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Chapter 1

Introduction

1.1 Surfactants and interfacial flows

Surface active agents or surfactants are amphiphilic compounds that consist of
a hydrophilic head and a hydrophobic tail. They may act as detergents, wet-
ting agents, emulsifiers, foaming agents or dispersants. Due to their amphiphilic
structure, surfactants tend to accumulate at interfaces, as shown schematically in
Fig. 1.1, which leads to a reduction of the surface or interfacial tension. An exam-
ple of a surfactant is oleic acid, which is a fatty acid insoluble in water occurring
in many vegetable oils.

Hydrophilic head Hydrophobic tail

Water

Figure 1.1: Schematic of surfactant molecules adsorbed at a liquid-air interface.

A great variety of surfactants is used in a wide range of industrial processes
ranging from printing and coating processes [1], pulmonary drug delivery [2] to
crude oil recovery [3].

In the context of oil recovery, the injection of surfactant solutions is consid-
ered a potential means for increasing the extraction efficiency from sub-surface oil
reservoirs [4, 5], as surfactant induced reductions of interfacial tension facilitate
deformations of oil-brine interfaces and therefore oil extraction.
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2 Introduction

Another application of surfactants is in the area of inkjet printing [114, 115,
116, 117, 118, 119, 120, 121, 122], where they lower surface tension of water-based
ink solutions.

In the processes mentioned above, a non-uniform deposition gives rise to surfac-
tant concentration gradients. Non-uniform concentrations at fluid-fluid interfaces
give rise to interfacial tension gradients and associated Marangoni stresses that
drive the liquid from the regions of lower surface to the regions of higher surface
tension [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 73, 74, 75, 34, 35, 76, 77, 78, 55, 79, 54, 27, 80]. This type of flow is named
after Carlo Marangoni who described them for the first time in 1872.

During surfactant-induced Marangoni flows, it was observed that film thinning
occurred in the vicinity of the deposited surfactant and that a pronounced rim was
formed near the surfactant leading edge [9, 10, 11, 12, 13]. The rim position xrim(t)
follows a power law behavior xrim ∼ tα, where α is the so-called spreading expo-
nent. A variety of spreading exponents were reported for different material systems
and geometrical configurations: α = 0.5 for planar spreading [9, 10], exponents
around α = 0.25 for axisymmetric spreading with large Peclet numbers [13, 14].
Only one systematic experimental study was done for surfactant spreading at
liquid-liquid interface, and it was limited to a flat interface between deep, immis-
cible fluid layers with observed spreading exponents around α = 3/4 [54]. The
occurrence of a fingering instability at the spreading edge of surfactant droplet
deposited on a thin liquid film was reported by Troian et al. [11].

Very few numerical studies provide direct comparison with the experimental
results. The use of lubrication model for insoluble surfactants spreading at flat
surfaces yields promising results when compared with the experimental data [14,
21, 28]. The use of lubrication model for soluble surfactant spreading is limited to
systems with very fast vertical diffusion across the film thickness [16, 75]. Even
for relatively thin films, a comparison with experiments is often not possible due
to the fact that used surfactants diffuse relatively slow.

The motivation of the work presented in this thesis is twofold. First, we aim
to perform a systematic quantitative study, which has rarely been done in the
context of surfactant spreading, comparing numerical results with experimental
data whenever possible. Second, we want to elucidate the impact of spatial con-
finement, achieved experimentally by chemical patterning, on the dynamics of
surfactant spreading.

We have conducted an extensive numerical study of surfactant spreading dy-
namics for different geometries and material systems, which includes soluble and
insoluble surfactants spreading at liquid-air and liquid-liquid interfaces. We moni-
tored the spatio-temporal evolution of the liquid height profiles after non-uniform
surfactant deposition at the interface. We have studied the effects of spatial con-
finements and different types of surfactant supply on the spreading dynamics.

The work presented in the thesis has been part of the ”Surfactant-assisted en-
hanced oil recovery” project, for which numerical and experimental aspects have
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been separated into two sub-projects. The two parts were carried out simulta-
neously providing a unique opportunity for a detailed comparison of numerical
models with experiments.

1.2 Outline of the thesis

This section presents the organization of the thesis. Each chapter is briefly de-
scribed in one paragraph, emphasizing the most important ideas and findings.

Chapter 2 describes the axisymmetric spreading dynamics of insoluble surfac-
tants on thin liquid films. Numerical simulations based on the lubrication approx-
imation and a non-linear equation of state compare very favorably with experi-
mental results reported in the literature for oleic acid spreading on glycerol. A
fingering instability was observed, which has a direct influence by increasing the
spreading exponent.

Chapter 3 presents insoluble surfactant spreading on curved liquid-air interfaces.
The spreading exponents determined from a model implementing a continuous
supply of surfactant compare favorably with experimental data. We found that
the initial film thickness has little effect on the spreading exponents for spreading
at rivulet interfaces. The lateral confinement induces non-uniform height- and
surface velocity profiles, which manifest themselves in a pronounced transition of
the evolving rivulet morphology.

Chapter 4 contains the study of soluble surfactant spreading on curved liquid-air
interfaces. Our numerical model is based on the lubrication approximation and the
assumption of vertically uniform concentration profiles. A proper choice of initial
and boundary conditions in the numerical models results in spreading exponents
that are in excellent agreement with the experimental results for sodium dodecyl
sulfate spreading on narrow glycerol rivulets.

Chapter 5 deals with the spreading of a soluble slow-diffusion surfactant along
liquid-air interfaces. We present a model based on the full Navier-Stokes equa-
tion and convection-diffusion equations, which allows for vertically non-uniform
concentration profiles.

Chapter 6 analyzes the spreading of a soluble surfactant at liquid-liquid inter-
faces. We consider an interface with initially uniform height as well as narrow
rivulets. A model accounting for vertically non-uniform concentration profiles is
used for slow-diffusion surfactants; a model based on the lubrication approxima-
tion corresponding to vertically uniform concentration profiles is applied in the
case of sufficiently large diffusion coefficients.

Chapter 7 studies leveling and redistribution dynamics of inkjet-printed lines in
the presence of soluble and insoluble surfactants. We present numerical results as
well as scaling relations for both the leveling and redistribution times of sinusoidal
ripples and multi-lines.

In Chapter 8 we discuss conclusions and our outlook on possible future studies.





Chapter 2

Insoluble surfactant
spreading at initially flat
liquid-air interfaces

2.1 Introduction and system description for ax-
isymmetric/planar spreading

Marangoni stress driven spreading of an insoluble surfactant on flat liquid-air
interfaces is the most elementary system to begin with in the investigation of
spreading dynamics. It is therefore an often studied subject as evident from the
literature [9, 10, 11, 12, 13, 14, 15, 16, 17, 30, 29, 18, 19, 20, 21, 31, 22, 32, 23,
24, 33, 35, 25, 28, 26, 36, 37]. We contribute to this list of references with few
new findings. In this chapter we discuss how initial conditions, i. e. the presence
of macroscopic droplet, affect the surfactant spreading. If the sub-phase liquid
becomes trapped under the surfactant droplet, it is later expelled in the form of
fingering instability. We observe the effects an expulsion of the liquid trapped in
the deposition area has on the spreading dynamics.

We consider one-dimensional spreading of an insoluble surfactant on a thin New-
tonian liquid film of the initially uniform height h0. Depending on the shape of the
deposited surfactant two types of spreading are studied: axisymmetric and planar.
In the case of axisymmetric spreading we assume that the surfactant is deposited
as a drop of radius L0, see Fig. 2.1, and we adopt a cylindrical coordinates system
(r, θ, z) with the origin at the solid-liquid interface on the symmetry axis of the
surfactant droplet. In the case of planar spreading, the surfactant is deposited
as a strip of width 2L0 and infinite length, and we adopt rectilinear coordinates
(x, y, z).
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r

z

h
0

L
0

Figure 2.1: Schematic presentation of the geometry

An important characteristic of the system is that the aspect ratio ϵ = h0/L0 ≪ 1
is very small, i. e. lateral length-scale are much longer than h0, thus the so-called
lubrication approximation can be applied. Non-uniform surfactant distributions
at fluid-fluid interfaces give rise to interfacial tension gradients and associated
Marangoni stresses, which locally cause flow from regions of lower to regions of
higher interfacial tension.

2.1.1 Equation of state

Since concentration gradients and, consequently, Marangoni stresses are driving
forces of the spreading, experimental data is needed in order to determine the
relation between surface tension γ and surfactant concentration Γ. Our system
of choice is glycerol and oleic acid, which is a surface-active substance that is
practically insoluble in glycerol [14].

Gaver and Grotberg [14] measured the relation between surface tension γ and the
surfactant surface concentration Γ for oleic acid on glycerol. The surface tension
drops from the value γ0 = γ(Γ = 0) = 63.5mN/m to γm = γ(Γ → ∞) = 39mN/m.
The measured data points are often fitted with linear relation, but this fit poorly
represents the data. Fitting the data with the following nonlinear equation of
state, we obtain an excellent fit

γ = γm +Πmax exp(−AΓ2) (2.1)

where Πmax = γ0 − γm is the maximum spreading pressure, and A = 0.5 m4/µl2

is a fitting parameter. The point where the surface tension curve approximately
reaches its asymptotic value of γm is defined as Γc ≡ 3.5µl/m2. Both the experi-
mental data and resulting fit are shown in Fig.2.2.
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Figure 2.2: Dependence of the glycerol surface tension γ on the oleic acid surface
concentration Γ. Experimental data [14] is indicated by triangles. The continuous line is
a fit according to γ = γm +Πmax exp(−ĀΓ2/Γ2

c) with fit parameter Ā = 6.125.

2.2 Mathematical model based on lubrication ap-
proximation

We perform model calculations for axisymmetric spreading by coupling the lubri-
cation equation for thin film flow with the equation for surfactant surface trans-
port by convection and diffusion [38, 39, 11, 12, 13]. The derivation of these
equations can be found in Appendix A. In addition, we include the non-linear
equation of state (EOS) Eq. (2.1) in the system, presented for oleic acid and glyc-
erol in the previous section. For an insoluble surfactant of small molecular size
and irregular conformation such as oleic acid, kinetic and dynamic effects due to
adsorption/desorption or intermolecular surface interactions are absent or weak.
Therefore, this equilibrium relation is expected to be valid for the dynamic surface
tension as well, i.e. γ only depends on the local surfactant concentration, but not
the velocity profile or previous system configurations.

The theoretical model does not consider the presence of the surfactant droplet,
which is small compared to the capillary length R0<lcap≡

√
γ/ρg. Rather, it is

approximated by a localized initial distribution of surfactant on the surface of an
initially flat sub-phase film of thickness h0.

We introduce the following dimensionless variables: r̄ ≡ r/R0, h̄ ≡ h/h0, Γ̄ ≡
Γ/Γc , as well as

t̄ ≡ t

tM
≡ t

h0Πmax

µR2
0

and p̄ ≡ pR2
0

h0Πmax
(2.2)
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where h is the film height and p is the augmented pressure. The timescale tM
is chosen as the ratio of R0 and the Marangoni velocity h0τ/µ ∼ h0Πmax/(µR0).
Using the scales introduced above, the following system of coupled equations can
be derived for axisymmetric spreading

∂h̄

∂t̄
+

1

r̄

∂

∂r̄

[
r̄h̄2

2

∂γ̄

∂Γ̄

∂Γ̄

∂r̄
− ϵ2

3
r̄h̄3 ∂p̄

∂r̄

]
=0 (2.3)

∂Γ̄

∂t̄
+
1

r̄

∂

∂r̄

[
r̄h̄Γ̄

∂γ̄

∂r̄
− ϵ2

2
r̄Γ̄h̄2 ∂p̄

∂r̄
− r̄

Pes

∂Γ̄

∂r̄

]
=0 (2.4)

p̄ = Bo h̄− γ̄

r̄

∂

∂r̄

(
r̄
∂h̄

∂r̄

)
(2.5)

γ̄ =
γ

Πmax
=
[
γm +Πmax exp

(
−ĀΓ̄2

)]
/Πmax (2.6)

where ϵ≡ h0/R0, Bo≡ ρgR2
0/Πmax is the Bond number, Ā≡AΓ2

c is a constant,
Pes ≡ h0Πmax/(µDs) is the Peclet number for surface transport, and Ds is the
surface diffusion coefficient.

On the other hand, planar spreading is described by the following system

∂h̄

∂t̄
+

∂

∂x̄

[
h̄2

2

∂γ̄

∂Γ̄

∂Γ̄

∂x̄
− ϵ2

3
h̄3 ∂p̄

∂x̄

]
=0 (2.7)

∂Γ̄

∂t̄
+

∂

∂x̄

[
h̄Γ̄

∂γ̄

∂x̄
− ϵ2

2
Γ̄h̄2 ∂p̄

∂x̄
− 1

Pes

∂Γ̄

∂x̄

]
=0 (2.8)

p̄ = Bo h̄− γ̄
∂

∂x̄

(
∂h̄

∂x̄

)
(2.9)

γ̄ =
γ

Πmax
=
[
γm +Πmax exp

(
−ĀΓ̄2

)]
/Πmax (2.10)

The boundary conditions are

∂Γ̄

∂r̄
(0, t̄)=0,

∂h̄

∂r̄
(0, t̄)=0,

∂p̄

∂r̄
(0, t̄)=0, (2.11)

Γ̄(+∞, t̄)=Γ̄d, h̄(+∞, t̄)=1, p̄(+∞, t̄)=0, (2.12)

where +∞ represents the right boundary of the computational domain, which is
large enough such that the end point does not affect the spreading dynamics.

The initial conditions for the surfactant distribution used in the numerical sim-
ulations are sketched in Fig. 2.3(a). Two cases are considered

Γ̄(r̄, t̄=0) =

{
f(r̄) + Γ̄d (case I)
6f(r̄) + Γ̄d (case II)

(2.13)

where

f(r̄) ≡ 1

2
(tanh [10(1− r̄)] + 1) (2.14)
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is used to provide a smooth and continuous variation of Γ̄ at r̄=1. The parameter
Γ̄d accounts for a pre-existing homogeneous contamination of the subphase with
a surface-active material. For simplicity, we assume that the EOS and surface
diffusion coefficient of the contaminant are identical to that of oleic acid. The
initial condition for the height profile was a flat film h̄(r̄, t̄=0) = 1 in both cases.
For planar spreading case, the only modification needed in the boundary and initial
conditions is replacing r with x.

The initial condition Γ̄(r̄=0, t̄=0)> 1 can be viewed as a simple model for a
highly compressed surfactant monolayer or an ultrathin ”bulk” layer of oleic acid
with thickness in order of 6 molecules. This initial condition increases the amount
of surfactant present in the deposition region compared to the case Γ̄(r̄ = 0, t̄ =
0) = 1 and, thus, mimics experiments with a very small surfactant source that
depletes during the course of the experiment. It does not, however, consider any
effects caused by the existence of the three-phase contact line at the edge of the
droplet or the liquid-liquid interface between droplet and sub-phase. Due to the
finite value of Γ̄(0, 0), the surfactant is depleted and Γ̄(0, t̄) falls below one after
a certain dimensionless time t̄c, at which we expect a transition in the spreading
behavior from the case of an infinite to a finite surfactant source.

We solve the system of equations (2.3-2.6), taking into account boundary and ini-
tial conditions, numerically with the finite element software Comsol Multiphysics
3.5 using transient analysis for the general form PDE equation mode.

2.3 Numerical results for axisymmetric spreading

2.3.1 Depleting surfactant supply

Since the surface tension of the sub-phase liquid in the surfactant deposition area
is lower than the surface tension of an uncontaminated liquid, Marangoni stresses
are induced. These stresses lead to film thinning in the vicinity of the deposited
surfactant droplet and the formation of an advancing rim. After an initial growth
phase, the rim broadens as time progresses and its height decreases.

The time evolution of the film height profiles is shown in Figs. 2.3(b,c) for
Pes = 5 · 104, ϵ=0.01, and the two initial conditions [Eqs. (2.13,2.14)] considered.
In the first case, the film thickness at the origin r̄=0 decreases rather immediately.
In the second case h̄(0, t̄) remains at or above 1 for more than 60 dimensionless
time units and a ridge develops at r̄ ≈ 1, which subsequently widens and moves
inwards. In the second case, the speed of advance of the rim is significantly higher
than in the first case.

Figure 2.4 presents the rim position r̄rim as a function of the dimensionless time.
The rim position exhibits a power law behavior, r̄rim(t) ∼ t̄α, where the parameter
α is called spreading exponent. For case II and t̄ < 200 a power law behavior with
exponent α ≈ 0.284 is observed. After t̄ ≈ 200 the slope of r̄rim levels off and is
comparable for both cases considered. The dotted line in Fig. 2.4 corresponds to
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Figure 2.3: Model calculations for axisymmetric spreading of oleic acid on thin glycerol
films assuming Pes = 50000, ϵ = 0.01 and Γ̄d = 0 unless noted otherwise. (a) Initial
surfactant distribution for two cases considered: Γ̄(r̄=0, t̄=0)=1 (case I) and Γ̄(0, 0)=6
(case II). (b) Time evolution of the height profile h̄(r̄, t̄) for case I. The dashed lines
correspond to solutions for Pes = 1000. (c) Time evolution of h̄(r̄, t̄) for case II. The
dashed lines correspond to solutions for Γ̄d=0.002.

Case I and a hypothetically linear equation of state γ=[γm+Πmax(1−Γ/Γc)], for
which ∂γ̄/∂Γ̄=−1 is constant. The deviations from the solution for a realistic non-
linear equation of state are significant. The slope of the dotted line corresponds
to a spreading exponent of 1/4.

The dashed lines in Fig. 2.3(b) correspond to Pes=1·103, which illustrates that
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increased surface diffusion reduces both hmax and the depth of the local minimum
in the height profile ahead of the rim. The dashed lines in Fig. 2.3(c) correspond to
Γ̄d=0.002, whereas all other simulations in Fig. 2.3 have been obtained assuming
Γ̄d=0. This shows that a pre-existing contamination of the sub-phase has a similar
effect on h̄(r̄, t̄) as a reduction of Pes, even if the level of contamination is so low
that it would be almost undetectable with a Wilhelmy plate technique. Dussaud
et al. [28] suggested that contamination should improve the correspondence of the
rim heights h̄max with those experimentally observed.
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Figure 2.4: Time evolution of the rim position r̄rim(t). The dotted line labeled ’Linear
EOS’ corresponds to case I with a hypothetical linear equation of state γ=(γ0 −ΠmaxΓ̄)
resulting in a spreading exponent of 0.25.

We choose the axisymmetric spreading of oleic acid on glycerol reported in [43]
for a comparison of the numerical results with the experimental data. During
the experiments, liquid films of variable thickness were deposited on Si wafers,
with a diameter of 10 cm, by means of spin-coating. The films were initially flat
and of uniform thickness h0 between 0.2 and 10 µm. Oleic acid droplets, with the
volume ranging from 0.2 to 100 nl, were deposited on the liquid films using dip-pen
or a droplet-on-demand inkjet system with a capillary nozzle diameter of 70µm.
The time evolution of the film thickness h(r, t) was monitored using interference
microscopy.

In Fig. 2.4 case II numerical results for t̄ < 200 yield a power law behavior with
exponent α ≈ 0.284, which is in good agreement with the experimental power law
exponents shown in Fig. 2.5(a). After t̄ ≈ 200 the slope of r̄rim levels off and is
comparable for both cases considered. The situation corresponds exactly to the
second curve in Fig. 2.5(a), where the surfactant droplet is depleted at t ≈ 350 s,
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Figure 2.5: (a) Time dependence of the experimentally obtained rim radius rmax(t)
for three different values of h0. The straight lines correspond to power law relations
rrim∼ tα. Image taken from [43], courtesy of David Sinz. (b) Rim position rmax(t=20 s)
as a function of h0. Experimentally and numerically obtained values are shown by closed
squares and open circles, respectively. The black and red solid lines correspond to the
function rmax(t=20 s)=Rfit+Sfit

√
h0 with fit parameters Rfit and Sfit. The green dotted

line corresponds to a power law relation rmax(t=20 s)∼h0.25
0

after which the slope of rrim(t) decreases markedly. The value of the predicted
spreading exponent α = 0.16 agrees very well with the experimental value 0.17
shown in Fig. 2.5(a).
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Figure 2.5(b) presents numerical results (red squares) for the dependence of
rmax(t=20 s) on the initial film thickness h0 with a value of R0 = 255µm, which
is the average droplet radius observed experimentally [67]. The scatter in the
experimental data (black squares) is mainly due to variations in the surfactant
droplet radius R0. Assuming constant net change in surface tension from the
droplet position to the rim, ∆γ, we can derive a scaling relation for the dependence
of rrim on h0

dr

dt
=

h0∆γ

µ(r −Rav)
−→ r = Rav +

√
2
h0∆γ

µ
t (2.15)

which yields the power law relation rrim ∼ h
1/2
0 .

The red and black lines in Fig. 2.5(b) correspond to the function rrim = Rfit +
Sfit

√
h0 with fit-parameters Rfit and Sfit. The numerical data is well described by

the same scaling relation as the experimental data except for an offset in the slope
Sfit. This offset is most likely related to a viscosity reduction of the glycerol in
the experiments due to water uptake from the ambient air. Shown by the green
dotted line is the power-law relation rrim ∼ h0.25

0 which visibly deviates from the
experimental and numerical data.

2.3.2 Continuous surfactant supply

During experiments the deposited surfactant quantity is often large and does not
deplete as fast as in the finite supply model [43]. In an attempt to model this, we
consider the solutions of Eqs. (2.3)-(2.6) for which the surfactant concentration is
kept constant for r̄<1

Γ̄(r̄ ≤ 1) = Γ̄0 = const (2.16)

Moreover, to account for the presence of the surfactant droplet, we added a pres-
sure offset to Eq. (2.5) in the region r̄ ≤ 1

p̄(r̄ ≤ 1) = Bo h̄− γ̄

r̄

∂

∂r̄

(
r̄
∂h̄

∂r̄

)
+ p̄offset (2.17)

where

p̄offset ≡
(
ρghOA +

2γOA

R1

)
R2

0

Πmaxh0
(2.18)

hOA ≡
√
R2

1 −R2
0r̄

2 −
√
R2

1 −R2
0, (2.19)

with R1 ≡ R0/ sin θ and γOA being oleic acid surface tension. Equation (2.18)
accounts for the capillary and hydrostatic pressure that is exerted by a droplet
of surfactant placed on top of the thin film of sub-phase liquid. The contact
angle θ of the surfactant droplet was estimated to be 10◦. These modifications
are intended to more closely account for the presence of a macroscopic surfactant
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Figure 2.6: (a) Time evolution of the height profile h̄(r̄, t̄) for h0=3µm, R0=250µm,
Pes =2.5·104, and Γ̄d =0.002. (b) Zoom of (a) in the crater region. For clarity, curves
corresponding to different times were shifted consecutively by 0.05 along the ordinate.
Dotted horizontal lines denote the solid surface z̄=0 for each solution. The dashed curve
is the dimensionless concentration Γ̄(t̄=7000).

droplet deposited on the liquid film. They do not, however, faithfully represent
local effects caused by the existence of the three-phase contact line at the edge of
the droplet.

Figure 2.6 presents a time series of the height profile h̄(r̄, t̄) for h0 = 3µm,
R0=250µm, p̄offset = 0 and Γ̄(r̄≤1, t̄) = 1. For t̄ . 15 a rim in h̄(r̄, t̄) is observed
at r̄ ≈ 1, which subsequently moves inwards and disappears under the influence
of capillary pressure. At t̄ ≈ 400 a small ’bump’ in the height profile appears
at r̄ ≈ 1, which develops into a thin film that is expelled from underneath the
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Figure 2.7: Rim position r̄rim and height h̄(r̄rim) extracted from the simulations in (a)
[curve (1)] and equivalent ones for Γ̄(r̄ ≤ 1, t̄) = 0.5 [curve (2)] and Γ̄(r̄ ≤ 1, t̄) = 0.25
[curve (3)]. Solid lines correspond to power-laws r̄rim ∼ t̄α with α = 0.22 and 0.32.
Curves (4,5) track the rim height for the data in (a) [curve (5)] and a smaller value of
Γ̄d=0.001 with all other parameters unchanged [curve (4)]. Curve (6) illustrates rrim(t)
for Ds = 0 and a boundary condition Γ̄(r̄ = 0, t̄) = 1 representing surfactant supply
only from a point source. No expulsion is observed. The resulting spreading exponent
α = 0.21 remains constant in time.

surfactant droplet. A magnified view of the height profile in the crater region is
presented in Fig. 2.6(b). The front of this film exhibits a ridge similar in shape to
films spreading under the action of thermocapillary stresses, which are known to
undergo a fingering instability [41, 42].

Fischer and Troian [40] considered the linear stability of thin film flows for the
case of a step-like increase in the Marangoni stress τ1 → τ2 with and without
additionally assuming an initial step-like change in the height profile h1 → h2.
The flow was found to be unstable if a thicker film (h1 >h2) flows into a region
of reduced thickness h2 but increased Marangoni stress τ2. The predicted lateral
wavelength corresponding to the most unstable mode scales as λ ∼ h0(τ2/τ1)

−1/2.
Due to increased complexity, a simple expression for the instability wavelength for
the full problem including surfactant bulk- and surface transport can not be given
[25, 26, 36, 37]. The dashed curve in Fig. 2.6(c) corresponds to the concentration
profile Γ̄(r̄) for the solution at time t̄ = 7000. As can be seen, Γ̄(r̄) has a very
pronounced kink in the thinned region just ahead of the rim of the expelled film.
The Marangoni stress in this region is approximately a factor of 20 higher than
behind the rim and the film thickness decreases by more than a factor of 10.
Therefore, the conditions of the instability criterion in the model of Fischer and
Troian [40] are met and the film is unstable, consistent with Fig. 2.8.

If we consider a value of the offset pressure p̄offset ̸= 0 according to Eq. (2.18),
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500 µm

Figure 2.8: Unstable expulsion of glycerol trapped below an oleic acid droplet with
R0 = 465µm. The thickness of the expelled film is below 100 nm. Image: courtesy of
David Sinz [43].

the dashed curve in Fig. 2.6(a) results at time t̄ = 7000. This result differs very
little from the solution obtained for p̄offset = 0 [solid line in Fig. 2.6(a)], which
is also the case in the crater region and underneath the surfactant droplet. This
indicates that the sub-phase transport is dominated by the Marangoni stresses
and that the pressure exerted by the surfactant droplet does not substantially
contribute for the values of ϵ and size of the droplet considered.

As illustrated by the dashed curve in Fig. 2.6(b), the surfactant concentration
is significantly higher on top of the expelled film than in the region ahead of it.
This implies that the expulsion process of the ultrathin film is very efficient in
convecting ”additional” surfactant across the crater region. It is therefore not
surprising that this effect leads to an increase in both the slope of r̄max(t̄) and
the height of the rim h̄max as shown in Fig. 2.7. The non-dimensional rim height
increases from about 1.66 to 1.71 around t̄ = 800 for curve (4). At the same time
r̄rim(t̄), which is well described by a powerlaw r̄rim ∼ t̄α with α = 0.22 over the
interval 20 < t̄ < 200, changes exponent towards α = 0.32 after t̄ ∼ 700.

Also shown in Fig. 2.7 is the rim position r̄rim(t̄) for Γ̄(r̄=0, t̄)=1 and Ds = 0
[curve (6)]. For this system the expulsion, depicted in Fig. 2.6(b), was absent and
the rim position could be approximated by r̄rim ∼ t̄α with α = 0.21 for the entire
range shown (illustrated by the solid line). Experimentally it was found that the
expulsion process, illustrated in Fig. 2.8, can increase the spreading exponent α
by up to 0.15 [43]. The instability can be weakened or suppressed by reducing the
surfactant droplet volume, i.e. by decreasing R0.

Analogous simulations for Γ̄(r̄ < 1, t̄) = 0.25 and 0.5 exhibit the same pre-
expulsion power-law exponents of 0.22 and a corresponding jump in the rim height
at t̄=800. For the boundary condition Γ̄(r̄ < 1, t̄) = 0.25, the highest Marangoni
coefficient ∂γ/∂Γ occurs at the boundary value of the surfactant concentration,
i.e. at r̄=1. On the other hand, for Γ̄(r̄<1, t̄)=0.5 and 1, the stress maximum is
assumed at a lower concentration of approximately Γ̄=0.285 for Ā=6.125, which
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occurs ahead of the boundary in the crater region. Consequently, the fact that
the shape evolution proceeds in a qualitatively identical fashion indicates that the
precise functional form of the EOS is not crucial for the occurrence of the expulsion
process and the ensuing fingering instability.
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Figure 2.9: (a) Dimensionless onset t̄o and expulsion times t̄e as a function of ϵ. The
solid and dashed lines correspond to power law relations with exponents -1.6 and -3,
respectively. (b) Dimensionless height h̄(x̄ = 0) (open symbols) and subphase volume V̄s

underneath the surfactant droplet for 0 < x̄ < 1 (solid symbols) for different values of ϵ.
The solid line corresponds to a power law relation with exponent -0.25. The onset times
t̄o for the different aspect ratios are indicated by the vertical line segments.

In Fig. 2.9(a) we present the dimensionless onset time t̄o of the expulsion process
as a function of ϵ. The parameter t̄o is defined as the time when the rate of in-
crease of the local film thickness at the rim of the surfactant droplet (∂h̄/∂t̄)(r̄=1)
reaches the maximum. The solid line in Fig. 2.9(a) corresponds to a power law
relation t̄o ∼ ϵ−1.6, which translates into to ∼ R3.6

0 /h2.6
0 . This scaling is rem-
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iniscent of the timescale for capillary leveling [44] of infinitesimal disturbances
tOrchard ∼ L4/⟨h⟩3, where L is the disturbance wavelength and ⟨h⟩ is the average
film thickness. As exemplified in Fig. 2.6(a), the expulsion is indeed preceded
by the profile of the trapped film evolving from initially flat h(r, t = 0) = h0 to
approximately a spherical cap shape.

Figure 2.9(b) shows the time evolution of the dimensionless center height h̄c ≡
h̄(x̄ = 0) and the sub-phase volume V̄s

V̄s ≡ 2π

∫ 1

0

r̄h̄ dr̄ (2.20)

underneath the surfactant droplet for different values of ϵ. The initial volume
located underneath the surfactant droplet is V0 = πR2

0h0 or equivalently V̄s(t̄=
0) = π. After the center-height reaches a maximum, the rate of volume loss shows
a rapid increase. The vertical line segments indicate the onset times t̄o, which
precede the regimes where V̄s(t̄) and h̄c(t̄) resemble power law behavior ∼ t̄−0.25

as indicated by the solid line. Corresponding curves of h̄c(t) and V̄s(t) follow the
same power law behavior, since the volume of a spherical cap of small aspect ratio
is to a good approximation Vcap = πR2

0hc/2, where R0 is the base radius and hc

the center height; i.e. the sub-phase volume V̄s is proportional to the center height
h̄c for droplet diameters below the capillary length.

We define the expulsion time t̄e as the instant when the sub-phase volume reaches
a fraction of 1/e ≈ 37% of its initial value. In Fig. 2.9(a) t̄e is plotted as a function
of aspect ratio ϵ (open symbols). The dashed line corresponds to a power law
t̄e ∼ ϵ−3.

2.3.3 Effect of different equation of state

We studied so far only one specific equation of state for dependence of surface
tension on concentration. However, in industrial processes a variety of surfactants
and sub-phase liquids is used. For instance, natural oil reservoirs are highly com-
plex systems with multi-component mixtures, high temperatures and pressures. It
is, therefore, essential to predict the effect of specific surfactant on spreading dy-
namics. In order to identify how different surfactant changes the spreading rates,
we consider the following ”generic” equations of state (EOS)

γ1 = γm +Πm cos(8Γ̄) exp(−AΓ̄2) (2.21)

γ2 = γm +Πm exp(−AΓ̄2) (2.22)

γ3 = 15 +
1

2
Πm(3− tanh[8(Γ̄− 0.6)]9) (2.23)

Figure 2.10 shows plots of three surface tension functions defined in Eqs.(2.21-
2.23). The initial condition for the surfactant distribution used here is correspond-
ing to case I from Eq.2.13. While the maximum spreading pressure is similar for
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Figure 2.10: Equations of state that are defined in (2.17-2.19).

all three equations of state, the step-like behavior or reversed gradients may po-
tentially affect the spreading dynamics.
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Figure 2.11: Effect of different equations of state, defined in (2.17-2.19), on the rim
position.

Figure 2.11 illustrates the corresponding rim positions for 1D axisymmetric
spreading with finite surfactant supply. The doted line in Fig. 2.11, corresponding
to γ1, is lower than two others because of the step-like EOS. The plateau regions
leads to zero surface tension gradients for certain concentration intervals, thus re-
ducing the spreading rate. The dashed line, corresponding to γ3, is lower than the
solid line (oleic acid, γ2) due to the backward flow implied by the local positive
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slope in the equation of state. The spreading exponents vary in the beginning of
the spreading process, but are only slightly affected in the later stages.

A more systematic study is be done by varying the slope in a piece-wise linear
equation of state, dγ/dΓ at Γ = 0, as shown in Fig. 2.12.
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Figure 2.12: Different slope in the equation of state.

Figure 2.13 shows the corresponding rim positions from axisymmetric spreading
simulations with finite surfactant supply. We conclude that for higher slopes, the
rim position curve lies higher, but the effect on the spreading exponents is very
small in the later stage.
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Figure 2.13: Effect of different initial slope in the equation of state on spreading expo-
nents.

Thus, even extreme modifications of the equation of state for insoluble surfactant
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do not drastically affect the time evolution of the rim position.

2.4 Conclusions

We have investigated the axisymmetric spreading dynamics of insoluble surfac-
tants on thin liquid films. Numerical simulations of the far-field spreading dynam-
ics compare very favorably with the experimental results reported in the literature.
A non-linear equation of state, which provides an excellent fit for the experimental
data of surface tension, is shown to influence spreading rates considerably com-
pared with a linear equation of state.

A fingering instability is observed similar in appearance to the case of soluble
surfactants, which is induced by the temporary entrapment of sub-phase liquid in
the surfactant deposition area and its subsequent release. The expelled liquid en-
hances surfactant transport across the crater region, i. e. the expulsion has direct
effect on the spreading rates. If the expulsion initiates at an earlier stage, the film
thickness in the crater region has not thinned and its extension has not increased
as much. Consequently, the crater region constitutes less of a flow obstacle for
the expelled film. This has a noticeable influence on the spreading exponents that
were determined as α = 0.32 after, and α = 0.22 before expulsion for ϵ= 0.012.
This range of values matches very well with the range of experimentally measured
exponents between 0.23 and 0.34.

Since our model is based on the assumption of axisymmetry, the description
of the expulsion process is also limited to axisymmetric case, unlike the fingering
instabilities observed during the experiments. Owing to the uncertainties related
with the experimental surfactant droplet deposition process, the relevant initial
conditions may differ for the model and experiments. Furthermore, for a more
faithful representation of the experiments the model should include the effects
induced by the presence of the liquid-liquid interface between the droplet and the
sub-phase film, or the deformation of the surfactant droplet in the vicinity of the
three-phase contact line.





Chapter 3

Insoluble surfactant
spreading at initially curved
liquid-air interfaces

3.1 System description for spreading along rivulet
interface

In the previous chapter we studied surfactant spreading on initially flat liquid-air
interfaces. In technological applications, however, the interface often exhibits a
non-zero curvature at the beginning of the spreading process. In the context of
enhanced oil recovery (EOR), for instance, liquid phases are confined in pores of
a very small scale, resulting in non-flat interfaces. This chapter is devoted to a
study of an insoluble surfactant spreading on spatially confined thin liquid films
and the effects these confinements have on transient rivulet morphology.

We consider the spreading of an insoluble surfactant on a thin curved liquid film
of constant Newtonian viscosity µ. The liquid is confined to a stripe of width w and
length L as shown in Fig. 3.1. This confinement can be achieved experimentally
by chemical patterning: the substrate surface is hydrophillic within the stripe and
hydrophobic outside it. The length L is large enough such that longitudinal edge
effects can be neglected, thus, we assume that the rivulet height is initially uniform
in x−direction.

An important characteristic of the system is that the liquid film is thin, thus
the aspect ratio is very small: ε ≡ h0/(w/2) ≪ 1. We introduce a Cartesian
coordinate system with the x-axis parallel to the rivulet and the z-axis normal
to the (horizontal) substrate surface, i.e. opposite to the direction of gravity, see
Fig. 3.1. The position x = 0 corresponds to the center of the surfactant deposition

23
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Figure 3.1: Sketch of the rivulet geometry with initial surfactant distribution.

area, and y = 0 corresponds to the centerline of the rivulet.

We choose the material system of oleic acid spreading on glycerol rivulets [67] for
a comparison of numerical results with experimental data. During the experiments,
liquid films of anhydrous glycerol with a center thickness of h0 = 1− 10µm were
deposited on the hydrophilic regions of the substrates using spin-coating. The
patterning procedure resulted in an advancing contact angle for glycerol between
70o and 90o on the hydrophobic areas, thus confining the liquid to the hydrophilic
stripe during the experiments. After deposition of the sub-phase, typically 0.1
to 0.2µl of the insoluble surfactant cis-9-octadecenoic acid were deposited in the
center of the rivulets using a micro-syringe as a dip-pen. The time evolution of
the film height was monitored using interference microscopy.

3.2 Mathematical model based on lubrication ap-
proximation

Based on the lateral aspect ratio ε ≡ 2h0/w ≪ 1, the small-slope approximation
can be applied to derive an evolution equation for the sub-phase height profile [38]
that accounts for the influence of Marangoni stresses, hydrostatic and capillary
pressure gradients. An equation for surfactant surface transport including the
effects of convection by the liquid surface motion as well as surface diffusion is
derived in [70, 71, 72, 69]. Borgas & Grotberg [10] and Troian et al. [12] further
simplified this equation for thin liquid films. A detailed derivation of these two
equations can be found in Appendix A.
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Using the scaled variables

x̄ =
2x

w
, ȳ =

2y

w
, h̄ =

h

h0
(3.1)

Γ̄ =
Γ

Γ0
, p̄ =

pw2

4h0Πmax
, t̄ = t

4h0Πmax

µw2
(3.2)

we arrive at the following non-dimensional system of equations

∂h̄

∂t̄
+ ∇̄

[
1

2
(h̄2∇̄γ̄)− Bo

3
h̄3∇̄h̄− ε2

3
h̄3∇̄p̄

]
= 0 (3.3)

∂Γ̄

∂t̄
+ ∇̄

[
h̄Γ̄∇̄γ̄ − Bo

2
h̄2Γ̄∇̄h̄− ε2

2
h̄2Γ̄∇̄p̄ (3.4)

− 1

Pes
∇̄Γ̄

]
= 0

p̄ = −γ̄∇̄2h̄ (3.5)

γ̄ =
γm
Πmax

+ exp(−ĀΓ̄2) (3.6)

where Bo ≡ ρgh2
0/Πmax is the Bond number, Pes ≡ h0Πmax/(µDs) is the surface

Peclet number, µ and ρ are the fluid viscosity and density, respectively, and Ds

represents the surface diffusion coefficient.

The second term in Eqs. (3.3,3.4) represents the influence of Marangoni stresses
arising from gradients in surface tension γ̄. The third term in both equations
accounts for hydrostatic pressure gradients, and the fourth term reflects capillary
pressure gradients. The last term in Eq. (3.4) describes surface diffusion along the
liquid-air interface. Equation (3.5) corresponds to the Laplace-Young equation.
Equation (3.6) is the non-dimensional version of the equation of state for oleic
acid on glycerol (see Chapter 1, Section 1.2), which we used to fit the experimental
data,

γ = γm +Πmax exp(−ĀΓ2/Γ2
0) (3.7)

where Πmax = 24mN/m is the maximum spreading pressure, γm = 39mN/m is
the asymptotic value of the surface tension, Γ0 ≡ 3.5µl/m2 and Ā = 6.125 is
a fit parameter. Thus, we consider a realistic, non-linear equation of state γ(Γ)
connecting surface tension and surface concentration for this material system.

The system of equations (3.3-3.6) is solved together with the following boundary
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conditions (BCs)

∂h̄

∂x̄
(0, ȳ, t̄) = 0 =

∂h̄

∂ȳ
(x̄, 0, t̄) (3.8)

∂Γ̄

∂x̄
(0, ȳ, t̄) = 0 =

∂Γ̄

∂ȳ
(x̄, 0, t̄) (3.9)

∂p̄

∂x̄
(0, ȳ, t̄) = 0 =

∂p̄

∂ȳ
(x̄, 0, t̄) (3.10)

h̄(x̄, 1, t̄) = 0 (3.11)

∂Γ̄

∂ȳ
(x̄, 1, t̄) = 0 (3.12)

h̄(∞, ȳ, t̄) = f̄(ȳ) (3.13)

Γ̄(∞, ȳ, t̄) = 0 (3.14)

∂p̄

∂x̄
(∞, ȳ, t̄) = 0 (3.15)

where f̄(ȳ) is the boundary height profile corresponding to the static equilibrium.
If the influence of gravity is negligible, the static equilibrium profile is parabolic
f̄(ȳ) = 1− ȳ2.

Boundary conditions (3.11, 3.12) represent the edge of the hydrophilic stripe,
corresponding to a rivulet height of zero and no surfactant flux at this boundary.
Conditions (3.13-3.15) represent a clean, uncontaminated liquid surface at large
distance from the surfactant deposition region, so that the rivulet height is undis-
turbed from the initial height profile and no surfactant is present at this boundary.
Equations (3.8-3.10) reflect the mirror symmetry of the system with respect to the
planes x̄ = 0 and ȳ = 0. Boundary conditions (3.11,3.12) represent the edge of
the hydrophilic stripe, and (3.13-3.15) a clean, uncontaminated liquid surface at a
large distance away from the surfactant deposition region.

The following initial conditions (ICs) are used for the height profile and pressure

h̄(x̄, ȳ, t̄ = 0) = f̄(ȳ), p̄(x̄, ȳ, t̄ = 0) = −γ̄
∂2f̄

∂ȳ2
(3.16)

We consider two cases regarding the IC for the surfactant distribution:

1. In the case of finite surfactant supply, a limited initial quantity of surfactant
is distributed in the region [0 ≤ x̄ ≤ x̄0; 0 ≤ ȳ ≤ 1] according to

Γ̄(x̄, 0) = 1
2 (1− tanh [B(x̄− x̄0)]) (3.17)

which subsequently depletes during the spreading process. Here, B ≡ 10
defines the steepness of the initial concentration distribution. The parameter
x̄0 quantifies the length of the area that is (initially) covered with surfactant.

2. In experiments, however, the deposited surfactant quantity is often large
and does not deplete as fast as in the finite supply model. To mimic such a
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continuous surfactant supply, we impose a constant surface concentration in
the region of surfactant deposition, i.e., Γ̄(0 ≤ x̄ ≤ x̄0, ȳ, t̄) = const, and we
maintain continuity of the state variables at x̄ = x̄0.

We solve the system of equations (3.3-3.6) numerically with the finite element
software Comsol Multiphysics 3.5, using transient analysis for the general form
PDE equation mode.

3.3 Results and discussion

3.3.1 Finite surfactant supply

Figure 3.2 shows typical snapshots of the surfactant spreading process represented
by film thickness isolines for dimensionless times t̄ from 0 to 1000. We observe film
thinning in the vicinity of the deposition region and development of a rim, which is
advancing along the rivulet. Similarly to the case of axisymmetric spreading, the
rim widens in time and propagates in the x−direction with the maximum located
at the rivulet centerline ȳ = 0. A strong rim asymmetry can be observed: the
height gradients are much steeper on the front side of the rim compared to the
back side and the transverse height profile is not parabolic in back of the rim. This
asymmetry, however, diminishes with the progression of time.

1000

100

0 5 10 15

1

10

x

t = 0

0.1

Figure 3.2: Contours of rivulet height for finite surfactant supply at t̄ =
0, 0.1, 1, 10, 100, 1000 with x̄0 = 0.5, Pes = 50000, ε = 0.01, and Bo =0.

Figure 3.3 shows the time evolution of the height profile h̄(x̄, ȳ = 0, t̄) and the
surfactant concentration Γ̄(x̄, ȳ = 0, t̄) at the rivulet center line, with parameters
ε = 10−2, Pes = 103, x̄0 = 0.5, and Bo = 0. The position where the maximum in
the center-height is reached defines the rim position x̄rim. Comparing figures 3.3(a)
and 3.3(b), we conclude that the surfactant front precedes the rim position. Since
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Figure 3.3: (a)-(b) Evolution of centerline height profile h̄(x̄, ȳ = 0, t̄) and surfactant
concentration Γ̄(x̄, ȳ = 0, t̄) for finite surfactant supply and parameter values x̄0 = 0.5,
Pes = 1000, ε = 0.01, and Bo = 0.

a finite amount of surfactant is modeled, it is depleted in time at the deposition
region and redistributed along the rivulet surface.

The time evolution of the rim position x̄rim is presented in Fig. 3.4(a). To a good
approximation, the rim position x̄rim(t) follows a power law behavior x̄rim ∼ t̄α.
The spreading exponents extracted from the data presented in Fig. 3.4(a) fall in
the range 0.24 - 0.25, and are essentially independent of the aspect ratio ε.

The values of the spreading exponents α obtained from the corresponding ex-
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Figure 3.4: (a) Rim position xrim(t̄) for parameter values x̄0 = 0.5, Pes = 1000, and
Bo = 0. (b) Maximum height vs dimensionless time for rivulets with finite surfactant
supply (solid lines) compared to one-dimensional rectilinear spreading (dashed lines) for
parameter values x̄0 = 0.5, Pes = 1000, and Bo = 0.

periments [67] are in the range between 0.32 and 0.34. The spreading exponents
derived from the data in Fig. 3.4(a), are significantly smaller than the experimen-
tal results, for which the assumption of finite surfactant supply is not an accurate
representation.

Figure 3.4(b) compares the time evolution of the rim height hmax for spreading
along a rivulet (solid lines) with rectilinear, one-dimensional spreading along a
thin liquid film of uniform thickness h0 (dashed lines), i.e. in the limit of infinitely
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wide rivulets, w → ∞. The rapid increase of h̄max(t̄ . 0.2) represents the rim
formation in the early stage of the spreading process. For lower aspect ratios two
local maxima in h̄max(t̄) are observed, whereas for ε = 0.1 only a single peak is
present. Except in the vicinity of the second maximum in h̄max(t̄), the rim height
is larger for one-dimensional spreading due to the absence of transverse curvature.
Smaller aspect ratios tend to give larger dimensionless rim heights, since smaller
capillary pressure provides less of an opposing force to the height increase. Jensen
[17] showed that for ε → 0 and Pes → ∞ the non-dimensional rim height equals 2
in the case of one-dimensional, rectilinear spreading.
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Figure 3.5: (a)Rivulet height profile for different pre-contamination levels for parameter
values x̄0 = 0.5, Pes = 1000, ε = 0.01, and Bo = 0.(b) Effect of variations in Peclet
number (50000 and 1000) on the rivulet center-height for x̄0 = 0.5, ε = 0.01, and Bo = 0.
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During experiments surface-active contaminants, either airborne or from within
the sub-phase liquid, can adsorb on the liquid-air interface. We account for such
a contamination by adding a constant term Γ̄c to the initial concentration distri-
bution Eq. (3.17)

Γ̄(x̄, 0) = Γ̄c + 0.5(1− tanh [B(x̄− x̄0)]) (3.18)

The rim propagation dynamics along a pre-contaminated rivulet for a value of
Γ̄c = 0.02 is essentially unaffected as compared to the case of Γ̄c = 0. However,
already a contamination as small as 2% (Γ̄c = 0.02), which would be hard to
detect experimentally, significantly reduces the rim height, as shown in Fig. 3.5(a),
consistent with the findings of Dussaud et al. [28].

A variation of the Peclet number Pes from 1000 to 50000 has negligible effect on
the rim position for t̄ ≤ 1000 in Fig. 3.5(b). A Peclet number value of 1000 does
not reduce the center-line height h̄max(t̄) compared to 50000, while a reduction
was observed by Gaver & Grotberg [13] for one-dimensional surfactant spreading
on thin liquid films of uniform thickness and Peclet numbers of 100 and 0.5.

3.3.2 Continuous surfactant supply

Figures 3.6(a,b) depict the time evolution of the surfactant concentration and the
height profile in the case of continuous surfactant supply. The film thinning in the
vicinity of the surfactant deposition area is significantly stronger than in the case
of finite supply, because the constant surfactant concentration in the area x̄ < x̄0

sustains large surface tension gradients.

In Fig. 3.6(d) we present the rim position for different aspect ratios. The corre-
sponding spreading exponents α = 0.40÷0.46, fitted in the interval 10 < t̄ < 1000,
are higher compared to the case of finite surfactant supply, and an increased in-
fluence of the aspect ratio on the rim position x̄rim is apparent. The curves cor-
responding to aspect ratios ε = 0.03 and 0.01 exhibit an increase in the spreading
exponent approximately at times t̄ = 50 and 200, respectively. These transitions
are preceded by a process of sub-phase expulsion [43], i.e. the ejection of liquid
that was previously located in the area of surfactant deposition, as illustrated in
Fig. 3.6(c) at t̄ = 200 for ε = 0.03. The dashed line in Fig. 3.6(d) corresponds to
the rim position for an infinitely narrow surfactant deposition area, x̄0 = 0. No
expulsion is observed in this case, which leads to significant reduction of x̄rim(t̄).

While the fundamental setup of the numerical simulations and experiments are
comparable, there are considerable uncertainties and differences connected to the
surfactant deposition process. In the numerical simulations, surfactant is intro-
duced as a dense monolayer on the surface of an initially undisturbed rivulet.
Depending on the type of simulation, the amount of surfactant in the deposition
area is then depleted or held constant during the course of the simulation. In
experiments, due to the manual deposition technique, the deposited droplet is
comparable in size to the rivulet width and initially squeezes part of the under-
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Figure 3.6: (a,b) Evolution of centerline height profile h̄(ȳ = 0) and surfactant concen-
tration Γ̄(ȳ = 0) for continuous surfactant supply, ε = 0.01, Pes = 1000 and x̄0 = 0.5. (c)
Sub-phase expulsion at t̄ = 200 for continuous surfactant supply and ε = 0.03. (d) Rim
position xrim(t̄) for x̄0 = 0.5 and x̄0 = 0 and different values of the aspect ratio ε.



3.3. Results and discussion 33

lying liquid. The relatively large amount of surfactant in the droplet ensures a
continuous supply during the course of the experiment. Consequently, the numer-
ical studies of surfactant spreading with a continuous supply can be expected to
resemble the experimental data after short-time effects that are sensitive to the
details of the deposition process have decayed.
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Figure 3.7: (a) Spreading exponent α as a function of the aspect ratio ε. Simulations
with x̄0 = 0.5 (up-triangles) exhibited sub-phase expulsion while with x̄0 = 0 (down-
triangles) did not. Open symbols indicate experiments with rivulet widths w = 1.5mm
(squares) and w = 0.28mm (circles). (b) Numerical (triangles) and experimental
(squares) rim position 60 s after surfactant deposition as a function of the initial height
for w = 1.5mm and x̄0 = 0.5. Solid line indicates scaling xrim(t = 60 s) ∼

√
h0.

Figure 3.7(a) shows the spreading exponents α as a function of the aspect ratio
ε = 2h0/w. Experimental exponents (open symbols) were obtained for rivulet
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widths of w = 1.5mm and w = 0.28mm. Exponents extracted from the numerical
simulations for continuous supply and x̄0 = 0.5 are represented by up-triangles.
Down-triangles designate numerical results for x̄0 = 0, with no sub-phase expulsion
occurring. The latter resulted in slightly lower spreading exponents α that agree
with the experimental data very well. The exponents corresponding to the blue
down-triangles in Fig. 3.7(a) were fitted to the simulation results in the time
interval 10 ≤ t̄ ≤ 100, which is comparable to the experimental range.

At the edges of the surfactant source area, i.e. around x̄ = x̄0, the sub-phase film
thickness rapidly decreases as depicted in Fig. 3.6(a). With the exception of the
case x̄0 = 0, this implies that a volume of sub-phase liquid becomes temporarily
immobilized in the surfactant-deposition region and is gradually discharged at a
later time [Fig. 3.6(c)]. This delayed sub-phase release has a noticeable effect on
the spreading exponent as shown in Fig. 3.7(a).

Figure 3.7(b) depicts the rim position 60 sec after deposition, xrim(60 s), as a
function of the initial rivulet center height h0. Filled squares represent experimen-
tal data, while triangles indicate numerical simulations. The plotted simulation
results were converted to dimensional values assuming the viscosity of pure glyc-
erol at 25 oC. We assume that the rim propagation rate dxrim

dt scales with the
Marangoni velocity h0τ/µ. The stream-wise surface tension gradient τ = ∂γ/∂x
scales as τ ∼ Πmax/xrim, thus, we expect a power law relation xrim ∼

√
h0, as

derived in Chapter 2. The solid line in Fig. 3.7(b) corresponds to such a power
law relation and is an excellent approximation to both experimental and numer-
ical results. The numerically obtained peak positions in Fig. 3.7 systematically
lie slightly below the experimental values. A probable explanation for this offset
is water absorption into glycerol from the ambient atmosphere during the experi-
ment, which reduces the viscosity of the sub-phase liquid.

(a)

(b)

Figure 3.8: Interference microscopy images of the propagating rim at (a) an early stage
(t = 30 s) and (b) a later stage (t = 250 s). The red lines are located at the distance of
w/2 behind the rim. Images are taken from [67], courtesy of David Sinz.
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The numerical results show a systematic change in the peak height and shape of
the rim as it propagates along the rivulet, see Fig. 3.2. Initially the rim exhibits a
considerable asymmetry in the stream-wise direction, which gradually disappears
at later stages. The asymmetry at early stages, which is especially pronounced for
low aspect ratio systems, was also be observed during experiments [Fig. 3.8(a)],
while at later stages it largely disappeared [Fig. 3.8(b)].

In Fig. 3.9 the non-dimensional rim height hmax/h0 is shown as a function of time
for different values of the aspect ratio ε. At the initial stages of spreading process,
a rapid increase of hmax for times below t̄ = 0.2 is observed. For ε = 0.01 the
rim height then effectively reaches a plateau value. At later times a pronounced
increase of hmax occurs for all studied aspect ratios. The gray dashed lines in
Fig. 3.9 correspond to simulations with a width of the deposition region x̄0 = 0.5,
which leads to a sub-phase expulsion process and thus to slightly higher values
of the rim height hmax. Numerical results for the case of x̄0 = 0 are represented
by the solid line. The latter do not exhibit any sub-phase expulsion and are in
perfect quantitative agreement with the experimental data in Fig. 3.9 (circles and
squares) obtained for ε ≈ 0.01. Both the onset time and amplitude of the peak
height increase are in good agreement.
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Figure 3.9: Dimensionless rim height h̄max(t̄) for different values of ε. The dashed lines
correspond to numerical simulations for continuous supply of surfactant over a deposition
region of length x̄0 = 0.5, while the solid line represents simulation with x̄0 = 0. Symbols
represent experimental data obtained for w = 1.5mm and aspect ratios of ε = 0.011
(squares) and ε = 0.0107 (circles), courtesy of David Sinz.

The increase in the rim height is the consequence of changes in the transverse
rivulet height profile, which are caused by declining lateral surface tension gra-
dients. The transverse height profile h̄(x̄rim − 1, ȳ) at a distance of half of the
rivulet width behind the rim position is shown in Fig. 3.10(a). A strong flattening
in the middle of the rivulet is observed at t̄ = 50. At a later time t̄ = 400 this
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Figure 3.10: (a) Transverse height profile h̄(ȳ, t̄) for times t̄ = 50 and t̄ = 400 located
at the distance w/2, behind the rim. (b) Surface tension gradient in y−direction ∂γ̄/∂ȳ
for t̄ = 50 and t̄ = 400 located at the distance of w/2, behind the rim. Input parameters
are x̄0 = 0.5, Pes = 1000, ε = 0.01, and Bo = 0.

flattening has disappeared resulting in a parabolic transverse height profile. This
qualitative difference in the height profiles is caused by lateral concentration gra-
dients originating from the non-uniform surface velocity profile. Since the driving
force of the spreading process is Marangoni stress, the flow velocity scales with
the local film thickness. The stream-wise velocity is higher in the middle of the
rivulet as compared to its edges, since the film thickness is 0 at the boundaries of
the hydrophilic stripe. The lateral shear in the velocity distribution initially leads
to a non-uniform surfactant distribution Γ(y) at the surface.

Darhuber et al. [68] studied rivulet shape distortions as a consequence of trans-
verse temperature gradients. The relevant non-dimensional number was identified
to be τ/(εpcap), where pcap is the capillary pressure. When the value of τ = ∇||γ
falls below a certain threshold, the shape distortion disappears and the parabolic
cross-section is restored. We speculate that the same mechanism is the origin
of the shape changes in Figs. 3.10, which is supported by the data presented in
Fig. 3.10(b). A strong decay of the lateral surface tension gradient at positions and
times corresponding to the curves in Fig. 3.10(a) is observed. The relaxation of
the transverse height profile towards a parabolic shape leads to an increase in the
center height, which explains the increase in rim height hmax observed in Fig. 3.9.
Larger values of the aspect ratio ε are associated with higher lateral curvature
and hence an increased capillary pressure, which acts as the restoring force for
the transition in the height profile. Consequently, the transition occurs earlier for
larger aspect ratios. We note that an increase in the peak height observed for one-
dimensional spreading can only occur due to sub-phase expulsion [43]. The second
increase in h̄max observed in Fig. 3.9 is a consequence of lateral confinement, since
it is also present for the case of x̄0 = 0.
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3.4 Summary and conclusions

We conducted a numerical study of surfactant spreading on non-flat liquid-air
interfaces, in particular narrow rivulets. Using a numerical model based on the
lubrication approximation, we monitored the evolution of the liquid height profile
after deposition of an insoluble surfactant monolayer at the rivulet-air interface.
The results were compared to experimental findings for oleic acid spreading along
glycerol rivulets, defined by chemical surface patterning, and excellent agreement
was achieved.

The spreading dynamics locally is well approximated by power-law x ∼ tα. We
conclude that for laterally uniform initial rivulet height profiles, the initial film
thickness has little effect on the spreading exponents. Continuous, i.e. unlimited
surfactant supply leds to higher exponents and increases the influence of the rivulet
aspect ratio as compared to the case of limited supply. The spreading exponents
determined from continuous-supply model and line source compare favorably with
the experimental data. The lateral confinement induces non-uniform height- and
surface velocity profiles, which manifest themselves in a pronounced transition of
the evolving rivulet morphology.





Chapter 4

Soluble surfactant spreading
at initially curved liquid-air
interfaces

4.1 Introduction and system description for spread-
ing along rivulet interface

Chapters 2 and 3 were devoted to the study of insoluble surfactant spreading.
In technological applications, however, surfactants are often soluble in at least
one liquid phase. Several experimental and numerical studies deal with soluble
surfactant spreading [11, 73, 16, 74, 75, 34, 35, 76, 77, 78, 55, 79, 54, 27, 80]. Jensen
and Grotberg, for instance, presented a one-dimensional model for the spreading
of soluble surfactants [16] considering linearized Langmuir sorption kinetics and
fast vertical diffusion across the film thickness. In this chapter we present a model
for soluble surfactants spreading at curved liquid-air interfaces. The goal is to
quantitatively compare numerical solutions with experimental results.

We consider the spreading of a soluble surfactant on a thin liquid film that
is chemically confined to a hydrophilic stripe of width w and length L. The
model geometry illustrated in Fig. 4.1 is fundamentally the same as that studied in
Chapter 3, except that a soluble surfactant leads to a non-zero bulk concentration.

4.1.1 Equation of state

In order to quantify the spreading pressure due to surfactant concentration gra-
dients, experimental data is required to determine the relation between surface
tension γ and surfactant concentration Γ. The dependence of surface tension γ

39
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Figure 4.1: Sketch of the rivulet geometry illustrating the initial distribution of a soluble
surfactant.
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Figure 4.2: Surface tension of glycerol as a function of the SDS bulk concentration.
The solid line represents a non-linear equation of state (4.1).

on bulk concentration c is measured experimentally. Equilibrium equation is then
used to relate Γ and c. Our surfactant of choice is sodium dodecyl sulfate that
is soluble in glycerol. The dependence of the glycerol surface tension γ on c was
measured using a Wilhelmy plate technique [86], with the resulting data shown
in Fig. 4.2. For concentrations c above 0.065 mol/l, a pronounced kink is visible
in surface tension, which we ascribe to the formation of micelles. In this range,
gelation of the liquid associated with a strong change in the rheology was observed,
which made surface tension determination in this concentration region somewhat
unreliable.

The non-linear equation of state derived from the Langmuir and Gibbs adsorp-
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tion isotherm follows as

γ = γ0 +RTΓ∞ ln

(
1− c

k2Γ∞/k1 + c

)
(4.1)

where γ0 is the surface tension of pure glycerol, R is the universal gas constant
and T the absolute temperature, k1 and k2 are the adsorption- and desorption rate
constants, respectively, and Γ∞ is the maximum surface concentration at complete
coverage of the surface. We use Eqs. (4.1) to fit the experimental data in Fig. 4.2
for the dependance of surface tension on bulk concentration, γ(C), which yielded
the parameter values Γ∞ = 4.2 · 10−6 mol/m2 and k2/k1 = 1.7 · 106 m−1. The
maximum spreading pressure ∆γm is also indicated in Fig. 4.2. Since we do not
take into account the presence of surfactant micelles, the validity of this model is
restricted to concentrations below the so-called critical micelle concentration.

For the comparison of the numerical results with the experimental data, we will
use results of SDS spreading on glycerol confined to narrow rivulets by chemical
patterning [86]. Liquid films of anhydrous glycerol with a center thickness of
h0 = 2.5 − 10µm were deposited on the hydrophilic regions of the substrates
using spin-coating. Two types of experiments were conducted. In the first type,
termed solution deposition, a 0.1− 0.2µl droplet of an SDS-glycerol solution was
deposited onto the sub-phase film. In the second type termed solid deposition, a
small pellet of compressed SDS powder was deposited. The dynamics following
surfactant deposition were monitored by means of interference microscopy.

4.2 Mathematical model based on lubrication ap-
proximation and assumption of fast vertical
diffusion

Based on the lateral aspect ratio ε ≡ 2h0/w ≪ 1, the small-slope approximation
can be applied to derive evolution equation for the sub-phase height profile [38]
that accounts for the influence of Marangoni stresses, hydrostatic and capillary
pressure gradients. An equation for surfactant surface transport including the
effects of convection by the liquid surface motion as well as surface diffusion is
derived in [70, 71, 72, 69]. This equation is further transformed for thin liquid film
systems [10, 12]. In the case of soluble surfactants an additional term J appears in
this equation that accounts for bulk-surface exchange due to adsorption/desorption
processes. Jensen and Grotberg developed a theoretical model for the dynamics of
thin liquid films in the presence of non-uniform distributions of a soluble surfactant
[16]. A very important assumption of the model is the so-called fast vertical
diffusion

td
tM

≡ h2
0

Db

4h0∆γm
µw2

≡ ε2 · Peb ≪ 1, (4.2)
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where td/tM is the ratio of diffusion and Marangoni time scales, Db is the bulk
diffusion coefficient and Peb is the bulk Peclet number. The authors also assume
a linear equation of state γ = γ0 − AΓ as well as a linear relation between the
surfactant bulk concentration in the liquid film c(x, y, z, t) and the equilibrium
surface concentration Γeq. We generalize this model as to include the full non-
linear Langmuir equation for bulk-surface exchange J as well as the corresponding
equilibrium isotherm

J = k1cs

(
1− Γ

Γ∞

)
− k2Γ (4.3)

Γeq

Γ∞
=

k1cs
k2Γ∞ + k1cs

(4.4)

where J is the surfactant flux with units of mol/(m2s), k1;2 are the adsorption-
and desorption rate constants, and cs(x, y, t) = c(x, y, z = h, t) is the bulk concen-
tration at the surface.

The bulk transport of surfactant is governed by the convection and diffusion
equation

∂c

∂t
+ u · ∇c = Db∇2c (4.5)

For thin films and fast vertical diffusion the concentration c(x, y, z, t) can be
decomposed into a component independent of z and a small fluctuation [16]

c = C(x, y, t) + ε2PebC1(x, y, z, t) (4.6)

with

1

h

h∫
0

C1(x, y, z, t)dz = 0 (4.7)

Averaging Eq. (4.5) with respect to z, one arrives at the convection-diffusion equa-
tion for the height-averaged bulk concentration C(x, y, t), which is discussed below.

We introduce the dimensionless variables

x̄ ≡ 2x

w
, ȳ ≡ 2y

w
, h̄ ≡ h

h0
, t̄ ≡ t

tM
≡ t

4h0∆γm
µw2

(4.8)

p̄ ≡ pw2

4h0∆γm
, Γ̄ ≡ Γ

Γ∞
, C̄ ≡ k1C

k2Γ∞
(4.9)
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and arrive at the dimensionless system of equations

∂h̄

∂t̄
+ ∇̄

[
1

2
(h̄2∇̄γ̄)− ε2

3
h̄3∇̄p̄

]
= 0 (4.10)

∂Γ̄

∂t̄
+ ∇̄

[
h̄Γ̄∇̄γ̄ − ε2

2
h̄2Γ̄∇̄p̄− 1

Pes
∇̄Γ̄

]
= K

(
C̄
(
1− Γ̄

)
− Γ̄

)
(4.11)

∂C̄

∂t̄
+

[
h̄

2
∇̄γ̄ − ε2

3
h̄2∇̄p̄

]
∇̄C̄ − 1

Pebh̄
∇̄
[
h̄∇̄C̄

]
=

βK

h̄

(
Γ̄− C̄

(
1− Γ̄

))
(4.12)

p̄ = −γ̄∇̄2h̄+ Bo h̄+ Π̄ (4.13)

γ̄ =
1

∆γm

(
γ0 +RTΓ∞ ln

(
1− Γ̄

))
(4.14)

In the system of equations (4.10-4.14) the following dimensionless parameters are
introduced

ε ≡ 2h0

w
, Bo ≡ ρgw2

4∆γm
, Pes ≡

h0∆γm
µDs

(4.15)

Peb ≡
h0∆γm
µDb

, β ≡ k1
k2h0

, K ≡ k2tM (4.16)

Here, p is the augmented pressure [38], Π is the so-called disjoining pressure con-
tribution that is relevant for ultrathin films [84], Bo is the Bond number, Pes and
Peb are the Peclet numbers for surfactant surface and bulk transport, respectively,
Ds the surface diffusion coefficient, ∆γm is the maximum spreading pressure as
indicated in Fig. 4.2, K the ratio of the time scale of the flow and the time scale of
desorption, and β is the surface-bulk partitioning parameter proportional to the
ratio of adsorption/desorption rate constants.

The total amount of surfactant in a column of liquid with infinitesimal base
area dA = dxdy is (Ch + Γ)dA, where the first and second terms correspond
to the surfactant amounts in the bulk and at the interface, respectively. If C̄ is
small, Eq. (4.4) reduces to the linearized Langmuir isotherm Γ ≈ k1C/k2. Thus,
β ≡ k1/(k2h0) quantifies the partitioning ratio of the surfactant amount adsorbed
at the surface and dissolved in the bulk liquid. When β ≪ 1 almost all the
surfactant is dissolved in the bulk, whereas for β ≫ 1 almost all of it resides at
the interface.

In the following subsections, we present two separate sets of initial and boundary
conditions (BCs), termed finite and continuous surfactant supply, that represent
solution- and solid deposition, respectively, as used in the experiments.

4.2.1 Initial and boundary conditions for continuous surfac-
tant supply

The deposition of solid SDS is represented in our model by a continuous supply
of surfactant. A certain initial quantity of surfactant is distributed uniformly in
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the region 0 ≤ x ≤ x̄0. We consider two cases with respect to the length of the
surfactant deposition region x0: a so-called area source with x̄0 = 1 and a so-called
line source with x̄0 = 0. We define the initial surface and bulk concentrations

Γ̄(x̄ > x̄0, 0) = bΓ̄0(1− tanh [B(x̄− x̄0)]) (4.17)

C̄(x̄ > x̄0, 0) = bC̄0(1− tanh [B(x̄− x̄0)]) (4.18)

The parameter B ≡ 20 defines the steepness of the initial concentration curve.
The initial concentrations Γ̄0 and C̄0 are assumed to be in equilibrium and, thus,
are related through Eq. (4.4) as

C̄0(x̄, t̄ = 0) = Γ̄(x̄, t̄ = 0)/(1− Γ̄(x̄, t̄ = 0)) (4.19)

For the case of x̄0 = 1 (area source), we impose constant surface and bulk concen-
trations in the region 0 ≤ x̄ ≤ x̄0

Γ̄(x̄ ≤ x̄0, ȳ, t̄) = Γ̄0, C̄(x̄ ≤ x̄0, ȳ, t̄) = C̄0 (4.20)

and choose b = 1/2 in Eqs. (4.17,4.18).

For the case of x̄0 = 0 (line source), we impose constant surface and bulk
concentrations at the boundary x̄ = 0,

Γ̄(x̄ = 0, ȳ, t̄) = Γ̄0, C̄(x̄ = 0, ȳ, t̄) = C̄0 (4.21)

and set b = 1 in Eqs. (4.17,4.18), which corresponds to a smooth transition from
finite to vanishing concentration values.

The system of equations (4.10-4.14) is solved together with the following bound-
ary conditions (BCs)

∂h̄

∂x̄
(0, ȳ) =

∂p̄

∂x̄
(0, ȳ) = 0 (4.22)

∂h̄

∂ȳ
(x̄, 0) =

∂Γ̄

∂ȳ
(x̄, 0) =

∂C̄

∂ȳ
(x̄, 0) =

∂p̄

∂ȳ
(x̄, 0) = 0 (4.23)

Γ̄
(
L
2 , ȳ
)
= C̄

(
L
2 , ȳ
)
=

∂p̄

∂x̄

(
L
2 , ȳ
)
= 0 (4.24)

h̄
(
L
2 , ȳ
)
= f̄(ȳ) (4.25)

where f̄(ȳ) is the boundary height profile corresponding to a rivulet in static
equilibrium without surfactants adsorbed. If the influence of gravity is negligible,
this profile is parabolic f̄(ȳ) = 1 − ȳ2. Equations (4.22-4.23) reflect the mirror
symmetry of the system with respect to the planes x̄ = 0 and ȳ = 0. Boundary
conditions (4.24,4.25) represent a clean, uncontaminated liquid surface at a large
distance from the surfactant deposition region.

The chemical patterning is implemented by means of a discontinuous disjoining
pressure, which is represented by the term Π̄ in Eq. (4.13). On the hydrophilic
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strip 0 < ȳ < 1, where glycerol is deposited, we introduce a repulsive disjoining
pressure

Πi = A/h3 (4.26)

where A > 0 is a constant.

Since in our experiments the rivulet volume was sufficiently low such that the
liquid remained confined to the hydrophilic region, we only include a narrow hy-
drophobic strip 1 < ȳ < 1.05 adjacent to the hydrophilic strip in our model. In
this region, we use the two-term disjoining pressure model introduced in [85]

Πo = E

[(
h∗

h

)n

−
(
h∗

h

)m]
(4.27)

where h∗ is the constant thickness of an ultrathin precursor layer, n > m > 1 are
integers,

E ≡ (n− 1)(m− 1)

h∗(n−m)
γ(1− cos θe) (4.28)

and θe is the equilibrium contact angle. After non-dimensionalization, we obtain
the expressions

Π̄i = −Ā/h̄3 for 0 < ȳ < 1 (4.29)

Π̄o = Ē
[(

h∗
h

)n
−
(

h∗
h

)m]
for 1 < ȳ < 1.05 (4.30)

where

Ā ≡ A

∆γmε2h2
0

(4.31)

Ē ≡ γ̄
w2(n− 1)(m− 1)

h2
0h∗(n−m)

(1− cos θe) (4.32)

In our simulations we use the following values: h̄∗ ≡ h∗/h0 = 0.005, θe = 10◦,
n = 3, m = 2 and A = 7 · 10−20 Nm.

The BCs at the outer boundary of the hydrophobic strip are represented by the
no-flux conditions

∂h̄

∂ȳ
(x̄, 1.05, t̄) = 0 =

∂p̄

∂ȳ
(x̄, 1.05, t̄) (4.33)

∂Γ̄

∂ȳ
(x̄, 1.05, t̄) = 0 =

∂C̄

∂ȳ
(x̄, 1.05, t̄) (4.34)

The initial conditions for the film thickness in the hydrophobic and hydrophilic
regions are prescribed as h̄ = h̄∗ and h̄(x̄, ȳ, 0) = h̄∗ + f̄(ȳ), respectively.
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4.2.2 Initial and boundary conditions for finite surfactant
supply

A model with finite surfactant supply can represent the deposition of a surfactant
droplet onto a liquid rivulet. A limited initial quantity of surfactant is distributed
uniformly in the region 0 ≤ x ≤ x̄0, reflected by the initial conditions for surface
concentration

Γ̄(x̄, 0) =
Γ̄0

2
(1− tanh [B(x̄− x̄0)]) (4.35)

and bulk concentration

C̄(x̄, 0) =
C̄0

2
(1− tanh [B(x̄− x̄0)]) (4.36)

which subsequently depletes during the spreading process.

In the experiments, the height of the deposited surfactant drop can be up to 10
times the center height of the rivulet. Consequently, we account for the presence
of the droplet in the initial height profile, as sketched in Fig. 4.4(b),

h̄(x̄ ≤ x̄0, ȳ, 0) = f̄(ȳ) + h̄dropf̄(ȳ)(x̄
2
0 − x̄2) (4.37)

h̄(x̄ > x̄0, ȳ, 0) = f̄(ȳ) (4.38)

where the parameter h̄drop was varied between 0 and 10. Because of the spreading
of the droplet, extreme film thinning - as observed for solid deposition - does not
occur and disjoining pressure effects need not to be considered. Consequently,
Eqs. (4.33,4.34) are replaced with

h̄(x̄, 1, t̄) = 0 (4.39)

∂Γ̄

∂ȳ
(x̄, 1, t̄) = 0 =

∂C̄

∂ȳ
(x̄, 1, t̄) (4.40)

The applicable BCs at x̄ = 0 are

∂Γ̄

∂x̄
(0, ȳ) =

∂C̄

∂x̄
(0, ȳ) = 0 (4.41)

The remaining BCs given in Eqs. (4.22-4.25) remain valid.

The system of equations (4.10-4.14) is solved, together with boundary and initial
conditions, numerically with the finite element software Comsol Multiphysics 3.5,
using transient analysis for the general form PDE equation mode.

4.3 Numerical results and discussion

4.3.1 Finite surfactant supply

In the case of finite surfactant supply, the surfactant depletes at the deposition
region as time progresses and redistributes along the rivulet surface and into the
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sub-phase, whereby the total surfactant amount

L
2∫

0

w
2∫

−w
2

Γ +

h∫
0

cdz

 dxdy =

L
2∫

0

w
2∫

−w
2

(Γ + hC) dxdy (4.42)

is conserved.
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Figure 4.3: Time evolution of (a) the centerline height profile h̄(x̄, ȳ = 0, t̄) and (b) the
dimensionless surfactant bulk concentration C̄(x̄, ȳ = 0, t̄) for the parameters settings
x̄0 = 1, ε = 0.01, h0 = 10 µm, h̄drop = 0, C̄0 = 1.4, K = 1000, β = 0.06, Pes = 1000,
Peb = 100, and Bo = 0.
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In Fig. 4.3(a,b) we present typical examples for the time evolution of the height
profile h̄(x̄, ȳ = 0, t̄) and surfactant bulk concentration C̄(x̄, ȳ = 0, t̄) at the rivulet
center line for x̄0 = 1, C̄0 = 1.4 and h̄drop = 0. The formation of a crater and a
propagating rim is qualitatively similar to insoluble surfactant case.

1 10 100 1000

1

10

0.1 1 10 100 1000

2

3

 Dimensionless time t

 

 

(b)

(a)

h
dropR

im
 p

os
iti

on
 x

ri
m

(t
)

 h
drop

= 10
           5
           0

 = 0.47

 = 0.35 h(x, y = 0, t = 0)
  

 

 

0= 0
C0= 0

h0 = 1
0 = 1.2 

C0 = 1.4

-y=1

-y=0

 

 

(c)

R
im

 h
ei

gh
t h

m
ax

(t
)

Dimensionless time t

 h
drop

= 10
           5
           0

(d)

 

Figure 4.4: (a) Rim position x̄rim(t̄) for different drop heights with parameter values
x̄0 = 1, Pes = 1000, ε = 0.01, Bo = 0. (b) Initial conditions of the centerline height
profile h̄(x̄, t̄ = 0) and the surface- and bulk concentrations for different values of h̄drop.
(c) Maximum height vs dimensionless time for rivulets with finite surfactant supply for
different values of surfactant drop height with x̄0 = 1, ε = 0.01, h0 = 10 µm, C̄0 = 1.4,
K = 1000, β = 0.06, Pes = 1000, Peb = 100, Bo = 0. (d) Fingering instability observed
for h̄drop = 5 at t̄ = 790.
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The time evolution of the rim position x̄rim is presented in Fig. 4.4(a). Within
certain time intervals, the rim position x̄rim(t) is well approximated by a power
law x̄rim ∼ t̄α. The spreading exponents α extracted from the data presented in
Fig. 4.4(a) fall in the range 0.35-0.47, depending on the aspect ratio ε and the
time interval for which a power law relation was fitted. For sufficiently large h̄drop,
the numerically obtained spreading exponents are in excellent agreement with the
experimental value of around 0.48 for solution deposition [86]. Moreover, we found
that the spreading exponent is independent of the initial concentration C̄0. Similar
observation was reported for the experimental results.

The solid lines in Fig. 4.4(c) represent the time evolution of the rim height
h̄max(t̄) for different values of h̄drop. The rapid increase of h̄max(t̄) for t̄ . 2 repre-
sents the rim formation in the early stage of the spreading process. Several local
maxima in h̄max(t̄) are observed. As in the case of insoluble surfactant discussed
in Chapter 3, the maximum around t̄ = 20 is due to the decay of transverse surface
tension gradients.

Figure 4.4(d) illustrates the occurrence of a fingering instability for h̄drop = 5
at time t̄ = 790. The general morphology and the formation of two main fingers
is in good qualitative agreement with the experimental observation in Fig. 4.5.

w 

Figure 4.5: Microscope image of fingering instability observed after solution deposition
of SDS onto glycerol rivulet for h0 = 1.63µm, w = 1.5 mm and t = 542 s. Image taken
from [86], courtesy of David Sinz.

For h̄drop = 5 time t̄ = 790 coincides with the onset of the late-stage increase of
h̄max as indicated with the downward-oriented arrow in Fig. 4.4(c) for the curve
with red circles. We therefore conclude that the spreading of the deposited droplet
and the subsequent finger formation enhance the surfactant transport across the
crater region and thereby boost the rim propagation. Larger values of h̄drop induce
larger increases in h̄max, and this increase in the rim height is also observed sooner.

4.3.2 Continuous surfactant supply

Figure 4.6 (a,b) shows the time evolution of the height profile h̄(x̄, ȳ = 0, t̄) and
surfactant bulk concentration C̄(x̄, ȳ = 0, t̄) at the rivulet center line, for param-
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Figure 4.6: (a) Evolution of centerline height profile h̄(x̄, ȳ = 0, t̄) for continuous surfac-
tant supply. (b) Dimensionless surfactant bulk concentration C̄(x̄, ȳ = 0, t̄). All results
have been obtained for parameter values x̄0 = 1, ε = 0.005, h0 = 10 µm, C̄0 = 11.2,
Γ̄0 = 0.92, K = 1000, β = 0.06, Pes = 1000, Peb = 100, Bo = 0.

eters x̄0 = 1 and C̄0 = 11.2. In Fig. 4.7 we present the dimensionless position
and maximum height of the rim for two different cases with values of x̄0 = 0 and
x̄0 = 1. The essential difference between these two cases is the absence or presence
of trapped liquid in the deposition region. In the case of x̄0 = 1 the spreading
exponent α = 0.41, fitted in the interval 500 < t̄ < 1000, is in excellent agreement
with the experimental results reported in [86].

The rim height evolution for x̄0 = 1 is qualitatively similar to the case of finite
supply. However, the maximum rim height in Fig. 4.7(b) is significantly larger



4.3. Numerical results and discussion 51

0.1 1 10 100 1000

1

10

0.1 1 10 100 1000

2

3

4

(a)

 

 

 Dimensionless time t

Sc
al

ed
 r

im
 p

os
iti

on
 x

ri
m

(t
)

 x
0
= 0

 x
0
= 1

 

 

D
im

en
si

on
le

ss
 h

ei
gh

t h
m

ax
(t

)

Dimensionless time t

 x
0
 = 0,  = 0.01

 x
0
 = 0,  = 0.005

 x
0
 = 1,  = 0.005 (b)

Figure 4.7: Dimensionless rim position and maximum height vs dimensionless time
for rivulets with continuous supply of soluble surfactant with h0 = 10 µm, C̄0 = 11.2,
Γ̄0 = 0.92, K = 1000, β = 0.06, Pes = 1000, Peb = 100, Bo = 0.

than in the case of h̄drop = 0 in Fig. 4.4(c). The crater formation and extreme
film thinning close to the perimeter of the surfactant deposition region at x̄ = x̄0

temporarily trap sub-phase liquid in that region [43]. Part of this trapped liquid is
continuously released in the later stages of the spreading process, and undergoes
a fingering instability as shown in Fig. 4.8. The rise in the rim height at t̄ = 400
in the case of x̄0 = 1 [as indicated by the downward-oriented arrow in Fig. 4.7(b)]
is preceded by this expulsion and subsequent finger formation. This process is
analogous to the phenomenon described in the previous section for the case of
solution deposition, with the temporarily trapped liquid playing the role of the
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deposited solution droplet.

 |                   |                   |                   |                   |                   |
2                                            3                                            4                    x                    5                                            6                                            7
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Figure 4.8: Numerical simulation of fingering instability for rivulets with continuous
supply of soluble surfactant with x̄0 = 1, ε = 0.01, h0 = 10 µm, C̄0 = 11.2, Γ̄0 = 0.92,
K = 1000, β = 0.06, Pes = 1000, Peb = 100, Bo = 0.

In the case of x̄0 = 0, the spreading exponent α = 0.32, extracted from the
data in Fig. 4.7(a) in the interval 10 < t̄ < 1000, is smaller than both for the case
of continuous supply and the case of finite surfactant supply with x̄0 = 1. For
x̄0 = 0, extreme thinning in the crater region near x̄ = 0 effectively cuts off the
surfactant supply to the rivulet. As a consequence, no fingering instability occurs
and no corresponding increase in the rim height is observed in Fig. 4.7(b).

As mentioned in Section 4.1, we aim at performing a quantitative comparison
of the numerical and experimental results. The early stages of the spreading dy-
namics are influenced by initial conditions and type of surfactant supply used in
the numerical model. The details of the surfactant deposition technique in the
experiments is also an important factor. Due to these particular reasons, we focus
on the later stages of the spreading dynamics. This choice is supported by the fact
that exponents from the model with area source of continuous surfactant supply,
extracted from the later stages are found to be in good agreement with the experi-
mental results. Moreover, in experiments a fingering instability is observed almost
directly after surfactant deposition, while in simulations the onset of its effect on
the rim height and propagation rate occurs relatively late, as shown in Figs. 4.7(b)
and 4.8. Thus, the early onset of the fingering instability in experiments may cause
experimental exponents to be larger than numerical ones at early times.

Previously, we concluded that appropriately chosen initial conditions result in
spreading exponents, e.g. derived from data in Fig. 4.7, that are comparable
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Figure 4.9: (a) Measurement (open symbols, courtesy of David Sinz) and simulations
of the temporal evolution of the maximum film height for h0 = 2.5µm, w = 1.5mm,
C̄0 = 11.2, x̄0 = 1, β = 0.11, Pes = 1000, Peb = 1000, Bo = 0. (b) Measurement
(open symbols) and simulations of the temporal evolution of the maximum film height
for h0 = 5.6µm, w = 1.5mm, C̄0 = 11.2, x̄0 = 0, β = 0.24, K = 10, Pes = 1000,
Peb = 1000, Bo = 0. (c) False color plot of the insoluble contaminant concentration
Γcnt at t = 115 s. The contour lines represent the height profile in the rim region. The
parameters used are the same as in (a).
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with the experimental results. We also compare the numerical and experimen-
tal rim height evolution and its non-monotonic variation. The open symbols in
Fig. 4.9(a,b) represent measurements of the time-evolution of the rim height h̄max

for two different values of h0. For h0 = 5.6µm, a slow increase for t < 10 s is
observed, followed by a more rapid increase around t = 20 s and flattening after
t = 400 s. For h0 = 2.5µm, a strong increase in hmax is observed for t < 20 s,
followed by a plateau region with a value of 3.6 h0 ≤ hmax ≤ 3.75 h0 and a decline
of the maximum film height for t & 200 s.

Since there is no experimental data available for the values of sorption rate con-
stants k1 and k2, we use the sorption coefficient K = k2tM as a fit parameter in
our model. Jensen and Grotberg report in [16] that rapidly soluble surfactant with
K = 1000 induces a much higher rim height than surfactant with slow sorption
kinetics, K = 1, in one-dimensional surfactant spreading. However, the compari-
son is limited to the very early stages of the spreading process. In Fig. 4.9(a) we
observe that larger K yields higher h̄max in the early stages of surfactant spreading
along a rivulet. However, the effect of K diminishes at later times for t & 100 s.

For suitably chosen K, the numerical results agree very well with the experi-
mental data, indicated by the solid circles in Fig. 4.9(a,b), at early times. How-
ever, quantitative differences are observed later. The fitted values of K result
in k2 = 1.24 seconds for h0 = 2.5µm, and k2 = 0.11 seconds h0 = 5.6µm, al-
though k2 as a material parameter should be independent of h0. An explanation
for this discrepancy, as detailed in Chapter 5, is found in vertical concentration
non-uniformities in the rim region that are not accounted for in the lubrication
model.

4.3.3 Effect of pre-contamination

Since the presence of surface-active contamination often cannot be avoided during
the experiments, Dussaud et al. [28] studied the influence of insoluble surface-
active contaminants present at the liquid-air interface prior to the surfactant de-
position. They found that a low level of pre-contamination has almost no effect
on the spreading exponent for an axisymmetric geometry, but causes a noticeable
reduction of the rim height.

We implemented pre-contamination in our model as an initially uniform concen-
tration Γcnt. We assume that the contaminants exhibit the same equations of state
as the soluble system SDS/glycerol or the insoluble system oleic acid/glycerol. We
consider the following three cases:

• a contamination level of 1% of the CMC of SDS in glycerol;

• a contamination level of 10% of the CMC of SDS in glycerol;

• a contamination level of 2% of the surface concentration scale Γc, defined in
Chapter 3, for oleic acid on glycerol.

Results for pre-contaminated surfactant spreading in a 1D planar geometry are
presented in Fig. 4.10. A higher level of contamination lowers the peak value of
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Figure 4.10: Rim height evolution h̄max(t̄) for surfactant spreading with pre-
contamination in a one-dimensional Cartesian geometry for h0 = 5.6µm, C̄0 = 11.2,
x̄0 = 0, β = 0.11, Pes = 1000, Peb = 1000, and Bo = 0.
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Figure 4.11: Experimental rivulet center-line height profiles for various times after
deposition of a pellet of compressed SDS powder onto a glycerol rivulet of initial film
height h0 = 2.5µm. Red arrows indicate the peak in front of the rim which is possible
caused by contamination. Image taken from [86], courtesy of David Sinz.

the rim height at later times, whereby the insoluble contaminant has a stronger
effect than the soluble one.

This finding motivated us to inquire whether surface-active contamination could
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possibly explain the discrepancy between the experimental and numerical results
for the rim evolution in Fig. 4.9. Indeed, the curves depicted with solid circles
and triangles indicate that an insoluble pre-contamination slightly lowers the rim
height at later stages in Fig. 4.9(b), but this is preceded by an overshoot in h̄max

as marked by the arrow.

Lateral surface tension gradients occur during surfactant spreading on uncon-
taminated rivulets as a consequence of the non-uniform transverse height profile.
Liquid is pushed from the center of the rivulet to its edges, corresponding to a
flattening of the height profile. When an insoluble contaminant is present, the
contaminant concentration in the vicinity of the rim is higher near the rivulet
edges than in the rivulet center, as illustrated in Fig. 4.9(c) for an initial insolu-
ble contamination level of 0.02Γc. This concentration profile induces a transverse
surface tension gradient that pushes liquid from the edges towards the center of
the rivulet and causes the overshoot in Fig. 4.9(b) marked by the arrow.

A shallow local maximum ahead of rim is observed in Fig. 4.9(c). This maximum
is absent in simulations without contamination, but is frequently observed in ex-
periments, as indicated by the red arrows in Fig. 4.11(a). Despite this qualitative
agreement, we conclude, nevertheless, that contamination alone most probably
cannot explain the difference between the experimental and numerical rim height
profiles in Fig. 4.9.

4.4 Summary and conclusions

We studied the spreading of the soluble surfactant SDS on narrow glycerol rivulets,
which experimentally can be made by chemical surface patterning. Our numerical
model was based on the lubrication approximation and the assumption of vertically
uniform concentration profiles. We monitored the evolution of the liquid height
profile after surfactant deposition at the liquid-air interface.

The most prominent morphological feature of the spreading process is the for-
mation of a local maximum in film thickness and its propagation along the rivulet.
Its position is well approximated by power-laws x ∼ tα. A proper choice of initial
and boundary conditions in the numerical models resulted in spreading exponents
that are in excellent agreement with the experimental results. The influence of
fingering instabilities, commonly observed during the spreading process, on the
rim shape and propagation rate was discussed.

The rim height profiles deduced from experiments are in excellent agreement
with numerical simulations based on the lubrication approximation at early times,
but systematically lower at later stages. The origin of this discrepancy resides in
vertical concentration non-uniformities in the rim region that are not accounted
for in the lubrication model.

Deformable-domain simulations, based on the full Navier-Stokes and convection-
diffusion equations for the bulk liquid, are needed when utilization of lubrication
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approximation is not possible. In the next chapter, we describe these simulations
in details as well as the effects non-uniform vertical concentration profiles have on
spreading dynamics.





Chapter 5

Slow-diffusion soluble
surfactant spreading at
initially flat liquid-air
interfaces

5.1 System description for 1D rectilinear spread-
ing

The assumption of fast vertical diffusion, used in Chapter 4 for modeling of soluble
surfactant spreading,

td
tM

≡ h2
0

Db

4h0∆γm
µw2

= ε2 · Peb ≪ 1 (5.1)

is only valid for sufficiently thin films and sufficiently large diffusion coefficients,
such that the bulk concentration is, to a good approximation, independent of the
vertical coordinate z. For a soluble surfactant, the rim height can be up to 5 times
the initial rivulet height, such that Eq. (5.1) may not hold in the rim region even
if it is fulfilled in the crater region.

Numerical methods for interfacial flows involving soluble surfactants are com-
putationally quite challenging. A diffuse interface method is presented by Van der
Smaan and Van der Graaf [89] for surfactant adsorption onto liquid interfaces. A
diffuse-interface implementation including the effects of advection, diffusion and
bulk-surface exchange of soluble surfactants was introduced by Teigen et al. [90]
together with a finite difference technique to model two-phase flows. Their ap-
proach is limited to relatively low Peclet numbers. High Peclet numbers pose a
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computational challenge due to the occurrence of concentration boundary layers.
Recently, Booty and Siegel presented a hybrid numerical method incorporating
a perturbation analysis of the layer and a full numerical solution of boundary
problem [91].

We consider the one-dimensional spreading of a soluble surfactant, characterized
by slow diffusion, on a Newtonian liquid film of the height h0. In the case of planar
spreading, surfactant is deposited essentially uniformly in a strip of width 2L0 and
infinite length. We adopt the rectilinear coordinates (x, y, z) with the origin taken
at the solid-liquid interface in the center of the surfactant deposition area.

The material system studied in this chapter is the same as the one described
in Chapter 4: sodium dodecyl sulfate spreading on glycerol. Consequently, the
equation of state used here will be the same as previously

γ = γ0 +RTΓ∞ ln

(
1− Γ

Γ∞

)
(5.2)

where γ0 = 63.5 mN/m is the surface tension of pure glycerol, R is the universal
gas constant, T the absolute temperature, and the maximum surfactant coverage
at the interface is Γ∞ = 4.2 · 10−6 mol/m2.

5.2 Model with the Arbitrary Lagrangian-Eulerian
method

To evaluate the impact of vertical concentration non-uniformities, we model sur-
factant spreading without utilizing the lubrication approximation. Thus, the re-
sulting model can be used for any liquid film thickness and for soluble surfactants
with arbitrary diffusion coefficients. We implement the deformability of the com-
putational domain using the Arbitrary Lagrangian-Eulerian (ALE) method. This
approach allows for a time-dependent mesh that is suitable for solving problems
with moving interfaces. We implement a two-dimensional model for surfactant
spreading at liquid-air interface using this method, since computational costs of
three-dimensional ALE calculations are too high given the small aspect ratio of
our systems.

The flow of the liquid sub-phase is modeled with the full Navier-Stokes and
continuity equations for an incompressible Newtonian liquid

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u+ ρg (5.3)

∇ · u = 0 (5.4)

where u = (ux, uy, uz) is the fluid velocity, p is the pressure, and ρ and µ are the
fluid density and viscosity, respectively.
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The surfactant bulk concentration c(x, z, t) evolves according to the convection
and diffusion equation

∂c

∂t
+ u · ∇c = Db∇2c (5.5)

and surface transport of surfactant Γ(x, z, t) adsorbed at the liquid-air interface is
described by

∂Γ

∂t
+∇s · (Γu) = Ds∇2

sΓ + J (5.6)

where Db and Ds are the bulk and interface diffusion coefficients, respectively,
J ≡ k1cs − k2Γ is the surfactant flux, with cs(x) = c(z = h(x)) being the bulk
concentration evaluated at the surface, and k1;2 are the adsorption- and desorption
rate constants corresponding to a linearized Langmuir adsorption kinetics model.

Using the surface gradient operator ∇s defined in Appendix A, Eq. (5.6) is
reformulated for a one-dimensional domain ζ ∈ [0, L

2 ]. This domain represents the
interface via the parametrization

x = ζ, z = h(ζ) (5.7)

with outward unit normal vector

n =
1

N

(
−∂h

∂ζ
, 1

)
, where N ≡

√
1 +

(
∂h

∂ζ

)2

(5.8)

Taking Eqs. (5.6-5.8) into account, we derive the one-dimensional evolution
equation in the limit of vanishing surface diffusion

∂Γ

∂t
+

1

N2

[
ux

∂Γ

∂ζ
+ Γ

∂ux

∂ζ

]
+

1

N2

∂h

∂ζ

[
uz

∂Γ

∂ζ
+ Γ

∂uz

∂ζ

]
= J (5.9)

The velocity gradients are extruded from the interface h(x, t) to the interval
[0, L/2] as follows

∂ux

∂ζ
≡
(
∂ux

∂x
+

∂h

∂x

∂ux

∂z

)∣∣∣∣
z=h

(5.10)

∂uz

∂ζ
≡
(
∂uz

∂x
+

∂h

∂x

∂uz

∂z

)∣∣∣∣
z=h

(5.11)

The BCs for the Navier Stokes equation are

ux(z = 0) = 0 = uz(z = 0) (5.12)

ux(x = 0) = 0 = ux(x = L
2 ) (5.13)

∂uz

∂x
(x = 0) = 0 =

∂uz

∂x
(x = L

2 ) (5.14)
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representing no-slip and no-penetration at the solid-liquid interface as well as no
flux or symmetry at the lateral domain boundaries. In addition, surface tension
gradients at the interface are taken into account via the weak form boundary
condition [92] ∫

w · σ · n ds =

∫
γ∇s ·w ds (5.15)

where γ is the surface tension, w denotes a test function, and σ is the stress tensor.

The BCs for the surfactant surface and bulk concentrations are

∂c

∂z
(z = 0) = 0 (5.16)

−Db(n · ∇c) = k1cs − k2Γ at z = h (5.17)

∂c

∂x
(x = 0) = 0 =

∂c

∂x
(x = L

2 ) (5.18)

∂Γ

∂ζ
(ζ = 0) = 0 =

∂Γ

∂ζ
(ζ = L

2 ) (5.19)

Equation (5.16) indicates that the surfactant does not adsorb at the solid-liquid
interface, while Eq. (5.17) describes bulk-surface exchange. Equations (5.18-5.19)
are no-flux or symmetry conditions at the lateral domain boundaries.

In addition, we define the initial surface and bulk concentrations for finite sur-
factant supply as follows

Γ(x, 0) = Γ0(1− tanh [B(x− L0)]) (5.20)

c(x, 0) = c0(1− tanh [B(x− L0)]) (5.21)

where the parameter B ≡ 10 defines the steepness of the initial concentration
curve, and Γ0 and c0 are the initial surface and bulk concentrations in the depo-
sition region.

The system of equations consisting of (5.3-5.5) and (5.10) is solved numerically
with the finite element software Comsol Multiphysics 3.5, using transient analysis
and ALE mode.

5.3 Weak-diffusion lubrication model

A model based on the lubrication approximation can still be utilized for modeling
surfactant spreading subject to a weak diffusion assumption of Peb ∼ O(ε−2) [74].
A restriction of the model, however, is that the vertical concentration profile is of
parabolic shape. We present this model here for comparison with the ALE model
that fully resolves arbitrary concentration profiles across film thickness.

When soluble surfactant spreading is characterized by weak bulk diffusion with
Peb ∼ O(ε−2), the convection and diffusion equation Eq. (5.5) is simplified, after



5.3. Weak-diffusion lubrication model 63

scaling, to [74]
∂C̄

∂t̄
+ ū

∂C̄

∂x̄
+ w̄

∂C̄

∂z̄
=

1

εPeb

∂2C̄

∂z̄2
(5.22)

with the boundary conditions

J = K(C̄ − Γ̄) = −∂C̄

∂z̄

1

ε2Pebβ
, at z̄ = h̄(x, t) (5.23)

∂C̄

∂z̄
= 0, at z̄ = 0 (5.24)

The scaling formulas used to derive the above equations are the following

x̄ ≡ x

L0
, ȳ ≡ y

L0
, t̄ ≡ t

tM
≡ t

h0∆γm
µL2

0

(5.25)

p̄ ≡ pL2
0

h0∆γm
, Γ̄ ≡ Γ

Γ∞
, C̄ ≡ k1C

k2Γ∞
(5.26)

The surfactant concentration is expanded into a sum of two components

C̄ = ā0(x̄, t̄) + ā2(x̄, t̄)

(
z̄2

h̄2
− 1

3

)
(5.27)

where the first component is independent of z, thus represents the vertically av-
eraged concentration, and the second component yields zero when vertically aver-
aged.

Applying boundary conditions (5.24), we obtain

ā2(x̄, t̄) =
K(Γ̄− ā0)

2
[
K/3 + 1/(ε2Pebβh̄)

] (5.28)

An evolution equation for ā0 is then derived, and together with the remaining
lubrication equations, similarly as in Chapter 4, it forms the following system

∂h̄

∂t̄
+ ∇̄

[
1

2
(h̄2∇̄γ̄)− ε2

3
h̄3∇̄p̄

]
= 0 (5.29)

∂Γ̄

∂t̄
+ ∇̄

[
h̄Γ̄∇̄γ̄ − ε2

2
h̄2Γ̄∇̄p̄− 1

Pes
∇̄Γ̄

]
= K

(
ā0 − Γ̄

)
+

K2(Γ̄− ā0)

3
[
K/3 + 1/(ε2Pebβh̄)

] (5.30)

∂ā0
∂t̄

+

[
h̄

2
∇̄γ̄ − ε2

3
h̄2∇̄p̄

]
∇̄ā0

=
K(Γ̄− ā0)

ε2Pebh̄2
[
K/3 + 1/(ε2Pebβh̄)

] (5.31)

p̄ = −γ̄∇̄2h̄+ Bo h̄+ Π̄ (5.32)

γ̄ =
1

∆γm

(
γ0 +RTΓ∞ ln

(
1− Γ̄

))
(5.33)
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where we introduced dimensionless parameters

ε ≡ h0

L0
, Bo ≡ ρgL2

0

∆γm
, Pes ≡

h0∆γm
µDs

(5.34)

Peb ≡
h0∆γm
µDb

, β ≡ k1
k2h0

, K ≡ k2tM (5.35)

The boundary conditions are

∂Γ̄

∂x̄
(0, t̄)=0,

∂h̄

∂x̄
(0, t̄)=0,

∂p̄

∂x̄
(0, t̄)=0 (5.36)

Γ̄(L̄, t̄)=Γ̄d, h̄(L̄, t̄)=1, p̄(L̄, t̄)=0 (5.37)

where L̄ is the right boundary of the computational domain.

Similarly to Chapter 2, equations from weak-diffusion lubrication model is solved
numerically with the finite element software Comsol Multiphysics 3.5, using tran-
sient analysis for the general form PDE equation mode.

5.4 Results and discussion: Effect of vertical con-
centration profile

To elucidate the influence of non-uniform vertical concentration profiles on the rim
height evolution, we perform two-dimensional simulations of surfactant spreading
accounting for domain deformability using the ALE method. First, we validate the
model results by comparing them to lubrication model for which the assumption
of fast vertical diffusion ε2 ·Peb ≪ 1 holds. Figure 5.1 reveals a perfect agreement
of the two models for an initial film height of 10 microns and several values of the
bulk diffusion coefficient Db.

Figure 5.2 shows the height profile h(x, t = 10 s) and concentration distribu-
tion c(x, z, t = 10 s) for different values of the bulk diffusion coefficient Db and
finite surfactant supply obtained from the ALE based model. A smaller coefficient
Db results in a significantly reduced rim height. Figure 5.2(c) shows the bulk
concentration profiles at the rim positions c(xrim, z, t = 10s) for Db = 10−9 and
10−11 m2/s, which is essentially uniform for the larger and strongly non-uniform
for the smaler value of Db.

In the case of an initial film thickness of h0 = 10 µm, the assumption of fast
vertical diffusion ε2 ·Peb ≪ 1 is not valid anymore for diffusion coefficients smaller
than Db ≈ 3 · 10−10 m2/s. We want to evaluate whether the lubrication model
based on assumption of Peb ∼ O(ε−2) and parabolic vertical concentration, defined
in Eq. (5.27), provides an accurate description of spreading dynamics. A limitation
of this model is that vertical concentration gradients are permitted only when there
is a non-zero flux J . In other words, the moment interface and sub-surface are
equilibrated, concentration gradients in the bulk disappear.
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Figure 5.1: Dimensionless rim height h̄max(t̄) as extracted from 2D ALE simulations
(solid symbols) and 1D simulations using the lubrication approximation (open symbols)
for different values of Db with parameters h0 = 10 µm, x0 = 1 mm, c0 = 0.08 mol/l,
k2 = 1.4 s, k1 = 8.2 · 10−7 m/s.
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Figure 5.2: (a,b) Height profile and concentration distribution (superimposed colors)
at t = 10 s as extracted from 2D ALE simulations for (a) Db = 10−9 m2/s and (b)
Db = 10−11 m2/s and parameter settings h0 = 10µm, k2 = 1.4 s−1 and k1 = 8·10−7 m/s.
(c) Vertical concentration profile c(x = xrim, z) at the rim position at t = 10 s extracted
from 2D ALE simulations for Db = 10−9 m2/s and 10−11 m2/s.

A comparison of the rim height evolution extracted from 2D ALE and 1D lu-
brication simulations with parabolic vertical bulk concentration is illustrated in
Fig. 5.3 for Db = 10−11 m2/s. For comparison, we also include results from the
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Figure 5.3: Dimensionless rim height h̄max(t̄) as extracted from 2D ALE simulations
(solid symbols) and 1D simulations using the lubrication approximation (open symbols)
for Db = 10−11 m2/s and parameter settings h0 = 10µm, k2 = 1.4 s−1 and k1 =
8 · 10−7 m/s.

lubrication model based on uniform vertical concentration, although this model is
not valid for a diffusion coefficient of such a low value. A significant reduction in
h̄max is observed for the full ALE solution relative to the lubrication results for
Db = 10−11 m2/s. Thus, lubrication model with parabolic vertical bulk concen-
tration is not capable of reproducing the ALE based model results.

When the value of Db is sufficiently large such that the vertical diffusion time
scale td = h2

0/Db is smaller than the Marangoni time scale, the bulk concentration
remains essentially uniform in the vertical direction. This allows surfactant from
the interface to effectively desorb into the entire sub-phase film thickness. On the
other hand, for small values of Db, the bulk concentration has insufficient time to
equilibrate, which leads to vertical concentration gradients as shown in Fig. 5.2(c).
Consequently, the bulk concentration at the surface is higher, and the amount of
surfactant desorbed from the interface is reduced for smaller Db. This means that
for dynamical reasons the surfactant effectively partitions less into the bulk, and
exhibits, similarly to insoluble surfactants, significantly lower rim height.

Assuming uniform vertical concentration profiles, Jensen and Grotberg [16] stud-
ied the effect of the surface-bulk partitioning parameter β, which they termed de-
gree of solubility, on the rim height for the two cases of β. First case with β → ∞
– an effectively insoluble surfactant, and second case with β = 1 – a ’highly solu-
ble’ surfactant. They observed that changing the value of β = 1 to ∞ induced a
significant reduction in the rim height h̄max.

In our simulations, the parameter β varies only due to varying initial height
h0, since the ratio k1/k2 is fixed for a specific surfactant. However, we argue
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that the imbalance in time-scales td > tM in our ALE-based simulations ’dynam-
ically’ induces a similar effect as increasing β and thus leads to a reduction in
the rim height. We thus conclude that accounting for vertical concentration non-
uniformities may significantly improve the agreement between numerical and ex-
perimental rim height profiles for a soluble surfactant spreading at non-flat liquid-
air interfaces.

5.5 Summary and conclusions

In this chapter, we discussed the spreading of a soluble surfactant with slow dif-
fusion coefficient on a liquid-air interfaces by employing two different numerical
models. The first model is based on the full Navier-Stokes equation and convection-
diffusion equations for bulk- and surface surfactant transport, accounts for domain
deformability and allows for vertically non-uniform concentration profiles. The sec-
ond model is based on the lubrication approximation and the assumption of ver-
tically parabolic concentration profiles. We monitored the evolution of the liquid
height profile after non-uniform surfactant deposition at the liquid-air interface.

The most prominent morphological feature of the spreading process is the for-
mation of a local maximum in film thickness and its propagation along the rivulet.
The two studied models give different results with respect to height morphology.
The origin of this discrepancy was identified with the help of deformable-domain
simulations and resides in vertical concentration non-uniformities in the rim region
that are not accurately accounted for in the lubrication model.





Chapter 6

Soluble surfactant spreading
at liquid-liquid interfaces

6.1 System description

After our study of insoluble/soluble surfactant spreading at liquid-air interfaces,
the next step is to consider surfactant spreading at liquid-liquid interfaces. As a
first step towards accounting for confinement in porous media, we study two liquids
between flat solid plates and assume that surfactant is soluble in the lower liquid
phase. For sufficiently thin films and surfactants with fast diffusion, we employ a
similar approach as in the lubrication model used for the spreading along liquid-
air interface (Chapter 4). For thicker films and/or slow diffusion the Arbitrary
Lagrangian-Eulerian (ALE) method is used (Chapter 5).

d h
0

μ   ρ
2 2
,

μ   ρ
1 1
,

Figure 6.1: Geometry for two immiscible liquids between flat solid plates.

In this chapter we consider two systems: 1D rectilinear spreading along an ini-
tially planar liquid-liquid interface and 2D spreading with the lower liquid confined
to a hydrophilic stripe in a form of a rivulet. Figure 6.1 depicts the 1D geometry
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of two liquids with continuous interface between parallel and flat solid plates. We
denote the viscosity of the lower liquid as µ1, and the viscosity of the upper liquid
as µ2. The ratio of the viscosities of the liquids is defined as µ21 ≡ µ2/µ1. Anal-
ogously, we define the density ratio ρ21 ≡ ρ2/ρ1. The distance between the solid
plates is d. We assume that the liquid-liquid interface is flat initially with the film
thickness of the lower liquid denoted by h0. Surfactant is deposited as a strip of
width 2L0 and infinite length.

y

z

w/2-w/2

h
0

x

d

x
0

Figure 6.2: Sketch of the rivulet geometry with initial soluble surfactant distribution
for two liquids between solid plates. For symmetry reasons only half of the rivulet is
shown.

To study the effect of spatial confinement, we consider a thin liquid film (rivulet)
that is chemically confined to a hydrophilic stripe of width w and length L on a
substrate as shown in Fig. 6.2. A second flat and parallel substrate is located at
a distance d and the space between lower liquid surface and second substrate is
filled with an immiscible liquid. Surfactant is deposited in the center region of the
rivulet, i.e. [−x0, x0]× [−w/2, w/2].

For comparison with experimental data, we consider the following material sys-
tem: glycerol as the lower liquid and dodecane as the upper liquid. The viscosity
ratio for this system is µ21 = 0.002, while the density ratio is ρ21 = 0.8. Our sur-
factant of choice is sodium dodecyl sulfate (SDS) that is soluble in glycerol. The
non-linear equation of state derived from the Gibbs adsorption isotherm follows
as

γ = γ0 +RTΓ∞ ln

(
1− C

k2Γ∞/k1 + C

)
(6.1)

where C is the equilibrated bulk concentration, R is the universal gas constant
and T the absolute temperature, Γ∞ is the maximum surface coverage, and k1,2
are adsorption and desorption rate constants, respectively.
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We use Eq. (6.1) to fit the experimental data in Fig. 6.3 for the dependence
of surface tension on bulk concentration, γ(C), which yields the parameter values
Γ∞ = 4 · 10−6 mol/m2 and k2/k1 = 2.27 · 106 m−1. Since we do not take into
account the presence of surfactant micelles, the validity of this model is restricted
to concentrations below the so-called critical micelle concentration. The maximum
spreading pressure is determined as ∆γm = 20 mN/m.
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Figure 6.3: Interfacial tension of glycerol/dodecane as a function of bulk concentrations
of SDS in glycerol. Symbols represent experimental data by David Sinz. The solid line
represents the fit using Eq. (6.1).

6.2 Governing equations and boundary conditions

6.2.1 Lubrication model

A derivation of the lubrication equation for the liquid-liquid interface h(x, t) in
the absence of surfactants is presented in [87]. The model is valid for systems with
small aspect ratio ε ≡ h0/L0 ≪ 1, where L0 is the length-scale of the surfactant
deposition area. For the rivulet geometry the characteristic length-scale is chosen
to be L0 = w/2. As in the case of a liquid-air interface, we extend the model
by adding convection-diffusion equations for surfactant surface and bulk transport
and a constitutive relation for dependence of surface tension on concentration.

Using the scaled variables

x̄ ≡ x

L0
, ȳ ≡ y

L0
, h̄ ≡ h

h0
, t̄ ≡ t

tM
≡ t

h0∆γm
µ1L2

0

(6.2)

p̄ ≡ pL2
0

h0∆γm
, Γ̄ ≡ Γ

Γ∞
, C̄ ≡ k1C

k2Γ∞
(6.3)
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the dimensionless system of equations for rectilinear surfactant spreading at
liquid-liquid interface is

∂h̄

∂t̄
+ ∇̄

[
Q2∇̄γ̄ +Q1ε

2∇̄p̄
]
= 0 (6.4)

∂Γ̄

∂t̄
+ ∇̄

[
R2Γ̄∇̄γ̄ −R1ε

2Γ̄∇̄p̄− 1

Pes
∇̄Γ̄

]
= K

(
C̄
(
1− Γ̄

)
− Γ̄

)
(6.5)

∂C̄

∂t̄
+
[
Q2∇̄γ̄ +Q1ε

2h̄2∇̄p̄
]
∇̄C̄ − 1

Pebh̄
∇̄
[
h̄∇̄C̄

]
=

βK

h̄

(
Γ̄− C̄

(
1− Γ̄

))
(6.6)

p̄ = −γ̄∇̄2h̄+ Bo(1− ρ) h̄+ Π̄ (6.7)

γ̄ =
1

∆γm

(
γ0 +RTΓ∞ ln

(
1− Γ̄

))
(6.8)

where Π̄ is the disjoining pressure described in Section 4.2, and the following
functions have been introduced

Q1(h̄) ≡ h̄3(d− h̄)3(d+ h̄(µ21 − 1))/(3D) (6.9)

Q2(h̄) ≡ R1(h̄) = h̄2(d− h̄)2(h̄2(µ21 − 1)− d(d− 2h̄))/(2D) (6.10)

R2(h̄) ≡ h̄(d− h̄)((d− h̄)3 + h̄3µ21)/D (6.11)

D ≡ (d− h̄)4 + hµ21(h̄
3(µ21 − 2) + 4dh̄2 − 6d2h̄+ 4d3) (6.12)

The dimensionless parameters were introduced above

ε ≡ h0

L0
, Bo ≡ ρgL2

0

∆γm
, Pes ≡

h0∆γm
µ1Ds

(6.13)

Peb ≡
h0∆γm
µ1Db

, β ≡ k1
k2h0

, K ≡ k2tM (6.14)

As boundary and initial conditions we use the same expressions as for finite sup-
ply or continuous supply defined in Section 4.2.1 and Section 4.2.2 for soluble
surfactant spreading at liquid-air interface.

6.2.2 Model with Arbitrary Lagrangian-Eulerian method

The assumption of fast vertical diffusion tdiffusion/tMarangoni ≪ 1 is only valid for
sufficiently thin films and large diffusion coefficients, such that the bulk concen-
tration is, to a good approximation, independent of the vertical coordinate z. To
evaluate the consequences of vertical concentration non-uniformities, we model
surfactant spreading without utilizing the lubrication approximation.
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Systems with domain deformability are modeled in Comsol Multiphysics using
the Arbitrary Lagrangian-Eulerian (ALE) method. This approach allows moving
meshes suitable for solving problems with moving liquid-liquid interface. Using
this method, we implement a two-dimensional model for surfactant spreading at
liquid-liquid interfaces for systems with small aspect ratio, since computational
costs of three-dimensional ALE calculations are too high. However, 3D modeling
of thicker films is possible with this method.

The flow of the liquid sub-phases are modeled with the full Navier-Stokes equa-
tions

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u+ ρg (6.15)

∇ · u = 0 (6.16)

where u = (ux, uy, uz) is the fluid velocity, p is the pressure, and ρ = ρ1,2 and
µ = µ1,2 are the upper or lower fluid density and viscosity, respectively.

The surfactant bulk concentration in the lower liquid evolves according to the
convection and diffusion equation

∂c

∂t
+ u · ∇c = Db∇2c, (6.17)

where Db is the bulk diffusion coefficient, and surface transport of surfactant
adsorbed at the liquid-air interface is described by

∂Γ

∂t
+∇s · (Γu) = Ds∇2

sΓ + J (6.18)

where Db and Ds are the bulk and interface diffusion coefficients, J is the surfac-
tant flux between interface and bulk, and ∇s is the surface gradient operator.

If liquid-liquid interface is represented via a parametrization of the form {x =
ζ, z = h(ζ)}, which precludes overhanging multi-valued interface locations de-
scribed by a slope of the interface smaller than 90o everywhere, then equation (6.18)
can be reformulated for a one-dimensional domain ζ ∈ [0, L

2 ] as following

∂Γ

∂t
+

1

N2

[
ux

∂Γ

∂ζ
+ Γ

∂ux

∂ζ

]
+

1

N2

∂h

∂ζ

[
uz

∂Γ

∂ζ
+ Γ

∂uz

∂ζ

]
= J (6.19)

The velocity gradients are extruded from the interface h(x, t) to the interval [0, L
2 ]

as follows

∂ux

∂ζ
≡
(
∂ux

∂x
+

∂h

∂x

∂ux

∂z

)∣∣∣∣
z=h

(6.20)

∂uz

∂ζ
≡
(
∂uz

∂x
+

∂h

∂x

∂uz

∂z

)∣∣∣∣
z=h

(6.21)
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If the above mentioned parametrization of the free interface is not possible, we
apply a weak formulation, i.e an integral form, of the interface equation∫

∂Ω(t)

Γ̃
∂Γ

∂t
ds =

∫
∂Ω(t)

∇sΓ̃ ·
(
Γu−Ds∇sΓ̃

)
ds

where ∂Ω(t) represents the liquid-liquid interface, and Γ̃ is a test function in Com-
sol Multiphysics. Details of the weak form implementation of convective-diffusive
transport at free interfaces in Comsol can be found in [88]. Even though the work
is limited to insoluble surfactants at liquid-air interface, we can use the approach
in our modeling.

The boundary conditions for the Navier Stokes equation are

ux(z = 0) = 0 = uz(z = 0) = ux(z = d) = 0 = uz(z = d) (6.22)

ux(x = 0) = 0 = ux(x = L
2 ) (6.23)

∂uz

∂x
(x = 0) = 0 =

∂uz

∂x
(x = L

2 ) (6.24)

representing no-slip and no-penetration at the solid-liquid interface as well as no
flux or symmetry at the lateral domain boundaries. In addition, surface tension
gradients at the interface are taken into account via the weak form boundary
condition ∫

w · (σ
1
− σ

2
) · n ds =

∫
γ∇s ·w ds (6.25)

where γ is the surface tension, w denotes a test function, and σ
1,2

are the stress

tensors for liquid 1 and liquid 2, respectively.

The BCs for the surfactant surface and bulk concentrations are

∂c

∂z
(z = 0) = 0 (6.26)

−Db(n · ∇c) = k1cs − k2Γ at z = h (6.27)

∂c

∂x
(x = 0) = 0 =

∂c

∂x
(x = L

2 ),
∂Γ

∂ζ
(ζ = 0) = 0 =

∂Γ

∂ζ
(ζ = L

2 ) (6.28)

Equation (6.26) implies no adsorption at the solid-liquid interface, Eq. (6.27)
describes bulk-surface exchange. Equations (6.28) are no-flux or symmetry condi-
tions at the lateral domain boundaries.

For initial conditions we use the same expressions as for finite supply or con-
tinuous supply defined in Section 4.2.1 and Section 4.2.1 for soluble surfactant
spreading at liquid-air interface.
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6.3 Results and discussion

We begin with one-dimensional spreading at the interface of two liquids between
parallel plates. Figure 6.4 shows the time evolution of the height profile for a
system with finite surfactant supply of length x0 = 0.75 mm and input parameters:
h0 = 10µm, d = 10h0, ρ21 = 0.8 and µ21 = 0.2, which means that liquid 2 is less
viscous than liquid 1. We use the same diffusion coefficient D for interface and
bulk of about 2.3 · 10−10 m2/s.
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Figure 6.4: Dimensionless height profile for liquid-liquid interface with finite surfactant
supply and h0 = 10µm, d = 10, µ = 0.2, ρ21 = 0.8, x0 = w/2, C0 = 0.055 mol/l and
Γ0 = 2.4 · 10−5 mol/m2, k2 = 1.4 1/s.

If we make the upper liquid less viscous, the behavior of the height profile
changes. When viscosity of liquid 2 is smaller, the advancing rim at a certain
time becomes wider. For a more systematic study, we plot in Fig. 6.5 the speed
of advance of the rim and in Fig. 6.6 the rim height for different values of µ21 and
both finite and continuous at the interface surfactant supply.

We also conclude that at later stage of height evolution, the initial film height
h0 has no effect on the power law behavior of the rim position, but smaller initial
height results in a slightly higher rim. Larger values of µ21 give slightly lower
spreading exponents. The model with continuous surfactant supply of length x0 =
0.75 mm only at the interface (and no surfactant present in the bulk at t = 0)
yields a higher spreading exponent at the later stage and a lower rim height overall.
At early times there is a distinct plateau region in both rim position and height,
which we attribute to the effects of surfactant desorption from the interface into
the bulk, where no surfactant was present initially.

To elucidate the influence of non-uniform vertical concentration profiles on the
rim height evolution, we perform two-dimensional simulations of surfactant spread-
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Figure 6.5: Rim position (closed symbols) as a function of dimensionless time for liquid-
liquid interface with finite surfactant supply and d = 10h0, ρ21 = 0.8, C0 = 0.055 mol/l
and Γ0 = 2.4 · 10−5 mol/m2, k2 = 1.4 s−1. Open symbols represent rim position for
continuous surfactant supply of length x0 at the interface as defined by Eq. (4.17) and
no surfactant present in the bulk at t = 0.

0.1 1 10 100
1

2

3

4

5

6

7  =0.002, h
0
=7.5 m

 =0.002, h
0
=3.75 m

=0.2, h
0
=7.5 m

 ConSup, =0.002, h
0
=7.5 m

Sc
al

ed
 r

im
 h

ei
gh

t h
m

ax
/h

0

Scaled time t

Figure 6.6: Rim height (closed symbols) as a function of dimensionless time for liquid-
liquid interface with finite surfactant supply and d = 10h0, ρ21 = 0.8, C0 = 0.055 mol/l
and Γ0 = 2.4 · 10−5 mol/m2, k2 = 1.4 s−1. Open symbols represent rim height for
continuous surfactant supply of length x0 at the interface as defined by Eq. (4.17) and
no surfactant present in the bulk at t = 0.

ing accounting for domain deformability using the ALE method. We use the value
µ21 = 0.002 for viscosity ratio, which represents the material system of glycerol
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as lower liquid and dodecane as upper liquid. For such low viscosity ratio we ex-
pect results similar to surfactant spreading at a liquid-air interface presented in
Chapter 5.

Figure 6.7: Height profile and concentration distribution (superimposed colors) at t =
5 and 50 s as extracted from 2D ALE simulations with finite surfactant supply and
parameter settings Db = 10−12 m2/s, h0 = 10µm, k2 = 1.4 s−1.

Figure 6.7 shows the height profile h(x) and concentration distribution c(x, z) at
times t = 5 s and t = 50 s for the bulk diffusion coefficient Db = 10−12 m2/s. The
complete rim height evolution extracted from 2D ALE is depicted in Fig. 6.8 for
two values of diffusion coefficient, namely, Db = 10−12 m2/s and Db = 10−11 m2/s.
Again, we notice that the rim height is significantly smaller than the typical val-
ues observed in Fig. 6.6, which is a consequence of vertical concentration non-
uniformities. The smaller diffusion coefficient value yields significantly lower rim
height in Fig. 6.8.
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Figure 6.8: Dimensionless rim height h̄max(t̄) as extracted from 2D ALE simula-
tions of surfactant spreading at liquid-liquid interface with Db = 10−12 m2/s and
Db = 10−11 m2/s, h0 = 10µm, k2 = 1.4 s−1.

The effect of spatial confinement is taken into account in the model for surfactant
spreading at liquid-liquid rivulet geometry. The model utilizes the lubrication
approximation and, thus, is only suitable for thin liquid films and sufficiently fast
bulk diffusion. Two different initial height values, h0 = 11.2 µm and h0 = 5.6 µm
are used in our simulations with finite surfactant supply.

Figure 6.9: Rim formation at t̄ = 10 for liquid-liquid rivulet interface with finite sur-
factant supply and h0 = 5.6 µm, d = 80 µm, µ21 = 0.002, ρ21 = 0.8, x0 = w/2,
C0 = 0.055 mol/l and Γ0 = 2.4 · 10−5 mol/m2, k2 = 1.4 s−1.
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An example of the rim formation at t̄ = 10 for the initial height of h0 = 5.6 µm
is shown in Fig. 6.9 with superimposed contours of surface concentration.
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Figure 6.10: Rim height and position as a function of dimensionless time for liquid-
liquid rivulet interface with finite surfactant supply (closed symbols) and continuous
supply at the interface (open symbols) with d = 80 µm, µ21 = 0.002, ρ21 = 0.8, w =
1.5 mm, x0 = w/2, C0 = 0.055 mol/l and Γ0 = 2.4 · 10−5 mol/m2, k2 = 1.4 s−1, and
Pes = Peb = 1000.

In Fig. 6.10 we observe that smaller initial height results in larger rim height.
The rim position on the other hand is independent of initial height.

Figure 6.10 also shows the results of continuous surfactant supply at the inter-
face, while initial bulk concentration is defined as zero, C̄0 = 0. As time progresses,
surfactant desorbs from the interface into the bulk and diffuses there. Initially, this
situation results in lower spreading exponent since we loose surfactant from the
interface into the bulk due to desorption. Later on, for t̄ > 3, it is characterized
by the same value of spreading exponent as the finite surfactant supply case. The
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most profound effect is observed in the rim height value. Continuous supply at
the interface, with initially no surfactant in the bulk, yields much lower rim height
values, as shown in Fig. 6.10.

Next, we compare the numerical and experimental rim height evolution and its
non-monotonic variation. Numerical results are obtained for continuous supply at
the interface and finite supply in the bulk with initial concentration

C̄(x̄, 0) =
C̄f

0

2
(1− tanh [B(x̄− x̄0)]) (6.29)

The choice of surfactant supply is motivated by the results for spreading at
liquid-air interfaces. Numerical values for the rim height are higher at the later
stage compared to the experimental results obtained for systems with similar as-
pect ratio. Our findings indicate that diffusion of SDS in the glycerol bulk is much
slower than consistent with the assumption of a uniform vertical concentration
profile that our lubrication model is based upon. We try to compensate it by
introducing lower averaged concentration in the bulk.
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Figure 6.11: Measurement and simulations of the temporal evolution of the maximum
film height for rivulet with h0 = 7.9µm, w = 1.5mm, x̄0 = 1, Γ̄0 = 0.92, β = 0.056,
Pes = 183, Peb = 183, k2 = 2 s−1. Numerical results were obtained for continuous
supply at the interface and finite supply in the bulk with initial concentration defined in
Eq. 6.29.

Figure 6.11 shows comparison of the numerical (closed symbols) and experimen-
tal (open symbols) rim height h̄max for initial rivulet center-height of h0 = 7.9µm.

While the differences are not drastic for certain values of C̄f
0 , good quantitative

agreement can not be reached with the proposed lubrication model and the type
of surfactant supply.



6.4. Summary and conclusions 81

6.4 Summary and conclusions

In this chapter, we studied the spreading of a soluble surfactant at liquid-liquid
interfaces. Two systems were studied: 1) an initially flat liquid-liquid interface
between parallel plates and 2) narrow glycerol rivulets surrounded by dodecane,
again in the gap space between parallel plates. We developed two different nu-
merical models. The first model is based on the lubrication approximation and
the assumption of vertically uniform concentration profiles. The second model is
based on the full Navier-Stokes equation and convection-diffusion equations for
bulk- and surface surfactant transport and allows for vertically non-uniform con-
centration profiles. The novel ALE based model allows us to simulate systems
with very slow diffusion, i.e. for values of the Peclet number up to approximately
105.

We monitored the evolution of the liquid height profile after surfactant deposi-
tion. Similarly to surfactant spreading at air-liquid interfaces, the most prominent
feature of the process is the formation of a local maximum in film thickness and
its propagation away from the deposition region. Its position is well approximated
by power-laws x ∼ tα. We conclude that the larger the difference between lower
and upper liquid viscosity, the higher the spreading exponent and rim height.

A comparison of experiment rivulet height profiles with the lubrication type
simulations yielded similar conclusions as for spreading at liquid-air interface, be-
cause in both cases the material system used in the experiments was characterized
by a very small viscosity ratio. Relatively good agreement between experimental
and numerical results can be obtained with the lubrication model that combines
continuous surfactant supply at the interface with finite supply in the bulk.





Chapter 7

Surfactant-induced delay of
leveling of inkjet-printed
patterns

7.1 Introduction and system description

The leveling dynamics of thickness variations in thin liquid films has been studied
extensively in the context of ripples and other irregularities in solution-deposited
coatings and molten glass films, as well as brush marks in paint layers [93, 44, 94,
95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 108, 107, 109, 110, 111, 112, 113].
Orchard presented a Fourier series solution of the Stokes equation for the level-
ing process, considering both surface tension and gravity as the driving forces
and allowing for temporal variations of surface tension and viscosity [93, 44]. Re-
taining the time-derivatives in the Navier-Stokes equation, Woo considered one-
dimensional and axisymmetric disturbances on molten glass surfaces [95]. Degani
and Gutfinger in addition conducted time-resolved measurements of the leveling
dynamics [99] and presented a numerical solution of governing equations for the
case of large amplitudes [100]. Khesghi and Scriven focused their attention on
large amplitude disturbances and performed a disturbance expansion up to sec-
ond order aside from numerical simulations [104]. Stillwagon and Larson studied
the leveling of thin films deposited on topographically patterned substrates [105].
Overdiep [101, 102] Wilson [107] and Eres et al. [113] considered the influence of
evaporation as well as concentration- and surface tension gradients on the leveling
process. The effect of surfactants has been studied by Schwartz et al. [109, 110].

In the past decade inkjet printing has matured as a flexible deposition technique
for laterally structured coatings of solvent- or melt-based ink formulations [114,
115, 116, 117, 118, 119, 120, 121, 122]. For many applications it is desirable to

83
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(a)

(b)

4 cm

Figure 7.1: Inkjet-printed organic light emitting diode devices based on Merck LiviluxTM

light emitting polymer and an (a) large and (b) optimized linepitch. (Image taken
from [129], courtesy of Maosheng Ren.)

obtain a smooth film without ripples or other morphological traces of the individual
droplets that had originally been deposited. The degree of leveling and the final
ink morphology that are crucial for print quality typically improves with time.
On the other hand, ink redistribution effects, e.g. due to equilibration of capillary
pressure or surface energy differences on the substrate, are usually unwanted. As
an illustrative example, Fig. 7.1 shows the light emission pattern of two organic
light emitting diode (OLED) devices fabricated by inkjet printing using an Agfa
OrgaconTM hole injection layer and Merck LiviluxTM light emitting polymer. A
large line-pitch dl in Fig. 7.1(a) caused the occurrence of striations, i.e. individual
printed lines are distinguishable in the light output. After process optimization a
perfectly homogeneous light emission is visible in Fig. 7.1(b).

A piezoelectrically actuated inkjet printhead with a certain diameter and a
nozzle-pitch can be used for deposition. The drop volume Vd and drop ejection
frequency fd are kept constant. The distance between individual inkjetted droplets
along the y-direction is denoted dd = Usub/fd. The cross-sectional area (volume
per unit length) Asl = Vd/dd = Vdfd/Usub of a single inkjet-printed line can be
adjusted by means of the substrate speed Usub. The width of a single printed line
wsl depends on the ink-substrate contact angle θ as illustrated in Fig. 7.2(a). For
uniform, narrow single lines wsl ≪ ℓc ≡

√
γ/(ρg), the equilibrium line-width is

given by [123] wsl = 2 sin θ
√
Asl/(θ − sin θ cos θ). For narrow and thin single lines,

i.e. if hsl ≪ wsl, the cross-sectional profile is to good approximation parabolic and
thus Asl =

2
3hslwsl. The lateral separation dl of neighboring inkjet-printed lines
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Figure 7.2: Definition of geometric parameters. (a) Inkjet droplets of volume Vd impinge
on an impenetrable substrate moving with velocity Usub in the y-direction to form a single
line of width wsl, centerline height hsl and cross-sectional area Asl. (b) Wide lines and
thin films of average film thickness ⟨h⟩ can be formed by controlled coalescence of single
lines deposited with a spacing dl < wsl. (Image taken from [129], courtesy of Anton A.
Darhuber.)

is varied by adjusting the azimuthal orientation of the printhead with respect to
the direction of substrate motion. Disregarding end effects, the average height of
a multi-line is given by ⟨h⟩ = Asl/dl. Here, hsl is the center height of a printed
single line, g the gravitational acceleration and ℓc the so-called capillary length, a
material parameter that typically ranges between 1.5 and 3mm. For dimensions
below ℓc, the influence of gravity on the leveling and redistribution process can to
good approximation be neglected for horizontally oriented substrates.

Generally, patterns are printed such that the center-to-center distance of neigh-
boring lines is smaller than the line-width, dl < wsl, which guarantees a certain
minimum overlap [Fig. 7.2(b)]. Moreover, dd is kept much smaller than dl, such
that the leveling dynamics in the printing direction (y-axis) proceed much faster
than perpendicular to it. For this reason, only the lateral leveling along the x-axis
will be considered and the ink thickness profile h(x, y, t) is assumed to be indepen-
dent of y. For industrial applications it is desirable to maximize dl and Usub, since
then a larger area can be patterned with the same number of nozzles in shorter
time.

In order to optimize the layer formation, quantitative models are desirable. In
Section 7.2 we introduce the theoretical models we applied for the description of
the ink redistribution dynamics in the presence of insoluble and soluble surfac-
tants. In Section 7.3.1 we first consider their influence on the leveling rate of
one-dimensional ripples and striations. Subsequently we discuss the equilibration
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dynamics of inkjet-printed multi-lines in Section 7.3.2.

7.2 Theoretical models and numerical simulations

The two principal stages of the leveling process of a multi-line are illustrated
qualitatively in Fig. 7.3. The initial configuration is approximated by a linear
superposition of truncated parabolas

h(x, t=0) =
4∑

n=−4

max

(
0, hsl

[
1− 4(x−ndl)

2

w2
sl

])
, (7.1)

which exhibits thickness variations corresponding to approximately 20% of the
average film thickness ⟨h⟩. After a time tlev the ripples in the initial ink thickness
profile have leveled and the central part of the multi-line has an essentially uni-
form thickness. After a time tred the height profile has adopted an approximately
parabolic shape (if the total linewidth w < ℓc), which corresponds to the liquid
equilibrium conformation characterized by an x-independent pressure inside the
line.[124] We define the leveling time tlev as the time when the ripple amplitude
has decayed to 10% of its initial value. The definition of the redistribution time
tred will be given in Section 7.3.2. The aim of this manuscript is to identify the
process window, such that leveling can be achieved while redistribution is avoided,
resulting in inkjet-printed multi-lines with a homogeneous layer thickness.

The width of a multi-line w depends on the number of lines N , dl and wsl

and may change in time as a consequence of ink spreading or retraction. We shall
assume, however, that the contact lines remain pinned e.g. as a consequence of con-
tact angle hysteresis. Moreover, although the viscosity gradually increases during
the solvent evaporation process, we consider the case of a constant Newtonian
viscosity and neglect any influence of the solvent volatility.

7.2.1 Insoluble surfactants

In the case of small aspect ratios ε ≡ hsl/wsl ≪ 1, the so-called lubrication
approximation [38] can be applied to describe the leveling dynamics. In this limit,
the equations describing the evolution of the height profile and the surfactant
surface distribution of an insoluble surfactant are [125, 12]

∂h

∂t
+

∂

∂x

(
h2

2µ

∂γ

∂Γ

∂Γ

∂x
− h3

3µ

∂p

∂x

)
= 0 (7.2)

∂Γ

∂t
+

∂

∂x

(
hΓ

µ

∂γ

∂Γ

∂Γ

∂x
− h2Γ

2µ

∂p

∂x
−Ds

∂Γ

∂x

)
= 0 (7.3)

p = −γ
∂2h

∂x2
+ ρgh , (7.4)
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Figure 7.3: Exemplary ink thickness profile of N = 9 overlapping inkjetted lines for
parameters wsl=100µm, dl=50µm, hsl=20µm, and Γ(x, t=0) = 0. The black solid line
represents the initial distribution immediately after deposition (t=0). The dashed and
dotted lines represent after the height profile after leveling (t ≈ tlev) and after capillary
redistribution (t ≈ tred), respectively.

where Γ is the surfactant surface concentration, p the augmented pressure [38]
and Ds the surface diffusion constant. An assumption implicit in Eqs. (7.2-7.4)
is that the substrate is oriented horizontally with its surface normal parallel to
the positive z-direction, whereas gravity acts in the negative z-direction. This
formalism can be applied when the ink-substrate contact angle is not too large,
an upper limit [126] is on order of 30◦.

For the evaluation of the surface tension γ, we have used the equation of state

γ = γ∞ +Πmax exp

(
−A

[
Γ

Γc

]2)
(7.5)

depicted in Fig. 7.4. The parameter values were chosen as γ∞ = 39mN/m, Πmax =
24mN/m, Γc = 3.5µl/m2 and A = 6.125, which to good approximation resembles
the equation of state of oleic acid on glycerol [127, 43].

For numerical simulations of the leveling dynamics we first use the initial con-
ditions

h(x, t = 0) = ⟨h⟩+ a0 cos

(
2π

λ
x

)
(7.6)

Γ(x, t = 0) = Γ0 , (7.7)

i.e. we initially consider only the center region close to x=0 as sketched in Fig. 7.3.
In a second step we discuss end-effects in the vicinity of the contact lines in Sec-
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Figure 7.4: Non-dimensional equation of state of an exemplary insoluble surfactant.

tion 7.3.2. Here a0 is the amplitude of the ink thickness variations and λ the
ripple wavelength, which is determined by dl. Equation (7.7) corresponds to
a uniform initial surfactant concentration along the surface, which means that
Marangoni stresses are induced by the leveling process. Although non-uniform
initial surfactant distributions after ink-jet deposition are conceivable, the authors
are not aware of any existing experimental, theoretical or numerical data regarding
Γ(x, t=0).

Equations (7.2)-(7.5) were non-dimensionalized using the following scales

x̄ ≡ x/λ , h̄ ≡ h/⟨h⟩ , Γ̄ ≡ Γ/Γc , (7.8)

p̄ ≡ p/p0 , γ̄ ≡ γ/Πmax , t̄ ≡ t/tO , (7.9)

where p0 ≡ γ a0/λ
2 and tO is defined in Eq. (7.10).

7.2.2 Perturbation analysis for small amplitudes and insol-
uble surfactants

Using a Fourier series solution of the Stokes equation, Orchard [44] derived the
expression

tO =
3

16π4

µ

γ

λ4

⟨h⟩3
1

1 + ρgλ2

4π2γ

(7.10)

for the leveling time of long-wavelength ripples on thin liquid films, i.e. in the
limit 2π⟨h⟩/λ ≪ 1, in the absence of surfactants. This result can also be derived
from a linearization of Eqs. (7.2) and (7.4) for the case when the ripple amplitude
a0 ≪ ⟨h⟩ in Eq. (7.6).

Schwartz et al. [109, 110] considered the effects of surfactants on the leveling dy-
namics for the case of an idealized linear equation of state and when gravitational
effects are negligible. We follow their procedure to derive an expression for the
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leveling time scale in the presence of surfactants for a realistic, non-linear equa-
tion of state and with gravitational effects included. We consider the following
harmonic variations of the height profile and surfactant concentration

h(x, t) = ⟨h⟩+ h1(t) cos kx (7.11)

Γ(x, t) = Γ0 + Γ1(t) cos kx (7.12)

γ(x, t) = γ(Γ0) +
∂γ

∂Γ
(Γ0) Γ1(t) cos kx (7.13)

and determine the time dependence of the amplitudes h1 and Γ1 from linearized
versions of Eqs. (7.2-7.4), i.e. for the case when h1 ≪ ⟨h⟩ and Γ1 ≪ Γ0. We
point out that the Orchard time tO from Eq. (7.10), which we use for non-
dimensionalizing time in Eqs. (7.9), depends on surface tension γ(Γ0) and thus
on Γ0, i.e. the linearization point in Eqs. (7.12, 7.13). The following system of
linear and homogeneous ordinary differential equations results

∂h1

∂t
+

1

2

−3 ∂γ

∂Γ
(Γ0)(

γ(Γ0)k2 + ρg/Πmax

)
⟨h⟩2

Γ1 + h1 = 0 (7.14)

∂Γ1

∂t
+

−3Γ0
∂γ

∂Γ
(Γ0)(

γ(Γ0)k2 + ρg/Πmax

)
⟨h⟩2

Γ1 +
3Γ0

2
h1 + ZΓ1 = 0 , (7.15)

which we solve for the initial conditions h1(t=0) = a0 and Γ1(t=0) = 0 and find

1

a0
h1 =

1 +N−

N−−N+
exp
(
N+t

)
− 1 +N+

N−−N+
exp
(
N−t

)
(7.16)

Γ1 =
3Γ0

2

a0
N−−N+

(
exp

(
N+t

)
− exp

(
N−t

))
, (7.17)

where the rate constants N± are given by

N± ≡ −1

2

(
S ±

√
S2 −QΓ0 − 4Z

)
(7.18)

and we defined

Q ≡
−3 ∂γ

∂Γ
(Γ0)(

γ(Γ0)k2 + ρg/Πmax

)
⟨h⟩2

(7.19)

S ≡ 1 +QΓ0 + Z (7.20)

Z ≡ tODsk
2 . (7.21)

We note that forQ = 0, Eq. (7.16) reduces to the Orchard solution h1 = a0 exp(−t).
Had we chosen a locally non-uniform initial surfactant distribution Γ1(t=0) ̸= 0,
then the numerical prefactors of the exponential terms in Eqs. (7.16) and (7.17)
would be different, but the rate-constants would remain unaffected.
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For most surfactant systems ∂γ

∂Γ
≤ 0, which implies that Q ≥ 0 and that the rate

constants N± are negative (semi)definite, N± ≤ 0. This corresponds to a decay of
both the ripples in the height profile and the surfactant concentration variations
in the limit of long times. Since |N−| < |N+|, the rate constant N− determines
the long-time behavior.

7.2.3 Soluble surfactants

Jensen and Grotberg [15] presented a theoretical model for the dynamics of thin
liquid films in the presence of non-uniform distributions of a soluble surfactant.
They assumed a linear equation of state γ = γ0 − BΓ with a positive constant B
as well as a linear relation between the surfactant bulk concentration in the liquid
film c(x, y, z, t) and the equilibrium surface concentration

Γeq =
k1
k2

cs(x, y, t) ≡ k1
k2

c(x, y, z=h, t) . (7.22)

Here, the adsorption- and desorption rate constants k1,2 are defined by a lin-
earized Langmuir equation describing the bulk-surface exchange of surfactant as
J = k1cs − k2Γ , where J is the surfactant flux with units of mol/(m2s). Jensen
and Grotberg [15] simplified the equation for bulk transport of surfactant

∂c

∂t
+ u·∇c = Db∇2c , (7.23)

for the case of fast vertical diffusion in thin liquid films considering Marangoni
stresses as the only driving force

∂C

∂t
−B

h

2µ

∂Γ

∂x

∂C

∂x
=

Db

h

∂

∂x

(
h
∂C

∂x

)
− J

h
. (7.24)

Here u is the flow velocity, Db is the bulk diffusion coefficient, and C ≡ 1
h

∫ h

0
c dz

the height-averaged bulk concentration. The corresponding surface concentration
fulfills the equation

∂Γ

∂t
+

∂

∂x

[
−hΓ

µ
B
∂Γ

∂x
−Ds

∂Γ

∂x

]
= J , (7.25)

with Ds the surfactant surface diffusivity.

We have extended this model by including flows due to pressure gradients, the
full non-linear Langmuir equation for bulk-surface exchange as well as the corre-
sponding non-linear equilibrium isotherm

J = k1C

(
1− Γ

Γ∞

)
− k2Γ (7.26)

Γeq

Γ∞
=

k1C

k2Γ∞ + k1C
, (7.27)
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where Γ∞ is the maximum surface concentration at complete coverage of the
surface. The non-linear equation of state derived from the Gibbs adsorption
isotherm[128] follows as

γ = γ(0) +RTΓ∞ ln

(
1− Γ

Γ∞

)
, (7.28)

where R is the universal gas constant and T the absolute temperature. We used
Eqs. (7.26) and (7.27) to fit experimental data for the dependence of surface ten-
sion on bulk concentration, γ(C), for the soluble surfactant sodiumdodecylsulfate
(SDS) in glycerol,[86] which yielded the parameters Γ∞ = 4.2 · 10−6 mol/m2,
k2/k1 = 1.7·106 m−1 as well as the maximum spreading pressure Πmax = 23.7mN/m.
Since we do not take the presence of surfactant micelles into account, the validity
of this model is restricted to concentrations below the so-called critical micelle
concentration (cmc).

We introduce the following scaled variables

p̂ =
pλ2

⟨h⟩Πmax
, Γ̂ =

Γ

Γs
(7.29)

Ĉ =
k1C

k2Γ∞
, t̂ =

t

tM
= t

⟨h⟩Πmax

µλ2
. (7.30)

The scale Γs is chosen such that a non-dimensional bulk concentration Ĉ = 1
corresponds to a non-dimensional surface concentration Γ̂ = 1 in the scaled version
of Eq. (7.27), i.e. Γs =

1
2Γ∞. We arrive at the following dimensionless equations

∂Γ̂

∂t̂
+

∂

∂x̄

[
h̄Γ̂

∂γ̄

∂Γ̂

∂Γ̂

∂x̄
− ϵ2Bo h̄2Γ̂

2

∂h̄

∂x̄
− ϵ2h̄2Γ̂

2

∂p̂c
∂x̄

− 1

Pes

∂Γ̂

∂x̄

]
= K

[
Ĉ
(
2− Γ̂

)
− Γ̂

]
(7.31)

∂Ĉ

∂t̂
+

[
h̄

2

∂γ̄

∂Γ̂

∂Γ̂

∂x̄
− ϵ2Bo h̄2

3

∂h̄

∂x̄
− ϵ2h̄2

3

∂p̄c
∂x̄

]
∂Ĉ

∂x̄

− 1

Pebh̄

∂

∂x̄

[
h̄
∂Ĉ

∂x̄

]
=

βK

2h̄

[
Γ̂− Ĉ

(
2− Γ̂

)]
(7.32)

γ̄ =
1

Πmax

[
γ(0) +RTΓ∞ ln

(
1− Γ̂

2

)]
. (7.33)

Here, we introduced the capillary pressure p̂c ≡ −γ̄ ∂2h̄
∂x̄2 and the following dimen-
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sionless parameters

ϵ ≡ ⟨h⟩
λ

, Bo ≡ ρgλ2

Πmax
, Pes ≡

⟨h⟩Πmax

µDs

Peb ≡
⟨h⟩Πmax

µDb
, β ≡ k1

k2⟨h⟩
, K ≡ k2tM . (7.34)

The Bond number Bo quantifies the relative importance of hydrostatic and cap-
illary pressure gradients, whereas the Peclet numbers Pes and Peb compare the
effects of convective and diffusive surfactant transport at the liquid-air interface
and in the bulk, respectively.

The initial conditions for the film thickness and surfactant surface concentration
are the same as in the case of insoluble surfactants, Eqs. (7.6,7.7). We assumed
that the height-averaged bulk concentration is initially uniform and in equilibrium
with the surface concentration. Using the non-dimensional version of Eq. (7.27)

we find Ĉ(x̄, t̂ = 0) = Γ̂0/(2− Γ̂0).

7.3 Results and discussion

7.3.1 Leveling dynamics

During leveling, liquid locally flows from the elevated regions towards the regions
of reduced film thickness, which leads to a converging flow in the valleys and
surface expansion on the hills. Considering an initially uniform surfactant concen-
tration distribution, this surface compression and expansion induces Marangoni
stresses, which oppose flow driven by capillary and hydrostatic pressure gradients
and thereby slow down the leveling dynamics.

We solved Eqs. (7.2-7.5) and (7.31-7.33) numerically with the finite element
software Comsol Multiphysics 3.5 using quadratic basis functions. Figure 7.5 il-
lustrates the relative increase of the leveling time tlev/tlev(Γ0=0) when an insol-
uble surfactant is present at the air-liquid interface. The solid lines correspond to
numerical solutions for different values of a0. The crosses indicate the results of
the perturbation analysis according to Eq. (7.16) for a0 = 0.01, which agrees very
well with the corresponding numerical solution.

When Γ0 = 0, the leveling time ratio is unity by definition. For Γ0 ≫ 1,
i.e. in the saturation regime of the equation of state, a small change in the sur-
factant surface concentration has no effect on the surface tension. Consequently,
tlev/tlev(Γ0 =0) becomes independent of Γ0 in the limit Γ0 ≫ 1. The saturation
value corresponds to capillary/hydrostatic leveling with the reduced surface ten-
sion γ∞. In the intermediate regime 0 < Γ0 . 1, the influence of flow-induced
surfactant concentration gradients substantially increases tlev above tlev(Γ0 = 0).
The addition of surfactants thus can significantly slow down the leveling dynamics
by more than a factor of 8.
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Figure 7.5: Leveling time ratio tlev(Γ0)/tlev(Γ0 = 0) as a function of non-dimensional
initial surfactant concentration Γ0 for different topographical amplitudes a0/⟨h⟩ ranging
from 0.01 to 0.9 as listed in the legend. The following parameter values were assumed:
Pes = 1000, ϵ2Bo = 0.004, and ϵ = 0.1. Crosses correspond to results of the perturbation
analysis for the case a0 = 0.01.

Larger values of the ripple amplitude induce larger overall variations of the
surfactant surface concentration ∆Γ ≡ max(Γ) − min(Γ). This tends to flatten
the dependence of tlev/tlev(Γ0=0), because a larger fraction of the concentration
range relevant for the equation of state is involved in determining the dynamics.
These larger variations are also the reason why the leveling time ratio increases
with the ripple amplitude for Γ0 & 1, although γ(Γ0) is already in the flat region of
Fig. 7.4. We note that although the ratio tlev/tlev(Γ0=0) primarily decreases for
increasing ripple amplitudes above 0.5 in the region Γ0 . 1, the absolute leveling
time tlev typically increases due to a reduced mobility of the liquid film in the thin
regions.

In order to illustrate the leveling dynamics we plotted the dimensionless ripple
amplitude h(x = 0, t) − 1 for a0/⟨h⟩ = 0.01 and different initial surfactant con-
centrations Γ0 in Fig. 7.6(a). The straight, black solid line corresponds to purely
capillary leveling, i.e. Γ = 0, for which the globally fastest leveling is observed.
The remaining curves all exhibit two distinct time-scales corresponding to the rate
constants N± given in Eq. (7.18). The non-monotonic behavior visible in Fig. 7.5 is
a consequence of the superposition of these two processes. The curve for Γ0 = 0.3
shows the fastest asymptotic decay rate N−, since the equation of state (7.5) at-
tains is maximum slope ∂γ/∂Γ approximately at Γ ≈ 0.3 (see Fig. 7.4) and Q in
Eq. (7.19), thus, its maximum value.

Figure 7.6(b) shows the variation of the surfactant surface concentration Γ(x=
0, t) − Γ0 for a0/⟨h⟩ = 0.01 and the same initial surfactant concentrations Γ0 as
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Figure 7.6: (a) Dimensionless ripple amplitude h(x=0, t)−1 for a0 = 0.01 and different
initial surfactant concentrations Γ0. Crosses correspond to results of the perturbation
analysis for the case Γ0 = 0.3. (b) Dimensionless surface concentration Γ(x = 0, t)− Γ0

for a0/⟨h⟩ = 0.01 and different initial surfactant concentrations Γ0. In both plots the
parameters ϵ ≡ λ/⟨h⟩, ϵ2Bo and Pes were assumed to be 0.1, 0.004 and 1000, respectively.

plotted in Fig. 7.6(a). The maximum concentration variation appears to increase
with increasing Γ0. According to Eqs. (7.16) and (7.17), the asymptotic slopes of
the curves are identical with the corresponding ones in Fig. 7.6(a).

Figure 7.7(a,b) shows the relative increase of the leveling time when a soluble
surfactant is present in the bulk liquid as well as at the liquid-air interface. A
small value of the adsorption rate parameter K corresponds to a surfactant that
is effectively insoluble on the timescale of the leveling process. As in the case of
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Figure 7.7: (a) Leveling time ratio tlev(Γ0)/tlev(Γ0 = 0) as a function of non-dimensional
surfactant concentration for a0/⟨h⟩ = 0.01 and different values of the adsorption rate
parameter K. (b) Leveling time ratio tlev(Γ0)/tlev(Γ0 = 0) as a function of the adsorption
rate parameter K for Γ0 = 0.3 and two values of a0/⟨h⟩. In both plots the following
parameter values were assumed: ϵ = 0.1, ϵ2Bo = 0.004, Pes = 1000, Peb = 100 and
β = 0.059.

insoluble surfactants a significantly longer leveling time results. A large value of
K implies that on the timescale of the flow the surfactant is always in equilib-
rium with the underlying bulk liquid, which strongly reduces its influence on the
leveling process. In addition for sufficiently thick films, the height-averaged bulk
concentration does not change much as a consequence of adsorption or desorption
and Marangoni-stresses are strongly diminished. In this case the capillary leveling
dynamics are effectively recovered and the only effect of the surfactant is to re-
duce the overall surface tension. For an equation of state like SDS in glycerol, this
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slows down leveling by a factor of up to about 1.5, but for other surfactant/solvent
combinations by typically no more than a factor of 2-3.

Figure 7.7(b) also illustrates the effect of the ripple amplitude. As in the case of
insoluble surfactants, a larger ripple amplitude tends to somewhat lessen the re-
tarding effect for small values of K . 1 and provided Γ remains considerably below
Γs. For large values of K & 1, Marangoni stresses are diminished and any remain-
ing influence of the surfactant on the leveling time ratio becomes independent of
the ripple amplitude.

7.3.2 Redistribution time of inkjet printed multi-lines

So far we have considered the leveling dynamics in the interior of a line array. If
a uniform thickness is desired then the overall redistribution time tred constitutes
an upper bound for the device fabrication process. In this section we discuss how
tred depends on the width of the multi-line w and the lateral linepitch dl in the
presence of insoluble surfactants.

For λ < ℓc, the capillary leveling time scales as tlev ∼ λ4/⟨h⟩3 [Eq. (7.10)], where
λ and ⟨h⟩ had been considered as independent parameters. For inkjet-printed
structures, they are both, however, determined by the line pitch, λ ∼ dl and
⟨h⟩ ∼ 1/dl, such that we expect the leveling time to scale as tlev ∼ d7l . Provided
that w < ℓc, an equivalent scaling is expected for the multi-line redistribution time,
if the wavelength λ is replaced by the width of the multi-line w = (N − 1)dl +wsl,
leading to tred ∼ w4d3l . The exact definition of tred that we have used is illustrated
in Fig. 7.8(a), where we plotted the time-evolution of the center height of a multi-

line array ĥ(x=0, t̂). Here, ĥ is defined as ĥ ≡ h/hsl. For t̂ > t̂lev and sufficiently

large N ≫ 1, ĥ(0, t̂) reaches a first plateau value which we denote ĥlev. After

completion of the redistribution, ĥ(0, t̂) reaches a second plateau value denoted as

ĥred. The redistribution time t̂red is defined as the instant when the center height
reaches a value halfway between the two plateau values, ĥ(0, t̂red) =

1
2 (ĥlev+ ĥred).

Numerical results obtained for initial conditions equivalent to Eqs. (7.1) and
(7.7) are presented in Fig. 7.8(b,c) and reproduce the expected scalings very well,
both with and without an insoluble surfactant being present. The (small) de-
viations from the expected scaling behavior for small dl/wsl and small N are
attributed to end-effects.

7.3.3 Implications for printing process windows

The effect of initially uniform surfactant distributions is to delay leveling and
redistribution by a factor of up to approximately 8. Due to the highly nonlinear
dependence of the leveling time tlev on the linepitch dl, the most crucial parameter
for the leveling process is dl. The redistribution time for narrow linewidths w < ℓc
scales as tred ∼ w4 ∼ N4, i.e. the process window for achieving leveling while
avoiding significant redistribution effects becomes wider for larger N . For wide
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Figure 7.8: (a) Definition of the redistribution time t̂red. (b) Redistribution time t̂red
as a function of dl/wsl for N = 99 and insoluble surfactant concentrations of Γ0 = 0
and 0.3. The symbols represent numerical data, the red straight lines powerlaw relations
t̂red = B1w

4d3l with fitted coefficients B1. (c) Redistribution time t̂red(Γ0 = 0.3) as a
function of the number of inkjet-printed lines N for a surfactant concentration of Γ0 = 0.3
and dl = 50µm. The symbols represent numerical data, the red straight line a powerlaw
relation t̂red = B2((N − 1)dl + wsl)

4 with fitted coefficient B2. In all plots the following

parameter values were used: P̂es ≡ hslΠmax/(µDs) = 1000, B̂o ≡ ρgw2
sl/Πmax = 0.0041,

ε = 0.1, hsl = 10µm, and wsl = 100µm.

lines w ≫ ℓc, we expect a different scaling owing to Eq. (7.10), however, for
typical parameter values tred then becomes so large that this regime may not be
of practical relevance.

Two obvious strategies for avoiding or minimizing surfactant related leveling de-
lays is to either not add surfactants at all or to increase the surfactant concentra-
tion well beyond Γc, i.e. Γ0 > 1, since then the leveling time ratio tlev/tlev(Γ0=0)
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plotted in Fig. 7.5 is both reduced and remains unaffected by small processing-
related variations in Γ0. In the case of soluble surfactants, rapid adsorption and
desorption rates effectively eliminate Marangoni-stress related effects for thick
enough films, and the only retardation left is due to the reduced value of the
surface tension, which amounts to typically no more than a factor of 2 or 3.

Whether these are viable solutions that are beneficial for the entire printing pro-
cess, depends not only on the functionality of the coating, but also on the influence
of the surfactant on e.g. solvent evaporation and the wettability of the solution
on the substrate. For instance in the context of organic electronic devices, the
device performance and efficiency may be adversely affected by a high surfactant
concentration.

Our results have been obtained with two particular, yet typical and representa-
tive equations of state. In the case of soluble surfactants, we considered the regime
where surface adsorption is kinetics-limited as described by a Langmuir equation
[Eqs. (7.26, 7.27)], but not limited by diffusion in the bulk liquid, i.e. we implicitly
assumed that vertical concentration equilibration occurs rapidly compared to the
leveling time-scale, which is appropriate for thin films.

7.4 Summary

We have studied the leveling and redistribution dynamics of inkjet-printed multi-
lines in the presence of soluble and insoluble surfactants. While insoluble surfac-
tants can slow down the leveling process up to a factor of approximately 8, the
retarding effect of soluble surfactants can be lower in the case of fast rates of sur-
factant bulk-surface exchange. Our results are representative of typical equation
of state and in the case of soluble surfactants for the regime when surfactant ad-
sorption is kinetics limited as described by a Langmuir equation. We presented
numerical simulations as well as scaling relations for both the leveling and re-
distribution times of multi-lines as a function of the number of individual lines,
the lateral pitch, the average line height and width, which provide a basis for
estimating optimal process conditions.



Chapter 8

Conclusions and outlook

During the work with the present thesis we have conducted an extensive numerical
study of surfactant spreading dynamics. We have investigated several types of
material systems for surfactants spreading at liquid-air and liquid-liquid interfaces.
We monitored the evolution of the liquid height profile after non-uniform surfactant
deposition at the interface. The most prominent morphological feature of the
spreading process is the formation of a local maximum in film thickness, called
rim, and its propagation away from the deposition region. The rim dynamics
can be well approximated by power-law xrim ∼ tα, where α is called spreading
exponent.

We have studied the spreading dynamics of insoluble surfactants on thin liquid
films with initially uniform height. Numerical simulations based on the lubri-
cation approximation of the far-field axisymmetric spreading dynamics compare
very favorably with the experimental results reported in the literature for oleic
acid spreading on glycerol. The corresponding non-linear equation of state, which
provides an excellent fit for the experimental dependence of surface tension on sur-
factant concentration, was shown to influence spreading rates considerably com-
pared with a linear one. A fingering instability was observed, which is induced by
the temporary entrapment of sub-phase liquid in the surfactant deposition area
and its subsequent release. Acting as an excellent method of surfactant transport,
the expulsion has a direct effect by increasing the spreading exponent. The model
could be possible improved by including the deformation of the surfactant droplet
in the vicinity of the three-phase contact line.

A study of an insoluble surfactant spreading at curved liquid-air interfaces was
also conducted. Using a numerical model based on the lubrication approximation,
we monitored the evolution of the liquid height profile after deposition of an in-
soluble surfactant monolayer at rivulet-air interface. The spreading dynamics is
well characterized by a power-law. Continuous, i.e. unlimited surfactant supply
led to higher exponents and increased the influence of the rivulet aspect ratio as
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compared to the case of limited supply. The results were compared with exper-
imental findings for oleic acid spreading on glycerol rivulets defined by chemical
surface patterning. The spreading exponents determined from the continuous-
supply model and line source compare favorably with the experimental data. We
found that the initial center-line film thickness has little effect on the spreading
exponents. The lateral confinement induces non-uniform height- and surface veloc-
ity profiles, which manifest themselves in a pronounced transition of the evolving
rivulet morphology.

We investigated the spreading of a soluble surfactant at curved liquid-air inter-
faces. Our numerical model was based on the lubrication approximation and the
assumption of vertically uniform concentration profiles. A proper choice of initial
and boundary conditions in the numerical models resulted in spreading exponents
that are in excellent agreement with the experimental results for sodium dodecyl
sulfate spreading on narrow glycerol rivulets. The influence of fingering insta-
bilities, commonly observed during the spreading process, on the rim shape and
propagation rate was studied. The rim height profiles deduced from experiments
were in excellent agreement with numerical data at early times, but systematically
lower at later stages. The origin of this discrepancy resides in vertical concentra-
tion non-uniformities, caused by surfactant slow diffusion, that are not accounted
for in the lubrication model.

The spreading of soluble slow-diffusion surfactants at liquid-air interfaces was
studied by employing two different numerical models. The first model is based on
the full Navier-Stokes equation and convection-diffusion equations for bulk- and
surface surfactant transport. It accounts for domain deformability and allows for
vertically non-uniform concentration profiles. The second model is based on the
lubrication approximation and the assumption of vertically parabolic concentration
profiles. The two studied models gave considerably different results with respect
to film thickness evolution for diffusion coefficients below a certain value. The
difference originates in vertical concentration non-uniformities in the sub-phase
liquid that are not accurately represented by parabolic profile in the lubrication
model. The model based on the full Navier-Stokes equation would be a perfect
candidate to compare with the experimental data for SDS spreading on rivulets,
but computational costs of three-dimensional calculations at the moment are too
high given the small aspect ratio of the systems. This model could also be used to
model systems with discontinuous interfaces in order to extend the current work
focused on continuous interfaces.

In addition, we studied the spreading of soluble surfactant at liquid-liquid inter-
faces between parallel solid plates. Two systems were considered: a flat interface
with initially uniform height and narrow rivulets with initially curved interface.
We developed two different numerical models. The first is based on the lubrication
approximation and vertically uniform concentration profiles. The second model
is based on the full Navier-Stokes equation and allows for vertically non-uniform
concentration profiles. The novel model based on the Arbitrary Lagrangian Eule-
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rian method allows us to simulate systems characterized by a very slow diffusion,
i. e. large Peclet numbers, or large film thicknesses. We conclude that viscosity
difference closer to 1 between the two liquids lowers the spreading rates and the
rim height. Comparison of rivulet height profiles from experiments for a material
system characterized by a very small viscosity ratio with the lubrication model
data yielded similar conclusions as for spreading at liquid-air interfaces. Good
quantitative agreement can be obtained with the lubrication model with combi-
nation of continuous surfactant supply at the interface and finite supply in the
bulk.

We also investigated how soluble or insoluble surfactants affect the leveling dy-
namics of inkjet-printed lines. Surfactants cause surface tension gradients that
oppose capillary leveling of ripples initially present at the surface. Insoluble sur-
factants can slow down the leveling process by up to a factor of eight. The retarding
effect of soluble surfactants can be smaller in the case of fast rates of bulk-surface
exchange. Our results were obtained for a non-linear equations of state and in
the case of soluble surfactants for surfactant adsorption kinetics described by a
Langmuir equation. We presented numerical results as well as scaling relations
for both the leveling and redistribution times of multi-lines as a function of the
number of individual lines, the lateral pitch, the average line height and width.
This provides a basis for estimating optimal process conditions.





Appendix A. Derivation of
lubrication equations for
thin liquid films

Lubrication equation for height evolution

We consider a thin Newtonian liquid film with the initial film thickness distribution
h0(x, y). Depending on the shape of surfactant deposition region and initial profile
of the sub-phase liquid, two system of coordinates can be considered. In the case of
rectilinear spreading, we adopt Cartesian system of coordinates (x, y, z) with the
origin located at the solid-liquid interface in the center of the film, see Fig. 8.1.
Surfactant is deposited in a region of length 2L and width 2W . In the case of
axisymmetric spreading, we assume that the surfactant is deposited as a drop of
radius L and the liquid film is initially flat with h = h0. We adopt cylindrical
coordinates (r, θ, z) with the origin located at the solid-liquid interface on the
symmetry axis of the surfactant droplet. The derivations presented in this chapter
are only carried out for the rectilinear geometry, since the axisymmetric case can
be easily deduced from it.

z

h(x,y,t)

x,y
L

n

Figure 8.1: Schematic presentation of the geometry.

We introduce interface surface z = h(x, y, t), with n and t being normal and

103



104 A. Derivation of lubrication equations for thin liquid films

tangential vectors respectively. The normal vector is defined as

n =
1

N

(
−∂h

∂x
,−∂h

∂y
, 1

)
, where N ≡

√
1 +

(
∂h

∂x

)2

+

(
∂h

∂y

)2

(8.1)

The dynamics of the liquid film is described by the Navier-Stokes equation

ρ

(
∂u

∂t
+ u∇u

)
= −∇p+ µ∇2u (8.2)

and continuity equation for incompressible liquid

∇ · u = 0 (8.3)

where u = (ux, uy, uz) is the fluid velocity, p is the pressure, and ρ and µ are the
fluid density and viscosity.

We use the following scaled variables

x̄ ≡ x

L
, ȳ ≡ y

L
, z̄ ≡ y

H
, ūx ≡ ux

U0
, ūy ≡ uy

U0
,

ūz ≡ uz

W0
, t̄ ≡ U0t

L
, p̄ ≡ H2p

µU0L
(8.4)

In this chapter we consider systems with thin liquid films, for which the aspect
ratio ε = H

L ≪ 1 is small.

After introducing the scaled variables, the continuity equation becomes

0 = ∇ · u =
U0

L

∂ūx

∂x̄
+

U0

L

∂ūy

∂ȳ
+

W0

H

∂ūz

∂z̄
⇒ ∂ūx

∂x̄
+

∂ūy

∂ȳ
+

W0L

U0H

∂ūz

∂z̄
= 0 (8.5)

Assuming that all the terms in the continuity equation are of the same order,
yields the scale for the z-component of fluid velocity W0 = εU0.

The scaled x-component of Navier-Stokes equation is

ρ

(
U2
0

L

∂ūx

∂t̄
+

U2
0

L
ūx

∂ūx

∂x̄
+

U2
0

L
ūy

∂ūx

∂ȳ
+

εU2
0

H
ūz

∂ūx

∂z̄

)
= (8.6)

−µU0L

H2L
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∂x̄
+ µ
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L2

∂2ūx

∂x̄2
+

U0

L2

∂2ūx

∂ȳ2
+

U0

H2

∂2ūx

∂z̄2

)

ρU0H

µ

H

L

(
∂ūx

∂t̄
+ ūx

∂ūx

∂x̄
+ ūy

∂ūx

∂ȳ
+ ūz

∂ūx

∂z̄

)
= (8.7)

−∂p̄

∂x̄
+

∂2ūx

∂z̄2
+ ε2

(
∂2ūx

∂x̄2
+

∂2ūx

∂ȳ2

)
Typical parameters values for our system are: H ≈ 10−5 m, ρ ≈ 1000 kg/m3,
U0 ≈ 10−4 m/s for µ ≈ 1 Pa s, which yields the typical value of the Reynolds
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number Re = ρU0H
µ ∼ 10−6. Thus, assuming Reε ≪ 1 and ε2 ≪ 1, we derive to

first order in ε

−∂p̄

∂x̄
+

∂2ūx

∂z̄2
= 0 (8.8)

In a similar way we derive the other components of the Navier-Stokes equation.
The dimensional version of the resulting equations is then to the first order in ε

−∂p

∂x
+ µ

∂2ux

∂z2
= 0 (8.9)

−∂p

∂y
+ µ

∂2uy

∂z2
= 0 (8.10)

−∂p

∂z
= 0 (8.11)

Equation (8.11) shows that the pressure p = p(x, y) is independent of z-coordinate.
We have the no-slip conditions at the solid-liquid interface ux(z = 0) = uy(z =
0) = 0. The following conditions can be specified at the interface z = h(x, y, t)

p− pa + τ
nna

− τ
nn

+ 2Hγ = 0 (8.12)

τ
nta

− τ
nt

+ t · ∇sγ = 0 (8.13)

where τ is the viscous stress tensor, γ is the surface tension and 2H = ∇s ·n is twice
the mean curvature. Assuming that the viscous noraml stresses are negligible at
a liquid-air interface yields p− pa = −γ∇s · n. The surface gradient operator ∇s

can be applied to any function defined at the surface z = h(x, y) and is defined as

∇s = (I− nn)∇ = (8.14)

1

N2
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1 +
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∂h
∂y

)2]
∂
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)2] ∂
∂y

∂h
∂x

∂
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∂y
∂
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 (8.15)

The mean curvature follows as

∇s · n =

[
1 +

(
∂h
∂y

)2]
∂2h
∂x2 +

[
1 +

(
∂h
∂x

)2] ∂2h
∂y2 − 2∂h

∂x
∂h
∂y

∂2h
∂x∂y(

1 +
(
∂h
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)2
+
(

∂h
∂y

)2)3/2
(8.16)

After using the scaling (8.4) and neglecting terms of order ε, we obtain ∇s · n =
∂2h
∂x2 + ∂2h

∂y2 . Thus, the equation for capillary pressure p becomes

p = −γ

(
∂2h

∂x2
+

∂2h

∂y2

)
(8.17)
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Neglecting viscous stresses in the gas phase, the remaining surface conditions from
(8.13) result in

µ
∂ux

∂z
(z = h) =

∂γ

∂x
(8.18)

µ
∂uy

∂z
(z = h) =

∂γ

∂y
(8.19)

The liquid-air interface is defined by the scalar function f(x, y, z, t) = z−h(x, y, t) =
0. For non-volatile liquid the surface is a material surface and thus the following
holds

Df

Dt
=

∂f

∂t
+ u · ∇f = 0 (8.20)

or equivalently

− ∂h

∂t
− ∂h

∂x
ux|z=h(x,y,t) −

∂h

∂y
uy|z=h(x,y,t) + uz|z=h(x,y,t) = 0 (8.21)

We integrate the continuity equation Eq. (8.5) with respect to z from 0 to h

h∫
0

(
∂ux

∂x
+

∂uy

∂y

)
dz + uz|z=h − uz|z=0 = 0 (8.22)

Using Leibnitz rule for integration and considering that uz(z = 0) = 0 as a conse-
quence of no-penetration condition, we arrive at

−uz|z=h(x,y,t) =
∂

∂x

h∫
0

ux dz − ∂h

∂x
ux|z=h +

∂

∂y

h∫
0

uy dz − ∂h

∂y
uy|z=h (8.23)

Using this equality, we transform equation (8.21) into

∂h

∂t
+

∂

∂x

h∫
0

ux dz +
∂

∂y

h∫
0

uy dz = 0 (8.24)

We integrate Navier-Stokes equation using the above specified boundary conditions
Eqs. (8.18,8.18) taking into account that p and consequently ∂p

∂x and ∂p
∂y do not

depend on z. The resulting velocities are

ux(x, y, z) =
1

µ

∂p
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(
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2
− hz
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+

1
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∂γ
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z (8.25)

uy(x, y, z) =
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z (8.26)
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We then substitute integrated velocities into Eq. (8.24) and obtain an equation for
the height evolution, which is known as the lubrication equation,

∂h

∂t
+∇

[
1

2µ
(h2∇γ)− 1

3µ
h3∇p

]
= 0 (8.27)

p = −γ∇2h+ ρgh (8.28)

where ∇ ≡
(

∂
∂x ,

∂
∂y

)
for rectilinear spreading. The derivations presented in this

section were extensively reviewed in [38].

Convection-diffusion equation at the interface

The surfactant transport at the interface z = h(x, y, t) is governed by the surface
convection and diffusion equation [70, 71, 72, 69].

∂Γ

∂t
+∇s ·

(
Γu|z=h(x,y)

)
= J +Ds∇2

sΓ (8.29)

where Γ is the interface concentration, Ds is the surface diffusion coefficient and
J is describing flux term between the interface and the bulk. In the case of an
insoluble surfactant the flux J is zero. Using expression defined in (8.15) for the
surface gradient operator and neglecting terms of order ε2, the second term on the
left-hand side becomes

∇s · (uΓ) =
∂

∂x
(Γux(x, y, z = h)) +

∂

∂y
(Γuy(x, y, z = h)) (8.30)

Taking into account velocities (8.25) evaluated at the surface

ux(x, y, z = h) =
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uy(x, y, z = h) =
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we obtain convection-diffusion equation at the interface z = h(x, y, t)

∂Γ

∂t
+∇

[
1

µ
hΓ∇γ − 1

2µ
h2Γ∇p−Ds∇Γ

]
= J (8.33)

where two-dimensional gradient is ∇ ≡
(

∂
∂x ,

∂
∂y

)
.
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Summary

Marangoni flows induced by non-uniform surfac-
tant distributions

The spreading dynamics of surfactants is of crucial importance for numerous tech-
nological applications ranging from printing and coating processes, pulmonary
drug delivery to crude oil recovery. In the area of inkjet printing surfactants are
necessary for lowering surface tension of water-based ink solutions, but can consid-
erably delay the leveling and redistribution of inkjet-printed lines.. In the context
of oil recovery, up to about 60% of the originally present crude oil remains in a
reservoir after the so-called primary and secondary recovery phases. Injection of
surfactant solutions is considered a potential means for extracting a larger frac-
tion of the oil owing to two different mechanisms. Surfactant-induced reductions
of interfacial tension facilitate deformations of oil-brine interfaces and therefore oil
extraction. Furthermore, a non-uniform surfactant distribution at fluid-fluid inter-
face gives rise to interfacial tension gradients and associated Marangoni stresses,
which generate flow from regions of lower to regions of higher interfacial tension.
This can be utilized to transport surfactant along dead-end pores that are inac-
cessible to pressure-driven transport.

This dissertation is mainly dedicated to the modeling of liquid transport induced
by non-uniform surfactant distributions at liquid-air and liquid-liquid interfaces.
Several types of material systems were investigated for surfactant-induced flows
in the presence of geometrical confinement and constraints. We monitor the evo-
lution of the liquid height profile after non-uniform surfactant deposition at the
interface. The most prominent morphological feature of the spreading process is
the formation of a local maximum in film thickness, called rim, and its propagation
away from the deposition region. The rim dynamics can be well approximated by
power-law xrim ∼ tα, where α is called spreading exponent. We conducted an
extensive numerical study of surfactant spreading on thin films and quantitatively
compared our results with experimental data. In addition, we also investigated
how surfactant-induced flow phenomena affect leveling and redistribution dynam-
ics of inkjet-printed lines.
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Chapter 2 presents the spreading dynamics of insoluble surfactants on thin liq-
uid films with initially uniform thickness. Numerical simulations based on the
lubrication approximation of the far-field axisymmetric spreading dynamics com-
pare very favorably with the experimental results reported in the literature for
oleic acid spreading on glycerol. The corresponding non-linear equation of state,
which provides an excellent fit for the experimental dependence of surface tension
on surfactant concentration, was shown to influence spreading rates considerably
compared with a linear one. A fingering instability was observed, which is induced
by the temporary entrapment of sub-phase liquid in the surfactant deposition area
and its subsequent release. The expulsion has a direct effect by increasing the
spreading exponent.

Chapter 3 is dedicated to insoluble surfactant spreading at curved liquid-air
interfaces. Using a numerical model based on the lubrication approximation, we
monitored the evolution of the liquid height profile after deposition of an insoluble
surfactant monolayer at rivulet-air interface. Continuous, i.e. unlimited surfactant
supply led to higher exponents and increased the influence of the rivulet aspect
ratio as compared to the case of limited supply. The spreading exponents de-
termined from a model implementing a continuous supply of surfactant compare
favorably with experimental data for oleic acid on glycerol. The initial film thick-
ness has little effect on the spreading exponents for surfactant spreading at rivulet
interfaces. The lateral confinement induces non-uniform height- and surface veloc-
ity profiles, which manifest themselves in a pronounced transition of the evolving
rivulet morphology.

Chapter 4 contains the study of soluble surfactant spreading on curved liquid-
air interfaces. Our numerical model was based on the lubrication approximation
and the assumption of vertically uniform concentration profiles. A proper choice
of initial and boundary conditions in the numerical models resulted in spread-
ing exponents that are in excellent agreement with the experimental results for
sodium dodecyl sulfate spreading on narrow glycerol rivulets. The influence of
fingering instabilities, commonly observed during the spreading process, on the
rim shape and propagation rate was studied. The rim height profiles deduced
from experiments were in excellent agreement with numerical data at early times,
but systematically lower at later stages. The origin of this discrepancy resides
in vertical concentration non-uniformities, caused by slow vertical diffusion of the
surfactant, which is not accounted for in the lubrication model.

Chapter 5 deals with the spreading at liquid-air interfaces of a soluble, slowly
diffusing surfactant. The spreading was studied by employing two different nu-
merical models. The first model is based on the full Navier-Stokes equation and
convection-diffusion equations for bulk- and surface surfactant transport. It ac-
counts for domain deformability and allows for vertically non-uniform concentra-
tion profiles. The second model is based on the lubrication approximation and
the assumption of vertically parabolic concentration profiles. The two studied
models gave considerably different results with respect to film thickness evolution
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for diffusion coefficients below a certain value. The difference originates in verti-
cal concentration non-uniformities in the sub-phase liquid that are not accurately
represented by the parabolic profile upon which the lubrication model was based.

In addition, Chapter 6 analyzes the spreading of a soluble surfactant at liquid-
liquid interfaces between parallel solid plates. We consider an interface with ini-
tially uniform height as well as narrow rivulets with initially curved interface. A
model accounting for vertically non-uniform concentration profiles was used for
slowly diffusing surfactants, while a model based on the lubrication approxima-
tion corresponding to vertically uniform concentration profiles was applied in the
case of sufficiently large diffusion coefficients. We conclude that two liquids of a
similar viscosity result in lower spreading rates and rim heights compared to the
liquids with large difference in viscosities. A comparison of rivulet height profiles
from experiments for a material system characterized by a very small viscosity
ratio with the lubrication model data yielded similar conclusions as for spreading
at liquid-air interfaces. Good quantitative agreement can be obtained with the lu-
brication model with combination of continuous surfactant supply at the interface
and finite supply in the bulk.

Finally, Chapter 7 investigates leveling and redistribution dynamics of inkjet-
printed lines in the presence of soluble and insoluble surfactants. We present
numerical results as well as scaling relations for both the leveling and redistri-
bution times of sinusoidal ripples and multi-lines as a function of the number of
individual lines, the lateral pitch, the average line height and width. Our results
were obtained for a non-linear equations of state and in the case of soluble surfac-
tants for surfactant adsorption kinetics described by a Langmuir equation, which
provides a basis for estimating optimal process conditions. Surfactants cause sur-
face tension gradients that oppose capillary leveling of ripples initially present at
the surface, and thus can slow down the leveling process. The retarding effect of
surfactants depends on rates of bulk-surface exchange.
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