w(t)) − F (z̄, w(t)) − ε(t)).

Notice that in the region |ζ|P ≤ r both z̄(t) and z = ζ + z̄(t) belong to C. Since
w(t) belongs to Wc for all t ≥ 0, and the sets C and Wc satisfy the Demidovich
condition (6.13), we can apply Lemma 2.2.18. By formula (2.36),

dV

dt
≤ −β|ζ|2P − ζT Pε(t) (A.40)

for some number β > 0. Due to remark to Lemma 2.2.18, the number β equals
β = a/‖P‖, where a is from the Demidovich condition (6.13). Taking into
account this fact and applying the Cauchy inequality to the second term in
formula (A.40), we obtain

dV

dt
≤ − a

‖P‖ |ζ|
2
P + |ζ|P λ(t0), for t ≥ t0 ≥ 0, (A.41)

where λ(t0) := supt≥t0 |ε(t)|P . By the conditions of the lemma, λ(t0) <
ar/(2‖P‖) for any t0 ≥ 0. Thus, from (A.41) we can conclude that the el-
lipsoid ĒP (r) := {ζ : |ζ|P < r} is invariant with respect to (A.39). Application
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of Theorem 5.1 from [51] implies that for any solution starting in ĒP (r) and
any η satisfying 2‖P‖

a λ(t0) < η < r there exists T > 0 such that |ζ(t)|P ≤ η for
all t ≥ t0 + T . Due to the arbitrary choice of η > 2‖P‖/aλ(t0), any solution of
(A.39) starting in ĒP (r) satisfies

lim sup
t→+∞

|ζ(t)|P ≤ 2‖P‖
a

λ(t0).

Since the left-hand side does not depend on t0, we can conclude that

lim sup
t→+∞

|ζ(t)|P ≤ 2‖P‖
a

lim
t0→+∞λ(t0) =

2‖P‖
a

lim sup
t→+∞

|ε(t)|P .

�

A.15 Proof of Theorem 6.2.2

We need to show that (6.33) holds for any solution (z(t), w(t)) that starts in
(z(0), w(0)) satisfying the relations: |w(0)| < ρ, m̃N (w0) + 2δ‖P‖

a q(w0) < R
and z(0) ∈ EP (α̃(w(0)), r), where EP (z̄, r) := {z : |z − z̄|P < r} and r := (R−
m̃N (w(0)))/δ. Due to the conditions on the initial conditions and the properties
of the exosystem, |w(t)| ≡ |w(0)| < ρ and the solution z̄w(t) := α̃(w(t)) of the
system

ż = F (z, w(t)) + ε1(w(t)) (A.42)

satisfies
|Nz̄w(t)| ≤ sup

t≥0
|Nα̃(w(t))| = m̃N (w(0)) < R.

Hence, z̄w(t) ∈ CN (R) and w(t) ∈ Wc(ρ) for all t ≥ 0. Let us show that
EP (z̄w(t), r) ⊂ CN (R) for all t ≥ 0. Suppose z ∈ EP (z̄w(t), r) for some t ≥ 0.
Then

|Nz| ≤ |Nz̄w(t)| + |N(z − z̄w(t))| ≤ m̃N (w(0)) + δ|z − z̄w(t)|P
< m̃N (w(0)) + δr = R.

Consequently, EP (z̄w(t), r) ⊂ CN (R) for all t ≥ 0. As follows from the second
inequality in the definition of Ỹ, the term ε1(w(t)) satisfies

|ε1(w(t))|P ≤ sup
t≥0

|ε1(w(t))|P = q(w(0)) <
a

2‖P‖r.

Thus, by Lemma 6.2.1, we obtain that any solution of system (6.8) starting
in z(0) ∈ EP (z̄w(0), r) satisfies (6.33). Since the set Ỹ is compact and the
function h̄r(z, w) is C1, there exist a constant L > 0 such that

|h̄r(z1, w) − h̄r(z2, w)| ≤ L|z1 − z2|P
for all (zi, w) ∈ Ỹ, i = 1, 2. With this inequality, inequality (6.33) implies
(6.34) with the constant C̄ := 2‖P‖L/a.�
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A.16 Proof of Theorem 6.2.3

It is sufficient to show that EP (R(r)) × Bw(r) ⊂ Ỹ for any r ∈ [0, r∗). Then
the statement of Theorem 6.2.3 follows from Theorem 6.2.2. Suppose z0 ∈
EP (R(r)) and w0 ∈ Bw(r) for some fixed r ∈ [0, r∗). According to the definition
of Ỹ, we first need to show that |w0| < ρ. This is true due to the fact that
|w0| < r < r∗ ≤ ρ. Next, we show that m̃N (w0) + 2δ‖P‖

a |q(w0)|P < R. By the
definition of η(r), it holds that |Nα̃(w)|+ 2δ‖P‖

a |ε1(w)|P ≤ η(r) for all |w| < r.
The choice of |w0| < r implies |w(t, w0)| ≡ |w0| < r. Hence, by the definition
of m̃N (w0) and q(w0) we obtain

m̃N (w0) = sup
t≥0

|Nα̃(w(t, w0))| ≤ sup
|w|<r

|Nα̃(w)|,

q(w0) = sup
t≥0

|ε1(w(t, w0))|P ≤ sup
|w|<r

|ε1(w)|P .

Thus, we obtain

m̃N (w0) +
2δ‖P‖

a
|q(w0)|P ≤ sup

|w|<r

(
|Nα̃(w)| + 2δ‖P‖

a
|ε1(w)|P

)
= η(r).

The choice of r < r∗ implies that η(r) < R and consequently

mN (w0) +
2δ‖P‖

a
|q(w0)|P < R.

Next, we need to show that |z0 − α̃(w0)|P < (R − m̃N (w0))/δ. The triangle
inequality implies

|z0 − α̃(w0)|P ≤ |z0|P + |α̃(w0)|P . (A.43)

By the choice of z0 and by the definition of R̃(r),

|z0|P < R̃(r) = (R− σ̃(r))/δ = (R− sup
|w|<r

(|Nα̃(w)| + δ|α̃(w)|P ))/δ ≤
(R− m̃N (w0))/δ − |α̃(w0)|P .

Substituting this inequality in (A.43), we obtain |z0−α̃(w0)|P < (R−m̃N (w0))/δ.
This completes the proof.�
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Summary

The problem of asymptotic regulation of the output of a dynamical system
is one of the central problems in control theory. It includes the problems of
asymptotic tracking of prescribed reference signals and/or asymptotic rejection
of undesired disturbances in the output of a system, controlled synchronization
and observer design problems. If the reference signals and/or disturbances are
generated by an autonomous system – the so-called exosystem – this problem
is referred to as the output regulation problem. The output regulation problem
is completely solved for the case of linear systems and thoroughly studied for
nonlinear systems in the local problem setting. The global output regulation
problem for nonlinear systems with complex dynamics has been a poorly un-
derstood problem for a long time. The global output regulation problem is an
emerging field of research and the efforts towards the uniform description and
treatment of different variants of the output regulation problem only recently
have started appearing.

In this thesis a new approach to the output regulation problem based on
the notion of convergent systems is presented. First, we formulate the uniform
output regulation problem. In this problem setting one needs to find a con-
troller such that the corresponding closed-loop system is convergent and along
all solutions of the closed-loop system and the exosystem the regulated output
tends to zero. This new problem setting allows to deal with systems having
complex dynamics and to treat the local and global variants of the output reg-
ulation problem in a uniform way. As particular cases this problem setting
includes the output regulation problem for linear systems and the conventional
local output regulation problem for nonlinear systems. For the analysis of the
uniform output regulation problem we study various properties of convergent
systems that are useful in this respect.

Secondly, we provide necessary and sufficient conditions for the solvability
of the global, global robust and local variants of the uniform output regulation
problem as well as results on characterization of all controllers solving these
problems. It is shown that many of the existing controllers solving the global
output regulation problem in other problem settings, in fact, solve the global
uniform output regulation problem. The solvability analysis of the uniform
output regulation problem is based on certain invariant manifold theorems for-
mulated in the thesis. These theorems, although being obtained in the scope
of the output regulation problem, can be applied in other fields of systems
and control theory as well. For example, they can be used for the analysis of
synchronization phenomena, the computation of periodic solutions of nonlin-
ear systems excited with periodic inputs and for the performance analysis of
(controlled) nonlinear convergent systems.
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Thirdly, we address the problem of controller design for the global uniform
output regulation problem for several classes of nonlinear systems. The pre-
sented controller designs extend the known controllers solving the linear and
the local nonlinear output regulation problems to the global nonlinear case.
For systems in Lur’e form we present a robust controller solving the global uni-
form output regulation problem. This controller copes not only with paramet-
ric uncertainties, but also with functional uncertainties in the system model.
The controller design methods developed in the scope of the output regula-
tion problem can be also applied to other nonlinear control problems such as
output-feedback stabilization, observer design, tracking and disturbance rejec-
tion problems.

If a controller solves the local output regulation problem, the regulated
output tends to zero only for small initial conditions of the closed-loop system
and the exosystem. We present results on estimating this set of admissible
initial conditions. The estimation results are obtained for both the exact and
approximate variants of the local output regulation problem. These results
enhance applicability of the controller design procedures for the nonlinear local
output regulation problem in practice.

In order to check the applicability of the nonlinear output regulation theory,
we solve the local output regulation problem for the so-called TORA system
(Translational Oscillator with a Rotational Actuator), which is a benchmark
nonlinear mechanical system. This solution is implemented in an experimental
setup. The performance of the proposed controller is studied by means of
experiments.



Samenvatting

Een van de centrale problemen in de regeltechniek is de asymptotische regulatie
van de uitgang van een dynamisch systeem. Deze probleemstelling omvat de
problemen van het asymptotisch volgen van voorgeschreven referentie signalen
en de asymptotische onderdrukking van ongewenste verstoringen in de uitgang
van een systeem, het geregelde synchronisatieprobleem en het probleem van
waarnemer ontwerp. Als de referentie signalen en/of verstoringen gegenereerd
worden door een autonoom systeem - het zogenaamde exo-systeem - dan wordt
dit als het uitgangsregulatie probleem aangeduid. Het uitgangsregulatie prob-
leem is volledig opgelost voor lineaire systemen en een locale variant van het
probleem is grondig onderzocht voor niet-lineaire systemen. Het globale uit-
gangsregulatie probleem voor niet-lineaire systemen met complexe dynamica
is lang een onderbelicht probleem gebleven, maar nu vormt het een groeiend
onderzoeksgebied. Slechts recentelijk begint het onderzoek, welke de verschil-
lende varianten van het probleem in een uniforme manier tracht te formuleren
en behandelen, vorm te krijgen.

In dit proefschrift wordt een nieuwe aanpak van het uitgangsregulatie prob-
leem gepresenteerd, welke gebaseerd is op de notie van convergente systemen.
Ten eerste formuleren we het uniforme uitgangsregulatie probleem. In deze
probleemstelling dient men een regelaar te vinden welke garandeert dat het
gesloten-lus systeem convergent is en dat de regulatie fout naar nul gaat langs
oplossingen van het systeem. Deze nieuwe probleemstelling maakt het mo-
gelijk om systemen met complexe dynamica te beschouwen en de locale en
niet-locale varianten van het probleem op een uniforme wijze te behandelen.
Het uitgangsregulatie probleem voor lineaire systemen en het conventionele
locale uitgangsregulatie probleem voor niet-lineaire systemen zijn bijzondere
gevallen van deze nieuwe probleemstelling. Voor de analyse van het uniforme
uitgangsregulatie probleem bestuderen we verscheidene eigenschappen van con-
vergente systemen, welke in deze context zeer nuttig blijken te zijn.

Ten tweede formuleren we noodzakelijke en voldoende voorwaarden voor de
oplosbaarheid van globale, globale-robuuste en locale varianten van het uni-
forme uitgangsregulatie probleem. Bovendien presenteren we resultaten ten
aanzien van de karakterisering van alle regelaars welke dit probleem oplossen.
Het wordt aangetoond dat veel van de bestaande regelaars, welke alternatieve
varianten van het globale uitgangsregulatie probleem oplossen, in feite het glob-
ale uniforme uitgangsregulatie probleem oplossen. De analyse van de oplos-
baarheid van het uniforme uitgangsregulatie probleem wordt gebaseerd op
bepaalde invariante variëteit theorema’s welke geformuleerd worden in dit proef-
schrift. Deze theorema’s kunnen niet alleen toegepast worden in de context van
het uitgangsregulatie probleem, maar kunnen ook toegepast worden in andere
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deelgebieden van de systeem- en regeltechniek. Zij kunnen, bijvoorbeeld, ge-
bruikt worden voor de analyse van synchronisatie fenomenen, de berekening van
periodieke oplossingen van niet-lineaire systemen die geëxciteerd worden door
periodieke ingangen en voor de prestatie analyse van (geregelde) niet-lineaire
convergente systemen.

Ten derde richten we ons op het probleem van regelaarontwerp voor het
globale uniforme uitgangsregulatie probleem voor verscheidene klassen van niet-
lineaire systemen. De gepresenteerde regelaar ontwerpen breiden de bestaande
regelaars, die het lineaire en locale niet-lineaire uitgangsregulatie probleem
oplossen, uit naar het globale niet-lineaire geval. Voor systemen in Lur’e-vorm
presenteren we een robuuste regelaar welke het globale uniforme uitgangsreg-
ulatie probleem oplost. Deze regelaar is robuust met betrekking tot zowel
parametrische als niet-parametrische onzekerheden in het model van het sys-
teem. De regelaar ontwerp methoden ontwikkeld voor het uitgangsregulatie
probleem kunnen ook toegepast worden op andere niet-lineaire regelproblemen
zoals stabilisatie door middel van uitgangsterugkoppeling, waarnemer ontwerp,
het volgprobleem en verstoringsonderdrukkings-problemen.

Wanneer een regelaar het locale uitgangsregulatie probleem oplost, dan con-
vergeert de gereguleerde uitgang alleen naar nul voor voldoende kleine begin-
condities van het gesloten-lus systeem en het exo-systeem. We presenteren
resultaten ten aanzien van het schatten van deze set van toegestane begincon-
dities. Deze schattingsresultaten zijn verkregen voor zowel exacte uitgangsreg-
ulatie als het geval dat uitgangsregulatie slechts bij benadering bereikt kan
worden. De kennis ten aanzien van deze toegestane begincondities vergroot
de toepasbaarheid van het locale niet-lineaire uitgangsregulatie probleem in de
praktijk.

De toepasbaarheid van niet-lineaire uitgangsregulatie theorie wordt onder-
zocht door het locale uitgangsregulatie probleem op te lossen voor het zoge-
naamde TORA systeem (Translatie Oscillator met Rotationele Actuatie), het-
geen een niet-lineair, mechanisch maatstaf-probleem is in de niet-lineaire regel-
techniek. Deze oplossing is gëımplementeerd in een experimentele opstelling.
De prestatie van de ontworpen regelaar wordt bestudeerd door middel van ex-
perimenten.
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