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Abstract If humanoid robots are to be used in society,
they should be able to maintain their balance. Knowing
where to step is crucially important. In this paper we
contribute an algorithm that can compute the foot step
location such that bipedal balance is maintained for
planar bipeds with point feet and an arbitrary number of
non-massless links on a horizontal and flat ground. The
algorithm is called the foot placement indicator (FPI) and
it extends the foot placement estimator (FPE). The FPE
uses an inverted pendulum model to capture the
dynamics of a humanoid robot, whereas the FPI deals
with multi-body models with distributed masses. This
paper analyses equilibrium sets and the stability of planar
bipeds with point feet. The algorithm uses conservation
of energy throughout the step, taking into account the
instantaneous impact dynamics at foot strike. A
simulation case study on a five-link planar biped shows
the effectiveness of the FPL.

Keywords Humanoid Robots, Bipedal Balance, Foot
Placement

1. Introduction

Many strategies for the balance of humanoid robots have
been proposed in recent years. Although these strategies

www.intechopen.com

show promising experimental results in labs, a general
breakthrough for humanoid robots in society is still far
away. The main problem that current humanoid robots
face betore they can be deployed in society is the lack of
robustness in locomotion [1]. Robustness is a measure for
how well the biped performs against unforeseen
disturbances such as pushes. Often these disturbances
need to be suppressed by an active controller. Notable
controllers that have been proposed in the past include,
but are not limited to: virtual model control [2],
controlled symmetries [3], inverted pendulum control [4],
capture point (CP) [5] and the foot placement estimator
(FPE) [6]. The stability of such control strategies is mostly
analysed through Poincaré return maps [7-10], angular
momentum [11, 12] or hybrid zero dynamics [10], making
use of several balance criteria for humanoid robots such
as the zero moment point (ZMP) [13], foot rotation
indicator (FRI) [14], centroidal moment pivot (CMP) [15,
16] and capturability region [17, 18]. These criteria for
balance can rigorously be divided into two groups.

First, there are criteria that consider the orientation of the
stance foot with respect to the ground as a measure for
balance. Indeed, as long as the stance foot of the biped
does not tip over, the biped remains fully actuated and
we can guarantee that it will not fall. However, these
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strategies are rather conservative [19], because to
maintain the balance it is not necessary that the stance
foot does not tip over. Humans are the perfect
counterexample, since we normally tip our stance foot
during walking. Moreover, to improve robustness of
humanoid robots, we must also analyse tipping of the
stance foot, since these situations definitely occur when
operating in a societal environment.

The second group of criteria considers proper foot
placement for balance. Indeed, we maintain our balance if
we know where to put our swing foot in order not to fall.
So knowing where to step is crucial for the balance of a
biped and may lead to increased robustness. Due to the
importance of proper foot placement, we focus on foot
placement strategies in this paper. Strategies that
compute where to step in order to keep the balance
include CP [5] and the FPE [6]. Both strategies use energy
conservation of a very simple (linear) inverted pendulum
model to determine where to step. It is arguable whether
a complex biped with non-massless legs, torso and arms
can be cast into this framework [10, 26]. The kinetic and
potential energy of the biped depend on the configuration
of its legs, torso and arms. Moreover, the model used in
the CP method does not include any impact dynamics. In
our opinion, the instantaneous swapping of the stance
and swing leg in these simple models without a double
support phase, does influence the energy contained in the
system. Therefore, we believe that more complex models
and strategies that take into account the full dynamics of
the biped including ground impact are needed to
compute proper foot placement.

In this paper we contribute an extension of the FPE
method to compute where a biped needs to step in order
to maintain its balance. We will reter to this extension as
the foot placement indicator (FPI) [20]. The FPI algorithm
uses conservation of energy throughout the step. It works
for planar bipeds with point feet and an arbitrary number
of non-massless links on a horizontal and flat ground.
Unlike (linear) inverted pendulum methods that are used
in the FPE and CP methods, this algorithm takes into
account impact dynamics and the energy of all links of
the biped to determine proper foot placement. In the
extension of the FPE algorithm, ultimately resulting in the
FPI algorithm, we contribute a thorough mathematical
analysis of the equilibrium sets and stability of the model
of the planar biped with point feet. Finally, we apply the
algorithm in simulation to a five-link planar biped and
show that we can accurately compute the point where the
biped needs to step in order to maintain its balance.

This paper is organized as follows. In Section 2 we
introduce a general model for planar bipeds with point
feet and give a thorough mathematical analysis of its
equilibrium sets and stability for the case where it is
controlled in a rigid posture. This analysis is used in
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Section 3 to extend the FPE algorithm from an inverted
pendulum model to the FPI algorithm that is able to
balance a planar biped with distributed masses by proper
foot placement. In Section 4 we evaluate results in a
simulation of a five-link biped robot. The paper ends with
conclusions and suggestions for future research.

2. Planar Bipeds with Point Feet

We first introduce a general model for planar bipeds with
point feet on a horizontal and flat ground, after which we
mathematically analyse the equilibrium sets and stability
of this model when it is controlled in a rigid posture.

2.1 General Model

Under the following assumptions we can model the
planar biped with point feet as a chain of rigid bodies
from stance foot to swing foot:

(1, 41, t1)
my, 4

Ho

T

)

Figure 1. Schematic of a general model of a planar biped with
point feet

e No slippage occurs between the stance foot and the
ground, so the biped is pin-pointed to the ground in
the stance foot. Here the base coordinate frame is
placed. The ground is horizontal and flat.

e The biped consists of N links and n point masses m;
and moments of inertia [;, i = 1, ...,n. The biped has
N —1 independently actuated revolute joints
described by the relative coordinates 6;, j = 2,...,N
and one non-actuated revolute joint described by the
absolute coordinate ¢, representing the absolute
angle between the first link and the ground. The
horizontal and vertical positions and orientation of
each mass m; with respect to the base frame are
represented by x;, y; and y; respectively.

e Impact occurs if the swing leg end comes into contact
with the ground. The impact is instantaneous, so
external forces are represented by impulses,
actuators are ignored during the impact for standard
reasons [21], and the impact results in an
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instantaneous change of the velocity but no change in
configuration. At the moment of impact, the swing
and stance legs swap their roles, so the stance foot
lifts from the ground and the swing foot stays on the
ground without slipping or rebounding.

Taking into account these assumptions, the biped model
can be written as an impulsive system [10] pp. 45-79:

XES a

5 = {ii(t} = f(x) + g(x)u,
x&€S b

xy = d(x_), (1)
with

Flx) = [ y
DM@ (—C(g.9) — G())[

9(x) = [ﬂ_ltéq)ﬂl and d(x_) = lﬂ(q__}f?_'

where x=[g" ¢"]"eX =TQ=T"xR", g =
@ 67]"=[e 0, Oy]€Q=T"Y is the N-
dimensional toroidal manifold, D e RV is the

symmetrical positive definite inertia matrix, Cg € R" is
the wvector containing Coriolis and centrifugal terms,
G € R is the gravity vector, B € RV*"~! is the input
matrix and u € U is the input vector, with U the set of
admissible inputs. The impact map is givenby A: 8§ - X
which gives the state after impact x, (t) = li{n(x (1)) when
the state just betore impact x_(t) = ltiﬁ(x 7)) enters the
set S ={x € X |k(x) =0}, with k: X = R the impact
detection function, which represents the distance between
the tip of the swing foot and the ground. The _and |
subscripts indicate the values of the variable just before
and after the impact, respectively.

The equations of motion (la) follow from the classical
Euler-Lagrange method [22], whereas the impact map
(Ib) is derived as in [10] pp. 55-57, based on conservation
of momentum [21]:

Deqey — Deqe— = F, (2)

with
F=J3F and J, =5-p(q.-)

Here g, =[%s Ys ¢ 67]" e R® x TV is the extended
state vector for the system not pin-pointed to the ground,
D, € RV+2*N+2 i the extended inertia matrix, p =
[Xs  ¥s]T is the position of the swing foot, and F, € R is
the vector of reaction forces occurring at the moment of
strike of the swing foot with the ground. In the right-
hand side of this expression, the principle of virtual work
is used to map the ground reaction forces to joint torques.
This momentum equation (2) represents N + 2 equations
with N +4 unknowns: §,, and F. Two additional
constraints come from the no-slip and no-rebound
assumption because this implies that the velocity of the
swing foot tip must vanish during the impact:
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JpGes+ =0 (3)
Solving (2) together with (3) for ¢, yields (1b).
2.2 Model Analysis

In this section we present a mathematical analysis of the
equilibrium sets and stability properties of the model
derived in Section 2.1. This analysis is required for the
derivation of the foot placement indicator (FPI) algorithm
in Section 3. The following analysis is performed on the
model when it is actively controlled in a rigid posture.
We use as controller u in (1) a simple PD joint set-point
regulating controller:

u = _er - K{IH- (4}

where e = (8 — 85) € TV is the error and Az € TV are
desired joint angles that define a certain rigid posture,

K, = diag(K,, .., Ky y) and Ky = diag(Kg, ..., Kq ) with
K,i >0 and K;; > 0 respectively the proportional and

derivative gains of joint i.

In the entire analysis we restrict the system to practically
feasible joint angles, angles for which all link masses and
the swing foot distance to the ground are non-negative:

Xp={x€X|k(x)=0,y,=0,i=1,..,N}. (5

In this feasible state space, the system has two sets of
equilibrium points: a single support and a double support
set. For the analysis of these sets of equilibrium points,
we denote the kinetic energy by:

K() =24"D(@)q = 5(G2+yDmy + -+ G2 + yHm,)
+- (BEL + - + Y2Ly), (6)

where x;, y; and y; are a function of g and g as defined in
Figure 1. The potential energy is denoted by:

P(g) = g(y,my + -+ y,my,), (7)

where g is the gravitational constant. In the next section,
we first define the single support equilibrium set and
determine its stability, after which we define the double
support equilibrium set and determine its stability. All
analyses are local, so in the final section we derive the
basins of attraction of these equilibrium sets, which turns
out to be the key ingredient for the FPI algorithm.

2.2.1 Single support equilibrium set

The first equilibrium set contains the joint angles for
which the biped has one foot on the ground. We refer to
this set as the set of balanced configurations, where a
balanced configuration is defined as:

Definition 1: Balanced configuration; A balanced
configuration is a configuration in which the centre of mass
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(CoM) of the entire biped lies exactly above its stance foot and
all velocities are zero.

For system (1) the position of the CoM is:

reom(x) = =X, mp; (%), (8)

where M is the total mass of the robot and m; is the mass
of link i located at p; = [Xi ¥i]'. So the set of balanced
configurations for system (1) according to Definition 1 is:

B ={x €Xs|rcom(x) =[0 h]",K(x) =0}, (9)

where h = 0 is the height of the CoM.

To analyse the local stability properties of the balanced
configuration set, we linearize system (1) around the
equilibrium point xg = [gg 0]" € B, ug:

z = Az + Bv, (10)
where z = x — x5, ¥ = u — ug and

_

. dg(x)u
A= dx -

— = g(x), (11)

Xgllp

Oy IIH]
— _B

Xgllg

with @y and Iy the N-dimensional zero and identity
matrix respectively and

2 (D~ (9)(~C(a.0)d - 6()))
q E,lq

XgUg

This linearized system is unstable since tr(4) = 0 and,
hence, at least one eigenvalue is non-negative. This also
means that system (1) is locally unstable around the
equilibrium set B.

2.2.2 Double support equilibrium set

The second equilibrium set contains the joint angles for
which the biped is in double support. A double support
configuration is defined as:

Definition 2: Double support configuration; A double

support configuration 1s a configuration in which both feet of
the biped are in contact with the ground and all velocities are
zero.

So, mathematically this set is given by:
D ={x € X; | k(x) = 0,K(x) = 0}. (12)

To analyse the stability properties of this equilibrium set,
consider the Lyapunov function for the extended model
with extended state x. = [q; ¢.]":

1
V(x,) = K(x,) + P(x,) + EETKF,E — Py,

1 . . 1
=>qe DeGe + P(x,) +5€"Kye —Pp = 0, (13)
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where Pp = P(xqp) +%.91T:,erﬂ is a constant offset in the
potential energy datum, representing the potential energy
in the double support equilibrium set, with x5 the state
and eq the tracking error of the desired rigid posture in
the double support equilibrium set. The derivative is:

Pe

Vix.) = q;_ﬂeii'e + Eq;*rﬂe'?.e + q;r 34,
dP 1 . )
e

— q;_ﬂe(—gfpe —K40) + 07Kye,

+0TKye,

since G, = S—:: and D, — 2C, is skew-symmetric. This time
derivative shows that V is decreasing in the continuous
part of the system (la) as long as 8 is nonzero. As # may
vanish while ¢ is nonzero, this derivative does not
guarantee that V goes to zero. However, at the impacts,
we have the transition (1b) for which the change in
energy E; =V, — V. 1s:

1 1
1

= E([;';:r+ﬂef;'e+ - [;';_—Def;'e—):

1, e

= E(q-er+ﬂefi'e+ —(ge+ = F'Dz")De(qes — D2 lF))J
1

=5 (de)p Fr + BT Jpdes — FTDZ'F),

= —%FTDE‘lF < 0,
since D, is a symmetric positive definite matrix, (2) and
(3) are used to find expressions for ¢,._. Thus V is strictly
decreasing in the continuous part of the system as well as
at the impacts, which implies that V goes to zero such that
the double support equilibrium set 1is locally
asymptotically stable. In the next section we determine
the basin of attraction of this equilibrium set to tind out
how local the result is.

2.2.3 Basin of attraction of double support equilibrium set

The next step is to determine the exact boundaries of the
local stability of the double support equilibrium set. We
can find these boundaries by excitation of the system
from the double support equilibrium set. Again, we
consider the system actively controlled in a desired fixed
configuration 8. We try to establish a maximal bound on
the excitation energy for the system being excited from
the double support equilibrium set. So first, we analyse
the maximal potential energy as follows:

Lemma 1: Maximal potential energy; The potential energy
in the balanced configuration Py is the maximal potential
energy in the absolute orientation @ for any fixed internal

configuration Og.

Proof. Let 85 be a fixed internal configuration, then using
(8) there exists a unique @5 that suffices:
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teomx = 0, (14)

where 14y, 15 the horizontal component of the CoM
position. Moreover, let the potential energy for the fixed
internal configuration 5 be given by P(¢, 63), then

argmax , (P(¢,05)) = s, (15)
since the maximum is given by:

dpP {{P!EZB::I

= 2Mrcou . =0, (16)

which equals (14) and hence, the only solution is @5.

What is interesting about Lemma 1 is that the potential
energy in the unstable balanced equilibrium set is
maximal. The excitation energy required to go from the
double support equilibrium to the balanced configuration
equilibrium in a fixed internal posture is thus the
difference between the potential energies in these
equilibriums:

P'B - P-D - KEJ' {1?}

where P; is the potential energy in the double support
equilibrium, P is the energy in the balanced
configuration equilibrium and K is the excitation energy
to bring the system from D to B. The balanced
configuration equilibrium set is unstable, so from this
point the system might move further away from the
double support equilibrium set. Thus, this point does not
belong to the basin of attraction of the double support
equilibrium set, and hence the maximal excitation energy
for the double support equilibrium set is K.

2.2.4 Balance of planar bipedal robots

We can use this fact to detine balance in bipedal walking:
when the robot makes a step, its configuration lies in the
double support equilibrium set. If the robot locks its
joints after impact and the kinetic energy is less than K,
the biped is not able to escape the basin of attraction of
the double support equilibrium set and eventually stops
in the stable double support configuration. So the step
location is crucially important for the balance of bipedal
robots, which is summarized in the following definition:

Definition 3: Balanced biped; A biped is in balance as long
as there exists a position to place its swing foot such that after
the impact the total energy in the system 1s maximally the
balanced configuration potential energy and no additional
energy is added to the system.

3. Foot Placement Indicator

In the previous analysis, the balance of planar bipedal
robots has been addressed. In this section we show how

proper foot placement can be used to keep the biped in
balance. The previous section analysed the system
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properties after impact; the goal of this section is to find
the step location before impact that results in balance
after impact. First, we explain the general concept of the
capture point (CP), foot placement estimator (FPE) and
FPI algorithm, then show the differences and describe our
motivation for developing the FPI algorithm, which is
derived in the second part of this section.

The FPI algorithm is an extension of the FPE algorithm,
which in turn is similar to the CP algorithm. The main
concept behind these algorithms is practically equivalent.
They are all based on energy conservation during a step.
The difference between the algorithms lies in the models
used to compute the proper foot placement location. The
CP algorithm uses a linear inverted pendulum model [1,
17, 18] without impact dynamics, the FPE algorithm uses
a planar inverted pendulum model with impact
dynamics [6] and the FPI algorithm uses a planar model
with distributed masses and impact dynamics [20].

The general concept behind these algorithms can be
explained as follows. We try to find a point on the floor
where the biped has to step and fix its internal posture
such that, when its CoM moves precisely above its stance
foot, all its energy has been converted into potential
energy solely. Depending on the model used, this point
corresponds to the CP, FPE or FPL. In the following
explanation we use a full planar model and refer to this
point as FPI, but the main idea also holds for the CP and
FPE on a (linear) inverted pendulum model.

1 2 3 4
i = 4o =i =4 H=IU§' ﬂ:ﬂﬂ,;z;ﬂ
4 = o =G+ =84-  f=0=0,0#0 6bg=0, p5=0
i)
FPI
[
.F"'hl”- .Ir':p K_ — .h.-+ p l;l' = I'J{ ;\-Il_'-" + lIJI‘:I = I}H K=0P= FH
b) | sl
/l\\
[
[
Ko.Fop K- —+ K, P =P, Ke+Pp<Pg HK=0,P<Pp
c) |
/K I b
l
KoPo K. K. P.=P, Ke+Pp>Pgs K>0,P=Pg

Figure 2. A schematic biped stepping relative to the FPL
a) Stepping precisely at the FPI will perfectly balance the CoM
above the stance foot. b) Stepping after the FPI causes the biped
to fall back onto the swing leg. c) Stepping before the FPI results
in falling forward.

The FPI is visualized in Figure 2, where K denotes the
kinetic energy, P the potential energy and g the state of
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the system, containing the absolute orientation ¢ and
joint angles 8. We can distinguish three possible scenarios
for stepping near the FPI point: a) stepping onto the FPI
point, b) stepping after the FPI point, and c) stepping
before the FPI point. Each scenario consists of four
difterent biped configurations: 1) the initial configuration,
2) the impact configuration, 3) the configuration in which
the angular velocity in the actuated joints vanishes and
the fixed posture is reached, and 4) the final
configuration.

In each scenario the biped starts with the initial
configuration gq,, velocity ¢, kinetic energy K, and
potential energy P,. Then, the biped makes a step until an
impact occurs when the swing foot hits the ground. The
pre-impact configuration q-, velocity ¢- and energies
K_ and P_ are mapped onto the post-impact configuration
g4, velocity ¢, and energies K, and P, according to a
rigid impact model. Some time after the impact, the
angular velocity in the actuated joints vanishes and the
actuated joint angles 8 stop in the fixed posture g = 03,
whereas the absolute angle ¢ continues to vary. From this
moment on, the total amount of energy in the system
remains constant, but its exact value depends on where
the biped stepped at the impact. Three different scenarios
can occur (see Figure 2).

a. In situation 3 the biped steps precisely onto the FPI
point and all the kinetic energy K: is exactly
converted into potential energy when the CoM
moves above the stance foot. Thus, in situation 4 the
biped comes to equilibrium in this balanced
configuration with potential energy Pp.

b. In situation 3 the biped stepped after the FPI point
and all the kinetic energy K¢ is converted into
potential energy betore the CoM moves above the
stance foot. Thus, in situation 4 the biped never
reaches the balanced configuration and falls back.

¢. In situation 3 the biped steps before the FPI point
and some kinetic energy K; remains when the CoM
moves above the stance foot. So, in situation 4 the
biped reaches the balanced configuration with non-
zero velocity and talls forward.

In [6, 17, 18], the model for computation of the FPE and
CP consists of only one point mass on a (linear) inverted
pendulum. It is arguable whether applying this model to
a real complex biped with non-massless legs, torso and
arms produces desired results [10], for three reasons [26]:

1. The total energy of the robot is not dependent on the
configuration of the legs. So by moving the legs, the
position of the FPE does not change. In bipeds with

leg mass, the FPE position changes as the legs move.
2. The angular momentum of the biped is not

influenced by its legs. During the impact of the swing
leg with the ground, angular momentum is
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conserved. Thus, in bipeds with massless legs, the
impact dynamics is extremely simplified over bipeds
with leg mass.

3. There is only one possible balanced configuration. In
bipeds with leg mass, there exist an infinite number
of balanced configurations.

In the next section we present the FPL. This algorithm is a
generalization of the FPE for planar bipeds with point
feet and an arbitrary number of non-massless links on
horizontal and flat ground.

3.1 FPI Algorithm

In the derivation of the FPI, we first consider the phase
from the impact to the balanced bipedal position, after
which we explain how this can be used to compute the
FPI before the impact. The symbols ¢ and 5 are used
for the corresponding variable at the time instant when
the relative angular joint velocities vanish and at the
balanced configuration, respectively. Fricon is
neglected: as can be seen in Figures 2 scenario 3a), the
energies in these distinct time instances are related
through conservation of energy in the energy balance
(17):

K(qe, Gs) + P(qp) = P(gs). (18)

where g = [pe 6;]7 is the state of the system at the
moment the relative angular joint velocities vanish:

Ge = g 6117 =[9s 0]T. (19)
We will now derive expressions for these angles and
angular velocities as function of states before the impact,
such that we can estimate the post-impact kinetic and

potential energies and find the desired step location
before the impact.

First we consider the actuated joint angles and angular
velocities. These joints are actively controlled, so we can
use feedback control to move them to a desired
orientation. Here, we assume that we do not have to
change the internal configuration of the biped after the
impact. This orientation is fixed by feedback control
throughout the rest of the step:

0_=0,=0; =05 (20)

where 65 are the actuated joint angles at the balanced
configuration. Thus, after the impact, we only have to
bring the post-impact internal angular velocity 8, to
zero using feedback control. What remains to be derived
in (18) is the non-actuated angle ¢ and angular velocity
@¢. This joint is not actuated, so we cannot control it
actively. We need to estimate the influence of the
feedback control of the actuated joints on the non-
actuated joint. This influence is estimated wusing

conservation of angular momentum assuming that
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feedback control can bring the actuated joint angular
velocities to zero significantly fast, so that the change in
the absolute angle can be neglected:

Pe =@y =@_. (21)

Conservation of angular momentum now states that the
time derivative of the angular momentum about a fixed
point is equal to the moments induced by external forces
acting about this fixed point ([21], p. 490). If we take the
base coordinate frame as the fixed point, the only external
force is gravity. We assumed that the configuration does
not change, so gravitational forces do not change and we
conserve angular momentum. Thus, we can use (2) and
(3) with additional constraints induced by the feedback
control on the internal configurationp =[x, y. 6I]" to
find an expression for the non-actuated angular velocity:

@e = Dppi(g_)q_. (22)

Now, by substituting (19), (20), (21) and (22) into (18) we
obtain an expression in terms of states before the impact
which has to be fulfilled to let the biped evolve to the
balanced configuration:

K(p_,6_,Appi(9-,0-)q-,0) + P(¢_,6_) = P(95,0-). (23)

This expression tells us that if the impact occurs and the
configuration is [g_ @']", then the system will evolve to
the configuration [py 6T]" and, hence, the biped is
balanced, because [z 811" =[ps 6z]" €B.
Consequently, at every time instant before the impact, we
solve this equation for @pp; and Ogp; with current g:

K(@gpr, Oppp Dppi(@rpr, Oppr)d_, 0)
+P(@pp1, Oppr) = P(@p, Bpp;). (24)

Solving this equation for @gp; and Ogp; gives us the
desired FPI location that indicates in which configuration
the foot needs to be placed to balance the biped [6].

The solution of (24) is in general not unique if the planar
biped has more than two degrees of freedom. Here, there
might be more pre-impact configurations such that the
biped evolves to a balanced configuration. Multiple
options exist to find a unique solution for bipeds with
more degrees of freedom. The most elegant method is to
use virtual holonomic constraints [10] to relate the
actuated joints to the unactuated joint. In essence, one
constrains the motion of the high order model to a lower
order one, still taking into account the kinetic and
potential energies of all links in the system. Alternatively,
one could use a constraint optimization method which
minimizes an objective function with (24) as constraint.

3.2 Foot Placement Controller

The FPI algorithm explained in the previous section can
be cast into a controller that drives the system to the FPI
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configuration such that it properly places its foot and
remains balanced. In short, the controller should solve
(24) at each time instant before the impact as follows:

1. find an expression for @g as function of gp; as in
(15),

2. insert @y and Bgp; in (7) to find the potential energy
of the balanced configuration P(@g, Ogp;),

3. assume that the impact occurs at the next time
instant, so compute using (22) the absolute angular
velocity of the biped @¢ = App;(@pp;, Opp1)q after the
impact and after the relative angular joint velocities
vanish,

4. use ¢g, @rp; and Bpp; In (6) to compute the kinetic
energy after the impact: K(@gpp, Opp;, 9c. 0),

5. wuse @pp; and Bpp; Iin (7) to compute the potential
energy after the impact: P(@gp;, Opp;),

6. solve the FPI equation (24) for @gp; and Ogp;.

This desired configuration 8gp; can be tracked as virtual
holonomic constraint of ¢ by a controller so that if impact
occurs and @ = @gp;, the foot is properly placed. Next,

the practical implementation of such a controller is
described.

We use the controller (4) as presented in Section 2.2. The
desired joint angles 85 are now given accordingly:

0
= —ip
h(@, ©pp1, Oppr sw)

By = , (25)

Eﬂ,st ‘

H‘H,sw

where the upper and lower part represent the stance and
swing leg, respectively. The stance leg is kept straight, so
all joint angles, except the hip, are controlled to remain
zero. The hip joint controls the torso of the robot to
remain perpendicular to the ground. The swing leg
consists of virtual constraint functions that bring it from
its initial configuration 8;,, to the desired FPI step
orientation #gp, ., as function of the absolute orientation
@. The virtual constraint has been chosen such that the
swing leg velocity is zero at the initial absolute
orientation @, and at the desired FPI orientation @gp;:

h(ﬁﬁ:fﬁ'FPn HFF‘J'EW) = EFP’-SW

+(Bo5 = Oppr o) (2l (26)
The desired FPL step qrp; = |@ppr  Ofpi st E;P,FSW]T, with
Opprse and Bgp; g, respectively the stance and swing leg
joint angles, is given by (24):

gpp; = argming_ ((ﬁ_ +K_- ﬁB]Z), (27)

with the energy functions P_:= P(§_), Pp = P(§g) and
K_=K(§_,0pp;(§_)G_). Herein, §_ is the desired fixed
posture that initiates impact. To simplify the optimization
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and to find a unique global minimum we constrain these
states to Cartesian positions on the ground:

- =[] = fucCernn @9

where f;y is an inverse kinematics function and xgp; is the
Cartesian position along the ground. The inverse
kinematics function fj; is robot specific. It may be an
analytical expression or a numerical optimization [24].
The balanced configuration state §p can be computed
from the balanced equilibrium configuration (15):

i = argmax,,, é(P(quﬂ, H_)) | (29)

4. Simulation Example: Five-link Planar Biped

In this section, the FPI algorithm is applied to a model of
a five-link biped. This model is shown in Figure 3. The
model consists of five point masses and contains two
lower legs, two upper legs and a torso. We derive the
equations of motion as in (1) and implement these in a
numerical simulation.

Figure 3. Schematic of the five-link planar biped model

We can now use the energy expressions (6) and (7) to
solve the FPI equation (24) and use this in the feedback
controller (4). As we have seen, there is no unique
configuration from which the biped evolves to the
balanced configuration, so we enforce the stance leg to be
always fully stretched, Opp;; =0, and the torso to be
always perpendicular to the ground, 6pp; =—9.
Furthermore, we use a virtual holonomic constraint on
the swing leg angles 6pp, 4, and 8pp; s in the parameter

Int J Agv Robotic Sy, 2013, Vol. 10, 250:2013

a = ¢, such that the swing leg is always as ‘stretched’ as
possible, without penetrating the ground:

L = min (L, + EE.J”“P“‘-"E‘:‘*J), (30)

cos(a)

where Ly, = 0 is a desired foot clearance height. In the
first part of the step this clearance height is kept constant.
When the swing foot passes the vertical, i.e. a > 0, the
value is decreased to zero so that the biped completes the
step with a fully stretched swing leg. Expression (30) for
the virtual leg length L can be used in the inverse
kinematics function (28) so that we can uniquely solve the
FPI equation for agp; [24].

We performed three simulations. In each simulation, the
robot starts with the same initial configuration and
velocity. The FPI algorithm computes at each time instant
before the impact the FPI angle agp, from (24). In two
simulations we intentionally perturbed the desired FPI
angle with a constant offset to show the differences
between the three scenarios, as indicated in Figure 2. Joint
PD feedback control brings the actual o to the (perturbed)
FPI angle, as can be seen in the bottom plots in Figure 4.
These figures show, from left to right, that the robot steps
onto the FPI point, steps after the FPI point and steps
before the FPI point. The dotted vertical lines indicate the
moments of impact. In the top plots in Figure 4 relevant
energies are shown. Here, the actual kinetic energy K,
potential energy P and total energy E are plotted, as well
as the estimated post-impact kinetic energy K¢, post-
impact potential energy Pp and final potential energy in
the balanced configuration Pg.

We can observe in each simulation that, before the impact,
the biped falls forward. During this fall, the height of the
CoM decreases and its velocity increases. This corresponds
with the plots if we compare the initial energies with the
energies just before the impact. The kinetic energy K
slightly increases whereas the potential energy P decreases.
At both moments the actuated joint velocities are almost
zero, since the swing leg is in its initial and FPI
configuration. The energies almost correspond to those of
the CoM of the biped. Between the initial and impact
moment, the swing leg is accelerated and decelerated,
which causes the increase and decrease in kinetic energy.

At the impact, a clearly visible drop in kinetic energy can
be noticed, whereas the potential energy is constant over
the impact. This also results in a steep drop in the total
energy E at the impact. After the impact, even more
energy is dissipated when the relative angular joint
velocities vanish (visible in the inset in the energy plots).
After the relative angular joint velocities vanish, the total
energy E in the system remains constant. The biped
continues its motion forward and converts the kinetic
energy into potential energy. The notable ditferences
between the simulations can be explained as follows-

www.intechopen.com
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Figure 4. Simulation results for the three different scenarios. Top figures show relevant energies: actual kinetic energy K, actual
potential energy P, actual total energy E, estimated post-impact kinetic energy K, estimated post-impact potential energy P, and
estimated balanced configuration potential energy Py. The inset is a magnification of the marked area. Bottom figures show the swing

leg actual angle a, desired FPI angle azp; and FPE angle agp.

a. The FPI method accurately estimates the post-impact
total energy, since the post-impact kinetic energy K,
post-impact potential energy Pp and balanced
configuration potential energy Py coincide with the
actual kinetic energy K, potential energy P and total
energy E after the impact. When the relative angular
joint velocities vanish, the total energy in the system
remains constant, so the relation K¢ + P, = Py holds.
Indeed, we can observe that the biped converts all
the kinetic energy into potential energy and stops at
the balanced configuration.

b. The FPI method underestimates the post-impact total
energy. When the relative angular joint velocities
vanish, the total energy remains constant, but is
smaller than the required balanced configuration
potential energy: K¢ + Pp < Pg. The biped converts
all the kinetic energy into potential energy before it
reaches the balanced configuration and falls back.

c. The FPI method overestimates the post-impact total
energy. When the relative angular joint velocities
vanish, the total energy remains constant, but is larger
than the required balanced configuration potential
energy: Kz + Py = Pg. The biped reaches the balanced
configuration with non-zero kinetic energy and falls.

We also compute the original FPE angle appr as in [6]
during the simulations and compare these to agp; in the

www.intechopen.com

bottom plots of Figure 4. We can clearly see that the
original FPE algorithm does not estimate the foot
placement properly. We believe that this is caused by
simplification of the five-link model to an inverted
pendulum. The movement of the swing leg is large and it
significantly influences the kinetic and potential energy of
the biped.

This comparison can motivate the further development of
the FPI method, such as to overcome some limitations of
the method in its current form and make it applicable for
walking and three-dimensional bipeds. The main
problem of the current approach is the assumption that
the relative joint velocities vanish significantly fast, such
that the energy is conserved after the impact. This energy
conservation is required to prove that the FPI controller
guarantees balance, but limits its usability to the one-step
case with tixed desired configuration, as discussed in this
paper. We have obtained simulation results that show
that continuously stepping before the FPI point results in
walking on planar bipeds with point feet [25]; however,
we were not able to mathematically prove the stability for
this case. We expect that this problem can be solved by
replacing the PD controller by an output regulation
controller as presented in [10]. This controller attracts the
full system dynamics (1) to a lower dimensional zero
dynamics. This zero dynamics is Lagrangian by
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definition, and in this way energy is conserved during a
step. We expect that we can apply the FPI algorithm to
zero dynamics and prove its stability when walking.
Furthermore, we believe that we can extend this zero
dynamics framework to the three-dimensional case and
show stable bipedal manoeuvring. Moreover, since the
dimension of the zero dynamics is lower than the full
system model, the computations become easier and might
be feasible on a physical system in real time.

5. Conclusion and Future Work

In this paper we introduced the foot placement indicator
(FPI), which is an extension of the foot placement
estimator method to planar bipeds with point feet and an
arbitrary number of non-massless links on horizontal and
flat ground. The FPI algorithm is derived by thorough
mathematical analysis of the equilibrium sets and
stability properties of these planar biped models. The
algorithm can accurately compute where a biped needs to
step in order to evolve to a balanced configuration, i.e.,
the configuration in which the biped is in equilibrium
and its centre of mass lies exactly above its stance foot.
We derived the necessary expressions used to calculate
the FPI point. These expressions are based on energy
conservation in the system, properly taking into account
energy losses during the impact. We showed applicability
of the algorithm in simulations of a five-link planar biped.
The simulation results showed that the FPI algorithm
works better than the FPE algorithm on robots with non-
massless links. It can accurately compute the FPI point
where the biped needs to step to evolve to the balanced
configuration. Future work includes extension of the
algorithm to walking and three-dimensional bipeds, which
we expect to achieve via an output regulation controller.
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