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Chapter 10
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In this chapter an Orthonormal Basis Functions (OBFs) model struc-
ture is proposed in the LPV context with advantageous properties in
terms of estimation and realization. A solid system theoretic basis for
the description of LPV systems in terms of these model structures is
presented together with a general approach to LPV identification. Data-
driven model structure selection is also discussed in this setting and the
stochastic properties of the employed identification schemes are ana-
lyzed. The introduced approaches are demonstrated on an industrially
relevant example.

1. Introduction

Describing nonlinear systems by linear parameter-varying (LPV) models

has become an attractive approach to address control of complicated sys-

tems with regime-dependent (linear) behavior. However in LPV data-driven

modeling or identification of such systems, it is a delicate issue to decide

what kind of model structure will be used to capture the underlying dy-

namic behavior. As the LPV class is more like a modeling philosophy than

an actual interpretation of first-principle relations, like the linear time-

invariant (LTI) or affine nonlinear, etc. model classes, the actual possibil-

ities are numerous with a lot of sensitive details. Beside the question of

deciding what an adequate choice of the scheduling variable p is (see [Tóth
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(2010); Kwiatkowski et al. (2006)]), the representation form of the model

structure and the parametrization itself are also of crucial importance.

In the current literature, many successful approaches have been developed

using model structures that are formulated in the form of state-space (SS)

and linear-fractional representations (LFR), input-output (IO) representa-

tions or series-expansion forms. For a recent overview see [Tóth (2010);

Casella and Lovera (2008)]. Despite the significant advances this field have

recently seen, crucial questions about consequences of using an SS or an

IO model, equivalence of representations and hence model parameteriza-

tions, and the degree of usefulness of the obtained models often remain

undiscussed. However, these questions become important if the methods

are applied in an engineering context.

By taking a fresh look on these problems, in this chapter, an orthonormal

basis functions (OBFs) based LPV model structure using series expansion is

introduced. This model structure appears to have advantageous properties,

compared to other model structures, in terms of estimation and realization.

A solid system theoretic basis for the description of LPV systems by LPV-

OBF models is presented, together with a general approach to LPV iden-

tification both in the local (identification for constant p and interpolation)

and the global (identification with varying p) setting. Data-driven model

structure selection is also discussed and the stochastic properties of the

employed identification schemes are investigated. Finally, the introduced

approaches are demonstrated on an industrially relevant example.

2. Perspectives of series-expansion models

In order to shed more light on the specific problems of SS or IO models in

the LPV context and why a different representation can be advantageous,

we will take a closer look on these LPV representation forms. In specific,

we will introduce SS, LFR and IO representations, discuss some important

properties, and try to seek an answer to the question: does it really matter

how the model equations are formulated or it is just a matter of personal

choice? As we will see, such choices might have heavy consequences and it is

often attractive to avoid the involved problems, perhaps by using alternative

formulations like series-expansion forms.

A general dynamic description of a discrete-time LPV system S can be

formalized as a convolution:
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y(k) =

∞∑
i=0

hi(p, k)u(k − i), (1)

in terms of the input signal u : Z → Rnu and the scheduling variable

p : Z → P, with range P ⊆ Rnp often called the scheduling “space”. Here

y : Z→ Rny denotes the output signal of S and k ∈ Z is the discrete time

(DT). The coefficients hi of Eq. (1) are static or dynamic matrix functions

of p with arbitrary complexity ranging from simple linear to rational or real

meromorphica dependence bounded on P. A static function (dependence)

means that hi(p, k) depends only on p(k). The situation where hi(p, k)

depends on multiple but finite many time-shifted instances of p, like {p(k+
τ1), . . . , p(k − τ2)} with τ1, τ2 ≥ 0, is called dynamic dependence. To have

a convenient notation to express both static and dynamic dependencies,

we introduce the operator ⋄ : (R,PZ) → RZ
∞, where R is the set of all

real meromorphic functions with finite dimensional domain, such that (hi ⋄
p)(k) = hi(p(k + τ1), . . . , p(k − τ2)).

In Eq. (1), the sequence {hi}∞i=0 defines the varying linear dynamical rela-

tion between u and y. This description is a series-expansion representation

of S in terms of the so called pulse basis {q−i}∞i=0, where q is the time-

shift operator, i.e. q−iu(k) = u(k − i). Thus Eq. (1) is also called the

impulse response representation (IIR) of S . It can be proven that for an

asymptotically stable S , the expansion (1) is convergent [Tóth (2010)].

An important property of LPV systems is that for a constant scheduling

signal, i.e. p(k) = p for all k ∈ Z, Eq. (1) is equal to a convolution describing

an LTI system as each hi(p, k) is constant. Thus, LPV systems can be seen

to be similar to LTI systems, but with a different signal behavior due to the

variation of each hi. Note that there are many formal definitions of LPV

systems based on particular model structures and parameterizations. The

convolution form (1) can be seen as their generalization.

Two important formulations are LPV state-space (SS) representations and

LFRs, commonly used in the control literature. LPV-SS representations of

a given LPV system S , denoted as RSS(S ), are often defined under the

assumption of static dependence in the form of

qx = A(p)x+B(p)u, (2a)

y = C(p)x+D(p)u, (2b)

ah : Rn → R is a real meromorphic function if h = f/g with f, g analytic and g ̸= 0.
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where x : Z → Rnx is the state variable and A,B,C,D, with appropriate

dimensions, are rational matrix functions of p, bounded on P. The LFR of

S , denoted by RLFR(S ), is defined as qxz
y

 =

 A B1 B2

C1 D11 D12

C2 D21 D22

 xw
u

 , (3a)

where {A, . . . ,D22} are constant matrices with appropriate dimensions and

w(k) = ∆(p(k))z(k), (3b)

with ∆ : P → Rnw×nz being the (linear) function of p. Commonly, ∆

has a block diagonal structure and it is assumed to vary in a polytope.

Additionally, x, w, z are latent (auxiliary) variables of RLFR(S ).

A particular drawback of the SS and the LFR forms is that the estimation

of states or latent variables together with the underlying matrix coefficients

under noisy measurements of y, like y(k) + v(k) where v(k), is stochastic

noise process (not necessary white), is difficult, commonly requiring simpli-

fying assumptions and approximations. Due to this complexity, stochastic

implications of estimation are not well understood and the curse of dimen-

sionality casts a constant shadow over these approaches. Usually the com-

putational and parametrization simplicity can not be exploited yet as much

as in the LTI case, thus often only simple dependencies like static and lin-

ear are considered. Furthermore, estimation is effected by non-uniqueness

of the parametrization in both the global and local settings, which often

causes interpolation to be unpredictable in the SS case [Tóth (2010); Tóth

et al. (2011e)]. However a major advantage of the SS and LFR represen-

tation based approaches is that the delivered models are ready for control

synthesis without further processing and a state-space representation, like

in the LTI case, is efficient to describe MIMO relations.

An other important class of representations are IO representations in terms

of polynomial forms, denoted by RIO(S ), which express the IO signal

relations in their natural difference equation form:

y(k) = −
na∑
i=1

(ai ⋄ p)(k)q−iy(k) +
nb∑
j=0

(bj ⋄ p)(k)q−ju(k). (4)

The coefficients ai and bi are often assumed to be static or dynamic func-

tions of p, representing from simple linear (affine) to rational or meromor-

phic dependence, as this setting is flexible to handle complicated depen-

dences. Particularly attractive features of these structures are that their
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identification can be addressed via the extension of the LTI prediction-error

(PE) framework [Tóth (2010); Tóth et al. (2011b)] enabling the stochastic

analysis of the estimates, treatment of general noise models [Tóth et al.

(2011b); Laurain et al. (2010)], experiment design [Dankers et al. (2011);

Wei and Del Re (2006); Khalate et al. (2009)], model structure selection

and direct identification of the involved dependencies [Tóth et al. (2011c,

2009b); Hsu et al. (2008)] often in a computationally attractive manner.

However, such model structures have a serious disadvantage: the delivered

IO model needs to be converted to an SS or an LFR form as the main

stream LPV control-synthesis approaches are formulated in terms of these

representations. Due to the fact that multiplication with q in Eq. (4) is

not commutative over the p-dependent coefficients ai and bj , the involved

realization theory is more complicated than in the LTI case and often in-

troduces complicated rational dynamic dependence on p in the resulting SS

forms [Tóth et al. (2011e)]. Even if there exist some strategies to avoid such

complications in specific situations (see [Tóth et al. (2011a)]), the burden

of the realization is likely to rise difficulties in applications.

With respect to the previously mentioned representation forms, a particu-

larly attractive model structure in the LPV case follows by the truncation

of Eq. (1) to a finite number of expansion terms:

y(k) =
n∑
i=0

(hi ⋄ p)(k)u(k − i), (5)

which is the LPV form of the well-known LTI finite impulse response (FIR)

models. Such models have attractive properties in terms of identification

in opposite to the challenging identification problem of (2a-b) or (3a-b). In

particular, they benefit from the advantages of IO models as their identi-

fication can be addressed via the PE framework. An important property

of Eq. (5) is linearity-in-the-coefficients that allows to use linear regression

for the estimation of {hi}ni=1 if they are linearly parameterized:

(hi ⋄ p)(k) =
ni∑
j=0

θi,j(fi,j ⋄ p)(k), (6)

where θi,j ∈ Rny×nu are the unknown parameters and fi,j are prior se-

lected functions. Furthermore, noise or disturbances in the system can be

modeled in an output error (OE) sense with this model structure, which

allows independent parametrization of the noise model. However, a well

known disadvantage of FIR models, both in the LTI and the LPV cases,
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is that the expansion may have a slow convergence rate, meaning that it

requires a relatively large number of parameters for an adequate approx-

imation of the system. In order to benefit from the same properties, but

achieve faster convergence rate of the expansion, it is attractive to use basis

functions which, opposite to q−i, have infinite impulse responses. A par-

ticular choice of such a basis follows through the use of orthonormal basis

functions (OBF’s), which are specific basis functions in H2 (Hardy space of

square integrable complex functions) and have already proven their useful-

ness in LTI identification (see [Heuberger et al. (2005)]) . This is the idea

of the representation we would like to use to formulate expansion-based

model structures for LPV identification which are beneficial both from the

estimation and the utilization point of view. As we will see, the proposed

structures represent an attractive trade-off between SS and IO forms, com-

bining the advantages of both representations based model structures.

3. Orthonormal basis function models

In this section we explore the possibilities for using series-expansion model

structures for LPV systems, using the concept of OBF’s. A major moti-

vation is the linear-in-the-coefficients property of these structures, which is

very beneficial in PE identification. A second merit of these structures is

that they allow a relatively simple interpolation of local linear models with

varying McMillan degree and they have a direct SS and LFR representa-

tion. Furthermore it was shown in [Boyd and Chua (1985)] that models

composed from an OBF filter bank followed by a static nonlinearity are

general approximators of nonlinear systems with fading memory.

3.1. Series-expansion representations

We will start to develop these expansions and the concepts of OBF’s by

following a local point of view. It is well known that an LPV system has

an LTI behavior if the considered scheduling trajectory is constant, i.e.

p(k) ≡ p. Thus such a frozen aspect of the system can be represented

by a transfer function Fp(z) with z ∈ C being the complex frequency. If

Fp ∈H
ny×nu

2 , then Fp can be written as

Fp(z) =W0 +

∞∑
i=1

Wiϕi(z), (7)
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where {ϕi}∞i=1 is a basis for H2 and Wi ∈ Rny×nu . In the theory of gener-

alized orthonormal basis functions (GOBF’s), the functions ϕi(z) are gen-

erated by applying Gram-Schmidt orthonormalization to the sequence of

functions

1

z − ξ1
,

1

z − ξ2
, . . . ,

1

z − ξng

,
1

(z − ξ1)2
,

1

(z − ξ2)2
, . . . (8)

with stable pole locations ξ1, . . . , ξng
∈ D = {z ∈ C | |z| < 1}. The choice of

these basis poles determines the rate of convergence of the series expansion

(7). Note that it is possible to also develop such an expansion using basis

functions in H
ny×nu

2 but for the sake of simplicity we only consider here the

so called scalar case. For more on multidimensional bases see [Heuberger

et al. (2005)]. An alternative derivation of the basis functions is based on

a balanced LTI realization {Ag, Bg, Cg, Dg} of the inner function

Gg(z) =

ng∏
i=1

1− zξ∗i
z − ξi

, (9)

where {ϕi(z)}∞i=0 are the scalar elements of the vector functions

(zI −Ag)
−1
BgG

j
g(z), j ∈ N. (10)

By using a truncated expansion in Eq. (7), an attractive OBF model struc-

ture for LTI identification results, with a well worked-out theory in terms

of variance and bias expressions [Heuberger et al. (2005)]. The series ex-

pansion (7) can be extended to LPV systems (see [Tóth (2010)]), via the

expansion of each q−i in Eq. (1) in terms of {ϕi}∞i=1. Thus, an LPV system

can be written as

y(k) = (W0 ⋄ p)(k)u(k) +
∞∑
i=1

(Wi ⋄ p)(k)ϕi(q)u, (11)

where Wi are matrix functions with dynamic dependence on p. An obvious

choice of model structure is to use a truncated expansion, i.e. truncating

Eq. (11) to a finite sum in terms of {ϕi}ni=1:

y(k) ≈ (W0 ⋄ p)(k)u(k) +
n∑
i=1

(Wi ⋄ p)(k)ϕi(q)u. (12)

Note that these expansions are formulated in the time domain (using the

shift operator q), as there exists no frequency-domain expression for LPV

systems. Similar to the FIR case, this structure is linear in the coefficients

{Wi}ni=1. Furthermore, it is proven that structures like (12), i.e. an OBF
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filter bank followed by a static nonlinearity, are general approximators of

nonlinear systems with fading memory, i.e. nonlinear dynamic systems with

convolution representation [Boyd and Chua (1985)]. An important question

that arises is whether the basis functions ϕi can be chosen such that a fast

convergence rate can be achieved for all possible trajectories of p, i.e. how

{ϕi(q)}ni=1 with minimal n should be chosen such that the approximation

error is adequate for the problem at hand.

It is important to note that in case of an unstable LPV system, it is possible

to factorize the system representation into a stable and unstable part by

using co-prime factorization [Wood et al. (1996)]. A convergent impulse

response representation of the unstable part can be characterized in terms

of the basis {qi}∞i=1 and hence OBF models, like (12), of such systems can

be formulated in a two-sided expansion.

3.2. Basis selection

In the previously introduced modeling concept, it has a prime importance

to achieve an efficient selection of the basis {ϕi}∞i=1, which provides a fast

convergence rate of the series-expansion (11). This makes it possible to

capture the dynamics of the system with a small n in Eq. (12). By taking

a closer look at Eq. (12), an important implication is that if p is constant,

i.e. p(k) ≡ p, then the error of the approximation for a given n depends

on the expansion error of the frozen LTI transfer function Fp in terms of

{ϕi(q)}ni=1. This means that to achieve a fast convergence rate, i.e. small

approximation error by Eq. (12), it is necessary to choose {ϕi(q)}ni=1 such

that the maximum expansion error of Fp for all p ∈ P is minimal. Even if

such a condition is not sufficient [Tóth et al. (2009a)], it gives an important

tool for efficient basis selection in terms of the classical Kolmogorov n-width

result of [Pinkus (1985)] extended to OBFs in [Oliveira e Silva (1996)]. This

result states that for a given LTI inner function Gg with poles Ξng ⊂ D,
the OBF’s generated by Gg (see Section 3.1) are optimal in the n-width

sense for the set of LTI systems having poles in the region

Ω(Ξng , ρ) = {z ∈ D | |Gg(z
−1)| ≤ ρ}. (13)

Here ρ is the rate of convergence in the series expansion, and n should be

a multiple of the number of basis poles ng in Ξng . See Fig. 1, taken from

[Tóth et al. (2009a)], for an example of these regions.
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Fig. 1. Example of the function

|Gg(z−1)| and the region Ω(Ξng , ρ) for an
inner function Gg with 3 poles and various
values of ρ (decay rate). Note that if z0 is
a pole of Gg, then Gg(z

−1
0 ) = 0.

For the basis-selection problem we are dealing with the inverse problem,

i.e. given a region of poles Ω∗ = {ξ ∈ C | ∃p ∈ P s.t. ξ is a pole of Fp(z)},
approximate this region as

Ω∗ ⊆ Ω(Ξn, ρ) = {z ∈ D | |Gg(z
−1)| ≤ ρ}. (14)

The n optimal OBF poles Ξn = {ξ1, · · · , ξn} are therefore obtained by

solving the following Kolmogorov n-width measure minimization problem,

min
Ξn⊂D

ρ = min
Ξn⊂D

max
z∈Ω∗

∣∣Gg(z
−1)
∣∣ = min

Ξn⊂D
max
z∈Ω∗

∣∣∣∣∣
n∏
k=1

1− zξ∗k
z − ξk

∣∣∣∣∣ . (15)

For a given Ξn = {ξ1, · · · , ξn} and Ω∗, the region Ω(Ξn, ρ∗) with ρ∗ is the

minimum of ρ such that (14) is satisfied, is called the Kolmogorov bound

of Ξn. Smallness of this region w.r.t. Ω∗ and ρ∗ together indicate how well

the basis functions are tuned w.r.t. Ω∗.

In order to select an efficient basis, it is obviously required to obtain knowl-

edge about the system to be modeled. In the LPV case, this knowledge

is Ω∗: the set of poles of all possible local linear models. In practice

this knowledge is generally not available and one has to resort to limited

prior-information resources, such as expert knowledge or preliminary iden-

tification experiments. A possible simple selection scheme, which delivers

adequate results in practice, is given by the following steps:

(1) Identify a number of local linear models in several different operating

regimes pi, i.e. using data with a constant scheduling signal p(k) ≡ pi.

(2) Plot all poles of the identified models in the complex plane.

(3) Cluster the poles in groups and find optimal cluster centers (these cen-

ters will be used as basis poles) which minimize (15).
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Alternatively, other basis optimization schemes based on recently devel-

oped sparse estimators can also be used via orthogonal matching pursuit or

ℓ1-optimization approaches [Tropp and Wright (2010)]. Basis selection is

recently developing.

In the next section we present an efficient approach to obtain a simultaneous

solution for the problems of reconstructing Ω∗ from experimental data and

the minimization of the Kolmogorov measure.

3.3. A fuzzy clustering approach

Objective-function-based fuzzy clustering algorithms, such as fuzzy c-max

(FcM) clustering, have been used in a wide collection of applications

[Bezdek (1981); Kaymak and Setnes (2002)]. Generally, FcM partitions

the data into overlapping groups to capture the underlying structure [Jain

and Dubes (1988)]. In this section we describe the extension of the clas-

sical FcM approach to the so-called Fuzzy-Kolmogorov c-Max (FKcM) al-

gorithm, originally developed in [Tóth et al. (2009a)], which enables the

determination of the region Ω∗ on the basis of observed frozen poles with

membership based, overlapping areas. We assume that we are given a set

of observed/identified poles Z = {z1, . . . , zN} ⊂ Ω∗.

Let c be the number of clusters, that we wish to discern and let vi ∈ D
denote the cluster center of the i-th cluster. Denote Iτ2

τ1
= {n ∈ N | τ1 ≤

n ≤ τ2}. Furthermore we define membership functions µi : D→ [0, 1], that

determine for each z ∈ D the “degree of membership” to cluster i. By using

a threshold value 0 < ε ≤ 1, we obtain a set

Ωε = {z ∈ D | ∃i ∈ Ic1, µi(z) ≥ ε}. (16)

To measure dissimilarity of Z with respect to each cluster, we introduce

distances di,k = κ(vi, zk) between vi and zk, where κ, defined by

κ(x, y) =

∣∣∣∣ x− y1− x∗y

∣∣∣∣ , (17)

is a metric on D, referred to as the Kolmogorov metric.

Analogously we define µi,k = µi(zk) and we regulate the membership func-

tions by the so-called fuzzy constraints:

c∑
i=1

µi,k = 1 for ∀k ∈ IN1 and 0 <
N∑
k=1

µi,k for ∀i ∈ Ic1.
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With these preliminaries we can now formulate the problem we will con-

sider.

Problem 10.1. For a set of pole locations Z and for a given number of

clusters c, find a set of cluster centers {vi}ci=1, a set of membership func-

tions {µi}ci=1, and the maximum of ε, such that

• Ωε contains Z and it describes the underlying distribution of Z in terms

of a chosen dissimilarity measure κ.

• With respect to Ωϵ, the OBF’s, with poles Ξc in the cluster centers

{vi}ci=1, are optimal in the KnW sense, where n = c and with the

corresponding decay rate ρ as small as possible.

Let V = [ v1 . . . vc ]
⊤ and Uk = [µ1,k . . . µc,k ]

⊤ and denote by U the matrix

with Uk ’s as columns. Fuzzy clustering can be viewed as the minimization

of the FcM-functional [Bezdek (1981)], Jm, which in the FKcM case can

be formulated as

Jm(V,U) = max
k∈IN1

c∑
i=1

µmi,kdi,k. (18)

Here the design parameter m ∈ (1,∞) defines the fuzziness of the result-

ing partition in the sense that m determines how sharp the separation is

between the clusters by the membership functions. For 1 ≪ m, each µi
flattens till all poles in Z belong to all clusters with equal membership,

while for m = 1, each z ∈ Z belongs to only one cluster with a nonzero

membership. It can be observed that Eq. (18) corresponds to a worst-case

(max) sum-of-error criterion, contrary to the mean-squared-error criterion

of the original FcM, see [Bezdek (1981)].

The crucial property of this functional is that it can be shown [Tóth et al.

(2009a)] that for large values of m minimization of Jm is equivalent to the

Kolmogorov measure minimization problem (15):

Theorem 1. Given a data set Z ⊂ D with N elements, and a vector of

cluster centers V ∈ Dc, such that di,k = κ(vi, zk) ̸= 0 for all (i, k) ∈ Ic1×IN1 .

Define Um as a membership matrix of V minimizing Eq. (18) for m > 1.

Then Jm(Um, V ) = c1−mmaxk∈Ic1 (
∏c
i=1 di,k)

1/c
+ O(e−m). Furthermore,

Jm(Um, V ) decreases monotonically with m, and limm→∞ Jm(Um,V )=0.
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This theorem gives that, by solving Problem 10.1 via the solution of

Eq. (18), which can be obtained in terms of an alternating optimization

(Picard iteration) [Tóth et al. (2009a)], one can simultaneously cluster the

observed poles in such a way that the resulting cluster centers will approx-

imate arbitrary well (governed by m) the n-width optimal OBF poles for

the reconstructed frozen pole regions. See Fig. 2 for an example of the ba-

sis selection mechanism. For further details as well as a description of the

optimization algorithm see [Tóth (2010)], where also the robust extension

of the basis selection is discussed. This robust extension allows to solve the

optimal basis selection problem when the local pole estimates are given up

to an uncertainty region due to the effects of the measurement noise.

Fig. 2. Example of the basis selec-
tion procedure, using fuzzy clustering
with fuzziness parameter m = 8. The

30 observed poles (i.e the set Z) are
given with circles. The resulting clus-
ter centers are depicted with a black x.
The lines represent the Kolmogorov

bound Ω(Ξc, ρ∗) w.r.t. Z. On the left
hand side c = 5 clusters are deter-
mined, on the right hand side c = 8.
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For the determination of the actual number of clusters in these algorithms,

adaptive cluster merging can be applied (see [Kaymak and Setnes (2002);

Tóth et al. (2009a)]). Starting from an initial number of clusters (typically

aroundN/2), the adaptive merging steers the algorithm towards the natural

number of groups that can be observed in the data.

3.4. OBF’s-based model structures

Now we can define the OBF model structures we intend to use for addressing

the identification of LPV systems. Assume that the basis selection step has

been completed and we are given a set of nf basis functions {ϕi(z)}
nf
i=1 and

the data-generating LPV system So is affected by a stochastic disturbance

v(k) in an output additive sense. Note that v can represent a wide variety

of noise processes from pure (white) measurement noise to process noise

correlated with y, p and/or u. The input-output dynamics of a truncated
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Fig. 3. IO signal flow graph of (a) the W-LPV OBF model described by (19) and (b)
the H-LPV OBF model described by (20).

LPV series-expansion model in terms of {ϕi(z)}
nf
i=1 can now be written as

y(k) =

nf∑
i=0

(Wi ⋄ p)(k)ϕi(q)u(t) + v(k), (19)

with ϕ0(�) = 1. Equation (19) corresponds to a so-called output error (OE)

model. Introduce Φnf
=
[
ϕ1 . . . ϕnf

]⊤
and W =

[
W1 . . . Wnf

]⊤
. Then

the model structure (19) can be visualized as in Fig. 3a, where xi(k) =

ϕi(q)u(k). Because of the close resemblance of this structure to classical

Wiener models, this model structure is referred to as a Wiener LPV OBF

(W-LPV OBF) model. A closely related model structure, depicted in Fig.

3b, is the so-called Hammerstein LPV OBF model:

y(k) =

nf∑
i=0

ϕi(q) (Wi ⋄ p)(k)u(k) + v(k). (20)

The truncated expansion (20) can be obtained by deriving the series ex-

pansion (11) such that {Wi}∞i=0 appear after the basis {ϕi}∞i=0. Such a

reordering has no effect in the LTI case, but for LPV systems, due to the

non-commutativity of multiplication of any p-dependent coefficients with

q−1, it results in a set of different expansion coefficients. Even if such ex-

pansions are equal in the asymptotic sense, in case of a finite truncation

they have different approximation capabilities (see [Tóth (2010)]).

In the sequel we will restrict attention to the Wiener model structure. A

particularly interesting feature of Eq. (19) is that it can be written in a

state-space form

qx = Ax+Bu, (21a)

y = (W ⋄ p)x+ (W0 ⋄ p)u+ v, (21b)
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where the constant matrices A and B are completely determined by the

basis functions {ϕi}
nf
i=1. This illustrates that the dependency on p is only

present in the output equation (21b). The direct SS realization (21a-b)

avoids complications that are present in the general IO case and at the

same time allows to directly control the resulting dependency of the SS

model by the chosen parametrization of each Wi. Similarly, direct LFR

realization schemes of these models also exist in case the dependencies of

each expansion coefficients are polynomial. This is a clear benefit over IO

models. Moreover, as we will see, we can preserve all the advantages of the

IO setting for the identification of (19) which is attractive compared to SS

identification.

4. Identification via OBF models

In this section, the identification of the previously introduced OBF model

structure (19) is discussed in a PE setting. With respect to the actual

estimation of (19) we distinguish between two methods: a local and a global

approach, which not only correspond to different estimation concepts but,

as we will see, can also result in rather different model estimates. However,

to derive these estimation schemes, first the question of parametrization of

the coefficients is investigated.

4.1. Parametrization of the coefficient dependence

Beside the selection of basis functions in the considered LPV-OBF set-

ting, model structure selection also contains an equally important part:

the parametrization of the dependence of the coefficients Wi on p:

Wi ⋄ p = ψi(θ) ⋄ p, (22)

where ψi is function defined via some constant parameters θ ∈ Rn. The

aim of the identification is to estimate θ based on a measured data record.

To simplify the estimation problem, in the LPV literature often a linear

parametrization of the structural dependence is used. In fact, coefficients

like Wi are considered to be a linear combination of fixed matrix functions

ψi,j : P→ Rny×nu :

Wi =

nψ∑
j=0

θi,j ⊙ ψi,j , (23)
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where ψi,0 = 1, θi,j ∈ Rny×nu , and ⊙ denotes the Hadamard, i.e. element-

by-element, matrix product. A linear parametrization not only reduces

the complexity of the associated estimation problem but also makes the

problem of adequate selection of the underlaying structural dependence

well-posed [Tóth (2010)]. In terms of Eq. (23), the selection problem of

an adequate parametrization translates to a search for a set of functions

{ψi}
nf ,nψ
i=0,j=0 such that the true expansion coefficientsW o

i of the system with

respect to the used basis functions {ϕ(q)}nψi=1 satisfyW
o
i ∈ Span({ψi,j}

nψ
j=0).

In case of a black-box scenario, the choice of {ψi,j} can be arbitrary. One

can consider all {ψi,j} to be rational functions or polynomials with a fixed

degree and a fixed order of dynamic dependence. However the number of

possible choices is enormous. Including a too large set of functions {ψi,j}
can easily lead to over-parametrization, while restriction of {ψi,j} to only a

few basic functions can lead to serious structural bias. In order to assist the

selection of an efficient set of functional dependencies in the parametriza-

tion of linear regression models, recently practically applicable approaches

have been proposed in [Tóth et al. (2011c, 2009b)] and [Hsu et al. (2008)].

In [Hsu et al. (2008)] a dispersion functions based method while in [Tóth

et al. (2011c)] a support vector machine approach, both originating from

the machine learning field, has been developed to basically learn the under-

lying static or dynamic nonlinear dependence of the coefficients with great

efficiency. In [Tóth et al. (2009b)] a coefficient shrinkage method, the so-

called non-negative garrote (NNG) approach originating from statistics, has

been introduced for this purpose. The NNG uses regularization in terms of

weights to penalize individual elements of the parameter vector θ. In this

way, the approach starts with a relatively large set of possible functional de-

pendencies from which those functions that do not contribute significantly

to the validity of the estimated model are eliminated by decreasing their

weights.

4.2. Prediction error concept

Based on the considered parametrization of {Wi}nf
i=0 given by Eq. (23), the

deterministic part of (19) can be written in the operator form

G(q, θ) =

nf∑
i=0

nψ∑
j=0

(θi,j ⊙ ψi,j)ϕi(q), (24)

with an overall parameter vector θ ∈ Rnθ containing the elements of θi,j .
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Similarly, we can introduce a parametrized noise model w.r.t. v such as

v(k) =
(
H(q, θ) ⋄ p

)
e(k), (25)

where e is a zero mean white noise process,

H(q, θ) =

∞∑
i=0

(hi(θ) ⋄ p)q−i, (26)

is the IRR of a parametrized asymptotically stable LPV filter and θ also

contains the parameters associated with this noise model. Then, the overall

model Mθ = (G(q, θ),H(q, θ)) is represented as

yθ(k) =
(
G(q, θ) ⋄ p

)
(k)u(k) +

(
H(q, θ) ⋄ p

)
(k)e(k). (27)

If there is a θo such that the data-generating system So satisfy that So =

Mθo , then the aim of identification is to estimate θo based on measured

data DN . In any other case, an Mθ is searched for that describes the

behavior of So, the best in terms of a given criterion function. To simplify

the following discussion, in the sequel we treat only the case of H(q, θ) = I

and e being a vector of independent zero white noise processes. However,

we will briefly return to the concept of general noise models later.

It is possible to show (see [Tóth (2010); Tóth et al. (2011b)]) that w.r.t.

(19) with H(q, θ) = I, the conditional expectation of yθ(k) in the ℓ2 sense

under the information set of {u(τ)}kτ=1 and {p(τ)}kτ=1 is equal to

ŷθ(k |k − 1) :=
(
G(q, θ) ⋄ p

)
(k)u(k). (28)

Then the basic philosophy of PE based identification is that w.r.t. a given

model set M = {Mθ | θ ∈ Rnθ} with parameter space Θ ⊆ Rnθ and a data

set DN , to find θ such that the one-step-ahead predictor (28) associated

with Mθ provides a prediction error

eθ(k) = y(k)− ŷθ(k|k − 1), (29)

which resembles a zero mean white noise “as much as possible”.

Based on the predictor form (28), many different classical identification

criteria can be applied to meet the above goal. A particularly interesting

choice is the least-squared (LS) prediction-error criterion

V (θ,DN ) =
1

N

N∑
k=1

e⊤θ (k)eθ(k) =
1

N
∥eθ∥2ℓ2 (30)
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where the residual eθ(k) is given by (29). As we will see, linear parametriza-

tion of the expansion coefficients (see Eq. (23)) yields that w.r.t. (30), the

estimation of θ reduces to a linear regression problem. In other cases, when

the parametrization of the coefficients is nonlinear, the estimation corre-

sponds to a nonlinear optimization problem.

To guarantee a unique solution of (30), one condition is that the set of

functions {ψi,j} are chosen such that Mθ is globally identifiable:

Definition 10.1. The model structure (G(q, θ),H(q, θ)), defined by

Eq. (27), with a parameter domain Θ ⊆ Rnθ and with H(q, θ) = I is glob-

ally identifiable, if for any θ1, θ2 ∈ Θ, the corresponding one-step-ahead

predictors (see Eq. (28)) are distinguishable:

G(q, θ1) = G(q, θ2) ⇒ θ1 = θ2.

In terms of the 1-step ahead predictor (28) of the considered OBF model, a

necessary and sufficient condition to guarantee identifiability is that in the

parameterization, each function set {ψi,j}
nψ
j=0 is a set of linearly indepen-

dent functions. Another condition for the unique solution of (30), is the

informativity of the data set DN :

Definition 10.2. For a model structure (G(q, θ),H(q, θ)), defined by

Eq. (27), with a parameter domain Θ ⊆ Rnθ and with H(q, θ) = I, a

data set DN = {u(k), y(k), p(k)}Nk=1 is called informative, if the following

holds for the one-step-ahead predictors (see Eq. (28)):(
G(q, θ1) ⋄ p

)
u =

(
G(q, θ2) ⋄ p

)
u ⇒ G(q, θ1) = G(q, θ2).

This means that if DN is informative w.r.t. a globally identifiable Mθ, then

the global optimum of (30) is unique. Now, having the model structure

and the required concepts of identification established, we can introduce

identification schemes of W-LPV-OBF models.

4.3. Local estimation approach

As a first approach, we aim at the identification of (19) based on the frozen

aspects of the underlying data-generating system. This so-called local ap-

proach uses a number Nloc of “local” experiments, i.e. data collection with

a constant scheduling signal p(k) ≡ pτ ∈ P, resulting in data sequences
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276 R. Tóth, P. S. C. Heuberger & P. M. J. Van den Hof

DN,pτ = {u(k), y(k), pτ}Nk=1 for τ ∈ INloc
1 . Based on these data, Nloc LTI-

OBF models defined as

Gτ (q, ητ ) =

nf∑
i=0

Wi,τϕi(q), H(q, ητ ) = I, (31)

with ητ = [W0,τ . . . Wnf ,τ ] ∈ Rny×(nu·(nf+1)), are estimated using the LS

criterion. Note that – under the condition that the data sets are informative

– there exist unique analytic solutions to these estimation problems. The

estimated coefficients can now be considered as “samples” of the function

Wi ⋄p, in the sense that Wi ⋄p with p(k) ≡ pτ is equal to Wi,τ . As a second

step, we use interpolation to obtain estimates of the function Wi ⋄ p, for
instance by assuming a polynomial dependency of (Wi ⋄ p)(k) on p(k), or

by making use of splines etc. Note that as the only information available

about the system is in the form of DN,pτ where p is constant, the estimation

assumes that each Wi has only static dependence on p.

Let Vec(�) denote vectorization of a matrix in the sense that

M =

[
α1,1 α1,2

α2,1 α2,2

]
⇒ Vec (M) =

[
α1,1 α1,2 α2,1 α2,2

]⊤
.

Furthermore, introduce the diagonal matrix row construction as

Diagrow(M) =

[
α1,1 α1,2 0 0

0 0 α2,1 α2,2

]
.

Then the local concept of estimation is formalized in terms of Algorithm

10.1.

4.4. Global estimation approach

Opposite to the local approach, in the global case we aim at the estimation

of (19) in terms of the parametrized model structure (27) with H(q, θ) = I

using a data set DN where p is varying. This data set is assumed to be

informative w.r.t. (27). Then, in terms of the LS criterion, a unique analytic

solution – under the condition that Eq. (27) is globally identifiable – can

be obtained for θ via Algorithm 10.2.

A similar algorithm can be introduced for the identification of the Ham-

merstein LPV-OBF model structure (20), including the estimation of initial

conditions, see [Tóth (2010)] for a detailed discussion. In case the noise

model is parameterized in terms of an LPV filter, i.e. H(q, θ) ̸= I, the
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Algorithm 10.1 OBF based LPV identification, local method

Input: an OBF set Φnf
= {ϕi}

nf
i=0 with ϕ0(�) = 1, scheduling points

P = {pτ}Nloc
τ=1 ⊂ P, data records DN,pτ = {u(k), y(k), pτ}Nk=1 of S ,

an identification criterion V , and the local OBF model structure (31)

with ητ = [W0,τ . . . Wnf ,τ ]. Assume that each DN,pτ is informative

w.r.t. (31).

1: for each τ ∈ INloc
1 , calculate η̂τ = argminητ V (ητ ,DN,pτ ).

2: choose a set of matrix functions {ψi,j : P → Rny×nu}nf ,nψ
i=0,j=0 where

the scalar functions {[ψi,j ]k,l}
nψ
j=0 are linearly independent for each

(i, k, l) and all θ̂i,j = argminθi,j∈Rny×nu ∥Γ̂i −
∑nψ
j=0 Ψi,jVec(θi,j)∥

achieves the least interpolation error in terms of the consid-

ered norm ∥ � ∥, where Γ̂i = [ Ŵ⊤
i,1 . . . Ŵ

⊤
i,Nloc

]⊤ and Ψi,j =

[Diagrow(ψi,j(p1))
⊤ . . . Diagrow(ψi,j(pNloc

))⊤ ]⊤.

3: return estimated model (27).

estimation problem becomes non-linear in θ. If v(k) is not white or corre-

lated with u, then Algorithm 10.2 results in a biased estimate. To handle

such cases it is possible to use a recently developed instrumental variable

approach [Laurain et al. (2010)], which can provide statistically efficient

estimation for linear regression models such as (32).

Algorithm 10.2 OBF based LPV identification, global method

Input: an OBF set Φnf
= {ϕi}

nf
i=0 with ϕ0(�) = 1, matrix functions

{ψi,j : P → Rny×nu}nf ,nψ
i=0,j=0 where the scalar functions {[ψi,j ]k,l}

nψ
j=0

are linearly independent for each (i, k, l), a data record DN =

{u(k), y(k), p(k)}Nk=1 of S , an identification criterion V , and the OBF

model structure:

G(q, θ) =

nf∑
i=0

nψ∑
j=1

(θi,j ⊙ ψij)ϕi(q), H(q, θτ ) = I, (32)

with θ = [ θ0,0 . . . θnf ,nψ ]. Assume that DN is informative.

1: calculate the signals xi,j = ψi,j ⊙ (1ny ⊗ ϕi(q)u
⊤) and let Γ =

Diagrow([x0,0 . . . xng,nψ ]) giving that y(k) = Γ(k)Vec(θ) + εθ(k).

2: estimate θ in terms of θ̂ = argminθ V (θ,DN ). In case of (30),

θ̂ =
(

1
N Γ⊤

d Γd

)−1 ( 1
N Γ⊤

d Y
)
with Y = [ y⊤(1) . . . y⊤(N) ]⊤ and Γd =

[Γ⊤(1) . . . Γ⊤(N) ]⊤.

3: return estimated model (27).
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4.5. Properties of estimation

Similar to the classical LTI identification framework, it is possible to show

that under minor conditions, the parameter estimates of local and global W-

LPV approaches are convergent and consistent. Convergence means that for

N → ∞ the parameter estimate θ̂ converges, i.e. θ̂ → θ∗, with probability

1, while consistency means that the convergence point θ∗ is equal to θo,

the parameters of the data generating system So. Obviously, the latter

property requires that the data generating system is in the model class M.

Furthermore, asymptotic bias and variance expressions can be derived, see

[Tóth (2010)] for details.

It is important to mention that all the above presented results and algo-

rithms are implicitly based on the assumption that the sequence of p is

measurable/observable in the system without any measurement noise or

disturbance. In the LPV literature, such an assumption is generally taken

as a technical necessity and the resulting methods based on it are almost

exclusively applied in practical situations where measurements of p are

polluted by noise with various stochastic properties. The reason for this

theoretical gap lies in the difficulty to establish a conditional expectation

of y(k) in the situation when instead of p(k) only its noisy observations

are available. Recently it has been proved that using estimated moments, a

one-step-ahead predictor of y(k) can be formulated if p is observed up to an

additive white noise independent from v and the resulting formulation still

allows linear-regression based estimation under an LS criterion [Tóth et al.

(2011b)]. However, consistency and convergence properties of estimation

in that case are currently not well-understood.

4.6. Global versus local approach

As demonstrated, both the global and the local approaches provide attrac-

tive ways of identifying an LPV system. An obvious question is when to

use which approach. In most situations the global approach is considered

to be more attractive as it provides estimation of the system with a varying

trajectory of p, giving a better possibility to approximate the global dy-

namic behavior of the system instead of just the frozen aspects. As shown,

estimation in the global case can be formulated in a simple least-squares

setting and cumbersome problems of interpolation are avoided due to the

fixed functional dependencies of the parametrization. The better under-

stood behavior of the stochastic nature of estimation in the global setting
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also suggests that it is a theoretically more sound approach than the local

method if informativity of DN can be guaranteed.

However, practical use of LPV identification on industrial problems often

turns out to favor different properties. In most practical applications, iden-

tification must be accomplished in a closed-loop setting due to instability

of the plant or because the current production can not be disturbed in the

favor of identification. In terms of the local approach, the well worked out

methods of the LTI framework can be fully used to solve the identification

problem in a divide-and-conquer manner. The use of frequency-based iden-

tification is also supported in the local setting. The latter is important in

mechatronic applications where the often tight modeling specifications with

respect to the frozen behaviors are only available in the frequency domain.

Usually, such specifications can not be addressed in the global setting. On

the other hand, interpolation can result in unexpected global behavior as

the local identification approach only focuses on the frozen aspects of the

system. However, such a drawback can be avoided by using data with

varying p to assist the interpolation. As a general recipe, the use of the

global approach is advised whenever there is enough possibility to perturb

the system for an informative data record and if the model specifications

are not given in the frequency domain. In other situations, the use of a

local approach is advised due to its higher capability to meet the target

performance under the given information content of available data sets.

There is an important aspect of the proposed identification methods if in

the data-generating system p is not an external (free) signal but depends

on internal signals like inputs, outputs or state-variables. Such systems are

called quasi -LPV. For many quasi LPV systems, p can generally be not

held constant. In such cases, only the global method is applicable, as the

local approach needs identification of the system w.r.t. constant scheduling

trajectories. Violation of the freedom of p and how this affects the previous

results are generally not well understood and these questions are subject of

current research.

5. Identification of a high-performance positioning device

In the sequel, the benefits of the proposed LPV-OBF identification ap-

proach are demonstrated on the data-driven modeling of an industrially

relevant application: an xy-positioning table.

The conventional design of high-performance positioning devices used com-
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monly in the production of integrated circuits (ICs) – with usual servo error

requirements in the order of [1, 50] [nm] – involves a long stroke, called the

xy-positioning table, moved by two linear motors on parallel rails, see Fig. 4.

This table is controlled in the x, y-translational and the z-rotational motion

degrees of freedom (DOF’s). The linearized (or so called local) dynamics

of this device varies with its actual position, often manifesting in terms of

position-dependent resonant dynamics. Based on [Tóth et al. (2011d)], we

present in the following an LPV identification study of an xy-table aiming

at a highly accurate fit of the resulting model w.r.t. the frozen frequency re-

sponses of the original plant. To generate-data, we will use a first-principle

model which makes it possible to compare the results of the modeling an-

alytically with the original system.

5.1. First-principle modeling

The first-principle modeling concept of a conventional xy-positioning table

is described in Fig. 4. In this modeling concept, it is assumed that the

long stroke has no displacement in the x-direction, i.e. x2 = 0. Under this

assumption, the dynamical behavior of this multiple mass-damper-spring

system S can be described via the following differential equation:

rMẅ + rB(x1)ẇ + rK(x1)w = rFu (33)

where w = [ x1 y1 Rz1 y2 Rz2 ]⊤, u = [ Fx Fleft Fright ]⊤ and rM
and rF are full-rank block diagonal matrices with appropriate dimensions

and rB and rK are linear matrix functions of x1. By taking p = x1 as

Rz2 x2

k2k1

Rz

Fleft Fright

y2

b1 b2

M2 J2

x

y

M1 J1

x1

y1

Rz1 F
x

Fig. 4. First-principle modeling concept of xy-positioning tables.
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a scheduling variable with P = [xmin, xmax] ⊂ R, the differential equation

Eq. (33) corresponds to an LPV-IO representation RIO(S ), with input-

output partition (u, [x1 y1 Rz1]).

In Eq. (33), forces in one direction have influence on the movements in

other directions (see [Tóth et al. (2011d)]). Thus, to enable the design of

SISO controllers, the plant dynamics are commonly decoupled in practice

by using pre- and post-transformation matrices Tu and Ty implemented

directly into the hardware. As in the LPV case full decoupling of the IO

channels is currently not a well-understood concept, the decoupling of the

plant is developed by using a rigid-body formulation of Eq. (33), providing

approximately decoupled dynamics (i.e. approximately diagonal) in the low-

frequency region.

Based on the above given considerations, the rigid-body decoupled plant

can be written as:

R′
IO(S ) = Ty(p) ∗RIO(S ) ∗ Tu(p). (34)

The matrix Ty is defined by the variables to be controlled: y′ = [ y1 −
Rz1x1 Rz1]

⊤ which are the actual measurements available from xy-

positioning tables (besides the measurement of x1). Tu is developed by

assuming arbitrary slow variation of x1 and aiming for TuP0Ty = I where

P0 is the static gain of the system, giving a set of new input variables u′

satisfying [ Fx Fleft Fright ]
⊤ = Tu(p)u

′.

The frozen FRF’s of the first-principle model of a real-life xy-positioning

table w.r.t. (u′, y′), are depicted at different x1-positions in terms of Bode

magnitude plots in Fig. 5. To protect the interest of the manufacturer, fre-

quency and time have been scaled throughout this example. The following

observations are crucial:

• The system dynamics can clearly be separated into an unstable rigid

body part dominant in the low frequency band (below 1) and a x1-

position dependent stable flexible part dominant in the frequency band

[1, 3] which is symmetric in magnitude to the x1 = 0 position (phase

has a 180◦ drop at x1 = 0 due to sign change).

• In the diagonal channels, rigid body dynamics correspond to a 2nd order

integrator, while in the off-diagonal channels, due to the decoupling,

only a small proportional term can be observed.

• At x1 = 0, the off-diagonal transfer functions become approximately
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Fig. 5. Bode magnitude plot of the 2×2 MIMO xy-table model at different x-positions.

zero, indicating perfect decoupling. The order of the transfer functions

of the diagonal channels (each with order 6) also drops by 2 at p = 0.

5.2. Simulation conditions

As the underlying system is unstable, meaningful simulations or measure-

ments can only be obtained under closed-loop conditions. For this purpose

robust continuous-time LTI single-loop controllersKy1(s) andKRz1(s) have

been designed for the model satisfying moderate specs. in terms of perfor-

mance. The complete closed control loop of the system is given in Fig.

6, which corresponds to a simplified control architecture used in practice.

Additionally, to record DT data for identification purposes, the inputs and

outputs of the xy-positioning table in Fig. 6 are sampled with a sampling

frequency of 20 (i.e. 10× the highest interesting frequency point: 2).

To give a realistic setting for identification, noise affecting both the closed

loop control and the data acquisition is also considered in the form:

ŷ1(k) = y′1(k) + v1(k), ŷ2(k) = y′2(k) + v2(k), (35)

with v1 and v2 independent white noise processes with normal distribu-

tions: v1(k) ∈ N (0, 13 · 10
−7) and v2(k) ∈ N (0, 53 · 10

−6). Such noise levels

are typical for the considered laser-interferometers based high-accuracy po-

sition measurements. Note that these noise conditions seem to be not so
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significant, but due to the relatively small range of movement and the tight

error specifications they are challenging enough.

5.3. OBFs based LPV identification

In modeling of xy-tables it is important to achieve accuracy of the model

w.r.t. both constant and varying trajectories of p(t) = x1(t). For constant

values of p, typical specifications require that the magnitude of the error in

terms of the frozen frequency response function (FRF) of the system, i.e.

Fp(iω) needs to be less than −40dB. It is generally true that it is very dif-

ficult to include identification constraints into global methods which would

guarantee a specified upper bound of the model accuracy for constant p

(local fit). As LPV systems do not have a transfer function representation,

it is only possible to include frequency domain constraints for local type of

approaches. Thus in the following we will study local identification of the

xy-table using the introduced OBF approach.

5.3.1. Choice of model structure

Based on the observations in Section 5.1, it is attractive to separate the

system dynamics into an additive “rigid-body part,” which is not dependent

on p, and a remaining “flexible part” contains the varying-poles related

dynamical aspects of the system. Identifying the flexible part with a fixed

DT rigid body filter, provides the means to enforce the well-known fact

that the low-frequency behavior of the system is governed by decoupled

2nd-order integrators with an additional zero at −1 for each diagonal IO

channel:

ϕR(z) =
z + 1

(z − 1)2
. (36)

'
'

x1

y+
+

v
Ky1(s)+

_
ref

KRz1(s)

0

0

xy-positioning 

table 

u2

u1'
' y2

y1

^

Fig. 6. Simplified closed-loop control scheme of the xy-table mechanism with measure-
ment error v.
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It can also be observed in Fig. 5 that the “moving” pole locations of the

underlying IO channels of the system are the same. This implies that the

optimal set of OBFs, which provide the fastest convergence rate, is the

same for each channel. Furthermore, local approaches can only identify

coefficients, like Wi in Eq. (12), with static dependence. Thus the overall

model structure can be chosen as

ŷθ =

[
c1ϕR(q) 0

0 c2ϕR(q)

]
u+

nf∑
i=1

Wi(p)ϕi(q)u (37)

where {ϕi(q)}
nf
1 is a set of SISO OBF’s and c1, c2 ∈ R with Wi : P →

R2×2 are the unknown coefficients to be estimated. As a next step, it is

important to design our experiments which will give the information upon

which adequate selection of the basis functions and the estimation of the

expansion coefficients will be accomplished.

5.3.2. Experiment design and data generation

The first step of experiment design for local identification is the gridding

of P. This refers to designing the points on the x1-axis around which local

LTI identification of the setup will be performed. It is important that the

gridding must be dense enough to capture important dynamic changes of

the plant for different x1-positions. By analyzing the rate of change of the

frozen poles and zeros of the system w.r.t. P = [xmin, xmax], a grid of 21

equidistant points is chosen.

In order to generate informative data for frequency-domain identification at

the designated x1-positions, orthogonal multisines with normalized ampli-

tude are generated based on 214 equidistant frequency points W = {ωk}2
14

k=1

in the range [10−4, 10]. This frequency range has been chosen to contain the

relevant dynamical aspect of the plant in terms of rigid body and flexible

modes. The orthogonality of the generated multisine signals r11, r12, r21, r22
can be understood in the following manner: the discrete-time Fourier trans-

forms R11(ω), . . . , R22(ω) of these signals, satisfy that

R(ωk)R
H(ωk) =

[
λ1(ωk) 0

0 λ2(ωk)

]
≺ I, ωk ∈W,

where R(ωk) =

[
R11(ωk) R12(ωk)

R21(ωk) R22(ωk)

]
,

where �H denotes the Hermitian conjugate. This property ensures high
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accuracy frequency domain estimates in closed loop even under heavy mea-

surement noise. In the experiments, first signals r11 and r21 are used as

references for y′1 and y′2 (see Fig. 6) and with constant x1 equal to a grid

point. Then the whole experiment is repeated by using r12 and r22. The

two set of responses for y′1 and y′2 are required to uniquely estimate the

2x2 MIMO FRF of the plant at the considered x1 position. Note that

the normalized reference signals are multiplied with 10−4 to remain in the

operating range of the setup.

With the designed multisine sequence, data is generated based on the closed

loop model starting from zero initial conditions. To generate an appropri-

ately long data record for the attenuation of both the transient and noise

effects, the designed multisines are repeated 25 times. For validation pur-

poses, noise free data records are also generated.

5.3.3. FRF estimate of the local behaviors

The data records that are collected in the previous step can now be

used to deliver estimates of the FRF of the system at the chosen x1-

positions. Consider the data sets Dp,1 = {y′ref1(k), u′ref1(k), rref1(k)}
Nd

k=1,

Dp,2 = {y′ref2(k), u′ref2(k), rref2(k)}
Nd

k=1 collected from the model with x1 = p

and reference signals rrefi = [ r1i r2i ]
⊤. Denote the fast Fourier transform

(FFT) of these signals taken on one period of the time-domain data as

Rref1(ω), U
′
ref1(ω), Y

′
ref1(ω) and Rref2(ω), U

′
ref2(ω), Y

′
ref2(ω) respectively.

Due to the periodic nature of the excitation, it is true that after the tran-

sients have died out, the FFTs of each period of the measured data records

only differ from each other in terms of the additive noise. Therefore, by

chopping off the transient part of the data records (first 5-10 periods) and

averaging the results of the FFT on the remaining periods, the effect of the

noise can be averaged out. Thus in the sequel consider these spectra as the

averaged FFT of the non-transient periods. Let

Ū(ω) =
[
U ′
ref1(ω) U

′
ref2(ω)

]
,

Ȳ (ω) =
[
Y ′
ref1(ω) Y

′
ref2(ω)

]
,

R̄(ω) =
[
Rref1(ω) Rref2(ω)

]
.

The classical way to estimate the FRF of the plant for a given frequency

point ωk ∈W is F̂ (ωk) = Ȳ (ωk) · Ū−1(ωk). However, it is well known that

such an empirical transfer function estimate is biased in case of closed-loop
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Fig. 7. Bode magnitude plot of the estimated FRF of the plant at position xmin. Orig-

inal plant (black), estimated FRF (grey), error (light grey).

data. To have an unbiased estimate it is better to consider

F̂ (ωk) =
(
Ȳ (ωk)R̄

H(ωk)
)
·
(
Ū(ωk)R̄

H(ωk)
)−1

. (38)

Among many choices of unbiased closed loop estimators, Eq. (38) has also

been observed in the literature to deliver good results under heavy noise

settings [Wernholt and Gunnarsson (2007)].

By using the data records and the estimation approach Eq. (38), FRF esti-

mates of the plant at the considered scheduling points have been calculated.

During the calculation the first 10 periods in the records have been removed

to attenuate the effect of initial conditions. The results at position xmin are

depicted in Fig. 7. From this figure it is obvious that the method delivers

almost perfect estimates of the frozen FRFs on each IO channel. Further-

more the considered noise only significantly affects the high-frequency band

beyond the flexible modes, which shows that accurate frequency-domain in-

formation is available to recover the most important dynamical aspects of

the plant from measured data.

5.3.4. Selection of the OBF filter banks

To arrive at an adequate selection of the OBF functions in Eq. (12) the

FKcM approach introduced in Section 3.3 is used. To obtain an estimate of

the frozen pole locations of the xy-positioning table model at the considered
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Table 1. Achieved Kolmogorov n-width cost by the
FKcM provided OBF’s for fuzziness m = 35 and dif-
ferent number of OBFs ng.

ng estimated frozen poles true frozen poles

4 -61.061 dB -1.651 dB
8 -125.884 dB -7.084 dB

12 -197.604 dB -12.031 dB
16 -257.905 dB -16.845 dB

x1-positions, a general curve fitting method can be applied on the previously

obtained FRF estimates. Here the approach of the FREQID toolbox has

been used [de Callafon and Van den Hof (1996)]. To arrive at the correct

number of poles a MIMO common denominator model with 8th order has

been estimated with curve fitting. The worst-case absolute error of the

resulting pole estimates w.r.t. the true pole locations of the system at the

given x-positions has been 0.07%.

Next the FKcM approach is applied on the obtained highly-accurate pole

estimates. By analyzing the results of the algorithm based on the estimated

pole locations, it has been observed that nearly optimal basis selection can

be achieved if the fuzziness m is set to 35. Using this fuzziness value

the algorithm has been executed on the estimated pole locations. The

algorithm has been used with different number of optimized basis functions

ng and the results are summarized in Table 1 and given in Fig. 8. In

this table, as a performance measure, the Kolmogorov n-width cost (see

Eq. (15)) with n = ng has been computed in dB both for the obtained pole

estimates and also for all true frozen pole locations Ω∗ of the xy-positioning

table in the considered x1-region. From Fig. 8 and Table 1 it follows that

the obtained OBF poles achieve very small representation error w.r.t the

estimated poles (small Kolmogorov cost). However, w.r.t. the true pole

locations a dramatic difference can be observed between the set of 4 or 16

basis functions. Further analysis of the results shows that at least 12 basis

functions are needed to adequately represent the varying system dynamics

on P. After posteriori assessment of the estimation with 12 and 16 basis

functions it is concluded that 16 basis functions are required to meet with

the specifications. It can also be shown that beyond 16 basis functions the

improvement in model accuracy is not significant. Thus in the sequel, we

will consider the OBF set with 16 basis functions selected by the FKcM

approach to formulate Eq. (37).
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Fig. 8. Zoomed in figures de-
picting the results of the ba-

sis selection w.r.t. the estimated
frozen poles (i.e the set Z) given
with circles. The cluster cen-
ters (basis poles) are given with

black ⋆. The black lines rep-
resent the Kolmogorov bound
Ω(Ξc, ρ∗) w.r.t. the frozen pole

set Ω∗ of the system, while the
dashed lines are the perimeter of
the unit disc. On the left hand
side c = 4 clusters are deter-

mined, on the right hand side
c = 16.
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5.3.5. Estimation of the expansion coefficient dependence

By having the OBF filter banks chosen, the last remaining step of identi-

fication is to estimate the constants c1, c2 and the expansion coefficients

Wi(p) in Eq. (37). For this purpose the already calculated FRF estimates

of the system are used. Note that the frequency response of the OBF filters

and the first-principles suggested rigid body filters can be computed w.r.t.

the frequency points of the FRF estimate and in terms of the model struc-

ture these frequency responses should approximate the estimated FRFs by

linear combination. Thus, estimation of the samples of the expansion coef-

ficients Wi at each considered grid point p ∈ P reduces to a simple linear

regression. After solving the linear regression, the resulting samples of each

Wi can be interpolated using any approach like polynomial, spline, Cheby-

sev, etc. After investigation of the obtained results with each method, it

has been concluded that a polynomial interpolation provides the most ef-

ficient solution in terms of the complexity/accuracy trade off. Regarding

polynomial interpolation it has been concluded that for the case of 16 OBF

functions a polynomial order of 15 is minimally required to achieve a good

approximation of the frozen dynamics. By using the FRF estimates, the

samples of the expansion coefficients of the OBF filter banks obtained in the

previous section with ng = 16 have been estimated and these samples have

been interpolated with 17th order polynomials. The results are depicted in

Fig. 9. These figures show that using only a few estimated samples of the

coefficient functions, a close approximation of the polynomial dependencies

can be obtained. This concludes the identification as the delivered model

now can be explicitly realized in an LFR form.
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Fig. 9. Optimal coefficient functions Wi of the OBF’s ng = 16 (solid lines) w.r.t. the

frozen transfer functions between y′1 and u′
1 at the grid positions x1 together with their

polynomial approximation (dashed lines).

5.4. Validation of the model

As a final step it remains to validate the obtained model in both the fre-

quency and the time domain.

5.4.1. Frequency-domain validation

The obtained LPV-OBF model can be compared in terms of its frozen

frequency responses to the behavior of the first-principle model. For the

OBF model with 16 basis functions and 17th-order polynomial dependence,

the frozen frequency responses for each IO channel have been computed

on a fine grid P ⊂ P (1000 points) together with the response of the true

system and visualized in terms of Bode plots. The results at xmin are given

in Fig. 10 which corresponds to the worst-case model fit. By analyzing

these results the following observations can be made:

• The overall difference between the magnitude error and magnitude of

the transfer functions is aprox. 40 dB.

• However, the error increases with an aprox. 20 dB around the anti-

resonance mode. This results as a side effect of linear regression. Using

better tuned weights this error can be decreased if necessary.

This means that specifications in terms of frequency-domain accuracy could

be achieved with the investigated identification approach.
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Fig. 10. Bode magnitude plot of the frozen frequency response at position xmin of the
estimated LPV-OBF model obtained with 16 basis functions and 17th-order polynomial

coefficient dependence. Original plant (black), estimated OBF model (grey), approxi-
mation error (dashed grey).

5.4.2. Time-domain validation

As a next step we investigate the time-domain behavior of the identified

LPV-OBF model. First the open-loop response of the model is computed by

using recorded u and p signals from a closed-loop simulation of the original

xy-positioning table model for a monotone increasing p which corresponds

to a fast sweep over P. The used reference signals here are a zero set-point

for Rz1 and a typical step-like pattern for y1, designed in terms of optimal

speed, acceleration and jerk profile. The resulting responses of the LPV-

OBF model (after re-transformation with Ty(p)) are given in gray in Fig.

11 while the response of the original plant is given in black. The error

is dominated by a small difference that looks like the step response of an

integrator. This yields that the identified LPV-OBF model is capable to

reproduce the response of the system with high accuracy and the main

source of the error is related to small differences between the unstable part

of system and the LPV-OBF model. This hypothesis is also validated by the

closed-loop response of the LPV-OBF model given with dashed gray in Fig.

11. It is important to note that we considered validation of the model with

varying p, while the LPV-OBF model was obtained purely on the basis

of the frozen behavior of the system. By achieving an acceptable error

which meets the aimed specs. we conclude that the proposed identification

approach can deliver high-quality model estimates.
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5.4.3. Economical size

As we could see, a high number of OBFs and a high-order polynomial

coefficient dependence were needed to capture the dynamics of the xy-

table with the desired accuracy. This means that the final LFR form of the

identified model (37) is relatively large with dim(x) = 4 + 2 · 16 = 36 and

dim(z) = 2 · 17 = 34. However, by applying recent methods in LPV model

reduction, like the approach of [Petersson and Löfberg (2009)], this LFR

form can be reduced to state dimension 8 and with dim(z) = 5, without

a significant loss of accuracy. The explanation lays in the fact that in

the considered model structure Eq. (37) all dependencies on p are at the

output-side. Therefore in terms of realization, there is a certain freedom to

consider states and input contributions which also depend on p and hence

the total dimension of the model can be reduced.

0 1
0

0.01

0.02

0.03

0.04

y 1 [m
]

Time [−]

Simulated response for y
1

0 1
−5

0

5

10

15
x 10

−4

E
rr

or
 o

f y
1 [m

]

Time [−]

Approximation error of y
1

0 1
−4

−2

0

2

4

6
x 10

−6

R
z1

 [m
]

Time [−]

Simulated response for R
z1

0 1
−4

−2

0

2
x 10

−6

E
rr

or
 o

f R
z1

 [m
]

Time [−]

Approximation error of R
z1

0 1
0

0.01

0.02

0.03

0.04

R
ef

er
en

ce
 y

1 [m
]

Time [−]

Reference signal for y
1

0 1
−0.1

−0.05

0

0.05

0.1

p 
[m

]

Time [−]

Scheduling signal

Fig. 11. Time-domain validation of the estimated LPV-OBF model using 16-basis func-
tions with 17th-order polynomial coefficient dependence. Simulated closed-loop response
of the original plant is given with black for the reference and scheduling signals depicted
in the lower two figures. The simulated response of the OBF model based on the closed

loop input signals of the plant is given with grey (open-loop validation) while the closed-
loop response of the model for the given reference signal is depicted with dashed grey
(closed-loop validation).
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6. Conclusion

Based on a series-expansion representation of LPV systems, model struc-

tures using orthonormal basis functions have been developed which allow

system identification in an attractive manner. These models represent an

interesting trade-off between state-space and input-output models by hav-

ing a direct state-space realization and allowing the efficient use of lin-

ear regression for the estimation of the underlying parameters with well-

understood stochastic properties. Identification schemes of these models

have been proposed both in the local and global setting and attractive

properties of these approaches have been demonstrated on the identifica-

tion of an industrially relevant application.
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