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In percolation theory, the backbone is defined by chopping off dangling ends from the percolating

cluster. For structures with high degree of spatial correlation, as they are typical for porous thin

films, trimming of the full structure to reveal the part determining the electrical conductivity is

more subtle than the classic definition of the backbone. To expand the applicability of the concept,

we present a purely geometric definition for the backbone of a two-dimensional percolating cluster.

It is based on a sequence of image analysis operations defining the backbone in terms of an image

filter. The change of both area fraction and effective conductivity induced by applying the

backbone filter to various binary images and a two-parameter family of sets is assessed by

numerical means. It is found that the backbone filter simplifies the geometry of complex

microstructures significantly and at the same time preserves their electrical DC behavior. We

conclude that the backbone will be useful as a first ingredient for a geometric estimator of the

effective conductivity of metal-insulator composites. VC 2011 American Institute of Physics.

[doi:10.1063/1.3610402]

I. INTRODUCTION

At the heart of material science is the development of

materials with improved properties. Nowadays many indus-

trially relevant materials belong to the class of composite

materials. Based on trial and error, compositions and proc-

essing have been optimized. There is no doubt that the

microstructure has a crucial influence on the properties of

composites. However, there is a lack in theoretical knowl-

edge for relating the microstructure to the properties of such

materials.1

Metallic thin films are employed in various miniaturized

devices ranging from microelectronics and micromechanics

to miniaturized fuel cells. In particular the electrodes of

nowadays best performing low temperature miniaturized

solid oxide fuel cells consist of porous platinum thin films.2,3

These films have a lateral extension larger than 100 lm, a

thickness in the range of 100 nm and are flat in the simplest

case. Typically they are deposited by magnetron sputtering

in a low pressure argon atmosphere. The Pt grains grow in

columnar fashion yielding a quasi two-dimensional micro-

structure. The influence of the microstructure of such electro-

des on cell performance is very complex. Thermal stability,

amount of electrochemically active sites as well as electrical

conductivity have to be optimized. In this study we focus on

the electrical conductivity of two-dimensional metal-insula-

tor composites.

We start with a brief review of the notion of composites

and explain the relation to binary images. Then we derive

the boundary value problem describing electrical conductiv-

ity. We briefly discuss present theories describing the

effective conductivity of metal-insulator composites. Then

we review in detail the definition of the backbone and state

the main finding of this study.

A. Metal-insulator composites

Composite materials consist of a mixture of at least two

immiscible phases. Typically the different phases are finely

dispersed but the regions occupied by one phase are still

large compared to the atomic length scale. The heterogene-

ous nature becomes apparent in the microscopic range. On

the macroscopic scale such composites behave as if they

were one-phase materials. This means that there is a length

scale such that all samples of the composite larger than a

square of this length have statistically the same properties.

This idea is closely related to the definition of a so-called

representative volume element of a composite. A rigorous

study of the approximations adopted by this approach was

given by Sab.4 Therein a practical procedure for determining

the effective properties of a composite with microstructure

modeled by a random field is given. The properties observed

at the macroscopic scale are called effective properties. They

are determined by three factors: the properties of the phases,

the properties of the interfaces, and the spatial arrangement

of the phases. The latter is called microstructure and is

exactly what makes composites so attractive: properties can

be combined and tuned by altering the microstructure. In a

composite it is even possible to obtain properties which

never can be observed in one-phase materials.5

In this study, we consider macroscopically homogene-

ous two-dimensional metal-insulator composites. The prop-

erty we investigate is the effective electrical conductivity.

We assume that the interface between the metal and the insu-

lator does not develop a conductivity higher than that of the

metal, and can hence be neglected. Fixing the conductivity

a)Electronic mail: joakim.reuteler@mat.ethz.ch.
b)Formerly with ETH Zurich, Department of Materials, Polymer Physics,

8093 Zürich, Switzerland.
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of the metal phase we are interested in the relation between

the effective conductivity and the microstructure.

A sample of a metal-insulator composite is a rectangle

W with a subset M � W that represents the space occupied

by the metal phase. The complement Mc is the space occu-

pied by the insulator. A binary image is a discrete representa-

tion of such a sample. The white pixels approximate the

metal phase and the black pixels approximate the space

occupied by the insulator. We thus can interpret any binary

image as a sample of a metal-insulator composite. Figure

1(a) shows an example of such a sample. Actually, this

image is a thresholded scanning electron micrograph of an

agglomerated Pt thin film deposited on a ceramic substrate.

The width of the metal rods is in the range of 200 nm.

B. Effective conductivity

The effective electrical conductivity re of a square sam-

ple is determined experimentally by applying a voltage drop

V on opposing edges and measuring the current I that flows

[Fig. 2(a)]. In two dimensions the effective conductivity is

defined by

re ¼
I

V
: (1)

The physics of the measurement of the effective conduc-

tivity is described by the Maxwell equations6

r � E ¼ 4pq

r� E ¼ � @

@t
B

r � B ¼ 0

r� B ¼ 1

c

@

@t
Eþ 4pj;

(2)

where E is the electric field, q is the charge density, B is the

magnetic induction and j is the current density. In the present

case all time dependent terms can be dropped. Thus the elec-

tric field E has a potential u, i.e., E¼ru. The subset M � W
is the space occupied by metal, its left boundary is denoted A
and its right boundary is B. The remaining boundary of the

metal is denoted C ¼ @Mn A [ Bð Þ, see Fig. 2(b). The diver-

gence of the last Maxwell equation shows that the current

density is solenoidal, i.e.,r � j¼ 0. This implies that no cur-

rent flows across the boundary C, i.e., n � j¼ 0 on C, where n

denotes the normal vector on C. To see this, consider a box

of width e > 0 around a piece of the boundary and integrate

the divergence of the current density. Apply Gauss’ theorem

and then let e! 0. Within a metal the current density is pro-

portional to the electric field, i.e., j¼rru (Ohm’s law),

where 1> r> 0 is the isotropic and constant conductivity

of the metal. Thus we get n � ru¼ 0 on C. Within the metal

M we have 0 ¼ r � j ¼ r � rru ¼ rDu. Considering all

this, we get the following boundary value problem

Du ¼ 0; on M

n �ru ¼ 0; on C

u ¼ 0; on A

u ¼ V; on B

(3)

for the electric potential u. The total current through the sam-

ple is I ¼ r
Ð

B n � ru do. Using Eq. (1) the effective conduc-

tivity is given by

re ¼ r

Ð
B n�ru do

V
: (4)

We now derive an alternative expression for the effec-

tive conductivity from Eq. (4). Without changing the value

of the integral we can replace the integrand by ð1=VÞuru � n

FIG. 1. (Color online) (a) Sample of metal-insulator composite represented by a binary image. White pixels represent the metal and black pixels the insulating

phase. (b) Percolating cluster of the metal phase obtained by removing isolated islands. (c) Backbone of the percolating cluster obtained by chopping off dead-

ends according to the definition presented in this study. (d) Visualization of this division of the metal phase: white for isolated islands, yellow for dead-ends

and orange for the backbone.

FIG. 2. (Color online) (a) Experimental setup for measurement of the hori-

zontal effective conductivity of a metal-insulator composite. (b) Geometry

of the boundary value problem describing the physics of the measurement of

the effective conductivity.
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and extend the integration to the whole boundary of M.

Using r � uru ¼ ruj j2þ u4u we can apply Gauss’ theo-

rem. Since u satisfies the Poisson equation we have shown

that the effective conductivity can be computed by the fol-

lowing energy functional

re ¼ r

Ð
M ruj j2dl

V2
: (5)

The dependence of the effective conductivity on the geome-

try of the metal phase M is implicit for both of these

expressions.

C. Theories for the effective conductivity

It is an old problem to describe the effective conductiv-

ity of metal-insulator composites in terms of their micro-

structure.7 In principle the area fraction and the spatial

arrangement of the metal phase determine the effective con-

ductivity. The question is how to reduce this information to

one number giving the effective conductivity. Solving the

boundary value problem given by Eq. (3) on a computer is

limited by the complexity of the set representing the metal

phase. There is no way to determine the effective conductiv-

ity in an efficient way directly from the microstructure.

Various approaches to the problem have been made. We

refer to the following monographs5,8 and the short and trans-

parent review.9 We now comment on the relevant results.

So called effective medium theories result in expres-

sions which link the area fraction of metal directly to the

conductivity. The exact form is determined analytically from

assumptions on the microstructure. The expressions from

Bruggeman’s symmetric and asymmetric media theory can

be interpolated yielding a general effective media equation.9

Interestingly for metal-insulator composites this equation

reduces to the expression which is postulated in percolation

theory.

In percolation theory10 the effective conductivity is

assumed to follow a power law above the percolation

threshold /c, i.e.,

rPT /ð Þ ¼ r
/� /c

1� /c

� �t

; (6)

where / is the area fraction of metal. The critical exponent

t should be universal for fixed space dimension. Unfortu-

nately it cannot be computed directly and so has to be deter-

mined from fitting Eq. (6) to experimental and simulation

data. The percolation threshold /c depends on the underlying

lattice. For two dimensions the values have been determined

analytically for the possible lattices. The theory is only valid

for the case of structures where each site has a fixed proba-

bility to be occupied, independent of all other sites. There-

fore in practice both /c and t are treated as fitting parameters

in order to accommodate small deviations from purely

uncorrelated random structures.

Using homogenization theory rigorous bounds for the

effective conductivity have been derived. Based on informa-

tion coded in the n-point correlation functions there is a

whole hierarchy of nontrivial upper bounds for the effective

conductivity. We summarize the review and the formulae

given in a monograph by Torquato8 for the case of a metal-

insulator composite in two dimensions. The two-point corre-

lation function yields a bound which, interestingly, only

depends on the area fraction / covered by the metal. It reads

rð2Þð/Þ ¼ r
/

2� /
; (7)

and is called upper Hashin-Shtrikman bound.11,12 The three-

point upper bound is much more tedious to compute. Expres-

sions given by Prager13 and Beran14 were later simplified: it

was shown that the three-point bound can be written using a

threefold integral of the three-point correlation function of

the metal.15,16 This functional is often denoted by f 2 0; 1½ �.
An algorithm for the computation of f from discrete images

was reported by Berryman.17 There seems to be no simple

interpretation of f.16 In this notation the three-point bound

reads

rð3Þð/; fÞ ¼ r
/f

1� /þ f
: (8)

The four point bounds were also computed.16 In two dimen-

sions the four-point parameters vanish. The upper four-point

bound depends only on / and f, it reads

rð4Þ /; fð Þ ¼ r
/f

2� 2/þ /f
: (9)

All the corresponding lower bounds are trivial for metal-

insulator composites in two-dimensional space.

D. Backbone of conductivity

Only the metal belonging to the percolating cluster can

carry a nonzero current density. Thus isolated islands can be

neglected. By experiment Last and Thouless showed that the

effective conductivity is not proportional to the area fraction

of metal in the percolating cluster.18 Their explanation was

that only a small fraction of the sites belonging to the perco-

lating cluster actually carry current. If the percolating cluster

represents a resistor network, dangling bonds lead to resistors

that carry no current and are dead-ends in this sense. The

backbone of the percolating cluster was then defined as

the part of the percolating cluster which carries current.19,20

The way to compute the backbone is left unclear in the latter

publications. Later Kirkpatrick defined the backbone to be the

maximal biconnected component of the percolating cluster.21

An algorithm to compute this was already at hand before.22,23

More efficient algorithms were found later.24,25 However, this

definition of the backbone does not allow for dead-ends with a

minimal width larger than one. For example a branch of width

two is biconnected to its mother branch because a one pixel

wide path can go into it and return without crossing itself. The

biconnected component of the percolating cluster in Fig. 1(b)

actually is equal to the percolating cluster.

Recently another definition for dead-ends of a set was

given by Jørgensen.26 His definition is based on computing

traveling distances when going from one edge to the

024909-3 Reuteler, Hütter, and Gauckler J. Appl. Phys. 110, 024909 (2011)
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opposing one. This is done by solving the Eikonal equation

with constant velocity within the foreground. Then the short-

est path is reconstructed by back tracing from the destination

edge toward the departure edge. The algorithm works in any

space dimension. In fact the most direct path is computed,

i.e., detours are chopped off. Therefore this definition of

“dead-ends” does not generalize the earlier definitions dis-

cussed above.

The original definition of the backbone as the current

carrying part of the percolating cluster is based on the idea

that there are parts of the percolating cluster in which the

current density vanishes. This only holds for discrete net-

works of ideal resistors. Let’s assume that a percolating

metal cluster in continuous space contained a part that car-

ries no current at all. Mathematically speaking this means

that there is an open subset O � MPC within the percolating

metal cluster where the current density rru vanishes. This

implies that the potential u is constant in this subset. Since

u is the solution of an elliptic partial differential equation it

possesses the “unique continuation property” and thus the

potential has to be constant on the whole percolating cluster

MPC. Consequently the current density vanishes on MPC

which is in contradiction to the fact that a percolating cluster

will carry current if its ends are subject to a potential drop.

Thus the current density in the percolating cluster is zero

nowhere. So by the original definition the backbone is equal

to the percolating cluster. In other words dead-ends do not

exist, there are only broadened rods carrying lower current

density. Looking at Eq. (5) we see that the effective conduc-

tivity can only decrease if parts of the percolating cluster are

truncated. We found a subset of the percolating cluster

whose effective conductivity is only slightly smaller.

In the remainder of this paper we present an algorithm

based on image analysis operations, which is able to reduce

the percolating cluster significantly in mass while leaving the

effective conductivity essentially constant. In this sense we

give a geometrical definition of the backbone of conductivity.

An example of the result of applying our algorithm is shown

in Fig. 1(c). The invariance of the effective conductivity is

observed for various samples represented by binary images

and a two-parameter family of sets, see Figs. 3 and 4(c). In

contrast to the original definition of the backbone as used in

percolation theory our definition contains the case of dead-

ends of arbitrary width. Therefore the backbone of the perco-

lating cluster shown in Fig. 1(b) is a proper subset according

to our definition. The backbone as defined by Jørgensen is

more restrictive than the one presented here. His definition

frees the percolating cluster from all detours, whereas our

backbone may contain detours as long as the starting and end

point are separate. See the loops in Fig. 1(c) on the upper

right side.

For the purpose of this study it is irrelevant if the binary

images are smaller than the representative volume element

of the random sets they were taken from.

FIG. 3. Montage of the binary images representing metal-insulator composites investigated in this study. In all images the metal phase is represented by white.
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II. METHODS

Samples of metal-insulator composites are the basis of

this study. On the one hand we use binary images with the

size of 500� 500 pixels (Fig. 3). These images were

obtained from microscopy, simulation of random fields, and

freehand drawing. The aim was to generate a broad range of

microstructures. On the other hand we use square symmetric

subsets of the unit square [Fig. 4(a)]. They are determined by

two parameters, the width of the rods ensuring percolation

and the side length of the central square. The width of the

rods a was varied at equal steps of 0.2 from 0.1 to 0.9 in

units of the side length of the image window. For each such

value the range of the side length of the central square b was

varied between a and the side length of the image window.

For each of the five values of a, parameter b was chosen to

take on 20 equally spaced values. Some examples of

sets obtained by varying the two parameters are given in

Fig. 4(c). It will become clear in Sec. III that the pairs (/,re)

obtained from such sets cover a large fraction of all

combinations attainable by macroscopically isotropic metal-

insulator composites.

A. Computing the effective conductivity

The computation of the effective conductivity was made

by the finite element method using the commercial software

COMSOL. The binary images were converted to meshes by

a partially self-written code. In the first step ordered lists

containing the coordinates of the pixels belonging to a

connected piece of boundary were generated. Each such list

represents a polygonal approximation of the boundary of a

connected piece of the metal phase. The second step is to fill

the interior of these polygons with a triangular mesh. After

setting the boundary values the Poisson equation was solved

by the software. The standard direct solver for the linear

system was used. All images and their backbones were used

to solve two boundary value problems: one for the setup

where the horizontal conductivity is measured and one for

the vertical setup.

The square symmetric sets and their backbones were

generated by union of rectangles and disks. A script sweep-

ing the two parameters, as detailed above, generated the

samples, set the boundary values and solved the Poisson

equation automatically.

For every sample and its backbone the area fraction of

the metal phase was computed from the mesh representation

that was used to solve the boundary value problem.

B. Image filter extracting the backbone

The image filter we present is composed of different

traditional image processing operations. In Sec. III it is

shown that the image filter introduced only slightly decreases

the effective conductivity. We therefore call the filter Back-

bone (BB). All image processing operations used were

implemented from scratch in Cþþ to allow incorporation of

modifications of these operations. The labeling of clusters of

white pixels is done by the algorithm originally proposed by

Hoshen and Koopelman.27 A cluster is considered to perco-

late the image window, if it connects to all four edges. White

pixels need to share an edge to be considered connected,

while black pixels are considered connected if they share at

least a corner. As a consequence of these requirements, in

two dimensions the percolating cluster (PC) is unique, if it

exists. The Euclidean distance transform (EDT) was imple-

mented according to the algorithm of Saito and Toriwaki.28

It assigns to each white pixel the Euclidean distance to the

next black pixel. Finally the computation of the skeleton by

influence zones (SKIZ) is based on the algorithm published

by Soille and Vincent.29 Here the clusters of black pixels are

considered water basins and the EDT values of the white pix-

els as height of a mountain landscape. The watersheds of this

landscape are the SKIZ of the white pixels, they are formed

by those crests that separate different basins. The basins

must be labeled using 8-connectivity, since the white pixels

are subject to 4-connectivity. For our purpose it was neces-

sary to add to the SKIZ all white pixels which lie along the

boundary of the image. This makes sure that the SKIZ of a

percolating cluster is again a percolating cluster, see bottom

right in Fig. 5. We denote this operation by SKIZb, standing

for skeleton by influence zone with boundary. To obtain the

FIG. 4. (a) A simple two-parameter family of sets representing the micro-

structure of a metal-insulator composite consisting of a single percolating

cluster. (b) Backbone according to the definition given in Eq. (10) with

dead-ends shown in gray. (c) Illustration of the sets obtained for small,

middle and large values of the two parameters a and b.

FIG. 5. (Color online) The backbone (BB), shown in yellow, is the union of

maximal disks centered on the percolating part of the SKeleton by Influence

Zones with boundary (SKIZb), here shown in orange. For the green SKIZb-

pixel the maximal disk associated with it is shown.
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backbone we composed the above mentioned filters in the

following way

BB : M � W 7! MBB � M;

MBB ¼
[

p2PC�SKIZbðMÞ
bEDTðMÞjp ðpÞ; (10)

where bEDT(M)|p
(p) is the maximal disk contained in M

centered at the point p. The formula states that the BB is the

subset of the white pixels which is covered by maximal disks

sitting on the percolating cluster of the SKIZb. This is shown

schematically in Fig. 5. The less metal pixels are present in

the input image, the faster is the computation of image trans-

formations. Thus extracting the percolating cluster of the

metal phase before proceeding as given by Eq. (10) will

speed up the computation of the backbone for many cases.

Typically the above filter results in loss of boundary pix-

els. This is a severe drawback, if the metal phase consists of

structures that are only few pixels wide. To circumvent this

problem, we dilate the set obtained from the above filter with

a 3� 3 structuring element, this amounts to adding a one

pixel thick layer of white pixels at all boundaries between

white and black pixels. Then we intersect this image with the

input image to make sure that the result is a subset of the

input set. For very fine structures however pixels sharing

only a corner with the pixels of the backbone are added in

this step, so another application of the filter extracting the

percolating cluster is needed. In formulae this reads

~MBB ¼ PC d3x3 MBBð Þ \Mð Þ: (11)

For all binary images we use ~MBB, but we drop the tilde

from now on, since the difference between ~MBB and MBB is

essentially a technical detail.

For the case of the two-parameter square symmetric sets

described above, the backbone can be determined by hand

from Eq. (10). The SKIZ is a simple cross made up of

two lines. Taking the union of the maximal disks on this

cross amounts to replacing the centered square of side

length b with a disk of radius r ¼ ð1=4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ a2
p

, as shown

in Fig. 4(b).

III. RESULTS

The basic data for each sample and its backbone consists

of the triple r verð Þ
e ; r horð Þ

e ;/
� �

of effective conductivities in ver-

tical setup, horizontal setup and the area fraction covered by

metal. Therefrom the mean value of the effective conductivity

re ¼
1

2
r verð Þ

e þ r horð Þ
e

� �
(12)

was computed. The relative difference for the conductivity

in horizontal and in vertical setup ranges from 0 to 0.25 rela-

tive to the mean. Most samples show a relative difference

smaller than 0.1. We will from now on only consider

the mean conductivity of samples and their backbone, i.e.,

re (M) and re (MBB) respectively, instead of the conductiv-

ities in horizontal and vertical setup.

In Fig. 6(a) the normalized mean conductivity of the

samples represented by binary images is plotted versus

the area fraction of metal. For each sample an asterisk shows

the value / Mð Þ; re Mð Þ=rð Þ obtained from the unfiltered

image. The dot shows the value / MBBð Þ; re MBBð Þ=rð Þ
obtained after passing the image through our filter. The dot-

ted lines connect corresponding pairs. The dashed line shows

the upper Hashin-Shtrikman bound, see Eq. (7). The dash-

dotted line shows the curve for bond percolation on the

square grid,10 i.e., percolation threshold /c¼ 0.5 and critical

exponent t¼ 1.3 in Eq. (6). Figure 6(b) shows the plot for

the pairs (/,re/r) obtained from the two-parameter sets both

filtered and unfiltered ones. As described in Sec. II the values

of parameter a, the minimal width of the rods, are coarsely

spaced. The values for parameter b, the side length of

the central square, are narrowly spaced. Let’s keep the value

FIG. 6. (a) Normalized mean effective conductivity for samples of metal-insulator composites represented by binary images vs the area fraction covered by

metal. The points (/, re/r) plotted as asterisk were obtained from the unfiltered images and those plotted as dots from the backbones. The dotted lines connect

corresponding pairs of unfiltered and filtered images. (b) Effective conductivity for the samples represented by the two-parameter sets vs area fraction. Each

pair of curves joining at an open symbol is obtained from sets with parameter a fixed, see legend, and varying parameter b. See Fig. 4 for an illustration of the

meaning of the two parameters.
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of a fixed for a moment. Varying parameter b the points

(/,re/r) range over a continuous curve once for the unfil-

tered set and once for its backbone. The open symbols code

the value of a as indicated by the legend. At the minimal

value of parameter b the set consists of a simple cross and

thus is identical to its backbone. Furthermore it has minimal

area fraction and conductivity. Thus the curves for the fil-

tered and unfiltered sets meet at the side of small area frac-

tion. For increasing values of b the area fraction and the

conductivity increase and the unfiltered and filtered set

become more and more different regarding area fraction. On

the side of high area fraction each curve is marked with ei-

ther an asterisk indicating that it corresponds to unfiltered

sets or with a dot for the filtered sets. The curves for the

unfiltered sets evidence that the majority of the area below

the Hashin-Shtrikman bound is filled when the values of

both parameter a and b are varied continuously in their ad-

missible range. Surely, for /¼ 1 the range 0 � re/r< 1 can-

not be covered and if re¼ 0 then necessarily /¼ 0 for the

sets of the two parameter family.

The relative difference between the effective conductiv-

ity of the filtered and unfiltered sample is shown in Fig. 7 for

every sample. The x-axis in this plot is the relative change of

area fraction induced by the filter. Samples which are almost

identical to their backbone are located at small relative

change of area fraction. The relative difference in effective

conductivity for the samples represented by binary images,

shown in Fig. 7(a), is in the range of a couple of per mill.

Only one sample yields a relative change in effective con-

ductivity in the range of one percent. It is the third from left

in the last row of Fig. 3. This observation is discussed in

more detail in Sec. IV. Again for the samples represented by

two-parameter sets each chosen value of a yields a continu-

ous curve for varying b. Notice that in this case the relative

difference in effective conductivity increases with increasing

relative change of area fraction induced by the backbone.

In Fig. 8, the ratio between the effective conductivity of

each sample and the Hashin-Shtrikman bound was computed

once using the area fraction of the unfiltered sample and

once using the area fraction of the backbone. The ratio of the

FIG. 7. Relative difference of the mean effective conductivity of the filtered and unfiltered samples. The data for the binary images is shown on the left side

(a) and the data for the two-parameter sets on the right side (b). The x axis is the relative reduction of area fraction of metal when reducing the sample to its

backbone. The curves in the plot in panel (b) correspond to varying parameter b and fixed value of parameter a, as indicated by the legend.

FIG. 8. The ratio of the effective conductivity and the Hashin-Shtrikman bound evaluated using the area fraction of the backbone is shown vs the ratio of the

effective conductivity evaluated at the area fraction of the sample as is. (a) The data for the binary images. (b) The data for the two-parameter sets.
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effective conductivity of a sample to the value of the

Hashin-Shtrikman bound [Eq. (7)] computed from the area

fraction of the backbone, i.e., re Mð ÞÞð =ðr 2ð Þ / MBBð Þð ÞÞ is

plotted versus the ratio of the effective conductivity to the

value of the Hashin-Shtrikman bound evaluated at the area

fraction of the unfiltered sample, i.e., re Mð Þð Þ=ðr 2ð Þ / Mð Þð ÞÞ:
The meaning of these expressions will be discussed in

Sec. IV. Fig. 8(a) shows the plot for the samples represented

by binary images. All data points lie above the diagonal (dot-

ted line) and are smaller than one. The corresponding plot

for the samples represented by the two-parameter sets is

shown in Fig. 8(b) where again all values are above the diag-

onal (dotted line), but here some values larger than one

occur.

All samples represented by a binary image were used to

generate two other images by filtering once and twice. For

every sample their difference was then computed. It was

found for all studied samples that the second application of

the BB filter did not change the once filtered image.

IV. DISCUSSION

In this section speaking of the “backbone” we mean the

image filter BB: M 7!MBB, as defined by Eq. (10), as well as

the resulting set MBB.

We will first discuss the change in the effective conduc-

tivity induced by the backbone. The backbone is always a

subset of the sample itself, i.e., MBB � M. This implies that

the effective conductivity of the backbone is a lower bound

for the effective conductivity of a sample, i.e.

re Mð Þ 	 re MBBð Þ; 8M: (13)

In other words the error in conductivity induced by reducing

the sample to its backbone re(M)� re(MBB) is never nega-

tive. This implies that the errors obtained for the horizontal

and vertical setup cannot cancel each other when taking the

mean of the conductivity from these two setups, Eq. (12).

For most of the samples represented by the binary images

the relative error in mean conductivity is below 0.3% as can

be seen in Fig. 7(a). The one data point close to 1.2% stems

from the binary image with the “line stars” (third from right

in the bottom line in Fig. 3). The sharp corners close to the

star centers are chopped off by the backbone. The sum of the

current density in these regions appears to be considerably

large. Still the data shows that the conductivity of the sam-

ples and the respective backbones are very close. This is

what the name backbone refers to: electrical conductivity is

essentially sustained by the backbone. The plot in Fig. 7(a)

shows the relative error versus the relative reduction of area

induced by the backbone. There is no apparent correlation

between the error and the area reduction, thus it is less

important how much metal is removed rather than where it is

removed from.

In the case of the samples represented by the two-param-

eter family of square symmetric sets (see Fig. 4) the relative

error in conductivity reaches values up to 7%, see the plot in

Fig. 7(b). This is significantly larger than for the case of the

binary images (Fig. 3). The reason is that the corner parts of

the central square are not retained by our backbone as illus-

trated in Fig. 4(c). However, the current density in these

“dead-ends” seems to be quite large. The effect is more pro-

nounced for sets with large change of area induced by the

backbone, i.e. large value of parameter b (the side length of

the central square). This shows that large step like changes

in the width of a rod are primarily responsible for the change

in effective conductivity after filtering with the BB. The sets

of the two-parameter family range over microstructures

which are worst case structures regarding the backbone. By

cutting the sample as represented in Fig. 4(a) into four

squares swapping positions over the diagonals and joining

again to one big square an alternative representation looking

like a Swiss cross is obtained. It can be shown by symmetry

arguments that it is equivalent in terms of effective conduc-

tivity to the original representation. Interestingly this repre-

sentation reveals the microstructural similarity to the sample

with the star shaped inclusions (Fig. 3, bottom line, third

from right) discussed earlier.

We now comment on the relation between conductivity

and the area fraction of metal. The existence of a percolating

cluster in the metal phase is a 0-1 criterion for the effective

conductivity. If there is no percolating cluster the effective

conductivity is necessarily zero, else it has an unknown posi-

tive value. If the area fraction is known, the effective con-

ductivity is limited to the interval 0; rð2Þð/Þ
	 


, see Eq. (7).

From Fig. 6 we see that the area fraction of metal in the

backbone is not proportional to the effective conductivity:

the data points (/(MBB), re(MBB)/r) scatter over a broad

area. There can be well connected backbones with evenly

distributed mass or such which have bottlenecks limiting the

transport capacity. Nevertheless the backbone optimizes a

given metal phase in the sense that the most wasted metal is

removed. The remaining set is closer to the optimal one: the

data points for the backbones lie closer to the Hashin-Shtrik-

man bound than those of the unfiltered samples.

Fig. 8 shows plots of the data where the x-axis is a mea-

sure for how efficiently the metal present in the sample con-

tributes to the effective conductivity. If the value of

re Mð Þð Þ=ðr 2ð Þ / Mð Þð ÞÞ is one, the microstructure M is opti-

mal in the following sense. For given metal content /(M)

there is no microstructure with an effective conductivity

larger than re (M). Knowing that only the backbone MBB

carries significant current we interpret r(2)(/(MBB)) as an es-

timator for the effective conductivity re(M) of the metal in-

sulator M. Now the y-axis of the plots in Fig. 8 has the

meaning of the accuracy of this estimator. Values below one

indicate an overestimation of the effective conductivity,

whereas values larger than one indicate underestimation of

the effective conductivity. The dotted line shows the quality

of the Hashin-Shtrikman bound when interpreted as an

estimator for the effective conductivity. The data points in

Fig. 8 in general lie above the diagonal, this means that

r(2)(/(MBB)) is closer to the true value re(M) than the

Hashin-Shtrikman bound is. Thus using the area fraction of

the backbone leads to an improved estimator for the effective

conductivity based on the Hashin-Shtrikman bound. How-

ever, many of the values of the quality are well below

one. So this representation of the data clearly shows that the

mass of the backbone can be distributed more or less
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efficiently regarding transport. The less efficiently the metal

is distributed regarding conductivity, the more off is the esti-

mated value for the conductivity.

As pointed out in Section ID, the notion of a dead-end is

trivial if the criterion of no current flowing through it is

applied strictly. Because the transition from “local broad-

ening” of a rod to a long sidewards protrusion is continuous

there is no canonical way to define the backbone. The longer

a dead-end is, the smaller will the current density at its tip be.

This suggests using a threshold for the current density in

order to define which parts can be chopped off. However, this

would require that the current density field were known and

thus is not useful in the present context. In order to be easily

computable the dead-ends and the backbone have to be

defined by geometrical means. Our definition of the backbone

and thus of dead-ends is based on image analysis and so is

purely geometric. The image analysis operations used dictate

the precise position of the cut between backbone and dead-

end. The data of the effective conductivity for filtered and

unfiltered images indicates that our definition is meaningful.

We finally comment on the observation that repeated

application of the BB to all images studied here, resulted in

no further change after the first application. We conjecture

that this holds for any image, i.e., we argue that the BB is an

idempotent set operation. From its definition we see that the

BB is anti-extensive, i.e., it maps a set to a subset of itself.

Together these two properties would make the BB a morpho-

logical filter.30

V. CONCLUSIONS

The classic definition of the backbone of a percolating

cluster was extended with regard to identification of the elec-

trically conducting backbone of two-dimensional metal-insu-

lator composites. This allows to extract the backbone from

any structure containing a percolating cluster. From a

numeric study of the effective conductivity we conclude that

the backbone filter frees a given structure from those parts

which are irrelevant for its steady state DC transport proper-

ties. This opens the way for further geometrical characteriza-

tion with the aim to develop a geometrical estimator for

transport properties. For example, it would be interesting to

investigate whether the microstructural characteristic f, men-

tioned in Sec. I C, can be used to construct a reasonably

accurate estimator for the effective conductivity. An imme-

diate idea is to compute f(MBB), i.e., its value after filtering

by the backbone. Together with / MBBð Þ; the area fraction of

metal after filtering, they could be inserted in either the

three- or four-point bound [Eqs. (8),(9)] to obtain an estimate

of the effective conductivity. The advantages of a purely

geometric approach in contrast to the simulation of electro-

statics are speed of the algorithms and lower memory

requirement. Due to equivalence or similarity of the govern-

ing equations the backbone will also be useful to treat elas-

ticity, thermal conductivity, transport by diffusion and fluid

or gas flow in porous media.8

From the mathematical point of view our finding shows

that it is possible to approximate the solution of a boundary

value problem defined on a spatially complex set by the solu-

tion on a subset, which is in general less complex. This could

help to push the limits of the size of systems that can be

simulated.
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