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CHAPTER I INTRODUCTION

The work described in this thesis has been performed in the group

, Semiconductor Physics of the Solid State Division of the Departmeht of
Physics of the Eindhoven University of Technology. The research in this
group is concentr?ted on electrical transport and optical properties of
semiconducting compounds. A part of the interest is concentrated on

the study of narrow gap semiconductors (NGSC) of II~V and II-IV-Vp
compounds, such as Cd3A32 and CdSnAsz, respectively. Recently the study
of the (Cdl_XMnx}3Asz mixed ctystal system has started. This thesis deals
with an investigation of the geometry of the conduction band Fermi-
surfaces as function of the electron concentration of degenerate n-type
ca Asz, Cdsnas,, and (Cdl_anx}3As

3
(SaH)-effect.

by means of the Shubnikov~de Haas

2 2

In the past two decades there has been a growing interest in the
II-V compounds such as C63A32 and Cd3P2 because of their small energy
gaps, low effective masses and high mobilities [1-3]. The investigations
of the band structure of cd3As2 have been hampered for a long time dﬁe
to the difficulties appearing in the preparation of good quality single
crystals and the ever present high electron concentration. In addition the

crystal structure (Cd3As crystallizes in a body centered tetragonal

structure with 160 atcmszper unit cell, spacegroup Cié [4,5]) makes
direct calculation of the band structure extremely complicated.

In spite of the tetragonal crystal structure and the early observations
by Rosenman [6] and Doi et al. [7] of the conduction band anisotropy,

the experimental electriecal transport and optical data have been inter-
preted in terms of an lsotropic Kane-type band model throughout the years
[8]. Aubin et al., [9,10] constructed in a phenomenclogical way a band
model for Cd3Asz which was consistent with all relevant data available
at that moment. In this Kane-type model an inverted band structure (Eg<0)
was adopted and a small indirect gap between the conduction band and the
heavy hole valence band was assumed. The acceptability of thelr main
ideas was confirmed theoretically by pseudopotential calculations [11]

as well as experimentally [12-14]. In the mean time Bodnar [15] developed



an improved model, incorporating the anisotropy of the interband momen-
tum matrix elements and the crystal field splitting. From a reinterpre-
tation of earlier SdH- and dHvA (de Haas - van Alphen)-data [6,7] Bodnar
concluded that Cd3As2 has an inverted band structure and a posi-
tive crystal field splitting. He obtained values of the primary band-
parameters from measurements which covered only a narro& range of
electron concentrations beyond 1 % 1024 m“3. Since the Bodnar—moéél
predicts a considerable increase of the anisotropy with decreasing
electron concentration, we started the investigations of the SdH-effect
in low concentration samples, which could be obtained due to improvements
in material technology [12].
* The validity of the Bodnar-model and its extension to guantising magne-
tic fields [16] have been examined for CdjAs, in a large electron con-
centration range. The experimental results of these investigations are
presented in this thesis.

" The model proposed by Bodnar in order to interpret the anisotropy
of the conduction band of Cd3A52 is essentially the same as Kildal's
band model [17] for CdGeAs,, which seems applicable to chalcopyrite
II-IV~V2 compounds in general [18]. Out of this family CdSnA32 is an
attractive compound to be studied by means of the SdH~effect because
of its narrow bandgap and its relatively high electron mobility.
CdSnAsz is believed to have the normal ordering of the energy levels
(Egj>0) and a.negative crystal field splitting [18]. Data on the
anisotropy of the conduction band of CdSnAsz, however, are scarce. More-
over, the available data on the anisotropy of the effective mass [19,20]
obtained from optical measurements indicated a considerably higher
anisotropy of the conduction band than expected from the Bodnar (Kildal)-'
model by substituting the generally accepted values of the bandparame-
ters [1B]. The present study of the SdH-effect was undertaken in order

to determine the anisotropy of the conduction band of CdSnAs, in more

detail and to verify the applicability of the Bodnar (Kildalf~model
for this material.

Recently, a new class of semiconducting materials has been attracting
much attention [21]. Mixed crystals have been formed by alloying II-VI

semiconducting compounds, such as CdSe and HgTe, and magnetic transition



metal compounds MnSe, MnTe [22,23]. Due to the exchange interaction
between the mobile carriers and the electrons in the partly filled
d-shell of the iransition metal ion, the spin dependent electronic
properties of these materials change drastically with temperature
and magnetic field.

During tpe study in our group of transport and optical properties of

cd Asz, it was realised that an alloy of Cd3As with the magnetic

3 2
compouﬁd'MnB}As2 could be a potential new member of what is called the
group of semimagnetic semiconductors (SMSC)., Since Cd,As, has a tetra-

32
gonal crystal structure it was expected that the mixed crystal systenm
(Cdl_anx)3As2 would introduce anisotropic features of the spin depen-
dent electronic properties into the research of SMSC. SdH~measurements

have been performed on (Cdl_anx)3A samples with a low magnetic ion

s
content (x < 0.05) in order to checkzwhether (Cdi_anx)BAs2 is indeed
a SMSC and to verify the band model developed for this material. Due
to the narrow electron concentration range of the measured samples wé
are not able to give an elaborate guantitative description of the
temperature and field dependences of the band structure of this mixed
crystal system. Therefore only a tentative interpretation of our
measurements in the bandmodel for tetragonal SMSC is presented in

this thesis.

The thesis is organised as follows. In chapter II brief descriptions
are given of the Bodnar-model, its extension in the presence of quan-
tising magnetic fields and of the SMSC band model, i.e. including terms
due to the exchange interaction. The theory of the SdH-effect is
treated gualitatively from the motion of a free electron in a magnetic
field in chapter III, while the experimental set-ups and data taking
procedures are given in chapter IV. In chapter V the results of our
A, Cdsnas,,~ and (Cd1_anx) As _-samples are

3 2 372
presented and interpreted in the models treated in chapter II. The

SdH-measurements on €4

main results and conclusions are summarised in chapter VI.

References are given at the end of each chapter.

§2.3 and parts of §5.1, §5.2 and §5.3 have already been published else~
where [24-27]. .
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CHAPTER II BAND MODELS FOR TETRAGONAL SEMICONDUCTORS

In this chapter the four level bandmodel developed by Bodnar [3] and
Kildal [4] for a tetragonal semiconductor is described briefly (§2.1).
Taking this model as a starting point Wallace [8] calculated the band
sﬁructute of Cd3A32 in the presence of quantising magnetic fields. In
§2.2 the main steps of his calculations are given. An extension of the
calculation of Wallace to the case of (Cdi_anx)3As2 is given in §2.3,
where the terms due to the exchange interaction of conduction electrons

with those in the 34 shells of Mn-ions have been taken into account.

2.1, The Bodnar-model

Using the proper symmetry in the I'-point (peintgroup C4¢), Bodnar
has calculated the influence of the tetragonal crystal field on the
three level Kane-model [1,2] for tetragonal semiconductors with a
narrow bandgap. Only a very small part of the results he obtained during
the preparation of his Ph.D. thesis has been published. Unfortunately
completion of his thesis and the rest he planned to, was not to be.
In Bodnar's contribution on the band structure of Cd3z-\s2 [3] at the Warsaw
Conference, only a symplified version of the secular equation obtained
from his calculations has been given. This symplified secular equation,
was obtained by neglecting the lack of inversion symmetry as well as
the anisotropy in the spin-orbit interaction [1]. It coincides with
the results given by Kildal [4] for the band structure of the chalcopyrite

CdGehs, . Following Hopfield {5] Kildal approximated the real field of

CdGeasz
A similar approach can be used to calculate the four level band nodel -

by a cubic field plus a tetragonal distortion.

of cd3A52 in the vicinity of the [ -point. In that case the field of

Cd3As2 is represented by adding a tetragonal distortion to the cubic
field of fluorite. Following Van Doren et al. [6] a brief description

of this approximation is given in this section.

Including spin-orbit coupling, the Schrddinger equation for an elec-
tron in the periodic potential V(;) can be written as:



© J 4mc2>02

2
{ﬁ% +V+ 3 h ('V’ino’)j.gj}xpk=nkwk . (2.1)

> >
where p is the momentum operator and the Oj are the Pauli-spin matri-

ces. Eq. g.i can be rewritten by introducing the Bloch-functions
wk = ukelk'r, where u has the periodicity of the lattice. The following

eguation is obtained:

2
i+-> 2} >
{§£L +V+=kop+ ; >3 W x Py - Uj}uk
) [] 3 4moc
2
12 ,
’- (Ek - 750—)\1}{ . {(2.2)
-> hz V > -
where the k-dependent spin-oxbit interaction term L (%V x k) .U.uk
j4m§c2 3773

has been neglected since the spin~orbit coupling is more effective in
the interior of the atom [2]. The real crystal potential V is written
as V=V0+Vt, where Vt represents the deviation of the crystal potential
from the potential Vo with cubic symmetry. In oxder to calculate the
band structurenearﬁéo, the unperturbed Hamiltonian Ho = pz/Zm° + Vo
is considered to be solved exactly. The tetragonal distortion of the
cubic potential [6,7], the f.; term and the spin-orbit coupling are
treated as first order perturbations.

Linear combinations of the wavefunctions 8, X, Y, 2 of the unperturbed
eigenvalue problem have been used as basis functions for the matrix
representation of the total Hamiltonian. The following set of basis
states, which diagonalise the spin-orbit interaction is chosen [8,9]:

1 2
ulzlis+> u5=|-7—6(x+iy)¢+7—62+>
1
u2=|13+> u6=‘7—2(x+iY)+>
(2.3}
= | L x-1v) +> u, = |- e (x-iY) 4+ o= 24>
3 V2 W 7 V3 V3
|k i) b2z > u = | o RHY) b+ ez >
Y =17 V6 8 73 73



The symbols 4 and + mean spin-up and spin-down functions, respectively.
The functions X, ¥, Z and § refer to the unperturbed valence band and
conduction band wave functions, respectively. They transform like atomic
p and § functionsvunder the operations of the cubic group at the I'-point.
In this basis the total 8 x 8 Hamiltonian-matrix can be written as

H H
azl lf 2‘ (2.4)
Hy H
with
B 0 X \/39 B
Bs Pyl 3 f/kz
s 374
= A .S
Plk'i' 0 Ep'f'g'('g o]
V3 V3
= P - P k A8
3 Bz 37 0 Et3+3
—”—\/:-Pk 0 \[—]'—Pk = P,k ]
3L+ 3 /2 V3“1
j2 2 1
| \/-3 Pz Piks “\/3 Pk \/:3' Va
H2= (2.5)
0 4] o] Y]
-2
0 0 TG Q
. A 6 V2 ]
EP+-§—§ 0 0 -5-(3
A8
0 Ep+§+§ 0 0
H, = ,
] 1] E - x A 0
p 3
/2 2
—76 0 0 E? 313




In the matrices the eigenvalues of the unperturbed Hamiltonian have
i .

been denoted by Bs and Ep, while kﬁ stands for 75 (kx + i ky) . The

guantities known as the interband momentum matrix elements ( P VA P J_) ’

the spin-orbit splitting parametef (A) and the crystal field splitting

parameter (§) are defined as [4]:

Py - !%h_ <s|p |x> = .% <S|pyIY>
o (o]
Py E- I_’.;i‘. <S‘Pz|3>
<
. v Y v v
_ _3ih o o) 3ik o o
A = KX | g — v = L5 4 P - Z> =
w22 fax Py " 5y Pyl am 202 IBx Py 55 Pyl
(o} o]
R ov v
3ih o o
<t|=2p - =—p |2> (2.6)
4m0232 o9y ~“z 3z *y
8 = 3x|v |x> = 3<y]v |v> = - % <zlv, |z>

The anisotropy of A has been neglected, since there exist no experimen-—
tal data which justify such a refinement.

After diagonalisation of the matrix H, the following secular equation,
which determines the eigenvalues, is obtained [3,4.,6]:

] - 1 2 2 s 2 !
Y (E') = £,(B") LI ky b+ £, (E")k, ’ (2.7
with
Y @) =B E-E) (B @) + SE %A)}
£, =2 % (& @ +-§~m + SE+ %)} (2.8)

¥ s 2 3 1] 2
£,(E") —P,,f {E* (EB* + 3A)} ’

where

,ﬁ2k2
T 7m
(>}



2.2

The h°k’

- 2m N
neglected.

équation 2.7 has been obtained by shifting the zerc of energy i.e. by

aséuming Ep+ %—-l- § = 0 and replacing E_ by the energy gap Eg. This

term is the free electron term, which from now on will be

relation reduces to the Kane-bandmodelwhen § = 0 and P y= By Eg. 2.7
describes the four band model of tetragonal semiconductors with a nar-
row bandgap, i.e. normal as well as inverted bandstructure (Eg>0 or

Eg<0) and with 8>0 as well as with §<0. For k=0 the eigenvalues become
0, ng E

1 and E2 with

_ _ (6+8)
Ey,2 < 2

[a+8) 2 - %Asf’ :

N

+

The level E = Eg originates from a non-degenerate s-like atomic level,
while the levels E = 0, El and E2 originate from a triply degenerate
p~like atomic level, splitted by the siwmultaneous influence of the
spin-orbit interaction and the non~cubic crystal field. Due to the
narrow bandgap the states at finite l? will have a mixed s~p type
character.

In fig. 2.1 the solutions of eqg. 2.7 are shown as functions of kx
and kz for the four possible combinations of Eg and §. Eg > 0 and
§ < 0 applies to the chalcopyrite structure of cheA52 which results
in the following ordering of the levels at k = 0: Eg>E1 >E=0>E, [4].
For cd3A32 Bodnar [3] found Eg< 0 and 8§ >0 from fits of the anisotropies
in the period of the SdH-oscillations and in the cyclotron effective
mass. A negative bandgap and a positive crystal field splitting result
in E=0 >+EI >~I':g>E2 at §=0 and E=0 is the energy of the conduction
band at k= 0.
it‘ should be noted that for Eg<o, §>0 —iihe conduction band (E=0 at
k=0) and the heavy hole band (}?:=E§1 at k=0) and for Eg>0, § <0 the

heavy hole band (E=E, at §=0) and light hole band (E=0 at K=0)

do,nqt overlap, but téuc_h at one point in the kz~direction. These bands
neither overlap nor touch for other directions of the wavevector. In
the kzndirections the bands will not touch any longer when the effect
of higher and lower bands has been inco;‘porated. Eurthermore, taking
into account these effects the flat parts of the conduction bands and

heavy hole valence bands inifig. 2.1 obtain a finite curvature.

10
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Fig.2.1. Schematic diagrams of the energy band structures near Z=0
resulting from the Bodnar-model. The parametere 237, P and A
are 7.21 x 10 %evn, 7.43 + 1071 % and 0.27 ev, respectively.
The values of Eg are 0.095 eV (a,d) and -0.095 eV (b,c). The
values of & arve 0.085 eV (a,c) and -0.085 eV (b,d). Fig.2.1.c
represents the level ordering in CdSA.?Z while fig.2.1.d gives

the ordering in C'dSnAsz.
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2.2. The Bodnar~-model in a magnetic field

A model which describes the band structure of &2(3321152 in the presence
of quantising magnetic fields taking the Bodnar-model as a starting
point, has been developed by Wallace [8]. This model plays an important
role in the interpretation of our experimental data on Cd3A32 and
CdSnAsz, in particular concerning the cyclotron effective mass and the
effective g-factor. The main steps of Wallace's extension of the Bodnar-

model are given in this section.

In a magnetic field making an arbitrary angle 6 with the c-axis
(= z-direction) the Landau-~levels are obtained by introducing the

following coordinate transformation:

Xk =kcosf-k sinf
X x z
« =k ) (2.9)
¥k =k sinf+ k cosf ,
z X z
With eq. 2.9 the secular equation 2.7 is written as:

2 2

2 ' .
+ Ckz + 2D’kx‘kz' (2.10)

Y(E) = Akx' + Bky'
where

A= £, cos® 0+ £, sinZ @

1
B = f1
(2.11)
_ .2 2
¢ = f1 sin” 8 + f2 cos” 8
D= (£,-£)) sin 8 cos 8 .

The quantities ‘{,fi and fz are defirned in eg. 2.8. Using the commutation

relations

12



-i/12

]

[k o %y
(2.12)

k' k'] = [k's k' =0

vhere 1 ig the classical c¢yclotronradius VE/eB of the lowest oscillator
orbit, Wallace obtained the following creation and annihilation opera-

tors:
= VAk ' + i/Bky’ +D/VADK," . (2.13)

Making use of the commutation rules for the unprimed k's and the

+ -
operators A and A , the Landau-levels can be calculated from the
diagonalisation of the Bodnar-Bamiltonian matrix. The secular equation

then becomes:

£ £,k 2
Y(E) = 2““ [f (f cos 0+ fzsin B)] 1 2 =z 3
l ficos g+ fzsin e
* %3‘:% [(E+6) %p 2cos 8+ E:ZP//2 sin2 ] ]!5 . (2.14)
-3 Fig.2.2,
The conduction band Landau~ Zevels
80 8=30 caleulated from eq. 2.14 for B
‘parallel to the c-pxie(B = 27T,
Y = 0) and B perpendicular to the
2 3 4 e-axis (B = 2T, 0 = 90).The curves
:J \_ 1,2, 3 correspond to the fp£n+
2 2 | splitted Landau-levels 0 , 0 ;
) 5, 2%; 107 and 10", vespectively.
' The values of the parameters are
P, =7.214 10 =10 oym,
Pl. = 7.43 *x 10 eWt, A= 0,27 eV,
4.10° 0 4.10% 5 = 0.085 eV and B, = ~0.095 oV,
Kz (m™? KX (m™1) , ‘
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where all symbols have their usual meaning. '
1he first term on the right hand side of 2.14 represents the guantisa-
“tion of (kx’2 + ky'z), the second term is unaffected by the magnetic
field since the field points in the z'~direction. The third term
accounts for the spin-splitting of the Landau-levels. A plot of the
lowest conduction band Landau-levels ié given in fig. 2.2.
It is possible to calculate numerically a value of the effective g~
factor for given B,’G and Landau number n by takingythe difference
between two solutions corresponding to the conduction band and dividing
it by uBB, where uB is the Bohr-magneton.
An analytical expression for the effective g-factor has been obtained
by Wallace from eg. 2.14 under the condition g*uBB<K EF' thus for a
large number of Landau-levels below the Fermi-level. The expression
reads as follows:

[(®+8) 2P_chos2 8+ Ede/ 25in% 0 ]gi

2m
g* (8) =(——*&)9A . (2.15)
mZ O /L [fltfzcosze+ f231n2 8 ]%

The effective cyclotron mass m: used in this relation has been obtained
from eg. 2.14 after neglecting the spin-splitting term and assuming the

magnetic field to be low. The effective cyclotron mass then becomes:

m* (8) 2
e _h & Y .
=3 dB{ } (2.16)

mq [fl(f1c0329A+ fzsinze)]%

2.3. The Bodnar-model including exchange interaction

In the case of semimagnetic semiconductors (SMSC), apart from the
usual K.?; spin-orbit and crystal field terms in the Hamiltonian, one
has to account for the terms due to the exchange interaction of free
carriers and electrons in the 34 shells of magnetic ions [10]. The

exchange interaction may be represented by

-+ >
B, = lz; J(r - RO . é’ﬂ , (2.17)
n

L t - .
where J, 3 and Sn stand for the exchange integral, the electron spin
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operator and the total spin operator of the Mn~ion at §;, respectively
[11]. In this section we present the Bodnar-model in gquantising magne-
tic fields including the exchange interaction of this type.

In the basis states given by éq.<2.3 the total matrix, including the

contribution of Hi, has the following form: (see next page).

Due to the lower symmetry of the crystal we have now three independént

guantities describing the exchange interaction (instead of two for

Hgl_XMnXTe [12]). These are defined as
a = <slals>/q,
B, = <z]3|z>/Q (2.19)
BL = <x;Jix>/Qo = <¥}J|Y>/Qo '

where Qo is the unit cell volume.

The other symbols used in 2.18 read as follows:

1 1
a8 = 5 o X <Sz> at =3 o x <Sf>
b=-1-8x<S> d=}-Bx<S> (2.20)
2 - z + 21 + -
b'=-1-8 X <5 > o =-1-8 x <8 > .
2% z + 27/ +

where x is the molar fraction of Mn, <Sz> and <S+> = <Sx + iSy> are the
thermal averages of the components of Mn-spins. -

e
In caseof non-interacting magnetic moments the component of <8> along

the magnetic field does not vanish, so we may write

<8 > = <85> cos 6
z B :
(2.2

<s+> = ~<s>B sin 0

where @ is the angle between an external magnetic field and the

crystallographic c-axis.
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>
For low magnetic ion contents the component of <S> along the magnetic

field is assumed to be given by [13]:

8>y =8 e - 35/2 { SuBB/kB(T+TO) ) ’ (2.22)

where B is the Brillouin-function and Seffkana Te =T+ T are

5/2 £f
effective values for the saturation and temperature, respectively.

2.3.1. Magnetic field parallel to the c-axis
When 8§ = 0 the terms in eq. 2.18 involving ar c, and d+ vanish.

In that case the following creation and annihilation operagors can

" be introduced:

*
A =1 k: (2.23)

with 1212 = eB/h.
Then, for k2=0, the 8x8 matrix given by eg. 2.18 decouples into two

4x4 matrices

B (2.24)

The eigenvectors of Ha and Hb may be expressed in terms of harmonic

oscillator functions @n:

_ - _
a1 @n b1 @D
a ] b ]
2 % 2 %ot 2.25)
]
a3 9 by 0y
a, o, b, %

for Ha and Hb' respectively.
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Then Ha and Hb become

— —
P P P
ok -a ar1 L _\/E_l 2 N1
g 1 31 3 1
P
n+1 3% -b 0 0 )
Ha - o (2.26)
n 1 . 1 V2
VI T 0 -3126+b-2b ) j;-(b+b'—6)
- P
[z, BL 2 1
303 0 3 (b+b'-§) - A - 3(5+2b—b')
(basis functions s Ugy us, ug see eq. 2.3).
\ P P P
) 1 1 1 2 1
Eg+a \/§(n+1) T vn N —\’ 3(n+1) 1
P
-,/1 IS PR _Y20
3(n+l) 3(b-2b 28) 0 3 (b+b +3)
H, = o (2.27)
' Vo —L 0 b 0
1
o .
/2 1 V2 1 ‘
~ 3(n+1) 1 - 3(b+b'+6) 0 - A - 3(6+b -2b)

(basis functiéns Uyr Uy u6, u., see eq. 2.3).

7
The secular equations corresponding to egs. 2.26 and 2.27 are generally
of the fourth order. Fig. 2.3,a presents the results of diagonalisation
of egs. 2.26 and 2.27 in the form of the Landau-levels at kz=0 as
function of the magnetic field. For the sake of comparison the magnetic
levels of Cd.As, are plotted in fig. 2.3.b. One can see that the a(-1)

372

level is no longer the lowest one in case of (Cd below

0.99™%0.01’ 3752
4 T. Above this value of the field the a(-1) level becomes again the
lowest one and the sequence of a(-1) and b(1) levels is that of Cd3As2.
This characteristic feature of SMSC is shown also by the crossings of

the other Landau-levels.
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3 3
w W
- 02 i 1 i i - 02 ! i I i
0 1 2 3 4 5 0 1 2 3 4 5
a) B (T b) B (1>

Pig.2.3. Lowest conduction band Landau~levels in (Cd0.99m0.61)3‘482 (a)
and CdzAs, (b) at T = 4 K caleulated as a function of the mag-
netic fileld parallel to the c-awxis. The used values of o, B VE
By Seff and To are ~3.4 eV, 4.9 eV, 4.9 eV, 1.6 and 1.9 K,
respectively. The values of the other bandparameters are given
in fig.2.2. The levels a(-1}, a(0), b(2) and a(2) in fig.2.3.Db

correspond to the 07, 0%, 2”7 and 2'levels in £ig.2.2 for © = 0.

2.3.2. Arbitrary dirvection of the magmetic field

Two difficulties arise when the mignetic field is not parallel to
the c¢-axis. Firstly, the operators A~ defined in eq. 2.23 are no
longer proper Landau-quanta since they do not fulfil usual commutation

relations. Secondly, the off-diagonal terms a, ¢ and d+’in eq. 2.18

‘are no longer equal to zero. When 8 # 0 the eigengalue problem cannot
be split into two 4x4 problems, but its dimension is 8x8 ewven in the
kz=0 case.

Here the main steps of Wallace's paper [8] have been adopted in order
to handle the problem of Landau-levels in anisotropic (cal_anx) 3As2
alloys. Using the primed system of coordinates (see eg. 2.9), one may

look for new creation and annihilation operators in terms of these
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primed variables. It is possible to define them analogous to Wallace

{see eq. 2.13):
: 1 -
+ T B 4 = . F) $ D ]
A= =221 B {»{Akx'fiyfsky, +/sz} (2.28)
2and[k' k '] =
x ' Tz

where (AT, N1 = 1!12 because {kx‘, ky‘] = -i/1
1] = -

[k k=00

The quantities 4, B, U are defined as:

= Elccsze + fzsinzﬁ

E‘l (2.29)

= (fl—f2)31n6cose

o wl ]
n

where

hi
[

2 2, A, 2
=P B + 30 +6(E+~3-)~b}

lal]
]

5 PZJ,2{E(E + %—A}—bz} .

Howeyer, one also finds that the Hamiltonian contains terms quadratic
in A", This means that simple vector columns, as defined in eq. 2.23,
cannot serve as eigenvectors of our problem.

A difficulty of this kind is often met in the problem of magnetic ener-
qy levels in semiconductors {14-16]. A way out of this difficulty is to
use vector columns which contain infinite series of harmonic oscillator
functions in each row. Then, if a certain cut-off of the expansion is
assumed, it is possible to find the eigenvalues by means of a lengthly
computer calculation [ 16]. Such an approach is necessary when one is
interested in very accurate values of the eigenenergies in the heavy
hole band. However, when dealing with the conduction band it is often
found that the terms quadratic in the Landau-quanta do not contribute
largely to the actual values of the eigenenergies and it is allowed to
neglect them L14, 15]. Following this ptocedure, one obtains a Hamilto-
nian-matrix, which eigenvectors can be written in the form>ef a vector
column containing only one harmonic gscillator in each row.

Neglecting the terms guadratic in E", it is possible to derive a secular
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equation (eighth degree) and solve it numerically.

Taking the difference between the two solutions corresponding to the
conduction band and dividing it by uBB one obtains the value of the
effective g-factor for a given B, © and Landau-quantum number n.

Figure 2.4 shows the results of such a calculation as function of the
angle @ between the magnetic field and the c-axis for x=0,01 and diffe-
rent combinations of &, B Y, and B 1

300 T T

a {?Z/ ) BJ_

_ O 10 0 0

1 ' 2 0 2 2

W’>} 3 0 4 4

200 :._...-.--«------""""""-'13 - 4 4 0 0

— e 5 0 -4 -4

é T i 6 -4 0 0
‘o s\w 7 4 ¢4
e — g -4 4

100 - | i.f,:?}"i 9 ¢ -4 -4

10 -4 -4 —4

: 2 11 ¢4 4 4

T 2 4 4 4

_1\\* 3 4 3 5

0 L8 i 14 ¢ 5 3

@ <(degrees>

Fig.2.4. The values of the effective g-factor of (Cdy goMn, o) As,

for different orientations of the magnetie field, ealoulated
ineluding the off-diagonal <S> terms at T =4 K, B=27T and
n = 15. The different values of o (eV), By (ev), B, (eV) are

" given in the figure. s, £f and T, were kept at the values 1.6
and 1.9 K, respectively. The values of the other bandparameters
are given in fig 2.2. Curve 1 corrvesponds to the case of C’dsAsz.
The curves 11 and 12 ave caleulated for B = 2 T, T =10 XK and
B=4 7, T =4 K, respectively.
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2.3.3 Analytiecal expression for the effective g—factor

In the case that the magnetic field is parallel to the c-axis: it is
possible to derive an analytical expression for the effective g-factor.
Restricting ourselves to kz=0 and b'=b the following secular equation

is obtained:

2
P
7= (Zn;-l) F, [ G+ (E+6) %A] , (2.30)
1 31
where
- 2 2
Y= [E(E—Eg) + ab][E (E+A) + 6(E+-§ A) - b7] +
2
A AFL
b(8- 3) [aE + b(E—Eg)] + b 31—2 (2.31)
= _ .2 2 A, _ .2
£ =P " [EE+30 +68E+3 -b] (2.32)
T
G = {2n+1)bS —l—i— - b(§ - 3) [E(E-Eg) + ab] -
[aE + b(E-Eg)][E(E+A) + (B + % A - b2 . (2.33)

The first term on the right hand side of eq. 2.30 gives the orbital
quantisation while the second term describes the splitting of the
Landau-levels. For a=b=0 eq. 2.30 reduces to the result of Wallace
for Cd,As, (see eq. 2.14 for 6=0). From eq. 2.30 it is possible to

32
derive analytical expressions for the cyclotron effective mass and the

g--factor of the conduction electrons.
Following Wallace (see §2.2) we obtain

£2 a Y
* - = evee  ew—
m? (0=0) . 5 @& [fl] (2.34)
and
m [2G].2 +%AP_L2(E+5)]
k =
g*(0=0) = =5 ) » (2.35)
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where m is the free electron mass.
It turns out that the value of m:(9==0) given by eqg. 2.34 is practical-

ly the same as for Cd3A , although the formulae for ? and £, contain

s
2 1
the terms due to the exchange interaction. For instance, taking the

previously mentioned bandparameters (see fig. 2.3.a) and By = 0.15 ev,

3772
0.03260 mo. The effective g-factor however,'depends étrongly' on the

we find m:(6=0) =0.03256 m while for Cd.As_ one gets m:(6=0) =

exchange interaction, as can be seen from fig., 2.4. It should be noted
that g*(8 = 0) given by eg. 2.35 depends explicitly on B and n.
Fromieqs. 2.34 and 2.35 a linear relation in a and b is obtained when
the small terms proportional to abz, b2, b3 are neglected. This expres-

sion reads as follows:

p 2 p 2
\)[E(E+%A)+6(E+A)]—J1——-A—(E+6)—l— =
3 2 3 2
1 1
2
8Py 2 A
b{(2n+1) 1—2 - (E—Eg)[E(E +30 + 28 + 3)]} -
aE[ E(E+A) + S(E + % Ay ] ’ . (2.36)
¥
where Vv = %-ES g*.

[e] .
Under these assumptions a constant value of V corresponds to a linear

relation in a and b and therefore a straight line in the (0,8) plane

is obtained.

23



REFERENCES

{1] W. zawadzki, private communication.
[2] E.O. Kane, J. Phys. Chem. Selids 1, 249 (1957}).
[3] J. Bodnar, Proc. Int. Conf. Phys. Narrow-Gap Semicond., Warsaw,
"1977 (Polish Scientific Publ., Warsaw, 1978), p. 31i.
[4] H. Kildal, Phys. Rev. B10, 5082 (1974).
[5] J.0. Hopfield, J. Phys. Chem. Solids 15, 97 (1960).
{61 V.E. Van Doren, P.E. Van Camp, J.T. Devreese, internal report
Esis, 1979 (unpubl.}. '
[7] G.L. Bir, G.E. Pikus, Symmetry and Strain-Induced Effects in
Semiconductors, (John Wiley and Sons, New-York/Toronto 1974).
[8] P.R. Wallace, Phys. Stat. Solidi B92, 49 (1979).
[9] W. zawadzki, Narrow Gap Semiconductor Physics and Applications,
ed. W. Zawadzki, (Springer-Verlag, Berlin, 1980), p. 85.
[10] R.R. Galazka, Proc. 14th Int; Conf. Phys. Semicond., Edinburgh
1978, ed. B.L.H. Wilson, Conf. Series 43, (Inst. of Physics,
London, 1979), p. 133.
[11] J. Kossut, Phys. Stat. Solidi B78, 537 (1976).
[12] M. Jaczynski, J. Kossut, R.R. Galazka, Phys. Stat. Solidi B88, 73
(1978} . .
[13] J.a. Gaj, R. Planel, G. Fishman, Solid State Commun. 29, 435 (1979).
[14] W. Leung, L. Liu, Phys. Rev. B8, 3811 (1973).
[15] M.S. Adler, C.R. Hewes, S.D. Senturia, Phys. Rev. B7, 5186 (1973).
[16] R. Stepniewski, K. Pastor, M. Grynberg, J. Phys. C: Solid State
Phys. 13, 5783 (1?80).

24



CHAPTER III MAGNETORESISTANCE OSCILLATIONS: THE SHUBNIKOV-DE HAAS EFFECT

Oscillations in the electrical resistivity as function of the\magnetic
field were first observed in bismuth by Shubnikov and de Haas [1] in
1930." There has been a renewed interest in this effect as a tool for
the investigation of the band structure of semiconductors. Reviews on
theory and experimental results were presented by Landwehr, by Kahn and
Frederikse, by Adams and Keyes and by Roth and Argyres [ 2-5].

In this chapter the SdH~effect is qualitatively described from the
. motion of a free electron in a magnetic field (see §3.1).‘Genera1 expres—
sions for the amplitude and phase of the SdH-oscillations and for the
oscillation period and the cyclotron effective mass of charge carriers
are given in §3.2. These expressions are applied to the Bodnar-band
model in §3.3. The influence of a magnetic field dependent Fermi-enexgy
on the periocdicity, the effective mass and the spin-splitting of the
SdH-signal is discussed in §3.4. In §3.5 we treat the SdH-effect in a
SMSC by taking into account the exchange interaction.

3.1, The free electrom model for the SdH-oscillations

The oscillatory magnetoreéistance or Shubnikov-de Haas-effect is
a direct result'of the quantisation of electron states by a magnetic,
field and can be qualitatively understood from the motion of a free
electron in a magnetic field [6]. In case of an n~type semiconductor
with a parabelic conduction band and a spherical Fexmi-surface the free
electron model can be used by rgplacing the free electron mass m, by
an isotropic effective mass m* [5].

By applying a magnetic field in the z-~direction, the motion of the
free electron'is disturbed. Under influence of the Lorentz-force the
particle will follow a cyclotron motion in a plane perpendicular to the
field direction, while the motion parallel to the field is unaffected.
The original free electron conduction band

h 2 2 2

s 05tk HED (3.1

E =

is split into magnetic subbands or Landau-levels, which are labelled
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with the quantumnumber n and differ in energy by an amount hmc, where
w, = eB/m* is the cyclotron frequency.
The energy values are given by

2, 2

E, = (ko + —-2—+% gl B n=0,1,2,.00. (3.2)

where g* and UB stand for the effective spectroscopic splitting factor
and the Bohr-magneton, respectively. The last term in eg. 3.2 represents
- the lifting of the spin degeneracy.

The uniform distribution of guantum states in g—space for the electron-
gas in the absence of a magnetic field is broken up and replaced by

a series of interlocking Landau-cylinders on which surfaces the electron
states are quantised [7]. Due to the bunching of states at the

energy levels (n+%)hmc the density of states per unit volume, neglecting
collision broadening and spin-splitting, becomes
« hmc

£ —
n=0 (E-(n+%yﬁm¢)

1 2m* | 3/2
5

dS(E) Sl *ﬁz")

i . (3.3)

A plot of the density of states dS(E) versus EXh&c is shoyn in fig. 3.1.
The curves with mCT = 10 and wct = 1, where T is the relaxation time,
illustrate the effect of a Lorentzian shaped level broadening on the
density of states.

The discfete nature of the Landau-levels fades away unless their energy

separation hwc is much larger than the thermal broadening kBT. Furthermore

Fig.3.1..

Dengity of states ds(E') in arbitrary
units as funetion of E‘/ﬁwe for var-
tous degrees of level broadening.

(a.u.?

The numbers 1,2,3 represent the ca-
ses w 1= o, 10 and 1, respectively.

d (E>
s

The Fermi-energy is indicated in the
Ffigure. After Landwehr [2].
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the electronsg must peiform.éomplete cyclotron orbits inyﬁ-space before
being scattered , in order to cbserve guantum effects. This requirement
can be formulated as ch » 1. From fig. 3.1 it can be seen that when

the energy coincides with a Landau-level the density of states diverges
in case wT = o, For increasing magnetic fields the Landau—le&els‘will
successively pass the Fermi-level. This produces periodic fluctuations
in the density of states at the Fermi-energy EF' These fluctuations
strongly affect the scattering rates of electrons [4] and consequently
periodic oscillations in the resistance as function of the magnetic
field are produced.

If the Fermi-energy is assumed to be independent of the magnetic field,
the oscillations in the resistivity are periodic in 1/B [2]. In addition
to the conditions formulated above (ﬁmC> kBT, @,T > 1), the Fermi-energy
o must be larger than ch. In general these requirements are fulfilled
in case of a degenerate n-type semiconductor with a high electron mobility

at low temperatures and high magnetic fields.

3.2. The analytical expression for SdH-oscillations

A theory for the transverse magnetoresistance oscillations has been
given by Adams and Holstein [9]. This theory, developed for a simple
eléctrongas, has been generalised including effects of anisotropic
and non-parabolic bands [9], collision broadening [10] and spin-splitting
[11]. The resulting expression for the transverse magnetoresistance

oscillation becomes

r%e-erc*Td/moB

s (rmv) *
B cos (xmv}

bo  ckgTm * (P);2 3 {

£ 3 %
Py he m r=1 Slnh(erc TfmoB)
. T (3.4)
cos { L2 2nry)}
*® 27 il
= ril Ar(B,T)cos { EE'I -7 2mry)

where po is the classical magnetoresistance,
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2

B=2ﬂ "o = 14.693 (T/K) c=@ and T, = =1 (%)
fe ! 2 4 ﬂkBT

i
is the Dingle-temperature, mc* is the cyclotron effective mass, P is the
‘8dH~oscillation period, v = (mc*/ZmO)g* = (uBB/hmc)g*, g* is the effective
g-factor and Y is a phase factor.

Expression 3.4 is derived ﬁnder the conditions.EF E>ch, ﬁwc > kBT and
w.T » 1. The exponential factor represents the energy level broadening
due to ionised impurity scattering introduced by Dingle [10]. Argyres
[14] obtained a similar expression for the longitudinal maqnetoresistance‘
oscillations. The constant ¢ has the value 3252/2 in the longitudinal
case. {

Although eq. 3.4 is derived for an isotropic spherical Fermi-surface,
it is applicable to arbitrary shaped closed Fermi-surfaces. In that
case the oscillation period P and the cyclotron effective mass m: are

directly related to the Fermi-surface by the relations [13]

_ , 27e ’ ;
P = { Em' }EzﬁF (3.5)
ﬁz‘ a5y
¥ = Pt .
= (T eem (3.6)

F
where Sm is the extremal cross sectional area of the Fermi-surface
perpendicular to the magnetic field direction (see fig. 3.2).

3.3. Period and effective mass according to the Bodnar-model

In case of the Bodnar-model, it follows from eq. 2.7 and eq. 2.8
that the Fermi~surface is a single ellipsoid of revolutiocon, with

semi-axes depending on energy. Rewriting eg. 2.7 into

(kx2 + x5 kzz
1= ¥ 4 Z (3.7)
a2 Cz

we obtain for the principal semi-axes of the ellipsoid

a = (—}—)1’ (3.8)
1
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5 (3.8)

bDue to the fact that the coefficients f4(E) and £5(E) have different
energy dependences if § # 0, the ellipsoid changes shape withkvarying
Fermi-energy.

The extremal cross sectional area‘sm of the ellipsoid in the plane

perpendicular to the applied magnetic field is given by A

s, = TY® [f, B)cos 6+ fz(E)sinze]-%[fl 717", (3.9)
where 8 is the angle between 3 and the tetragonai c-axis (see fig. 3.2)..
The directional dependences of the SdH-oscillation period and the
cyclotron effective mass, according to the Bodnar-~model, can be
determined directly from egs. 3.5, 3.6 and 3.9.

From egs. 3.5 and 3.9 it follows that

P(8) = [P(B=0)cos’8 + P(6=90)sin20]" . (3.10)

In case of high degeneracy one can calculate the electron concentration

kg B8
=}
: ,
= Fig.3.2.,
.mm - The cross sectional area S, of the
TN = 2 ky Fermi—surface perpendicular to B
e [ 4 -
Tl NS ‘ Prolate ellipsoid of revolution: c>a.
IS

Oblate ellipsoid of revolution: c<a.
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from the volume of the Fermi-ellipsoid. The electron concentration N
equals ‘

azc 1 2e, 3/2

n=2e

c. L P (8=0) 2% (8=00)17% (3.11)
37 3
where a and ¢ are defined in fig. 3.2 and eq. 3.8.
The analytical expressién for the effective g-factor is given in eq.
2.15.
Defining the anisotropy factors of the period (Kp), the cyclotron

effective mass (Km) and the effective g~factor (Ké), one finds [14]:

- £1m) 1% ,
% §§g=gg)) =% [fiézi (3.12)
2 E=Ep
1/_1_)
w* (6=90) aE\_% &
Ky = o = AL %2 (3.13)
m m:(9=0) a XL - .
& T, F
8=0 X Pl [E+s
k = &0=0 w1 {E+S (3.10)
g g*(6=90) K, p// E |E=E_ .

3.4. The influence of a field dependent Fermi-ernergy

Thus far it has been assumed that the Fermi-energy EF is independent
of the magnetic field. When the field dependence of EF is not negligible
the SdH~signal will no longer be perfectly periodic in 1/B and the
cyclotron effective mass and effective g-factor will depend on the order
of Landau-level passing through the Fermi-energy. In the following the
influence of a field dependent Fermi-energy on the SdH-oscillation
period, the cyclotron effective mass and the effective g-factor is
described for the Bodnar-model on the basis of extreme degeneracy.

Deviations in periodicity

In case of a field independent Fermi-energy, the distance (A%?n =
(1!Bn+1 - 1/Bn) between two SdH-ogcillation peaks of the fundamental
{(r=1 in eg. 3.4) is independent of n.
Kahn and Frederikse [3] calculated the field dependence of E ﬁor '
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isotropic energy surfaces, neglecting spin-splitting and collision
broadgning at T=0K. Their results for (A%ﬁn expressed in terms of

a field independent period P are given in the second column of table
3.1. A similar calculation can be made starting from the Bodnar-model
in a magnetic field (see eq. 2.14). Since the Bodnar-model describes
an anisotropic Fermi-surface with anisotropy depending on energy, the
deviations in periodicity will depend on the Landau-number n, the
electron concentration and the orientation of the magnetic field. This
is illustrated in table 3.1. From this table it follows that the
deviations in periodicity are of the order of a few percent as well
for the isotropic energy surfaces as for the Bodnar-model. Further-
more the energy dependent anisotropy in the Bodnar-model does not

affect the deviation in periodicity seriously. For low guantumnumbers

n isotropic Bodnar Bodnar
N=0.47%102% 53 N=2x102% 53
8=0 8=90 6=0 6=90
1 1.048p 1.051 P 1.047 P 1.050 P 1.047 P
2 1.024p 1.025 P 1.023 P 1.025 P 1.023 P
3 1.015 P 1.016 P 1.014 P 1.016  1.015 p
4 1.010p 1.011 P 1.010P 1.011 P2 1.010P
5 1,008 p 1.008 P 1,008 P 1.008 7 1.008 P

TabZe 3.1. Deviattons in periodicity due to a field dependent Fermi-
energy as function of the Landau-number n, calculated for
igotropic energy surfaces and energy surfacee according/to
the Bodnar-model. The results are expressed in the field in-
dependent periods P corresponding to the respective cases.
Caleulations are performed for T = 0 K. The deviations in
periodicity for the Bodnar-model ave calculated for E_=
~0.095 eV, A = 0.27 eV, § = 0.085 eV, P, = 7.21 x 10 0 e

and P| = 7.43 * 10710 ovm (see eq. 2.7J.
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the deviations in periodicity should be cobservable. However, in experi-

ments the collision broadening tends to obscure the differences.

Deviations in the effective mass

A field dependent Fermi-energy changes the effective mass values
calculated from eq. 3.6. The deviations depenﬁ on the Landau—numbe:
n, the electron concentration and the orientation of the magnetic
field. It can be calculated that only for the lowest Landau~numbers
{(n £ 3) the deviation in the effective mass becomes of the order of a

few percent.

Influence on the effective g~factor

Due to the spin-splitting the degeneracy of each Landau-lével is
lifted. The spin splitted oscillation peaks belonging to the Landau~
number n will occur at fields B; and B; ., respectively. If one neglects
the field dependence of EF' one obtains for a simple parabolic disper-

sion relation (see eq. 3.2):

1

BT
n n

’ {3.15)

R

where P represents the oscillation period at low magnetic fields.
Taking into account the field dependence of EF at T=0X, one obtaing

for a parabolic dispersion relation and |v| < 1 [2]:

n
S = 0.8259 }: T+ &W)]z/s
n k=0
3.18
1 o 2/3 (3181
5= = 0.825p I vk o+ /E—v)] .
n k=1 :

This expression coincides with eq. 3.15 only in the limit n > 1 and
leads for low quantumnumbers to smaller values of lvl compared'with

those obtained from eq. 3.15. In case of the Bodnar model one finds

1 . n 2/3

FF 0.825An+(N,6)P(6){ L ok o+ &W)]
n k=0 (3.17)
1 n 2/3

_—— O.SZSA “(NIG}P(S) [ Z (‘fk + I“k‘\))] r

Bn n k=1
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where the factors An+ and An- are functions of the electron concentra-
tion, the Landau-level and' the magnetic field orientation. It can be
calculated that eq. 3,17 differs only slightly (less than 1%) from

eq. 3.16.

3.5, The influence of the exchange interaction

For semimagnetic semiconductors the SdH~oscillation period, the
cyclotron effective mass and the electronic effective g-factor become
field and temperature dependent due to the magnetisation. However,
for a low magnetic ion content (x<0.05), the period and cyclotron
effective mass depénd only weakly on the exchange interaction.

On the other hand the g¥*-factor is strongly influenced by the exchange
interaction since this interaction couples the conduction electron.
spins and the localised magnetic moments of the magnetic ions. There-
’fore the temperature and field dependences of the g*-factor in SMSC
reflect the modification of the sgpin properties in the presence of
magnetic ions, while the "orbital properties" given by mc* and P remain
practically unchanged with respect to their non-magnetic counterparts.

The field and temperature dependences of ¢g*(6) result in an I
anomalous behaviour.of the SdH-oscillation amplitude. For normal
semiconductors the amplitude is a monotonically decreasing function
of temperature at fixed magnetic field, while in SMSC the amplitude
can go to zero at certain combinations of field and temperature, as

is illustrated in fig. 3.3. This can be understood from the Adams-

T T —T Fig.3.3.

Experimental recording of
8dH-oscillations at

T = 1.8 K, showing the
oceurrence of a spin-

(a.u.)

splitting sero for a
- (Cdl_xﬁhx)sdsg sample
Cwith @ = 0.01 and

¥ =3.65 x 1024 w3

SdH-signal

1.25 1.75 2.25

B (T
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Holstein expression for the oscillatory magnetoresistance given in
eg. 3.4. When the Dingle-temperature Td has such a value that only the
first harmonic (r=1) is observed experimentally, the SdH-oscillation

amplitude may go to zero whenever the quantity Vv satifies [15]

o v 3 K o=0,1,2 ... (3.18)
In that case cosTV in eq. 3.4 becomes zero.
Under certain conditions the contributions of higher harmonics in the
v SdH~signal will be visible. This is illustrated in the fig. 3.4, where
T indicates the level broadening. The amplitude of the fundamental passes

zero for approximately 3 T.Due to the small level broadening (I < %hwc)

al)
b)
= . i 1 T i {
,\- 'r-s.qsi K : | :
3 o | } [
@© | } i
7
| I ]
—_ | |
© i
c |
= | I I
fio | | i {
| | ]
5 A | |
n e b 2 - } 3
i i 1 1 11 1
2.5 3.0 ‘3.8 4.0 4.5 S.0
B «(T>

Fig.3.4.' al) Landau~level scheme illustrating the appearance of higher
harmonics, The level broadening is indicated with T.
b} Recorder trace of a SdH-signal showing the presence of higher

harmoniecs.
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the second harmonic (r=2) appears and the total signal amélitude is no
longer zero. This phenomenon has been predicted by Kossut [16]. With
further increase of the field the spin-splitting changes faster than the
Landau-splitting. The energy distance between the spin down and

spin up levels of neighbouring Landau-levels becomes smaller than the

level broadening, therefore the second harmonic disappears again.
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CHAPTER IV EXPERIMENTAL TECHNIQUE

 In this chapter the sample preparation and characterisation (84.1),
the experimental set-ups (§4.2) and the data taking procedures (§4.3)

are described.

4.1. Sample preparation and characterisation

Cd3482 ‘

CdBAs2 polycrystalline starting material is obtained by directly
melting stoichiometric amounts of spectrographically pure Cd-and As
in carbon coated quartz ampoules. The ingots are slowly cooled down
through the B - a" phase transition at T=578°C [1]. A closed-tube
sublimation technique at temperatures below the phase transition
temperature is adopted to grow single crystals [1]. In this technique
an evacuatéd quartz ampoule with special geometry'is slowly pulled
{speed: 1 mm/day) through a temperature gradient of about 5°C/cm at
460°¢. Single crystals of 6 mm in diameter and 30 mm in length were

obtained after about 4 weeks of growth.

(Cdj.xMhé)gésg and CdSnds,

(Cdl’anx)3As2 and CASnAs. single crystals are grown by a modified

Bridgman-process in carbon ciated quartz ampoules containing the proper

amounts of spectrographically pure Cd, As, Mn and Cd, As and Sn, respec~
tively. The pulling speed is about 20 mm/day.

In spite of the phase transitions at approximately 140°¢ and 10°C below

, (1.=721%) [1] and casmas, (Tm=595°c) [2]

respectively, crackfree single crystalline ingots of (Cdi_anx)aAs2 and

the melting points for CdBAs

CdSnA32 have been cbtained in a reasonable number of attemps. After four

days the Bridgman-process resulted in boules containing single crystalline
parts of about 1 cm3.

Characterigation

The obtained Cd3A92. (Cdi_XMnX)3A52 and CdSnA52

n~type. The electron concentration N and Hall-mobility Uy were measured

crystals are degenerated

by standard d.c.-techniques (v.d. Pauw-method [31). |
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For C63A52 typical room temperature values of the electron concentration
N and the mobility uH of the as-grown samples are 2 * 1024 -3 and 1.6 mZ/'Vs,
reSpectively- By heating in an As atmosphere at 250° - 300°%C for

several days, followed by a long-term annealing at 100°C, we obtained
samples with N as low as 0.5 *1024 -3 with a maximum u of 2.6 m /Vs
at 300K (¥=0.2 +10°* m > and W =30 n’/Vs at 4.2 K).

Typical room temperature values of N and DH for CdSnAs2 are 2 *x10° 24 “3
and 0.7 m ;’Vs, respectively. For (Cd Mn )3A52 with x=0.01 these
values are N=5 % 10 24 -3 and UH-O.Q mZ/Vs. Annealing treatments of the

CdSnAs2 and {Cd Mn )3A92 crystals under different atmospheres did
not affect the electron concentrations and mobilities appreciably.

Examples of the temperature dependences of N and NH of Cd Asg, CAdSnAs

3 2.

iv in fig. 4.1.
and (Cd1 anx} 3A52 samples are given in fig

After orientation by the von Laue-back reflection method, the cyystals

10! & . , = 102 & . l =
L P N - .
& 5 10! z
IS o o
o -
3 £
=
= .
=% 0 =
z 1 = S —
10~} ' .
0 100 200 300 ¢ 100 200 300
T K> ; T K>

Fig.4.1. Tempemtm dependences of N and uH; For C’dgAaé (1) the values
of N and vy are given for the sample with the lovest electron
concentration. For (Cd, Mn ) As, (2) and CdSnAs, (3) 'chamc-
teristic samples have been chosen.
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were cut with a wire saw into samples wity £inal aimensions of
6%x1%1 mmg. In order to perform SdH-measurements in different configu~
rations, samples with the crystallographic c-axis parallel and
perpendicular to the long edge were prepared. Copper current and pofen—

tial leads were soldered directly onto the samples with Woods-metal.
4.2, Ezperimental set-up’

Following the general block scheme, given in fig. 4.2, the various
parts of our measuring system will be described. In §4.2.1 and §4.2.2

the detection and field modulation techniques are described. A des-

cription of the used magnets, dewars and sample holders is given in

§4.2.3.
xrafoquck-in ": |

sample
current

vacuum
pumps

VF;:;§7<t7;

Fig.4.2. The general block scheme of the experimental set-up. The en—

eircled part is shown in more detail in §1g.4.5 and fig.4.6,
4,2.1. The main measuring circuitry

For the measurements the sample has to be placed in a magnetic field
B. A constant d.c.~-current (I=100 mA) is passed through the sample, The
voltage drop V across the sample which varies when sweeping the magne-
tic field B is directly proportional to the resistivity of the sample.
The oscillatory component of the voltage (Voéc) exhibits a small
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amplitude and is superimposed on a large nonoscillatory background

v, (vosc éivo). Magnetic field modulation and phase sensitive detec-

tion [4] are used to eliminate this background.,

The voltage drop is sent to a lock-in amélifier via a matching trans-

former. The lock-in amplifier selects a particular frequency (m‘or 20)

» and phase relative to the reference signal from the oscillator V

(f = g% = 33 Hz). After being amplified the oscillator signal also drives

the modulation coils. In the lock-in amplifier the selected signal is

rectified and filtered. Plottiﬁg the resulting d.c.-signal versus the

Hall-probe voltage on the x-y-recorder gives the desired magneto-

resistance oscillations as function of B (see for instance fig. 4.7).
In order to avoid deformation of the~sdn-signal the time constant

of the detection system must be at least 10 times smaller than the

time required for one complete SdH-oscillation. This time can be varied

by varying the sweep speed of the d.c.-magnetic field [5].
4,2.2. Magnetic field modulation [4]

The modulation coils superimpose a small harmonic field ém cos wt
on the slowly increading main field B. The harmonic field influences
the total voltage V measured across the potentialvcontacts of the
sample. The total voltage becomes V=V 4V + where v0 represents the

o osC

classical magnetoresistance while VGS is the oscillatory component

c
due to the SdH-effect. For small modulation fields (ﬁm « B) the

voltage vosc can be written as
A/ Ali Ar(B,T}{cos(Zﬂr/PB - ¢;)cos(xucos wt) -
cos (21 /PR - ¢;)s§n(racos wty} . (4.1)
Here Ar(B,T) and ¢; are short notations for the amplitude and phase

factors, which are defined in eq. 3.4. The quantity o is defined as

a= 2w§m/pz;2 ) (4.2)
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_The factors cos(rtcos wt) and sin{rticos wt) can be expanded in series

of Besselfunctions. One obtains

-]
cos (xacos wt) = J_(xa) +2 I (—1)nJ2n(r0t)cos(2mnt)
n=1 . « (4.3)
*® n
sin(rocos wt) = 2 I (-1) J2n+1(ra)51n((2n+1)wt) .

n=0

Substitution of eq. 4.3 in eq. 4.1 clearly shows that modulation of
the main field B with a frequency ® introduces higher harmonics of W

- which are weighted with thelr corresponding Besselfunctions.

Detection of Vosc on the first (W) or second (2w) harmonic of the

modulation field frequency results in d.c.-voltages given by

in vos

27

Vosci ~ 2 ]Z: AI(B,T}Sin (—P_B“ - Cf);) l(ra) (4.4)
27r .

vosc2 ~-2 L AI(B,T)cos (EEF'“ ¢£) JE(ra), P (4.5)

r

respectively. The resulting signals are first - or second derivative-
like with respect to the original signal given by eg. 3.4.

The component vo of the sample voltage is also influenced by
the moduiation field and contains harmonic terms cos wt, cos 2wt,
cos 3wt, etc. The relative contributionsg of these modulation harmonics
depend on the actual behaviour of the classical magnetoresistance as
function of the main field B. Since the classical magnetoresistance
is only a élowly varying function of B, we are able to suppress the
classical contribution by detecting on the second harmonic. A signal
detected on the first harmonic or fundamental frequency will still
contain a considerable background since the classical magnetoresistance
is not linear in B. Therefore most of the data in this thesis are taken
at the second harmonic of the modulation field. In this way we have
a constant base line for the oscillations and the inductive voltages
are minimised. ‘

Cbserving -the signal at the second hérmonic of the modulation
frequency, it is important to keep the harmonic distortion of the

modulation field-as low as possible [5]. The used oscillator, audio-

40



amplifier and modulation coil combination produce a total harmonic
distortion of less than 1%,

The functions Jz(a) and J2(2a) versus the main field B are given in

fig. 4.3. The respective Besselfunctions exhibit several zeros in the

low field region., The zeros in Jz(a) at o = 5.13 etc. are used to

calibrate the modulation field. This is illustrated in fig. 4.4 for

an experimental SdH~recorder track.,

.5 I

I

cg ]
o] '\ !
oy \
g !
3 0 $
G
T t
\
@ \.’
m

ab ©

_'S i f i
.5 2.0

B «T>

3.5

Fig.4.3. The Besselfunctions Jz(a) (dashed curve) and Jg(za) (solid
curve) as funetion of the main field B. For the caleulations
we used P = 0.0275 T L and Bm = 0.0317 T. The three zeros
in Jz{a) indicated by a, b and ¢ correspond to o = 11.62,

(a.u.)

SdH-signal

o = 8,42 and v = 5.13, respectively.

ot

.7 1.0 1.3

Pig.4.4.

An experimental SdH-
sianal (P = 0.0275 T
B = 0.0817 ) showing
the zeros in Jg(GJ, which

1_
k4

are used to calibrate the
modulation field B,. The
zeros indicated by a, b
and ¢ correspond to those
shown in fig.4.3.
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4.2.3. Magnets, cryostats and eampleholders

The SdH-experiments were performed in two almost identical experi-
mental set-ups. The low field set-up (see fig. 4.5) consists of a
nitrogen Jjacketed glass dewar (1) mounted between the poles of a ,
water cooled electromagnet (B upto 2.1 T). The magnet is driven by a
field regulated power supply. The main field is measured with a Hall~
probe (2). To generate a modulation field (ém up to 0.03 T) a pair of
Helmholtz~type coils (3) are attached to the tapered magnet poles (4).
The generated modulation field depends on the main field due to the
saturation of the electromagnet iron core. The sampleholder (5) can
be rotated about a vertical axis. The temperature of the sample‘(6),
measured by a carbon-glass resistor (7), can be varied between 4.2 K and

1.6 K by pumping the He-vapour.

' #=30mm
i
'
'
1

Fig.4.85.

The low field set~up.

The numbers are explained in the
text.

DA TLRR L VAR ARAIE AR NI AARRIN S
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\

-+ B , By
The high field set~up consists of a stainless steel dewar systamr

and a LHe-cooled superconducting solencid. The system is capable of

producing linearly increasing fields up to 6 T. Two types of stainless
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steel insert-dewars and sampleholders are used to cover a temperature

range between 2 K and 25 K.

For measurements below 4.2X (see fig. 4.6.8) we use an insert-dewar

(1) with an inner tail diameter of 35 mm, in which a motor-driven

rotatable sampleholder (2) and a pair of copper Helmholtz-type modu~
lation coils (3) (ém up to0 0.015 T} are mounted. Temperatures below 4.2 K

are obtained by pumping the He-bath (4} and are measured by a carbon-

glass resistor on the sampleholder (5).

— 8,8

50 mm

§=35mm
w
A 5
o 6
e 7
2
»./,
3
&
i ¢ §210mm
[RU— i;.___
N
(.
! )
P 1
qs 3
2

Fig.4.6.
The high field set up.
a) Insert-dewar for mea-

b)

surements below 4.2 K.
The numbers 6 and 7 are
the superconducting so-
lenoid and the main LHe=—
bath, respectively. The
remaining numbers are
explained in the text.

Insert-devar for mea-
surements in the region
4,.2K<T < 25K, The
numbers are explain-
ed in the text.
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For measurements in the temperature region from 4.2 X up to about
25 K we make use of an other type of insert-dewar. This dewar consists
of two vessels (see fig. 4.6,b). The inner vessel (1)} of the dewar, which
contains the sampleholder, is filled with He-contact gas at 1 atm.
A heater (2) is mounted on the outside of the inner vessel. A small
stainless steel heat-bridge (3} connects the inner with the outer
vessel (4). The contact gas pressure in the outer vessel can be varied.
By changing both the pressure of the contact gas in the outer vessel and
the heat dissipation of the heater, the temperature of the sample (5)
can be varied. When equilibrium in heat input and output is established,
the sample temperature is constant within 0.01 K. The temperature of the
sample is measured by means of a carbon-glass resistor (8). The orien-
tation of the sample can only be changed by removing the sampleholder
from the insert-dewar., A copper modulation coil (7) (ém up to 0.02 1)
is attached to the outside of the dewar tail which is immersed in the
LHe of the main bath.

4.3. Data taking procedures

The angular dependences of the SdH-oscillation period, the effec~
tive cyclotron mass and the effective g-factor give direct information
about. the geometry of the Fermi~-surface. In the following sections the
methods used to extract the SdH-period (84.3.1), the cyclotron effec;
tive mass (§4.3.2) and the effective g-factor (§4.3.3) from the
experimental SdH-traces are described. Section 4,3.4 describes these
methods in case of a SMSC.

4.3.1. The SdH~oscillation period

Usually only the first harmonic (r=1 in eq. 3.4) can be observed
experimentally and the oscillations appear to be exponentially damped
cosine functions. For these oscillations the spin is not resolvable and
contributes only to the amplitude of the oscillations. In this case

aq. 3.4 may be written as
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Ap _ PA A
o A(B,T)cos ( o 2my 1 ) (4.6)

o
From this equation it follows that extrema in the oscillatory beha-

viour for a given field orientation € occur when

21

w
m-2ﬂ“¥-z—mﬂ ’ . (4.7

where m is an integer. The phasefactor 2my is independent of the

magnitude and orientation of the magnetic field, at least in the

available field range. Plotting integers versus the %——values of

the low field oscillation extrema, one obtains a straight line of
which the'slope gives the period P(8). The angular dependence of

the period is obtained by repeating this procedure for different

magnetic field directions 8.

‘A more accurate method to determine small angular dependences of
the period is the following [6]. The relative change in period as
function of the field direction is obtained by measuring the shift in
field position of points of equal phase (m is constant in eq. 4.7).

From relation 4.7 one obtains

P -pP(8) B-B
2 = e , (4.8)

P B
Q

where Po and Bo are the reference period and field, respectively.
Thus a simple measurement of the shift in the magnetic field of a
constant phase point as function of 6 gives directly the relative
change of the period.

4.3.2. The cyclotron effective mgss

The cyclotron effective masses as function of the field direction
0 are determined by means of a standard procedure of measuring the
temperature dependence of the peak-to-peak amplitude of the oscilla-
tions at fixed magnetic fields, for which the signal is purely perio~
dic.

According to egs. 3.4 and 4.6 the ratio A(Ti)/A(T ) of the oscillation

3
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amplitudes at temperatures Ti and T, for a fixed magnetic field B

3

becomes

A(Ti) - T sinh(Bm:(e)Tj/moB)
- ry * .
A(Tj) T 51nh(Bmc(9)Ti/moB)

(4.9)
3
The value of mg(e) is then obtained by fitting the theoretical expres-
sion on the right handside of eg. 4.9 to the experimental amplitude
ratios A(Ti)/A(Tj) at fixed magnetic fields.

The accuracy of the fitted cyclotrqn effective mass values can be
.considerably increased by measuring several peak-to-peak amplitudes

at different temperatures and fields (see fig. 4.7) and by applyiné

a least squares fit to the obtained A(Bk,Tj) amplitude matrices.

T Fig;4.7.
Example of SdH-recorder
tracks at different tempera-
tures measured on a
CdSnAsz‘sampZ§4wifZ
N=0,95 % 107" m ", In the
T=21.81 K figure the data taking proce-
T=12.83 K dure for the cyclotron effec~

tive mass is indicated.

(a.u.)

SdH-signal

T=4.85 K

2.0 2.5 3.0

B (T

4.3.3. The effective g-factor

Due to the spin-splitting the degeneracy of Landau-level n is
lifted and spin-splitted oscillation peaks may occur in the SdH-
signal. Measured values of the period and the field positions B;
and B; of sharply defined spin-splitted peaks can be used in egs.

3.15 and 3.16 to calculate |v| rather than the absolute value
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of the effective g-~factor. Unfortunately mostly the thermal- and
collision broadéning smear out the discrete nature of the spin-
splitted oscillation peaks, so that B: ahd B; are less resolved in
the available field range and a determination of g* from eqs. 3.15
and 3.16 becomes very inaccurate or even impossible (see for instance
fig. 4.8).

However, from signals as shown in fig. 4.8 we determine the
g*-values by a fitting procedure which uses the SdH-harmonics. It
can be seen from eq. 3.4 that spin-splitted peaks appear as a result
of superposition of different harmonics (r > 2). The ratio
of the relative terms contains the information on the value of the
effective g-factor.

Furthermore, an enhancement of the higher harmonic amplitudes relative

to the fundamental amplitude can be achieved by detecting the signal

with a low field modulation technique at the second harmonic of the
U 3,(20)/3,(@) = 4 (see fig. 4.3)

a+0
[4]. The value of fvf is determined from these SdH-signals by fitting

field modulating frequency since

them to the theoretical expression for the SdH-effect given in egq. 3.4,
additionally taking into account the weighting of each harmonic by

the Besselfunction with its proper argument. Our non linear least
squares- fitting routine is quite similar to that used by Stephens et
al. [7]. However, Stephens et al. only use the periodic parts of the
oscillations to f£it the parameters, while in our method we use the

relative amplitudes of the several harmonic terms. The fitting routine

l T T Fig.4.8.

SdH-signal for a
cd A8, samp le 21;13 tﬁzg
N=0.35%10"m", show—
ing a non-periodic shape
due to the rise of higher
harmonies. The dashed cur—

ve 18 obtained with our

(a.u.’

SdH-signal

1.s 1.6 1.7 1.8 1,9 Jtoving routine.
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takes into account the first 3 or 4 harmonics of the SdH-effect and

determines the value of fvi, mé,«E.Td and Y simultaneously.
4.3.4, Data taking procedures in SMSC

Measurements. of the SdH-effect and the magnetisation on SMSC can
provide information on the geometry of the Fermi-surface and the
exchange interaction constants o, 84, and BL which are defined in
eg. 2.19. In the following we describe these measurements in more

detail.

The magnetisation
Magnetisation measurements have been performed with a Foner-

magnetometer on (Cdlnxmnx)3A52

(x < 0.05). It was found that in the same temperature- and field

samples with a low Mn-ion content

.range in which we perform the SdH-measurenments, the magnetisation M
can be described by the Brillouin function for a spin value of 5/2,
adjusting the saturation value to an effective value Seff(x) and
introducing an effective temperature Teff(x) =T + Tc(x} [8,9]:

M~ L8> = Seff(X)B (B, T+To(x)). (4f10)

5/2

The results for Se and To as function of x are given in §5.3.1.

££
The SdH~oscillation period and the cyclotron effective mass

Since the period is depending only weakly on the magnetisation
(see §3.5), one may use the method described in §4.3.1 to obtain the
SdH-oscillation period.
The procedure (see §4.3.2) to obtain the cyclotron effective mass is
only valid when the cosTv-factor in eq. 4.6 is nearly constant. For
SMSC this is not true in general (see eqg. 2.36). However for tempera-
tures above the temperature of the last amplitude zero (k=0 in eq. 3,18)
the quantity v will vary only slowly with temperature and approaches
the value of the non-magnetic narrow-gap semiconductors. At those

temperatures eq. 4.9 becomes applicable again if Tid'Tj is small (<3 °K)
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[10]. Unfortunately, the small absolute value of the total SdH-oscilla-
tion amplitude at those temperatures (T & 25 K) makes it impossible

to perform reliable mg measurements.

We adopted the Cd,As,-value for m: for our investigated (Cd,  Mn )3A52

samples. Although in general in SMSC the primary band parameters change
with the magnetic ion content x, the effective mass value for high

electron concentrations (N = 4% 1024 -3 in case of the (Cd Mn )3As2

samples) is expected to vary only slightly [11]. This iskillustrated
in fig. 4.9, which gives mg {6=0) and mé {8=90) as function of the
energy gap E_ (fig. 4.9.a) and the crystal field splitting parameter §
{fig. 4.9.b) for several electron éonceﬁtrations. f

al b)
.06 T T .06 - . .
I e s o s e s s s e e e ] 3 o
3 e o e e e -
o ————————
- 5 S )
€
s..._____—_______-——-—‘"‘: &
:\0 .04 ~
& °

'----.,,.“._h __.,,.—-’
) ————
\...‘____/
.02 ' : L .02 —! : ;
-.10 -.05 0 .05 .10 -.10 -.05 0 .05 .10

E_ (eW S (ed

Fig.4.9 The E’g and § dependences (4.9.a and 4.9.b, respeef;ively) of

m *(O =0) (solzd curve) and m *(8 = 90) (dashed curve) for
W=o.a% 109 w001, 2 e 0% w0 (2) and 4 » 10%% 73 (3),
respectively. The parameter values A = 0.27 eV and 2’;7 =P

7.3 % 10 10 eVm have been used in the caleulations.
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The effective g-factor
The value of the effective g-factor at temperatures and fields for
‘which a pronounced zero in the SdH~oscillation amplitude occurs, can
bé obtained from eg. 3.18. However, the values of mg and Vv at the 4
given temperature and field must be known. In principle the proper
value of v {or k) can be selected fromthe positions of the successive
zeros on the temperature scale. This can be illustrated by using
fig. 5.20. If the zero at T=2K corresponds to v=5/2 or 3/2 respectively,
then the zero at T=6K must correspond to Vv=3/2 or 1/2 respectively.
With increasing temperature the value of Vv will decrease and finally
reach the value corresponding to the case in which the influence of
the exchange interaction on V can be neglected. Knowing this value
one can -easily find the correct values of v belonging to the spin-
splitting zeros in amplitude by simply counting the numbers of zeros.
Furthermore, the existence of well defined amplitude zeros in B
and T is crucial in order to obtain accurate g*-values from eq. 3.18.
For some samples, as shown in fig. 3.4, the total signal does not
become zexo at a specific value of B and T, but a minimum in amplitude
is observed over a wide range of B. In that case the spin-splitting
zero procedure fails. A harmonic content analysis (see 54.3.3), similar
to that used for normal semiconductor SdH-signals, does not lead to
reliable results since it is based on eq. 3.4 with v independent of B
and T. One might include these dependences by introducing an analytical
exptession for g*, such as given in eq. 2.35 for 6=0 and fit the signal
by varving q, Bﬁ’ and 8L instead of g¥. However, in that case the
validity of the analytical g¥*-expression has to be checked first by other

methods like for instance magneto-absorption measurements.
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CHAPTER V THE RESULTS AND INTERPRETATION OF SAH-MEASUREMENTS ON Cd
" cdSnas, AND (Cd,_ Mn

As

32

X)BAsz SAMPLES

2

In this chapter the results of our SdH-measurements are presented
and interpreted in the models given in chapter II. It should be noted
that we performed SdH-measurements on far more samples than presented
in this chapter. The SdH~effect provides a very sensitive check of the
guality of the samples [ 1]. Therefore we carefully examined the SdH-
patterns of all samples on irregularities and excluded samples with
very noisy SdH-oscillations or beating patterns due to inhomogeneities
from fuxther investigations.

For Cd,As, the results and interpretation are given in § 5.1. For
CdSnAs2 the results and interpretation are presented in 8§ 5.2. The re-
sults on mono- and polycrystalline (Cdlannx}BAsz material and the
interpretation of these results in the band model for SMSC are given in’
§5.3. In contragt to our results on Cd As, and CASnAs, we are only able

3772 2

to give a tentative interpretation of our results on (Cdl_anx)3Asz.
This is mainly caused by difficulties in material technolegy.

5.1. CdgAs,: Results and Interpretation

§.1.1. Introduction

" We have investigated the shape of the conduction band Fermi-surface
of 063382 by measuring the angular dependences of the SdH-oscillation
period, the cyclotron effective mass and the effective g-factor for
gseveral samples with electron concentrations in the range from
0.19 * 162 w3 to 7.75 * 10°? > at 4.2 k.
The configurations in which measurements have been performed are de-
fined in fig. 5.1. In these configurations the magnetic field E rotates
about the [ 100]-axis {conf. I), the [lzc}-directioﬁ'(conf. II) and the
[001]-axis (conf. III), respectively. A survey of the samples ordered
with increasing electron concentration is given in table 5.1. The col-
ums give the sample-code, the electron concentration and the configu~
ration in which measurements have been performed. For all samples P(0)

has been determined in conf. I. Cyclotron effective mass measurements

52



(100}

C-axis
o1

configuration T configuration I . configuration I

Fig.5.1. Definition of the configurations.

24 -3

sample N (10" m ") conf. P(8) mc*(e) g*(8)
1, Bs-64-3-B 0.19 I A + -

2 AS-64-7-1 0.33 T a - -

3 As-35-18-2 0.35 I A + +

4 As-35-15-1 0.40 I a - -

S As-64-2-A 0.53 I,I1,III R - - ]
6 As-64-2-B 0.69 1,II,III R - -

7  As-=38~7-1 0.78 I A + +

8 As-38-3-4 0.80 I A + -

9 As-35-3-1 0.84 I A + -
10 As-64-15-1 1.12 I,11,IXI R * -

11  As-55-4-3 1.60 | I a + +
12 As-61-3-1 1.90 I,11,1I1 R - -

13 As-61~3-3 2.70 I,11,I11 R - -
14 As-61-3-2 7.75 1,II,II1 R - -

Table 5.1. Survey of the measured CdgAs samples,

The absolute (see eq. 4.7} and relative (see eq. 4.8) perzod
measurements ave indicated with A and R, respectively.
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have been performed on 7 of these samples, while for the samples with
N = 0.35 * 1024073, 0.78 * 10%*n™3 ana 1.60 + 10%%u™>3 we were able to
fit g*(8) in conf. I. The results of these period-, cyclotron effective
mass- and effective g-factor measurements are given in § 5.1.2 and in-
terpreted in § 5.1.3. For some samples P(6) has been determined in con-
figurations I, II and III by means of the relative method. The results

of these measurements are presehted and discussed in § 5.1.4.
5.1.2. Results on P(8), m,*(8) and g*(8)

- Fig. 5.2 shows the angular dependences of the period for some of
our samples. The curves are least square fits using eq. 3.10. From the
fitted values of P(6 = 0) and P(8 = 90), which are plotted in fig. 5.3,
the electron concentration N (see eq. 3.11) and the anisotropy coeffi-
cient Kp (eq. 3.12) have been calculated. The values of N agree within
a few percent with those obtained from Hall-effect measurements at
4.2 K. The results for KP as function of the electron concentration
are given in fig. 5.5.

Effective cyclotron mass measurements have been performed in the

field region from 0.5 T to 1.5 T. An example of the angular dependences

.14 T T R Fig.5.2,
The angular dependences of the SdH-

.12 osctllation period for several sam—

1ok | ples. The numbers refer to samples
~ 1 listed in table 5.1. The curves are
'C .08 the best fits according to eq. 3.10.
o -06f > -
B

Ll i L SRS

"E—e—s-a_g_lal__.—-—’-‘—
.02

] 45 30 135 180

© (degrees)

54



. 15 ‘i LR RALL TN

.08k

(T Y

.06

P

.05+~

U p 1 b 1iee It LLLLt
10-1 109 101

N 0% a

Fig.5.3.

' The electron concentration depen-
dences of the periods P(6 = 0)
and P(8 = 90}, The curves (a) ha-
ve been calculated with E_ =
~0.095 eV, A = 0.27 eV, § =

0.085 eV, B, = 7.21 10719 ot

and P, = 7.43 * 1078 ym,

.045 P TTTn

PP TrTTIT
N L0300 b -
(3]
£
.015 o b Lo bttt
10-1 100 10l
N €102 ™

Fig.5.4.

The electron concentration depen—
dences of the cyelotron effective
masses me*(e =0) and m@*(e = 90).
The symbols A and & refer to [6].
The curves (a) have been calcula-
ted with the parameters given in
the caption to fig. 5.3.

of mc* is given in fig. 5.7. The experimental mc*(e = 0) and mc*(e = 90)

values are shown in fig. 5.4. The resulting values for the anisotropy

coefficient Km {eq. 3.13) are given in fig. 5.6. The figures 5.3 to

5.6 clearly show that for all our samples P({6 = 0)>P(8 = 90),

mc*(e = O)<mé* (6 = 90) and Kp>Km.‘Furthermore it can be seen that Kp

and Km decrease with increasing electron concentration,

In combination with accurate measurements of P(0) and mc*(e), the

anisotropy of the effective g-factor could be determined for the samples

24073 0.78 % 10%%4m

with N = 0.35 % 107 m

~3 24 -3

and 1.60 * 10" m ~. An example

of the experimental SdH-patterns is shown in fig. 5.8 for the sample
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Fig.5.6. '

The electron concentration
dependences of the aniso-
tropy coefficient of the
cyclotron effective mass.
The symbol O refers to [ 6].
The curves a and b are
obtained for the same pa-

rameter sets as in fig. 5.5.
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with N = 0.78 # 10°? n >, We fitted the experimental SdH-oscillations
to the expression given by eq. 3.4 by means of our curve fitting
routine (8 4.3.3) As fitting parameters we used the period P, the

Dingle-~temperature T., the phase factor‘y, the cyclotron effective

a v
mass mc* and the g*-factor. An example of such a fit is given in fig,
4.8 for the sample with N = 0.35 % 10°%p™>,

In this case the following values of the parameters were obtained for
8 =0:P(0=0 =0.0782T |, T, = 11.2K, Y = 0.533, m *(8 = 0) = 0.023m_
and g*{6 = 0) = 30.2. As a check the values of P, Tqr Y and mc* have
also been determined for each angle 8 by analysing the pure periodic-
oscillations in a low field range (0.6T-0.8T) at different temperatures
between 2.1 K and 4.2 K. The values of P, Td' Y and mc* obtained in this
way correspond within a few percent with those obtained from the g¥*-fit
routine. .
In fig. 5.9 we show the directional dependences of the g¥*-factor for the
3 investigated samples. It should be remarked that experimental data ‘are .

Fig.5.9.

The effective g—factor
as function of 8 for dif-
ferent electron concen—

40 T T
* N=0.35x10%%m™>

a.b a N=p,78x10%% 3
= N=1.60x10%%m~3

trations. Curve c is ob-
tained by taking into ac-
count the influence of

the quantised free elec-

g e

tron contribution. Curves
a and b have been caleu~
._-—-::--—--~_\_\\\‘—-~‘—-—”_= lated for the parameter

10 tf'-“‘-~—1r-~_.____q;_‘-_._-*—q sets used for the fig.5.3

and fig.5.5.
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© (degrees)

58



missing at large angles for the samples with N = 0,35 * 1024.m-36nd

N = 0.78 % 10°* n™3, This is caused by the fact that in this region the
value of V(= mc*(e)g*(e)XZmo) passes through v = 0.25, so that the
second harmonic almost completely disappears and hence our method be-~

comes very insensitive.
5.1.3. Interpretation of the P(6)-, mc*(e)- and g*(8) data
BAnalysing the experimental data of Rosenman [ 2] and Doi et al. {31,

concerning SdH~ and DHvA-effects, Bodnar [4] determined numerical values

of the bandparameters -for CdBAs2 i.e.

Eg = (-0.095 + 0.010) eV

A = (0.027 + 0.03) ev

§ = (0.085 + 0.010) eV

P = (7.21 £ 0.05) * 1070 cvn
10

P, = (7.43 + 0.05) * 10~ evm

In these experiments the electron concentration covered only a small
range around 2 % 1024m"3. Our measurements on the SdH-oscillation period
together with those reported by Monen [5] and Blom and Gelten [ 6],

show that P(6 = 0), P(8 = 90) and Kp as functions of N can be correctly
described by using the above given parameters down to N = 0.2 % 1024nr3.
This can be seen from the figures 5.3 and 5.5 where the curves {a) have
been calculated with the original Bodnar parameters. The agreement be-
tween points and curves is good, keeping in mind that the parameter
values have been determined by Bodnar from samples with considerably
smaller anisotropy.

The anisotropy of the SdH-period proves to be not very sensitive to
variation of the parameters. Cyclotron effective mass and effective
g~factor measurements as function of the field orientation and the elec-
tron concentration provide an additional and more sensitive check of
Bodnar's conduction band and its parameter values. The Bodnar parameter

set alsoc describes our mé* measurements reasonably well. This can be
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seen from the figures 5.4, 5.6 and 5.7 ({(curves a). Over a wide range

of electron concentrations the experimental values of Km deviate less
than 2% from those given by the curve (a). Since the experimental val-
ues of m‘c*(e =0} and mc*(e = 90) are accurate up to 3% the agreement for
both K and mc*(e = 0), mc*(8==90) is satisfactory. Only for the lowest
elec?ron»concentration the theoretical values of mé*(e = 0} and

mc*(e = 90) are somewhat too high.

Although the Bodnar-set of bandparameters describes our period and
effective mass measurements reasonably well, we have tried to obtain
even better values of the parameters, Keeping Eg and A fixed at ~0.095ev
and 0.27eV respectively, we have fitted P(8) and mc*(e) for several

samples with different N. The averaged values of PA" P_L and § turned

ocut to be
-10
P, = (7.35 £ 0.05) % 10~ eVm
P = (7.40 + 0.10) * 107 evm

o
Il

(0.095 + 0.010) eV

‘A 10 percent change of Eg and A did not alter the fitted values of sz,

P, and 8 by more than 5%. In figures 5.5, 5.6 and 5.7 the curves (b)

h:ve been calculated with the fitted values of the parameters. The dif-
ference between these bandparameters and the Bodnar set of parameters
is only maréinal. An interesting aspect is the very small difference
between Pﬁ' and Pl‘ which indicates that the inﬁroduction of a crystal
field splitting parameter alone seems to be sufficient to describe the

anisotropy of the conduction band at this stage.

The effective g-factor is the third quantity which is sensitive to
the conduction band structure. Previous reports [ 6-8] on g*-values were
roughly in agreement with theoretical calculations for an isotropic
band model [9]. However, these measurements are too incidental to give
information about a possible anisotropy of g¥. Our measurements of
g*(8) given in fig. 5.9 clearly show an anisotropy which is considerably
larger than the anisotropy in P(8) and mc*(e) and which strongly de-

creases with increasing N.
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The curves {(b) in fig. 5.9 are obtained with the Wallace formula for
g*¥(0) (see eg. 2.15), substituting the values of the bandparameters
previously determined from the best fits to period and effective mass
data. The theoretical curves (a) of g*(8) calculated with the original
Bodnar values practically coincide with these curves. The curves de-
scribe satisfactorily the observed angular dependences, but the absolute
values of the theoretical curves and the experimental points still )
differ about 20 percent. A fit of the data points of g¥*(8) resulted in
the following valueflgor Eg, Pﬁf' P, § and A: Eg = -0,10 eV, -
P, = P, = 7.3 % 10 eV, § = 0,087e¥ and A = 0.18 eV.The resulting
value for A is far too low as compared to those reported in literature
(A = 0.27 eV~ 0.30 eV)[ 10~12]. For this reason we do not feel convinced
that this set of bandparameters is more favourable than the afore
mentioned one.

The discrepancy between the calculated curves (a,b) and the experi-
mental values of g* might be attributed to neglecting the corrections
for the free electron term and/or the influence of higher bands [13].

An incorpora&ion of the free electron term into the expression of the

g*-factor, in conformity with the method suggested by Zawadzki [14]'
does indeed lower the theoretical g*-values. However, as shown by Singhr
and Wallace [15], the Zawadzki method neglects the quantisation of the
free electron term in the presence of a field. The calculations of

singh and Wallace give an essential improvement of the agreement be-

%ween experimental and theoretical values of the g¥~factor as is shown
in fig. 5.9 (curves o). '

‘ Various authors [ 13, 16, 17] consider the influence of higher bands
on the g¥-factor in narrow gap semiconductors (NGSC) to be more impor-

tant than the free electron contribution. The introduction of higher

bands for Cd,As, is compliéated and adds several new unknown parameters
to the set of basic bandparameters Eg, A, §, ng and PL’ A fit of alli
our data with an enlarged number of parameters will give more doubtful
results than the incorporation of the free electron term.

With the introduction of the quantised free electron contribution, it
is possible to fit the g*(9)-data with the same parameters‘which are

consistent with the experimental P(8)~- and mcﬂe)-data. From this it

61



seems that the influence of higher bands on the effective g~factor is

much smaller than has been expected, at least for C3_As

2 (degrees)
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Fig.5.10. The angular dependences of the period for several samples
in eonf.I,II and III.
The ocurves have been obtained with the values of Ug and vy
given in table 5.2,

5.1.4. Deviations f?bm the Bodnar-model for CdsAsz

During our measurements of P(8) in the different configurations we
discovered a small anisotropy of the period in configuration III for
samples with relatively high electron concentrations. This anisotropy
indicates a deviation of the Fermi-surface, which should be an eilipsoid
of revolution about the ké-axis according to Bodnar. We systematically
investigated the angular dependences of the period in the configurations
I, I and III for 6 samples with 0.5 # 10°%m < N < 8.0 * 10°°m . The
P{B)~data for these samples are taken according to eg. 4.8.

Fig. 5.10 presents the angular variations of the period {(conf. I, II

and ITI} which are typical for the 6 samples. The dominant anisotropy
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in conf. I and II is of the Bodnar-type. The ratios P(8 = 0)}/P(0 = 90)

in these configurations are indicated in fig. 5.5 by the symbols A

{(conf. I) and ® (conf. II). The observed angular behaviour in conf. III,
which does not agree with the Bodnar-model, is quite similar to that ob-
served in the cubic narrow gap semiconductors HgSe [18] and Gasb [19] in
shape as well as in increase of the ratio P(0 = 0)/P(8 = 45) with increas-
ing electron:éoncentration.

As a firét approximation we treated the observed deviations from the
Bodnar-model with the model for warped Fermi-surfaces of cubic NGSC
[18,19] fsee appendix). By introducing the gquantities ug and v, which

are expected to depend on the primary bandparameters, the higher band-
parameters and the electron concentration we are able to describe the
complete cobserved angular dependences in the given configurations as

is shown by the curﬁes in fig. 5.10.

The agréement‘between the experimental data and the corresponding cal-
culated cﬁrves is almost perfect in each case. The obtained values of

vy and vy for the 6 C4,

B 3

The value of ug turns out to increase with - increasing N while Ve remains

practically constant. The values offuB andkvB are comparable to those

A92 samples are given in table 5.2.

found for HgSe and GaSb in absolute value as well as in sign. However,
conclusions about the actual values of higher bandparameters can not
be drawn from the’obtained values of up and Vg since we do not know in
which way u, and Vg depend on these higher bandparameters for our case.

Attemps have been made fo fit higher bandparameters for Cd3A52 by

calculating numerically P(8) in the three configurations directly from
a second order E.; perturbation Hamiltonian [ 20] added to the Bodnar

Hamiltonian. In this procedure the primary bandparameters were fixed

sample N (1024 m-3) uy Va

| As-64-2-2 0.53 0.35 -2.80 | Ildble 8.2.
As-64-2-B 0.69 0.45 ~2.,80 The values of the‘warping
As-64-15-1 - 1,12 1.07  -2.53 | Parameters uyand vy for
As-6i-3-1 1.90 1.06 —2.64 different electron Co
As-61-3-3 2.70 1.24  -2.71 concentrations.
As-61-3-2 7.75 1.43 -2.65
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at the values given in § 5.1.3., while the higher bandparameters were
varied successively in order to fit the experimentally observed P(0)

behaviour. Up to hoﬁ this procedure did not give satisfactory results.

5.2. CdSnAsy: Results and Interpretation

5.2.1., Introduction

‘The angular dependences of the period and cyclotron effective mass
have been measured for several CAdSnAs,-samples with electron concentra-
tions in the range from 0.19 % 10243 t03.97 102473 at 4.2 K.

Table 5.3 gives a survey of the samples and the performed measurements.
Oon 11 samples the period P{8) has been measured by the absolute method
(a), that is taking the data according to eg. 4.7. For the remaining
samples the P(8)~-data were taken by the relative method (R), according
to eq. 4.8. The cyclotron effective mass as function of the field
orientation is obtained for 7 samples in configuration II. Only for

the sample with the lowest electron concentration we were able to
determine the g*(B8)-behaviour in configuration II.

The results of the period, effective mass and effective g~factor
measurements are given in § 5.2.2 and interpreted in terms of the Bod~-
nar-model in § 5.2.3. Deviations of the Bodnar-model are discussed in
§ 5.2.4.

5.2.2. Results on P(8), mc*(e} and g*(8)

The angular dependences of the period are shown in fig. 5.11 for
some of our samples. The valﬁes of é(e = 0}, P(O = 90) and the aniso-
tropy coefficient Kp have been determinedrmore accurately by a least
squares fit of the experimental P(8) data with eg. 3.10. The fitted
values of P(B = 0) and P(8 = 90) were used to calculate the electron
concentration N by means of eq. 3.11 for an ellipsoid of revolution.
They agree within a few percent with those obtained. from Hall-effect
measurements at 4.2 K, This proves, within the investigated range of

electron concentrations, that we are dealing with a single ellipsoid.
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sample N (10-24 m—3) conf. P(0) mc*(e) g* (0)
1 CSA-6-2 0.19 II A + +
2 Csa-6-3 0.27 II a - -
3 CSA-6-12 0.32 I a -
4 CSA-6-13 0.43 II A -
5 CsSA-6-6 0.44 II A - -
6 CSA-6-4-1 0.45 II A - -
7 CSA-6-4-2 0.46 II A -
8 Csa-6-4-A 0.47 II A -
9 csa-22-2-1 0.71 1,111 R - -
10 Csa-8-3 0.75 11 R - -
11 csa-22-1-1 0.93 I R - -
12 Ccsa-8-9 0.95 II A + -
13 ¢sa-8-a-1 0.96 1T A - -
14 Csa-8-A-4 1.04 II R - -
15 CsSA-8-A-6 1.06 II R - -
16 CSA-8-a-3 1.09 I R - -
17 CsaA-8-A-2 1.10 II R - -
18 CSA-8-a-7 1.13 11 R - -
19 Ccsa-1-8 1.38 II A + -
20 Csa-10-3-2 1.68 I R - -
21 Csa-9-6-5 2,72 I,1I1 R - -
22 CSA-9-16-4 3.97 I,III R - -

Table 5.3. Survey of the measured C'a"SnA.92 samples.
A= absolute period, R= relative period.

For éll samples we find P(6 = 90)>P(0 = 0) in conf. I and II. This can
be seen from fig. 5.12, which shows the electron concentration depen-
dences of P(0 = 0) and P(§ = 90). The anisotropy in the period is quite
small so that an accurate determination of the values of K.p in the res-
pective configurations is difficult. Nevertheless, our results show that
KP increases with increasing electron concentrations, as can be seen
from fig. 5.14.

Here it should be noted that the’Kp values obtained from relative
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The electron concentration depen—
dences of the periods P(0=0) and
P(0=90). The results for the sam—
ples with codes 4,5;6,7,8;12,13;
14,15 and 16,17 have been averaged.
The symbols read as follows:

0O , R absolute period itn conf.Il.

O ,® relative period in conf.IIL.

A , A relative period in conf.I.
The curves have been calculated
with E =0.26 eV,A=0.5 eV,8=-0.1 eV,
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reriocd measurements are more accurate than those obtained from absolute
measurements of P(8). The samples 9, 21 and 22 have alsc been measured
in conf. III. In this configuration they showed an angular dependence
of the period (see fig.5.16), P(8 = 90)/P(B = 45) being 1.013
o =0.71 % 102 073, 101508 = 2.72 * 1024 173} ana 1.016
(N = 3,97 * 1024 m“B) réspectively. According to the Bodnar-model one
should not expect any angular dependence at all in conf. III.

Figure 5.13 presents the effective cyclotron masses, which are ob-
tained from signals as shown in fig. 4.7, for the various samples. The

anisotropy in m *(8) is even smaller than that in P(9). The m * mea-
c

surements cover only a small range of electron concentratlons and the '
resulting values of Kﬁ {conf. II, see fig. 5.15) exhlblt more scatter
than those for Kb. However, for each sample of which both P and mc*
have been measured as function of the orientation, Kﬁ is larger than K§.
Just as in the period, the anisotropy in the effective mass decreases
with increasing electron concentration.

The electron concentration dependences of Kb and K ig4€d§gAsz are much

weaker than in Cd3A52. A variation of N from 0.2 x 10 m " to

2 x 10 24 m 3for Cd._ As

4Rhs, leads to a change of KP and Kh of approximately
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‘Fig.5.16. The angular dependencea of the SdH-ovscillation periods for
the samples 9,21 and 22 in conf.I and conf.III.
The curves have been obtained with the values of Ug and v
gtven in the text.

17% and 7% while for CdSnA52 the change is only 4% for both Kp and Km.'

.For the sample with the lowest electron concentration

N =0.19 * 1024 m_3,we could observe the beginning of spin-splitting
of the lower Landau~levels {n = 3, n =’2). Fig. 5.17 shows the experi-
mental recordings of the SdH-signals for 9§ = 0, 6 = 60 and 6 = 90, res-
pectively. It can easily be seen that these oscillations are no longer
sinusoidal in shape but contain considerable contributions of higherxr
harmonics, ﬁost pronounced for § = 90, This enables us to determine the
cyclotron effective mass and the g*-factor indirectly by means of the
curve fitting method mentioned in §4.3.3. The results for the angular
dependences of mc*/mo and |g*| are shown in fig. 5.18. Concerning the

g*-factor we notice that |g*(8 = 0) |<|g*(8 = 90)|, providing additional
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information about the geometry of the Fermi~surface of CdSnAsz.

From fig. 5.17 it can be seen that for this low electron concentration
it is very difficult to obtain accurate values of P(8) (and consequently
of Kp} since only the first few oscillations are purely periodic. For
this reason the values of Kp in fig. 5.14 for the lowest electron
concentration are less accurate.

The values of mc*(e) given in fig. 5.18 are not obtained from the
temperature dependences of the SdH-oscillation amplitudes but result
from our curve fitting routine. A variation of the mc*(e)-values with

about 3% did not affect the resulting values of g*(0) seriously.

5.2.8. Interpretation of the P(6)=, m *(8)- and g*(9) data

In earlier reported investigations of the Sdi-effect on CdSnAs, [21]
the author concludes from not very pronounced oscillations, that the
conduction band should be isotropic. An isotropic conduction band is
obtained when the crystal field splitting parameter § equals zero and
when the interband matrix elements are equal (%7 = PL)' Our measurements
of the angular dependences of both period and effective mass show that
Kp < 1 and Km < 1 (see fig. 5.14 and fig. 5.15) for the investigated

samples.
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Fig.5.18, The angular dependences of mc* and g* for sample 1
W = 0.19 % 10°% W) obtained from the g*- curve fitting
routine. The curves correspond to Eg = 0.26 eV, & = 0.5 eV,

~10
§ =~0.1eV, P//,,-:P.L:B.b'*io eVm.

Anisotropy of period and effective mass can be described by a Fermi-
surface in the form of an ellipsoid of revolution resulting from the
three band Kane-model (8§ = 0) in which an anisotroplc interband matrix

element (gy # PL) is introduced.

In that case one obtains K = g independent of electron concentration
and the Fermi surface of C§SnA32 will be an oblate ellipsoid of revolu-
* tion of which the ratio c/a (see fig. 3.2) is independent of N. Pre-
viqus results from optical reflection and magnetoresistance measurements
have been interpreted in this way [22-24].

Our experimental data clearly show that for each sample for which both
P(8) and mc*(e) have been measured, Km is larger than Kﬁ. Furthermore
both 1<.m and Kb increase {(the anisotropy decreases) with increasing N.

These arguments lead to the conclusion that §< 0, giving an anisotropic
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conduction band with anisotropy depending on energy. This gives a Fermi-
surface which is indeed an oblate ellipsoid of revolution. However, the

energy dependency of the semi-axis ¢ differs from that of the semi-axis a.

We have compared our experimental data, shown in the figures 5.12-5.15,
with the theoretical predictions from the Bodnar-model for P(6=0),
P(6=90), mc*(ﬁzcl, mc*(8=90}, KP and K respectively. Substitution of
the generally acgepted values of the primary bandparameters Eg (=0.26 ev),
§ (=-0.06 eV), A (=0.5 eV) and the CdGeA52 values for the interband
matrix elements P;;f and P.L (P;}, = PJ‘ = 7.3*10_10 evm [26]) results in
curves (a) in fig. 5.14 and fig. 5.15, showing far too small anisotro-
pies (too high values of Kb and Kh)'

In spite of the small anisotropies and the relatively large inaccuracies
in Kp, Ko mc*(e) and P(9), our experimen;ai results can be reasonably
well described by the four level Bodnar-model with the following set

of bandparameters:

By = (0.26.+ 0.01) eV

A = (0.50 + 0.05) eV

§ = (-0.10 + 0.01) ev

P, = (8.5 + 0.1) % 1010 evm
/4 -

P, = (8.5 % 0.1) 4 10710 eym .

The inaccuracies in the bandparameters are obtained by tracing the
influence of a systematical variation of the respective parameters, The
curves (b) in the figures 5.14, 5.15 and the curves in the figures 5.12,
5.13 and 5.18 have been calculated with the above given set of band-
parameters.

If we wish to comparé our values of the bandparameters with those
reported in the literature, we have to be aware of the different
definitions used for the bandgap, spin-orbit splitting and crystal
field splitting. In the literature [25,26] the results are often given

as energy gaps (A, B and C) between successive bands. Using the
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solutions of the secular equation 2.7 at x =.0, given by Ec = Eg’ B, =0

and Bhh,so = -5 {A+§) + Wi+ 2 - %A + We obtain for A = Eg.- E .
B = Ec - Elh and C =~Ec - Eso the values 0.25, 0.26 and 0.73 eV,
respectively. Taking into account that our data are obtained at liquid
helium temperature, whereas the literature data (A = 0.23 eV, B = 0.26 eV,
C = 0.76 eV [25]) refer to room temperature, we may conclude that they
are in good agreement [26-30]. Our value of the interband matrix element
PA, = PL of 8.5 % 10.'10 eVm lies within the range of values reported
in the literature viz. 7 [31], 8 [27] and 10 % 10710 evn [30]. One
should notice that these values have been determined under different
assumptions, so that a precise éomparison is unrealistic.

Some values for the anisotropy of effective masses are given in the
literature [22,23]. The anisotropy in these papers is defined as
mL*/mT*, the ratio of the longitudinal and transverse effective mass.

For the Bodnar-model we can express this ratio in terms of Kp and sz

mL*fmT* = K?(zxm - Kp). Substituting our values of the béndparameters

we f£ind that mL*XmT* increases from 0.77 to 0.90 for N = 5 % 1023 m.3

to 5 % 1024 m~3. We conclude therefore that the indirectly determined
values of 0.27 < mL*/mT* < 0.64 for the afore mentioned concentration
range given by Polyanskaya et al. [23] are far too low. The individual
values of mL* = (0.048 + 0.007) m_ and mr* = ( 0.056 + 0.008)m_ for

N =5 % 1024 m 3 reported by Karymshakov et al., [22] are in good agree-
ment with our calculated values viz. mL* = 0.0509m° and mT* = 0.0535m0'
respectively.

Concerning the effective g-factor we first of all notice that
|g*(6=0) | < |g*(6=90) |, reinforcing the conclusion that we are dealing
with an oblate ellipsoid of revolution which can be described by
the Bodnar-model with Eg > 0 and §<0. We calculated the thecoretical
values from the Wallace formula for g*(0) by substituting the given set
of bandparameters. The calculated value of the anisotropy coefficient
K

g

X
g

Although the angular dependence is described wellkby the four-level

| g*(0=00) | /|g*(8=0) | turns out to be 0.71. The experimental value

0.73 is in good agreement with this calculated one.

Bodnar-model, the absolute values of g¥(8) are much too low as compared

+o the experimental values (see fig. 5.18). This discrepancy is often

75



met in NGSC (see also §5.1.3)..By varying Eg, A, Pé” P, and 8 wit@in
relatively broad regions it was impossible to find a set of bandpara-
meters which could fit the observed angular dependences of P, mc* and
|g*| simultaneously.

The effect of the free electron term on the g*-factor, calculated
by 8ingh et al. [32] for NGSC and semimetals, changes the theoretical
values of !g*l only slightly and cannot give an explanation for the
high ¢* -values obtained from our fit. The free electron contribution
depends strongly on the band structure of the material. The contribution
is in general considerably larger than 2 for inverted-gap (Eg <0)
materials and less than 2 for direct gap {Bg > 0) materials [32]. This
is in agreement with our conclusions regarding the effect of the free
electron term in CdSnA32 (Eg > 0) and Cd3A52 (Eg < 0)1
Another possibility to explain the discrepancy in the calculated and
measured g¥*-values could be the influence of remote bands. The g*-
factor of (isotropic) NGSC can strongly depend on the effect of higher
bands, while the effective mass differs only slightly from the one
calculated from the three-level Kane-model [13,16]. Unfortunately, a
workable theory including higher bands for tetragonal NGSC (with or

without a magnetic field) is not available up to now.
5.2.4. Deviations from the Bodnar-model for CdSnAsz

We carefully examined the oscillation patterns of samples with
N>1 % 1024 m—3 in order to find experimental evidence for the existence
of a second conduction band with its minimum 0.07 eV above the bottom
of the main conduction band, as has been suggested in refs. [22,33].

The Fermi-levels of these high concentration samples lie at least 0.15 ev
above the hottom of the principal conduction band, and consequently

also considerably far above the minimum of this second band. Assuming

the values of the éffective mass and of the mobility ratio reported

in [33], a simple calculation shows that the concentration of these
second type of electrons cannot be neglected any longer, and we might
expect the appearance of a second period in the SdH-signal. However,

even for a sample with N = 2.8 x 1024 m-3Athé oscillations remain
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perfectly periodic up to 5 T with only one single period. This result
reinforces the conclusion by Daunov et al. [34] that the existence of
this second subband is unlikely. Concerning a third conduction subband
.[22,33,34] with its minimum displaced from the centre of Brillouin zone
and,AE13 = 0.30~0.35 eV, ocur results cannot provide any information.
Additional SdH-measurements on extremely highly degenerated samples,
probably up to higher fields, will be necessary.

Our measurements on the samples with electron concentrations of
0.71 =% 1024 m-3, 2.72 % 1024 m-.3 and 3.97 * 1024 m—3 respectively,
clearly show an anisotropy in configuration III. This is not in accor-
dance with the Bodnar-model, which gives an ellipsoid of revolution
about the k,-axis for the Fermi-surface. The observed deviations are
very small and quite similar in shape with those observed in Cd?Aso
(see §5.14). The quantities u, and v, (see §5.1.4 and appendix) '

turn out to be w, = 0.56, v = -2.79 (N = 0.71 * 10% ™%, w, = 0.42,
vy = -2.13 (N 242.Z§ * 1024 m 3) and u, = 0.23, Vg = -1.97

(N = 3.97 « 107 " m
increasing N, while for Cd3A52 U, increases and Vg remains constant

with increasing N. The curves in fig. 5.16 are calculated with the

). The u, and !VB| values tend to decrease with

above given values of Uy and Vg* The agreement between points and cuxves

is supprisingly good.
5.3 (&ilﬂﬁmﬁ)sAsz: Results and Interpretation
5.3.1. Introduction

Preliminary SdH-measurements have been performed on mono- and poly~

crystallirie {cdi_anx)3A52 samples with a low magnetic ion content
{(x £ 0.05) and electron concentrations in the range from 3.0 =x 1024 m-3

to 6.0 % 10°% p73

affect the electron concentration in these samples than in pure Cd3A52'

. Up to now it proved to be even more difficult to

Annealing treatments in various atmospheres failed in reducing the
electron concentration of the as-grown samples considerably. Due to the
very narrow range of electron concentrations we are only able to give
some tentative results of our SdE-measurements, which however demén—

strate the influence of the exchange interaction clearly. These results
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are presented and discussed in §5.3.2 for polycrystalline samples and
"in §5.3.3 for the single crystals.

, Magnetisation measurements [35,36] showed that <SZ> may be described
by eq. 4.10. The values of Seff(x) and Ta(x) given in table 5.4 have
been obtained at temperatures and fields in the range in which usually
SdH-measurements are performed. The positive 'r0 and the small Seff
reflect a strong antiferromagnetic interaction between the Mn-ions,

much stronger than that found in other SMSC [37-40].

esg To (K

0.01 1.60 1.95
0.02° 1.36 3.27 Table 5.4.
0.03 1.12 3.69
0.04 0.90 4.45
.0.05 0.80 5.35

The experimental values of Seffﬂr) and Toﬁx}
obtained for T < 4.2 K and B < 3 T. V
After 135,361.

5.3.2. Spin—splitting zeros in polycrystalline (Cd2w$Mhm)3A82 material

The (Cdl_anx)3As2 alloys exhibit very pronounced zerocs in the SdH~
signal, as is illustrated in figs. 3.3 and 5.19 for two samples with
x = 0.01. Several interesting features can be seen in fig. 5.19.
Looking at a fixed value of the field, for instance at B = 1.62 T, one
observes with decreasing temperature first a decrease of the veak-peak
amplitude, followed by an increase with opposite phase. The amplitude
goes through zero bétween T =1.82 K énd 1.81 X. The figure also
shows that this zero shifts towards lower temperature when the field
is further increased: at B = 1.73 T the zero occurs between T = 1.81 K
and 1.73 K. The oscillations near both zeros change their sinusoidal
shapé because of the rise of the second harmonic of the signal. This
has been shown already more explicitly for another sample in fig. 3.4.

Fig. 5.20 presents the fundamental amplitude of the SdH-oscillations
as function of temperature at B = 1.53 T for a sample with x = 0.01 and
N = 3,920 % 1024 m"3. Two zeros are observed at about 2 and 6 K corres—

pondig to Vv =5/2 and 3/2, respectively (see eg. 3.18). In fig. 5.21
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Pig.5.19. Experimenﬁal‘recordings of SdH-oseillations at tempéra—
tures near a spin-splitting sero.

the temperaturé dependences of the SdH-amplitude at B = 1.90 T are
shown for two samples with N = 3.90 * 1024 m—B(a). N = 5.45 * 1024 mm3
(b) And x = 0.02. S8imilar behaviour of the SdH-amplitude as function
of B and T has been found for all investigated samples up to x = 0.05.
It can be seen from fig, 5.21 that the zero in amplitude (v = 5/2 in
this case) shifts towards higher temperature with incréasing electron
concentration. In fig. 5.20 and fig. 5.21 the spin-splitting zeros with
v = 5/2 for the samples with N = 3.90 x 1024 o3 occur at the same
temperature, but different fields. Since the spin-splitting zero
temperature decreases with increasing B one may conclude from these
figures that the spin-splitting zero temperature increases with

increasing x.
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T 1 ' T ' Fig.5.20.
Temperature dependences
of the SdH~amplitude at
B = 1,53 T for a sample
with 2 = 0.01 and N =
3.8 * 2024 m_g. The best
fit of the eaxperimental
pointg ig found for

= 2,08 - 1.12 B (s0lid
curvel). The dashed curve
g explained in the text.

(a.u.?

AMPLITUDE

In order to interpret the observed temperature and field dependences
of the SdH~amplitude we used the theoretical model given in §2.3. For
the polycrystalline samples we simplified this model to an isotropic

one by substituting & = 0, P”,= P, and S” = Bi' Adopting the low-
temperature values of the bandparameters Eg, P and A of pure C63A32
and taking the magnetisation functions described by eq. 4.10, we
succeeded to fit the temperature and field dependences of the observed
zeros by treating o and 8 as adjustable parameters. This is shown '
in the figures 5.20 and 5.21 where the solid curves have been calcu-
lated from our model using the values of 0 and B found from the best
fits of the zeros at T® 2 K and using the Cd3As2 value of the effec-
tive mass. In both figures the agreement between experimental points
and calculated curveé is remarkably good over the whole temperature
range, although only the zeros at T‘N 2 K are used to adjust o and 8.
It was impossible'to determine experimentally the effective cyclo-
tron mass values of the investigated samples with the method suggested
in [40] (see 84.3.4). This is due to the fact that the absolute values
of the SdH-oscillation amplitude become very small for temperatures
above the last (v = 1/2) spin-splitting zero (T & 25-K). In our cal-

culations we used the m: values obtained from the Bodnar-model using
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L ! T T Fig.5.21.

Temperature dependences

of the amplitudes at

a B = 1.80 T for two sam-
ples with & = 0.02,

w=39% 1020 ()
and N = 5.45 % 102w
(b). The data have been
fitted with a = ~2.0 eV
and B = 3.2 eV,

(a.u.)

3

AMPLITUDE

T K>

the Cd3A32 values for the primary bandparameters with § =0 and Pﬁ! = PL‘
We feel justified in this choice of mc* since the values of the cyclo-
tron effective mass resulting from the model including exchange inter-

action are practically the same as for pure C4 Asg (see §2.3). Moreover,

the dashed curve in fig. 5.20, which gives the3temperature behaviour
of the SdH-amplitude without the influence of exchange interaction, has
been calculated with the mc*—value of Cd3A52 (8§ = 0, Pﬁ'= l} for the
given electron concentration. Furthermore, we do not expect the mc*
values for the given electron concentrations to change seriously with
a change of the bandgap as function of x as is shown in fig. 4.9.

For each individual sample (with given N and x), it was possible
to fit the experimental temperature and field'dependendes of the SdH-
amplitude with sets of & and B which satisfy a relation o =i - sB.
The slope (s) and the intexcept (i) of the straight line depend on the
electron concentration and the bandparameters; moreover, i is a function
of the Mn-ion concentration (x). Such a linear relation in o and B is
predicted by our model (see §2.3.3). Due to this linear relation between
o and B it is impossible to determine an unique set (q,B) from the fit
of the temperature and field behaviocur of the amélitude for a single

sample.
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The straight lines obtainedkfrom fits of the spiﬁ—splitting zerds’for
‘samples with the same Mn-ion content x but different N, should inter-
cept in one point of the o~B plane and thus give a unique solution for
o and B. We applied this procedure to the samples with x = 0.01. Because
of the experimental inaccuracies in the values of B and T at the zeros,
possible differences in Mn-concentration and the fact that the range of
N is only very naryow, we did not find exactly one point but a conglo-
merate of points in the o~8 plane. Averaging these values we obtained
4 = -3.4 eV and E = 4.9 eV, These values were found under the assump-
tion that for the samples with z = 0.01 the zero occurring at approxima-
tely T = 2ZKand B = 1.57T (see fig. 5.20} corresponds to V = 5/2. The
proper value of V is selected from the positions of the zeros on the
temperature scale. Our calculations show that only if the zero at m~2.X
corresponds to V = 5/2 the next zero corresponding to v = 3/2 will
occuyr exactly at the temperaiure where it is observed experimentally
(G.Oﬁ). For the samples with x = 0.02 the same procedure of determining
0 and B resulted in averaged values O = -2.0 &Vand B = 3.2 eV.These
values are less accurate, due to an even smaller electron concentration
range, but deviate considerably fraom those for x = 0.01. Going up to
x = 0.05 the values of 0 and B determined in this way appear to change
from a negative value of Q(-3.4 eV) and a positive value of B(4.9 eV)
for x = 0.01 to a large positive value of % and a negative value of
B for x = 0.05.

" The values of ¢ and R in most SMSC, investigated thus far, turn out
to be independent of x [ 42,44], at least for low x. The change of ¢ and
B with increasing x may be attributed to the fact that we used the
Cd3As2 values of the primary bandparameters, which of course are in-
dependent of x. Generally for mized crystal systems and for SMSC in
particular the bandgap varies rapidly with x [ 38,39,41,42]. Assuming
an x-dependent bandgap in such a way that Eg becomes more positive
with increasing x, it is possible to find values of ¢ and B which are
independent of the magnetic ion content. For instance, in order to
£find the same values of o and § for the samples with x = 0.01 and
x = 0.02 the bandgap has to be changed from Eg = =0.095 eV for pure ‘
063332 to Eg = ~0,077 eV and Eg = ~0.060 ev for x = 0.01 and x = 0.02,
respectively. The averaged values of o and f obtained in this way
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turn out to be -5.2 eV and 6.8 eV, respectively. It shéuld'be stressed
that the above given Eg—x relation and corresponding values of O and B
are affected with a large inaccuracy.

The inaccuracy is mainly caused by the narrow electron concentration
range. The small differences in electron concentration of samples with
a given x correspond to straight lines in the 0-B plane with nearly
the same slope, which makes an accurate determination of the values of
a and B impossible. This in turn makes a determination of the Eg—x
relation doubtful, This effect is enhanced by small variations in x
between the individual samples. Furthermore, the higher the value of
dngdx, the more essential it is to know x of each sample very accu-

rately.

5.3.3, Angular dependences of P(0) and spin-splitting zeros in
(Cdz—anx)sASZ single crystals

-3 4 ~3

For single crystals with .0025<x<.010 and 3 * 1024 m <N<6 *x 102 m
we determined the SdH-oscillation periods in the three configurations
which are defined in fig. 5.1. The angular variations of the period,
which are typical for all single crystals, are presented in fig, 5.22,
The angular behaviour of the period in configuration II is mainly of
the Bodnar type. The anisotropy in configuration III clearly indicates
that we are also dealing with warping of the Fermi-surface. The angular
behaviour of the period in this configuration is quite similar in shape
to that observed for Cd,As, {see § 5.1.4.). Just as for Cd;hs, the
ratio P(0 = 0)/P(8 = 45) {(conf. III} increases with increasing elec-~
tron concentration. The values for Kp = p(g =0)/P(0 = 90}2;¢ng. I and
II) turn out to be strongly x dependent. For N = 4.0 % 10 n Kp—
values of 1.06, 1.08, 1.12 (conf. I} and 1.09, 1.11, 1.15 (conf. II)
were found for x = 0.01, 0.005 and 0.0025, respectively. For the given

electron concentration a value of 1<.P = 1,15 is found for pure Cd As2

3
(see fig. 5.5). An analysis of the Bodnar-model by wvarying the band-
parameters learns that Kp is very sensitive to changes in the crystal
field splitting parameter §, but almost independent of the bandgap.

This may indicate that § decreases with increasing x, assuming the
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Pig.5.22, Angular dependences of the SdH-periods for a sample with
© = 0.0025 and N = 4.4 % 10°% w ™,

The curves ave dram to guide the eye.

values of Py and P, to be independent of x { 40-44].

We measured the amplitudes of the SdH-oscillations for several sam—
ples in the temperature range from 1.2K to 4.2Kin order to detect a
possible angular dependence of the quantity v = (1/2 {mc*fmo) g*). A strong
angular dependence of v implies that the temperature 'I‘Z at which the
spin-splitting zeros in the SdH~amplitude occur (v =1/2, 3/2......)
shifts considerably with the field orientation. However, we found only
very small differences between the spin-splitting zero temperatures
(corresponding to the same V) for the various orientations. This is

shown in fig. 5.23 which gives the amplitude near 'I‘Z for 6 = 0 and

8 = 90 measured for samples with x = 0.01 (N = 3.5 % 10%% 13 ana

5.3 % 1024173, 2 ana b) and for a sample with x = 0.005
N =5,2 % 1024 m-3, c}. We find {I‘Z‘(G = O)CBZ(G = 90) for x = 0.01 and
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TZ(B = 0)>Tz(€ = 90) for x = 0.005 corresponding with v(8 = 0)<v(B = 90)
and V{8 = 0)>v{0 = 90), respectively. The observed spin-splitting zeros
correspond to v = 5/2 (x = 0.01) and v = 3/2 (x = 0.005). Similar re-
sults have been found for several samples with x<0.01,

These results can be quantitatively understood from the modél given
in § 2.3., as is illustrated in fig. 5.24 for the sample with x = 0.01
and N = 3,5 * 1624353. Substitution of the exchange parameter values
@ =-5.2ev and B =6.8ev, found for polycrystalline samples with
x = 0.01, results in too small values of v and gives V{6 = 0)>v(8 = 90)
{curve a}. By introducing a rather large anisotropy in the exchange
parameter B(Bg,#Bl} it is possible to obtain the correct v-0 behaviour
and larger values of V. This is shown by curve b (T = 1.5 K), which has
been calculated with a=-4.9 ev, B, = 8.3 eV, B, = 6.8 ev, Eg = =0.077 ev
and adopting the Cd3A52 values of the remaining primary bandparameters.
With increasing temperature the curve shifts downwards and crosses the
spin-splitting zero value v = 5/2 firstly for € = 0 and finally also
for 8 = 90. With the above given set of exchange parameters it is also
possible to describe the spin-splitting zero of sample b in fig. 5.23

satisfactorily.

(8.u.)

AMPL [ TUDE

Pig.5.23. Temperature dependences of the SdH-oscillation amplitudes near
a spin-splitting zero at B = 1.65 T, measured on samples with
2=0.01 (g, 1 =35 %1008 w and b, § = 5.5 5 10°* w%) and

2= 0.005 (c, N =52 % 10°% m%).
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The curves are explained in the text.

>

It should bev stressed that the curves b are mainly illustrative. The
used values for o, B Y and B | are not obtained from a systematic inves-
tigation of the field, temperature and magnetic ion content dependences
of spin-splitting zeros for samples in a large electron concentration
range. Furthermore, the curves a and b have been calculated using

the CdAs, values of A, §, p/}’ and P. The absolute value and aniso-
tropy of the theoretical v is influenced by a change of the bandpara-
meters which in turn influences the experimentally determined values

of the exchange parameters ¢ and 8. For instance, a decrease of § to
0.05 eV results in stronger anisotropy and higher values of v (curve

c in fig. 5.24). In order to explain the observed spin(-éplitting Zeros .

in this case one has to change the values of o, B Y, and B_L in such
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a way that the anisotropy in B becomes smaller for decreasing 6.

For the sample with x=0.005 it is also possible to describe the observed
behaviour (Tz {6=0)> Tz {6=90)}’with our model, by choosing a different
set of exchange parameters. For instance 0 = -4.9 eV, Bé,= 6.8)ev,

BL = 7.8 eV, Eg = -0.086 eV and using CdBAs2 values for the other
primary bandparameters, results in curve d in fig. 5.24. With increasing
temperature the curve will shift downwards and passes the spin-splitting
zero first for 6 = 90. ‘

The curve is once again merely illustrative. The used anisotropy in B

ig smaller than for the samples with x=0.01, This is in agreement with
the expected decrease of § with increasing x as is explained above.

Here it should be noted that in the given illustrations we used the

values of Se and To obtained for polycrystalline material. Thus far

£f
magnetisation measurements have not been performed on single crystals.

Just as in the case of polycrystalline material many more experimen-
tal data on the temperature, field, electron concentration and angular
dependences of the SdH-amplitudes and spin~splitting zeros are necessary
over a large range of electron concentrations in order to give an
elaborate quantitative interpretation of the influence of the exchange

interaction in the model given in §2.3.
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CHAPTER VI GENERAL CONCLUSIONS AND REMARKS

This chapter summarises the conclusions that can be drawn from the
work described in this thesis.

The aim of our SdH-measurements on the conduction band of Cd3A52
was to check the validity of the Bodnar-model and its extension to
quantising magnetic fields in a relatively large electron concentration
range, including electron concentrations below N = 1 % 1024 m~3 where
a considerable increase of anisotropy was predicted.
Our measurements of the energy dependent anisotropies of the SJdH-
period, cyclotron effective mass and effective g-factor in the electron

concentration range from 0.19 % 1024 o3

up to 7.75 % 10%4 3 strongly
confirm the dispersion relation for the conduction band according to
Bodnar's model. The absolute values and angular dependences of the
SdH-periods and cyclotron effective masses as well as the angular
behaviour of the effective g-factor can be quantitatively described

by the Bodnar-model using the following set of primary bandparameters:

Eg = (-0.095 + 0.010) ev
A = (0.27 + 0.03) eV
§ = (0.095 + 0.010) eV
~-10
P, = (7.35 + 0.05) % 10 ' evm
/4 -
~10
P, = (7.40 + 0.10) % 10~ evm.

4

These values of the bandparameters are practically the same as those
found by Bodnar from samples in a narrow electron concentration range
"beyond 1 * 1024 m‘3 [t]. By incorporating the influence of the guantised
free electron term on the effective g-factor, it is possible to obtain
a good agreement between experimental and theoretical absolute values
of the g*-factor.

We started our investigations of CdSnAs2 by means of the SdH-effect

in order to verify the applicability of the Bodnar (Kildal)-model to
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CdSnaAs,. and to determine the anisotropy of the conduction band in

2
more detail. The present study is as far as we know the first compre-

hensive one of the conduction band anisotropy of a II-IV-V2 compound

~ by means of the SdH-effect.

From our measurements on CdsnAs, samples with 0.19 % 1024 m-3 <N <

3.97 % 10°% o3

is energy dependent. Also for this material the anisotropies of the

we conclude that the anisotropy of the conduction band

SdH-oscillation periods, cyclotron effective masses and effective
g~factor can be described by the four level Bodnar (Kildal)-model.
In this case, however, the bandgap ig positive and the crystal field
splitting is negative. We obtained the following set of §rimary band~

parameters:
Ey = (0.26 + 0.01) ev
A = (0.50 + 0.05) eV
§ = (-0.10 + 0.01) eV
B, = (8.5 + 0.1) % 10 0 evm
/4 -
P = (8.5+0.1) 510 0 evm .

In contrast to Cd4 Asz, it was impossible to remove the discrepancy

between the experimental and calculated values of the g*-factor by
taking into account the influence of the quantised free electron term.
The difference between experiment and theory might be attributed to
neglecting the effect of higher bands on the conduction band. However,
the angular dependences of the g*-factor in CdSnAsz have been measured
for only one sample up to now.

The above mentioned results for two compounds belonging to different
families, representing an inverted band structure with positive crystal
field splitting and a normal level ordéxing with a negative § respec-
tively, strongly evidence the general applicability of Bodnar's model
for tetragonal NGS.

Apart from a (possibly) small anisotropy in the interband matrix element
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for Cd3
governed by the magnitude and sign of the crystal field splitting

Asz, it is clear that the geometry of the Fermi-surface is

parameter § and the bandgap Eg. In this respect it would be interes-
ting to investigate tetragonal semiconductors which are expected to
exhibit the other two possible combinations of Eg and 8, schematically
shown in fig. 2.1. Among the IIB»V2 compounds, Cd3P2 is one of the
few candidates combining positive values for both Eg and § [2,3].
However, due to the wide bandgap of 0.5 eV as compared with the
estimated value of § = 0.02 eV [2] we expect a nearly spherical con-
duction band even for the lowest attainable electron concentrations.
High negative values of § have been reported fox some IX-IV-Vz com~
pounds [4], however none of the known compounds of this family have

an inverted band structure. In geheral semiconducting compounds obey
the empirical rule that Eg decreases as the mean atomic number increa-
ses. Only a few compounds in the lower part of the periodic system
show an inverted structure (i.e. 0—8n, HgTe, Cd_As.). CdSnAsZ,.the

372

"heaviest" of all direct-gap*II-IV~V, compounds, has still a positive

gap. Only CdSnSb2 could be a possiblz candidate for a negative band-
gap. However, its existence is questioned [5].

Examining the angular variation of the SdH-periods carefully we
found that energy dependent ellipsoids of revolution alone are not
sufficient tq describe the geometry of the Fermi-surfaces of Cd3A52

and CdSnAs, in detail. A warping of the Fermi-surface was obsexrved.

From the iicrease of the deviations of the Fermi-surface with increasing
electron concentration and the similarity with the deviations from a
spherical surface for cubic NGS, we concluded that the warping has to
be attributed to the influence of higher bands. Using the approach
developed in the literature for HgSe and GaSb [6,7] we were able to.
explain the angular behaviour of the warping. For this reason we
expected an extension of the Bodnar-model with a cubic second order
i.; perturbation to be successful in extracting the higher band~
parameters from the observed warping.

An extension of the Bodnar-model to that effect has been studied [8].
It was expected that a fit’of the warping data with such an extended

model would give higher bandparameters which could be used in turn for
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the interpretation of the experimental effective g-factor values of
CdSnAsz. Up to now this procedure did not give satisfactory results.
Very recently quantum structure calculations by Devreese and Nachtegaele
[9] showed warping of the Fermi-surface. In these calculations higher
bands have not been considered at all.

Sinée the warping of the Fermi-surface affects also the angular depen-
vdences of the cyclotron effective mass and the effective g-factor it
will be necessary to examine how the accuracy of the experimental

determination of these quantities can be improved further.

Our SdH~measurements on poly~ and monocrystalline samples of

1(Cd1_anx)3A52 with low Mn content (x < 0.05) clearly show that this
mixed crystal system does indeed belong to the group of SMSC.

Our measurements indicate that the primary bandparameters depend
strongly on the magnetic ion content of the mixzed crystal system.
Although the observed anisotropy in the spin-splitting zero tempera-
tures is only small, a rather large anisotropy in the exchange para-
meter B cannot be excluded from the results on the single crystals.
An elaborate quantitative description of the temperature and field
dependences of the band structure is hampered by the narrow electron
concentration range of the measured samples. For further investigations
special attention has to be given to a reduction of the electron
concentration.

Measurements of the cyclotron effective mass as function of the
electron concentration and the material composition by other methods
than the SdH-effect, for instance by measuring the thermo-electric
power in a magnetic field, are advisable. From these measurements one
might obtain additional information on the primary bandparameters.

Despite the fact that we are only able to give a qualitative inter-

pretation of the observed effects, at this stage, we may state that

the system (Cdlannx)3As is very promising for a further study of the

2 4
exchange interaction. This interaction between mobile electrons
and localised magnetic ions, expressed by the parameters ¢ and 8, is
much strongér than that found in other systems of SMSC, such as
Hgl_XMnxTe (8e) and Pbl_anxTe {8e).
Recently, it appeared that in the system Pb

l_anx?e {8) the exchange
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interaction is not proportional to the macroscopic magnetisation [10;11]
which needs a complicated theoretical approach [11]. In our case the
electronic effective g-factor follows the macroscopic hagnetisatibn

in its dependence on temperature, magnetic field and Mn-content, which
means that for the time being the simple mean field theory can be used.
This feature together with a high electron mobilitf makes investigation
of the electronic properties of this system by means of magneto—
quantum transport effects very attractive.

It is worthwile to study the magnetic interactions in the system
(Cd1~anx)3ASZ' particularly how t;ese are affected by the presence of -
an electron gas of intermediate density. In this respect, it should

be mentioned that a spin-glass behaviour has been observed down to

very low Mn~concentrations, well below the percolation limit of the

system [12].
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APPENDIX WARPING OF THE FERMI-SURFACE

Warpihg of a spherical Fermi-surface is responsible for the observed
angular dependences of tﬁe period in cublc narrow gap semiconductors.
In our materials the Fermi-gurface is approximated by an ellipsoid of
revolution, Warping of this surface introduces small angular variations
of the period in the configurations I, II and III, which in conf. I and
II are superimposed on the main angular behaviour of the period describ-
ed by the Bodnar-model. We treat the observed warping in CdBAsz,
CdSnAsz'and (Cdl_anx)zAsz with a modified model for cubic NGSC, since
the observed warping is small and similar in shape to that for spheri-
cal Fermi-gurfaces.

For isotropic narrow gap materials Kane has used the ﬁ.; method to
derive the approximate énergy of the condﬁction band. Neglecting the
inversion asymmetry splitting this perturbation calculation results in

2.2 2
g hk > h
== ¥ [
E = E' + . N + v.f (k)z N {(a.1)

where

=1+ aZA' + b2M + ch'

(b2-2¢%) (L-M-N) (a.2)

<
]

E®) = %k ek ek Hu.
W Xy x oz v 'z

The conduction band eigenvalue E' corresponds to the undisturbed spheri-
cal Fermi-surface. The normalised coefficients a, b and ¢ {see ref [18]
‘section 5}, which depend on the electron concentration and the primary
bandparameters, give the amount of s-like and p-like bagis functions in
the conduction band wavefunction. The parameters A*, L, M, N and L'
represent the influence of higher bands. The term fw(ﬁ) produces a warp—
ing of the Fermi~surface. Applying this methaed to Cdjas,, CdSnA52 and
(Cdl_anx)BAs2 and assuming a small distortion of the Fermi-surface we

write:
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YE) = YE") + (5‘1@—) (8'-E) @a.3)
E‘

aE
with
vEn = £, @k’ + kyz) + £, EOK,
flV(E') = plzig'(z' + %-A) +8(e* + %—)] (A.4)
fz'(E'} = P//z[E' (E' + %3}]
and
(BE'-E) = uBh;kz + vaW('ﬁ)-g-— . (a.5)
[+] Qo

The parameters uB and VB depend on the electron concentration, primary
bandparameters and higher bandparameters. Unfortunately the exact func-
tional relations in a, b and ¢ are unknown. The term fw (i) is given in
eq. A,2.

In calculating the extremal cross-sectional area of the warped Fermi-
surface, it is convenient to use a set of polar coordinates kp' Y in
the plane perpendicular to the field direction. This is illustrated
for the three configurations in fig. A.1. The extremal cross-sectional
area perpendicular to the field is then given by o

27

1 2
s, = 20! k,a® . , (a.6)

It follows from egs. A.3-A.5 that for the three configurations k 2 can

P
hg(ﬂ) (. + v_y(0,0)
Sm\ag/_ B - B!
x 2 YE') 1 o'" E'

o EE,0,® | £(E",8,9)

be approximated by

{3.7)

The functions f£(E',6,9) and y{0,p¢) are different for the three config-
urations. They are given by: '
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Configuration I:

£(E,0,0) = £, (E') (cos’ + sin“pcos’0) + £, (E') sin’0sin’0
2 2 2 2 2 (n.2)
¥{6,9) = sin“@P(cos”@ +sin"Pcos Osin"®) :

Configuration II:

£(2',6,0) = £, (") (sin%p + cos’PcosZ6) + £, (B') sin%@sin’0
1, 4 2 4 2 2 (2.9)
y{8,p) = Z{cos Q{10 cos“® ~ 3 cos 8 -~ 1} + 2 cos“W(l ~ 3cos”8) + 1}

Configuration III:

£(E',0,9) = fl(E')coszq) + fz(E')sinztp

(a.10)
y(0,9) = cosch(sinz(o + cos2q>sin26cosze)
The SdH-oscillation frequency {or period) is obtained from
1 h
F® = 577 = 36 Sm - (A.11)

CONFIGURATION | CONFIGURATION II CONFIGURATION I

Pig.A.1. Definition of the configurations..

98



SAMENVATTING

Het in dit proefschrift beschreven onderzoek had tot doel na te gaan
in hoeverre de anisotropie van de geleidingsband van de tetragonale

gedegeneregrde n~type halfgeleiders Cd3A32 en CdSnAs_ in een groot elek-

tronenconcentratiegebied beschreven kan worden met hzt door Bodnar en
Kildal ontwikkelde 4-bandenmodel voor tetragonale halfgeleiders. Daartoe
is door middel van het SdH (Shubnikov-de Haas)~effect de vorm van het
Fermi~oppervlak van de geleidingsband van deze materialen onderzocht.
Voor de mengkristallenfeeks (Cd1~anx)3A82 met x < 0.05 is door middel
van het SdH-effect nagegaan in hoeverre deze verbindingen behoren tot
de groep van de zogenaamde semi-mégnetiSChe halfgeleiders en of het
voor deze materialen ontwikkelde bandenmodel voldoet.

De bandenmodellen worden in het kort in hoofdstuk II besproken. Op
basis van het door Bodnar ontwikkelde 4-bandenmodel en de door Wallace
gegeven uitbreiding hiervan voor guantiserende magneetvelden wordt
in dit hoofdstuk een bandenmodel voor tetragonale semi-magnetische
halfgeleiders voorgesteld. In dit model wordt rekening gehouden net
dé exchange interactie tussen de vrije ladingsdragers en de elektronen
in de 3d-schillen van de mangaanionen.

In hoofdstuk III wordt summier ingegaan op de achtergronden van het
SdH-effect. Onder het SdH-effect verstaat men de oscillaties in de
magnetoweerstand die periodiek ziijn in het reciproke magneetveld. De
oscillaties worden veroorzaakt door fluctuaties in de toestandsdicht-
heid en de verstrooiing van elektronen in de geleidingsband. In het
algemeen kan het SdH~effect worden waargenomen bij lage temperaturen
in quantiserende magneetvelden aan gedegenereerde halfgeleiders. Uit
metingen van de periode en de temperatuurafhankelijkheid van de ampli-
tude van de oscillaties als functie van de oridntatie van het magneet—
veid, kan de vorm van het Fermi~-oppervlak van de geleidingsband worden
afgeleid.

De benodigde experimentele opstellingen zijn in hoofdstuk IV beschre-
ven. In dit hoofdstuk wordt tevens aangegeven hoe de experimentele
gegevens zoals de hoekafhankelijkheid van de SdH-periode, de cyclotron

effectieve massa en de effectieve g-factor uit de SdH-signalen verkregen
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kunnen worden.

De resultaten van de SdH-metingen aan Cd Asz, CdsSnAs. en

3 2

(C worden in hoofdstuk V gepresenteerd. Het blijkt dat onze

dl-x 2

metingen aan Cd3A52 en CdSnAs2 in het hele beschikbare elektronen-

concentratiegebied uitstekend beschreven kunnen worden met het 4-

Mnx)3As

bandenmodel van Bodnar (en Kildal). De door ons waargenomen afwijkingen
ten opzichte van het Bodnar-model wvoor zowel Cd3As2 als CdSnAs2 worden
veroorzaakt door warping van het Fermi-oppervlak.

De SdH-metingen aan (Cdl_anx)3As mengkristallen met x < 0.05 beves-

2
tigen het verwachte semi-magnetische karakter van dit materiaal. De
voorlopige interpretatie van onze metingen in het bandenmodel voor
tetragonale semi-magnetische halfgeleiders duidt op een opvallend
sterke wisselwerking tussen de gelocaliseerde spins van de Mn-ionen

en de spins van de geleidingselektronen, De primaire bandparameters
lijken sterk af te hangen van de samenstelling van het materiaal.

Een eventuele anisotropie van de exchangewisselwerkingsconstantes

kan niet worden uitgesloten. Door de te kleine spreiding in elektronen-

concentraties is het niet mogelijk in dit stadium meer uitgebreide

kwantitatieve conclusies te trekken.
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STELLINGEN

1.

De anomale magneetveldafhankeliikheid van de amplitude van het

I - .F :$
Shubnikov~de Haas effect in HgSe en Hg0.999Mn0_001Se wordt door
Reifenberge; en Schwarzkopf geinterpreteerd in een model voor
magnetic breakdown. Deze verklaring wettigt nog niet hun conclusie
dat de geometrie van het Fermi-oppervlak temperatuurafhankeliik

wordt door toevoeging van Mn aan HgSe.

R. Reifenberger, D.A. Schwarzkepf, Phys. Rev. Lett. 50, 307 (1983).

Skok et al. verklaren het door hen bij lage magneetvelden waarge-
nomen afwijkend gedrag van de magnetoweerstand van InSb m.b.v.
magnetische quantisatie aan het oppervlak. Deze interpretatie is
aan twijfel onderhevig, omdat de elektrische contacten soortgeliik

afwijkend gedrag kunnen veroorzaken.

E.M. Skok, S.A. Studenikin, H. Hefel, H. Pascher, JETP Lett. 37,
554 (1983).

De door Chuiko in navolging van Karavaev en Borisenko bepleite
uitbreiding van het 4-bandenmodel voor tetragonale halfgeleiders
door invoering van een anisotrope spin-baan koppelingsparameter,
lijkt -~ gegeven de nauwkeurigheid waarmee deze grootheid experimen-

teel te bepalen is ~ niet zinvol.

G.P. Chuiko, Sov. Phys. Semicond. 17, 301 (1983).

G.F. Karavaev, 5.I. Borisenko, Sov. Phys. J. 6, 712 (1978).

Het verdient aanbeveling de in de theoretische stromingsleer gebruik-
te Boussinesg-benaderingen te catalogiseren en bij gebrulk te ver-

melden welke benadering gekozen is.

J. Lighthill, Waves im Fluids, (Cambridge University Prese, London
1978}, p. 288.



5. Het feit, dat de waargenomen groottes van de renormalisatie van de
soliton-rustenergie in verbindingen met duidelijk verschillende
waarden van het spin-quantumgetal S vrijwel gelijk zijn, wijst niet
in de richting van een interpretatie van dit verschijnsel m.b.v.

quantumcorrecties.

J.K. Kjems, M. Steiner, Phys. Rev. Lett. 41, 1137 (1978).
J.P. Boucher, L.P. Regnault, J. Rossat-Mignod, J.P. Renard,
J. Bouillot, W.G. Stirling, J. Appl. Phys. 52, 1956 (1981).
K. Kopinga, A.M.C. Tinus, W.J.M. de Jonge, to be published in
Phys. Rev. B29 (1984).

6. Het effectueren van de bij de bestelling van de Patriot-luchtdoel-
raketten bepleite two-way-street overeenkomsten kan leiden tot een
ongewenste toename van de Nederlandse betrokkenheid bij de interna-

tionale wapenwedloop.
7. Het principiéle karakter van de te nemen beslissing inzake de

plaatsing van kruisraketten in Nederland wordt aangetast door de

discussie over het aantal raketten.

Eindhoven, 10 april 1984 : J.J. Neve



