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Abstract. The physics of the pseudogap state is intimately linked with the
pairing mechanism that gives rise to superfluidity in quantum gases and to
superconductivity in high-7, cuprates, and therefore, both in quantum gases and
in superconductors, the pseudogap state and preformed pairs have been under
intensive experimental scrutiny. Here, we develop a path integral treatment that
provides a divergence-free description of the paired state in two-dimensional
Fermi gases. Within this formalism, we derive the pseudogap temperature and
the pair fluctuation spectral function, and compare these results with a recent
experimental measurement of the pairing in the two-dimensional Fermi gas.
The removal of the infrared divergence in the number equations is shown both
numerically and analytically, through a study of the long-wavelength and low-
energy limit of the pair fluctuation density. Besides the pseudogap temperature,
the pair formation temperature and the critical temperature for superfluidity
are also derived. The latter corresponds to the Berezinski—Kosterlitz—Thouless
(BKT) temperature. The pseudogap temperature, which coincides with the pair
formation temperature in the mean field, is found to be suppressed with respect to
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the pair formation temperature by fluctuations. This suppression is strongest for
large binding energies of the pairs. Finally, we investigate how the pair formation
temperature, the pseudogap temperature and the BKT temperature behave as a
function of both binding energy and imbalance between the pairing partners in
the Fermi gas. This allows us to set up phase diagrams for the two-dimensional
Fermi gas, in which the superfluid phase, the phase-fluctuating quasicondensate
and the normal state can be identified.
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1. Introduction

Ultracold atomic gases are increasingly used as quantum simulators to probe many-body
physics [1]. Recent efforts have focused, in particular, on understanding superfluidity and
Cooper pairing in interacting Fermi systems, including inter alia the effects of varying the
interaction strength, introducing population imbalance and reducing the dimensionality. When
these fermionic superfluids are described in the path integral formalism, the thermodynamic
potential (T, 4, uy) of the interacting Fermi gas (as a function of temperature 7' and
chemical potentials w4, @ of spin-up and spin-down components) is rewritten as a functional
integral over a bosonic field Ay, that represents the field of the pairs. This field is introduced
through the Hubbard—Stratonovich transformation that allows exact elimination of the fermionic
degrees of freedom and results in an action functional for the bosonic field [2]. At first sight,
one has only succeeded in rewriting an unsolvable functional integral over fermionic fields by an
equally unsolvable functional integral over the bosonic fields. However, the bosonic field lends
itself to an obvious simplification when one intuits that a (uniform) Bose—Einstein condensation
(BEC) of pairs is present. In that case, one can surmise that Ay, ~ A, 1.e. all pairs are in
the zero-momentum state, so the field is a constant in real space. The functional integral can
then be replaced by its saddle-point value, substituting Ay ; & A and dropping the integrations.
The optimal value of A is found by extremizing the action or, equivalently, by minimizing

New Journal of Physics 14 (2012) 103044 (http://www.njp.org/)


http://www.njp.org/

3 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

the thermodynamic potential Qg (T, w4, ) ; A) with respect to the saddle point. When A =0,
the (non-interacting) normal Fermi gas is obtained; when A # 0, the saddle-point approximation
bears out a Bose—Einstein condensate of pairs.

In two-dimensional (2D) superfluid systems, the interpretation of the bosonic field is more
subtle. To be precise, the condition for BEC has been defined by Penrose and Onsager [5]
and Yang [6] as the presence of off-diagonal long-range order, i.e. limy_y_, oo (Ax Ay ) # 0.
At the level of the saddle point, Ay ; & A, it is clear that a non-zero A implies BEC. However,
as Mermin and Wagner [3] and Hohenberg [4] pointed out, in the 2D system fluctuations
play a crucial role: they will prohibit off-diagonal long-range order in uniform systems.
These fluctuations around the saddle point are commonly taken into account through the
Bogoliubov shift Ay = A+ ¢y ., whereafter ¢, 1s treated as a small fluctuation so that
only terms up to second order in ¢y . are retained in the action functional. Then, for a
given A, the thermodynamic potential S2(7', w4, puy; A) is expressed as a functional integral
over the fluctuation fields, with a quadratic action. The quadratic functional integral can be
performed, and we obtain a fluctuation correction Qu(7, py, py; A) = Q(T, py, py; A) —
Qg (T, ey, py; A) to the thermodynamic potential. The fluctuation fields need not be written
down as complex fields ¢y . resulting from the Bogoliubov shift: equivalent results are obtained
by introducing (real) amplitude and phase fluctuation fields through Ay, & A (1 + 8,”) elfnr,

The culprit suppressing off-diagonal long-range order in 2D is precisely the phase
fluctuation field e®. Indeed, Mermin and Wagner show that (Ay Ay ;) ~ (A%ei%r) — 0
due to the long-wavelength behavior of 6., the relative phase. According to the
Penrose—Onsager—Yang criterion, this means that BEC does not occur. However, we can
identify other interesting phases from a study of the bosonic pair field A, . Firstly, (e!%) — 0
does not imply that A =0, as noted by Kagan et al [7] in their study of quasicondensation.
We can identify A # 0 with the presence of pairing, and search for a transition temperature
T} for pair formation separating the A =0 phase from the A # 0 low-temperature phase.
Secondly, although BEC is suppressed, superfluidity can still be present in the 2D system below
the Berezinski—Kosterlitz—Thouless [8, 9] (BKT) temperature Tgkt. The order parameter for
superfluidity is ps, the superfluid density, defined as the phase stiffness and calculated as the
prefactor of the (V6 ;)? term in the Lagrangian for the phase field, as explained in more detail
below. Kosterlitz and Thouless [9] described a mechanism whereby phase stiffness can be lost,
namely through the appearance and unbinding of vortex—antivortex pairs that start to proliferate
at Tgxr and scramble the phase field. This mechanism was observed experimentally in a 2D
atomic Bose gas by Dalibard and co-workers [10].

When the bosons under consideration are composite particles, such as Cooper pairs, a
third relevant temperature can be identified, related to the density of states of excitations, or
equivalently the spectral function for the fluctuations. As we will show below, the fluctuation
terms in the density can be expressed through a spectral function g(q, w) describing the
contribution of fluctuations with a given wave number q and momentum w. In the Nozieres
and Schmitt-Rink (NSR) formalism [11] for the 2D system [12], the integral over the spectral
function is divergent, invalidating the number equations 02/du, =n,, o =1, . We show
that this divergence is absent when we apply the formalism of Hu et al [13—15], which these
authors dubbed the Gaussian pair fluctuation (GPF) approach, to the 2D case. As we show
below (section 2.3), the GPF approach allows us to set up and simultaneously solve the gap
and number equations also in the 2D case. This allows us to derive results for A, ps that take
into account fluctuations (both phase fluctuations and amplitude fluctuations). The resulting
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fluctuation spectra can then be used to obtain the finite-temperature thermodynamics of the 2D
Fermi superfluid, following the approach of Salasnich for the three-dimensional (3D) case [16].

In studying the fluctuation spectra, we find that for temperatures above a critical
temperature 7}, the fluctuation spectral function g(q, @) becomes negative at long wavelengths
(¢ < q.). This happens at a temperature above Tgkr and (obviously) below 7. We interpret this
temperature 7, as the pairing temperature at which the pseudogap is open, inspired by recent
experiments [17, 18] which investigated pairing in ultracold 2D atomic Fermi gases. For the
ultracold atomic gases in 3D, the pseudogap state above the critical temperature is the subject
of an intensive study, both experimental and theoretical [19-24], and the similarity with the
pseudogap physics in superconductors has not gone unnoticed [25]. In the experiment [17],
the spectral function for excitations of the Fermi gas is determined through momentum-
resolved photoemission spectroscopy. In [18], the momentum-integrated photoemission spectra
are measured, and the evolution of fermion pairing was followed from three to two dimensions
by varying the strength of the confining optical lattice. Both experiments reveal a non-zero
pairing gap. While the experiments in [17] were interpreted to reveal the pseudogap, i.e. pairing
in a non-superfluid state, superfluidity itself has not yet been observed in 2D. Therefore, the
existence of the pseudo-gap regime is not experimentally settled until superfluidity itself is
observed at temperatures lower than the temperature for pair formation.

We compare the fluctuation spectral functions derived from our microscopic (GPF-based)
theory to the measured spectral functions for excitations, and also compare the measured
pseudogap temperatures with the calculated 7}, as a function of the interaction strength. We find
that fluctuations indeed greatly lower the temperature range of existence of the pseudogap phase,
especially in the strong-coupling regime. Consequently, in order to obtain a complete phase
diagram for the Fermi gas in 2D, we must consider each phase taking into account fluctuations.
To the best of our knowledge, this problem has hitherto not been satisfactorily solved for the
case of fermions in 2D because of the aforesaid divergence of the density due to fluctuations
at finite temperatures. In this paper, as mentioned above, we tackle the problem by correcting
the NSR approach using the GPF theory proposed by Hu et al [13—15] for the 3D Fermi gas.
Moreover, we extend the results to the case of imbalance.

The paper is organized as follows. In section 2, we present the divergence-free method
for the self-consistent calculation of thermodynamic parameters of interacting imbalanced
fermions in 2D taking into account both amplitude and phase fluctuations. In section 3, density
distribution functions for an imbalanced 2D Fermi gas are investigated. In section 4, we discuss
finite-temperature phase diagrams for the imbalanced Fermi gas in 2D. In section 5, the theory is
applied to the interpretation of the experiment on the pairing of cold atoms in 2D. The discussion
is followed by the conclusions in section 6.

Before proceeding with presenting in the next section the functional integral approach
in the GPF framework, it is useful to note that the GPF approach we follow here is not the
only way to avoid the divergence problem that occurs in the NSR description for the Fermi
gas in two dimensions. The NSR scheme and its modifications are related to the 7'-matrix
perturbation approach, in which the effective interaction between pairs is taken into account
diagrammatically. In this context, the divergence problem for a Fermi gas in two dimensions can
be remedied by taking into account higher orders of the 7-matrix expansion—via an effective
interaction between pair fluctuations [29]. This interaction stabilizes the superfluid phase of the
2D fermion system at very low temperatures. However, in 2D the 7-matrix method does not
predict the universal jump in the superfluid density [30] related to the BKT phase transition.
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A correct description of the superfluid density becomes possible by explicitly focusing on the
phase fluctuations, as in the approach of [26-28, 31]. Within that approach, the bosonic pair
field is gauge transformed A, . e'* and a subsequent gradient expansion of the fluctuation
action is performed for phase fluctuations assuming that phase gradients are small. This leads to
a quadratic effective action functional of the phase field 6, which, as distinct from the scheme
of [11], has no divergence for A # 0. As far as gradients of the fields are assumed to be small,
the resulting effective action is treated as a hydrodynamic action (see, e.g., [32]). The gradient
expansion does not contain the a priori assumption that fluctuations themselves are small. In
this connection, the method was categorized in [26] as non-perturbative. In [33], the present
authors applied the method of [26-28, 31] to derive the effective hydrodynamic action for
a Fermi gas with a population imbalance. A non-perturbative approach was also the key to
develop a description free of infrared and ultraviolet divergences for the 2D Bose gas [34], which
successfully describes the crossover between the mean-field regime and the critical fluctuation
range corresponding to the BKT transition [35].

2. Thermodynamic functions of the Fermi gas in two dimensions

2.1. Gap equation

We consider a gas of interacting fermions in 2D, with a contact interaction and with s-wave
pairing. In the ultracold regime where only s-wave interactions matter, these interactions
only take place between ‘spin-up’ and ‘spin-down’ fermions (in practice, these are usually
two different hyperfine states of an atomic species). The thermodynamic functions of the
Fermi gas are completely determined by the partition function. Here, we will focus on the
thermodynamic potential 2 per unit area. The treatment is performed within the path-integral
formalism following [33], building on the original path-integral treatment in [2] for the case
of a balanced 3D Fermi gas. The partition function is represented as the path integral over
Grassmann variables 1}(, x, 1), ¥, (X, T),

Z =e PRI — / DYy x:DWoxreXp (—S). (1)

The action functional of interacting fermions is given by the integral

P _ d B -
S: d d2 0,X,T __Vz_ o O'X7,’+ / d/d2 X,T X, T X,T X,T»
/0 Tf sz”(ar x “‘)‘ﬁu 80 T XYV ¥xe¥rx

o=1.4
2)

where g is the interaction strength and 8 = 1/(kgT) is the inverse thermal energy. We choose a
system of units where 7z = 1, 2m = 1 and the Fermi wave vector kg = (2rn)"/? = 1 with n the
total density. Here, we consider also the case when imbalance is present, i.e. the numbers of spin-
up and spin-down atoms are unequal: n4 # n . This, in turn, implies that the chemical potentials
wy and py should be fixed separately. Rather than contemplating the separate components,
we will work with the total density n =n;+n, and the density difference dn =n; —n,.
Correspondingly, we will use the average chemical potential © = (4 + ) /2 and the chemical
potential difference ¢ = (u4 — u)/2. Note that the total density is equal to 1/(27) in our units,
so this means that we need to solve the number equation to fix i (in the non-interacting case,
@ =1 in our units). Only with respect to the imbalance, we have a choice of studying the free
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energy (and making phase diagrams as a function of 6n) or the thermodynamic potential €2 (and
making phase diagrams as a function of ¢). The thermodynamic potential is linked to the free
energy by the usual Legendre transform and, as mentioned, in our formalism this corresponds
to imposing the number equations.

The strength g of the contact interaction is renormalized as in [36, 37] using the binding
energy E}, for a two-particle bound state, which always exists in 2D [43, 44]:

1 1 E, . d’k 1
—=—In—+i7 ) — 5 —, 3)
g 8 E (2m)* 2k> — E +16
with § a positive infinitesimal number. The BCS regime corresponds to Ey/Er < 1,
whereas the BEC regime corresponds to the opposite ratio E,/Eg > 1. Similarly to [2], we
introduce the pair field Ay, and perform the Hubbard—Stratonovich transformation, which
results in a fermion—boson action quadratic in fermion variables. After integrating out the
fermion variables, the following effective bosonic action is obtained as a function of the

Hubbard—Stratonovich pair field Ay ;:

g Axr By
Sar = —tr[In (<G )] - f de / dxBxrBnr )
0 8
where G~! is the inverse of the Nambu propagator
a
—G =0 (a——;) — 03 (V2+M)—01Ax,,. (5)
T

Here, o; are the Pauli matrices. As far as the effective action S 1s not a quadratic functional of
the Hubbard—Stratonovich pair field, the resulting functional integral over the pair field

Z [ DAy DAy exp (—Setr) (6)

cannot be calculated analytically exactly. As in the analogous problem in 3D [2, 38, 39], and
as explained in the introduction, we consider approximations provided by an expansion of the
effective action S over fluctuations of the pair field Ay, about its saddle-point value A. The
phase diagrams of a 2D Fermi gas in the saddle-point approximation have been investigated
in [37, 40]. The effective saddle-point action provides the thermodynamic potential per unit
area:

2 2
Qu(T, 10, £ A) = — d°k [ln (2 cosh BEx +2 cosh B¢) —Sk] A

_— 7
2n)? B g @

Here, & = k? — p is the fermion energy and Ey =,/&2+ A? is the Bogoliubov excitation

energy. The gap parameter A is determined from the gap equation generalized to the imbalance
case—the minimum condition for the saddle-point thermodynamic potential as a function of the
gap parameter A at fixed temperature and chemical potentials:

Qg (B, 1, &5 A)
A -

For high temperatures (7" > T) or at high levels of imbalance (¢ > ¢.), the thermodynamic
potential will have its minimum at A = 0, the unpaired normal state. Following the experimental
observation of superfluidity in imbalanced Fermi gases in 3D [41], the phase diagram of the

0. ®)
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imbalanced Fermi gas has attracted much attention (for a recent review, see [42]). To find the
phase diagrams in 2D, the above gap equation has to be solved in conjunction with the number
equations discussed in the remainder of this section.

2.2. Gaussian fluctuations
The next-order approximation brings into account fluctuations about the saddle point:
{AX,T = A+xr,
Axe = A+ e
We apply the Fourier expansion of the fluctuation coordinates:

1 - iqQr—iw,t
@sz Y g (@) )

q n=—00

_ 1 >
e = L—ﬁz Y TG (@) (10)

q n=—00

where L is the linear size of the 2D system and w, = 27n/f (withn =0, 1, 2, ...) are the
bosonic Matsubara frequencies. The quadratic fluctuation contribution to the effective bosonic
action is the functional of complex fluctuation coordinates similar to that derived in [39]:

> 1
Si=Y. > {Mu (9, 101) @ (@n) Pq (@) + M2 (g, i0n) [§q (@1) §-q (@)

q n=—0o0
+q (0n) 9_q (@_p)] } : (11)

where M, (q,1w,) are the matrix elements of the inverse pair fluctuation propagator. They are
determined by the expressions (cf [39])

. 1 d’k X (Ey) (iwy, — Ex +&kiq) (Ex +&k)
M i(q,iw,) =——+ 5 . :
g 2m)” 2Eg (iw, — Ex + Ex4q) (1w, — Ex — Eyq)
B (1w, + Ex +&kiq) (Ex — &x) ) (12)
(iw, + Ex — Exiq) (1w, + Exiq + Ex)
and
d’k X(E 1
My (qiw,) = —A? - () ( :
2m)” 2Ex \(w, — Ex+ Exq)(iw, — Ex — Exyq)
1
+— - ) . (13)
(1w, + Ex — Exyq) (w, + Ex + Eyq)
Here, the following function has been introduced:
inh(BE
X(E)= — P (14)
cosh(B Ey) +cosh(B¢)
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The integration over fluctuation coordinates gives us the fluctuation contribution Q4(7', w, ¢; A)
to the total grand-canonical thermodynamic potential €2 per unit area:

d’q

o0

1 .
S e T s n;ooln [M(q.iw)] (15)
with
'(q,182,) =M, 1(q,iw,)M; 1 (q, —1w,) — M (q, 1w,) M >2(q, —1w,). (16)

2.3. Number equations and the Gaussian pair fluctuation approach

The fermion density and the density difference fix the chemical potentials ¢ and ¢ through the
derivatives of the total thermodynamic potential per unit area:

02
n=-—— |, (17)
ou T
) 0%2 (18)
n=——
aC T

(note that in our units n = 1/2m). We can write out these equations by splitting the total
thermodynamic potential into saddle point and fluctuation contributions:

lo 3%
n=— — , (19)
o |z O |7,
32 0
on=— —e|  _ ) (20)
8&‘ T, aé‘ T,

We will denote the first and second terms on the right-hand side (rhs) of expression (19) for n
by ny, and ng, respectively. Similarly, the terms on the rhs of expression (20) will be denoted by
dng, and dny. Note that the thermodynamic potentials obtained from expressions (7) and (15)
are expressed as a function not only of 7', i, ¢, but also of A. This gap A is not an independent
thermodynamic variable, and when considering Q2 (7', u, ¢, A) explicitly as a function of also
A, the implicit dependence of A on the chemical potentials must be taken into account in
(19), (20):

09, 920 00| A
T res M lrea 08 |pe, nlr, 21
sn—— Ol _ 0% 0% 0AL

9¢ T, A ¢ T.0,A GRAN T.C.1 a¢ T,

Note that the gap equation 0€2,,/0 A = 0 at fixed T', i, ¢ implies that the implicit dependence of
A on the chemical potentials will only affect the fluctuation part of the thermodynamic potential
in the above equations. Different theories of the BEC-BCS crossover, in any dimension, can be
categorized by their choice of number and gap equations. The simplest mean field approach
only keeps the terms with ;. The Nozieres and Schmitt-Rink approach includes the second
terms in the rhs of expressions (21). Finally, the GPF approach includes the last term on the rhs
of expressions (21). Note that in the literature, there is no common opinion on which approach
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is the best. For example, on the one hand, Randeria et al [45, 46], Hu et al [13] and Keeling
et al [47] state that the derivative over u must be performed taking into account a variation of
the gap determined by the gap equation. On the other hand, Ohashi er al [48-50] and Strinati
et al [51, 52] use the other definition, considering A in the number equations as an independent
variable and, therefore, applying the gap equation after taking the derivatives 0€2/0u. In the
papers [48-50], it is stated that the last terms in (21) are the higher-order corrections with respect
to Gaussian quadratic fluctuations. Keeling et al [47] correctly argue that both terms in those
derivatives are of one and the same order and emphasize that the existence of the second term is
crucial in two dimensions. Below, we demonstrate the key significance of taking into account the
last terms in (21) for the convergence of fluctuation contributions to the fermion density in 2D.

As stated in the introduction, in order to treat the fluctuations, there is an alternative
to the Bogoliubov shift Ay ; = A + ¢y ., namely the parametrization in amplitude and phase
fluctuations Ay, ~ A(1 +8X,,)ei9"’f. When, after this parametrization, the effective action is
expanded with respect to dx ; and 6y ; (rather than ¢y, and d_bx,,), this leads to another quadratic
fluctuation action S which differs from expression (11) for Sy only by terms that vanish
when applying the gap equation. Correspondingly, the thermodynamic potentials Qg and 2}
provided by those two actions lead to one and the same contribution to the fermion density.
Furthermore, keeping in Sj only the leading order long-wavelength and low-energy terms leads
to the same effective ‘hydrodynamic’ action as in [33]. In the particular case of a balanced gas,
the effective action of [33] turns into the result of [26, 31]. This means that the effective action
described as the result of the non-perturbative approach in [26] can be equivalently re-derived
within the perturbative NSR-like scheme. Moreover, the present treatment can be considered
as an extension of the approach of [26, 31, 33] beyond the long-wavelength and low-energy
approximation (and to imbalanced 2D gases). The hydrodynamic action is particularly useful in
extracting the superfluid density ps, by identifying it with the prefactor of the (V6 ;)?/2 term
in the expression for Sj;. This identification yields straightforwardly [33]

1 o0
oI 11, ) = - /O dk k (1 - %X(Eo —kZX%Ek)) (22)

with X (E;) given by expression (14) and X'(E;) its first derivative, evaluated in Ej. Once
A, i, ¢ are obtained for a given temperature (and interaction strength) by solving the gap and
number equations, they can be substituted in this expression to determine whether the system is
in the superfluid phase (ps # 0) or the normal phase (p; = 0). As discussed in the results section,
we also use this expression to find the temperature Tgkt of the phase transition between those
two states. Already we note that A =0 leads to p; =0, so that Tgxr < 7" and the superfluid
state requires pair formation, as it should.

2.4. Pair fluctuation spectral functions

From expression (7) for the saddle-point thermodynamic potential, we derive the following
expressions for the saddle-point densities:

29, &k & sinh (BEy)
I _ [ 4k (1—— ) 23)
O |7.ca (27) Ex cosh (B¢) +cosh (B Ex)
2 .
Sy = — 082, _ d<k sinh (B8¢) . (24)
¢ |r, (27)? cosh (B¢) +cosh (BEy)
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Similarly, the fluctuation contributions to the fermion densities are determined using (15) and
using the GPF approach. The results can be written as a sum over wavelengths and frequencies
of pair fluctuation structure factors:

1Y’ dq 1 & ,
ngi=— _ﬂ = - qz_ Z J(q71wn)a (25)
G P Q)" B —
99 dq 1 &
sngi=— =2 =— [ L% k(qim). (26)
A |7, Q) B —
The pair fluctuation structure factors J and K are given by
1 oM J1wy, . oM s Ly .
J(@iw,) = —— LU 1O by (g, —i ) — 2O g i) |
I'(q,iw,) ou ou
(27)
1 oM Jwy, ) oM s T, .
KQio)=—— LU IO (g, —i ) — D2 DI g i) .
I'(q, 1w,) a¢ Gle
(28)

We transform the Matsubara summations in (25) and (26) into the contour integrals in the
complex plane as follows:

1 & , 1 [*ImJ(q,w+id)
5 3 J(q,1a),,)=—f a dw, 8 — +0. (29)

Bo __
= T J_ o e 1

This allows us to express the resulting fluctuation contributions to the fermion density through
the distribution functions for pair excitations:

1 o
- (q)q dg, 30
2 ), 8n(q)q dg (30)

dng=5— 8sn(q)q dq. (€2Y)
21 0
The fluctuation distribution functions g,(q) and gs,(g) are the integrals over the frequency with
the pair fluctuation structure factors:

nq

*“ImJ(q,w+18)
i =- [ 0 do, (32)
oo efe —1
“ImK(g,w+i6)
gm(q) = — 3 do. (33)
oo efo—1

The functions g,(g) and gs,(q) are proportional to the densities of states for the pair fluctuations.
The behavior of these functions is crucial for understanding the pseudogap properties and the
different phase transitions in the imbalanced 2D Fermi gas. In the NSR approach, the fluctuation
distribution functions have a divergence, and as a consequence no value of the chemical potential
w can be found so that the number equation ny,+ng =n =1/(2mr) is satisfied. In the GPF
approach, the divergence is overcome and the number equation can be satisfied. In order to
demonstrate this, we focus in the next section on the long-wavelength limit where exact analytic
expressions for the distribution functions are obtained.
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3. Distribution functions in the long-wavelength limit

3.1. Long-wavelength expansion

In order to investigate the problem of the long-wavelength convergence for the fluctuation
contributions to the density, it is necessary to derive analytically the spectrum of low-lying
and long-wavelength pair excitations. For this purpose, we expand the matrix elements of the
inverse pair fluctuation propagator M ; (¢, z) in powers of (g, z) up to the second-order terms
in power of z and ¢,

M, (q,2) ~ A+Bg*+Cz+Fz?, (34)
M, (q,2) ~D+Eq*+HZz". (35)

The derivation of the coefficients is rather tedious. In this connection, only the final results are
presented here. The coefficients in the M, ; expansion are given by

1 [ 1 E?+£2 A’ X'(Ey)
A=— [ kdk — X (Ey) — =, (36)
21 J, 2k2—E,  4E} 4 E?
1 [ K (E}+TEZE? —10&}) — Ef& +3E  E?
=— | kdk (EL+7ES f") Gt 35 X (Ex)
167T 0 Ek
A2 [ E? —3Kk?
+— | kdk (5"( C &) X'(Ey)
8 0 Ek
& (3K°& — E}) — KE} k8¢
+ X" (Ep) — —2XEy ], 37
oF; (Ev) 3E! (Ex) (37)
1 A? [* X'(E
C=—— kdkg—kX(Ek)——/ Kk ;‘), (38)
87 J, 87 Jo §E;
1 24 g2
F = kakE Sy (g 39
~39m £ (Ex) (39)
and those in the M, , expansion are given by
A [* X(E) — EX'(E
DA [T W X EW i ( k)’ 40)
8 0 Ek
A? [ 10K*E; —3E] (& +K A [ E; +K°E; — 3k*E;
_ AT 7"(§k )X(Ek)+—f T i A s
16 Jo E, 8 2E;
2k2
x [2X'(E) — ExX"(Ep)] — AED 2 X (E; )) (41)

A2 [®  X(E
=20 [T X E
32n 0 Ek
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In these expressions X', X” and X® are the first, second and third derivatives of the function X
given by expression (14), with respect to its argument. In the literature, an analogous expansion
was performed for 3D at finite temperatures in [48—50] in the strong-coupling limit, and in [45]
at low temperatures. The present expansion is all-coupling and all-temperature, because no
restriction is imposed on the thermodynamic parameters.

3.2. Structure factor

Let us substitute the expansions (34) and (35) into the structure factor J(q, z) in order to obtain
its long-wavelength and low-energy form Jj,,(q, z). The spectrum of pair bosonic excitations is
determined by the poles of Ji,(q, z). In the long-wavelength and low-energy range, these roots
are z = Fw, with the pair excitation frequency w, which satisfies the Goldstone theorem

w, = g/ V? +k%q? (42)

with the parameters (cf the analogous expansion in the 3D case [53])

v:\/ 2A (B —E) @)

C2+2A(H — F)’

2 _ _ 2
K:\/C (B—E) (4A(BH — EF)+C> (B+E)) w

(C?+2A(H — F))?

The parameter v has the dimensionality of velocity and tends to the first sound velocity in the
low-temperature limit. As far as the parameter D is proportional to A2, the velocity parameter
for pair excitations tends to zero at the phase boundary when A = 0. In the BEC limit, when
Ey, > 1, we find that 4 — —Ey/2 and « — 1/4. This results in the pair excitation spectrum
w, —> q*/2 at the BEC side.
In order to calculate the long-wavelength distribution function, we keep the lowest-order
terms in powers of z and g? in the numerator of J,,(q, z). This gives us the result
Iolg.z) =~y s (45)

b
1w, T+,

where the coefficients a, and b, are related to the constants determined above as

_ a+Awq+Xq2 b o— Ol—)»wq"'qu (46)
20, [C2+24H-F)] 7 2w, [C2+2A (H — F)]

ay

with the notations
a=D,D—-A,A, A=A,C-C,A, x=E,D+D,E—A,B—B,A.
47
Here A,, B,,, ... are the derivatives A, = dA /0, etc. The distribution function is calculated

by setting z = w +1§ with § — +0. This gives us the structure factor as a superposition of the
delta functions. The distribution function then takes the form

1 A + xq°
g™ (g)=— XD o (P22) — 1] (43)
4r C2+2A(H—F) | Lo, 2

For the other distribution function gézw) (g), the derivations are the same, but with a replacement

of the derivatives over u by the corresponding derivatives over ¢.
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3.3. Distribution functions in the paired state

Here we consider the paired state of the quasicondensate in which the gap parameter A # 0. In
this case, the gap parameter obeys the gap equation
1 [* X(Ex) 1

— kdk+—=0. 49
dm Jo Ey 8 )

The strength g of the contact interaction is expressed through the two-particle binding energy
E}, in 2D by equation (3). The difference of coefficients A — D is proportional to the left-hand
side (lhs) of the gap equation. Therefore, as long as the gap equation is satisfied, we obtain
D = A. Moreover, because the derivatives of matrix elements are calculated while keeping the
gap equation satisfied, we find that A, = D, and A, = D,. This implies, in particular, that the
coefficient « = 0, as is evident from expression (47), and we find that

1 A X q B
W)y — 221 coth| =2 )—-1]. 50
& (@) 4nC2+2A(H—F)[AquO (2 0

Thus g™ (g) tends to a finite value at g — 0 for A # 0, and behaves as ¢ ~> atg — 0 for A = 0.
As aresult, the fluctuation contributions ng and §ng in 2D are finite at A # 0. They can diverge
only at A = 0. This is to be contrasted with the NSR scheme, where the order parameter A is
treated as an independent variable and where ng and dnyg in 2D diverge for all A.

Figure 1 shows the behavior of the fluctuation distribution functions g, (¢) and gs,(q) for
different temperatures, at binding energy E, = 0.5 and at the critical value of the chemical
potential imbalance ¢ = ¢.(Ey, T'). The critical value ¢. for a given (Ey, T) is determined as
the highest imbalance at which the order parameter A is other than zero. The dashed lines
correspond to the NSR scheme and reveal a g2 long-wavelength divergence. The full lines
show the results in the GPF scheme, where the long-wavelength divergence is absent. This
behavior is seen for both g,(¢) and gs,(g). In the limit A — 0, the functions gg,,(¢) and ggs,(q)
become logarithmically divergent. However, the sign of this divergence is opposite of that of the
divergence of the functions calculated neglecting the variation of A.

For the lower temperature shown in figure 1, 7/ Tg = 0.1, g,(g) remains positive, whereas
for the higher temperature 7'/ Tr = 0.3, there is a sign change in g,(q) as it becomes negative
for small g. Regions of negative value for the fluctuation distribution function gs,(g) are
expected, as the sign will change depending on which species is the majority species. However,
gn(q) 1s expected to remain positive, as it is proportional to the pair fluctuation density of
states. The appearance of a long-wavelength instability heralds the breakdown of the paired
state. We can track the onset of this instability by studying g,(¢ — 0) as a function of
temperature. At low temperatures, g,(0) is positive, and the fluctuation density function remains
positive for all g. At high temperatures g, (0) becomes negative, signalling the long-wavelength
instability. We denote the temperature separating the two regions by T}, and find this temperature
through solving g,(0) =0 with respect to temperature. The behavior of g,(0) as a function
of temperature is shown in figure 2 for different values of the binding energy E, and for
both balanced and imbalanced systems. The function g,(0) diverges when the temperature
achieves the limit 7 =T} at which A =0. This result explicitly follows from the analytic
properties of the long-wavelength expansion of the distribution functions as discussed above.
The temperature 7}, at which g, (0) = 0 lies below the temperature 7* where we find that A =0,
and above the critical temperature Tkt for superfluidity.
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log, ()

Figure 1. Distribution functions for (a) the fluctuation contribution to the fermion
density and (b) the density difference, at the binding energy E, = 0.5Eg. The
solid and dashed curves show the spectral functions obtained, respectively,
within the GPF formalism and within the standard NSR scheme. The spectral
functions are calculated for critical values ¢ = ¢. of the chemical potential
imbalance, and for two different temperatures. In the graphs, the spectral
functions are multiplied by g2 in order to clearly show their behavior at small q.

The temperature 7, does not correspond to a phase transition, because the gap equation
is satisfied with a finite density both below and above T,,. Nevertheless, because 7}, is the
temperature at which the fluctuation density of states changes its qualitative behavior, we
hypothesize that 7, corresponds to a crossover between the normal and pseudogap states.
This will be further substantiated by comparing our spectral functions with the experimental
ones in section 5. The joint solution of the gap and number equations within the GPF theory
then formally provides a non-superfluid quasicondensate at temperatures below 7,. Indeed,
for temperatures Tgxr < T < T, the phase coherence is destroyed by the phase fluctuations
according to the BKT mechanism, resulting in the phase fluctuating quasicondensate discussed
by Kagan et al [7]. Through the interpretation of the spectral function, we will denote this
temperature region as the ‘pseudogap regime’. It is worth noting that the total fermion density

New Journal of Physics 14 (2012) 103044 (http://www.njp.org/)


http://www.njp.org/

15 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

g,(0)

g,(0)

! 1 ! 1 ! 1 ! P

0.0 0.2 0.4 0.6 0.8 1.0
TIT

c

Figure 2. The fluctuation distribution function g, (0) as a function of temperature
for ¢ =0 (a) and ¢ = 0.3 (b). The values of the binding energy are shown in the
figure.

within the GPF theory is finite at 7 = T, without the necessity to introduce any cutoff in the
integrals over ¢. In the next section we set up phase diagrams identifying the regions where the
superfluid phase and the non-coherent paired phase occur.

4. Phase diagrams

In order to obtain the complete set of equations for phase diagrams, the number equations (21)
and the generalized gap equation (8) are solved jointly with the equation for the BKT transition
temperature Tkt determined by [30]

T
Tgkr — E'OS (Tgkr) =0, (51)

where pg is the superfluid pair density given by equation (22). To investigate the phase
transitions for the Fermi gas in 2D for different binding energies, we have calculated the critical
temperatures of the BKT phase transition Tgkr and the critical temperature 7, below which the
phase fluctuating quasicondensate is formed, as a function of the binding energy Ey. Because
the fluctuation contribution to the density is finite at 7, and at Tgkr, these temperatures can be
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Figure 3. Phase diagrams for the Fermi gas in 2D (a) in the case of equal spin-
up and spin-down populations and (b) for the imbalanced Fermi gas with the
chemical potential imbalance ¢ = 0.5. The crossover pairing temperature 7}, for
the pseudogap formation and the BKT transition temperature Tgxr are shown by
dashed and solid curves, respectively. The dot-dashed and dotted curves show
the mean-field phase transition temperatures 7., 7.5 (explained in the text).
The arrow indicates the lowest binding energy at non-zero imbalance when
preformed pairs can arise.

self-consistently determined from the joint solution of the gap and number equations with the
complete thermodynamic potential £ = Qg, + Qe

The phase diagrams in figure 3 show the critical temperatures for cold fermions in 2D
as a function of the binding energy E, for the balanced case (panel (a)) and for the chemical
potential imbalance ¢ = 0.5 (panel (b)). The formation of the superfluid state is indicated by
the critical temperature Tgkr of the BKT phase transition. The pseudogap temperature 7, is the
upper bound for the existence of the phase fluctuating quasicondensate described in the previous
section. We also show the mean-field temperature for pair formation, 7%, obtained by solving
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gap and number equations with 2 = Qg,. According to [54] (for 3D), the unitary gas can exist in
the normal state with pairing correlations called preformed pairs which survive at temperatures
up to this T*. The critical temperatures for the balanced case, figure 3(a), were calculated
in [55]. Here they are reproduced in order to compare them with those for a non-zero imbalance.
The population imbalance brings new features to the phase diagram: a phase separation region
(between T} and T;) and a minimum binding energy E, ., required for superfluidity.

For the balanced Fermi gas the superfluid state exists for any value of the binding energy:
the BKT critical temperature as well as other critical temperatures gradually decrease with
decreasing E,, remaining always finite. However, when ¢ # 0 a minimum value of the binding
energy Ey . is required for superfluidity to exist even at 7 =0. As shown in figure 3, the
pseudogap temperature 7, does not grow unboundedly when increasing the binding energy
Ey. For ¢ = 0.5 it achieves its maximum at around E}, ~ 4 and then slowly decreases tending
to a finite value. Consequently, in the strong-coupling regime the pseudogap temperature is
suppressed with respect to the mean-field prediction, where it is often identified with our pair
formation temperature 7%, as in [54]. This behavior is qualitatively similar to that for the critical
temperature 7 as a function of 1/a; for the cold fermions in 3D obtained first in [2] accounting
for the Gaussian fluctuations.

The critical temperatures 7} and T} coincide with each other in the balanced case, and
they can be different in the imbalanced case: the area between T} and T is the ‘phase-separated
state’. In the phase-separated state, uniform phases are not possible. The temperatures 7;; and
T, have already been calculated in [33]. The temperature 7}, is determined for the state with
A # 0. Therefore, a non-zero imbalance does not lead to a splitting of this critical temperature.
However, a tricritical point appears at T, = Tgkr in the phase diagram joining three regions:
the superfluid state, the pseudogap regime and the normal state. This tricritical point is rather
conventional as far as the pseudogap temperature indicates a crossover rather than a sharp
transition.

At zero imbalance, T, > Tgkr, and the phase coherence in the range Tgxr < T < T}, is
destroyed by phase fluctuations that lead to a phase fluctuating quasicondensate. However,
at non-zero imbalance, there is a region where the pseudogap temperature crosses the BKT
temperature for superfluidity. This result is interesting in connection with recent experiments
on high-7;. superconductors [56], which show a crossing of the zero-field superconducting
transition temperature and the temperature, indicating the opening of the pseudogap in
overdoped La, ,Sr,CuO,. The crossing of pseudogap temperature and BKT temperature is
also seen in figure 4, showing the phase diagram in the variables (7, ¢), for the binding
energy E,/Er=0.04. Here, the same critical temperatures and phase regions are identified
as in figure 3(b). Increasing imbalance is not only detrimental to the superfluid phase, but also
suppresses the pseudogap regime.

5. Comparison with experiment

In the experiment [17] on the pairing of cold fermions in two dimensions, the single-particle
spectral function A(q, w) is measured for different values of the wave number g. The spectral
function exhibits peaks whose positions indicate the energies of the pair excitations. In the
strong-coupling regime, these energies are close to the pair binding energy E,. However, as
stated in the paper, some discrepancies remain between the peak positions observed in the
experiment and those predicted by the mean-field theory. The deviation ‘could stem from
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Figure 4. Finite-temperature phase diagram for cold fermions in 2D in the
variables (7, ¢) for the binding energy E}, = 0.04Eg. The full dot indicates a
tricritical point.

beyond mean-field effects provoked by our two-dimensional geometry and interaction energy
shifts’ [17].

In the GPF approach, the pair fluctuation contribution of the fermion density is expressed
by the integral (32), where the structure factor J(q, @) describes the spectrum of pair excitations
of the fermion system. Thus there should be correspondence of the peaks of the structure factor
J(q, w) with the peaks of the spectral function A(q, w). In this connection, we compare the
positions of the peaks of the spectral function measured in [17] with those of the structure
factor calculated within the GPF approach. The results are shown in figure 5 for ¢ =0 and
T /Tr = 0.27, where kg Tr = Ex. The 2D scattering length a,p is related to the binding energy Ej,
as axp = h /+/mEy. The value of the Fermi wave vector taken from [17] is kg = 8.1 um~'. When
using the mass of the fermion atom m = 39.964 u, we found that the frequency vg = Ex/(2rh)
corresponding to the Fermi energy is vg = 8.2967 kHz.

For the visualization of the peaks of the structure factor, we have used J(q, w+1y) with a
finite damping parameter y (as in [38, 39], where this parameter was introduced to facilitate the
numeric calculations). Here, the value y = 0.2 /8 is used, where 8 = 1/ (kgT) is the inverse
temperature.

The parameters of the state (the chemical potential « and the gap parameter A) are
determined for each plot from the joint solution of the gap and number equations. In the number
equation, the Gaussian fluctuations are included within the GPF formalism. The GPF method
provides a finite (convergent) pair fluctuation contribution for any finite A without any cutoff
for the pair momentum. This is to be contrasted with the standard NSR scheme, which leads to a
divergence of the fluctuation contribution at any A. Therefore, the standard NSR scheme cannot
be used for the description of the pseudogap state, whereas the GPF approach can describe this
regime.

In figure 5, the high peak at @ =0 in our results has no relation to the energies of the
pair excitations: it is an intrinsic feature of the structure factor. The other peak of our structure
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Figure 5. Spectra of pair excitations compared with experimental data. Full
dots are the measured energy distribution curve A(g = 0, w) for In(kga,p) = 0.8
from [17]. The red solid line is the fit by elementary functions to the experimental
data performed in [17]. The black solid line is the structure factor J(g =0, w)
calculated in the present work within the GPF approach.

factor at w < 0 is positioned remarkably close to the measured peak of the spectral function
attributed to the pair excitation energy in [17], especially for the relatively high coupling strength
at In(krasp) = 0. A possible reason for the remaining difference between the peak positions
of the calculated structure factor J(q, @) and the measured peak spectra is the experimental
uncertainty in the determination of the Fermi wave vector, which can be slightly different from
the reported value kg = 8.1 um~!. Another possible source of the remaining difference is the
similar experimental uncertainty in In(kgayp). In particular, this uncertainty can be provided
by the fact that the Fermi wave vector determined in [17] is a trap-averaged rather than local
quantity. It should be noted that the structure factor J(q, w) calculated with the mean-field
values for i and A leads to a large discrepancy between the peaks of J(q, @) and those of the
measured spectral function. This confirms the importance of including fluctuations through the
GPF approach in the description of the pseudogap state of cold fermions in 2D.

In [17], the pairing crossover temperature 7* and the pseudogap pairing temperature
T; < T* have been introduced. The temperature 7" coincides with the mean-field transition
temperature 7". The temperature T, as stated in [17], indicates the formation of pairs, and has
the same physical meaning as the temperature 7, obtained in our study. As far as the transition
between the normal and paired states is a crossover rather than a true phase transition, the pairing
temperatures 7 and 7, only approximately indicate the formation of a paired state. In figure 6,
the pseudogap pairing temperature 7}, is compared with the experimental data for 7. The dotted
curve shows the scaled mean-field transition temperature from [17]; the scaling indicates that
the experimental result for 7' is a factor of 0.36 smaller than the mean-field prediction. We see
that, in contrast to the mean-field result, the value of 7}, obtained in the present treatment lies
in the same range as the experimentally determined temperature 7. This coincidence is worth
remarking. However, the conclusions from the latter comparison of two temperatures need care,
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Figure 6. Pseudogap pairing temperature compared with experimental data.
Solid curve: the calculated pseudogap pairing temperature 7, (in units of E},/ k)
compared with the experimentally [17] determined pairing temperature 77 (full
dots). Dotted curve: the mean-field critical temperature 7 scaled by a factor of
0.36.

because the temperature in [17] is measured in the weakly interacting regime and hence it may
differ from the actual temperature in the strongly interacting regime.

It is stated in [17] that the discrepancy between the mean-field and experimental pairing
temperatures could suggest that the appearance of a back-bending feature in the spectral
function [20], which has been interpreted as a signature for many-body pairing, is only
qualitative evidence. However, the present results show that the fluctuations can drastically
reduce the pairing temperature 7, with respect to 7.*. Thus there is no discrepancy between
experiment and theory when taking into account the fluctuations.

6. Conclusions

The T-matrix approach straightforwardly applied to cold fermions in two dimensions leads to
a divergent fermion density for any finite temperature. We have shown in the present work that
taking into account the variation of the order parameter in the number equations, as suggested
in the GPF approach [13-15], provides a divergence-free description of the paired state in
two dimensions. This was shown both through numerical calculations and through an analytic
expansion at long wavelengths and low energies, where the divergence occurs in the standard
NSR approach. The formalism allows us to study the effects of the fluctuations both at zero
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and at finite temperatures, and we find that fluctuations affect the critical binding energy to
obtain pairing and superfluidity in the presence of imbalance. Moreover, the formalism also
gives access to the density of states of the pair fluctuations, from which we have defined a
pseudogap temperature T, as the temperature where an instability appears in the pair fluctuation
density. The pseudogap temperature defined in this way agrees with the measured values of
the pseudogap temperature in 2D Fermi gases. Also, the location of the peaks in the spectral
functions for pair fluctuations is shown to agree with the experimental observations. The
pseudogap temperature T}, along with the critical temperature Tgg for superfluidity and the pair
formation temperature 7%, has been calculated as a function of binding energy, temperature and
imbalance, from which we obtain the phase diagram as shown in figures 3 and 4. Whereas in the
mean field the pseudogap temperature is usually identified with the pair formation temperature,
we found that the inclusion of fluctuations beyond the mean field strongly suppresses the
pseudogap temperature with respect to the mean-field pair formation temperature. Moreover,
in the presence of imbalance, the pseudogap temperature may cross the BKT temperature for
superfluidity. The results obtained here in the context of superfluid quantum gases shed new light
on the study of the pseudogap phase in layered high-temperature superconductors, where the
question of the crossing of the pseudogap temperature with the superconducting temperature,
and the presence of preformed pairs, remains an open question.
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