

Evaluating the effect of formal techniques in industry

Citation for published version (APA):
Osaiweran, A. A. H., Groote, J. F., Schuts, M. T. W., Hooman, J. J. M., & Rijnsoever, van, B. J. (2012).
Evaluating the effect of formal techniques in industry. (Computer science reports; Vol. 1213). Technische
Universiteit Eindhoven.

Document status and date:
Published: 01/01/2012

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Jul. 2024

https://research.tue.nl/en/publications/840f7de9-619a-47bd-95fb-4dd7154def2e

Technische Universiteit Eindhoven
 Department of Mathematics and Computer Science

Evaluating the Effect of Formal Techniques in Industry

Ammar Osaiweran, Jan Friso Groote, Mathijs Schuts, Jozef Hooman, Bart van Rijnsoever

12/13

ISSN 0926-4515

All rights reserved
editors: prof.dr. P.M.E. De Bra

 prof.dr.ir. J.J. van Wijk

Reports are available at:
http://library.tue.nl/catalog/TUEPublication.csp?Language=dut&Type=ComputerScienceReports&S
ort=Author&level=1 and
http://library.tue.nl/catalog/TUEPublication.csp?Language=dut&Type=ComputerScienceReports&S
ort=Year&Level=1

Computer Science Reports 12-13
Eindhoven, October 2012

Evaluating the Effect of Formal Techniques in
Industry

Ammar Osaiweran1, Jan Friso Groote1, Mathijs Schuts2, Jozef Hooman3, and
Bart van Rijnsoever2

1 Eindhoven University of Technology, Eindhoven, The Netherlands
2 Philips Healthcare, BU Interventional X-ray, Best, The Netherlands

3 Radboud University Nijmegen, Nijmegen, and Embedded Systems Institute,
Eindhoven, The Netherlands

{a.a.h.osaiweran,j.f.groote}@tue.nl,{mathijs.schuts,bart.van.Rijnsoever}@

philips.com,jozef.hooman@esi.nl

Abstract. In this paper we evaluate the effectiveness of applying a for-
mal component-based approach called Analytical Software Design (ASD)
to the development of control software of an industrial project at Philips
Healthcare. We analyze the performance of the ASD related tasks carried
out during the development processes and report about the main issues
encountered. Furthermore, we investigate whether introducing these for-
mal techniques to industry could actually improve the quality and the
productivity of the developed code compared to software developed by
more traditional development methods.

1 Introduction

Philips Healthcare develops a number of highly sophisticated medical systems,
used for various clinical applications. One of these systems is the interventional
X-ray (iXR) system, which depicted in Figure 1.

Movable

parts

X-ray

collimator
X-ray

pedal

GUI

joysticks

& buttons

Fig. 1. An interventional X-ray system

The software practitioners at Philips Healthcare developing this type of sys-
tems are constantly seeking approaches, tools and techniques to advance current

2

software development processes. The purpose is to improve the quality of devel-
oped code, enhance productivity, lower development costs, shorten the time to
market, and increase end-user satisfaction.

As one of these new technologies, Philips Healthcare introduced to its devel-
opment context a model-driven, formal component-based development approach
called the Analytical Software Design (ASD). The approach was exploited for
defining formal interfaces and building mathematically verified software com-
ponents. The ASD approach supports formal techniques by a commercial tool
called the ASD:Suite, developed by the company Verum [29].

The focus of this paper is to investigate whether the use of these formal
techniques actually resulted in visible improvements to the developed software,
demonstrating key issues encountered when incorporating the techniques with
the industrial development processes. The target of our investigation are the
software components of a subsystem of the X-ray machine, called the Frontend
subsystem.

The ASD technology was successful in other projects at Philips [23, 21, 24].
In this paper we investigate whether the approach is also successful in other
projects with other environments, circumstances and backgrounds. Moreover,
we provide a more detailed quantitative analysis regarding the effectiveness of
these techniques in industrial practices.

In order to determine any major improvement to the software developed
by these formal techniques, we first need to collect quantifiable evidences and
analyze these techniques empirically and rigorously. Additionally, this requires
answering the following research questions:

– Can these formal techniques deliver product code? And if so, is the code of
high or low quality?

– Do these formal techniques require more time in development compared to
traditional development?

– What about the productivity using these techniques?
– Do the techniques require specialized mathematicians for a successful appli-

cation?
– Do these techniques always produce zero-defect software? If not, which types

of errors are expected and how many compared to industrial standards?
– Which artifacts should we consider when evaluating these techniques empir-

ically? Should we include the formal models or the related code?

The paper is structured as follows. Section 2 briefly sketches the industrial
context. In Section 3 the ASD approach is introduced to the limit needed in
this paper. Section 4 details the phases of developing the ASD components and
the main issues and limitations encountered. We analyze the data related to
the developed code to evaluate the ASD approach in Section 5. In Section 6
we extend our analysis to study the cause and the type of errors that could
escape the formal techniques. Section 7 details the end results comparing the
ASD code with other code developed at Philips and also with the industry
standards reported worldwide. Section 8 details a number of industrial projects
that we found incorporated formal techniques in their software development.

3

Finally, Section 9 contains our conclusions by answering the research questions
mentioned earlier.

2 Description of the project

The software that controls the X-ray machine is divided into a number of subsys-
tems, including the Frontend (FE) subsystem. The FE is responsible for creating
X-ray images by controlling and managing physical hardware, such as the X-ray
generator, the X-ray detector, the table where patients can lay and the stand
that holds the generator and the detector, as shown in Figure 1.

Previously, the FE subsystem was developed as a decentralized architecture
in the sense that all units work on their own, observing changes of other units
via a shared blackboard and react accordingly. The main shortcoming of this
type of architecture was the difficulty of knowing the overall system state. More
importantly, incorporating innovations or new products of third-party suppliers
was very challenging.

Therefore, some of the units of the FE subsystem were redesigned in order to
migrate to a new centralized, hierarchical component-based architecture, while
others were kept intact and were reused in the new architecture (e.g., the units
that control the hardware devices).

The FE subsystem includes 22 units, two of which are the target of this study:
the Application State Controller (ASC) and the Frontend Adapter (FEA). Both
units comprise a number of modules that includes concurrent components with
well-defined interfaces and responsibilities.

One of the key responsibilities of the ASC is managing the external X-ray
requests, sent by the clinical operators via dedicated X-ray pedals and hand-
switches. The unit counts, filters, and ensures priorities of such requests. It is
also responsible for maintaining the overall system state and coordinating inter-
actions with units surrounding the FE subsystem.

The FEA unit is mainly responsible for the interfaces with other external
subsystems, through a network. It exchanges information related to patients
and their exam details with other external parties. The unit is also responsible
for monitoring the presence of other remote subsystems and converting incoming
information to readable xml and string formats.

The interaction of these units with other external parties is rather complex
and error prone. Any party can issue requests or can enter a faulty state. For
example, clinical users can press the pedals or the switches at any time, even if
the internal components or the hardware are not prepared or configured yet for
image acquisition.

Moreover, the FE may lose the connection with the external subsystems
due to network outage or errors in the subsystems at any time. Therefore, the
ASC and FEA units must always be robust against such situations and should
provide safe and convenient behavior to the end-users. In order to guarantee
correctness of the developed components, the software practitioners decided to
employ the ASD technology aiming at detecting and preventing any potential

4

errors at early stages of the project and obtaining high quality software at the
end of the project.

3 Use of formal methods

The ASD approach supports the development of formally verified software com-
ponents by exploiting two types of models, both described as state machines
and specified using a similar tabular notation: the interface model and the de-
sign model. We briefly describe these two types of models:

– The interface model is used as a formal means to describe not only the
methods to be invoked on a component but also the external behavior. The
interface model specifies the interaction protocol and the allowed or inhibited
sequences of invoking these methods by clients. Any interactions with used
components are not included in the model.

– The design model of a component refines and extends the interface model by
more internal details. Usually, the design model uses the interface models of
other ASD and non ASD components. These interfaces, in turn, are indepen-
dently refined by other design models (perhaps by other teams), facilitating
multi-site, parallel development of components.

In order to allow the ASD approach to scale to industrial applications, the
approach is compositional [14] in the sense that components are verified in iso-
lation. This means that the formal verification of a design model uses only the
interfaces of the surrounding used components, without considering their inter-
nal implementation.

To ensure complete and consistent specifications, the models are described
using the sequence-based specification technique [22]. Any ASD interface or de-
sign model includes a complete specification in the sense that responses to every
possible input stimulus in every state must be described.

By translating the ASD tabular specifications to corresponding CSP models
[28], which are checked by FDR2 [28, 9], the tool ASD:Suite can be used to
formally verify that the external behavior captured by the interface model is
formally refined by the corresponding design model. Moreover, the tool is used
to verify a predefined set of properties such as absence of deadlock and livelock
under all circumstances of use. ASD:Suite veils the CSP and the FDR2 details
from end-users in order to enable practical industrial usage.

The ASD specification is restricted to develop components with data-independent
control decisions. This means that the correctness of parameter values of methods
is not checked by the tool, and components responsible for data manipulations
or algorithms should be implemented by other techniques. The technology is
also restricted to developing and verifying components with discrete behavior
and does not support the verification of timed systems.

The ASD component may include a queue to store incoming callback events
sent by used components, supporting an asynchronous communication mecha-
nism. The queue runs in parallel (i.e., in a separate thread) with the design
model and may cause interleaving with other components.

5

Code

generation Model

checking

State

Rule case

Fig. 2. An example of ASD specification

A vital and very attractive feature in the ASD:Suite is the support of a
comprehensive code generation from formally verified design models to a number
of programming languages (C, C++, C#, Java).

Figure 2 presents an example of a very small ASD interface model in the
ASD:Suite application, describing the behavior of an X-ray pedal. The model
includes two states, namely Idle and Active, each containing all input stimuli
events listed in rows called rule cases. ASD practitioners are forced to fill in all
rows of all rule cases for the sake of completeness. As can be seen, automatic
verification and code generation can be established with the click of a button.
The specification is straightforward and self explainable. Another more detailed
example illustrating ASD can be found in [15].

4 The developed ASD components

The process of developing software used in the iXR projects is an evolutionary
iterative process, i.e., the software is developed through successive increments,
each of which requires regular acceptance and review meetings by several parties.

In this section we report about the effort spent during three increments for
developing ASD components of both the ASC and the FEA units, starting from
January 2011 till August 2011. The effort was accomplished by a team of 5 full-
time members, who had sufficient programming knowledge, but limited skills
in formal methods. The team was responsible for developing both the ASD
components and the other type of components.

Along the three increments, the ASD formal technology was tightly inte-
grated with the traditional development processes. Below we describe the main
phases accomplished by the team.

Pre-study phase. The three increments were preceded by a pre-study pe-
riod, during which the team attended a one week ASD course to get familiar
with the approach and its related technologies. The course was limited to learn-

6

ing how to use the ASD:Suite (e.g., how to fill-in the tables and verify them
compositionally using model checking and how to generate and integrate the
code).

Furthermore, during the pre-study period the entire reference architecture of
the FE subsystem has been discussed, to get consensus about the functionality
concerns among all teams.

After the responsibility of the units that incorporate ASD was clarified, the
ASD team explored various design alternatives and approaches to compose suit-
able ASD components. During that time, the team was still confronted with the
steep learning curve of how to make a design that fits ASD, so that ample time
was required before the team became skilled in the technology. The problem was
not in the ASD tooling itself but in the design philosophy behind ASD which
required certain architectural patterns to enable efficient model checking.

As there was a lack of ASD design guides, cookbooks or patterns that could
aid the team to incorporate the technology in the way of working and to prepare
formally verifiable components, team members initially tried to adapt the ASD
technology to the existing way of developing software at Philips Healthcare.

Since the object-oriented method was the dominating approach of design and
implementation, team members started investigating the suitability of ASD for
developing Object-Oriented designs. For this purpose, the team reviewed and
thoroughly studied the well-known object-oriented design patterns [11], trying
to model them alternatively using ASD.

As a result, the team realized that developing object-oriented designs using
ASD is not productive since ASD is an action-oriented, component-based tech-
nology. Hence, after quite some time the team understood that the successful
application of the technology requires changing the development culture and the
mind-sets.

Design phase. Based on the knowledge gained from the pre-study period,
team members prepared initial design drafts containing hierarchical components
with well-defined interfaces and responsibilities, without using object-oriented
patterns. The designs were iteratively reviewed and re-factored until they were
approved by team members. After that, design of components and their respon-
sibilities were documented in informal documents.

Modeling the ASD components. When the informal documents had been
reviewed and approved by team members, the team started specifying the state
machines of each component, using the ASD:Suite version 6.2.0. Following the
ASD recipe, the models of the components were specified stepwise, in a top-
down fashion, starting with interface models and refining them by detailed design
models and other interfaces.

In general, filling-in the ASD tables was a straightforward task. The team
carefully filled-in and thought about every stimulus in every state, asking ques-
tions of what must be done as responses to stimulus events not addressed by the
incomplete informal documents and the state machines.

Indeed, the technology consequently helped the team finding omissions and
gaps in the initial set of requirements and the designs and hence initiated early

7

discussions with various stakeholders. Subsequently, this increased the quality of
requirements and designs at early phases of development, and saved development
time, comparing to addressing these issues at later stages of the project, using
a more traditional development method.

However, due to the specification completeness some ASD interface models
were too big, hard to review and to maintain since the specified protocols in-
cluded too detailed behavior, although the ASD:Suite was lately extended with
a nice filtering feature. This resulted in decomposing the components further
into smaller components, to increase readability and maintainability.

Moreover, specification completeness forces having complete requirements
at early stages of development, and this is relatively challenging especially for
a complex system like the FE (lead architects often tend to concentrate on
important, high abstract aspects of the system and to leave the details to later
stages of the project). Although one could choose to work on a subset of the
interface, still the corresponding specification must be complete.

Table 1 lists the developed ASD components for the ASC and the FEA
units, demonstrating the number of ASD design and interface models for each
component (column 3), and the sum of specified rule-cases (column 4). Each
component includes one implemented interface model, one design model, and a
number of used and implemented interface models.

Component Models Rule
cases

States Transitions Time
(Sec)

ELOC

ASC unit
AcquisitionController 6 432 16912 79840 2 1685
AcquisitionRequests 5 837 192320 1027032 20 2821
ASCExamEpxManager 4 165 160 339 < 1 928
ASCMisc 4 58 2633 4963 < 1 963
ASCMiscDecoupler 2 13 7 9 < 1 356
RequestCounter 5 113 45560 76233 3 1133
RequestFilter 3 381 51790 226910 1 994
RunController 4 842 8058224 41150288 444 5126
FEA unit
AcqCtrlAcqRequests 3 353 2802 7805 < 1 465
BETStateless 3 404 8640 38704 < 1 518
CmdStateless 3 62 12 24 < 1 704
CxaAdpMain 7 2794 139824 461292 50 5944
DAcqCtrl 4 1300 117412 364066 13 3206
DActivation 3 103 4480 14688 < 1 585
Decoupler 2 11 3 3 < 1 239
DWrapper 4 408 8928 46736 < 1 674
FEProxyVE 6 5270 597096 1764366 289 9645
FEProxyVEStateless 6 202 4976 19320 < 1 1753
FSStateless 3 31 220 636 < 1 554
UGStateless 3 88 44388432 76939995 6853 951

Table 1. Modeling and verification statistics of the ASD components

Formal verification. Formal verification started with reviewing the ASD
specifications, which were checked row-by-row for correctness and traceability to

8

the informal requirements. After specification reviews, the models were verified
using model checking.

With the click of a button, the model checker detected various deadlocks,
livelocks, illegal scenarios, and race conditions, which required immediate fixes
in the models. In some cases, solving these errors caused redesigning the ASD
components, especially when the fix made model checking impossible.

Another important factor of redesigning was the lack of abstraction in the be-
havior of the components. For example, the use of substantial number of stateless
callback events entering a queue in any order may take FDR2 hours or days to
calculate the state space that captures all possible execution scenarios. Adding
a new event, due to the evolution of requirements for instance, may make verifi-
cation virtually impossible. Hence, components were re-factored to remedy this
shortcoming and to eventually accomplish verification in shorter time.

During the formal verification, the state space explosion problem was fre-
quently encountered although FDR2 could favorably handle billions of states.
Note that, within our industrial context, waiting for a very long time is usually
not acceptable due to the tight deadlines of the incremental planning. Worst, be-
fore an error is discovered, the model checker may have already taken a substan-
tial time. Hence, developers are forced to wait for the model checker repeatedly
during the process of removing errors.

During formal verification, the team realized that different design styles could
substantially influence the verifiability of components using formal techniques
[25]. Hence, they avoided a number of design styles that may needlessly increase
the state space and the time required for verification [15].

Based on the knowledge gained, the team could eventually obtain a set of
formally verified components. Each ASD component was verified using the pre-
defined set of ASD properties. Table 1, columns 5-7, includes the output data
from FDR2 related to the refinement check (since it is most time consuming) for
the design model of each ASD component, showing the states, transitions, and
time in seconds. The data indicates that most of the components were verified
within acceptable range of states and transitions, calculated in a reasonable time
by FDR2. Note that, some components took less than a second for verification,
covering all possible execution circumstances of the component.

Code generation and integration. As soon as ASD components had been
formally verified and further reviewed to ensure that fixing the model checking
errors did not break the intended behavior, the code was generated automati-
cally and integrated with the code of other components via glue code. The last
column of Table 1 quantifies the number of the effective lines of code (ELOC),
automatically generated in the C++ programming language, excluding blank
and comment lines.

Experience shows that, in a more conventional development method, inte-
grating components is a nightmare, due to the substantial effort required to
bring all components to correctly work together. Therefore, it was surprising
that integrating ASD components with one another was always smooth, did not
require any glue code, and often was accomplished without any errors. However,

9

integrating ASD code with the surrounding components that did not undergo
formal verification (e.g., manually developed or legacy code) caused some errors
and delays.

In some cases, we needed to review the generated code when integrating
the code or when analyzing and debugging some error traces. In general, the
generated code was comprehensible. The main advantages of the generated code
over the handwritten code are:

– The generated code is readable since it is constructed using well-known pat-
terns, such as the object-oriented State and Proxy patterns;

– The generated code of all components has the same coding shape and struc-
ture, following similar coding standards;

– The generated code does not contain ad-hoc solutions, workarounds or tricks;
– The structure of the code allows systematic translation to other languages

or other type of models, if needed;
– Changes are done at the model level, not at the low-level code;
– The code is thoroughly verified using model checking; previous and current

experiences [23, 24, 21] indicate that errors left behind are simple to find and
to fix;

– The support for different programming languages makes models more platform-
independent than hand-written code.

Testing. An apparent advantage of ASD is that development time is short-
ened since white-box testing of the generated code is excluded due to the formal
verification using model checking.

But, an apparent limitation of the ASD compositional verification is that
it is impossible to formally establish whether the combination of ASD compo-
nents yields the required behavior. It is not possible to express domain specific
properties or to relate events in implemented and used interfaces.

Therefore, the ASC and FEA units were tested as a black-box. Furthermore,
at the end of each increment, the FE units including the ASD components were
thoroughly and extensively tested by a specialized test team, using various types
of testing such as model-based statistical test, smoke test, regression test, per-
formance test, etc, of which details are outside the scope of this paper. As a
result of testing, a few errors were detected; details will be given in subsequent
sections.

5 Data analysis

In this section, we analyze the project data in order to compare the end qual-
ity of the units which incorporate ASD with the other units of the FE. The
purpose is to establish whether the use of ASD formal techniques resulted in a
positive or negative impact on the quality of the developed software, within the
organization.

To accomplish this goal, we took several steps. We started with collecting
the total number of effective lines of code that had been newly introduced plus

10

the changed legacy code, for every unit separately. We restricted ourselves to
the period bounded by two baselines representing the start and the end of the
three increments.

After that, we carefully investigated the reports of 202 submitted defects, and
partitioned them in order to individually analyze the coding defects and others
arising due to, for instance, documents, requirements or designs issues. We then
selected a total of 104 reports related to coding, and distributed them to the
respective units. These errors were unveiled during the in-house subsystem tests
and are not post-release defects or found after delivery.

Table 2 depicts the results of our data collection, showing only a represen-
tative subset of the FE units. The units that exhibit similar results or were
not changed during the increments have been excluded for readability purposes.
Hidden from the table is also the amount of reused or legacy code, developed
and verified during previous projects.

Given the obtained data, we could estimate the overall defect density of each
unit separately, as depicted in the last column of Table 2. Although the ASD
units appeared to be slightly better than some other units, at that stage of the
analysis process, the effectiveness of the ASD formal techniques were not very
conclusive and we felt that with a more refined analysis more insight can be
obtained. Note that some of the manually coded units exhibit zero defects, but
the reason was that most of the changes were on the level of interfaces and not
on the core internal behavior of the units.

Effective lines of code Defects Defects/ KELOC
Unit ASD HW ASD HW ASD HW Total

ASC 14006 5784 13 10 0.92817 1.72891 1.16
FEA 25238 9489 1 18 0.03962 1.89693 0.55
IGC 0 6,326 0 35 N/A 5.53272 5.53
SC 0 3,340 0 0 N/A 0 0
SIM 0 6,202 0 0 N/A 0 0
IDS 0 2,650 0 7 N/A 2.64151 2.64
NGUI 0 2,848 0 0 N/A 0 0
PandB 0 3,161 0 1 N/A 0.31636 0.31

Table 2. Statistical data of representative units of the FE

Therefore, we decided to separate the ASD code and the handwritten (HW)
code and analyze them in isolation. The ASD code and the manually written code
are quantified in the second and third column of Table 2. Then, we studied the
defects of ASD units once more, distinguishing ASD defects from those related
to the handwritten code, as listed in the fourth and fifth columns. Consequently,
we could estimate the defect rate of ASD and non ASD code, as depicted in
columns six and seven.

As can be inferred from the table, for the two units that incorporate ASD, the
quality of ASD code seems to be better than the corresponding manually written

11

code, especially for the FEA unit, which received only one defect. After studying
the corresponding defect report we found that the error was not only related to
ASD components but rather to a chain of ASD and non ASD components, due
to a missing parameter in a method. Nevertheless, developers of the FEA unit,
clearly, could deliver close to zero defects per thousand ASD lines of code.

However, the FEA unit received more errors related to the handwritten code.
More than half of these errors were caused by a component responsible for string
and xml manipulations. This consequently was the reason of degrading the qual-
ity of the entire unit.

This is different for the ASD unit, which included numerous errors in the
ASD code, but still the end quality was slightly better than the manually writ-
ten code. The amount of ASD errors in the ASC unit motivated us to further
investigate the behavior of the components in depth and also to study the nature
and the type of the detected errors, which were left behind by the ASD formal
technologies. We detail this in the subsequent section.

The reason of why these errors were not detected using ASD is that the ASD
technology does not support any means to define and verify system-specific prop-
erties. Although the ASD:Suite allows uploading CSP code, by which verifiers
can specify additional properties, this is very impractical since the internal struc-
ture of the CSP model is totally hidden from verifiers and requires a CSP expert
to be present at the Verum company.

Most of the detected errors were due to experiencing unintended, unexpected
behaviors (e.g., after a user presses and releases a number of pedals and switches
it was expected that a particular type of X-ray resumes but it did stop). But,
as a result of the fixed set of properties the ASD technology currently supports,
none of these errors was due to deadlocks or illegal interactions (e.g., there were
no crashes due to null reference exceptions or illegal invocation of methods at
some states).

The reason that the FEA unit included fewer defects is that the unit im-
plements a protocol of interaction between the FE and the other subsystems
and does not include a complex functional behavior compared to the ASC unit.
Hence, the main specification of the FEA unit is represented by the protocol
specified in its ASD interface model. Moreover, this interface model has been
reviewed frequently because it is used by other subsystems.

6 Analyzing the cause of ASD errors

The purpose of this section is to figure out the root cause of the errors in the
ASD components that escaped the ASD formal techniques. To do so, we began
with analyzing the ASD components individually, especially those related to the
ASC unit, trying to identify the responsible component that contributed much
to the defects and why. Moreover, we investigated whether there is a correlation
between the complexity of ASD components and the volume of received errors.

Initially, this appeared to be challenging since we did not possess any sys-
tematic means to measure the complexity of components at the model level.

12

Component Review Avg
M/C

Avg
S/M

Max
CC

Avg
depth

Avg
CC

Defects

ASC unit
AcquisitionController E 3.42 3.3 16 1.03 1.41 1
AcquisitionRequests M 5 6.3 18 1.26 2.26 3
ASCExamEpxManager E 3.17 2.8 4 0.88 1.25 0
ASCMisc VE 3.62 2.2 5 0.79 1.08 0
ASCMiscDecoupler VE 3.5 1.7 3 0.73 1.14 0
RequestCounter M 3.57 5 13 1.17 1.90 1
RequestFilter M 4.38 7 18 1.33 2.73 1
RunController C 7.61 10.5 157 1.42 5.71 7
FEA unit
AcqCtrlAcqRequests VE 4.08 2.3 3 0.99 1.17 0
BETStateless VE 2.57 1.5 3 0.84 1.13 0
CmdStateless VE 4.05 2.2 3 0.8 1.09 0
CxaAdpMain C 7.44 5.5 13 1.09 2.08 0
DAcqCtrl M 7.95 3.7 16 0.95 1.27 1
DActivation VE 3.1 2.1 5 0.84 1.17 0
Decoupler VE 3 1.4 3 0.7 1.14 0
DWrapper VE 2.46 1.6 4 0.84 1.16 0
FEProxyVE M 16 3.9 13 0.9 1.12 0
FEProxyVEStateless VE 4.4 2.5 9 0.85 1.12 0
FSStateless VE 2.82 1.6 3 0.8 1.11 0
UGStateless VE 4.58 2.3 4 0.84 1.07 0

Table 3. Statistical data of ASD components

Therefore, we alternatively assessed the components using two other means.
First, we evaluated the models concerning the understandability and the review
easiness of the models, based on our “common sense”. Second, we chose to sys-
tematically analyze the generated code, using available code analysis tools and
techniques. The two steps are detailed below.

In the first step, we evaluated the readability of the design model of each
component, and assigned review codes based on the degree of complexity in
reviewing and comprehending the models: VE= Very easy, E=Easy, M= Mod-
erate, C= Complex and VC= Very Complex. Table 3 column 2 includes the
result of the assessment.

For example, the RunController component is considered to be complex since
it includes 23 input stimuli, for which a response is required to be defined in 16
states, and 10 state variables being used as predicates in almost all rule-cases.
Often, there are several rule-cases for a certain stimulus in a state to distinguish
combinations of values of variables.

A sample of a complex specification of rule-cases in the RunController design
model is depicted in Figure 3. Visible in the figure are only 5 rule-cases related to
the FailedSC stimulus event, which had been duplicated 31 times with different
combinations of predicate values in the original model.

On the other hand, the user-guidance UGStateless component of the FEA
unit is considered to be very easy since it contains only two states without the
use of any predicates. The component is enabled or disabled to allow the flow
of information traffic to other components. Although the component is easy

13

Fig. 3. An example of complex rule-cases

to read and to understand, it was the most time-consuming component when
verified using model checking, as can be seen in Table 1. The reason is that
the component receives a large number of callback events. Since they are stored
in a queue, FDR2 took substantial time to calculate all possible orders these
callbacks may take.

As a next step, we distributed the errors to the respective components, as
depicted in Table 3 column 8. As can be seen, most of the ASD errors reside
in the RunController component, unveiling an apparent correlation between the
complexity of the component and the errors found.

In the second step, we performed a static analysis of the generated code,
seeking similar correlations between complex code and the error density. The
motivation was that the complexity of the models can also be reflected in the
corresponding generated code. We used the SourceMonitor tool Version 3.2 [13]
to analyze the generated code since the features catered by the tool seemed to
be a good fit to our aim.

Table 3 includes some selected code metrics produced by the tool: the average
number of methods per class (Avg M/C), the average statements per method
(Avg S/M), the maximum cyclomatic complexity (Max CC), the average block
depth, and the average cyclomatic complexity (Avg CC).

As can be seen in the table, the RunController component also appears to be
very complex compared to other generated code of other components. Notable
is that the 157 max complexity of the RunController component resides in the
corresponding code of the rule-cases of the FailedSC stimulus event presented
earlier in Figure 3. In the code, the rule-cases are represented by a single method
(called FailedSC) containing 30 related if-else statements.

The amount of errors of the RunController component motivated us to study
the type of these errors and their evolution. Four of the seven errors had a similar
cause, namely missing updates of state variables before a state transitions. The
team solved these errors by adding more rule-cases with different predicates and
also additional state variables, which increased the complexity even more.

14

Another error was caused by missing storing values in the data part of the
component. Two errors were caused due to missing requirements, where external
verifiers tested some behavior not yet implemented in the units.

7 Quality and performance results

In this section, we evaluate the end quality and productivity of the developed
ASD units, by comparing them against the industry standards reported world-
wide in the literature. The best sources we could find are [16, 18, 20, 19], where
interesting statistics related to a number of projects of different types and sizes
are thoroughly described. We concentrate more on those statistics revealed for
software systems analogous to the Frontend.

In [26], Linger and Spangler compared the quality of code developed under
the Cleanroom software engineering formal method to the industry standard of
30-50 defects per KLOC. Jones in [16] presents an average of 1.7 coding errors
per function point (p. 102, Table 3.11), which roughly corresponds to a range of
14-58 defects per C++ KLOC (after consulting Table 3.5 on p. 78 of [16]).

Furthermore, McConnell presents in [19] (page 242, Table 21-11) a breakdown
of industry average defect rate based on software size, where our type of software
is estimated to include 4-100 defects per KLOC. In [18] McConnell explicitly
states an industry average of 1-20 defects per KLOC during the construction of
software (p. 521), and also mentioned a range of 10-20 defects per KLOC, in the
Microsoft Applications Division, during in-house testing. McConnell classifies the
expected error density based on the project size, where our system is expected
to include 4-100 errors per KLOC (p. 652, Table 27-1).

At Philips Healthcare, project and team leaders are often concerned with
delivering features and function planned and estimated at the start of the in-
cremental development, and not the size of the delivered code. However, the
corresponding delivered code should exhibit 6 allowable defects per KLOC with
an average productivity of 2 LOC per staff-hour, at the end of each increment.
Any code that includes more errors, during the in-house construction, can be
rejected and sent back to the developers, but this rarely happened.

From the data presented earlier in Table 2, we conclude that compared to the
industry standard introduced earlier the ASD technology could deliver quality
code, averaging the ASD code of the ASC and FEA units to only 0.36 defects
per KLOC. The entire code of the two units reveals an average of 0.86 defects
per KLOC.

Similar to comparing the quality of the units, we compare the productivity
in terms of the number of lines of code per staff-hour. McConnell in [18] (p. 522)
confirms that it is cheaper and better to develop high-quality software than it
is to develop and mend low-quality software, so that it was of no surprise that
a formal Cleanroom project could deliver nearly 5.61 LOC per staff-hour [27].
He also mentioned an industry average of 250-300 LOC per work-month (1.9-2.3
LOC per staff-hour), including all non-coding overhead.

15

Furthermore, McConnell in [18] (p. 653 Table 27-2) lists the expected pro-
ductivity based on the size of the software product. Given these statistics, the
productivity of software similar to the Frontend subsystem ranges between 700
to 10,000 LOC per staff-year with a nominal value of 2,000 LOC per staff-year
(i.e., 0.4 to 6.3 with a nominal value of 1.3 LOC per staff-hour).

In [16], Jones presents a productivity figure of 435 C++ ELOC per staff-
month (page 73, Table 3.4), which is equal to 3.3 ELOC per staff-hour. Further-
more, he provides figures for the average and best practices for systems software
(p. 339, Table 9.7). There, Jones presents a 4.13 and 8.76 as an average and
best-in-class function points per staff-month (which is equal to 1.7 and 3.5 as
an average and best-in-class LOC per staff-hour, after consulting Table 3.5 on
p. 78).

Cusumano et al., in [8] studied the data of a number of worldwide projects,
and found a median of 450 LOC per staff-month (3.41 LOC per staff-hour) for
the data sample related to the Japanese and European projects. The projects
include roughly 48 percent generated code.

Consequently, we can use the above measures to compare the productivity of
ASD developed units. The total time spent for developing the ASD components is
2378 hours, affording an average of 16 ELOC per staff-hour. The total time spent
for developing the two units, including the time spent for non-coding overhead,
is 5701 hours, which favorably yields 9.6 ELOC per staff-hour.

Finally, the developed units appeared to be stable and reliable against the
frequent changes of requirements. Team and project leaders were satisfied with
the results and decided to exploit the ASD technology for developing other parts
of the system.

8 Other formal techniques used in other projects

In this section we present a number of worldwide industrial projects that in-
corporated formal techniques in software development and report about their
achieved quality and productivity. We considered the work accomplished in [30]
and its references (over 70 publications) as a starting point to seek these projects
(the work includes a survey and a comprehensive review of formal methods ap-
plication in industry). Furthermore, we searched other projects using web search
engines and by visiting a number of home pages hosting the formal techniques.

We classified all publications based on the year of publication and reviewed
them from 2012 backwards until 2002 (10 years). Through this period we found
relatively very few publications reporting quantitative evidences that demon-
strate the impact of formal techniques in industry (most detailing case studies
of applying formal methods at different stages of software development plus the
performance of the formal method tools and not the performance of the projects).
This motivated us to search even backwards until late 80s’.

Table 4 summarizes the results by listing 14 projects that fit our goal. The
projects are listed in a chronological order, highlighting the used formal tech-
nique, the size of the developed software, the programming language used for

16

implementation, the defect density, the productivity in terms of the lines of code
produced per staff-hour, and the phase where the errors were counted.

Year Project Technology Size
(KLOC)

Prog. Lan-
guage

D/
KLOC

LOC/
man-
hour

Phase

1988 IBM COBOL
Structuring
Facility

Cleanroom 85 PL/I 3.4 5.6 Certification
test

1989 NASA Satel-
lite Control

Cleanroom 40 FORTRAN 4.5 5.9 Certification
test

1991 IBM System
Product

Cleanroom
(partial)

107 Mixed 2.6 3.7 All Testing

1996 MaFMeth VDM + B 3.5 C 0.9 13.6 Unit testing
1998 Line 14, Paris

metro
B method 86 Ada Zero - Testing + af-

ter release
1999 DUST-

EXPERT
VDM 17.5 and

15.8
C++ and
Prolog

≤1 - Testing + af-
ter release

1999 Siemens
FALKO

ASM 11.9 C++ 0.17 2.2 After release

2000 VDMTools VDM 23.3 C++ - 12.4 -
2000 TradeOne,

Tax Exem.
VDM 18.4 C++ 0.7 10 Integration

test
2000 TradeOne,

Option
VDM 64.4 C++ 0.67 7 Integration

test
2006 Tokeneer ID

Station
SPARK 10 Ada Zero 6.3 Reliability

test and after
delivery

2007 Shuttle, Paris
airport

B Method 158 Ada - - -

2011 Philips, Back-
end

ASD 23.2 C# 0.26 10.9 Along devel-
opment

2012 Philips, Fron-
tend

ASD 39.2 C++ 0.36 16.5 Subsystem
Test

Table 4. List of projects incorporated formal techniques in software development

Linger in [27] listed 15 projects where the Cleanroom formal engineering
method was used, summarizing the results achieved for each project. All devel-
oped systems exhibit quality figures that range between 0 to 5 errors per KLOC
with an average of 3.3 errors per KLOC. Compared to the mentioned range of
30 to 50 errors/KLOC in traditional development, Linger concluded that the
developed systems present remarkable quality.

From the 15 projects, three projects that reveal quality and productivity
figures are depicted in Table 4. The other remaining projects do not include
productivity figures so they were excluded from our consideration.

17

The first Cleanroom project, the IBM COBOL Structuring Facility, included
a team of 6 developers (it was their first development project). The product ex-
hibits 3.4 errors per KLOC and several major components were certified without
experiencing any error. The average productivity was 5.6 LOC per man-hour.

The second Cleanroom project was concerned with the development of a
Satellite controller carried out by the Software Engineering Laboratory at NASA.
The system included 40 KLOC of FORTRAN and certified with 4.5 errors/KLOC.
The productivity was 5.9 LOC/person-hour, resulting in an 80% improvement
over previous averages known in the laboratory.

The third Cleanroom project included 50 people, developed complex system
software at IBM using various programming languages. The system exhibited 2.6
errors/KLOC, where five of its eight components experienced no errors during
testing. The team used the Cleanroom method for the first time [12].

The MaFMeth project [5] incorporated VDM and the B method in software
development. The project included 3500 lines of C code, estimated by the devel-
opers from 8000 lines of generated code. The reported errors were found during
unit testing. Errors found during validation testing or errors found after releas-
ing the system were not available. Productivity was 13.6 LOC per hour with an
error density of 0.9 error per KLOC.

The B Method was used to develop safety critical components of the au-
tomatic train operating system, the metro line 14 in Paris [1, 4]. Members of
the development and validation teams were newcomers in formal methods, but
were supported by B experts, when needed. The developed components included
86,000 of mathematically verified Ada code and the system did not experience
any error during independent testing or after release. However, the numbers
regarding the effort spent for the entire development were missing except for
the correctness proofs. Nevertheless, the project was completed successfully and
went off according to the schedule [4].

The DUST-EXPERT project incorporated VDM to software development
and was successfully released with 15.8 KLOC of prolog and 17.5 KLOC of
C++ [7]. The system exhibited less than one error per KLOC. The errors were
found during coverage testing and after product release. Productivity was above
industry norms but there were no figures provided in the paper. Productivity
of Prolog was less than C++ due to the high-abstract level and the rigorous
way the core Prolog was generated. Developers involved were skilled in formal
methods.

The Abstract State Machines (ASM) were used in the development of a
software package, developed at Siemens, called FALKO [6]. The package was re-
designed from scratch due its complexity. The newly developed package included
roughly 11900 generated and manually written C++ LOC, developed in nearly
66 man-weeks effort. Two errors were found after product release and were fixed
directly in the generated code. The end quality was 0.17 and the productivity
was 2.2 LOC per hour.

In [17], VDM was used to formally develop some components of the VDM
toolset itself. Table 4 includes some metrics related to the VDM-C++ code

18

generator component, which was formally specified using VDM but manually
implemented using C++. The productivity was 12.4 LOC per hour but com-
pared with other components the productivity was less due to its complexity
and the involvement of new employees. No figures related to the errors found
were reported.

The VDM toolset was used for developing some components of a business
application, called TradeOne [10]. Two subsystems of the application were devel-
oped under the control of VDM++ where the first exhibits a productivity figure
of nearly 10 lines of C++ and Java per staff-hour while the second subsystem
6.1 lines of C++ per staff-hour. The error rates of both subsystems are less than
one error per KLOC. The errors were reported during integration testing and
there were no errors discovered after releasing the product.

The Tokeneer ID Station (TIS) project was carried out by Praxis High In-
tegrity Systems and accomplished by three part-time members over one year
using SPARK [3]. The overall productivity of the TIS core system was 6.3 LOC
of Ada per man-hour. The system did not exhibit any error whatsoever during
reliability testing and also since delivery.

The B Method was successful in developing software components of a driver-
less shuttle at Paris Roissy Airport [1, 2]. The developed software included 158
KLOC of generated code. The generated code includes lots of duplications due
to the lack of sharing in the code and the intermediate steps performed by the
code generator. The code is estimated to be 60 KLOC in size after tuning. How-
ever, there was no data available about the total time spent in development or
the number or type of errors encountered along the construction of the software.

To this end, we found it rather difficult to compare the quality and pro-
ductivity of these projects since they were developed in different programming
languages and represent distinct software domains. Furthermore, the reported
errors were counted at different stages of each project.

But as a general conclusion we can say that the formal techniques used in
these projects had favorably increased the productivity and the quality of the
developed systems although there were no discussions regarding the weaknesses
and the main difficulties encountered when applying the techniques.

Nevertheless, given the level of the gained quality and productivity it is
worth investigating why most organizations do not incorporate formal engineer-
ing methods in their development processes. Since the 80’s, it is still difficult to
see whether the use of these techniques in industry is increasing, decreasing or
remaining constant over time.

9 Conclusions

In this paper we demonstrated a formal component-based approach called ASD
and how its formal techniques were exploited for developing control components
of two software units of an X-ray machine, developed at Philips Healthcare. We
elaborated more on the issues encountered during its application. The result of
our investigation shows that the ASD technology could effectively deliver quality

19

software with high productivity. Below, we answer the questions raised in the
introduction.

Can these formal techniques deliver product code? And if so, is the code of
high or low quality? Compared to the industry standards of Philips and those
reported worldwide, the ASD technology could clearly deliver product code that
exhibits good quality figures. But, obtaining this level of quality depended on
many factors like the experience of users and the level of abstractions in designs,
for instance.

We highlighted the benefits of the ASD generated code. Compared to the
manually written code, the generated code is easy to read and understand. It
follows the same coding standard and is implemented using well-known, highly
recommended object-oriented patterns. Any highly skilled programmers may use
the same patterns if the state machines were manually implemented. However,
a corresponding manually written code may contain less lines of code compared
to the generated code but this depends on the quality of the programmer. The
main concern here is that the generated code exhibit fewer defects since it is
formally verified. Furthermore, the productivity is high due to the absence of
integration and testing efforts.

Do they require more time in development compared to traditional develop-
ment? A common view in industry is that formal methods consume plenty of
the development time and often cause delays to software delivery. But, on the
contrary, the ASD technology could save the development time, although a lot
of time was spent in the pre-study period to learn the fundamentals of the tech-
nology. Experiences show that after acquiring the learning curve, experienced
ASD teams with sufficient knowledge of the technology and the context can
achieve considerably shorter development cycles. This is because the ASD tech-
nology systematically allows preventing problems earlier rather than detecting
and fixing problems at later stages, which is time-consuming and very costly.

What about the productivity using these techniques? As can be inferred from
the presented data, there is some indication of improved productivity compared
to industrial standards. This resulted from the fact that developers were only
concerned with models, from which verified code is generated automatically with
the click of a button, and hence reducing implementation overhead. Another
important fact is that less or even no time was spent for integration and manual
testing, which are usually time consuming and uncertain. The time devoted to
bug fixing at the end of development is also reduced.

Do the techniques require specialized mathematicians for a successful appli-
cation? Some of the team members had formal methods skills limited to few
courses at the university level, but others had no previous knowledge in formal
methods at all. The ASD technology was very utilizable since all formal details
were hidden from end-users. Our experiences also show that software engineers
in industry are often very skilled and proficient in programming but not as well
at constructing abstract designs and formal specification and verification.

Do these techniques always produce zero-defect software? If not, which type
of errors is expected and how many compared to industrial standards? As we

20

saw before, although the components were formally specified and verified, still
errors were found during testing. Hence, the used techniques do not always lead
to defect-free software. However, our study shows that the formally developed
software contains very few defects.

Which artifacts should we consider when evaluating these techniques empir-
ically? Should we include the formal models or the related code? Evaluation
requires a product in hand to be analyzed so that a challenging task was an-
alyzing the product and the complexity at the models level. As there was no
systematic means to analyze the models, we analyzed the corresponding code.
We found that complex models do not necessarily produce huge state space but
they may be error prone. An interesting future direction is to develop tools and
techniques for establishing static analysis of models.

References

1. J.-R. Abrial. Formal methods: Theory becoming practice. 13(5):619–628, may
2007. http://www.jucs.org/jucs_13_5/formal_methods_theory_becoming.

2. F. Badeau and A. Amelot. Using b as a high level programming language in an
industrial project: roissy val. In Proceedings of the 4th international conference on
Formal Specification and Development in Z and B, ZB’05, pages 334–354, Berlin,
Heidelberg, 2005. Springer-Verlag.

3. J. BARNES, R. CHAPMAN, R. JOHNSON, J. WIDMAIER, D. COOPER, and
B. EVERETT. Engineering the tokeneer enclave protection system. In Proceedings
of the 1st International Symposium on Secure Software Engineering, 2006.

4. P. Behm, P. Benoit, A. Faivre, and J.-M. Meynadier. Meteor: A successful ap-
plication of b in a large project. In Proceedings of the Wold Congress on Formal
Methods in the Development of Computing Systems-Volume I - Volume I, FM ’99,
pages 369–387, London, UK, 1999. Springer-Verlag.

5. J. Bicarregui, J. Dick, and E. Woods. Quantitative analysis of an application of
formal methods. In Proceedings of the Third International Symposium of Formal
Methods Europe on Industrial Benefit and Advances in Formal Methods, FME ’96,
pages 60–73, London, UK, 1996. Springer-Verlag.

6. E. Börger, P. Päppinghaus, and J. Schmid. Report on a practical application of
asms in software design. In Proceedings of the International Workshop on Abstract
State Machines, Theory and Applications, ASM ’00, pages 361–366, London, UK,
2000. Springer-Verlag.

7. T. Clement, I. Cottam, P. Froome, and C. Jones. The development of a commer-
cial “shrink-wrapped application” to safety integrity level 2: The dust-experttm
story. In Proceedings of the 18th International Conference on Computer Computer
Safety, Reliability and Security, SAFECOMP ’99, pages 216–225, London, UK,
1999. Springer-Verlag.

8. M. Cusumano, A. MacCormack, C.F. Kemerer, and B. Crandall. Software de-
velopment worldwide: The state of the practice. IEEE Softw., 20(6):28–34, Nov.
2003.

9. FDR homepage. http://www.fsel.com, 2011.
10. J. Fitzgerald, P. Larsen, P. Mukherjee, N. Plat, and M. Verhoef. Validated Designs

For Object-oriented Systems. Springer-Verlag TELOS, Santa Clara, CA, USA,
2005.

21

11. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of
reusable object-oriented software. Addison-Wesley Professional, 1995.

12. P. A. Hausler. A recent cleanroom success story: The redwing project. In Sev-
enteenth Annual Software Engineering Workshop, NASA Goddard Space Flight
Center, Greenbelt, MD, December 1992.

13. S. homepage. http://www.campwoodsw.com/sourcemonitor.html.
14. J. Hooman. Specification and Compositional Verification of Real-Time Systems,

volume 558 of Lecture Notes in Computer Science. Springer, 1991.
15. J. Hooman, R. Huis in ’t Veld, and M. Schuts. Experiences with a compositional

model checker in the healthcare domain. In FHIES 2011, pages 93–110. LNCS
7151, Springer-Verlag, 2012.

16. C. Jones. Software assessments, benchmarks, and best practices. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2000.

17. P. Larsen. Ten years of historical development ”bootstrapping” VDMTools. J.
UCS, pages 692–709, 2001.

18. S. McConnell. Code Complete, Second Edition. Microsoft Press, Redmond, WA,
USA, 2004.

19. S. McConnell. Software Estimation: Demystifying the Black Art. Microsoft Press,
Redmond, WA, USA, 2006.

20. H. Mills. Certifying the correctness of software. In Proceedings of the 25th HICSS,
pages 373 – 381, Hawai, HI, 1992.

21. A. Osaiweran, M. Schuts, J. Hooman, and J.H. Wesselius. Incorporating for-
mal techniques into industrial practice: an experience report. In Proceedings
of FEASCA 2011 Workshop, page (In press), Tallinn, Estonia, March 31, 2012.
EPTCS.

22. S. J. Prowell and J. H. Poore. Foundations of sequence-based software specification.
IEEE Trans. on Soft. Eng., 29(5):417–429, 2003.

23. J.F. Groote, A. Osaiweran, and J.H. Wesselius. Analyzing the effects of formal
methods on the development of industrial control software. In ICSM 2011, pages
467–472, 2011.

24. J.F. Groote, A. Osaiweran, and J.H. Wesselius. Experience report on developing
the front-end client unit under the control of formal methods. In Proceedings of
the 27th ACM SAC-SE, page (In press), Riva del Garda, Italy, March 25-29, 2012.
ACM.

25. J.F. Groote, T.W.D.M. Kouters, and A. Osaiweran. Specification guidelines to
avoid the state space explosion problem. In FSEN, pages 112–127, 2011.

26. R.A. Sprangler and R.C. Linger. The ibm cleanroom software engineering technol-
ogy transfer program. In Proceedings of the SEI Conf. on Soft. Eng. Edu., pages
380–394, London, UK, UK, 1992. Springer-Verlag.

27. R.C. Linger. Cleanroom software engineering for zero-defect software. In Proceed-
ings of ICSE 1993, pages 2–13, Los Alamitos, CA, USA, 1993. IEEE Computer
Society Press.

28. A. Roscoe. Understanding Concurrent Systems. Springer, 2010.
29. Verum homepage. http://www.verum.com, 2011.
30. J. Woodcock, P. Larsen, J. Bicarregui, and J. Fitzgerald. Formal methods: Practice

and experience. ACM Computing Surveys, 41(4):1–36, 2009.

Science Reports Department of Mathematics and Computer Science
 Technische Universiteit Eindhoven

If you want to receive reports, send an email to: wsinsan@tue.nl (we cannot guarantee the availability of the
requested reports).

In this series appeared (from 2009):

09/01 Wil M.P. van der Aalst, Kees M. van Hee, Compositional Service Trees
 Peter Massuthe, Natalia Sidorova and
 Jan Martijn van der Werf

09/02 P.J.l. Cuijpers, F.A.J. Koenders, Queue merge: a Binary Operator for Modeling Queueing Behavior
 M.G.P. Pustjens, B.A.G. Senders,
 P.J.A. van Tilburg, P. Verduin

09/03 Maarten G. Meulen, Frank P.M. Stappers Breadth-Bounded Model Checking
 and Tim A.C. Willemse

09/04 Muhammad Atif and MohammadReza Formal Specification and Analysis of Accelerated Heartbeat Protocols
 Mousavi

09/05 Michael Franssen Placeholder Calculus for First-Order logic

09/06 Daniel Trivellato, Fred Spiessens, POLIPO: Policies & OntoLogies for the Interoperability, Portability,
 Nicola Zannone and Sandro Etalle and autOnomy

09/07 Marco Zapletal, Wil M.P. van der Aalst, Pattern-based Analysis of Windows Workflow
 Nick Russell, Philipp Liegl and
 Hannes Werthner

09/08 Mike Holenderski, Reinder J. Bril Swift mode changes in memory constrained real-time systems
 and Johan J. Lukkien

09/09 Dragan Bošnački, Aad Mathijssen and Behavioural analysis of an I²C Linux Driver
 Yaroslav S. Usenko

09/10 Ugur Keskin In-Vehicle Communication Networks: A Literature Survey

09/11 Bas Ploeger Analysis of ACS using mCRL2

09/12 Wolfgang Boehmer, Christoph Brandt Evaluation of a Business Continuity Plan using Process Algebra
 and Jan Friso Groote and Modal Logic

09/13 Luca Aceto, Anna Ingolfsdottir, A Rule Format for Unit Elements
 MohammadReza Mousavi and
 Michel A. Reniers

09/14 Maja Pešić, Dragan Bošnački and Enacting Declarative Languages using LTL: Avoiding Errors and
 Wil M.P. van der Aalst Improving Performance

09/15 MohammadReza Mousavi and Proceedings of Formal Methods 2009 Doctoral Symposium
 Emil Sekerinski, Editors

09/16 Muhammad Atif Formal Analysis of Consensus Protocols in Asynchronous Distributed
 Systems

09/17 Jeroen Keiren and Tim A.C. Willemse Bisimulation Minimisations for Boolean Equation Systems

09/18 Kees van Hee, Jan Hidders, On-the-fly Auditing of Business Processes
 Geert-Jan Houben, Jan Paredaens,
 Philippe Thiran

10/01 Ammar Osaiweran, Marcel Boosten, Analytical Software Design: Introduction and Industrial Experience Report
 MohammadReza Mousavi

10/02 F.E.J. Kruseman Aretz Design and correctness proof of an emulation of the floating-point operations
 of the Electrologica X8. A case study

mailto:wsinsan@tue.nl

10/03 Luca Aceto, Matteo Cimini, Anna On Rule Formats for Zero and Unit Elements
 Ingolfsdottir, MohammadReza
 Mousavi and Michel A. Reniers

10/04 Hamid Reza Asaadi, Ramtin Khosravi, Towards Model-Based Testing of Electronic Funds Transfer Systems
 MohammadReza Mousavi, Neda Noroozi

10/05 Reinder J. Bril, Uğur Keskin, Schedulability analysis of synchronization protocols based on overrun without
 Moris Behnam, Thomas Nolte payback for hierarchical scheduling frameworks revisited

10/06 Zvezdan Protić Locally unique labeling of model elements for state-based model differences

10/07 C.G.U. Okwudire and R.J. Bril Converting existing analysis to the EDP resource model

10/08 Muhammed Atif, Sjoerd Cranen, Reconstruction and verification of group membership protocols
 MohammadReza Mousavi

10/09 Sjoerd Cranen, Jan Friso Groote, A linear translation from LTL to the first-order modal µ-calculus
 Michel Reniers

10/10 Mike Holenderski, Wim Cools Extending an Open-source Real-time Operating System with Hierarchical
 Reinder J. Bril, Johan J. Lukkien Scheduling

10/11 Eric van Wyk and Steffen Zschaler 1st Doctoral Symposium of the International Conference on Software Language
 Engineering (SLE)

10/12 Pre-Proceedings 3rd International Software Language Engineering Conference

10/13 Faisal Kamiran, Toon Calders and Discrimination Aware Decision Tree Learning
 Mykola Pechenizkiy

10/14 J.F. Groote, T.W.D.M. Kouters and Specification Guidelines to avoid the State Space Explosion Problem
 A.A.H. Osaiweran

10/15 Daniel Trivellato, Nicola Zannone and GEM: a Distributed Goal Evaluation Algorithm for Trust Management
 Sandro Etalle

10/16 L. Aceto, M. Cimini, A.Ingolfsdottir, Rule Formats for Distributivity
 M.R. Mousavi and M. A. Reniers

10/17 L. Aceto, A. Birgisson, A. Ingolfsdottir, Decompositional Reasoning about the History of Parallel Processes
 and M.R. Mousavi

10/18 P.D. Mosses, M.R. Mousavi and Robustness os Behavioral Equivalence on Open Terms
 M.A. Reniers

10/19 Harsh Beohar and Pieter Cuijpers Desynchronisability of (partial) closed loop systems

11/01 Kees M. van Hee, Natalia Sidorova Refinement of Synchronizable Places with Multi-workflow Nets -
 and Jan Martijn van der Werf Weak termination preserved!

11/02 M.F. van Amstel, M.G.J. van den Brand Using a DSL and Fine-grained Model Transformations to Explore the boundaries of
 and L.J.P. Engelen Model Verification

11/03 H.R. Mahrooghi and M.R. Mousavi Reconciling Operational and Epistemic Approaches to the Formal Analysis of
 Crypto-Based Security Protocols

11/04 J.F. Groote, A.A.H. Osaiweran and Benefits of Applying Formal Methods to Industrial Control Software
 J.H. Wesselius

11/05 Jan Friso Groote and Jan Lanik Semantics, bisimulation and congruence results for a general stochastic
 process operator

11/06 P.J.L. Cuijpers Moore-Smith theory for Uniform Spaces through Asymptotic Equivalence

11/07 F.P.M. Stappers, M.A. Reniers and Transforming SOS Specifications to Linear Processes
 S. Weber

11/08 Debjyoti Bera, Kees M. van Hee, Michiel A Component Framework where Port Compatibility Implies Weak Termination
 van Osch and Jan Martijn van der Werf

11/09 Tseesuren Batsuuri, Reinder J. Bril and Model, analysis, and improvements for inter-vehicle communication
 Johan Lukkien using one-hop periodic broadcasting based on the 802.11p protocol

11/10 Neda Noroozi, Ramtin Khosravi, Synchronizing Asynchronous Conformance Testing
 MohammadReza Mousavi
 and Tim A.C. Willemse

11/11 Jeroen J.A. Keiren and Michel A. Reniers Type checking mCRL2

11/12 Muhammad Atif, MohammadReza Formal Verification of Unreliable Failure Detectors in Partially
 Mousavi and Ammar Osaiweran Synchronous Systems

11/13 J.F. Groote, A.A.H. Osaiweran and Experience report on developing the Front-end Client unit
 J.H. Wesselius under the control of formal methods

11/14 J.F. Groote, A.A.H. Osaiweran and Ananlyzing a Controller of a Power Distribution Unit
 J.H. Wesselius Using Formal Methods

11/15 John Businge, Alexander Serebrenik Eclipse API Usage: The Good and The Bad
 and Mark van den Brand

11/16 J.F. Groote, A.A.H. Osaiweran, Investigating the Effects of Designing Control Software
 M.T.W. Schuts and J.H. Wesselius using Push and Poll Strategies

11/17 M.F. van Amstel, A. Serebrenik Visualizing Traceability in Model Transformation Compositions
 And M.G.J. van den Brand

11/18 F.P.M. Stappers, M.A. Reniers, Dogfooding the Structural Operational Semantics of mCRL2
 J.F. Groote and S. Weber

12/01 S. Cranen Model checking the FlexRay startup phase

12/02 U. Khadim and P.J.L. Cuijpers Appendix C / G of the paper: Repairing Time-Determinism in
 the Process Algebra for Hybrid Systems ACP

12/03 M.M.H.P. van den Heuvel, P.J.L. Cuijpers, Revised budget allocations for fixed-priority-scheduled periodic resources
 J.J. Lukkien and N.W. Fisher

12/04 Ammar Osaiweran, Tom Fransen, Experience Report on Designing and Developing Control Components
 Jan Friso Groote and Bart van Rijnsoever using Formal Methods

12/05 Sjoerd Cranen, Jeroen J.A. Keiren and A cure for stuttering parity games
 Tim A.C. Willemse

12/06 A.P. van der Meer CIF MSOS type system

12/07 Dirk Fahland and Robert Prüfer Data and Abstraction for Scenario-Based Modeling with Petri Nets

12/08 Luc Engelen and Anton Wijs Checking Property Preservation of Refining Transformations for
 Model-Driven Development

12/09 M.M.H.P. van den Heuvel, M. Behnam, Opaque analysis for resource-sharing components in hierarchical real-time systems
 R.J. Bril, J.J. Lukkien and T. Nolte - extended version –

12/10 Milosh Stolikj, Pieter J. L. Cuijpers and Efficient reprogramming of sensor networks using incremental updates
 Johan J. Lukkien and data compression

12/11 John Businge, Alexander Serebrenik and Survival of Eclipse Third-party Plug-ins
 Mark van den Brand

12/12 Jeroen J.A. Keiren and Modelling and verifying IEEE Std 11073-20601 session setup using mCRL2
 Martijn D. Klabbers

12/13 Ammar Osaiweran, Jan Friso Groote, Evaluating the Effect of Formal Techniques in Industry
 Mathijs Schuts, Jozef Hooman
 and Bart van Rijnsoever

	TITEL.PG12-13
	Blanco
	CSR-12-13
	Blanco
	PUBL.LS4csr 2009 tm

