

Analyzing a controller of a power distribution unit using formal
methods
Citation for published version (APA):
Groote, J. F., Osaiweran, A. A. H., & Wesselius, J. H. (2011). Analyzing a controller of a power distribution unit
using formal methods. (Computer science reports; Vol. 1114). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2011

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Jul. 2024

https://research.tue.nl/en/publications/f077db4c-bef7-4760-ba79-286053103e74

Analyzing a Controller of a Power Distribution

Unit Using Formal Methods

J.F. Groote1, A.A.H. Osaiweran1, and J.H. Wesselius2
1 Eindhoven University of Technology, Eindhoven, The Netherlands

2 Philips Healthcare, BU Interventional X-ray, Best, The Netherlands
{j.f.groote, a.a.h.osaiweran}@tue.nl, jacco.wesselius@philips.com

Abstract

This paper reports on the steps to formally verify the behavior of a controller of a power
distribution unit (PDU) using the Analytical Software Design (ASD) method. The controller
of the underlying PDU mainly controls the distribution of power and related network messages
to a number of attached PCs and devices of X-ray systems. The behavioral correctness of the
controller is critical in order to provide the clinical users the expected behavior of the system.
As a result of the behavioral verification, two previously unrevealed errors were identified
within the design of the PDU controller. According to the development team of the PDU the
work has had a major benefit, locating errors that would have been hard to find otherwise by
traditional testing.

1 Introduction

Philips Healthcare is a leading provider of highly sophisticated computerized X-Ray systems.
These systems consist of a number of distributed devices and computers that require a reliable
source of power control. The distribution of power to these components is established through a
power distribution unit (PDU) attached to the main source of power in hospitals.

External users of the system interact with the PDU through an external console, which includes
a number of buttons. The console is attached to an embedded controller that controls the flow
of power to the components through a number of power taps. The controller communicates with
the devices via a network regarding required changes to the powering status of the system. If the
PDU does not function correctly components may unpredictably be with or without power when
they desire, rendering the system useless or even dangerous.

Establishing the functional correctness of such type of systems is known to pose real challenges
to conventional testing methods, due to the concurrent nature of the devices and the non-trivial
interactions among them. It requires a running system in a real environment, and it takes hours
or days to execute a single run. Therefore, techniques for systematic error detection and early
defect prevention are encouraged, especially to reduce costs, efforts and time devoted to detecting
errors and correcting them at later stages of industrial projects.

The above necessities motivate this work, which in particular aims at formally modeling and
verifying the behavior of the PDU controller and the surrounding devices on the boundary using
the Analytical Software Design method [1, 7, 13].

The ASD method combines academic formal mathematical methods such as CSP (Communi-
cating Sequential Processes) [12] and the model checker FDR (Failures-Divergence Refinement)
[4] with practical development methods such as the component-based software development tech-
nique [3]. The ASD method forces specification completeness during the specification process of
the behavior of components, and allows formal behavioral verification using model checking and
ensuring refinement of behavior.

1

ASD has been applied to the development of complex systems, and some statistics regarding
its application to industrial control software are available [1, 7].

Throughout this paper we illustrate the verification steps of a typical, not too complex, system
as a guide for others who also wish to apply formal verification. The system included two previously
uncovered errors, detected via model checking and specification review, prior to implementation,
at the phase where designers and architects explored various design alternatives.

As will be demonstrated below, specification completeness, specification review and formal
behavioral verification provided a key benefit by easily locating design errors in the PDU controller
that would be hard to find through conventional testing.

This paper is organized as follows. Section 2 introduces the context of the PDU controller.
In Section 3 we give an overview of the ASD method to the extent needed in this paper. Our
experimental method of modeling and verifying the PDU controller is demonstrated in Section 4,
where we further explain the unveiled errors and how precisely they had been discovered. The
efforts of modeling and verifying the PDU controller are described in Section 5.

2 The design description

In this section, we provide an overview of the design context, hardware and software components,
and the signals exchanged through the system. Figure 1 depicts the structure of an X-ray system
that comprises a number of distributed devices and PCs connected to a Power Distribution Unit
(PDU).

The PDU is attached to an external power source, via a mains switch. The PDU is responsible
for distributing power and related communication signals to the attached devices and PCs. Below
we detail these components to the extent relevant for this work.

PDU

Power Control

Unit

Power Distribution

Unit

PowerOn

PowerOff

EmergencyOff

External mains power

Power control interface

(Ethernet control network)

Geo PC
Control

PC

Ethernet

control

network

Movable

segment

PC PC PC PC PC

Movable

segment

Power taps

Permanent

tap

Switchable

tap

STOP STOP

Figure 1: Power, network, and device distribution

The Power Distribution Unit The PDU interacts with its external users by a user console,
which contains a number of buttons: PowerOn, PowerOff, and EmergencyOff. The PDU also
comprises a base module that hosts a number of power taps. It further houses internal units: a
Power Control Unit, which controls the flow of network messages, and a Power Distribution Unit,
which controls the distribution of power (Figure 1).

Through switching the power taps the PDU controls the flow of power to the devices and the
PCs. The type of power taps can either be switchable or permanent. The switchable taps can

2

potentially be switched on/off by the PDU upon requests of external users, issued by pressing
the buttons. For example, when the X-ray system is operational and an external user presses the
PowerOff button for 3 seconds, all switchable taps are switched off so that all attached components
are powered off except those attached to the permanent taps (powering off the system in an orderly
fashion).

The permanent taps constantly supply power to a number of components that must always be
up-and-running (e.g., for remote access purposes). The permanent taps can also be switched off
in some special cases. For example the PDU switches off all taps when the external user presses
the PowerOff button for 10 seconds (forcing all components to be powered off).

The PDU comprises a controller that includes a state machine for maintaining the states of
the system. The state machine is introduced below.

For supplying power to the system in case of failure of the main source of power in the field,
an uninterruptible power supply (UPS) is attached to the PDU.

Devices and PCs A number of devices and PCs are connected to the PDU, each of which
has distinct responsibilities for achieving the required clinical application. All components exhibit
the same start-up and shutdown behavior (e.g., powering up, starting the operating system (OS)
and the clinical applications, shutting down OS, etc.), controlled systematically by the PDU. The
high-level behavior of these devices by means of state machines are introduced below.

All PCs depicted in Figure 1 are attached to switchable taps except the ControlPC which is
attached to a permanent tap.

The GeoPC (Geometry PC) is responsible for controlling motorized movements of a number
of movable parts, such as the table where patients can lay and the X-ray stands. The movable
parts are supplied with emergency Stop buttons, attached to their bodies. The clinical users can
press these buttons to stop any movement in order to avoid any potential damage that might
occur because of the motorized movements. Upon pressing a Stop button, the GeoPC instructs
the PDU to switch off the taps connected to the motor drives of the movable parts.

PDUswitchOn

(PDU mains switch on)

PDUswitchOff

(PDU mains switch off)

System_On

powerOn

powerOn

System_Standby

forcedPowerOff

powerOff

powerOn

System_Off

controlPowerOff

PDU_On

Emergency_Off

emergencyOff
powerOn

Geo_Stop

stop

powerOn

Operational

2

1

3

4

5

6 7

8

9

10

11

12
PDU_Off

Figure 2: The high-level behavior of the PDU [10]

External user commands As a consequence of pressing the buttons on the user console,
user commands are generated and received by the PDU controller. The controller processes the
commands and, depending on the command and the state, decides to send messages (introduced
below) around to the devices and the PCs through the network or to switch the taps on/off.

3

Transition Activity
1 Boot PDU; the PDU switches on all permanent power taps; the ControlPC

is operational.
2 The PDU switches on all switchable taps, one by one to avoid a big inrush

current; all devices are operational.
3 The PDU broadcasts a “shutdown” message to shutdown all control devices

except the ControlPC; the PDU switches off all switchable taps when power
load is below a threshold or when the timer expires.

4 The PDU immediately switches off all power taps.
5 The PDU broadcasts a “shutdown” message to shutdown all control devices

including the ControlPC; the PDU switches off all taps when power load is
below threshold or when the timer expires.

6 The PDU switches on all taps, one by one to avoid a big inrush current; all
devices are started (all devices are operational including the ControlPC).

7 The PDU broadcasts a “restart” message; the operating systems of all control
devices are restarted.

8 Disconnect the PDU internal power bus and UPS.
9 The PDU switches on all taps, one by one to avoid a big inrush current; all

devices are started (all devices are operational including the ControlPC).
10 The PDU switches off the power taps that supply motor drives of movable

parts.
11 The PDU switch on the power taps that supply motor drives of movable parts.
12 The PDU is switched off; all taps are switched off.

Table 1: The activities required for each transition of the PDU state machine [10]

By pressing the PowerOn button, a powerOn command is fired. Pressing the PowerOff button
for 3 seconds generates a powerOff command while pushing the button for more than 10 seconds
fires a forcedPowerOff command. The EmergencyOff completely cuts down any source of power
(including the UPS) to the system, via an internal switch, positioned inside the PDU. The Emer-
gencyOff button is pressed to ensure that the system is immediately powered off in the presence
of calamities.

Internal system messages The PDU can send and receive the following messages through the
network: shutdown, restart, controlPowerOff, and stop.

The shutdown and restart are broadcast messages sent from the PDU to the PCs. The shutdown
message instructs the devices to gradually shutdown their running applications and then the
operating systems. The restart message requests the PCs to reboot their operating systems.

ControlPowerOff is a message sent from the ControlPC to the PDU, while stop is a message
sent from the GeoPC to the PDU. Through the controlPowerOff message users of the ControlPC
can instruct the PDU to systematically power off the entire system. The stop signal is sent by
the GeoPC when any of the Stop buttons on the movable parts is pressed, so the PDU directly
switches off all taps that supply the motor drives. The motor drives are powered on again when
the user presses the powerOn button on the console.

The state transition diagrams Figure 2 depicts the high-level behavior of the PDU controller
from a system-level perception after implementation details are abstracted away [10]. The user and
system signals introduced earlier constitute stimuli and responses of the state machine. In addition
to these events, the PDUswitchOn and PDUswitchOff events are used for modeling purposes to
indicate switching the external mains switch on and off, respectively.

The effects of these signals on the behavior of the system differ upon the present state of
the PDU. For example, when the PDU is in System Standby and the powerOn signal is received,

4

it switches on the switchable taps, so that the attached PCs and devices start up. But, if the
PDU is in the System On state and the powerOn signal is received, then the PDU broadcasts the
restart message across the network. The detailed activities required for each transition of the state
machine of Figure 2 are depicted in Table 1.

powerOn

shutdown

restart

OperationalOS_Shutdown

Powered_On

powerOff

CR_PC_Off

CB.controlPowerOff

powerOn

shutdown

restart

OperationalOS_Shutdown

Powered_On

powerOff

GeoPC_Off

CB.stop

powerOn

shutdown

restart

OperationalOS_Shutdown

Powered_On

powerOff

PC_Off

Figure 3: The external behavior of all PCs

Here, the PDU, the devices and the PCs are assumed to be well functioning. All error handling
details or recovery operations are removed from the state machine.

The state machine of Figure 2 depicts only the stable states of the system. The transiting states
between any two stable states are excluded from the diagram. For example, when the PDU is off
and then is switched on, the PDU transits to the System Standby state, where the ControlPC is
assumed to be successfully started and fully operational. The intermediate transiting state between
the PDU Off and the System Standby state that ensures that the ControlPC is fully operational is
removed. The same assumption applies to other states. For example, the System On state implies
the situation where all PCs are fully operational. All intermediate transiting states, which ensure
that the PCs are fully operational, leading to System On are removed.

We introduce the external behavior of the PCs with respect to the PDU. All PCs exhibit
almost the same startup and shutdown behavior, see Figure 3. Initially, they are all in the Off
state. Once a tap of a PC is switched on, the PC automatically launches its operating system
and then starts up its clinical applications. When the applications are successfully started, the
PC transits to the Operational state; this is indicated by the powerOn transition from the Off to
the Operational states. If a PC receives a restart message at the Operational state, it restarts the
operating system and the applications. But, if the shutdown message is received, the PC closes all
running applications and shuts the operating system down.

The ControlPC and the GeoPC have two additional transitions:CB.controlPowerOff and CB.stop.
The CB.controlPowerOff and CB.stop signals are callback (CB) events sent to the PDU, where
the first indicates that the user of the ControlPC has requested the PDU to entirely power off the
system, and the second indicates that the Stop button on a movable segment has been pressed.

The movable parts can be powered on or off by the PDU. They don’t receive or send the PDU
any signal through the network. The behavior of these segments is straightforward, and hence the
corresponding specification is omitted (two actions of powerOff and powerOn affecting two states
Segmentx Off and Segmentx On, where x is the device id).

3 Analytical Software Design

We describe the Analytical Software Design (ASD) technology to the limit required for this article.
ASD is a model-based technology that combines formal mathematical methods such as Sequence-
based Specification (SBS) [2], Communicating Sequential Processes (CSP) [12] and its model
checker FDR (Failures-Divergence Refinement) [4] with component-based software development
[3].

5

3.1 The specification of ASD models

Typical ASD components are structured in levels (e.g., distributed in a hierarchy) to facilitate
constructing and verifying components in isolation. To develop any ASD component two basic
types of models are required: an interface model and a design model. The interface model is
created first. It precisely describes the required external behavior exposed to the clients of the
component at an upper level, such that all internal interactions with used components at a lower
level are not considered. The design model describes the concrete behavior including all internal
interactions with used components. The description of both models is supported by an industrial
tool, called the ASD ModelBuilder.

Behavioral

verification

Callback to the

PDU queue

Internal

event

Source code

generation

Figure 4: The ASD interface model of the GeoPC

The ASD models are state machines described in a tabular format, called the SBS tables. An
example of the tabular specification related to the GeoPC state machine of Figure 3 is depicted
in Figure 4. As can be seen from the specification, each table is a state, where all potential input
stimuli are listed in rule cases (rows of tables). A rule case comprises a number of items, such
as an interface (channel), a stimulus, predicate (conditions on the stimulus), responses, state (or
predicate) updates, a next state, comments, and tags of informal requirements.

The set of stimuli of a component consists of events invoked by clients located at an upper
level plus callback events sent by used components at a lower level. The set of responses includes
events sent to used components plus callback events sent to upper client components. Calls from
client components to used components are synchronous, whereas callback events sent by used
components to the client components are asynchronous and stored locally in the FIFO queue of
the target client component.

For specification completeness, the set of user-defined responses is extended with special pur-
pose responses: Illegal, Blocked, and Null. The Illegal response denotes that invoking a stimulus
is illegal. The Blocked response denotes that the corresponding stimulus cannot happen. The
Null response denotes no action is required when the stimulus is invoked: consuming a call, for
instance.

In all presented models throughout this paper the NullRet response indicates the completion
of the external request. A channel postfixed by INT denotes an internal channel, not visible to the
client. The corresponding stimulus event of an internal channel denotes spontaneous event stim-
ulated by the component internally, not synchronized with any component. A channel postfixed
by CB indicates a callback stimulus/response event received/sent from/to a queue of the client.

6

To clarify the modeling conventions above, consider Figure 4. The NullRet of rule case 3 indi-
cates that the powerOn event is successfully completed, and the GeoPC transits to the Operational
state. The spontaneous stop stimulus of the IGeoPC INT channel of rule case 14 denotes that the
GeoPC stop button has internally been pressed, and as a response the GeoPC notifies the PDU
controller by sending the IGeoPC CB.stop callback event to the queue of the PDU.

The yoked internal channel of rule case 14 indicates that the number of allowed callbacks (listed
in the corresponding response list of the rule case) in the queue is restricted. In our case study
only one stop event and one controlPowerOff event are allowed to be stored in the queue of the
PDU at any time. Hence, the queue can contain two messages at maximum.

3.2 The formal verification of ASD models

ASD components are specified and formally verified in isolation to mitigate the state space explo-
sion problem, which may occur if all concrete components are verified at once. The specification
and verification of ASD components are straightforward and performed as follows. First, the in-
terface model of the component being developed is created, and then the interface models of the
used components at a lower level are constructed. Second, the design model of the component is
created such that all interactions with the used interfaces are described.

Upon the completion of the specification of ASD design and interface models, the formal behav-
ioral verification using model checking can be established. From the tabular specification of ASD
models, a translation to CSP models is obtained automatically by the ModelBuilder application.
Then, the ModelBuilder constructs a combined CSP model that includes the parallel composition
of the design model of the component plus the interface models of the used components. After
that, the combined model is examined using the FDR model checker for the absence of deadlocks
(crashes or stop of doing any action), livelocks (hanging due to entering an endless loop of internal
events) and illegal (unexpected) calls.

When the above checks have succeeded, the combined model is examined against the interface
model of the component, to formally check that the combined model matches the prescribed
external specification. In other words, the combined model is checked for whether it correctly and
formally refines the prescribed interface behavior. This is precisely established using the refinement
checks supplied by FDR where the interface model of the component is the specification and the
combined model is the implementation [4].

Note that, when the interface model is formally refined by the combined model, the interface
model represents all lower level components. It can also be used during the verification of the
upper level client components. The details of the step-wise verification that is systematically
performed level-by-level according to the ASD method is outside the scope of this paper since our
controller design fits in one level, but we refer to [7] for further information.

All CSP models are hidden from end-users of the ModelBuilder. Although source code can also
be generated automatically from the ASD models, we merely used the technology for specification
and design verification purposes.

4 Modeling and analyzing the PDU behavior

In this section our experimental methodology is sketched, summarizing the series of steps followed
through the experiment of verifying the PDU design. We used the ASD ModelBuilder version
6.1.0 for describing the behavior of our components. The features supplied by this version seemed
to be a good fit to our aim at modeling the PDU behavior. The formal verification using CSP
and FDR is performed on a remote server located at Verum, the ASD company.

The structure of the ASD models of the PDU is depicted in Figure 5. Following the ASD
recipe we modeled the external behavior of the PDU first. Then, we separately described the
external behavior of the PCs located at the subsequent level of the PDU. After that, we modeled
the PDU design such that it refines the IPDU specification and includes all interactions with the
PCs. Below we individually introduce these models in more detail.

7

PDU

IControlPC IGeoPc

ControlPC GeoPC

The combined

model must be

deadlock, livelock,

and illegal free.

Then, it must

refine the IPDU.

Interface model

Design model

IPDU

Interface model
Other pcs

Other

Devices

and PCs

Other pcsIPC

Other

Devices

and PCs
PC

Figure 5: The structure of ASD models

The external behavior of the PDU (the IPDU interface model). The specification in
Figure 6 describes the external behavior with respect to the external users of the PDU, according
to the original state machine of Figure 2. The specification is described using an ASD interface
model. The specification is straightforward and self-explainable.

Internal events of the PDU interface model represent detailed activities that may internally
occur by the implemented system, not visible to the external world. For example, rule case 26
indicates that something internally might happen in the system that lead the PDU to transit to
the System Off state. The detailed behavior that matches this internal event in the design of the
PDU is that the ControlPC may send the controlPowerOff callback to the PDU and then the
PDU will process this callback by sending the shutdown message and powering off all PCs.

During the refinement check using FDR established by the ModelBuilder, all events not visible
to the client component will be hidden from the interface model: the ICR PC INT.powerOff and
the IGeo PC INT.geoStop events, for instance. To reflect these internal activities on the external
specification, one needs to add visible callbacks to the interface. For example, we can indicate to
the user that the system is powered off in the System On state due to internal activities by replacing
the Null response of rule case 26 by an extra callback (say IUserIndicationCB.systemOff). This
way the deep internal modes of the system can be reflected on the external specification, making
the specification more strict. We omit such extensions from our specification since we are interested
more in verifying the correctness of the state machine of the internal PDU design.

The external behavior of the PCs. The external behavior of the PCs was separately de-
scribed using ASD interface models in Figure 4 and 7, matching the state machines introduced
earlier in Figure 3.

All PCs receive a number of messages synchronously via the a number of channels: ICR PC,
ICR PC Broadcast in the ControlPC interface, for instance. The ControlPC interface includes
one internal event that model the internal behavior of powering off the entire system request.
The internal event is ‘yoked’ in rule case 12 which means that sending the ICR PC CB.powerOff
callback to the queue of the PDU is restricted (as mentioned earlier only one ICR PC CB.powerOff
is allowed at a time in the queue of the PDU).

Modeling the behavior of the PDU controller The specification of the PDU controller was
described using an ASD design model, matching the original state machine introduced in Figure
2. The complete specification is depicted in Figure 8.

Using the ASD ModelBuilder, we included the used interface models of the PCs and explicitly
specify the number of instances of each interface model before describing the behavior of the
PDU design model. Obviously, our design model includes one instance of the ControlPC interface
model, one instance of the GeoPC interface model and five instances of the PC interface models.

To give an example of the usage of these instances in the ModelBuilder consider rule case 26
of Figure 8. The rule case specifies that when the PDU controller receives the controlPowerOff

8

 lllllll tttttltt ltllt Ueleteltl elteeltl ttltl teeltl elet ttltl lettllt glg

1 UUU>>>>>>

2 UUUU UUUtnttel>l UUUUtetllelt tyttlt>ttlleyy

3 UUUU UUUtnttel>>> UUUUtetllelt UUU>>>>

4 UUUU eenle>l UUUUtetllelt UUU>>>>

5 UUUU eenle>>> UUUUtetllelt UUU>>>>

6 UUUU >eeeleUenle>>> UUUUtetllelt UUU>>>>

7 UUUU ltleglley>>> UUUUtetllelt UUU>>>>

8 Ule>Ul>Ueg eenle>>> yleedle +

9 UTle>Ul>Ueg glettee yleedle +

10 tyttlt>ttlleyy>UUUUtUUUtnttel>l>

11 UUUU UUUtnttel>l UUUUtetllelt tyttlt>ttlleyy

12 UUUU UUUtnttel>>> UUUUtetllelt UUU>>>>

13 UUUU eenle>l UUUUtetllelt tyttlt>>l

14 UUUU eenle>>> UUUUtetllelt tyttlt>ttlleyy

15 UUUU >eeeleUenle>>> UUUUtetllelt tyttlt>ttlleyy

16 UUUU ltleglley>>> UUUUtetllelt ftleglley>>>>

17 Ule>Ul>Ueg eenle>>> yleedle +

18 UTle>Ul>Ueg glettee yleedle +

19 tyttlt>>l>UUUUtUUUtnttel>l>UUUUteenle>l>

20 UUUU UUUtnttel>l UUUUtetllelt tyttlt>>l

21 UUUU UUUtnttel>>> UUUUtetllelt UUU>>>>

22 UUUU eenle>l UUUUtetllelt tyttlt>>l

23 UUUU eenle>>> UUUUtetllelt tyttlt>ttlleyy

24 UUUU >eeeleUenle>>> UUUUtetllelt tyttlt>>>>

25 UUUU ltleglley>>> UUUUtetllelt ftleglley>>>>

26 Ule>Ul>Ueg eenle>>> etll tyttlt>>>>

27 UTle>Ul>Ueg glettee etll Tle>ttee

28 ftleglley>>>>>UUUUtUUUtnttel>l>UUUUtltleglley>>>>

29 UUUU UUUtnttel>l UUUUtetllelt ftleglley>>>>

30 UUUU UUUtnttel>>> UUUUtetllelt UUU>>>>

31 UUUU eenle>l UUUUtetllelt tyttlt>>l

32 UUUU eenle>>> UUUUtetllelt ftleglley>>>>

33 UUUU >eeeleUenle>>> UUUUtetllelt ftleglley>>>>

34 UUUU ltleglley>>> UUUUtetllelt ftleglley>>>>

35 Ule>Ul>Ueg eenle>>> yleedle +

36 UTle>Ul>Ueg glettee yleedle +

37 tyttlt>>>>>UUUUtUUUtnttel>l>UUUUteenle>l>UUUUt>eeeleUenle>>>>

38 UUUU UUUtnttel>l UUUUtetllelt tyttlt>>>>

39 UUUU UUUtnttel>>> UUUUtetllelt UUU>>>>

40 UUUU eenle>l UUUUtetllelt tyttlt>>l

41 UUUU eenle>>> UUUUtetllelt tyttlt>>>>

42 UUUU >eeeleUenle>>> UUUUtetllelt tyttlt>>>>

43 UUUU ltleglley>>> UUUUtetllelt ftleglley>>>>

44 Ule>Ul>Ueg eenle>>> yleedle +

45 UTle>Ul>Ueg glettee yleedle +

46 Tle>ttee>UUUUtUUUtnttel>l>UUUUteenle>l>UTle>Ul>Uegtglettee>

47 UUUU UUUtnttel>l UUUUtetllelt Tle>ttee

48 UUUU UUUtnttel>>> UUUUtetllelt UUU>>>>

49 UUUU eenle>l UUUUtetllelt tyttlt>>l

50 UUUU eenle>>> UUUUtetllelt Tle>ttee

51 UUUU >eeeleUenle>>> UUUUtetllelt Tle>ttee

52 UUUU ltleglley>>> UUUUtetllelt ftleglley>>>>

53 Ule>Ul>Ueg eenle>>> yleedle +

54 UTle>Ul>Ueg glettee yleedle +

Figure 6: The external behavior of the PDU towards the external users

asynchronous event from the CR PC:ICR PC CB interface (via its queue), it executes a list of
responses one by one until completion. The response CR PC:ICR PC Broadcast.shutdown denotes

9

 Cllllll tttttltt ltllt Celeteltl Clteeltl ttltl teeltl elet ttltl Cettllt glg

1 CCCCCC>>>>>

2 CCCCCC eenle>l CCCCCCtetllClt >elelttelll

3 CCCCCC eenle>>> Clllgll -

4 CCCCCCCteeleeltt elttlet Clllgll -

5 CCCCCCCteeleeltt tltteenl Clllgll -

6 CCCCCCCCeg eelteelCenle>>> tleedle +

7 >elelttelll>CCCCCCteenle>l>

8 CCCCCC eenle>l Clllgll -

9 CCCCCC eenle>>> CCCCCCtetllClt CCCCCC>>>

10 CCCCCCCteeleeltt elttlet CCCCCCCteeleeltttetllClt >elelttelll

11 CCCCCCCteeleeltt tltteenl CCCCCCCteeleeltttetllClt >tCtltteenl

12 CCCCCCCCeg>>edle> eelteelCenle>>> CCCCCCCCtteelteelCenle>>> >elelttelll

13 >tCtltteenl>CCCCCCteenle>l>CCCCCCCteeleelttttltteenl>

14 CCCCCC eenle>l Clllgll -

15 CCCCCC eenle>>> CCCCCCtetllClt CCCCCC>>>

16 CCCCCCCteeleeltt elttlet Clllgll -

17 CCCCCCCteeleeltt tltteenl Clllgll -

18 CCCCCCCCeg eelteelCenle>>> tleedle +

 Cllllll tttttltt ltllt Celeteltl elteeltl ttltl teeltl elet ttltl Cettllt glg

1 CC>>>>>>

2 CCC eenle>l CCCtetllelt >elelttelll

3 CCC eenle>>> Clllgll -

4 CCC>teeleeltt tltteenl Clllgll -

5 CCC>teeleeltt elttlet Clllgll -

6 >elelttelll>CCCteenle>l>

7 CCC eenle>l Clllgll -

8 CCC eenle>>> CCCtetllelt CC>>>>

9 CCC>teeleeltt tltteenl CCC>teeleeltttetllelt >t>tltteenl

10 CCC>teeleeltt elttlet CCC>teeleeltttetllelt >elelttelll

11 >t>tltteenl>CCCteenle>l>CCC>teeleelttttltteenl>

12 CCC eenle>l Clllgll -

13 CCC eenle>>> CCCtetllelt CC>>>>

14 CCC>teeleeltt tltteenl Clllgll -

15 CCC>teeleeltt elttlet Clllgll -

Figure 7: External specification of the ControlPC and the normal PC

sending the shutdown message to the ControlPC instance via the ICR PC Broadcast channel syn-
chronously (note that all calls from client to used components are synchronous in ASD). Similarly,
the synchronous response All:IPC.powerOff in rule case 26 implicitly denotes powering off all five
PCs sequentially one by one, i.e., PC1.IPC.powerOff, .., PC5.IPC.powerOff.

The shutdown message intended for all PCs has to be different than the shutdown message
intended for all other PCs excluding the ControlPC. But, in our model we don’t use distinct
events. Instead, we synchronously send the message to the intended PCs depending on the state.
For example, rule case 23 depicts sending the shutdown message to the GeoPC and the normal
PCs, while rule case 26 depicts sending the message to all PCs.

During the specification process of the PDU design model, a number of key important decisions
had been discussed early and considered carefully. These decisions had mainly been raised because

10

 lllllll tttttltt ltllt Ueleteltl elteeltl ttltl teeltl elet ttltl lettllt glg

1 UUU>>>>>>

2 UUUU UUUtnttel>l le>Ul Ule>Ul eenle>l

UUUU etllelt

 tyttltttlleyy le>Ul el

3 UUUU UUUtnttel>>> UUUU etllelt UUU>>>>

4 UUUU eenle>l UUUU etllelt UUU>>>>

5 UUUU eenle>>> UUUU etllelt UUU>>>>

6 UUUU >eeeleUenle>>> UUUU etllelt UUU>>>>

7 UUUU ltleglley>>> UUUU etllelt UUU>>>>

8 le>Ul Ule>Ul>lB eelteelUenle>>> Ulllgll -

9 BleUl UBleUl>lB ttee Ulllgll -

10 tyttltttlleyy>UUUU UUUtnttel>l>

11 UUUU UUUtnttel>l UUUU etllelt tyttltttlleyy

12 UUUU UUUtnttel>>> le>Ul Ule>Ul eenle>>>

UUUU etllelt

 UUU>>>>

13 UUUU eenle>l BleUl UBleUl eenle>l

 ll UUl eenle>l

UUUU etllelt

 tyttlt>>l

14 UUUU eenle>>> UUUU etllelt tyttltttlleyy

15 UUUU >eeeleUenle>>> UUUU etllelt tyttltttlleyy

16 UUUU ltleglley>>> le>Ul Ule>Ul eenle>>>

UUUU etllelt

 ftleglley>>>>

17 le>Ul Ule>Ul>lB eelteelUenle>>> Ulllgll -

18 BleUl UBleUl>lB ttee Ulllgll -

19 tyttlt>>l>UUUU UUUtnttel>l>UUUU eenle>l>

20 UUUU UUUtnttel>l UUUU etllelt tyttlt>>l

21 UUUU UUUtnttel>>> le>Ul Ule>Ul eenle>>>

BleUl UBleUl eenle>>>

 ll UUl eenle>>>

UUUU etllelt

 UUU>>>>

22 UUUU eenle>l le>Ul Ule>Ul>Beeleeltt elttlet

BleUl UBleUl>Beeleeltt elttlet

 ll UUl>Beeleeltt elttlet

UUUU etllelt

 tyttlt>>l

23 UUUU eenle>>> BleUl UBleUl>Beeleeltt tltteenl

 ll UUl>Beeleeltt tltteenl

BleUl UBleUl eenle>>>

 ll UUl eenle>>>

UUUU etllelt

 tyttltttlleyy tlle tltteenl

ttlet tttle

tn tlyt e>>

24 UUUU >eeeleUenle>>> le>Ul Ule>Ul eenle>>>

BleUl UBleUl eenle>>>

 ll UUl eenle>>>

UUUU etllelt

 tyttlt>>>> ll tlet e>>

25 UUUU ltleglley>>> le>Ul Ule>Ul eenle>>>

BleUl UBleUl eenle>>>

 ll UUl eenle>>>

UUUU etllelt

 ftleglley>>>>

26 le>Ul Ule>Ul>lB eelteelUenle>>> le>Ul Ule>Ul>Beeleeltt tltteenl

BleUl UBleUl>Beeleeltt tltteenl

 ll UUl>Beeleeltt tltteenl

le>Ul Ule>Ul eenle>>>

BleUl UBleUl eenle>>>

 ll UUl eenle>>>

 tyttlt>>>> tlle tltteenl

ttlet tttle

 ll tlyt e>>

27 BleUl UBleUl>lB ttee etll Ble>ttee fetlyll elett e>>

28 ftleglley>>>>>UUUU UUUtnttel>l>UUUU ltleglley>>>>

29 UUUU UUUtnttel>l UUUU etllelt ftleglley>>>>

30 UUUU UUUtnttel>>> UUUU etllelt UUU>>>>

31 UUUU eenle>l le>Ul Ule>Ul eenle>l

BleUl UBleUl eenle>l

 ll UUl eenle>l

UUUU etllelt

 tyttlt>>l ll Ult el

32 UUUU eenle>>> UUUU etllelt ftleglley>>>>

11

33 UUUU >eeeleUenle>>> UUUU etllelt ftleglley>>>>

34 UUUU ltleglley>>> UUUU etllelt ftleglley>>>>

35 le>Ul Ule>Ul>lB eelteelUenle>>> Ulllgll -

36 BleUl UBleUl>lB ttee Ulllgll -

37 tyttlt>>>>>UUUU UUUtnttel>l>UUUU eenle>l>UUUU >eeeleUenle>>>>

38 UUUU UUUtnttel>l UUUU etllelt tyttlt>>>>

39 UUUU UUUtnttel>>> UUUU etllelt UUU>>>>

40 UUUU eenle>l le>Ul Ule>Ul eenle>l

BleUl UBleUl eenle>l

 ll UUl eenle>l

UUUU etllelt

 tyttlt>>l ll Ult el

41 UUUU eenle>>> UUUU etllelt tyttlt>>>>

42 UUUU >eeeleUenle>>> UUUU etllelt tyttlt>>>>

43 UUUU ltleglley>>> UUUU etllelt ftleglley>>>>

44 le>Ul Ule>Ul>lB eelteelUenle>>> Ulllgll -

45 BleUl UBleUl>lB ttee Ulllgll -

46 Ble>ttee>UUUU UUUtnttel>l>UUUU eenle>l>BleUl UBleUl>lB ttee>

47 UUUU UUUtnttel>l UUUU etllelt Ble>ttee

48 UUUU UUUtnttel>>> le>Ul Ule>Ul eenle>>>

BleUl UBleUl eenle>>>

 ll UUl eenle>>>

UUUU etllelt

 UUU>>>>

49 UUUU eenle>l UUUU etllelt tyttlt>>l fetlyll elett el

50 UUUU eenle>>> UUUU etllelt Ble>ttee

51 UUUU >eeeleUenle>>> UUUU etllelt Ble>ttee

52 UUUU ltleglley>>> le>Ul Ule>Ul eenle>>>

BleUl UBleUl eenle>>>

 ll UUl eenle>>>

UUUU etllelt

 ftleglley>>>>

53 le>Ul Ule>Ul>lB eelteelUenle>>> Ulllgll -

54 BleUl UBleUl>lB ttee Ulllgll -

2

Figure 8: The specification of the PDU state machine

the ASD specification process forces specification completeness, by filling-in and thinking about
every possible stimulus in every table. Since the original state machine of the PDU is not complete,
in the sense that not all external calls or internal callback stimuli events are depicted in every
state, a decision was considered to initially assign the Illegal response to every internal callback
stimulus received from the PCs if the stimulus does not appear in a state of the original state
machine.

For example, we assign Illegal responses to the controlPowerOff and the stop callback stimuli
in all states except System On (see rule cases 26 and 27 in Figure 8). Similarly, all external user
commands not present in a state are ignored, i.e., they make a self-transition in the state (see
rule case 32 in Figure 8, for example). This includes switching on the PDU even if it is already
switched on.

4.1 Formal verification of the PDU controller

Upon the completion of all ASD models, the formal verification process using model checking was
started. Figure 9 depicts a screenshot of the formal checks performed remotely by the FDR model
checker using the ASD ModelBuilder.

The first and the second properties check whether the IPDU interface model is livelock and
deadlock free. The third, fourth and fifth properties verify that the interfaces of the PCs are livelock
free. Verifying the deadlock freedom can be established for each interface model separately using
the ModelBuilder.

The sixth property checks whether the combined model is a deterministic design. The purpose
of this check is to prevent ambiguities in the generated source code when compiled with the rest
of the product code.

The seventh property searches for illegal and queue overflow scenarios in the combined model
(asd Design). The eighth property verifies that the combined model is deadlock free. While the

12

They check whether the IPDU livelock

and deadlock free

It checks whether the combined model

(asd_Design) contains illegal scenarios,

or whether the queue overflows.

They check whether the combined

model (asd_Implementation) refines the

IPDU (asd_Specification).

Figure 9: Formal checks performed by FDR for the behavioral verification

last two properties are used to check whether the combined model (asd Implementation) refines the
IPDU interface model (asd Specification), under both the Failure and Failure-Divergence models.

We performed the behavioral verification of the PDU step by step. We first began by check-
ing the existence of illegal scenarios in the combined model of the PDU (the seventh check).
The FDR model checker detected a major error embedded in the design of the PDU. The FDR
counterexample is visualized in the sequence diagram of Figure 10.

Object1User PDU ControlPC GeoPC OtherPCs

PDUswitchOn
powerOn

powerOn Button

powerOn

powerOn

stop

controlPowerOff

illegal

System_On

Geo_Stop

Figure 10: The FDR counterexample

The practical scenario of the potential consequences of this error is as follows. During the
regular execution of the system (the PDU is in the System On state), the clinical users may
experience some issues related the the movable parts. Consequently, the clinical users might
choose to press the Stop buttons attached to the body of the movable parts. After the GeoPC
has sent the Stop signal, the PDU immediately switches off the power that supplies the movable
parts, transits to the Geo Stop state, and waits for the subsequent user input. But the user might
desire to entirely power off the system for safety purposes. This appeared to be impossible in the
current design.

More precisely the user of the ControlPC would not be able to power off the system via
the controlPowerOff signal when the PDU is in the Geo Stop state, and also both powerOff and

13

forcePowerOff commands would have no effect on the PDU. Furthermore, if the user chooses to
strictly cut the power down from the mains switch, the UPS would start automatically, if it is
attached, and the erroneous situation would remain. Only pressing the Emergency button would
rescue the user from this case since it entirely cuts down the power to the system.

The benefits of specification completeness plus the formal verification using model checking for
detecting the error is obvious here. Assigning the Illegal response to the absent callback stimuli
had effectively helped us detecting the veiled error.

Another design error was found during the specification review of the models by team mem-
bers, due to a missing requirement. Consider the state machine of Figure 2 once more. The
forcedPowerOff and the controlPowerOff transitions from the System Standby state to System Off
state were found missing. This means that the clinical user would not be able to power off the
ControlPC upon pressing the PowerOff button for 10 seconds or systematically power off the sys-
tem using the controlPowerOff signal when the system is in the System Standby state. Initially,
this was a desired behavior since the ControlPC should always be operational, but lately a decision
was made to also consider powering off the ControlPC in the System Standby state.

4.2 The improved PDU controller

After the design errors had been communicated to the PDU designers, the design had been adapted.
The modified state machine of the PDU is depicted in Figure 11. It includes the missing forced-
PowerOff and controlPowerOff transitions from System Standby state to System Off state. Ad-
ditionally, the modified state machine allows the clinical users to power off the system when the
PDU is in the Geo Stop state.

PDUswitchOn

(PDU mains switch on)

PDUswitchOff

(PDU mains switch off)

System_On

powerOn

powerOn

System_StandBy

forcedPowerOff
powerOff

powerOn

System_Off
controlPowerOff

PDU On

Emergency_Off
emergencyOff

powerOn

Geo_Stop

stop

powerOn

Operational

PDU_Off

Working

Started

Figure 11: The improved state machine after the formal verification and the specification review

Subsequently, the specification of the PDU design model had been adapted to the changes.
All responses to internal callback stimuli received from PCs not specified in the original state
machine were set to Null. Moreover, the ASD specification of the System Standby and the Geo Stop
states had been adapted. The complete specification of the improved PDU model is introduced
in Appendix A. The corresponding improved specification of the external behavior is listed in
Appendix B.

All properties listed in Figure 9 succeeded except the last property, see Figure 12. The suc-
ceeded checks are preceded by green ticks signs, while the failed check is preceded by a cross sign.
Upon clicking on the failed check, FDR shows another window to visualize the counterexamples.

14

For this property FDR reports six counterexamples in total where divergences might occur, which
affect the external behavior. The analysis of these counterexamples reveals that the source of
all divergence scenarios is basically the same. The sequence diagram that explains the erroneous
scenario is visualized in Figure 13.

Figure 12: All checks succeeded except refinement under the Failure-Divergence model

The counterexample shows that the GeoPC could continuously inform the PDU about a pressed
Stop button on the body of a movable part. Then, the PDU endlessly treats the stop signals, with
the possibility that the external user commands are not treated immediately.

Object1User PDU ControlPC GeoPC OtherPCs

PDUswitchOn
powerOn

powerOn Button

powerOn

powerOn

stop

Geo_Stop

stop

Repeats
Movable

parts Off

Figure 13: Example of a divergence that affects the external behavior of the PDU

We don’t really consider these divergences as critical errors. They are rather benign, but they
can happen indeed.

5 Modeling and verification efforts

The activities of modeling and verifying the behavior of the PDU were conducted part time in
parallel with other traditional activities devoted to the PDU development. Understanding the
PDU domain plus studying various design documents [9, 8, 10] for the purpose of modeling the
behavior of the PDU took approximately 35 hours.

The modeling and verification efforts of all ASD models took 32 hours in total. In general, the
effort of creating the ASD models was not a time demanding process, because of the high-level
description provided by the ASD ModelBuilder. The team involved in the modeling, specification,
verification and review processes were highly skilled in traditional development methods, but had

15

limited knowledge in formal methods. But despite this limitation, team members were able to
quickly understand and review the ASD specification, and to favorably provide their feedbacks
and suggestions for improvements although no one of the reviewers had previously been exposed
to any ASD training courses.

Table 2 depicts the statistical data of the ASD models. The first column lists the name of all
ASD interface and design models, related to the PDU and the PCs. The second column contains
the total number of rule cases, specified and reviewed by team members. The third, fourth, and
fifth columns include statistical data produced by the FDR model checker for checking deadlocks
of each model independently. All models are deadlock free. Note that the data presented for the
PDU (design) model is related to the combined model that includes the parallel composition of
the PDU design plus the interface models of the PCs. The third column depicts the number of
generated states, while the fourth column presents the number of generated transitions. The time
in seconds spent for verification by FDR is depicted in the fifth column.

Model Rule
cases

States Transitions Time

IPDU 54 16 67 <1 sec
PDU 54 824 1,360 <1 sec
ICRPC 18 16 25 < 1 sec
IGeoPC 18 16 25 < 1 sec
OtherPCs 15 15 23 < 1 sec

Table 2: Statistical data related to the ASD models of the PDU

The PDU team decided to continue the development of the PDU controller using the ASD
technology and to further investigate other design alternatives. The development process of the
PDU was continued by other team members newly introduced to the ASD method. The team
investigated further other design alternatives, and applied the technology on the development of
various parts of the X-ray system, especially on the services deployed on the PCs that communicate
with the PDU.

Finally, the formal behavioral verification, team reviews and the specification completeness
processes performed throughout this case study provided a proper framework, for assisting the
work, and decreasing potential efforts, devoted to error fixing at later stages of the project.

Future work. As a logical following step of modeling the PDU design, the behavior of the PDU
and the PCs will be extended such that they include all intermediate transiting states. Error
monitoring and recovery operations will also be considered. We also plan to extend the external
specification and the design of the PDU with extra callback events that reflect the internal states
of the system: callbacks indicating that the system is on, off, starting up or in Geo Stop state, for
instance.

The behavior of the forthcoming model is foreseen to be rather complex due to the interleav-
ing caused by the concurrent PCs during the transiting states, so that avoiding the state space
explosion problem is a challenging task. We are planning to gradually extend the current model
and to carefully investigate a number of specification techniques to avoid the state space explosion
problem [6, 5]. We compare a number of design and specification styles, for example between a
design of the PDU that uses a pushing strategy (where PCs notify the PDU about their states)
and another alternative design that employs a polling mechanism (where the PDU queries the
states of the PCs when needed).

We are further planning to model the extended design of the PDU directly using CSP/FDR
or mCRL2 [11] to exploit some of their useful features. The reason is that we will have more
flexibility to formulate formal properties, apply manual abstractions, and to further exploit some
compression techniques such as the hierarchal compression of state spaces [4] offered by the FDR
model checker or the confluence reduction and branching-bisimulation reduction [11] supplied by
the model checker mCRL2, in case the state space explosion problem is encountered.

16

Acknowledgments

We wish to thank Tom Fransen, Mathijs Schuts and Ron Swinkles for their useful comments on
the text.

References

[1] G.H. Broadfoot. ASD case notes: Costs and benefits of applying formal methods to industrial
control software. In FM 2005: Formal Methods, volume 3582 of LNCS, pages 548–551.
Springer (2005), 2005.

[2] J.M. Carter and J.H. Poore. Sequence-based specification of feedback control systems in
Simulink R©. In CASCON ’07: Proceedings of the 2007 conference of the center for advanced
studies on Collaborative research, pages 332–345, New York, NY, USA, 2007. ACM.

[3] I. Crnkovic. Building Reliable Component-Based Software Systems. Artech House, Inc.,
Norwood, MA, USA, 2002.

[4] FDR homepage. http://www.fsel.com.

[5] J.F. Groote, T.W.D.M. Kouters, and A.A.H. Osaiweran. Specification guidelines to avoid the
state space explosion problem. CS-Report 10-14, Eindhoven University of Technology, 2010.

[6] J.F. Groote, T.W.D.M. Kouters, and A.A.H. Osaiweran. Specifcation guidelines to avoid
the state space explosion problem. In Proceedings of the 4th IPM international Conference,
FSEN 2011, page (IN PRESS), Tehran, Iran, 2011. Springer-Verlag, Berlin, Germany.

[7] J.F. Groote, A. Osaiweran, and J.H. Wesselius. Analyzing the effects of formal methods
on the development of industrial control software. In proceedings of the IEEE ICSM 2011,
Williamsburg, VA, USA, September 25-30, 2011. to appear.

[8] R. Kleihorst. Feature design - foundation power distribution subsystem, internal Philips
document. 2010.

[9] R. Kleihorst. Power distribution unit - concept specification, internal Philips document,
xdy036-080190. 2010.

[10] M. Loos. Feature design - startup/shutdown, internal Philips document, v0.6. 2010.

[11] mCRL2 toolset homepage. http://www.mcrl2.org/.

[12] A.W. Roscoe. The theory and practice of concurrency. Prentice Hall, 1998.

[13] Verum homepage. http://www.verum.com.

17

 lllllll tttttltt ltllt Ueleteltl elteeltl ttltl teeltl elet ttltl lettllt glg

1 UUU>>>>>>

2 UUUU UUUtnttel>l le>Ul Ule>Ul eenle>l

UUUU etllelt

 tyttltttlleyy le>Ul eelelttelll

3 UUUU UUUtnttel>>> UUUU etllelt UUU>>>>

4 UUUU eenle>l UUUU etllelt UUU>>>>

5 UUUU eenle>>> UUUU etllelt UUU>>>>

6 UUUU >eeeleUenle>>> UUUU etllelt UUU>>>>

7 UUUU ltleglley>>> UUUU etllelt UUU>>>>

8 le>Ul Ule>Ul>lB eelteelUenle>>> etll UUU>>>>

9 BleUl UBleUl>lB ttee etll UUU>>>>

10 tyttltttlleyy>UUUU UUUtnttel>l>

11 UUUU UUUtnttel>l UUUU etllelt tyttltttlleyy

12 UUUU UUUtnttel>>> le>Ul Ule>Ul eenle>>>

UUUU etllelt

 UUU>>>>

13 UUUU eenle>l BleUl UBleUl eenle>l

 ll UUl eenle>l

UUUU etllelt

 tyttlt>>l

14 UUUU eenle>>> UUUU etllelt tyttltttlleyy

15 UUUU >eeeleUenle>>> le>Ul Ule>Ul eenle>>>

UUUU etllelt

 tyttlt>>>>

16 UUUU ltleglley>>> le>Ul Ule>Ul eenle>>>

UUUU etllelt

 ftleglley>>>>

17 le>Ul Ule>Ul>lB eelteelUenle>>> le>Ul Ule>Ul>Beeleeltt tltteenl

le>Ul Ule>Ul eenle>>>

 tyttlt>>>>

18 BleUl UBleUl>lB ttee etll tyttltttlleyy

19 tyttlt>>l>UUUU UUUtnttel>l>UUUU eenle>l>

20 UUUU UUUtnttel>l UUUU etllelt tyttlt>>l

21 UUUU UUUtnttel>>> le>Ul Ule>Ul eenle>>>

BleUl UBleUl eenle>>>

 ll UUl eenle>>>

UUUU etllelt

 UUU>>>>

22 UUUU eenle>l le>Ul Ule>Ul>Beeleeltt elttlet

BleUl UBleUl>Beeleeltt elttlet

 ll UUl>Beeleeltt elttlet

UUUU etllelt

 tyttlt>>l

23 UUUU eenle>>> BleUl UBleUl>Beeleeltt tltteenl

 ll UUl>Beeleeltt tltteenl

BleUl UBleUl eenle>>>

 ll UUl eenle>>>

UUUU etllelt

 tyttltttlleyy tlle tltteenl

 ttlet tttle

 tnttellyll tlyt e>>

24 UUUU >eeeleUenle>>> le>Ul Ule>Ul eenle>>>

BleUl UBleUl eenle>>>

 ll UUl eenle>>>

UUUU etllelt

 tyttlt>>>> ll tlet e>>

25 UUUU ltleglley>>> le>Ul Ule>Ul eenle>>>

BleUl UBleUl eenle>>>

 ll UUl eenle>>>

UUUU etllelt

 ftleglley>>>>

26 le>Ul Ule>Ul>lB eelteelUenle>>> le>Ul Ule>Ul>Beeleeltt tltteenl

BleUl UBleUl>Beeleeltt tltteenl

 ll UUl>Beeleeltt tltteenl

le>Ul Ule>Ul eenle>>>

BleUl UBleUl eenle>>>

 ll UUl eenle>>>

 tyttlt>>>> tlle tltteenl

 ttlet tttle

 ll tlyt e>>

27 BleUl UBleUl>lB ttee etll Ble>ttee fetlyll elett e>>

28 tyttlt>>>>>UUUU UUUtnttel>l>UUUU >eeeleUenle>>>>

29 UUUU UUUtnttel>l UUUU etllelt tyttlt>>>>

30 UUUU UUUtnttel>>> UUUU etllelt UUU>>>>

31 UUUU eenle>l le>Ul Ule>Ul eenle>l

BleUl UBleUl eenle>l

 ll UUl eenle>l

 tyttlt>>l ll Ult el

1

UUUU etllelt

Appendix A: The improved design model

32 UUUU eenle>>> UUUU etllelt tyttlt>>>>

33 UUUU >eeeleUenle>>> UUUU etllelt tyttlt>>>>

34 UUUU ltleglley>>> UUUU etllelt ftleglley>>>>

35 le>Ul Ule>Ul>lB eelteelUenle>>> etll tyttlt>>>>

36 BleUl UBleUl>lB ttee etll tyttlt>>>>

37 ftleglley>>>>>UUUU UUUtnttel>l>UUUU ltleglley>>>>

38 UUUU UUUtnttel>l UUUU etllelt ftleglley>>>>

39 UUUU UUUtnttel>>> UUUU etllelt UUU>>>>

40 UUUU eenle>l le>Ul Ule>Ul eenle>l

BleUl UBleUl eenle>l

 ll UUl eenle>l

UUUU etllelt

 tyttlt>>l ll Ult el

41 UUUU eenle>>> UUUU etllelt ftleglley>>>>

42 UUUU >eeeleUenle>>> UUUU etllelt ftleglley>>>>

43 UUUU ltleglley>>> UUUU etllelt ftleglley>>>>

44 le>Ul Ule>Ul>lB eelteelUenle>>> etll ftleglley>>>>

45 BleUl UBleUl>lB ttee etll ftleglley>>>>

46 Ble>ttee>UUUU UUUtnttel>l>UUUU eenle>l>BleUl UBleUl>lB ttee>

47 UUUU UUUtnttel>l UUUU etllelt Ble>ttee

48 UUUU UUUtnttel>>> le>Ul Ule>Ul eenle>>>

BleUl UBleUl eenle>>>

 ll UUl eenle>>>

UUUU etllelt

 UUU>>>>

49 UUUU eenle>l UUUU etllelt tyttlt>>l fetlyll elett el

50 UUUU eenle>>> BleUl UBleUl>Beeleeltt tltteenl

 ll UUl>Beeleeltt tltteenl

BleUl UBleUl eenle>>>

 ll UUl eenle>>>

UUUU etllelt

 tyttltttlleyy ll Ult e>> leelet le>Ul

51 UUUU >eeeleUenle>>> le>Ul Ule>Ul eenle>>>

BleUl UBleUl eenle>>>

 ll UUl eenle>>>

UUUU etllelt

 tyttlt>>>> Uttletltlly lll Ult e>>

52 UUUU ltleglley>>> le>Ul Ule>Ul eenle>>>

BleUl UBleUl eenle>>>

 ll UUl eenle>>>

UUUU etllelt

 ftleglley>>>> Uttletltlly lll Ult e>>

53 le>Ul Ule>Ul>lB eelteelUenle>>> le>Ul Ule>Ul>Beeleeltt tltteenl

BleUl UBleUl>Beeleeltt tltteenl

 ll UUl>Beeleeltt tltteenl

le>Ul Ule>Ul eenle>>>

BleUl UBleUl eenle>>>

 ll UUl eenle>>>

 tyttlt>>>> ll Ult e>>

54 BleUl UBleUl>lB ttee etll Ble>ttee

Appendix B: The improved interface model

 lllllll tttttltt ltllt Ueleteltl elteeltl ttltl teeltl elet ttltl lettllt glg

1 UUU>>>>>>

2 UUUU UUUtnttel>l UUUUtetllelt tyttlt>ttlleyy

3 UUUU UUUtnttel>>> UUUUtetllelt UUU>>>>

4 UUUU eenle>l UUUUtetllelt UUU>>>>

5 UUUU eenle>>> UUUUtetllelt UUU>>>>

6 UUUU >eeeleUenle>>> UUUUtetllelt UUU>>>>

7 UUUU ltleglley>>> UUUUtetllelt UUU>>>>

8 Ule>Ul>Ueg eenle>>> yleedle +

9 UTle>Ul>Ueg glettee yleedle +

10 tyttlt>ttlleyy>UUUUtUUUtnttel>l>

11 UUUU UUUtnttel>l UUUUtetllelt tyttlt>ttlleyy

12 UUUU UUUtnttel>>> UUUUtetllelt UUU>>>>

13 UUUU eenle>l UUUUtetllelt tyttlt>>l

14 UUUU eenle>>> UUUUtetllelt tyttlt>ttlleyy

15 UUUU >eeeleUenle>>> UUUUtetllelt tyttlt>>>>

16 UUUU ltleglley>>> UUUUtetllelt ftleglley>>>>

17 Ule>Ul>Ueg eenle>>> etll tyttlt>>>>

18 UTle>Ul>Ueg glettee yleedle +

19 tyttlt>>l>UUUUtUUUtnttel>l>UUUUteenle>l>

20 UUUU UUUtnttel>l UUUUtetllelt tyttlt>>l

21 UUUU UUUtnttel>>> UUUUtetllelt UUU>>>>

22 UUUU eenle>l UUUUtetllelt tyttlt>>l

23 UUUU eenle>>> UUUUtetllelt tyttlt>ttlleyy

24 UUUU >eeeleUenle>>> UUUUtetllelt tyttlt>>>>

25 UUUU ltleglley>>> UUUUtetllelt ftleglley>>>>

26 Ule>Ul>Ueg eenle>>> etll tyttlt>>>>

27 UTle>Ul>Ueg glettee etll Tle>ttee

28 tyttlt>>>>>UUUUtUUUtnttel>l>UUUUt>eeeleUenle>>>>

29 UUUU UUUtnttel>l UUUUtetllelt tyttlt>>>>

30 UUUU UUUtnttel>>> UUUUtetllelt UUU>>>>

31 UUUU eenle>l UUUUtetllelt tyttlt>>l

32 UUUU eenle>>> UUUUtetllelt tyttlt>>>>

33 UUUU >eeeleUenle>>> UUUUtetllelt tyttlt>>>>

34 UUUU ltleglley>>> UUUUtetllelt ftleglley>>>>

35 Ule>Ul>Ueg eenle>>> yleedle +

36 UTle>Ul>Ueg glettee yleedle +

37 ftleglley>>>>>UUUUtUUUtnttel>l>UUUUtltleglley>>>>

38 UUUU UUUtnttel>l UUUUtetllelt ftleglley>>>>

39 UUUU UUUtnttel>>> UUUUtetllelt UUU>>>>

40 UUUU eenle>l UUUUtetllelt tyttlt>>l

41 UUUU eenle>>> UUUUtetllelt ftleglley>>>>

42 UUUU >eeeleUenle>>> UUUUtetllelt ftleglley>>>>

43 UUUU ltleglley>>> UUUUtetllelt ftleglley>>>>

44 Ule>Ul>Ueg eenle>>> yleedle +

45 UTle>Ul>Ueg glettee yleedle +

46 Tle>ttee>UUUUtUUUtnttel>l>UUUUteenle>l>UTle>Ul>Uegtglettee>

47 UUUU UUUtnttel>l UUUUtetllelt Tle>ttee

48 UUUU UUUtnttel>>> UUUUtetllelt UUU>>>>

49 UUUU eenle>l UUUUtetllelt tyttlt>>l

50 UUUU eenle>>> UUUUtetllelt tyttlt>ttlleyy

51 UUUU >eeeleUenle>>> UUUUtetllelt tyttlt>>>>

52 UUUU ltleglley>>> UUUUtetllelt ftleglley>>>>

53 Ule>Ul>Ueg eenle>>> etll tyttlt>>>>

54 UTle>Ul>Ueg glettee yleedle +

Figure 14: The improved interface model

20

