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The phenomena of magnetism – compass needles, north and south poles of
magnets, repulsion and attraction – are among the most familiar and appealing of
pure physical behaviors to children. Magnetic materials also have a deep
connection to technology, from early navigation tools to essential elements of
electric motors and generators, and more recently to the storage of information.
An early popular demonstration of recording information using magnetism was at
the 1900 World’s Fair, where a method of recording and replaying information on a
magnetic wire was presented. The same basic approach has evolved, both in the
media used and the sensing technology, to the magnetic-media hard disk drive,
within which the information density is exceptionally high, and the storage price
per bit is correspondingly low. The length scales for storing information in
magnets, and for the devices used to read the magnetic information, are only a
few nanometers (10-9 meters). Thus the devices and theoretical descriptions
naturally belong to the realm of “nanomagnetism”, which pertains to magnetic
systems of roughly a few nanometer scale, and containing anywhere from 103 to
109 atoms. 

Current hard disks rely on fundamental advances in nanomagnetism achieved in
the late 1980’s to early 1990’s. The initial discovery in 1988 of how electrical
current moves through hybrid magnetic/nonmagnetic materials that have
structure on the nanometer scale (the so-called giant magnetoresistive effect)
formed the basis of a new field of spin transport electronics (spintronics), and the
foundational work was honored with the Nobel prize in 2007. It was noted by the
Nobel committee that devices produced using this effect “can also be considered
one of the first real applications of the promising field of nanotechnology”. 
The commercialization of these devices, especially the hard-disk read heads, has
revolutionized the nature of information storage for the world. It is perhaps
educational to compare the history of two great discoveries in the 1980’s in solid
state physics – high-temperature (here meaning above liquid nitrogen
temperature, but not room temperature) superconductivity and spintronics.
Superconducting materials carry electrical current without loss; the discoverer of
superconductivity (Onnes, at Leiden) demonstrated the motion of a current in a
superconducting loop without observable loss for over one year. The importance

Introduction



4 prof. Michael Flatté

of high-temperature superconductivity was recognized quickly by the physics
community (and with a Nobel prize in 1987), but without a room-temperature
superconductor commercial applications have been elusive. In contrast, the
tremendous success of the practical application of magnetism to recording has led
magnetic storage companies such as Seagate to close their research laboratories
and high-technology companies such as IBM to move their researchers off of the
topic. 

So what then is the future for nanomagnetism and spintronics? You may have
noticed that the speed of computers, which until the early 2000’s was rapidly
increasing, has now saturated at a clock speed of a few GHz. In the meantime 
the price, density and access speed of storage, and the quality of the computer
display and software, are the principal drivers of an improving computer
experience. Semiconductor electronics based on silicon transistors on a chip, the
bedrock technology of computers since the 1970’s, is slowly reaching its limits.
Thus the semiconductor electronics community is now turning outward to see if
other approaches may allow the improvements in information processing driven
by silicon technology to continue. We may now be approaching the point where
nanomagnetism and spintronics can offer opportunities for the manipulation,
processing and transport of information – a realm described as nanoelectronics.
Some of these opportunities rely on the understanding and control of the smallest
possible unit of magnetism in the solid state – a single magnetic atom or complex
within a solid. In this regime all elements of the behavior of materials come into
play – electrical, magnetic, strain, optical, and thermal. 
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In order to consider structures and devices that depend on the behavior of a
single atom it is vital to be able to image and position such single atoms. The
scanning tunneling microscope, invented in 1981 at IBM Zurich by Gerd Binnig and
Heinrich Rohrer, allows both. The principle of operation is to use a small metal
wire that ends in a very sharp tip (ideally with a single atom at the end) placed
near to a conducting surface. If a sufficiently large voltage is applied the electrons
in the tip become unbound and fly to the surface in a process known as “field
emission”. Binnig and Rohrer recognized, however, that if the voltage was lower
the electrons could also move from the tip to the surface without ever becoming
unbound, through a process called “quantum tunneling”. Quantum tunneling is so
sensitive to the distance from the tip to the surface that the tunneling current is
almost entirely dominated by electrons moving through the very last atom at the
tip of the wire. This provides unequalled spatial resolution for a low-energy, non-
destructive probe. By moving this tip carefully around the surface and measuring
the current through the tip (or, more commonly, fixing the current with a feedback
loop and measuring the height of the tip above the surface), atom-scale features
could be determined and energy spectra could be taken near individual atoms.

It is difficult to convey now to new researchers in this field how controversial the
scanning tunneling microscope was during its first decade of use, even after the
awarding of a Nobel prize in 1986 to Binnig and Rohrer. Tied up with complex
philosophical issues from quantum mechanics, many professional physicists did
not believe such measurements were “real”, and some would apply Heisenberg’s
uncertainty principle incorrectly to the situation to argue that atomic-scale
measurements were impossible at realistic temperatures. The turning point in
overcoming such resistance appears to be the use of the scanning tunneling
microscope to position individual atoms on a surface, demonstrated in 1990 by
Don Eigler and Erhard Schweizer of IBM. For the first time scientists and non-
scientists alike could feel they “saw” atoms as movable, controllable entities in 
an ordinary environment – the surface of a solid. Shortly thereafter it was
demonstrated that the scattering of electron waves by individual iron atoms on a
copper surface could be directly imaged with a scanning tunneling microscope – 

Moving single atoms around
on a solid surface
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here then was the start of researchers using single atoms as sensors or probes 
for the properties of an extended solid state system. The relationship between the
energy and the wavelength of electrons in a surface state on that copper surface
was directly mapped with the microscope with exquisite precision.
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As a graduate student in 1991, looking for a new area to explore, the scattering of
electron waves from individual atoms seemed an ideal direction – a paradigm shift
with an extensive set of implications to unravel. The type of atom could be varied,
the host material could be varied, and little was understood about how these
electron waves should behave in exotic materials. Through lengthy discussions,
my collaborator Jeff Byers and I formulated a picture of the scattering of electronic
waves by single magnetic atoms on the surface of a superconductor, and
proposed the measurement of those waves as a means of determining the nature
of the superconducting state. Such effects were subsequently seen in several
superconducting materials, and provided some of the strongest evidence for the
origin of superconductivity in high-temperature superconductors. 

Single magnetic atoms in
exotic materials
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Figure 1 

Theoretical calculations of electron waves scattering from a single atom on the surface
of a superconductor, shown with the spatial variation. The spatial units are Fermi
wavelengths. The ordinary, isotropic superconductor on the left has electron waves
similar to those seen at the surface of copper. The highly anisotropic superconductor
on the right generates focused electron waves traveling along high-symmetry
directions of the superconductor, related to the pairing potential between electrons.
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In solving the above problem we needed to consider the magnetic properties of
the scattering electrons themselves. Electrons are intrinsically magnetic – they
behave as if they have a small magnet within them, even though they have no
apparent size. To distinguish this intrinsic magnet from the magnetism caused
when electrons move in a current loop, the intrinsic magnetic property is called
“spin”. The electron’s spin will reorient dynamically in an applied magnetic field,
and can also orient nearby electron spins. The calculations of electron wave
scattering from magnetic atoms depended sensitively on the electron spin. Part of
this sensitivity emerges because a superconductor is characterized by a complex
paired state between two electrons of opposite spin.

The mechanism for reorienting nearby electron spins is not, however, through the
magnetic field generated by the little electron magnet. That magnetic field is
extremely weak, so if that were the total effect of one electron spin on another
then magnetic materials would only occur at exceptionally low temperatures and
all the phenomenology of magnets would be completely unknown to common
experience. It’s perhaps surprising that the reason some materials are magnetic at
room temperature, and others are not, is first taught (at least in the United States)
in a solid state physics course to senior undergraduates. The effect itself could be
explained in the first course on quantum mechanics. It is due to a peculiar feature
of the quantum mechanical wave function of multiple electrons. A mathematical
symmetry is always observed in these wave functions, whereby that wave function
must change sign when two electrons with the same spin are exchanged. The
origin of this symmetry is unknown – so much so that in Richard Feynman’s
pedagogical formulation of quantum mechanics he took this symmetry principle as
one of the postulates. This symmetry effect produces a new term in the (ordinarily
repulsive) electron interaction energy, which has the opposite sign (due to the sign
change in the wave function), and occurs between electrons of the same spin. As it
has the opposite sign from a repulsive interaction, the result of this is an effective
lowering of the energy for electrons with the same spin. This “exchange energy”
stabilizes the magnetic state in those materials which are magnetic at room
temperature.
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The magnetic atoms we considered above do not move, but by their presence they
change the propagation of electrons – producing a current of spin. Spin currents
were known to flow in magnetic materials since the 1930’s, but only understood in
nanoscale structures in the 1980’s. Unlike for an ordinary electrical current, there
is no electric charge buildup associated with an inhomogeneous spin current; thus
there is no Coulombic energy to produce capacitive energy. These charging and
capacitive effects often limit the performance of semiconductor electronics. If they
are eliminated or reduced, one might expect the flow of the corresponding current
to be more efficient. Furthermore, all the information contained within an electrical
current is contained within the spatial dependence of the current; to increase or
decrease the current requires bringing charges in or out of the system. For a spin
current the value of the current can be completely changed (e.g. from spin up to
spin down) without adding or subtracting current carriers – just by rotating the
electron spin axis using a magnetic field or other tool.

Such spin currents provide new ways to manipulate electronic properties of a
device, offering the possibility of switching current on and off more rapidly and
with less energy than in a traditional semiconductor transistor. To see the
difference, consider the highly simplified diagram of a traditional semiconductor
transistor. Shown is the lowest energy possible for an electron, as a function of the
position of that electron between the entry point (the source) and the exit point
(the drain) of the transistor. When the barrier in the middle is up, then no current
can flow and the transistor is off. When the barrier in the middle is down, then
current can flow and the transistor is on. This approach underlies semiconductor
transistor behavior, no matter what material or application of the device. It also
identifies some of the functional limitations of these devices. In order to
effectively turn the current on and off the barrier must be high – preferably many
times the thermal energy to prevent thermal activation over the barrier (i.e. about
fifteen times the thermal energy). To prevent the phenomenon of quantum
tunneling, so important to the functioning of the scanning tunneling microscope,
the barrier must be wide. Changing the barrier by a minimum height and minimum 

A new type of current –
spin current
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thickness requires a minimum energy – these considerations prevent the switching
energy of a traditional semiconductor device from being reduced arbitrarily. 
But these constraints are different for a spin transistor.

Also shown is a diagram of just one type of semiconductor spin transistor. In this
device the lowest possible energy for an electron depends on the spin of the
electron – there is one energy “landscape” for a spin-up electron, and a different
one for a spin-down electron. In the landscape shown above neither the spin-up
nor the spin-down electrons can move through the device – they each are blocked
by a barrier. The major difference in the spin transistor, however, is that spin-up
electrons can be turned into spin-down electrons simply by changing the spin of
the electron. So, if the rate that a spin-up electron turns into a spin-down electron
can be changed, then the current through this device could be switched on and
off, without raising or lowering one of the barriers.

There are several ways to cause this to happen, including creating a small
magnetic field to change the spin of the electron. The method most similar to the
switching method of a traditional transistor creates a small effective magnetic field
using a small electric field to distort the wave functions of the solid material the
electron moves through. But how can one make the distortion large? The small
effective magnetic fields emerge because different electronic states of a material
have different internal angular momenta – they can be thought of as containing
small internal currents like those associated with an electron circling the nucleus
of an atom. If the energies of the states in the solid with different angular
momenta are very close together then the distortion in response to an electric
field is larger. This suggests using materials with small gaps between state
energies, such as is found in semiconductors. The narrower the gap the better,
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Comparison of the energy landscape for charge-based and spin-based current gating.
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pointing towards narrow-gap semiconductor materials such as indium arsenide.
There is no barrier to raise or lower in the spin transistor, so the power required to
switch this transistor depends on the efficiency of the conversion from a small
electric field to a small magnetic field, which can be very high. Calculations for
indium arsenide suggest that this means of switching would require orders of
magnitude lower power than the switching of a traditional transistor. 

The other key element of this type of spin transistor design is the differing
landscape for spin-up and spin-down electrons. This requires magnetic materials 
– in order for this landscape to exist for individual electrons without much
scattering, then a magnetic metal is not suitable. The material must be a magnetic
semiconductor or magnetic insulator. Magnetic semiconductors built around
traditional semiconductor materials such as indium arsenide and gallium arsenide
were discovered in the late 1980’s and early 1990’s, and may offer the most
compatible interfaces with the spin-switching material also required for the device
to function. But these materials pose their own problems for theory and
application.
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Magnetic semiconductors are commonly constructed by alloying a magnetic
material with an ordinary nonmagnetic semiconductor, such as by adding
manganese to gallium arsenide. Magnetic manganese atoms replace nonmagnetic
gallium atoms. Often physicists will simplify the theoretical model for such a
system by ignoring most of the differences between the magnetic material and the
nonmagnetic material, and assuming there is a single material with some average
properties. However, a more fundamental approach is possible. The behavior of a
single magnetic atom within an otherwise perfect and nonmagnetic host material
can be predicted, and studied experimentally. 

For the past ten years the properties of one, two, or a few magnetic atoms within
such a host have been major emphases of my research. Ten years ago our
theoretical calculations predicted a large anisotropy in the electronic structure
around a manganese dopant in gallium arsenide. The valence of manganese
differs from the atom it substitutes for in the crystal, gallium, by one, so there is
one excess negative charge in the nucleus from a missing proton. Just as one
would have for antihydrogen, a positively-charged carrier from the surrounding
material binds to the manganese atom within the solid to make a pseudo-atomic
system. The shape of the bound orbital of this pseudo-atomic system, however,
depends sensitively on the properties of the host crystal, which differ profoundly
from the properties of a vacuum. For example, in gallium arsenide the speed of 

Magnetic semiconductors and
single-atom magnets

Figure 3 

Theoretical prediction (left) and experimental measurement (right) of the orbital
around manganese in gallium arsenide. The manganese atom is five layers below the
surface.
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a carrier of a given energy will depend on the direction it travels within the crystal.
The hybridization of the orbitals of the manganese with the gallium arsenide is
also highly anisotropic, with strong hybridization along the direction of
tetrahedrally-coordinated chemical bonds between the manganese and the host,
and weak hybridization along directions in between. This produces a highly
anisotropic “bowtie” shape, which was subsequently observed in a collaborative
project with TU/e. 

Although sometimes it is theoretical predictions that drive experimental
measurements, often it is the other way around. Our theoretical predictions
suggested the shape of the manganese orbital would be mostly symmetric around
the horizontal plane in the image below, but experimental measurements clearly
showed a much greater degree of asymmetry. Our calculations were performed for
a magnetic atom deep within the center of a crystal, but the measurements were
performed by splitting the crystal and examining the effect of atoms only a few
layers deep on the electronic structure at the surface. To reconcile the discrepancy
between theory and experiment required a return to the theoretical toolbox, and
the development of a way to include the spatial shifts of atoms that occur near the
surface of gallium arsenide. Including these effects provided a consistent view of
the wave function shape near the surface.

As described earlier, materials become magnetic through the interactions between
electronic carriers with the same spin. Thus the simplest physical example of a
magnetic interaction in these magnetic semiconductors would consider the
interaction between a carrier in the bound orbital around one magnetic atom with
a carrier in the bound orbital around a second, nearby magnetic atom. The
interaction between such orbitals had been used as a fundamental model of
magnetism in a wide variety of materials since the 1950’s, but the interaction had
never been visualized for the simple case of two isolated magnetic atoms. We
predicted in 2000 that this interaction should manifest itself in the magnetically
modified energies of states measured with a scanning tunneling microscope
around the two magnetic atoms. In 2004 we calculated the expected size of the
magnetic shifts in the energies of states for manganese atoms in gallium arsenide
and found it to be very large; the energy shifts for such atoms were measured
experimentally in 2006. The strength of the magnetic interactions was almost
completely controlled by the shape of the bound orbitals, yielding a highly
anisotropic magnetic coupling. Others have argued, based on these results, 



14 prof. Michael Flatté

that room-temperature magnetic semiconductors should be achievable, if it were
possible to completely control the position of the magnetic atoms within the
nonmagnetic host.
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Theoretical prediction and experimental measurement of the energy splitting between
two magnetically-modified states around two magnetic atoms. The bound orbitals
associated with the two atoms are shown in (a)-(d), and the energies in (e).
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Can magnetic systems for information processing be shrunk farther than the
proposed device described as a spin transistor? What is the smallest size possible
for a magnetic system, useful at room temperature for information processing?
The hard disk industry has invested considerable effort and resources into
determining a commercial answer to the question for magnetic storage, however
their criteria differ greatly from those of the information processing community.
Information stored on a hard disk must remain stable for years without outside
intervention, and so magnetic regions must be resilient at room temperature to
perturbations from the surroundings, requiring a cooperative magnetization
involving millions of atoms, corresponding to magnetic regions approximately the
size of several nanometers. For information processing, however, if the magnetic
entity is protected from the effects of surrounding perturbations, and is stable on
a timescale of microseconds, then that could be sufficient for this entity to be
useful.

Over the past few years examples have been found of individual spin systems,
associated with single atoms or small complexes embedded within
semiconductors, that have this resilience. The most intensively explored of these
is the nitrogen-vacancy center in diamond. This spin center is created by replacing
one carbon atom within a diamond crystal with a nitrogen atom, and also
removing a neighboring carbon atom. The resulting complex has a ground state
spin equal to the spin of two electrons combined, and is very common; yellow
diamonds, which are common colored diamonds, are typically yellow due to the
nitrogen within them. The nitrogen-vacancy spin center has several remarkable
features – the spin can be polarized by illumination with a simple green laser, it
remains oriented for times greatly exceeding one microsecond at room
temperature, and the spin polarization can also be detected in a fluorescence
cycle again using a green laser. Over the past few years these unusual features
have permitted the demonstration of a wide variety of single-spin manipulations
at room temperature, suggesting that single spins can be used for information
processing. Much of the effort on these single-spin centers has been devoted to
so-called “quantum operations” where the quantum mechanical nature of the spin
state is preserved, permitting possible quantum computation. However, the

Room-temperature single-spin
information processing
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measurements also demonstrate the initialization, control and detection of
information stored in a solid region smaller than one cubic nanometer, which may
approach the ultimate limit of solid-state computation.

The journey ahead for single-spin information processing in nanoelectronics
remains lengthy and challenging for commercial applications. The cost of the
diamond semiconductor used in the experiments above is not a significant part of
this challenge, however, as similar effects are now being seen in more common
materials such as silicon carbide. The true challenge will be to replace each
portion of the control demonstrated optically with electrical means, so the large
wavelength of the optical probe does not limit the density of the computation
elements. This will mean methods to electrically initialized spins – perhaps by
injecting them from magnetic semiconductors. Manipulation of the spin directions
of these single-spin centers using electric fields and strain are in the initial stages
of demonstration (with optical initialization and detection). Finally, electrical
detection of the spin would complete the transformation of this from laboratory
demonstration to potential commercial device. At this point perhaps the ultimate
limit of computation density will have been reached – leading to the same result
as greeted the success of the hard disk community, the firing of the research staff.
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Self examination is an enterprise fraught with the risk of self delusion, never more
so than when thanking those who influenced one’s perspectives and approach.
Conversations with my father about science were my first impressions of how a
physicist would think, and formed a deep and abiding desire to learn this strange,
precise and rigorous field. Observing his travels and interactions with the scientific
community also opened my eyes to the existence of this marvelous global
community of researchers motivated principally by the desire to learn the truth
about nature. My mother provided the structure and opportunities for me to test
my interest in science and learn what I could do. My graduate advisor, Walter
Kohn, taught me scientific self-reliance, precision and a confidence sufficient to
not follow a crowd. Students and postdocs at the University of Iowa, especially
Jian-Ming Tang, Wayne Lau and Kimberley Hall, contributed extensively to the work
described herein. Collaborators at other institutions, including David Awschalom,
Jeff Byers, Carlo Canali, Nitin Samarth, Giovanni Vignale, and Ali Yazdani, have
brought new ideas, new problems, and new solutions to these topics. And I wish
to acknowledge the extensive and delightful conversations, discussions, and
clarifying arguments with colleagues here at Eindhoven University of Technology
including Paul Koenraad, Bert Koopmans, Peter Bobbert, Andrei Silov, Andrei
Yakunin, Cem Celebi, Murat Bozkurt, Jens Garleff, Joost van Bree and Juanita
Bocquel. My children, Devra, Shecharya, Naftalia and Meirav, keep me focused on
what is important. And Jennifer, my wife, is my center.

Acknowledgments



18 prof. Michael Flatté



19

Michael E. Flatté received the A.B. degree in physics from Harvard University in
1988 and the Ph.D. degree in physics from the University of California, Santa
Barbara in 1992.
After postdoctoral work at the Institute for Theoretical Physics at the University of
California, Santa Barbara and in the Division of Applied Sciences at Harvard
University, he joined the faculty at The University of Iowa, Iowa City, Iowa, USA in
1995, where he is now F. Wendell Miller Professor in the Department of Physics
and Astronomy. He became part-time Professor at Eindhoven University of
Technology in 2010. His current research interests include spin dynamics in
semiconductors and metals, carrier dynamics in narrow-gap semiconductor
superlattices, electrovariable nanoplasmonics, single-dopant properties in
semiconductors, novel spintronic devices and solid state realizations of quantum
computation.
Prof. Flatté is a fellow of the American Association for the Advancement of Science
and of the American Physical Society, and is a member of the IEEE Electron
Devices Society, Magnetics Society, and Photonics Society. He is also a member of
the Materials Research Society, Optical Society of America, and American Vacuum
Society.

Curriculum vitae
Prof. Michael Flatté was appointed part-time professor of Photonics and

Semiconductor Nanophysics in the Department of Applied Physics at Eindhoven
University of Technology (TU/e) on 1 March, 2010.



20 prof. Michael Flatté

Colophon

Production
Communicatie Expertise 
Centrum TU/e

Cover photography
Rob Stork, Eindhoven

Design
Grefo Prepress,
Sint-Oedenrode

Print
Drukkerij Snep, Eindhoven

ISBN 978-90-386-3409-8
NUR 925

Digital version:
www.tue.nl/bib/



Visiting address
Den Dolech 2
5612 AZ  Eindhoven
The Netherlands

Postal address
P.O.Box 513
5600 MB  Eindhoven 
The Netherlands

Tel. +31 40 247 91 11
www.tue.nl

Where innovation starts

/ Department of Applied Physics

Inaugural lecture 

Prof. Michael Flatté

June 21, 2013

Magnetism for
Nanoelectronics




